Inhaled corticosteroids reduce senescence in endothelial progenitor cells from COPD patients

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Thorax</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>thoraxjnI-2020-216807.R2</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Brief communication</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Paschalaki, Koralia; Imperial College London National Heart and Lung Institute, Vascular Science and Airway Disease Rossios, Christos; Imperial College London National Heart and Lung Institute, Airway Diseases Pericleous, Charis; Imperial College London National Heart and Lung Institute, Vascular Science MacLeod, Mairi; Imperial College London National Heart and Lung Institute Rothery, Stephen; Imperial College London National Heart and Lung Institute Donaldson, Gavin; Imperial College London National Heart and Lung Institute, Airways Disease Section Wedzicha, Jadwiga; Imperial College London National Heart and Lung Institute, Airways Disease Section Gorgoulis, Vassilis; National and Kapodistrian University of Athens, Department of Histology and Embryology; Biomedical Research Foundation of the Academy of Athens; National and Kapodistrian University of Athens School of Medicine, 4Center for New Biotechnologies and Precision Medicine, Medical School; Manchester Academic Health Science Centre, Faculty Institute for Cancer Sciences Randi, Anna; Imperial College London National Heart and Lung Institute, Vascular Science Barnes, Peter; Imperial College London National Heart and Lung Institute, Airway Disease</td>
</tr>
<tr>
<td>Keywords:</td>
<td>COPD Pharmacology</td>
</tr>
</tbody>
</table>
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence — details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Inhaled corticosteroids reduce senescence in endothelial progenitor cells from COPD patients

Authors: Koralia E. Paschalaki¹, Christos Rossios¹*, Charis Pericleous¹*, Mairi MacLeod¹, Stephen Rothery¹, Gavin C. Donaldson¹, Jadwiga Wedzicha¹, Vassilis Gorgoulis²,³,⁴,⁵, Anna M. Randi¹#, Peter J. Barnes¹#

¹National Heart and Lung Institute, Imperial College London, London, UK; ²Molecular Carcinogenesis Group, Department of Histology and Embryology, National and Kapodistrian University of Athens, Athens, Greece; ³Biomedical Research Foundation of the Academy of Athens, Athens, Greece; ⁴Center for New Biotechnologies and Precision Medicine, Medical School, National and Kapodistrian University of Athens, Athens, Greece; ⁵Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK

*Contributed equally to this study

#Authors share senior authorship.

Corresponding author:

Koralia Paschalaki, MD, PhD

Vascular Sciences and Airway Disease Section, Imperial College London
Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, Hammersmith Hospital, Du Cane Road, London W12 0NN
e-mail: k.paschalaki@imperial.ac.uk; Tel: +44 20 7594 2728; Fax: +44 20 7594 3653

Author contributions: Conception and design: KP, AMR, PJB; Data analysis and interpretation: KP, CP, SR, GD, JW, VG, AMR, PJB; Experimental performance: KP, CR, CP, MM, SR; Writing of the manuscript: KP, AMR, PJB. CR and CP contributed equally to this work.

Funding: This work was funded by a Wellcome Trust Programme Grant (093080/Z/10/Z) and AstraZeneca AB Project Grant (WHRD_P37317). KEP is financially supported by National Heart & Lung Institute – Imperial College London and a British Heart Foundation Project Grant (PG/19/75/34686). KEP was supported by National Institute for Health Research (NIHR) Biomedical Research Centre based at Imperial College Healthcare NHS Trust and Imperial College London.

Word count: 997
ABSTRACT

Cellular senescence contributes to the pathophysiology of chronic obstructive pulmonary disease (COPD) and cardiovascular disease. Using endothelial-colony-forming-cells (ECFC), we have demonstrated accelerated senescence in smokers and COPD patients compared to non-smokers. Subgroup analysis suggests that ECFC from COPD patients on inhaled-corticosteroids (ICS) (n=14; 8 on ICS) exhibited significantly reduced senescence (Senescence-associated-beta galactosidase activity, p21CIP1), markers of DNA damage response (DDR) and IFN-γ-inducible-protein-10 compared to COPD patients not on ICS. In vitro studies using human-umbilical-vein-endothelial-cells showed a protective effect of ICS on the DDR, senescence and apoptosis caused by oxidative-stress, suggesting a protective molecular mechanism of action of corticosteroids on endothelium.

INTRODUCTION

Cellular senescence is a fundamental mechanism that contributes to the pathophysiology of age-related disorders, including cardiovascular disease (CVD) and chronic obstructive pulmonary disease (COPD). The DNA damage response (DDR) activated by oxidative-stress results in cell cycle arrest, senescence or apoptosis. Senescent endothelial cells are dysfunctional, exhibit a pro-inflammatory ‘senescence-associated-secretory-phenotype’ (SASP), promoting vascular inflammation, atherogenesis and thrombosis. Using circulating endothelial progenitors named endothelial-colony-forming-cells (ECFC) or blood-outgrowth-endothelial-cells, we demonstrated accelerated endothelial senescence in smokers and COPD patients due to epigenetic dysfunction, supporting the concept of accelerated ageing of the endothelium as a contributor to CVD.
Inhaled corticosteroids (ICS) are widely used in COPD in patients with severe disease and frequent exacerbations. ICS may have a protective effect on cardiovascular co-morbidities in COPD, even though this has been controversial and the mechanism is unknown. Here we demonstrate that ICS reduce senescence and SASP in ECFC from COPD patients, suggesting a novel protective mechanism of action of corticosteroids on endothelium.

METHODS

ECFC were isolated from participants of previous study and two newly recruited COPD patients, as described. Informed consent was obtained from all individuals (table 1). Please see online supplementary material for detailed methodology.

RESULTS

As previously shown, ECFC from healthy smokers and COPD patients displayed increased senescence and markers of DDR compared to healthy non-smokers as measured by SA-β-gal activity, p21CIP1, p16INK4, 53BP1 and γ-H2AX (figure 1A and in published cohort). An unexpected finding from subgroup analysis was that ECFC from COPD patients on ICS exhibited reduced senescence compared to COPD patients not on ICS (n=6 COPD-no ICS vs n=8 COPD-ICS) (figure 1A). Reduced senescence in the COPD group on ICS was further confirmed by additional markers of senescence such as p21CIP1 [mRNA (n=6 COPD-no ICS vs n=5 COPD-ICS), immunoblot (n=3 per group), immunofluorescence (n=3 COPD-no ICS vs n=4 COPD-ICS)] and p16INK4 (n=2 per group) (figure 1B, 1C, 1D). We next studied DDR signalling.
Mediators of DNA repair are γ-H2AX and 53BP1 that regulate downstream effectors, promoting senescence and apoptosis. We observed reduced markers of DDR in the COPD group on ICS (n=3 per group) (figure 1E), suggesting a protective effect of corticosteroids against DDR and endothelial senescence.

To investigate the possible protective effect of corticosteroids, we performed in vitro experiments on human-umbilical-vein-endothelial cells (HUVEC) cultured under oxidant conditions to induce stress-induced premature senescence (SIPS) in the presence or absence of increasing doses of the ICS budesonide, using three different pooled HUVEC samples. Treatment with budesonide using relevant therapeutic doses of the drug (10^8-10^-6mol/L), inhibited SIPS (figure 2A), apoptosis and markers of DDR caused by oxidative-stress (figure 2B-2C). We also studied 53BP1 recruitment to sites of DNA damage, appearing by immunofluorescence as distinct nuclear foci caused by oxidative-stress, at different timepoints. Budesonide treatment resulted in a reduced number of cells with a high number of foci, and a reduced number of cells with 53BP1 foci compared to controls (figure 2D), further supporting the protective effect of budesonide against oxidative-stress induced DNA damage.

Chemokines released from endothelial cells promote vascular inflammation. We measured 22 pro-inflammatory cytokines in ECFC supernatant collected under baseline conditions from non-smokers (n=5) and COPD patients (n=8) receiving ICS or not. Cytokines included key SASP components interleukin (IL)-1α, IL-6, IL-8 and IFN-γ-inducible-protein-10 (IP-10). We found a positive correlation between IL-8 and SA-β-gal (Pearson’s r=0.6774, 95% CI 0.167 to 0.899, p=0.017), and IP-10 and SA-β-gal (Pearson’s r=0.6998, 95% CI 0.210 to 0.909, p=0.011) (figure 2E), suggesting that IL-8 and IP-10 constitute part of the SASP in ECFC.
Intriguingly, IP-10 levels in culture supernatant were reduced in COPD patients on ICS compared to those who were not, a finding that was also confirmed when studying IP-10 expression directly in ECFC by immunofluorescence (n=3 COPD-no ICS vs n=4 COPD-ICS). Both intracellular and nuclear expression of IP-10 was reduced in the samples from COPD on ICS (figure 2F). These results suggest a beneficial effect of ICS on the ECFC secretory phenotype involving IP-10.

DISCUSSION

We demonstrated that endothelial cells from COPD patients showed increased senescence and SASP, which may be modified by ICS. The effect of corticosteroids in vascular ageing has not been extensively investigated. Corticosteroids appear to have beneficial or detrimental effects on the vasculature depending on the context. The glucocorticoid-receptor is ubiquitously expressed on endothelial cells and is a negative regulator of vascular inflammation⁶. In COPD, evidence suggests a protective effect of ICS on cardiovascular comorbidities, which is further supported by the recent IMPACT and ETHOS trials, prospectively demonstrating reduced mortality (including from CVD) in COPD patients treated with ICS, including budesonide⁷. In this study, we demonstrate that COPD patients on ICS exhibit significantly reduced endothelial senescence and IP-10 release compared to COPD patients not on ICS. These findings were reflected in in vitro experiments using budesonide, which reduced DDR, premature senescence and apoptosis caused by oxidative-stress, suggesting a novel and protective molecular mechanism of action of corticosteroids on endothelium.
IP-10 functions as a leukocyte chemoattractant and promotes endothelial senescence and atherogenesis. Interestingly in the current COVID-19 pandemic, IP-10 is a biomarker of severity and possibly contributes to the pathophysiology of severe disease. Corticosteroids are beneficial in COVID-19 patients with respiratory failure, and ICS in symptomatic patients. We can therefore speculate a protective effect of corticosteroids against endothelial senescence and inflammation, promoting vascular homeostasis and integrity, important for cardiovascular comorbidities and possibly for severe complications in COVID-19.

Our study is mainly retrospective involving a small number of patients, and mechanistic findings have been confirmed only with budesonide. The protective effect of corticosteroids against endothelial senescence was observed in COPD patients that were on different ICS, suggesting that this effect is applicable to multiple ICS. Future prospective clinical and mechanism studies are required to investigate the relationship between glucocorticoid and IFN-γ-mediated pathways in the context of vascular ageing and confirm the suggested beneficial effect of ICS on the endothelium. If this is the case, ICS may protect COPD patients and other groups characterized by endothelial senescence (e.g. smokers) from cardiovascular comorbidities, and from endothelial driven complications in viral diseases.

ACKNOWLEDGEMENTS

We thank Mrs Sally Meah for collecting patients' samples, and Dr Richard Starke and Dr Graeme Birdsey for scientific and technical advice (Imperial College London). We also thank
the Facility for Imaging by Light Microscopy (FILM) at Imperial College London. We apologize in advance for omitting references and reviews due to space limitations and we provide a list in the online supplemental material.
REFERENCES

FIGURE LEGENDS

Figure 1. Reduced senescence and DNA damage response in COPD patients on inhaled corticosteroids (ICS)

A. Senescence-associated-β-galactosidase (SA-β-gal) activity was assessed as a marker of cellular senescence in ECFC samples from healthy non-smokers (n=11), healthy smokers (n=6) and COPD patients (n=14, 8 on ICS). ECFC from smokers and COPD patients exhibited increased senescence compared to non-smokers; Kruskal Wallis test followed by Dunn's multiple comparison test (left panel). ECFC from COPD patients on ICS exhibited reduced senescence compared to ECFC from COPD patients not receiving ICS; Mann-Whitney U test (right panel); (scale bars 100μm).

B. mRNA levels for p21 were measured by real-time PCR in ECFC from COPD patients (n=11, 5 on ICS). Ribosomal Protein L13a (RPL13A) was used for normalization.

C. p21 protein levels were quantified by Western blotting. α-tubulin was measured for normalization (n=3 in each group).

D. Representative images of immunofluorescence staining of ECFC from COPD-ICS vs COPD-no ICS patients for p21 (cyan, left panel) and p16 (cyan, right panels). DAPI (blue) was used as nuclear staining and VE-cadherin (magenta) as an endothelial marker.

E. DNA damage was assessed by immunofluorescence staining for 53BP1 (green) and γ-H2AX (red) (n=3 in each group). DAPI (blue) was used as a nuclear marker and VE-cadherin (magenta) as an endothelial marker. The number of distinct nuclear immunofluorescent foci (see arrows) per nucleus was counted in at least 5 z-stack images and 20 cells, using a 63x objective lens (scale bars = 20μm). Mann-Whitney U test; ****p<0.0001; Abbreviations: COPD, chronic obstructive pulmonary disease; ECFC, endothelial colony forming cells; ICS, inhaled corticosteroids.
Figure 2. Corticosteroids may exert a protective effect against premature endothelial senescence caused by oxidative stress – Reduced senescence associated secretory phenotype (SASP) involving IP-10 in COPD patients on inhaled corticosteroids.

A. HUVEC were cultured in the presence or absence of increasing doses of budesonide (10^{-10} - 10^{-6}\text{mol/L}) or control vehicle (DMSO). Following 1 hour pre-treatment, HUVEC were exposed to 50μM of H_{2}O_{2} for 1.5 hours to induce stress-induced premature senescence. SA-β-gal activity was measured after 72 hours from H_{2}O_{2} treatment; n=3 (scale bars 100μm). B. Apoptosis was quantified by measuring Caspase-3/7 Glo activity after 24 hours from H_{2}O_{2} treatment as described in (A); n=3 (samples in triplicate). C. γ-H2AX protein after 24 hours from H_{2}O_{2} treatment as described in (A); n=3. (A-C) Friedman test followed by Dunn’s multiple comparison test. D. HUVEC were stained for 53BP1 and for DRAQ5 (nuclear marker) at 60 min, 240 min, 24 hours or 48 hours after exposure to H_{2}O_{2} treatment. The number of 53BP1 positive cells and the number of foci per cell were quantified (scale bars 20μm). E. IL-8 and IFN-γ-inducible protein 10 (IP-10 or CXCL10) were measured in supernatant samples from ECFC cultures under baseline conditions from non-smokers (n=5) and COPD patients (n=8; n=5 COPD-ICS) by a Luminex Assay. Pearson correlation coefficient of IL-8 and IP-10 with SA-b-gal activity. Reduced expression of IP-10 was observed in samples from COPD patients on ICS compared to COPD patients not receiving ICS; Kruskal Wallis test followed by Dunn’s multiple comparison test. F. Immunofluorescence staining for IP-10 (green) and p21 (cyan). DAPI (blue) was used as a nuclear marker and VE-cadherin (magenta) as an endothelial marker. At least 5 z-stack images and 20 cells per ECFC sample for IP-10 and p21 were analyzed using a 63x objective lens in ECFC from COPD-ICS (n=4) and COPD-no ICS (n=3) (scale bars = 20μm); Mann-Whitney U test.
<table>
<thead>
<tr>
<th>Table 1.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Table 1: Clinical details of participants. Eighteen healthy non-smokers, eleven smokers with normal lung function, and twenty-two COPD patients (3 mild, 12 moderate, 7 severe) were recruited in the study (details in supplemental material and reference3) and ECFC were isolated from blood samples as described.3 All individuals were free from significant cardiac, renal, haematological or other major disorders. Values are expressed as means ± SD. COPD indicates chronic obstructive pulmonary disease; ICS indicates inhaled corticosteroids; *staging of COPD is according to the Global initiative for chronic Obstructive Lung Disease (GOLD) criteria; M = male; F = female; pack-years = number of packs cigarettes smoked per day multiplied by the number of years of smoking; FEV1 = forced expiratory volume in 1 second; FVC = forced vital capacity; FEV1 and FEV1/FVC ratio are post bronchodilator for subjects with COPD, smokers or non-smokers; †p=0.0366 (comparison between non-smokers and COPD–ICS); ‡p<0.0029 (comparison between non-smokers and COPD-ICS); §p<0.0056 (comparison between smokers and COPD-ICS); ‡‡p=0.0019 (comparison between non-smokers and COPD-ICS); ‡§p=0.0365 (comparison between smokers vs COPD-ICS); Kruskal Wallis test followed by Dunn's multiple comparison test.
Figure 1

A

B

C

D

E

Figure 1

A

B

C

D

E
Figure 2

A

CTL BUD 10^{-9}M BUD 10^{-7}M BUD 10^{-5}M

B

\(p=0.0806 \)

\(p=0.0342 \)

\(\gamma\text{-H2AX} \)

\(\text{GAPDH} \)

C

\(17 \)

\(38 \)

D

53BP1 foci/cell

53BP1 (+)ve cells (%)

E

\(\text{IL-8} \) pg/ml

\(\text{IP-10} \) pg/ml

F

p21

IP-10

VE-cad

DAPI

merged

p21 nuclear intensity (a.u.)

IP-10 nuclear intensity (a.u.)

https://mc.manuscriptcentral.com/thorax
Inhaled corticosteroids reduce senescence in endothelial progenitor cells from COPD patients

ONLINE DATA SUPPLEMENT

Material and Methods

Participants

Blood samples (15–48 mL) were collected from healthy non-smoking volunteers, smokers with normal lung function (forced vital capacity in 1 second (FEV$_1$) >80% predicted, FEV$_1$/forced vital capacity (FVC) >0.7) and COPD patients (FEV$_1$<80% predicted, FEV$_1$/FVC <0.7). All individuals aged 38 to 80 years, and were free from significant cardiac, renal, haematological, or other major disorders as determined by medical history, physical examination and screening investigations. All COPD patients were current or ex-smokers and were classified according to the Global initiative for chronic Obstructive Lung Disease (GOLD) criteria for severity of disease. All volunteers were stable (no chest or other infection requiring antibiotics and/or oral steroids) for at least 4 weeks. The study was approved by the Royal Marsden, Hammersmith and Queen Charlotte’s and South East Scotland Ethics Committees, and informed consent was obtained from all individuals.

Isolation and Culture of ECFC from Peripheral Blood

Peripheral blood mononuclear cells were isolated from blood samples and seeded at a density of 3–5 x 107 cells per well, in complete endothelial growth medium (EGM)$^\text{–}2$ (Lonza, Walkersville, MD) supplemented with 10% fetal bovine serum (FBS) (Hyclone, Thermo Scientific, Fisher Scientific Ltd., Loughborough, U.K.), onto six-well plates precoated with type I rat tail collagen (BD Biosciences, Bedford, MA), as previously described.1 After 24 hours, nonadherent cells and debris were aspirated, adherent cells were washed once with EGM-2 medium, and fresh EGM-2 was added to each well. Medium was changed daily for 7 days and then every 2 days. Colonies of ECFC appeared between 7 and 22 days in culture as discrete colonies of cells with cobblestone morphology and were enumerated by visual inspection using a ×4 objective lens (EVOS™ XL Core Imaging System). Endothelial cells derived from the colonies were passaged for 2–3 weeks after appearance and grown to confluence. All experiments were performed with ECFC between passage 3 and 5. There were no differences in the isolation success rate between the groups as described in supplemental material of reference.1

Stress Induced Premature Senescence by Oxidative Stress

https://mc.manuscriptcentral.com/thorax
We used a previously published method for inducing premature senescence by H$_2$O$_2$ (ref Stem Cells). Commercially available human umbilical vein endothelial cells (HUVEC) from pooled donors were used for our experiments (Lonza). HUVEC 1 × 105 were seeded in six-well plates and grown to 80% confluence in M199 medium (Sigma-Aldrich Company Ltd., Dorset, U.K.) plus 10% FBS. Following 1 hour pre-treatment with budesonide or control vehicle (DMSO), cells were washed twice with PBS and treated for 1.5 hours with 50 μmol/L of H$_2$O$_2$ (Sigma-Aldrich Company Ltd.). Cells were washed twice with PBS and cultured in M199 plus 10% FBS medium for three additional days, in the absence or presence of increasing doses of budesonide (Sigma-Aldrich Company Ltd) between the range 10$^{-6}$M and 10$^{-10}$M.

Immunofluorescence

Isolated ECFC or HUVEC were stained as previously described1 with antibodies to vascular endothelial (VE)-cadherin (CD144) (AF938, Bio-Technne Ltd, Abingdon, Oxfordshire, U.K.), p16 and p21 (sc-65224 and sc-817 Santa Cruz Biotechnology, Insight Biotechnology Ltd., Wembley, U.K.), 53 binding protein 1 (53BP1) (4937, Cell Signaling Technology, New England Biolabs, Hertfordshire, U.K.), γ-H2AX (05-636, Millipore) and IP-10 (MA5-32674, Invitrogen Ltd). Secondary antibodies were anti-mouse AlexaFluor 647, anti-rabbit AlexaFluor 488, and anti-goat Alexa Fluor 555 (Invitrogen Ltd). Nuclei were visualized using deep red anthraquinone 5 (DRAQ5) (Biostatus Limited) or 4,6-diamidino-2-phenylindole (DAPI) (Thermo Fisher Scientific).

Senescence-Associated β-Galactosidase Staining

Senescence-associated β-galactosidase (SA-β-Gal) activity was measured with a β-Galactosidase staining kit (Senescence Detection Kit, BioVision Research Products, Mountain View, CA) following the manufacturer’s protocol. The number of blue (senescent) cells relative to the total cell number was counted in two to four different optic fields, using ×10 or ×20 objective lens. At least 200 cells were counted per sample.

Caspase-Glo 3/7 Assay

Apoptosis was quantified by measuring caspase 3 and 7 activation, using Caspase-Glo 3/7 Assay (Promega, Southampton, United Kingdom) on a Bio-Tek Synergy HT multidetection microplate reader, following the manufacturer’s protocol.

Western Blotting

Western blotting was carried out as described1. The following antibodies were used: p21 Waf1/Cip1 (Cell Signaling Technology, 2947), γ-H2AX (ser139) (Cell Signaling Technology, 9718), Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) (Millipore, Watford, U.K.), α-
tubulin (Sigma-Aldrich Company Ltd.). Quantification of protein levels was performed by densitometry and normalized against GAPDH or α-tubulin.

Real-Time Polymerase Chain Reaction

RNA was extracted from ECFC or HUVEC using the RNeasy kit (Qiagen), according to the manufacturer’s instructions. After reverse transcription (QuantaBio qSCRIPT cDNA Supermix, VWR Cat No. 733-1177), p21 mRNA levels were measured by quantitative real-time polymerase chain reaction (RT-PCR) using 5ng cDNA per test well and SYBR Green technology (Biorad iQ SYBR Green Supermix, Cat No. 1708882). Levels of p21 were normalized to Ribosomal Protein L13a (RPL13A), which is an appropriate housekeeping gene for studies on senescence for ECFC\(^2\). All measurements were performed in triplicate. Primer sequences are as follows: p21 forward: 5′-GCAGACCAGCAGACAGATTT-3′, reverse: 5′-GGATTAGGGCTTCCTCTGGA-3′; RPL13A forward: 5′-CTGGACCCTCTCAAGGTGTT-3′, reverse: 5′-GCCCCAGATGGCAAACCT-3′).

Luminex assay

Human cytokines were measured in ECFC supernatant (5 non-smokers; 8 COPD patients, 3 no-ICS and 5 on ICS). 100,000 cells were seeded in 6 well-plates in 1.3 ml of normal medium (EGM2, baseline conditions). Supernatant was collected after 48 hours.

Thirty-two human cytokines were assayed using the Luminex MAGPIX Analyzer (Austin, TX, U.S.A.) as previously described\(^3\). The mean fluorescent intensity was analysed using a five-parameter logistic method on XLfit software v.5.3.1.3 (Guildford, Surrey, U.K.). Twenty-two analytes were detected (please see table below: undetected analytes are displayed in grey).

<table>
<thead>
<tr>
<th>GM-CSF</th>
<th>IL-17A</th>
<th>IL-6</th>
<th>RANTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>G-CSF</td>
<td>IL-1(\alpha)</td>
<td>IL-7</td>
<td>TNF-α</td>
</tr>
<tr>
<td>IFN-(\alpha)-2</td>
<td>IL-1(\alpha)</td>
<td>IL-8</td>
<td>TNF-β</td>
</tr>
<tr>
<td>IFN-(\gamma)</td>
<td>IL-1(\beta)</td>
<td>IP-10</td>
<td>Eotaxin</td>
</tr>
<tr>
<td>IL-10</td>
<td>IL-2</td>
<td>MCP-1</td>
<td>VEGF</td>
</tr>
<tr>
<td>IL-12p40</td>
<td>IL-3</td>
<td>MCP-3</td>
<td>EGF</td>
</tr>
<tr>
<td>IL-12p70</td>
<td>IL-4</td>
<td>MIP-1(\alpha)</td>
<td>Fractalkine</td>
</tr>
<tr>
<td>IL-13</td>
<td>IL-5</td>
<td>MIP-1(\beta)</td>
<td>GRO</td>
</tr>
</tbody>
</table>
Imaging and Image analysis

At least 5 representative image stacks for quantification were captured for each sample/individual on a Zeiss LSM-780 inverted confocal laser scanning microscope using either a ×40, or ×63 oil objective. The images were analysed using FIJI image analysis software and macros were developed to quantify either the DNA damage foci per nucleus, using the DAPI or DRAQ5 fluorescent signal to create masks, or to measure the nuclear and cytoplasmic intensities for each sample.

Statistical Analysis

Data are expressed as mean ± SEM or ± SD as described. Statistical analysis was performed with GraphPad-Prism 9. Comparisons were performed with Mann-Whitney U test, Kruskal Wallis test followed by Dunn’s post-hoc analysis (for unpaired samples) or Friedman’s test followed by Dunn’s post-hoc analysis (for paired samples - experiments on HUVEC). The correlation of values was estimated with the Pearson r correlation coefficient. Significance was defined as p<0.05.

References

We would like to include the following references some of which we were unable to include in the main manuscript due to number limitations

References for the effect of glucocorticoids on vascular function 4-8

Reference on the therapeutic doses of budesonide

References on IP-10 and cardiovascular disease

References on the use of corticosteroids and inhaled corticosteroids in COVID-19

