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ABSTRACT

We show that abelian surfaces (and consequently curves of genus 2) over totally real fields are potentially modular.
As a consequence, we obtain the expected meromorphic continuation and functional equations of their Hasse—Weil zeta
functions. We furthermore show the modularity of infinitely many abelian surfaces A over Q with End¢ A = Z. We also
deduce modularity and potential modularity results for genus one curves over (not necessarily CM) quadratic extensions
of totally real fields.
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1. Introduction

1.1. Our main theorems. — Let X be a smooth, projective variety of dimension m

over a number field F with good reduction outside a finite set of primes S. Associated

to X, one may write down a global Hasse—Weil zeta function:

1
§X(5) = l_[ T(x)”’
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where the product runs over all the closed points x of some (any) smooth proper integral
model X /Op[1/S] for X. (We suppress S from the notation — different choices of S
only change ¢x(s) by a finite number of Euler factors.) The function x(s) is absolutely
convergent for Re(s) > 1 4+ m. We have the following:

Comjecture 1.1.1 (Hasse—Weil Conjecture, ¢f. [Ser70], in particular Cony. C9). — The func-
tion Cx(s) extends to a meromorphic_function of C. There exists a positive real number A € R,
non-zero rational functions P, (') for v|S, and infinite Gamma _factors T, (s) for v|oo such that:

0 =ex) A [ 1@ - [[PN@™)

v|oo v|S
satisfies the functional equation §(s) = w - E(m+ 1 — 5) with w = £1.

(In Serre’s formulation of the conjecture, the Gamma factors are also given explic-
itly in terms of the Archimedean Hodge structures of X.) This conjecture appears to be
first formulated in print (albeit in a less precise form and only for curves) on the final
page of [Weid2]. If F = Q and X is a point, then ¢x(s) is the Riemann zeta function, and
Conjecture 1.1.1 follows from Riemann’s functional equation [Rie59]. If F is a general
number field but X is still a point, then ¢x(s) is the Dedekind zeta function ¢p(s), and
Conjecture 1.1.1 is a theorem of Hecke [Hec20]. If X is a curve of genus zero, then (up
to bad Euler factors) ¢x(s) = ¢p(s)¢r(s — 1), and Conjecture 1.1.1 follows immediately.
More generally, if X is any smooth projective variety whose cohomology is generated by
algebraic cycles over F, then ¢x(s) is a finite product of Artin L-functions (up to transla-
tion), and Conjecture 1.1.1 in this case 1s a consequence of Brauer’s theorem [Bra47]. In
the case when the Galois representations associated to the /-adic cohomology of X are po-
tentially abelian (e.g. an abelian variety with CM), Conjecture 1.1.1 is also a consequence
of the results of Hecke and Brauer.

The fundamental work of Wiles [Wil95, TW93] and the subsequent work of
Breuil, Conrad, Diamond, and Taylor [CDT99, BCDTO01] proved Conjecture 1.1.1
for curves X/Q of genus one, since (again up to a finite number of Euler factors)
Ix(s) = ¢g(5)¢g(s — 1)/L(E, s) (where E = Jac(X)), and the modularity of E implies
the holomorphy and functional equation for L(E, s). More generally, the potential mod-
ularity results of [Tay02] imply Conjecture 1.1.1 for curves X/F of genus one over any
totally real field. The methods used in these papers have been vastly generalized over
the past 25 years due to the enormous efforts of many people. On the other hand, these
methods have until recently been extremely reliant on the assumption that the Hodge
numbers /7 = dim H{;}Z(X) = dim H”(X, Q) of X are at most 1 for all p and ¢, or at
least that such an inequality holds (suitably interpreted) for the irreducible motives oc-
curring in the cohomology of X. While many such motives exist inside the cohomology
of Shimura varieties, there is a paucity of natural geometric examples satistying this con-
dition. For example, if X is a curve of genus g, then 4'"* = /"' = g, and so the original
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Taylor-Wiles method only applies when g = 0 or 1. For genus two curves, we prove the
following theorem.

Theorem 1.1.2. — Let X be either a genus two curve or an abelian surface over a totally real
eld ¥. Then Comjecture 1.1.1 holds for X.
Y

We prove Theorem 1.1.2 as a corollary of the following theorem.

Theorem 1.1.3. — Let X be either a genus two curve or an abelian surface over a totally real
field ¥. Then X s potentially automorphic.

Here by potentially automorphic we mean that there exists a finite Galois ex-
tension L/F such that the compatible system of Galois representations R attached
to Hl(Xq, Q,) (as p varies) over L is automorphic in a precisely circumscribed sense
which we make explicit in Definition 9.1.1. (See also Remark 9.1.9 for a discussion of
how we distinguish between automorphic and modular in this paper; this distinction is made
purely for technical convenience, and can safely be ignored while reading this introduc-
tion.) In particular, an immediate consequence is that the L-function of H'(Xg, Q) as
a Gy -representation extends to a holomorphic function on all of C. Theorem 1.1.2 fol-
lows from Theorem 1.1.3 via a standard argument with Brauer’s theorem and base
change, together (in the case of abelian surfaces) with known functorialities in small
rank. (Some care must be taken in this deduction if the p-adic Galois representations
associated to X become reducible after restriction to L; this issue does not arise in the
most interesting cases of Theorem 1.1.3, in particular the case of an abelian surface X
with End¢(X) =Z.)

Theorem 1.1.3 (and thus also Theorem 1.1.2) is a consequence of Theorem 9.3.1
and Corollary 9.3.3, which in turn are deduced from our main modularity lifting theo-
rem, Theorem 8.4.1. As a consequence of Theorem 1.1.3, we also deduce the following
potential modularity result for genus one curves (see Theorem 9.3.4):

Theorem 1.1.4. — Let X be a genus one curve over a quadratic extension K /¥ of a totally real
field ¥. Then X s potentially modular.

When K/F is totally real, this result has been known for some time ([Tay02]).
When K/F is totally imaginary, however, the result was only recently proved in
[ACC*18]. For all other quadratic extensions (such as F = Q(+/2) and K = Q(+/2)),
the result is new. (See the remarks in §1.4.4 for a comparison between the methods of this
paper with those of [ACC™'18].)

Just as elliptic curves over Q can be associated (via the modularity theorem) to
modular forms of weight 2, the Langlands program predicts that abelian surfaces over Q
should be modular in the sense that they correspond to certain weight 2 Siegel modular
forms. This is because (due to the existence of polarizations) the Galois representations as-
sociated to the p-adic Tate modules of abelian surfaces are naturally valued in GSp,(Q,),
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and GSp, is its own Langlands dual group. A consideration of the Hodge—Tate weights
then suggests that the corresponding automorphic forms on GSp, should be of weight 2
(see §10.3 for a more detailed discussion of this).

Our methods also have implications for the modularity (as opposed to potential mod-
ularity) of abelian surfaces over totally real fields. Here is an example of what can be
proven by our methods.

Theorem 1.1.5. — There exist infinitely many modular abelian surfaces AJQ up to twist
with Endg A ="7Z.

As a consequence, one deduces that the L-function associated to A in Theo-
rem 1.1.5 (that is, the L-function associated to the Galois representation HI(AQ, Q,)
for any prime p) has a holomorphic continuation to the entire complex plane. Note that
Theorem 1.1.3 only implies that this L-function has a meromorphic continuation, with
no control over any possible poles. (This is for essentially the same reason that Brauer’s
theorem proves the meromorphic continuation of Artin L-functions, but not the holo-
morphic continuation.) In fact, we can also prove an analogous theorem for any totally
real field F in which 3 splits completely; see Theorem 10.2.6.

To put Theorem 1.1.5 into context, note firstly that if End¢(A) # Z, then the Ga-
lois representations associated to A become reducible over some finite extension, and
hence one may use (or prove) special cases of functoriality to reduce the problem to
the modularity of representations of dimensions 2 or 1. Results of this kind appear in
the papers [Yos80, Yos84, RS07a, JLR12, DK16, BDPcS15]. (Several of these argu-
ments could now be redone more systematically in light of the monumental work of
Arthur [Art04, Artl3].)

In the “typical” case that Endg(A) = Z, Brumer and Kramer [BK14] formulated
the paramodular comjecture, which gives a precise prescription for the “optimal” level struc-
ture for an automorphic form corresponding to a given abelian surface; in particular, this
in principle reduces the conjecture for a given A to an explicit computation of a (finite-
dimensional) space of Siegel modular forms. They furthermore showed that the smallest
prime conductor of an abelian surface is 277; in combination with the computations
of [PY15], this demonstrates that the conjecture is true in prime conductor less than 277
(because there are neither any abelian surfaces nor suitable Siegel modular forms).

These considerations are taken further in the recent papers [BPPT19, BK20].
In particular, these papers succeed in establishing for the first time the modularity of
(finitely many, up to twist) abelian surfaces A with End¢(A) = Z. (The explicit examples
in [BPPT19] are conductors 277, 353, and 587, and the example in [BK20] is of conduc-
tor 731. It should be noted that the abelian surfaces considered in Theorem 1.1.5 do not
include any of these examples; as explained below, Theorem 1.1.5 is proved by proving
the existence of infinitely many abelian surfaces to which our modularity lifting theorems
apply, rather than by starting with explicit examples of small conductor.) These papers
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ultimately rely on elaborate explicit computations of low weight Siegel modular forms,
developed in part by Poor and Yuen [PY15, PSY17, BPY16].

1.1.6. Our modularity lfting theorem. — We now state our main modularity lifting
theorem as it applies to abelian surfaces. The following theorem is proved in §10, see
Proposition 10.1.1. (It 1s possible to slightly weaken the hypothesis at v|p to deal with
certain abelian surfaces which have semistable reduction at v|p.)

Theorem 1.1.7. — Let ¥ be a totally real field in which p > 2 splits completely. Let A/F be
an abelian surface with good ordinary reduction at all places v|p, and suppose that, at each v|p, the unit
100t crystalline eigenvalues are distinct modulo p. Assume that A admuts a polarization of degree prime
top. Let

Ba,: Gr — GSp,(F))

denote the dual of the mod-p Galows representation associated to A[p), and assume that py , 15 vast
and tidy in the sense of Definitions 7.5.6 and 7.5.11. Assume that py , ts ordinarily modulay, in the
sense that there exists an automorphic representation 7w of GSp, /¥ of parallel weight 2 and central
character | - |* which is ordinary at all v|p, such that P, 0 = Pays and prylcy, is pure for all finite
places v of ¥. Then A is modular, corresponding to a Hilbert—Siegel eigenform of parallel weight two.

Moreover, Proposition 10.1.3 shows that the modularity hypotheses on p, , can be
omitted in the following situations:

(I) p=3, and p, 3 is induced from a 2-dimensional representation with inverse
cyclotomic determinant defined over a totally real quadratic extension E/F in
which 3 i1s unramified.

(2) p =5, and p, 5 is induced from a 2-dimensional representation valued
in GLy(F;) with inverse cyclotomic character defined over a totally real
quadratic extension E/F in which 5 is unramified.

(3) Pa, 1s induced from a character of a quartic CM field H/F in which p splits
completely.

Theorem 1.1.7 may be viewed as the genus two analogue of [Wil95, Thm. 0.2],
which is the main modularity lifting result proved in that paper. Proposition 10.1.3 is then
the analogue of [Wil95, Thm. 0.6], which is a modularity result for residually projectively
dihedral representations. The reason one cannot prove an analogue of [Wil95, Thm.
0.3] (which proves that all ordinary semistable elliptic curves over Q with py, 5 absolutely
irreducible are modular) is that there is no argument to reduce the residual modularity
of a surjective mod-3 representation p; : Gy — GSp,(F3) (as in §5 of ibid) to special
cases of the Artin Conjecture (proved by Langlands—Tunnell). Note that the difficulty is
not simply that GSp, (Fs) is not solvable (some of the indicated representations above
for p = 3 and 5 are non-solvable), but also that Artin representations do not contribute
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to the coherent cohomology of Shimura varieties in any setting other than holomorphic
(Hilbert) modular forms of weight one.

For E/F a totally real quadratic extension, the inductions of (modular) representa-
tions 9 : G — GLy(F;) with determinant €' to Gy provide a large source of residually
modular . We then show that any such p : Gg — GSp,(F3) with suitable determinant
and local conditions at places v|3 is equal to p, 5 for infinitely many abelian surfaces A/F
with Endg(A) = Z and with good ordinary reduction at v|3 (see Theorem 10.2.1). The-
orem 1.1.7 then implies that all such A are modular, and hence implies Theorem 1.1.5.

1.2. An overview of our argument. — Let A be an abelian surface over a totally real
field F. We may assume that Endp(A) = Z as otherwise, A is of GLo-type, in which
case it i3 known that A is potentially modular. If Endp(A) = Z, a generalization of the
paramodular conjecture predicts the existence of a holomorphic weight 2 Hilbert—Siegel
modular cuspidal eigenform f (for the group GSp,/F) associated to A in the sense that
we have an equality of L-functions L(f, s) = L(H'(A), s). If such an equality holds, we
say that A is modular.

In this paper, we establish that (under some mild further restrictions on A), after
possibly replacing the field F by a finite totally real extension F', the conjecture is true.

Remark 1.2.1. — There are situations where we don’t prove (even potentially) the
paramodular conjecture for A. This is due to the presence of non-trivial endomorphisms
of A over Q, Nevertheless, we always express the L-function of A using automorphic
forms on groups GL;/K for ¢ € {1, 2,4} and K a number field, and thus establish Con-
jecture 1.1.1.

On the surface, the modularity conjecture for abelian surfaces appears to be a
generalization of the modularity conjecture for elliptic curves. However, this analogy is
somewhat misleading. Elliptic curves are regular motives with weights (0, 1), whereas
abelian surfaces are irregular motives with weights (0, 0, 1, 1). On the automorphic side,
weight 2 Hilbert modular cuspforms occur in a single degree of the Betti and coherent
cohomology of the Hilbert modular varieties. Under mild assumptions, there is an elliptic
curve associated to any Hilbert modular cuspidal eigenform with rational Hecke field.

In contrast, weight 2 Hilbert-Siegel modular cuspforms only occur in the coher-
ent cohomology of the Hilbert-Siegel modular variety. More precisely, a holomorphic
weight 2 Hilbert—Siegel modular cuspidal eigenform can be viewed as a section of a
line bundle w? over the Hilbert—Siegel modular variety X; here X is a smooth algebraic
variety defined over Q of dimension 3[F : Q] which parametrizes abelian schemes of di-
mension 2[F : Q] equipped with an action of O, a level structure, and a polarization.
Moreover, in the “generic case”, such an eigenform contributes to cohomology in de-
grees O to [F: Q]. Since the Hecke eigenvalues associated to such modular forms are
not realized in the étale cohomology of a Shimura variety, we don’t know how to asso-
ciate a “motive” to a weight 2 Hilbert-Siegel modular cuspidal eigenform, but only a
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compatible system of Galois representations which should correspond to the system of
£-adic realizations of this motive. These Galois representations are constructed by using
congruences.

From a technical point of view, it turns out that the modularity conjecture for
abelian surfaces over a totally real field I is closely related to the 2-dimensional odd
Artin conjecture for I (now a theorem), which is the existence of a bijection preserving
L-functions between the following objects:

e Irreducible, totally odd, two dimensional complex representations of the abso-
lute Galois group of F, and
e Hilbert modular cuspidal eigenforms (newforms) of weight one.

2-dimensional odd Artin representations have irregular Hodge—Tate weights (0, 0),
and Hilbert modular forms of weight one only occur in the coherent cohomology of the
Hilbert modular variety, where they contribute in degrees 0 to [F: Q].

We now review some of the strategies employed in the proof of Artin’s conjecture,
as they have served as an inspiration for our current work. As with almost all modu-
larity theorems, one proceeds by combining a modularity lifting theorem with residual
modularity (that is, the modularity of the mod p representation). In the case of Artin’s
conjecture, residual modularity ultimately (if quite indirectly) comes from the Langlands—
Tunnell theorem, whereas in our setting, the residual potential modularity comes from a
straightforward application of Taylor’s method [Tay02] using a theorem of Moret-Bailly.
Accordingly, we ignore the question of residual modularity for the rest of this introduc-
tion, and concentrate on explaining the modularity lifting theorems.

The first modularity (lifting) theorems which applied to two dimensional odd Artin
representations p over Q were obtained by Buzzard-Taylor and Buzzard [BT99, Buz03].
There is an obstruction to generalizing the Taylor-Wiles method (which was origi-
nally applied in the regular case of Hodge—Tate weights (0, 1) and weight two modular
forms [Wil95, TW95]) to the irregular case of weights (0, 0) and weight one modular
forms. This obstruction lies in the fact that weight one forms occur in degrees 0 and 1 of
the coherent cohomology and that there exist non-liftable mod p weight one eigenforms.
(There 1s also a reflection of this obstruction on the Galois theoretic side — the corre-
sponding local deformation ring at p has dimension one less in the irregular weight case.)
Instead, Buzzard and Taylor proceed quite differently.

Choose a prime p and view p as a p-adic representation with finite image. We
also assume that p is unramified at p and let , B denote the Frobenius eigenvalues. For
simplicity, we also assume that @ # B (where the bar denotes reduction modulo p). We

have that
Plce, = (A“ 0 )
o=\ 0 A

for the unramified characters A, and A4 taking a Frobenius element to «, B respectively.
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The strategy of Buzzard and Taylor is to first replace the space of classical weight
one modular forms by a bigger space of ordinary p-adic modular forms of weight one.
On the Galois side, classical weight one eigenforms (of level prime to p) have associated
Galois representations which are unramified at p, while an ordinary p-adic modular form
Jf of weight one has an associated Galois representation which may be ramified at p of

(1 =
pfllq,,— 0 1

Moreover, f should be classical if and only if * = 0. A key advantage of working

the form:

with ordinary p-adic modular forms is that they are defined as sections of a line bundle
over the ordinary locus, which is affine, and thus only occur in cohomological degree 0.
It follows that ordinary p-adic modular forms of weight one are unobstructed for congru-
ences and one can (assuming residual modularity) apply the Taylor-Wiles method in this
setting to deduce the existence of two p-adic ordinary weight one modular forms f, and
Jp such that p;, = pp, = p and Uyfy = atfy, Upfg = B/

We observe that the existence of both f, and fz witnesses the fact that p is un-
ramified at p. In order to show that f, and f; are classical forms of weight one, one
forms the linear combinations & = (af, — Bfg)/(a¢ — B) and g = (fy — fp) /(@ — B).
The property that p;, = p; = p and the explicit relation between g-expansions and
Hecke eigenvalues translates into the geometric property that Frob(%) = g. Using rigid
analytic techniques, one can show that this property mmplies that f,,fz are classical
forms of weight one. This strategy has been successfully generalized to any totally real
field [Sas13, KST14, Kasl6, PS16b, Pill17].

From a different direction, the paper [CG18] introduced an alternate method for
proving modularity lifting results in weight one, by modifying the method of Taylor-Wiles
and exploiting the Galois representations associated to coherent cohomology classes in all
degrees. This method eliminates the delicate classicality theorem in weight one because
one only works with classical (but possibly higher degree) cohomology. This method al-
lows in principle to deal with any obstructed situation, but requires some non-trivial in-
put. For 2-dimensional odd Artin representations over a totally real fields, one needs to
prove that (after suitable localization at a maximal ideal of the Hecke algebra) the co-
homology in weight one is supported in degrees 0 to [F: Q] (this is actually automatic
here for cohomological dimension reasons), and that the Galois representations in all co-
homological degrees satisfy a form of local-global compatibility (at places above p). This
last property has been proved when F = Q where one can reduce to studying degree 0
torsion cohomology classes and use the “doubling method” described below, but has not
yet been proved for all primes p over a general totally real field (though see [ERX17] for
some partial results).

After this discussion of Artin’s conjecture, we return to the paramodular conjec-
ture. We first assume that I = Q and fix a prime p. We assume that A has ordinary good
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reduction at p so that

e O * *
N L * *
pA,[)lGQO — 0 0 )\.518_1 O 5
0 0 0 Al

where, additionally, we assume that o # B. (The Weil bounds together with the Ce-
botarev density theorem guarantee an ample source of such primes p.) Tilouine and
his collaborators [TU95, Til98, TU99, MT02, GT05, Til06a, Til09] developed mod-
ularity lifting results for GSp, /Q in regular weight. In the case of Hodge-Tate weights
(0,0,1, 1), the paper [Pil12] applied these techniques to ordinary p-adic modular forms
of weight 2 to produce (under technical assumptions) two p-adic eigenforms f, and fz
associated to A (see also [Til06a, Till12], where the case of certain GSp,-type abelian
varieties is treated).

Similarly to the case of GLy/Q), an ordinary p-adic modular form of weight 2 has
a Galois representation whose restriction to inertia at p has the shape:

I % % *
0 1 * *
0 0 &'
0 0 0 g

Such a form should be classical if and only if its Galois representation is de Rham —
equivalently: %; = %9 = 0 (because of the symplectic structure, the vanishing of %, is
equivalent to the vanishing of ;).

As before, the existence of both f, and fz witnesses the property that A is de Rham
at p. One difficulty, however, is that the Fourier expansions of Siegel modular forms are
not explicitly determined by the Hecke eigenvalues (although we often have an abstract
multiplicity one theorem). In particular, one doesn’t know how to deduce geometrically
from p;, = py, = pa,, that there exist suitable linear combinations of f, and /s giving rise
to the desired form f by mimicking the Buzzard—Taylor argument.

In another direction, in [CG20] the modified Taylor-Wiles method was applied
to low weight Siegel modular forms over Q. There were a number of serious difficul-
ties which prevented the authors from deducing any unconditional modularity lifting for
abelian surfaces. The idea of the method is to consider (a suitable localization of) the
full cohomology complex RI'(X, w?) where X is an integral model over Z, of the Siegel
threefold. The required inputs are:

(1) to prove that the cohomology is only supported in degrees 0 and 1, and
(2) to prove local-global compatibility for the cohomology classes.

The first point is subtle in the weight of interest, because the cohomology groups
will not generally vanish before localization at some non-Eisenstein maximal ideal m (and
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indeed this point was not established in weight 2 in [CG20]). The paper [CG20] proved
the second point for torsion degree 0 cohomology classes, using a “doubling” argument
that we will return to below.

One crucial new ingredient which allows us to proceed in the symplectic case and
deal with (1) is the higher Hida theory developed for GSp, over Q in [Pil20]. The idea
of [Pi120] is (loosely speaking) to work over the larger space which is the complement of
the supersingular locus (the rank > 1 strata), which is now no longer affine. (Since we are
working in mixed characteristic, one should imagine this taking place in the category of
formal schemes, as in classical Hida theory:) Since the cohomological dimension of these
spaces 1s one (more precisely, the image of these spaces in the minimal compactification
has cohomological dimension one, which is sufficient for our purposes), there should ex-
ist complexes of amplitude [0, 1] computing the coherent cohomology of all the relevant
vector bundles. The main result of [Pil20] is that suitably constructed Hida idempotents
cut down such a complex to a perfect complex, and moreover that the cohomology of
this perfect complex is computed in characteristic zero by the space of weight 2 automor-
phic forms of interest. A crucial ingredient in order to study the coherent cohomology is
therefore the introduction of Hecke operators at p and their associated projectors.

A version over Q of our modularity lifting theorem could be proved by apply-
ing the patching method of [CG18] to the higher Hida complexes of [Pil20]. It should
nevertheless be noted that, even if we were only interested in theorems over Q, we are
forced to prove a modularity lifting theorem for any totally real field I (and prime p which
splits completely in it). This is because we need to employ Taylor’s Ihara avoidance tech-
nique [Tay08] to deal with issues of level raising and lowering at places away from p,
and this step crucially relies on using solvable base change. We can then combine this
modularity lifting result with base change techniques and the Moret-Bailly argument to
achieve residual potential modularity, in order to prove our main potential modularity
theorem.

In the light of the above discussion, in order to prove a modularity lifting theo-
rem for Hilbert-Siegel modular forms it is natural to consider (a suitable localization
of) either the cohomology complex RI"(X, w?) where X is an integral model over Z, of
the Hilbert-Siegel space, or of the ordinary part of the cohomology complex for a sub-
space of X obtained from the p-rank stratification. The required inputs for the modified
Taylor-Wiles method are now:

(1) to prove that the cohomology is only supported in degrees O to [I: Q], and
(2) to prove local-global compatibility for the cohomology classes.

It is to some extent possible to solve (1) using higher Hida theory (although there
are some issues), but (2) seems to be a more serious problem because we only know how
to prove that the Galois representations associated to torsion classes in H' satisfy the right
local-global compatibility condition at v|p if i = 0. Accordingly, we are unable to argue
directly with such complexes.
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Let the number of non-zero degrees of cohomology of the spaces we are consider-
ing be /) 4+ 1; we refer to /) as the defect. (The original Taylor-Wiles method only applies
if {y = 0, while if /) > 0 we use the method of [CG18]. As mentioned above, {, also has a
Galois-theoretic interpretation: the sum of the dimensions of the local deformation rings
is {y less than the corresponding dimension in the defect O case.) One key trick we employ
in this paper is to reduce to situations where we only have to consider cohomology in
at most two degrees (so the defect is at most one), i.e. it suffices to work with complexes
consisting of at most two terms. This is where we take advantage of the product situation
at p (because p splits in the totally real field). (Implicitly, what happens in this case is that
any cohomology occurring in H' can also be seen via the Bockstein homomorphism as
coming from H", provided that the characteristic zero classes in H' are also seen by the
characteristic zero classes in H’, and this can be established by automorphic considera-
tions; so we only have to prove local-global compatibility for H’.) We now explain how
we do this in slightly more detail.

We assume that A has ordinary good reduction at all places v|p, so that

Ae, O * *
1 0 A * *
IOA,plGFU — 0 0 )\‘/glg—l 0 )
0 0 0 A le™!

where we furthermore assume that o, # BU.

Although we expect that there should be a weight 2 eigenform associated to A of
spherical level at p (because A has good reduction at p), it turns out that because A is
ordinary at p, it is more natural to look for an eigenform f associated to A of Klingen
level at p. The Klingen level structure is given by choosing a subgroup of order p inside
Alv] for all v|p. At Klingen level at v, there is a Hecke operator Ugy(,).1 whose eigenvalue
on f should be «, + B,, and a second Hecke operator Ugy,),2 whose eigenvalue should
be o, B,. We observe that the second operator has an invertible eigenvalue (we say that
J/ 1s Klingen ordinary) and this corresponds to the fact that the Galois representation
Payplcy, 1s ordinary.

There is another level structure that plays a role: the Iwahori level structure given
by choosing a complete self dual flag of subgroups inside A[v]. For each v|p, there are
two degeneracy maps from Iwahori level to Klingen level, and there are Hecke oper-
ators Upyw). 15 Unvw).2 = Ukii),2 at Iwahori level. Pulling back the expected form / by
the degeneracy maps should yield eigenforms at Iwahori level which have eigenvalues «,
and B, for Uy, (we call them Iwahori ordinary).

We now return to the question of using modularity lifting theorems to find /. First
of all, modularity lifting theorems with p-adic ordinary modular forms (i.e. with {, = 0)
allow us to construct 25 Twahori ordinary p-adic modular forms whose eigenvalue
for Upyw).1 1s @, or B,, and whose eigenvalue for Ugj o 1s @, B,. We suspect that these
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forms are classical, but as explained before, we don’t know how to establish any geometric
relation between them.

As a second step we apply a modularity lifting theorem in the case that the defect
[y equals one. Let us isolate a place v|p. Using higher Hida theory, we construct a perfect
complex of amplitude [0, 1] which is obtained by taking the ordinary (more precisely
Iwahori ordinary at w # v, Klingen ordinary at v) cohomology of the open subspace
of the Hilbert—Siegel Shimura variety which is ordinary and carries an Iwahori level
structure at all places w # v, and has p-rank at least one at v and carries a Klingen level
structure.

We manage to prove that this cohomology carries a Galois representation which
has the following type of local-global compatibility property:

(1) For all places w|p, w # v:

I % = *
10 1 = *
pA,plIFw— O 0 871 %
0 0 0 g
(2) For v:
1 0 =% *
10 1 = *
Pl =10 0 &1 0
0 0 0 g!

Using the methods of [CG18], we can prove a modularity lifting theorem, and
produce 2F¥~! p-adic modular forms (which converge a lot more in the v direction)
whose eigenvalue for Upyy).1 1s o, or B, if w # v, and whose eigenvalue for Uk,
is a, + By, and whose eigenvalue for Ugjiqy) o = Upyq).2 18 ot By, for all wip.

Our last step is to prove lots of linear relations between all these forms we have
constructed. This step ultimately relies upon an abstract multiplicity one result which we
prove using the Taylor-Wiles method. Exploiting these linear relations and using étale
descent techniques, we first manage to construct a Klingen ordinary weight 2 modular
form defined on the open subspace of the Hilbert-Siegel Shimura variety which has p-
rank at least one at all v|p and carries a Klingen level structure. We then manage, using
analytic continuation techniques, to prove that this form extends to the full Shimura
variety and is therefore classical.

1.3. An outline of the paper. — We briefly explain the outline of the paper; we refer
the reader to the introductions to the individual sections for a further explanation of their
contents, and for some elaborations on the overview of our arguments above.
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In §2 we recall some more or less standard background material on Galois repre-
sentations, the local Langlands correspondence, local representation theory, and related
topics. §3 discusses the Shimura varieties which we use, and some properties of their
integral models and compactifications, and recalls the approach to the normalization of
Hecke operators on coherent cohomology via cohomological correspondences which was
introduced in [Pil120].

In §4 we construct the Hida complexes that we work with, and prove some of their
basic properties (in particular, we prove that they are perfect complexes). In §5 we es-
tablish the “doubling” results that we will later use to prove local-global compatibility
for Hilbert-Siegel modular forms over torsion rings. The basic strategy (employed in a
number of other places, see [Gro90, Edi92, Wiel4, CG18, CG20]) is to show that we
can embed (via degeneracy maps) two copies of our space of ordinary modular forms
at Klingen level into a space of ordinary modular forms of Iwahori level. This allows
us to show that the corresponding Galois representations are ordinary (in the Iwahori
sense) in two different ways, namely, with «,, and B, as unramified subspaces. Then
the genericity assumption @,, # B, forces there to be a 2-dimensional unramified sum-
mand of our representation. The key technical difficulty is proving that the direct sum
of the degeneracy maps does indeed give an embedding. All previous incarnations of
the doubling phenomenon ultimately relied on the ¢-expansion principle, but our ar-
gument is more geometric, and ultimately rests on analyzing the effect of the Hecke
operator Z,, = Uxjiw).1 — Unyw).1 along the w-non-ordinary locus.

In §6 we prove that a characteristic zero classicality result for the H of our Hida
complexes, using Coleman theory. We also show that the complexes we consider are bal-
anced, in the sense that they have Euler characteristic zero, using a somewhat intricate
interplay between three objects — the complex of classical forms, the complex of over-
convergent forms, and our complex of (Klingen) ordinary forms.

In §7 we carry out our main Taylor-Wiles patching arguments in the cases that
[y =0and [, = 1. We then prove our main modularity lifting theorem in §8, using analytic
continuation, étale descent, and linear algebra arguments based on the doubling results
of §5 to reduce to the classicality results of §6.

In §9, we apply our main automorphy lifting theorem to prove the potential au-
tomorphy of abelian surfaces. The basic idea is to use a version of the p-¢ trick (first
employed by Wiles as the 3-5 trick), together with an application of a theorem of Moret-
Bailly, to connect general abelian surfaces via a chain of congruences to the restriction
of scalars of an elliptic curve over a totally real quadratic extension of F, which we know
already by [Tay02] to be potentially modular. We are also left to deal directly with some
cases of abelian surfaces with small Mumford—Tate groups, which can mostly be done im-
mediately with an appeal to the theory of Grossencharacters. We also include a number
of applications as mentioned in the introduction, including elliptic curves over quadratic
extensions of F.
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In §10, we give applications to the automorphy of abelian surfaces. We show that,
given any mod 3 representation p : Gg — GSp, (F3) with (inverse) cyclotomic similitude
character, it can be realized (in infinitely many ways) as the 3-torsion of an abelian surface
over Q. Here we exploit some classical geometry related to the Burkhardt quartic, which
is isomorphic to a compactification of A45(3). The key point is to show that the variety
given by the twist of A(3) by p has sufficiently many rational points. We do this by
proving it is unirational over Q via a map of degree at most 6. The argument is similar
to that of [SBT97], except that it is applied not to the twist of A5 (3) itself but to a twist of
a degree 6 rational cover, which has the pleasing property (unlike the Burkhardt quartic
itself) that the birational map to P* over Q can be made equivariant with respect to the
action of the automorphism group PSp, (Fs). Finally, we conclude with a discussion of
the paramodular conjecture and its relationship to the standard conjectures, and explain
why the original formulation of this conjecture requires a minor modification.

1.4. Some further remarks. — Yor length reasons, we did not try to optimize all of our
theorems — for example, our arguments would surely extend to prove the potential au-
tomorphy of some GSp,-type abelian varieties, but sticking with abelian surfaces makes
the Moret-Bailly arguments somewhat simpler, and (by using a trick) we manage to avoid
any character building whatsoever. However, we have gone to some lengths to treat the
case p = 3, and to use a weaker notion of p-distinguishedness than in [CG20]; while this
is not necessary for our applications to potential modularity, it significantly increases the
applicability of our theorems to actual modularity problems.

1.4.1. The work of Arthur. — It should be noted that we use Arthur’s multiplicity
formula for the discrete spectrum of GSp,, as announced in [Art04]. A proof of this
(relying on Arthur’s work for symplectic and orthogonal groups in [Artl3]) was given
in [G'T19], but this proof is only as unconditional as the results of [Art]13] and [MW16a,
MW16b]. In particular, it depends on cases of the twisted weighted fundamental lemma
that were announced in [CL10], but whose proofs have not yet appeared, as well as on
the references [A24], [A25], [A26] and [A27] in [Artl3], which at the time of writing
have not appeared publicly.

1.4.2. Curves of higher genus. — One may well ask whether the methods of this pa-
per could be used to prove (potential) modularity of curves of genus g > 3 whose Jacobians
have trivial endomorphism rings. At the moment, this seems exceedingly unlikely with-
out some substantial new idea. All generalizations of the Taylor-Wiles method to this
point require that the automorphic representations in question are associated to the Betti
cohomology groups of locally symmetric spaces, or the coherent cohomology groups of
Shimura varieties, which have integral structures and hence allow one to talk about con-
gruences between automorphic forms. Symplectic motives of rank 2g over Q are conjec-
turally associated to automorphic representations for the (split) orthogonal group SOy,
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(when g =1 or g = 2, there are well-known exceptional isomorphisms which allow us to
replace SOy, by the groups GLy and GSp, respectively). Following [BK14], Gross has
made some precise conjectures concerning the level structures of newforms associated to
such conjectural automorphic representations in [Grol6].

The automorphic representations contributing to the Betti cohomology groups
of locally symmetric spaces have regular infinitesimal characters, so can only be used
for g = 1. The automorphic representations contributing to the coherent cohomology
of orthogonal Shimura varieties are representations of the inner form SO(2g — 1, 2)
of SOy, (which is non-split if ¢ > 1), whose infinity components 7, are furthermore
either discrete series, or non-degenerate limits of discrete series.

If ¢ = 1, the representations considered by Gross in [Grol6] are discrete series,
and if g = 2, they are non-degenerate limits of discrete series, but if ¢ > 3, then neither
possibility occurs, so the automorphic representations do not contribute to the cohomol-
ogy (of any kind) of the corresponding Shimura variety. (Another way of seeing this is
to compute the possible infinitesimal characters of the automorphic representations cor-
responding to automorphic vector bundles on the Shimura variety, or equivalently the
Hodge—Tate weights of the expected 2g-dimensional symplectic Galois representations;
one finds that no Hodge—Tate weight can occur with multiplicity bigger than 2, while
the symplectic Galois representations coming from the étale H' of a curve of genus g
have weights 0, 1 each occurring with multiplicity g.) In particular, the general modular-
ity problem for curves of genus g > 3 seems at least as hard as proving non-solvable cases
of the Artin conjecture for totally even representations, and even proving the modularity
of a single such curve with Mumford—Tate group GSp,, seems completely out of reach.

On the other hand, there are some special families in higher genus which may well
be amenable to our method. In particular, the Tate module of a cyclic trigonal genus three
curve (so-called Picard curves, with affine equations of the form y* = x* + ax® + bx + ¢)
defined over Q splits (over Q(+/—3)) into two essentially conjugate self-dual irregular 3-
dimensional representations of Gg/=3). These Galois representations conjecturally cor-
respond (see the appendix to [T106a]) to automorphic representations 7 for a form
of U(2, 1)/Q (splitting over Q(+/—3)) such that 7., is a non-degenerate limit of discrete
series and contributes to the coherent cohomology of the associated Shimura variety. The
methods of this paper should apply (in principle) to these curves.

1.4.3. K3 surfaces. — Our results should also have applications to the Hasse—Weil
conjecture for K3 surfaces over totally real fields with geometric Picard number > 17.
While we do not undertake a detailed study of this problem here, we discuss it in §9.4.

1.4.4. A comparison of this paper with [ACC* 18]. — It follows from Theorem 1.1.3
that any elliptic curve E over a CM field K/F is potentially modular (simply consider
the abelian surface given by Weil restriction of scalars of E from K to F). This result
is also proved in [ACC*18]. Perhaps surprisingly, there is relatively little overlap be-
tween the two proofs. For example, our argument does not require any of the results of
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Scholze [Sch15] on the construction of Galois representations, nor the derived version of
Thara avoidance required in [ACC™" 18]. The only common theme is the use of the modi-
fied Taylor-Wiles method of [CG18]. To further illustrate the difference, it is also proved
in [ACCT18] that the nth symmetric power of any such E is potentially automorphic,
which is not directly accessible from our approach. On the other hand, we also deduce
(Theorem 1.1.4) the potential modularity of elliptic curves over fields like F = Q(+/2),
which seems out of reach using the methods of [ACC™18].

2. Background material

In this section we recall a variety of more or less well-known results that we will use

in the body of the paper.
2.1. Notation and conventions.

2.1.1. GSp,. — We define GSp, to be the reductive group over Z defined as a
subgroup of GL, by

GSp,(R) = {g € GL4(R) : gJ¢' = v(9)]}

where v(g) is the similitude factor (which is uniquely determined by g, and which we
sometimes call the multiplier factor), and J is the antisymmetric matrix

(5 9)

where s = ((1) é) Note that the map v : g+ v(g) is a homomorphism GSp, — G,,.

We let Sp, be the subgroup with v =1, and we let B C G = GSp, be the Borel
subgroup of upper triangular matrices, and T C B be the diagonal maximal torus.
Write Wi = Ng(T)/T for the Weyl group of (G, T). It acts on the character group
100
via w - A() = A(w~'tw). It is generated by s, = s 0 and 5o = | 050 | where

0z 5 001

1 . .
§ = (_01 0) , and admits the presentation

W¢ = (51,52|S% =5§ = (5152)4 =1).

Write X*(T) (resp. X, ('T)) for the group of characters (resp. cocharacters) of T. We
identify X*(T) with the lattice in Z* of triples (a, b; ¢) € Z* such that c=a+ b (mod 2)

via

At =diag(t, b, viy ', vi ) B GEv TR,
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In particular, the central character is given by A(diag(z, z, z, 2)) = 2°. The simple roots
are o1 = (1, —1; 0) and ay = (0, 2; 0); «, is the short root. Note that the ¢; determine
the reflections s;. The similitude factor is (0, 0; 2).

The root datum (G, B, T) determines the dual root datum (G,ﬁ, T), where G
is the dual group GSpin,. We always identify GSpin; with GSp, via the spin isomor-
phism (see for example [MT02, §3.2] for a detailed explanation of this). In particular, the
cocharacter in X, ('T) corresponding to the character (g, b; ¢) € X*(T) defined above is
given by

{ = diag(t(“J“H‘)/Q, t(a—/)-H)/Q’ t(—a+b+£)/2, t(—a—b-i—c)/Q)'

We write g and b for the Lie algebras of GSp, and B, and g° and b° for the Lie
algebras of Sp, and B N Sp,. If v is a finite place of a number field F, with residue
field £(v), then we have the standard parahoric subgroups of GSp, (F,):

e The hyperspecial subgroup GSp,(Of,).

e The paramodular subgroup Par(v), the stabilizer in GSp,(F,) of O, @ O, ®
Oy, ® @w,0Or,, where @, € Oy, is a uniformizer.

e The Siegel parahoric Si(v), the preimage in GSp,(Opy,) of those matrices
in GSp, (k(v)) of the form

S O ¥ ¥
S O ¥ ¥
* K ¥ ¥
* K ¥ ¥

e the Klingen parahoric Kli(v), the preimage in GSp,(Op,) of those matrices
in GSp, (k(v)) of the form

S O O *
S ¥ ¥ ¥
S ¥ ¥ ¥
* X X %

e the Iwahori subgroup Iw(v), the preimage of B(k(v)) in GSp,(Oy,).

2.1.2. Algebra. — If R 1is a local ring we write my for the maximal ideal of R.

If M 1s a perfect field, we let M denote an algebraic closure of M and Gy, the
absolute Galois group Gal(M/M). For each prime p not equal to the characteristic of M,
we let ¢, denote the p-adic cyclotomic character and g, its reduction modulo p. We will
usually drop p from the notation and simply write ¢, €.

If K is a finite extension of Q, for some p, we write K™ for its maximal unramified
extension; Ik for the inertia subgroup of Gk ; Frobkx € G /Ik for the geometric Frobenius;



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 171

and Wk for the Weil group. If /K is a Galois extension we will write Iy for the inertia
subgroup of Gal(L/K). We will write Artk : KX — W2 for the Artin map normalized
to send uniformizers to geometric Frobenius elements.

If p is a continuous representation of Gk over Q for some [ # p, valued ei-
ther in some GL, or in GSp,, then we write WD(p) for the corresponding Weil-
Deligne representation. (By definition, a GSp,-valued Weil-Deligne representation is
just a GSp,-valued representation of the Weil-Deligne group, i.e. it is considered up
to GSp,-conjugacy). If p is a de Rham representation of Gk on a Q-Vector space W,
then we will write WD(p) for the corresponding Weil-Deligne representation of Wk,
andif 7 : K — Q is a continuous embedding of fields, then we will write HT; (p) for
the multiset of Hodge—Tate numbers of p with respect to 7, which by definition contains
¢ with multiplicity dim@ (W ®..x K(:))¢%. Thus, for example, HT, (¢) = {—1}.

Let K/Q be a finite extension. If v is a finite place of K we write £(v) for its residue
field, ¢, for #£(v), and Frob, for Frobg,. If v is a real place of K, then we will let [¢,]
denote the conjugacy class in Gk consisting of complex conjugations associated to v.

We will frequently adopt the following notation: we let p > 2 be prime, and we let
E be a finite extension of Q, with ring of integers O, uniformizer A and residue field £.

We will sometimes use the following well-known lemma without comment.

Lemma 2.1.3. — Let T be a group and let L. be an algebraically closed field. Then a semisimple
representation I' — GSp, (L)) s determined up to conjugacy by the composite I' — GSp, (L) —
GL4(L) x GL (L), where the second factor records the similitude character.

Proof. — This follows (for example) from the proof of Lemma 6.1 of [GT'11a]. [

2.1.4. Galois cohomology. — If L/K is an extension of fields, £ is a field, and
V is a finite-dimensional -vector space with an action of Gal(L/K), then we write
H'(L/K,V) for H(Gal(L/K), V), and #(L/K,V) for dim;H'(L/K,V). We write
H/(K, V) and # (K, V) for H(K/K, V) and #'(K/K, V) respectively.

2.1.5. Automorphic representations. — We will use the letter 7 for automorphic rep-
resentations of GSp,, IT for automorphic representations of GL, (usually with n = 4),
and m for automorphic representations of GLy. We decorate these in various ways, and
aim to be consistent in such decorations. For example, IT will usually denote the transfer
to GL, of 7 in the sense of §2.9, so that for example IT;, will denote the transfer of 7.

2.2. Induction of two-dimensional representations. — We will sometimes want to induce
representations from GLy to GSp,. Suppose that K/F is a quadratic extension of fields,
and that 7 : Gx — GLy(L) 1s a representation, for some field L. Choose o € Gy \ Gk, and
assume that detr extends to a character y of Gy Let p := Indg; r: Gy = GL4(L). The
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representation A?p admits the characters x and x ® gk as constituents, where 1/ de-
notes the quadratic character. In particular, the representation p generally preserves two
symplectic forms, and hence gives rise to two representations p;, ps : Gp = GSp, (L) with
similitude factors x and x ® ng/k respectively. To describe these more explicitly, let V' de-
note a model for 7 so that W = V@ oV is a model for p. Then the Galois action of W pre-
serves (up to scalar) the symplectic form given by choosing an arbitrary non-degenerate
symplectic form on V| letting oV and V be orthogonal, and then defining ocv;, A o vy
consistently to be either x (o)v; A vy or —x (0)v; Avy = x ® Nr/k(0)V; A V9. The image
of (A, B) € GLy(E) x GLy(E) with det(A) = det(B) inside GSp, relative to our choice
of J can be given by

N GSp, (E).

* O O %
O % ¥ O
O ¥ ¥ O
* O O *

In our applications, it will always be the case that detr is the inverse of the cy-
clotomic character of Gk, and we will write simply write Indgg r for the corresponding
symplectic representation with similitude factor the inverse of the cyclotomic character
of Gy. For example, if K/F is a quadratic extension of number fields, E is an elliptic curve
over K, and 7 is the dual of the p-adic Tate module of E, then Indgi 7 1s the dual of the
p-adic Tate module of the abelian surface A = Resgr E, and the corresponding symplec-
tic structure on this representation coincides with the one coming from the Weil pairing
on A. This is because the representation on the Tate module of A is the induction of
the corresponding representation on the Tate module of E, and because the similitude
character on the Tate module of an abelian variety is always given by the cyclotomic
character.

2.3. The non-archimedean local Langlands correspondence. — Let K/Q, be a finite ex-
tension for some /. We will let reck be the local Langlands correspondence of [HTO01],
so that if 77 is an irreducible complex admissible representation of GL,(K), then reck (1)
is a Frobenius semi-simple Weil-Deligne representation of the Weil group Wx. We will
write rec for reck when the choice of K is clear.

If (r,N) is a Weil-Deligne representation of Wx we will write (r, N)"™ for its
Frobenius semisimplification. If 7; is an irreducible smooth representation of GL,, (K) for
¢ =1, 2 we will write 7, B my for the irreducible smooth representation of GL,, 1, (K)
with rec(mr) H my) = rec(m)) @ rec(m). If L/K is a finite extension and if 7 is an irre-
ducible smooth representation of GL,(K) we will write BCy k (77) for the base change of
7 to L which is characterized by recy,(BCy k(7)) = recg (77) [w, -

We denote the local Langlands correspondence of [GT11a] by recgr; this is a
surjective finite-to-one map from the set of equivalence classes of irreducible smooth
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complex representations of GSp,(K) to the set of GSp,-conjugacy classes of GSp,(C)-
valued Weil-Deligne representations of Wi, which we normalize so that recgr(m @ () o
v)) =recgr(m) @ rec()), and v orecgr (i) = rec(wy ), where w,, is the central character
of .

We fix once and for all for each prime p an isomorphism 1 =1, : G = Q We
will generally omit these isomorphisms from our notation, in order to avoid clutter. In
particular, we will frequently use that : determines a square root of p in Q (corresponding
to the positive square root of p in G). We write rec, and recgr, for the local Langlands
correspondences for Qﬁ—representations given by conjugating by 7. These depend on 1,
but in practice this does not cause us any difficulty; see Remark 2.3.2.

Definition 2.3.1. — If p : Gk — GSp, ((_zﬁ) is a continuous representation for some p 7 [,
then we write L(p) for the L-packet associated to p, which by defimition us the set of equivalence classes of
irreductble smooth Q,-representations 7w of GSp,(K) with the property that recgr ,(w & |[v|~*/%) =
WD(p) .

(In accordance with the convention explained above, note that |v|~*/? makes sense

because we have a fixed square root of p.)

Remark 2.3.2. — It 1s presumably possibly to show that the twist of recgy in Defi-
nition 2.3.1 (which will be present whenever we consider recgr ) gives a local Langlands
correspondence for (_zp-representations which is independent of the choice of 7, but we
have not tried to establish this, as we do not need it. We make (implicit) use of this for
unramified representations, and of the statement that the rank of the monodromy opera-
tor associated to a representation with Iwahori-fixed vectors is independent of the choice
of 7, both of which are easily verified explicitly.

Remark 2.3.3. — We will from now on usually regard automorphic represen-
tations as being defined over Qﬁ, rather than G, by means of the fixed isomorphism

1:C= Qﬁ We will not in general draw attention to this, and no confusion should arise
on the few occasions (for example, when considering compatible systems) where we think
of them as being over C.

If /K 1s a finite solvable Galois extension of number fields and if 77 is a cuspidal
automorphic representation of GL,(Ak), we will write BCy x (7r) for its base change to L
(which exists by the main results of [AC89]), an (isobaric) automorphic representation of
GL,(Ap) satisfying

BCL/K(TF)w = BCLw/KU (7ry)

for all places w of L where v = w|x 1s the restriction of w to K. If 7; is an automor-
phic representation of GL, (Ak) for : = 1, 2 we will write 7r; B 75 for the automorphic
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representation of GL, ,, (Ax) satisfying
(T[l H T[Q)v =T, H TT9,v

for all places v of K.

If (r, N) 1s a Weil-Deligne representation, then we write n((r, N)) for the rank
of N. If 7 is an irreducible admissible representation of GL,(K) (resp. GSp,(K)), then
we write n(7) for n(rec(r)) (resp. n(recgr())).

2.4. Local representation theory. — In this section, we recall a number of more or less
well-known results about the representation theory of GSp,(K), where K is a local field
of characteristic zero. Some of these results are in [GT05], but for convenience we have
gathered them all together here, and have usually given proofs. Since our applications
of this material are all global, and some of the definitions we make (such as the normal-
izations of Hecke operators at places dividing p) depend on global information, we have
chosen to work in the same global setting that we consider in the rest of the paper.

Let p > 2 be prime, and let I be a totally real field in which p splits completely.
Let E/Q, be a finite extension with ring of integers O and residue field 4. Let v be a
finite place of F, and fix a uniformizer @, € Op,. For most of this section, we will allow v
to divide p, although at the end of the section, we will prove some results (which follow
those of [K'T'17] for GL,) under the assumption that ¢, = 1 (mod p). We fix once and
for all a square root ¢/? € E.

2.4.1. Generalities. — We begin by recalling some results on Iwahori Hecke alge-
bras. It costs us nothing to recall these in a more general setting, so we temporarily let
G/OFp, be a split reductive group with T'C B="T - U a maximal torus and Borel (with
unipotent radical U), and let N be the normalizer of T in G. Let W = N(F,)/T(F,) be
the Weyl group. Let A C X*(T) be the simple roots. We write W=N (F,)/T(O,) for
the extended affine Weyl group.

Let Iw(v) = ker(G(Oy,) — B(k(v))) be an Iwahori subgroup, and let Iw;(v) =
ker(G(Oy,) — U(k(v))) be a pro-v Iwahori subgroup. Let

Hi=Hi(v) = Ollwi (W\G(F,) /Iwi (V)] = OIG(F,) [/ Twi (v)]

be the pro-v Iwahori Hecke algebra. (Here G//K denotes K\G/K — we tend to prefer
the first notation but we also sometimes use the second notation since it is more compact

and some of our expressions are already typographically somewhat complicated.)
We let T(Op,); = (ker T(Op,) — T(k(v))). We also let

TF)" ={xeT(F,) | a(x) € O, Vo € Al.

For g € G(F,), we write [Iw; (v)glw,(v)] € H, for the characteristic function of the dou-
ble coset Iw; (v)glw, (v).
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Proposition 2.4.2. — For x, y € T(F,)™, we have
[Tw (v)alwy (V)] - [Iw; (V)pIw; (V)] = [Tw; (V) xyIwy (V)]
and moreover [Tw (v)xIw (v)] € (H,[1/pD)*. If v1 p, then in fact [Tw, (v)xIw, (v)] € H .

Proof. — The first statement is a special case of [Cas, Lem. 4.1.5], while the rest is
immediate from [Vig05, Cor. 1]. U

As a result, there is a homomorphism

TE,) — (Hill/pD*

1

which is defined as follows: write x € T(F,) as x = yz~' with », z € T(F,)* and send x to

@5 O) w1 )Iw @)D G (D [Iwi (@) 2Iwi ()]

where 8y is the modulus character. The kernel of this homomorphism is T(Oy,),. If v 1 p,
then the image of the homomorphism is in .

Proposition 2.4.3. — Let 7w be a smooth admissible E[G(F U)]—modzﬁe. Then the map
T — Ty, where Ty s the (normalized) Jacquet module, induces an isomorphism of E['T(F,)]-modules

W@ _y (nU)T(OFv)l‘

Proof. — By [Cas, Lem. 4.1.1] (noting that the Jacquet module in this reference
is not the normalized Jacquet module), the map @ — 7y induces an E[T(F,)]-module
homomorphism 7™® — ()@t Tt is an isomorphism by [Cas, Prop. 4.1.4] and
Proposition 2.4.2. U

For a character x : T(F,) — Ex, write T (x) = n-Indg((FF:’)) x for the corresponding
principal series representation. Then we recall

Proposition 2.4.4. — For x : T(¥,) — £ there is an isomorphism of E[T(F,))]-modules

TGO~ EPEwW - x).

weW

Proof. — 'This 1s a special case of [Cas, Thm. 6.3.5]. U

We say that 7w (x) is a tame principal series if x is trivial on T'(Op,); and an unramified
principal series if x is trivial on T(Op,). The results recalled above immediately imply the
well-known facts that if 77 is an irreducible smooth E[G(F,)]-module, then 7™1® =£ {0}
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if and only if 77 is a constituent of a tame principal series, and ™™ = {0} if and only if
7 1s a constituent of an unramified principal series.

Write H := O[Iw(v)\G(F,)/Iw(v)] for the Iwahori Hecke algebra. This enjoys
similar properties to those of H; recalled above; in particular, the analogue of Proposi-
tion 2.4.2 gives an embedding E[X,(T)] < H[1/p], and if v { p, then this restricts to an
embedding O[X,(T)] — H.

2.4.5. Principal series for GSp,. — We now specialize our discussion to G = GSp,.
We recall some known results on constituents of unramified principal series representa-
tions; many of these results are originally due to [ST93], but for convenience we refer to
the tables in [RSO7b, App. A]. (Note that the compatibility of the proposed Langlands
parameters in [RS07b, App. A.5] with the correspondence recgr is proved in [GT11b,
Prop. 13.1].)

If 1, x9, 0 are characters of I, then we write

GSp,(Fy)
X1 XXQ)QO—ZZH-IndB(FiJ‘) X1®X2®U,

where
a * %k *
b * *
X1 x2®o0: b x| X1(a) x2(b)o (¢).
ca!
Proposition 2.4.6.
(1) x1 X xo x o s wrreducible if and only if none of X1, X2, XlXQﬂ is equal to | - |‘:E1.
(2) If 7w is an wrreducible constituent of X, X X9 X O, then
recer,, ()" =0 o Arty' ® ((X1x2) 0 Arty' @ X1 0Art;' @ x20Art;, @ 1).
(3) If x1 X xo X 0 15 irreducible, then recgr , (X1 X X2 X 0) 15 semisimple (that is, N = 0).
Proof. — Part (1) 1s [ST93, Lem. 3.2]. Parts (2) and (3) follow immediately from
rows I-VI of [RS07b, Table A.7]. O

2.4.7. Spherical Hecke operators. — Define matrices
,BU,O = diag(wva Wy, Wy, wv)a
ﬁv,l = diag(wv’ wv’ 19 1)9

B2 = diag(w?, @,, @, 1).
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We have the spherical Hecke operators T, ; = [GSp,(OF,) B,.: GSp,(OF, )1, which

are independent of @,. It is easy to check (using Proposition 2.4.6 (2)) that if 77 is an un-
ramified representation of GSp,(F,) (that is, if m9POr) £ () 50 that 7 is a constituent
of an unramified principal series), then the characteristic polynomial of recgr ,(m ®

lv|~%/2)(Frob,) is
(2°4'8) Qy(X) = X4 - Z/Lv,l)<3 + (QUtv,Q + (93 + Qz))l/iv,o)><2 - qgtv,Otv‘IX + qgl/ﬁoa

where we are writing ¢, ; for the eigenvalue of the operator T, ; on 7654 Or)

Definition 2.4.9. — We say that the Hecke parameters of w are the roots of Q,(X),
ordered in such a way that the pairs of roots (1, 4) and (2, 3) both multiply to give the value y, of the
similitude character evaluated on ¥rob,,. We write these Hecke parameters as [, By, Yo By ', Yo, '],
where implicitly we view these terms as labelling the vertices of a square:

oy ———— B

Y8, Yooy !

and the ordering is unique up to the action of the Weyl group Dg = Sym(U)). In particular, the data of
the quadruple [oty, By, VoBy 'y yoor; 1 carries with it the value of the similitude character.

We will be concerned with the case that the central character of 7 is given by
a+> |a|?, in which case the Hecke parameters have the form [o,, By, ¢, 8, ", quot; ']

2.4.10. Iwahori Hecke operators.

Defiation 2.4.11. — We say that an unramified principal series 7w(x) s general if the
Hecke parameters are pairwise distinct and no ratio of them s q,. In particular, 7w () is irreducible, and
IW-xl=8.

We have Iwahori Hecke operators Uﬁf’{v“) . = [Iw(v)B, Iw(v)]. The notation
“Urave” s intended to indicated that we have not yet appropriately normalized these
operators, as we will shortly do in the case that v|p. Then we have

Proposition 2.4.12. — Let 7 be a general unramified principal series with Hecke parameters
[ay, Bo, @B, h o, 1. Then 7™ is a direct sum of 8 one-dimensional simultaneous eigenspaces
Jor the UL o« For a gwen (ordered) choice of at, and By, the corresponding eigenvalues are w, o = 7,2,

— |
Uy,1 = Oy, and Uy,2 = ¢, av,Bv-

Progf. — The first part is immediate from Propositions 2.4.3 and 2.4.4. To com-
pute the eigenvalues, by the definition of the Hecke parameters and Proposition 2.4.6
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we have o, = ¢*(x1x20) (@), B = ¢./*(x10)(w,) and ¢, = qU(XIXQUQ)(wv) We
then have wu,; = 85(B,..)""*(X1 ® x2 ® 0)(By.0), so that u, o = (x1x20)*(@,) = ¢,2,
Uy, = 93/2(X1X20“)(wv) =0y, Uy = QZ(XEXQO'Q)(CUU) = q;lavﬂv, as requir€d~ H

Proposition 2.4.12 has the following converse:

Proposition 2.4.13. — Let 7w be an irreducible admissible representation of GSp,(F,), and
suppose that 7™ contains an eigenvector for the U}l‘i”(‘vf‘) ; with eigenvalues w,, salisfying uw,, = q, >,
Uy, ) = Oy and Uy 9 = qv_lav,BU such that no ratio of a pair of ety By, g,,,Bv_l, g,,oev_l] s qy. Then
is the unramified principal series with Hecke parameters [oty, By, By s quer; 1.

Proof. — Reversing the calculation in the previous proof, we let X =X\1Qx®0
be the unramified character with x;(@,) = @,B,¢, ", x2(@,) = a,B; ", and o (w,) =
a_lqv_l/Q We see that there is an inequality Homye,,(m™®, x) # {0}, and hence
Hom(r, w(x)) # {0} by Proposition 2.4.3 and Frobenius reciprocity. Finally, by Proposi-
tion 2.4.6, () is also irreducible. O

2.4.14. Parahoric level Hecke operators for GLy. — We will also need to consider cer-
tain parahoric Hecke algebra and investigate how they relate to the Iwahori Hecke alge-
bra.

We begin by recalling some standard results for the group GLy. We let Iw(v)" C
GLy(OF,) be the Iwahori subgroup of matrices which are upper triangular modulo @,
(we put a prime because Iw(v) is used to denote the Iwahori subgroup in GSp,(O,)).

We introduce the following operators in the spherical Hecke algebra Hsg,n[1/p]:

0

(1) Top* = [GLy(O, >( :

) GLx(Or,)],

2 E’EQ—[GLQ(OU( ZT‘i)GLxOFU)].

We also define the following operators in the Iwahori Hecke algebra H iy [1/p]:

0

a>5?—u<w( 0 1

> Iw(v)'],

@ %ﬁﬂ(@( ﬁ)mwm
(3) eg = [GLy(Op,)].

For any element f of the centre of the Iwahori Hecke algebra, the element eg 2r
defines an element of the spherical Hecke algebra.

Lemma 2.4.1 [1/ p]) of the Twahort Hecke algebra is generated
by Uy and q,U GLZ(UCL’) VUL, the map eyt : Z(Huy[1/p]) — Hsml1/p] is an
zsomorphzsm and we have the following identities:
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GLo (ng _ 7GLe
(1> Sph U - Tv 0>

2) k(gL ‘"Lz U T U =
Proof. — This follows from [HKP10, §1, §2, §4.6]. U

2.4.16. Klingen level Hecke operators. — We have Klingen Hecke operators U | =
[Kli(v) B, Kli(v)].

Proposition 2.4.17. — Let w be a general unramafied principal series with Hecke parameters
[y, Bus ¢uBy s quees . Then 5% s a direct sum of 4 one-dimensional szmultaneous eigenspaces
Jor the Uﬁi{ﬁ),l. For a gien choice of {ay, By}, the eigenvalues are u, o = qv s Uy =0y + By, and
Uy,2 = qv_lavﬂv-

Progf. — This follows from a direct computation, see [GT05, Prop. 3.2.1, Cor.
3.2.2]. O

Remark 2.4.18. — We sketch another (related) proof of Proposition 2.4.17. Let
us denote by Hp,wl[1/p] the Iwahori Hecke algebra and by ZKh(v)(le(v)[l /p]) the
sub-algebra generated by UR:I(ch)l + g (U?‘i‘f(‘;“‘)’l) lUﬁil(Vv“) 93 Uﬁjl(‘v“) 95 U}“j‘(‘vc) o- One checks
that Zgiiw) (Hiww[1/p]) commutes with exy,y = [Kli(v)] by using Bernstein’s relation
([HKP10, §1.15]). Therefore we get a map: ek : Zkiw) (Hiwwl[1/]) = Hriw[1/4]
where Hxjyiw)[1/p] is the Klingen Hecke algebra. We claim that:

o exio) (Unnny 1 + 00Uk 1) ™ URG) o) = Uk 1

® iiw) Uny(ny.2 = UKii(v).22

® i) Unvo.0 = UKiiw).o-

The claim can be checked after restricting all these functions to the Levi GLy x
GL,; of the Klingen parabolic by [Vig98, Prop. I1.5], so it follows from Lemma 2.4.15.
The result then follows from Proposition 2.4.12.

Remark 2.4.19. — Proposition 2.4.17 could also be proved using Jacquet modules
(as could analogous results for invariants at other level structures which admit parahoric
factorizations).

Proposition 2.4.20. — Let 7w be an irreducible admissible representation of GSp,(F,), and

suppose that w8V contains an eigenvector for the Uldice ; with eigenvalues w,, satisfying uy, = g7,

Uy =0y + By and u, o = q;lav,@v such that no ratio of a pair of {oty, By, qv,Bv_l, qvav_l} i qy.
Then 7t is the unramified principal series with Hecke parameters [aty, Bys ¢uBy s quot; 1.

Proof. — As in the proof of Proposition 2.4.13, we deduce from 7" £ 0 that 7
1s a constituent of an unramified principal series representation. The central character of
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such a constituent is unramified and so is determined by the value on Frobenius. From
the equation u,, = ¢;?, we deduce that the central character of 7 is | - |, and hence
the central character of 7 ® |v|™%/? is | - |7}, and hence that the similitude character
of recgr (T & |v|7%?) is the inverse of the cyclotomic character ¢!, In particular, the
value of the similitude character of the Weil-Deligne representation on Frob, is ¢,, and
thus 7 is a constituent of an unramified principal series representation with Hecke pa-
rameters [, B., ¢,(B.)™", ¢,(@/)"']. (Note that the ordering of these eigenvalues above
1s determined up to the action of Dg.) Comparing to Proposition 2.4.17, without loss
of generality, we may rearrange the Hecke parameters of m so that we deduce the two

equations
a,+B,=a,+ B, o, =ap,

and thus (again up to reordering) @, = «, and B, = B,,. By Proposition 2.4.6, the principal
series 7 is irreducible. O

2.4.21. Generic unipotent representations. — We say that a GSp,(E)-valued Weil -
Deligne representation 7 is generic if ad(r)(1) has no invariants, and is unpotent if 1 is
unramified.

Proposition 2.4.22. — Let v be unipotent. Then the Li-packet corresponding to r contains a
generic representation if and only if v is generic.

Progf. — By the main theorem of [GT11a] (part vii), the L-packet L(r) contains a
generic representation if and only if the adjoint L-factor L(s, ad(+' 7)) is holomorphic at
s = 1, which, by definition, is easily seen to be equivalent to the statement that ad(** =) (1)
has no invariants. Thus we are reduced to checking that 7 is generic if and only if 7~ is
generic. Let W denote the vector space underlying the representation ad(r)(1). We are
reduced to showing that Hom(E, W) = 0 if and only if Hom(E, W) = 0.

One implication is trivial. For the reverse implication, a map from E to W' is
the same as giving a vector x in W which lies in the kernel of N and is a generalized
eigenvector for the Frobenius ¢ with eigenvalue 1. For a suitable choice of n € N, the
vector y = (¢ — 1)"x will be non-zero and a genuine eigenvector for ¢ with eigenvalue
one. On the other hand, since x lies in the kernel of N, so does ¢x, because Negx =
¢;'¢Nx = 0. Similarly, any polynomial in ¢ applied to x also lies in the kernel of N.
Thus y also lies in the kernel of N and gives rise to a nonzero element of Hom(E, W). O

2.4.23. Normalized Hecke operators, ordinary representations, and ordinary projectors. — In
this section, we assume that v[p. We fix integers £ > [ > 2, and £ =/ (mod 2) (these
will correspond to the weights of our automorphic forms; see Section 2.6). Then we will
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consider normalized Hecke operators at Iwahori and Klingen level defined by

2 al 9 ive
Utvw,0 =1 Uliinyo Ukiiw),0 = 2" Uxiitwy.0
_ kD722 iv _ p(kHD/2-2 ive
ULy, 1 =9 Ui, 1 Ukiiw),1 =p Ukl 1
__  k—17 Tnaive __ k=17 naive
Ulw(v),Q =p UIw(v),Q UKli(v),Q =p UKli(v),2

We will often write U, ; for the operators Uy, ,); when the context is clear. We will also
keep writing U, , for the Hecke operator p*[K, B,.0K,] for any subgroup K, of Iw(v) (be-
cause U, g lies in the centre of the Iwahori Hecke algebra and therefore p*[K,B,.0K,] =
ek, Uy.0). We will also often write U, o for the Hecke operator Ukj,) o for the same reason
(see Remark 2.4.18). We can and do also normalize the Siegel Hecke operators in the
same way, so that for example Us;,),; = p*07272U% |

An irreducible smooth E[GSp4(Fv)]—representation with central character | - |? is
said to be ordinary of weights £ > [ > 2 if there exists an eigenvector v € 7™ for Up,,).;
with eigenvalues u, ; with v,(u, ;) = 0. If &, and B, are defined by @, = u, 1, B, = uy,2/ty,1,
then, by Proposition 2.4.4, 7 is a constituent of an unramified principal series with Hecke
parameters

—(k+1 — (k=1 - k=1 =1, (k+0)/2—
[OCUPQ (+)/2’ﬂvp ( )/Q’IBU 1p1+( )/Q’av lp(+)/2 l].

We say that 7 is p-distinguished if these four Satake parameters are pairwise distinct, or in
other words if either [ > 2 or a, # B,.

If [ > 2, then again by Proposition 2.4.4, v e is the unique eigenvector (up
to scale) with unit eigenvalues for the Uy, ;. In this case, the ordered pair (,, B8,) is

uniquely determined by 7, and we call (o, B,) the ordinary Hecke parameters of 7. If [ = 2
Tw(v)

Iw(v)

and 7 is p-distinguished, then there may also be an eigenvector v’ € with unit
eigenvalues Uy 1V = BV, U)oV = o, B,0" (we will see below that in fact such a v’
always exists.) Thus at least the set {o,, B,} 1s determined by 7 and we again call them
the ordinary Hecke parameters of .

We let ¢, be the ordinary projector (in the sense of Section 2.11) associated
t0 ULy, 1 Utwv),2, and let ¢, be the ordinary projector associated to Ugj),o.

Proposition 2.4.24. — Let v be an ordinary p-distinguished representation of weights k >
[ > 2, with ordinary Hecke parameters (o, By) (or {oty, Bu} tf [ = 2). Assume that either k> | > 3
orl=2.

(1) Ifk>1>3orif l=2 and k > 2, then v 1is an wrreducible principal series.

(2) If k= 1= 2, then in the sense of the tables of [RSO07¢, §1], v s a representation of type Va
fAay, B} =1{1, =1}, Mla ifa, B, = |, Ha if #{«y, B} N {1, =1} = 1, or otherwise
is an wrreducible unramified principal series.

In all cases, 7 15 generic and the L-packet 1L(7) of 70 contains no other ordinary representations.
Moreover:
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(1) k> 1> 3 then

dim e,egnlw(”) =1
on which Uy ; has eigenvalues 1, oy, o0, By, for 1 =0, 1, 2.
(2) Ifl =2 then

dim e,.qgnlw(”) =9

and there are two eigenspaces for Uy, i, with eigenvalues 1, ct,, o, B, and 1, By, o, By
respectively, and moreover

dim ¢;,,,,7T Kli@) — 1

with Ugyy.; ewgenvalues 1, o, + By, oy By, fort =0, 1, 2.

Progf. — As remarked above, by Proposition 2.4.4, 7 is a constituent of an unram-
ified principal series with Hecke parameters

2—(k+10)/2 —(k=D/2 -1, 1+(k=D/2  —1,(k+1)/2—1
[or, 2~ G012 B p=G=D/2 | g1 pl+to/2 =1 p(hD/2=1]

Ifeither £ > /> 3 or [=2 and £ > 2, no ratio of a pair of these parameters can be p, and
hence 7 is an irreducible principal series by Proposition 2.4.6.

In the remaining case, £ = / = 2, the Satake parameters are [a,, B, B, ' p, o, ' pl,
and the corresponding principal series may be reducible when one of «?, B2, a, B, is
equal to 1. The constituents of these principal series are listed in the tables [RS07c, §1].
The case that either &2 = 1 or B2 = 1 but not both corresponds to type I, the case that
a? = B2 =1 corresponds to type V, and the case that «, 8, = 1 corresponds to type IIL.

For each constituent 7 of such a principal series, the tables give a computation
of the Jacquet module 7}, which is equal to 7wy because a, # B,. This allows us, by
Proposition 2.4.3, to determine the simultaneous eigenvalues of the Uy, ; on v At
this point the result follows from an inspection of the tables. 0J

We now turn to the global situation. Recall that we have fixed an isomorphism 1 :
Q, = C, so that in particular in the following definition we can and do identify the infinite
places of I with the places dividing p. See Section 2.6 for our conventions regarding the
weights of automorphic representations.

Definition 2.4.25. — Let 7w be a cuspidal automorphic representation of GSp,(Ap) with
central character | - |* and weight (k,, ly)vjoos where ky > 1, > 2 and k, = 1, (mod 2) for all v|oo.
Then we say that 7w 1s ordinary if for each place v|p, 1, ts ordinary of weights k, > 1, > 2.
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The following proposition will be useful for going between ordinary p-adic modular
forms and ordinary automorphic representations. For each subset I C S, we set

K,(I) = ]_[ Kli(v) ]_[ Tw(v).

vel velt

We also let e(T) = [ ], tirree l_[v¢1 breg-

Proposition 2.4.26. — Let 7w be a cuspidal automorphic representation of GSp,, (Ar) of weight
(kys 1) vjoo with ky > 1, > 2 and with central character | - |*, and fix tuples of p-adic units («,, Bo)vip-
Assume that for each v € S, either k, > 1, > 3 or [, = 2 and a,, # B,,.

Letl'={v €S, |, =2} and let 1 C 1 be a subset. Then 7w is ordinary with ordinary Hecke

parameters (ct,, By)y) if and only of
(®pes, )"

contains a vector which s:

o for each v € I, an eigenvector for the normalized Uryy.0, Unwwy.1, and Ury).o, with
respective ewgenvalues 1, oy, and o, B, and

o foreach v €1, an eigenvector for Ukiiv).0, Ukiiw).1, and Uxyiy),o with respective eigenvalues
1, o, + By, and o0, B,,.

Moreover in this case
dim e(I) (®UGS/)7TU)K/;(D _ o=,

Note that if 7 is ordinary with ordinary Hecke parameters (c, B,),), but v ¢ I',
then the Ukgy().; eigenvalue will not be of the form o, + 8, but rather, up to some ordering
of &, and B,, be of the form a, + p*2B,.

Proof. — T'his is simply Proposition 2.4.24 applied for each v € S,. U

2.4.27. An instance of the local Langlands correspondence. — Given a pair of characters
Xo.1s Xv2 2 k(v)* — O, which we regard as characters of O by inflation, we define a
character of y, of T(O) by

X : T(Op,) = O
(a,b,cb", ca™") > xu1(ab™") xy0(abc™").

Then if M is an H,-module, we write

M ={meM/|im= x,(O)mVteT(kW))}
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and
M,, =M/{tm — x,(O)m |t € T(k(v)), m € M).
Then we record:

Proposition 2.4.28. — If 1w is an irreducible smooth E[GSp,,(F,)]-module with the property
that (r™1 ) Xe =£ {0}, then, for all o € Wy,

det(X — recar, (1) (0) = (X = yu1(Arty) (0)) (X = xu.1 (Arty, (0)) 7))
(X = w2 (At (0)) (X = xo 2(Art ! (0)) 7).

If; moreover, the characters Xy, X,. 1) Xv.2s Xo. o are painwise distinct, then there is an equal-
ity dimp(r™W)yx =1,

Proof. — 'This is an immediate consequence of Propositions 2.4.3, 2.4.4 and 2.4.6.
O

2.4.29. The case ¢, =1 (mod p). — We suppose from now on for the rest of this
section that ¢, = 1 (mod p). Recall that we have a homomorphism T'(F,)/T(Of,), —
7, and thus an (injective) homomorphism O[T(¥,)/T(OF,):] — H,; we identify
O[T(F,)/T(Ok,)1] with its image in H,. Given elements o, @y € F;, we let mgz, 7,
denote the kernel of the homomorphism O[T(¥,)/T(Of,),] — F, induced by the
character T(¥,)/T(Of,); — F; sending T(Oy,) +— 1, diag(w,, w,, w,, @) — 1,
diag(w,, @y, 1, 1) = @}, and diag(w?, @,, @,, 1) > @, ds.

Proposition 2.4.30. — Let 7w be an wrreducible smooth E[GSp4(F v) |-module with central

character | - |* and with (7w lwl(”))mal@ # {0}. Suppose E}‘Ll , Egil are pairwise distinct. Then

recGr (M) =y Dy ®e 'y, ' De 'y

Jor characters y; of Gy, withy; = Ag, (the unramafied character taking Frob, to @;), and T (k(v)) acts
on (nl‘”(”))m&]@ via (y; o Artp,)|ox -

Progf. — From Proposition 2.4.28, we know the characteristic polynomial of the
corresponding representation, and thus immediately deduce that the semi-simplification
of the Galois representation has the required form. It thus suffices to show that, under
the hypothesis on ¢, that all Galois representations are semi-simple. Suppose otherwise.
Two tamely ramified characters admit an extension if and only if their ratio is unramified
and takes the value ¢, on Frobenius. Since ¢, =1 mod p and ¢ is trivial modulo p, this

implies that @,"', @, ' are not distinct, a contradiction. U
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Remark 2.4.31. — Let Z be the centre of GSp,, let A, be the maximal p-power
quotient of T(k(v))/Z(k(v)), and let A/ = ker(T'(k(v)) — A,). If the 7 of Proposi-

tion 2.4.30 additionally satisfies the condition that (7 le(”))ﬁgl@ # {0}, then we immedi-

N AL .
ately deduce that A, also acts on (7'[1“1(”))mglﬂ2 via (y; o ArtFU)|OFx .

We now prove some results about the Iwahori Hecke algebra (under our running
assumption that ¢, = 1 (mod p)). We follow [KT'17, §5] closely, and our proofs are essen-
tially an immediate adaptation of their arguments from GL, to GSp,. As recalled above,
we have an embedding O[X,(T)] < H. This can be refined to give the Bernstein pre-
sentation of H (see e.g. [HKP10, §1]), which is an algebra isomorphism

H = O[X (DR Ow(w)\ GSp, (OF,) /Tw(v)],

where the twisted tensor product ®¢ is determined by the following relations, where
s¢ € W is simple, corresponding to the simple root oo, and p € X,.(T):

iy — O

(2.4.32) T‘JOZQ)V = QAQ(A)TX& + (qv — 1) 1 —0 .

Here we are writing 6, for the image in H of the group element ¢, of O[X,(T)] corre-
sponding to p, and for w € W we write T, := [Iw(v)wlw(v)] where w € GSp,(Oy,) is
any representative for w.

Lemma 2.4.33. — There is a natural isomorphism H @ k = k[X.(T) x W].

Progf. — We claim that the natural £-linear map A[W] — [Iw(v)\ GSp,(Or,)/
Iw(v)] sending w + T, is an algebra isomorphism. Admitting this claim, note that
since ¢, = 1 (mod p), the relation (2.4.32) becomes

Tso, Q)L =60

Sar

*) Tfa

in H ®o k, so that there is an isomorphism A[X,(T) x W] — H Qo £ sending ¢, w
6,'T,, as required.

It remains to prove the claim. The Weyl group W is generated by sy, 5, with s* =
sg = (s152)* = 1, so it is enough to show that £[Tw(v)\ GSp,(Oy,)/Iw(v)] is generated
by the elements T, T|,, subject to the same relations. This follows from the assumption
that ¢, =1 (mod p); indeed, we have the usual relations Ti =(qp— DT, +q¢ (=1,2),
and T, T, T, T, =T,T,T,T,, which are easily seen to be equivalent to Tfl = Ti =
(T, T,)* =1, as required.

Recall that by definition an O[GSp, (F,)]-module M is smooth if every element of M
is fixed by some open compact subgroup of GSp,(F,), and it is admussible if it is smooth,
and if for each open compact subgroup U C GSp,(F,), MV is a finite O-module.
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Lemma 2.4.34. — If M is a smooth O[GSp,(¥,)]-module, then the natural inclusion
MESP©Or) @ MW s canonically split by the Hecke operator

1
[GSp,(Or,) : Iw(v)]

€Sph(v) -

Proof. — The Hecke operator esy) € H induces the natural trace map M™® —
MES+©Or) s that the composite map MESP+Or) — MW . MOGSPOr) i5 given by
multiplication by [GSp,(O,) : Iw(v)]. Since [GSp,(Oy,) : Iw(v)] = [W| =8 (mod p) is
a unit in O, we are done. O

Corollary 2.4.35. — If M is a smooth k[G]-module, then M™® is naturally a kK[W]-
module, and ME+©r) — (NWEH)W,

Proof. — This 1s immediate from Lemmas 2.4.33 and 2.4.34. 0J

The centre of H is O[X,(T)]"V, and there is an isomorphism
O[X.(D]Y = O[GSp,(Op)\ GSp,(F,)/ GSp, (O, )]

given by x > espn)x (Where we are regarding x as an element of H); this isomorphism
agrees with the isomorphism given by the usual Satake isomorphism (see [HKP10, §4.6]).
The classical description of O[X,(T)] is as follows. Let xg, x1, and xy denote the following
three cocharacters:

xp : t — diag(s, ¢, 1, 1),
x 1t — diag(l/¢, 1,1, 1),
xo 1t — diag(l, 1/t, ¢, 1).
Then XSXMCQ 1s the cocharacter ¢ — diag(t, ¢, ¢, t) and
OX(D)] = Olxg, x1, 9, (x5219) ™' 1 = Ollxg, x1, X9, (xox1%) ' 1.

The effect of the involutions si, so, and s;$0s; € W on these cocharacters is to send
(xO! X1, xQ) to

—1 —1
(X[),XQ,X]), (X()XQ,XI,XQ ), (XOX},XI ,XQ)

respectively. All of these involutions preserve (xy, xoX1, XoX2, XoX1%9) considered as an un-
ordered quadruple. Define elements ¢;(xg, x1, %) € O[X,(T)]V, 0 <7 < 4, by the follow-

ing formulae:

(X = 10) (X = 2021 (X = 2022) (X = xox10) = Y _ (0, 1, 1) X,
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The relation between the ¢; and the Hecke operators T, ; is given by

D e, 2 )X =X — T, X4 (T + (1 4+ ¢) T, )X
— ¢ Ty 0Ty X+ T5 .

Since we are assuming that ¢, = 1 (mod p), and in our applications of these results in the
global setting there is a twist which makes all of the powers of ¢, integral (as in (2.4.8)),
we will ignore all powers of ¢//? from now on.

Given any triple y := (o, Y1, ¥2) and w € W, let ((wy)o, (wy),, (wy)s) denote
the triple obtained by substituting in y; for x; in the action of W on O[X,(T)] described
above.

Lemma 2.4.36. — Let M be an H Q@ k-module which is finite-dimensional over k. Suppose
that espnwyM # 0, and that there is a tniple vy, vy, vo with y02y1 Vo =1 such that (yy — 1) (yo —
Dy — v (nive — 1) # 0; equavalently, wniting oy = Yo, &y = VoY1, suppose that

oy, 0, /o, 1/0
are pairwise distinct. Suppose also that the following operators act by zero on the module esph )M

Tyo—1Ty 1 —ea(o, Y1, v2), Too + 2T, 0 — (Yo, Y1, v2)-

T hen, for each w € W, the maximal ideal

my, = (o — (Wy)o, x1 — (WY1, X2 — (WY )2) CAIX,(T)]

is in the support of M.

Proof — Let n C [X,(T)]Y be the ideal

n= (61 (X(), X1, XQ) — (VO’ Vls VQ)’ ceey 54(X()’ X1, XQ) - 64-()/0’ Vl, VQ),
2 2
XgX1%2 = Vo V1Y)

Then, by assumption, we have esph)M C M[n], so that in particular M, # 0. The
assumptions on y; imply that all the ideals m,, are distinct. We may view n as an
ideal in A[X,(T)]. The support of n in A[X,(T)] corresponds to triples (¥, ¥1, ¥2) (or
equivalently, pairs (e, @) such that o, oy, @, ', and ;' are roots of the polyno-
mial Y ey, 1, x0)X'. Hence the support of n C A[X,(T)] consists exactly of the maxi-
mal ideals m,,, and the product of the m,, is precisely the radical of n. The ring A[ X, (T)],
1s thus a semi-local ring which is isomorphic to @, ewk[X.(T)]m,, and correspondingly
we may write M, = @, cewMy,, . It follows that M, # 0 for at least one w € W. Consid-
ering the action of W on the set of maximal ideals of £[X,('T)] in the support of M, we
see that in fact M, # 0 for all w € W, as required. UJ
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Lemma 2.4.37. — Let M be an H Q@ k-module which is finite-dimensional over k. Suppose
that for each maximal ideal n C k[X.(T)V in the support of M, the degree four polynomial

Z ei(x0, x1, x9) X' € AXL(DIVX]

has ro0ls (Yo, Yoy1, YoYas Yov1ve) modulo w satigfying (yy — D (va = D1 = ) (niyy = D #0
and Yy, = 1. Equivalently, writing yo = o1, Yoy1 = o, assume that yiy\ys = 1 and that

051,042»1/052,1/041

are pairwise distinct. Then esphwyM # 0. If; furthermore, there is a unique maximal ideal n C
KX (D)WY in the support of M, then for each maximal ideal m C k[X, (T)] in the support of M, the
maps

W] ®; My — M,

wWRxH— w-x,
and

My, — espnyM,

X > €Sph(v) * X

are both isomorphisms.

Progf. — After possibly enlarging £, we can and do assume that the y; arising from
the roots of the degree four polynomial above lie in £. As in the proof of Lemma 2.4.36,
there exist |[W| = 8 distinct ideals m,, such that M, >~ @,,ewMu,, , where m = (4 —yo, &1 —
Vi, ty — vo) C K[X,(T)]. Since M,, # 0, we may assume that M,,, # 0 for some and
hence all m,,. The operator esp () acts by averaging over the action of the Weyl group. It
follows (because the m,, are distinct) that the map esyn) : M = @uwewMum, =M, is an
injection, and thus egyp,)M # 0.

Suppose that n is the only maximal ideal of A[ X, ('T)] in the support of M. Then the
maximal ideals of £[X,(T)] in the support of M are necessarily of the form m,,, and we
have M = @ ,,cwMn, = PuewW - My, and the rest of the lemma follows immediately. [J

Remark 2.4.38. — Note that (using as usual that ¢, = 1 in k) we have that U3 =
xgxle, and if this equals 1, then U‘;’f‘}“‘ = xp and Ugf‘%"c = (515951)x1. Consequently we see
for example that if the hypotheses of Lemma 2.4.36 hold then (U, o — 1, U, —a;, U, 0 —

a1 a9) 18 in the support of M.

2.5. Punty. — Let K be a finite extension of Q, for some p, with residue field
of order ¢. Following [TYO07, §1], we say that a Weil-Deligne representation (W, r, N)
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of Wk on a vector space W over an algebraically closed field €2 which is of characteristic O
and of the same cardinality as C 1s pure of weight w if there is an exhaustive and separated
ascending filtration Fil; of W such that

e cach Fil; W is invariant under 7;
e if 0 € Wk maps to Froblvi(g), then all eigenvalues of 7(0') on gr; W are Weil ¢
numbers;

w(o)_

e and for all j we have N’ : gr
NFiL;W C Fil,_, W)

wi; W — gr,_; W. (Note that necessarily we have

Recall that for a Weil-Deligne representation (r, N), we defined in Section 2.3
n(r, N) to be the rank of N.

Lemma 2.5.1. — If (V, 1) is a semisimple representation of Wy, then there is at most one
chowce of N for which (V,r,N) s a pure Weil-Deligne representation. If such an N exists, then the
corresponding Weil—Deligne representation is the unique choice which maximizes n(r, N).

Progf. — The uniqueness of N 1s [TY07, Lem. 1.4(4)]. The maximality follows
easily, using that by definition all of the induced maps N : gr W — gr, W are iso-
morphisms if and only if (V, r, N) is pure. U

2.6. Archimedean L-parameters. — We now recall some notation for archimedean
L-parameters following [Mok14, §3.1] (although our w has the opposite sign to this ref-
erence). Recall that Wg = C* U €%, where jz77! =Z and j° = —1. Let w € R. For an
integer n> 0, let ¢, , : Wgr = GLy(C) be the L-parameter given by

w [ /2D"? (AT
5'_>|5| < (Z/Z)nﬂ)—lzl ( z"lzl”)

jl—)( \ 1).
(—1)

The determinant of ¢, , is equal to 2] if n 1s odd and sgn - |z|*"” if n is even,
where sgn : Wg — C* is the degree two character which is —1 on j (and trivial on G*).
We also write ¢,,, for the restriction of ¢,,, to W¢. The GLy(R) and GLy(C) repre-
sentations corresponding to the L-parameter ¢,, , are cohomological if and only if > 0
and w € Z satisfies w +n=1 mod 2.

Let m; > my > 0 be integers, and let w € R. Then we write @y my) : Wr —
GSp,(C) for the L-parameter sending

and

|2w |2w

(2f) 2

) (m1—mg)/2

(/= mmml?
(zf)~ 2
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and

(_ 1)m|+mz
(_ 1)m|+m2

Note that @, my) 18 viewed as having image in GSp,(C) with respect to our particular
choice of model for GSp, (C) where J is anti-diagonal. In particular, the image of j under
the composite of @y, .y With the similitude character is (—1)™*"2. With respect to the
explicit inclusion of

{(A, B) C GLy(C) x GLy(C) | det(A) = det(B)} C GSp,(C)

given in §2.2, we immediately observe that the composite of @y:p .m) With the in-
clusion GSp,(C) — GL4(C) identifies @y, my) With @y tmy B Gupmy—m, (nOte that
(—1)m*m = (—=1)"~"2). The L-packet of GSp,(R) corresponding to @y, my) consists of
two elements JT(II{U; mmy) A0 JT(Wu;; m.myy+ When my = 0, they are (up to twist) non-degenerate
limits of discrete series, and when my > 0, they are (up to twist) discrete series. The repre-

w

sentations T[(I:Iu;ml,mg) and are respectively holomorphic and generic. Their cen-

(w;my,mg)
tral character is given by a + «¢”, and they are tempered when w = 0. The minimal

K-type of (.., ., is the representation det™*? ® Sym™ 27! C? of U(2). (See for ex-
ample [Sch17] for these facts and their proofs.)

Lemma 2.6.1 (Inductions of real archimedean parameters to GL4(C)).
(1) The induction Ind::?é Du.. s WR = GL4(C) 15 compugate to ¢y, D ¢y -
(2) The composite map

¢(w;n,0) :WR —> GSp4(C) —> GL4(C)

is conjugate 10 ¢y, , D G-
(3) If ¢ : Wg = GLy(C) s such that Indx}g @ 1s conjugate to ¢y, B Gy, and n # 0,
then either @ = @y, ., or @ is one of the scalar L-parameters sending z to one of

e (L0 ) e (T )
0 <,./,}lel—n 0 z—nlzln *

4) If o, ¢" : Wr = GLo(C) are such that @ @' is conjugate to ¢y, ,, ® Py, and n # 0,
then ¢ = @' = ¢y -

Progf. — Since ¢,, , 1s already a representation of Wy, the first induction is isomor-
phic to ¢y, , ® ¢y, ® sgn. Yet @, , is itself induced from C*, and so ¢, , ® sgn >~ @, ,.
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The second claim was already noted above. Now suppose that ¢ : W¢ — GLo(C) is a
complex L-parameter. All such parameters are of the form

Fal Fd I P R < el P Il P

for integers a; and ay. The induction of this representation to Wg is @y, 4, @ Py 4,- Now
consider the equality of GL,(C)-representations

d)wl,al @ ¢w2,a2 = ¢(w;n,0) = ¢w,n @ ¢w,n-

Restricting to S' € C* C Wy, we deduce that |a;| = |ay| = n, and then restricting to the
action of C* on the eigenspace where S' C C* acts by 2" (which is distinct from z7),
we deduce that w, = wy = w, and thus @y, ,, = Guy.0y = Pu... If @1 and ay have opposite
signs, then ¢ = ¢, ,; otherwise we get the possibilities outlined in the statement of the
lemma. Finally, (4) is immediate from the irreducibility of ¢, ,. O

We note in passing that the GSp,(C)-parameter cannot be recovered, in general,
from the GL4(CG)-parameter. This is true in particular for ¢.;.0), since one may com-
pute that the GL4(C) representation preserves two symplectic forms whose similitude
characters differ by sgn.

If K is a number field and 7 is an automorphic representation of GLy(Ak), we say
that m has weight 0 if for each place v|oo of K, m, corresponds to ¢y ;. If I is a totally
real field and 7 is an automorphic representation of GSp, (Ar), then we say that 7 has
weight (%, /)y 1f for each place v|oo of I, we have £, > /[, > 2 and k£, =/, (mod 2), and
7, 18 in the L-packet corresponding to @ .4, —1.5,—92). We say that r has parallel weight 2 if
it has weight (2, 2),/c (We note that the congruence £, =/, (mod 2) is imposed in order
to ensure that 7 1s algebraic.)

2.7. Galois representations associated to automorphic representations. — We now recall
some results from [Mokl4] on the existence of Galois representations (adapted to the
particular setting of interest for us), beginning with the existence of Galois representations
for certain cuspidal automorphic representation of GSp,(Ay). The following theorem is
essentially due to Sorensen [Sor10], although at the time that [Sor10] was written, some
additional assumptions needed to be made, due to the lack of unconditional results on
the transfer of automorphic representations between GSp, and GLj.

Theorem 2.7.1. — Suppose that ¥ is a totally real field, and that v s a cuspidal automorphic
representation of GSp, (Ar) of weight (ky, l,)y|00, where ky > 1, > 2 and k, = [, (mod 2) for all
v|oo. Suppose also that 7T has central character | - |*.

Fix a prime p. Then there 1s a continuous semisimple representation p ; : Gp — GSp, (Q})
satisfying the following properties.

(1) vop,,=e".
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(2) For each finite place v, we have
WDzl )™ = recer (m, @ [v] /%)%
If furthermore py. j, is 1rreducible, then
WD (07l ) ™ = recer ) (m, @ [v| 7).

(3) If vip, then prylcy, s de Rham with Hodge—Tlate weights ((ky + £,)/2 — 1, (k, —
L)/2+1, =k = 4)/2,2 = (k + 1,)/2).
(4) If prp 15 vrreducible, then for each finite place v of ¥, pr |y, s pure.

Proof. — 'The existence of a representation o, valued in GL;;(@) and satisfy-
ing (2) and (3) is part of [Mokl4, Thm. 3.5] (note that the results of [Art04] cited
in [Mok14] hold unconditionally by [G'T'19]). That the representation actually takes val-
ues in GSpAr(@) with the claimed multiplier follows from [BC11, Cor. 1.3] (cf. [Mok14,
Rem. 3.3(3)]). Finally, for part (4), note that if p , is irreducible, then 7 is of general
type in the sense of [Art04] (see Section 2.9), and thus corresponds to an essentially self-
dual algebraic automorphic representation IT of GL,. Purity then follows from the main
results of [Carl2, Carl4]. O

For representations which are ordinary in the sense of Section 2.4.23, we have the
following variant on Theorem 2.7.1.

Theorem 2.7.2. — Suppose that ¥ is a totally real field, and that 7w is a cuspidal automorphic
representation of GSp, (Ay) of weight (ky, l,)vjoc, where ky > b, > 2 and k, =1, (mod 2) for all
v|oo. Suppose also that 7t has central character | - |*.

Fix a prime p. Assume that 1, 15 unramified at all places v|p, and that 7 s ordinary, with

ordinary Hecke parameters (oty, By)yjp. Then there is a continuous semisimple representation pr ) :
Gy — GSp, (@) satisfying the following properties.

(1) vop,,=e".

(2) For each finite place v £ p, we have

WD (0r ylap, )™ = recar (7, ® [V]7%)".
If furthermore py. j, is 1rreducible, then
WD(pJ‘[,p|Gpv)F_SS = recgry(m, ® lv|~/%).

(3) Ifvlp, then

)"O[vs(kv+ll})/272 k k E3

0 hp, e h)/2 " *

PrplGr, = 0 0 Jylem I~ "
0 0 O }\l*lglf(kv‘l’lv)/Q

Ay

(4) If px.p 15 trreducible, then for each finite place v of ¥, pr 4|y, 15 pure.
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Proof. — 'This follows from Theorem 2.7.1; part (3) is a standard consequence of
p-adic Hodge theory, and is in particular immediate from [Ger19, Lem. 2.32] (and Propo-
sition 2.4.6). O

The following theorem is a variant of the main result of [Mok14], which proves
the existence of Galois representations associated to certain automorphic representations

of GLy(K), K a CM field.

Theorem 2.7.3. — Let ¥ be a totally real field, and let K/¥ be a quadratic extension.
Whrte Gal(K/F) = {1, t}. Suppose that 7 is a cuspidal automorphic representation of GLy(K)
of weight O with trivial central character.
Then there 1s a continuous irreductble representation px , - Gk — GLo (@) such that for each
Sinite place w 1 p of K, we have

~ —1/¢
WD (0l )™ Zrecy(m, @ [ - |79,
If m, is not a twist of a Steinberg representation, then in fact
F—ss ~ —1
WD (or glag, )" Zrecy(m, ® |- 777).

For each place w|p of K, the representation px plcy, 15 Hodge—Tate, and for each T : K — Q, the
T-labelled Hodge—Tate weights of px , are (0, 1).

Proof of Theorem 2.7.3. — In the case that K is CM this is a special case of the main
theorem of [Mokl14], and essentially the same proof works in the general case. The ar-
gument of [Mokl14, §5.1] goes over unchanged to produce a cuspidal automorphic rep-
resentation 7w of GSp,(Ar) (see Theorem 2.9.3 below); to see that 7, is in the L-packet
corresponding to .1 ) at each place v|oo of F, one uses Lemma 2.6.1 at the places
which split in K, and [Mokl14, Prop. 5.2] at the places for which K, is complex. One
then easily checks that the arguments of [Mok14, §5.2-5.3] go over without any changes
to the case of general K, as required. U

2.8. Compatible systems of Galous representations, Li-functions, and Hasse—Weil zeta functions.
— We now recall some definitions concerning compatible systems from [BLGGT14b,
§5] and [PT15, §1]; in fact, our definition of a “strictly compatible system” differs slightly
from the definitions in those papers, because we find it convenient to include local-global
compatibility at places dividing p. Let I denote a number field. By a rank n weakly compatible
system of [-adic representations R of Gy defined over M we mean a 5-tuple

M, 5, {Q,(X)}, {n.}, {H.})
where

(1) M is a number field considered as a subfield of G;
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(2) S is a finite set of primes of F;
(3) for each prime v ¢ S of F, Q,,(X) is a monic degree n polynomial in M[X];
(4) for each prime A of M (with residue characteristic /, say)

r.: Gp — GL,(M,)

1s a continuous, semi-simple, representation such that

e ifv ¢ Sand v f/is a prime of I, then 7, is unramified at v and 7, (Frob,)
has characteristic polynomial Q,,(X),
e while if v|/, then 7,|g,, is de Rham and in the case v ¢ S crystalline;

(5) for T : F <> M, H, is a multiset of 7 integers such that for any M < M, over
M we have HT () = H;.

IFR=M,S,{Q,X)}, {n}, {(H:}) and R' = (M, S, {Q) (X)}, {r}}, {H.}) are two com-
patible systems, then we write R = R’ if Q,,(X) = Q! (X) for a set of places v of Dirichlet
density one. This implies that Q,,(X) = Q! (X) for all v ¢ SUS', and that r, =7/ for all A,
and H, = H; for all 7.

We say that R is regular if for each 7 : F < M, the elements of H, are pairwise
distinct. We will call R strictly compatible if for each finite place v of F there is a Weil—
Deligne representation WD, (R) of Wy, over M such that for each place A of M and
every M-linear embedding ¢ : M < M, we have ¢ WD, (R) = WD(r, |G, )Fss,

We will call a strictly compatible system R pure of weight w if for each finite place
v of I the Weil-Deligne representation WD, (R) is pure of weight w.

The following result is well-known (see for example [Fon94, Rem. 2.4.6]), but as
we do not know of a convenient reference for a proof, we briefly explain how it follows
from results in the literature.

Proposition 2.8.1. — If A 15 an abelian variely over a number field ¥, then, for each 0 <1 <
2 dim X, the l-adic cohomology groups H'(Ag, Q,) form a strictly compatible system which is pure of
weight 1 and which s defined over Q.

Proof — Since H'(A, Q) = ANH'(A, Q), it is enough to check the case : = 1. The
compatible system satisfies strict compatibility at the places not dividing / by [Noo13, Cor.
2.7]. In the case that A has semistable reduction, it is furthermore strictly compatible
by [Nool7, Cor. 2.2]. One can deduce the general case from this by a base change trick
due to Saito [Sai97], which was exploited in [Kis08, Ski09, BLGGT14a]. Indeed, as in
the proof of [BLGGT14a, Thm. 2.1], it suffices for each finite place v of I to check
that whenever g € Wy, maps to a positive power of Frobenius in the absolute Galois
group of the residue field, then the trace of g on WD(H!(A, Q)) is independent of /.
One can choose an extension E/F (for example, the fixed field of the subgroup of Wy
generated by g and the kernel of the restriction to Iy of WD(H'(A, Q)) for some /) and
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a place v|w of E such that Ag is semistable and g € Wg, , and the claim then follows from
the independence of / for Ag.

It remains to check purity. By [Ray94, Thm. 4.2.2], it is enough to check purity for
the Weil-Deligne representations associated to 1-motives with potentially good reduction,
which is [Ray94, Prop. 4.6.1, Prop. 4.7.4].

The above is of course not a historically accurate account of a proof; indeed, the
strict compatibility of the compatible system at places not dividing / 1s stated in [Del73,
Ex. 8.10], and given Fontaine’s definition of the Weil-Deligne representation associated
to a potentially semistable representation, the entire proposition can be deduced from the
results of [GRR72]. We omit the details, but we would like to thank Brian Conrad for
explaining them to us. O

Definition 2.8.2. — If A/F is an abelian surface, then we write pa;_for H' (A, Q), and
R for the compatible system {py,;}. We can think of pa,; as a representation py; : Gy — GSp, (Q)
with multiplier €7, and will frequently do so without comment.

Remark 2.8.3. — It will sometimes be convenient to say that a set of GSp,-valued
representations form a compatible system, by which we simply mean that the correspond-
ing GL,-valued representations form a compatible system. In particular, the representa-
tions pa; : Gr — GSp, (Q) considered in Definition 2.8.2 form a compatible system in
this sense. (In general, one might wish to ask for a compatibility between the symplec-
tic structures; such a compatibility always holds in the cases that we consider, and in
particular we will only consider representations whose multiplier character is the inverse
cyclotomic character, so we ignore this point.)

We can define the L-function of R as follows:

L(R,s) = ]_[ L(WD,(R), 5).
o oo

Furthermore, if R comes from an abelian variety (or more generally, arises in a geomet-
ric structure where the Hodge structure is apparent) then (as in [Ser70]) we can define
Gamma factors L, (R, s) for each place v|oo of F, and we set

(2.8.4) A(R,$) =L(R, 5 [ [L.(R. .

v|oo

In particular, if R arises from an abelian surface over a totally real field F, then the
corresponding Gamma factor is given by L,(R,s) =I'¢ (s5)? for all v|oo where I'¢(s) =
@Qm)~°T(s).

We also have a conductor N(R) which is a product of local factors depending
only on the WD, (R). Conjecturally, if R is a strictly compatible system, then A(R, s)
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admits a meromorphic continuation to the entire complex plane and satisfies a functional
equation of the form

(2.8.5) AR,s5) =e(R)IN(R) AR, 1 —ys)

for some factor ¢(R). (When R arises geometrically, there are natural definitions of the
epsilon factor ¢(R), but it is not immediately apparent how to read off ¢(R) directly
from the compatible system.)

In particular, if A/F is an abelian variety, then by Proposition 2.8.1

Ai(A, ) = A(H' (AR, Q), 5)

is well-defined, and we define the completed Hasse—Weil zeta function of A to be

2dimA

AA ) = [ AdA 9.

=0

Note that if v s a finite place of I at which A has good reduction with corresponding
reduction A, then the local L-factor

2dimA

Li(A,5):= [ LOWDH (AR, Q)), 9"

i=0
can be written as
= #A(k(v),, _
LA 5) = exp (Z w#k(v)_m)
m
m=1

where £(v) is the residue field of F, and £(v),,/k(v) is the extension of degree m.
We have the following conjectures for the A;(A, s), which we will prove for abelian
surfaces over totally real fields by showing that they are potentially automorphic.

Conjecture 2.8.6 ([Ser70], Cony. C9). — For each 1, A;(A, s) has a meromorphic continuation
lo the entire complex plane, and satisfies a_functional equation of the form

AdA, ) =wNF ZAA i+ 1—5)
where w = £1 and N € Z,.

Corollary 2.8.7. — If Comjecture 2.8.6 holds, then A (A, s) has a meromorphic continuation
to the entire complex plane, and satisfies a_functional equation of the form A(A, s) = eNTA(A, 1 +
dim A — 5) where e € R and N € Q..

Progf. — This follows immediately from Conjecture 2.8.6 by Poincaré duality. [J



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 197

2.9. Arthur’s classification. — We now recall some consequences of Arthur’s classifi-
cation [Art04] of discrete automorphic representations of GSp,. The analogous classifi-
cations for Sp, and SOs are special cases of the very general results proved in [Artl3],
and a proof of the classification announced in [Art04], making use of the results and
techniques of [Artl3] is given in [G'T19]. This reference establishes the compatibility
of Arthur’s classification with the local Langlands correspondence recgr, which we use
below without further comment.

We say that an automorphic representation 7 of GSp, (Ay) is discrete if it occurs in
the discrete spectrum of the L.*-automorphic forms (with fixed central character @ = wy).
Note in particular that all cuspidal automorphic representations are discrete. Arthur’s
classification divides the discrete spectrum into six families of automorphic representa-
tions. We will not need the full details of this classification, but rather just some conse-
quences that we now recall.

If IT is a cuspidal automorphic representation of GL4(Ay), then we say that IT is
of symplectic type with multiplier x if the partial L-function L5(s, I, /\2 ®x ") has a pole
at s =1 (where S is any finite set of places of ). Note that this implies in particular that
MM=11" e x.

We say that a discrete automorphic representation 7w of GSp, (Ay) 1s of general type
in the sense of [Art04] if there is a cuspidal automorphic representation IT of GL4(Ay) of
symplectic type with multiplier w, such that for each place v of I, the L-parameter ob-
tained from recgr(7,) by composing with the usual embedding GSp, < GLj4 is rec(I1,).
We say that IT is the transfer of 7.

In practice, all of the automorphic representations 7 that we consider in our main
arguments will be of general type. We will often use the following lemma to guarantee this.
(For example, the lemma will be used to show that when we localize a cohomology group
at a non-Eisenstein maximal ideal, the only automorphic representations that contribute
are of general type.)

Lemma 2.9.1. — Suppose that ¥ s totally real, and that 7w s a discrete automorphic rep-
resentation of GSp, (Ay), and that at each place v|0o, 7w, has the same infinitesimal character as the
representations in the L-packet corresponding to @ 9. ,—1.1,—2) with ky, = l, (mod 2) and k, > [, > 2.
Suppose that v 1s not of general type.

Then there is a compatible system of reducible Galois representations py , : Gy — GSp, (@)

§5

such that for all but finitely many places v of F, we have WD (pr |y, )™ = recr, (7, ® [v] %)™

Proof. — We follow the proof of [CG20, Thm. 7.11]. Since 7 is not of general
type, 7 falls into one of the five classes (b)-(f) listed at the end of [Art04]. In cases (e)
and (f), we see that the Hecke parameters of 7 agree with those of a direct sum of 4
idele class characters. By the hypothesis on the infinitesimal character, these characters
are algebraic, so we may take the direct sum of the corresponding compatible systems of
Galois representations.
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In case (d), the Hecke parameters of 7 agree with those of an isobaric direct sum
of the form A| - |28 A| - |~'/2 B u, where A is an idele class character, and j is a cuspidal
automorphic representation of GLy(Ay), satisfying @, = A* = w,. Considering infinites-
imal characters, we see that A is algebraic, so that A| - /2B A| - |71/? is regular algebraic.
This implies that p is also regular algebraic, and thus has an attached compatible system
of Galois representations.

In case (b), the Hecke parameters of 7 agree with those of an isobaric direct sum of
the form p; B o, where () # o are cuspidal automorphic representations of GLy(Ay)
with central character p,. Since their central characters agree, it follows easily that they
both correspond to holomorphic Hilbert modular eigenforms of paritious weight. Finally
in case (c), the Hecke parameters of & agree with those of an isobaric direct sum of the
form |- |28 u| - |72, where u is a cuspidal automorphic representation of Gl (Ay)
of orthogonal type; that is, it is induced from a quadratic extension of F. Since w is
certainly algebraic, we again have an attached compatible system of reducible Galois
representations, as required. UJ

Remark 2.9.2. — Suppose that 7 is of general type but otherwise satisfies the
conditions of Lemma 2.9.1. Then the corresponding Galois representations constructed
in [Mok14] (see also Theorem 2.7.1) give rise to a compatible system of Galois represen-
tations which — in contrast to those occurring in Lemma 2.9.1 — are expected to always
be irreducible.

The following theorem summarizes the consequences that we need from Arthur’s
multiplicity formula.

Theorem 2.9.3. — Suppose that ¥ is a totally real field, and that T1 is a cuspidal automorphic
representation of GLy(Ay) of symplectic type with multiplier x . Then there exists at least one discrete
automorphic representation v of GSp, (Ay) with central character x such that 1 us the transfer of 7.

More precisely, for each place v of ¥, let 7, be an element of the L-packet corresponding to
(rec,(ITy), xv). Then w := @, is automorphic, and occurs with multiplicity one in the discrete
Spectrum.

1f, furthermore, I1 1s algebraic, then 7 1s cuspidal.

Proof. — The statements of the first two paragraphs are immediate from the mul-
tiplicity formula of [Art04] as proved in [GT19] (note that since 7 is of general type by
definition, the group Sy considered in [Art04] is trivial). Suppose then that IT is alge-
braic; then Il is essentially tempered by [Clo90, Lem. 4.9], so that 7, is also essentially
tempered (as its L-parameter is essentially bounded), so that 7 is cuspidal by [Wal84,
Thm. 4.3]. O

2.10. Balanced modules. — Let S be a Noetherian local ring with residue field £, and
let M be a finitely generated S-module. As in [CG18, §2.1], we define the defect ds(M) to
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be
ds(M) := dim; M/msM — dim; Torg (M, £).
Definition 2.10.1. — We say that M s balanced if ds(M) > 0.
Lemma 2.10.2. — If M is balanced, then there is a presentation
'S M-—0

with d = dim; M /mgM.
Conversely if M admats a presentation

SS—>S ->M-—0
Jor some v > 0, then M s balanced.

Proof. — Assume firstly that M is balanced, and choose a (possibly infinite) minimal
resolution

o> Pi>.>P>P—>M—>0

by finite free S-modules P; of rank 7. (Recall that a minimal resolution is one whose
differentials vanish modulo mg, and that such a resolution always exists.) Tensoring
this resolution with £ over S, we see that r; = dimy Toré(M, k), so that in particular
by our assumptions we have d = ry > 7, so that there is a presentation of the form
P, @ S®“) — Py — M — 0, as required.

Conversely, if M admits a presentation S" — S” — M — 0, then let K be the image
of the map S" — §’. Then from the exact sequence

0— Toré(M, k) — K/msgK— £ — M/msM — 0
we see that
ds (M) =r— dll’l’lk K/mgK,

since K admits a surjection from §’, it follows that ds(M) > 0, as required. [

2.11. Projectors. — Let R be a complete local Noetherian ring with maximal ideal
mp and finite residue field. We let Mod“""(R) be the category of mg-adically complete
and separated R-modules. Let M € Ob(Mod " (R)) and T € Endg (M).

Definition 2.11.1. — We say that 'T 15 locally finite on M iof for all n > 0, M/my s an
inductive limat of finite type R-modules which are stable under the action of T
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Lemma 2.11.2. — If Ty, Ty commute and are both locally finite on M, then T\ Ty s also
locally finite on M.

Proof. — By definition we can assume that M is mj-torsion for some n. If v e M
then since T is locally finite, the R-submodule of M generated by the T} v is finitely
generated. Since Ty is locally finite, it follows that the R-submodule generated by the
Télev is also finitely generated, and since T, Ty commute, this submodule is stable
under the action of T T, as required. 0J

The following results from [Pil20] will be used to construct the ordinary projectors
associated to certain Hecke operators.

Lemma 2.11.3 ([Pil20, Lem. 2.1.2]). — If M is an object of Mod“™(R) and T is an
endomorphism of M, then 'T" s locally finite on M 1f and only if 1t is locally finite on M /mg.

Lemma 2.11.4 ([Pil20, Lem. 2.1.3]). — If T is locally finite on M, then lim,_, o, T"
converges pointwise i the my-adic topology to a projector e('I') on M.
The operators T and e('T') commute, and we have a 'T'-stable decomposition

M = e(T)M & (1 — ¢(T))M,

where T 15 byective on e(T)M and topologically nilpotent on (1 — e('T'))M.

We call e(T') the ordinary projector attached to T. Let D(R) be the derived cate-
gory of R-modules, let D" (R) be the full subcategory of D(R) generated by bounded
complexes of flat, mg-adically complete and separated R-modules and let DP*(R) be
the full subcategory of D(R) generated by bounded complexes of finite free R-modules.
Let M € Ob(D"™(R)). We say that an operator T € End(M) is locally finite if there is
a bounded complex of flat modules N representing M and an operator Ty € End(IN)
representing T" which is degree-wise locally finite. By [Pil20, Lem. 2.3.1], T 1s locally fi-
nite on M if and only if T is locally finite on the cohomology groups H'(M ® R/mg)
and there is a bounded complex of flat modules N representing M and an operator
Ty € End(N) representing T. Given a choice of representatives (N, Ty € End(N)) for
a locally finite operator T, we get an associated idempotent ¢(T) € End(N). In general,
we do not know whether two choices of representatives (N, Ty € End(IN)) give the same
projector in Endpg)(M). But by [Pil20, Lem. 2.3.2], if we assume that for one choice of
representative ¢(To)M is an object of D7 (R) then, for another choice of locally finite
representative (N, T € End(N)), ¢(T;)M is an object of D*” (R) and there is a canoni-
cal quasi-isomorphism ¢(Ty)M — ¢('T})M. In the sequel, these conditions will always be
satisfied and we will write ¢('T") by abuse of notation.
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3. Shimura varieties

In this section, we discuss the Hilbert-Siegel Shimura varieties that we work with,
and some properties of their integral models. There are two closely related algebraic
groups here: G| = Resy/9GSp, and its subgroup G of elements with similitude factor in
Gm —> RCSF/QGm.

The group G admits a standard PEL Shimura variety and there is a good moduli
Interpretation, integral models, and a good theory of integral compactification. Nonethe-
less, from an automorphic view point we must work with the group G; which gives rise
to a Shimura variety of abelian type.

Going back to the work of Deligne (see in particular [Del79, §2.7]), there is a
standard strategy for handling abelian type Shimura varieties by relating their connected
components to quotients of connected components of Hodge type Shimura varieties by
finite groups. As a particular instance of this strategy, the Shimura varieties for G and G,
are closely related: the connected components of G,-Shimura varieties are quotients of
the connected components of G-Shimura varieties by finite groups. We therefore study
both of them at the same time.

For convenience, our main references for integral models of PEL Shimura varieties
and their compactifications are the papers [Lanl3, Lan16, Lan17], although some of the
results we cite from there were proved in earlier papers, in particular [Kot92]; we refer
the reader to the references in [Lanl3] for a more detailed historical account.

3.1. Sinulitude groups. — Let F be a totally real field. Let V = Of be a free Op-
module of rank 4. We equip V with the symplectic Og-linear form <, >;: V x V— Og
given by the matrix J. We let <, >:= (Trp/go <, >1) be the associated Z-linear symplec-
tic form.

Let G| = Resy/oGSp, be the algebraic group of symplectic F-linear automor-
phisms of (Vg, <, >1), up to a similitude factor v in Resy)qG,,.

Let G C G, be the algebraic group of symplectic F-linear automorphisms of
(Vg, <, >) up to a similitude factor in G,,; that is, G = G, Xy Resr G G,,.

3.2. Shimura varieties over G. — We firstly briefly discuss some Shimura varieties
over C. We caution the reader that in the bulk of the paper we will work with Shimura
varieties over Z, which are not quite integral models of these Shimura varieties, but
whose geometrically connected components are the same as these; see Proposition 3.3.9
below for a precise statement. We begin by recalling the definition of a neat compact
open subgroup from [Lanl3, Defn. 1.4.1.8].

Defimition 3.2.1. — Write g = (g)); € G (A™), and for each [, write Ty, for the subgroup of
(_bx generated by the eigenvalues of g, (under any _faithful linear representation of Gy ). Then we say that
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gisneatyf
m(qx N Fg/)tors =1.
!
Similarly, if g € G (AP, then we say that g is neat if

()@ Ny =1.

I#p

We say that a compact open subgroup K C G1(A®) (resp. K C G (A*?)) is neat if all of ils
elements are neat.

We consider the Shimura variety associated to the group G, and a neat compact
open subgroup K C G (A%):

SEH(C) = G Q\(Gi(R) x G (A%))/Z(R)'’KLK

where Z(R)" ~ Rggm(F’R) is the connected component of the centre in G;(R) =~
GSp,(R)HomER) and KO is the connected component of the maximal compact subgroup
mside G| (R), so that Kgo is a product of copies of U(2). This Shimura variety carries a
natural structure of complex quasi-projective variety, as we have G;(R)/Z(R)’K? =
(H U —H)Hom®R) "\where H is the Siegel half space of symmetric matrices M = A+ B €
Moo (G) with B positive definite.

Let G;(Q)™ be the subgroup of G;(Q) equal to v=!(F**), where F** is the sub-
group of totally positive elements in F*. Then by strong approximation,

G =][G(@"K

where ¢ runs through a (finite) set of elements in G| (A*) such that v(¢) are representatives
of the strict class group F** "\ (A* ®¢ I)* /v(K).
One can then write

SK'(Q) = [ [ i K\pom R

where T (¢, K) = G1(Q)" N K.

This Shimura variety, although natural from the point of view of automorphic
forms, is not of PEL type. Therefore, it is also necessary to work with another Shimura
variety. We can consider the double quotient

S¢(C) = GIQ\(G(R) x G1(A®))/R_(KLK;
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this is not strictly speaking a Shimura variety, and in particular we emphasise that it is not
the PEL Shimura variety associated to G! By strong approximation we may write

Gi(A®) = ]_[ G(Q)"K

where ¢ runs through a set of elements of G;(A*) such that v(¢) are representatives
of the infinite set Q*\(A* ®¢q F)*/v(K). For all ¢, we consider the group I'(¢, K) =
Gt NcKe™!, so that

SH(C) =] [ (e K)\H"m R,

The inclusion G(R) <> G, (R) induces a natural surjective map S§ (C) — Sgl (C).
On connected components, it induces the natural map

Q \(AY ® ) /v(K) — F*"\(A* ®g F)* /v(K).

For any ¢ € G;(A*™) we have an associated surjective map on the connected com-
ponents corresponding to ¢, given by

I'(e, K)\’HHO"’(F’R) — Iy (e, K)\’HHom(F’R).

Let Z(I' (¢, K)) C Ty (¢, K) be the centre. Then Z(I"; (¢, K)) 1s a finite index sub-
group of OF that we denote by Oy (K). Let

A(K) =T'1(c, K)/(OF (K), T (¢, K)).
This is a finite group, independent of ¢ and isomorphic to
(1 (e, K)) /(05 (K)) = (O Nw(K)) /v(OF(K)),
having noted the following:

Lemma 3.2.2. — There is an equality v(I'; (¢, K)) = OFX’Jr Nv(K).

Proof. — Recall that by definition I'; (¢, K) = G;(Q) " N¢Kc¢™!, so certainly we have
an inclusion v(I'1 (¢, K)) C (9FX’+ N v(K). Conversely, suppose that v(y) =« € (9FX’+ N
v(K) for some element y € (K¢, Since x € O = v(G,(Q)"), we can choose g €
G1(Q)" with v(g) = x. Then v(y~'g) =1, so by strong approximation, we may find
an k€ G;(Q)" with trivial similitude character such that /4 is arbitrarily close to gy ',
and in particular close enough that sy g~" lies in ¢K¢™'. Then Ay € G,(Q)" N c¢Kc¢™! and

has similitude character x, as required. UJ
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We also have

Lemma 3.2.3. — Themap T (¢, K)\HImER) 5 T (¢, K)\HEmER) 4 finite étale with
group A(K).

Progf- — The group TI'i(¢, K) acts through its quotient I'i(¢, K)/Op (K) on
HHomER) “and since K is neat, this action is free. ]

3.3. Integral models of Shimura varieties. — We now introduce the integral models of
Shimura varieties that we will consider in the rest of the paper.

3.3.1. Compact open subgroups at p. — We let p be a prime that is totally split in F.
Let v be a prime ideal in O above p. Consider the following chain of O, -sub modules
of F*:

VO—)V1—>V2—>V3—>V4

where Vo =V ®p, Or, = & ,0F,¢; and V, = (p e, ... ,/flej, G155 6). We can
identify Vj and V, through multiplication by p and sometimes think of the indices as
being in Z/4Z.

From the perfect pairing <, > on V; we obtain perfect pairings on Vy, x Vy and
on V1 X V5

We now recall the definitions of the parabolic subgroups that we use in terms of
flags; this description is well suited to the definitions of our integral models.

GSp,(OF,) = Aut(Vy) N GSp, (F,) (the hyperspecial subgroup),

Par(v) = Aut(V; — V3) N GSp, (F,) (the paramodular subgroup),

Si(v) = Aut(Vy — V) N GSp,(F,) (the Siegel parahoric),

Kli(v) = Aut(Vy = V| — V5 — V() N GSp,(F,) (the Klingen parahoric),
Iw(v) = Aut(Vy — V, = Vy — V35 — V) NGSp, (F,) (the Iwahori subgroup).

3.3.2. The moduli problem. — Let ALG/Z, be the category of Noetherian Z,)-
algebras and AI/Z, the opposite category. Let K C G(A*) be a compact open sub-
group; we will also refer to such a compact open subgroup as a level structure.

Definition 3.3.3. — We say that a level structure K = K’K,, 15 reasonable if K/ C
G(A™") is neat, and if K, = HU‘ ’ K, where for each v|p we have

K, € {GSp,(Oy,), Par(v), Si(v), Kli(v), Iw(v)}.

Let K be a reasonable level structure. We consider the groupoid Yk over AFY/Z,
whose fibre over S = SpecR € Ob(AF/Z,)) is the category with objects (A, ¢, A, 1, 7,),

where:
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1) A — SpecR is an abelian scheme,

2) t: Oy — End(G) ® Z;) is an action,

3) Lie(A) is a locally free Oy ®z R-module of rank 2,

4) 2 :A— A'is a prime to p, Op-linear quasi-polarization such that for all v|p,
Ker(A : A[v™®] — A'[v™]) is trivial if K, # Par(v) and is an order p* group
scheme if K, = Par(v),

(5) n is a K?-level structure,

(6) m,is a K,-level structure.

(
(
(
(

Here by a prime to p quasi-polarization A : A — A’ we mean a Z ) -polarization in
the sense of [Lanl3, Defn. 1.3.2.19]. By a K,-level structure 7,, we mean the following
list of data:

(1) For all v|p such that K, = Kli(v), H, C A[v] is an order p-group scheme,

(2) For all v|p such that K, = Si(v), L, C A[v] is an order p* group scheme that is
totally isotropic for the Weil pairing

(3) For all v|p such that K, =Iw(v), H, C L, C A[v] are subgroups such that H,
is of order p, L, is of order p* and L, is totally isotropic for the Weil pairing,

Let us spell out the definition of K’-level structure. We may assume without loss
of generality that S is connected, and we fix 5 a geometric point of S. The adelic Tate
module H, (Al;, A*?) carries a symplectic Weil pairing

<, > Hi(Al;, A7) x Hi(Als, A7) — Hi(G,, |5, A™7)
or equivalently an F-linear symplectic pairing:
<, > Hi(Al;, A*?) x Hi(A];, A*?) —> H, (G, |5, A*") Q F.

The level structure 7 is a K?-orbit of pairs of isomorphisms (1, 175), where (with V.= O}
the standard symplectic space defined above):

(1) An O ®z A™’-linear isomorphism of IT;(S,s)-modules 1, : V @z A>7/ ~
H, (A5, A7),

(2) An O ®zA>’-linear isomorphism of IT; (S, 5)-modules 1y : F®z A*? ~ F @
H, (G, |5, A>).

We moreover impose that the following diagram is commutative:

N1 XM

3.3.4) V @z A®! x V®z A®? H,(Al;, A>*?) x H;(Al;, A*!)

l <,>1 l <,>1,A

F ®Z AP F ®Z HI (Gm|f’ Aoo,p)

The action of an element k£ € K? takes (n,, o) to (1%, v(k)n»).
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Remark 3.3.5. — The reader will observe that ny is uniquely determined by 1,
but we find it convenient to record it as part of the data for the sake of comparison to the
PEL setting in Proposition 3.3.9 below.

A map between quintuples (A, ¢, A,n,n,) and (A',/, 1, ', n;) is an Op-linear
prime to p quasi-isogeny (in the sense of [Lanl3, Defn. 1.3.1.17]) / : A — A’ such that

e /"L =7\ for alocally constant function 7 : S — Z&;Jr,
e (1)) =n),and

e Hi(f)on=rn'.

This last condition means that 1’ is defined by H;(f) o n;, = 1} and ny, = r~'n,. Also, we
have denoted Z(ber =QNZj).
Remark 3.3.6. — Note that we are allowing the similitude factor in the level struc-

ture to be in A%’ ®¢q F(1), but we only allow quasi-isogenies with similitude factor in
A>®P(1).

We denote by Z&;+\(A°°’f’ ® F)*/v(K’)(1) the set Z&;+\(A°°’f’ ® F)*/v(K’)
equipped with the action of Gal(Q/Q) through the cyclotomic character Gal(Q/Q) —
I 4 Z; — (A*?)*. This action is unramified at p. It follows easily that Z;};+\(A°°”’ ®
F)*/v(K?)(1) is represented by an infinite disjoint union of finite étale schemes over

SpecZ,.

Remark 3.3.7. — The group Z(;’)Jr acts freely on (A*? @ F)* /v (K?).

Remark 3.3.8. — When v(K?) = (Or Q2 ]_[E# Z,)*, then the above Galois action
is trivial and Z;};+\(A°°’f’ ® F)* /v(K’)(1) is simply an infinite disjoint union of copies of
SpecZ).

There is a structural map I : Yg — Z(X/,;+\(A°°n” ® F)*/v(K?)(1) which asso-
ciates to an object (A,t,A,7n,n,) of Yk the class of ny(1) (where we are identifying
H, (G,.|5, A*") with A**(1)).

As we mentioned at the beginning of §3.2, the complex points of our integral mod-
els are not precisely the double coset spaces considered in §3.2, because our moduli prob-
lem only allows polarizations of degree prime to p. However, the difference amounts to
throwing away some geometrically connected components, as the following result ex-
plains.

Proposition 3.3.9. — The groupoid Yx s representable by a quasi-projective scheme Tl :
Yk — Z;};J’\(A‘X”f’ ® F)* /v(K?)(1). The morphism Ty has geometrically connected fibres. Let ¢ €

Z(X/)’)+\(A°°’ﬁ ® ) /v(K?) and let ¢ : Spec C — Z(X/,’)+\(A°°’ﬁ QF)*/v(K)(1) be the associated
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morphism (for the usual choice of primitive roots of unity in Q). Let Yx . be the fibre of Y over c. Then
there is an isomorphism of analytic spaces (Y )™ = T (¢, K)\HHomER),

Progf: — This follows from the usual description of integral models of PEL type
Shimura varieties; in the case of hyperspecial level this goes back to Kottwitz [Kot92], but
for convenience we follow the notation of [Lan13]. To this end, we recall the description
of these integral models for the usual Shimura varieties for G. We let K = K/K, denote
a compact open subgroup of G(A™), where K’ is a compact open subgroup of G(A™?),
and K, is of one of the parahoric subgroups considered above.

Then we let YO*U be the groupoid over AFF/Z, whose fibre over S €
Ob(AFY/Z,) is the category with objects (A, ¢, A, n,n,), where (A, ¢, A, n,) is as in the
definition of Yy above, but now 7 is given by a K?-orbit of pairs of isomorphisms (7, 72),
consisting of:

(1) An Op ® A®’-linear isomorphism of IT;(S,s)-modules 7; : V @z A™? =~
H, (A5, A>Y).

(2) An A*?-linear isomorphism of TII,(S,5)-modules 7y : A®? >~ A®! ®g
H, (G, |5, A*).

We moreover impose that the following diagram is commutative:

X

(3.3.10) V ®z A®? x V Q@7 A>? H,(Al;, A>*?) x H|(Al;, A*!)

l <,> l <,>j

A H, (G, |5, A>")

A map between quintuples (A, ¢, A,7,1,) and (A',/, A, 77, 77;7) is an Op-linear
prime to p quasi-isogeny f : A — A’ such that

x,+

e /") =r)"for alocally constant function r: S — Z ",

e /(n,) =n),and
e Hi(f)on=1'.
It follows immediately from the definition that there is a natural isomorphism
~ G, Kott
Y = ]_[ Yorgincaces
ZEGA®)\G (A1) /KP
given by the maps
. wG,Kott
g. YgK/’g*IQG(A”Ov/’) —> YK

which are defined by

(Aa L, )"’ (ﬁla ﬁ?)? 77;:) = (As L, )\'a (ﬁl» ﬁ? ®Z OF)ga r’]))
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(Indeed, one easily checks that this already gives a bijection of tuples before passing to
isogeny classes, and that this bijection is compatible with isogenies.) The result now fol-

lows from [Kot92, §5, §8]. 0

We now define an action of ((’)F)(j,fr (totally positive elements in F* which are
prime to p) on Yk, by scaling the polarization A. Since this scales the A-Weil pairing (, ), ;,
we see from (3.3.4) that it also scales ny. Explicitly, x € ((’)F)a) sends (A, t, A, (171, 12), 1))
to (A, ¢, xA, (11, x12), ). By definition, the subgroup Za’)Jr acts trivially on Y.

The group ((’)ﬂéf acts on the set of connected components ITj(Yx). Since the
cyclotomic character surjects onto [, 4 Z;, the stabilizer of each connected component
s

Or ) = [ ©Opgtnzg v [z | 1zt
L#Ep

which we can and do naturally identify with

oFtmv®) [ ]z
t#p

Remark 3.3.11. — If v(KY) = (O Qg HZ#Z/;)X, then O (ITy) = O;°F.

The subgroup O " (v(K?)) := O Nv(K?’) acts trivially on each connected com-
ponent of ITy(Yk). The quotient stack of connected components is

(OO0 /ZEONZ LA @ F)* /v (KA)(D)].

It admits a coarse moduli space (Of) a;Jr\(AOO”’ ® F)*/v(K?)(1) which is a finite étale
covering of SpecZ;.
We now take the quotient stack

Yy =Y /(O /23]

This is the “Shimura stack™ associated to G; and the level K.
Let us define

OF T (KM = {#* | x € OF NK?Y,

where Of is thought of inside G, A;-ﬁ)) as a subgroup of the scalar matrices. The mul-
tiplier of the scalar matrix given by x is x>, and hence the multiplier of Q0" (K?)
lands inside v(K?), and hence O} " (K?) is a finite index subgroup of Oy * (v(K’)) and
of O (Iy).
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Lemma 3.3.12. — The restriction of the action of (OF)(?)JF on Y to OF T (KP) is trivial.

More precisely, there is a canonical natural transformation going fiom the action of Oy (K?) on Y to
the trivial action of O " (K?) on Y.

Proof — Let x* € OF T (K?) for a unique x € O;°" N K’. The action of x? sends
(A, 1, x,m,m,) to (A1, KA, 7, n,) (note that since x € K?, and 7 is by definition a K’-
orbit, the action of »* on 7 is trivial). On the other hand multiplication by x™' : A — A
provides a map (A, t, A, 1, n,) = (A, (, XA, 7, n,) in the groupoid Y. This provides the
natural transformation from the action of x> obtained from the action of ((’)p)(xp;+ to the
trivial action.

Lemma 3.3.13. — For any geometric point x € Yk, the stabilizer of x for the action of
((9F)(>I;SJr is OF T (K).

Proof — By Lemma 3.3.12, O;°"(K?) is contained in the stabilizer of any x =
(A,t, 1, n). Lete € ((’)F):{,fr and assume that there is a morphism

S AL A, (nLm),m) = (At €r, (1, €n2), 1)

in the groupoid Yg. We need to show that f € O N K?. Since f respects 1y, it follows
from [Lanl3, Lem. 1.3.5.2] that f is an automorphism of A (and not just a quasi-isogeny).

The polarization A induces an involution x — x on F(f), and we consider the auto-
morphism a = /£~ of A. It stabilizes the polarization: @*A = Aa@ = A. It also stabilizes
the level structure: f acts like the adjoint of / on H, (A, A>?). Since K’ is neat, this
implies that o = 1; indeed, all the eigenvalues of « are roots of unity, because they are
algebraic numbers all of whose conjugates have absolute value 1. It follows that f = £,
and f? = ff = €. Since f is an automorphism, it follows that € € 0. Hence it suffices to
show that f € F, since we then have € € O} " (K?).

Assume first that A is simple, so that End(A)q is a division algebra and F(f) C
End(A)q is a commutative field on which the Rosati involution x > x is complex conju-
gation. Since f = f and f* = €, F(f) is a totally real extension of F of degree at most 2. If
F(f) =F, we are done. Otherwise F(f) is a quadratic extension of F. The level structure
n provides a K’-orbit of isomorphisms H; (A, A*?) >~V ® A*’ and the element / acts
via some conjugate of

o O == O
S OO M
n O O O
o — O O

and has eigenvalues in F: {\/€, —+/€} with multiplicity two. By neatness, no conjugate of
this matrix is in K?, a contradiction.
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We now assume that A is not simple. It is easy to see (using the Op-action) that
the only possibility is that A is isogenous to A; X Ay where A; and Ay are two abelian
schemes of dimension [F : Q] with F C End(A;)q. If A; and A, are not isogenous,
then End(A)g = End(A})g X End(Ay)g. Moreover, F(f) is a commutative subalgebra
of End(A;)q x End(Ay)g and is therefore included in a product of fields F; x F, where
F, is either F or a CM extension of F. Since f = f, we see that f = (f;, ;) € F x F and
that /2 = (2, /) = €. So either f; = 5, and we are done, or f; = —f;; but this second case
is again prohibited by neatness.

Lastly, we assume that A is isogenous to Af. Then End(A)g =~ My(End(A))g)
and F(f) 1s a commutative subalgebra, therefore included in My(E) where E is ei-

ther F or a CM extension of F. Writing f = (j b) € GLy(E), we have € = f? =

d
( a+be  bla+d)
ca+d) be+d?
this is again impossible by neatness. We deduce that a + d # 0, so that b = ¢ =0 and
a=d= /€ ora=d=—,/c. Since f = f and the Rosati involution induces the complex
conjugation on E, we deduce that /€ € F and that / € F, as required. 0J

). If a + d = 0, the matrix of f has eigenvalues {,/€, —/€} and

We write

(3.3.14) A= (Op)y;"/OF (K,

(3.3.15) A(Tp) = OF " (Ty) /OF * (KY),
(3.3.16) AK?Y) = OF (K /OF T (KP).

These last two groups are finite groups. Let us set Yy = A\ Y. This last quotient exists
as a scheme. Indeed, A permutes the connected components of Yk and the stabilizer of
any connected component is a finite group A(Ily), while the stabilizer of any geomet-
rically connected component if A(K?). Moreover, the action of A can be lifted to an
action on an ample line bundle on Yk (for instance the tensor product of the line bundles
det(QgA/C)/YK) where C runs over all subgroups C = Hv‘p C, where for each v | p, G, i3
either 1 or whichever of H,, L, exist as part of the level structure, see [Lanl16, §6]). The
group A(I1y) acts without fixed points by Lemma 3.3.13. The following proposition then
follows immediately from Proposition 3.3.9 and Lemma 3.2.3.

Proposition 3.3.17. — There is a canonical map Yy — Y, and X' is the coarse moduli

of Y3 There is a quasi-projective morphism Tl : Y — (Of) ();’)Jr\(Aoo’/’ ® F)* /Jv(K") (1) with
geometrically connected fibres. Moreover, the map Yk — YI({;1 is étale and surjective.

Letce Z&;Jr\(AOO’/) ® F)* /v(K?) and let

¢:SpecC — ZZ;;+\(A°°"0 ® F)* /v(K')(1)
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be the associated morphism (for the usual choice of primitive roots of unity in Q). Let Yx . be the fibre
of Yx over ¢ and let YE}C be the fibre of YEI over ¢. Then there is a commutative diagram of analytic
spaces where the horizontal maps are isomorphisms and the vertical maps are finite étale with groups

AK?) = A(K):

(YK,c)an F(C, K)\HHom(F’R)

| |

(Y )™ —— Ty (e, K)\HHomER

3.4. Local models. — We now recall some basic results about local models for GSp,;
the cases that we need essentially go back to [dJ93]. Continue to let K be a reasonable
level structure. For each place v|p, we let M%gi be the moduli space over Oy, of chains
of lattices corresponding to K,; so for example Mlﬁ’;(u) 1s the moduli space of totally
isotropic direct factors of V| ®o, Op, of rank 2. We write Mﬁ; = XUV,MIEZ. Then by
the results of [RZ96, §6], each geometric point of the special fibre of Y has an étale
neighbourhood which is isomorphic to an étale neighbourhood of a geometric point in
M}g}c (The description of the local model in [RZ96, §6] is in terms of chains of Oy ® Z,-
lattices, but this description can be immediately rewritten in terms of products over the
places v|p of chains of Oy, -lattices.)

Proposition 3.4.1. — The scheme Yx s flat over Spec Z ), normal, and a local complete in-
tersection (so in particular Cohen—Macaulay) of pure relative dimension 3[F : QJ. If K, = GSp,(OFy,)
Jor all v|p, then it is smooth, while in general it 1s smooth away from codimension 2.

Progf. — Note that normality follows from being smooth away from codimension 2
and Cohen—Macaulay. The properties of being flat and a local complete intersection
over SpecZ,, and of being smooth, or smooth away from codimension 2, can all be
checked étale locally ([Stal3, Tag 03E7, Tag 04R3, Tag 06C3]). Furthermore, these
properties are all preserved by taking products. It therefore suffices to show that they
hold for the local models M}gz This has already been carried out in the literature: the
case that K, = GSp, (Op,) is trivial, and the cases that K, = Kli(v), Si(v) or Iw(v) are
covered in [T1l06b, §2]. In the case K, = Par(v) see [Yull, Prop. 2.5, Thm. 2.11]. I

Corollary 3.4.2. — The scheme Y is normal, flat over Spec Z ), and a local complete
intersection.

Proof — Since Yx — Y{' is an étale surjection by Proposition 3.3.17, this is im-
mediate from Proposition 3.4.1. UJ
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3.5. Compactifications. — In this section, we state results on the existence of toroidal
compactifications. Toroidal compactifications depend on some combinatorial data which
we first explain. We will follow closely the presentation of [Pin90] and [HLTT16], see in
particular [HLTT16, §5.2] (that this presentation is equivalent to Lan’s presentation is
explained in [HLTT16, App. B]).

In this section, we write Vy for V ®p, F. Let € be the set of totally isotropic F-
subspaces W C V. For all W € €, consider the F ® R-module of Q:-bilinear forms

¢ Vi/WE x Vi/WE > R

which satisfy ¢(Ax,») = @(x,Ap) for all A € F, x,» € Vi/W*. Let C(Vy/W1) be the
cone inside this R-vector space given by those forms which are positive semidefinite and
whose radical is defined over F. Let C be the conical complex which is the quotient of
[ Iwee C(Vi/W™) by the equivalence relation induced by the inclusions C(Vy/WH) C
C(Vy/ZF) for W C Z.

A non-degenerate rational polyhedral cone of C x G(A>) is a subset contained in
C(Vy/W) x {y} for some (W, y) which is of the form Zle R._s; for elements s; :
\]F/\NL X \/F/VVL —> Q

A rational polyhedral cone decomposition £ of C x G (A®) is a partition C x G| (A®) =
[1,cs 0 by non-degenerate rational polyhedral cones o such that the closure of each
cone is a union of cones.

Let W € €. We let Py, be the parabolic subgroup of G which is the stabilizer of W.
Let us denote by Myy; the group of F-linear automorphisms of Vi/W+. We also denote
by My, the group of symplectic similitudes of W+/W (so that this group is isomorphic
to Resp/oGSp,_s gimw» and in particular is non-trivial even when dim W = 2). The group
My = My, x My is the Levi quotient of Py. We have a surjective map Py — My,
and we denote by Py its kernel. There is a surjective map Py, = My .

The group G(Q)" acts on € and also on C. Let W € €, let y € G;(Q)" N Py
and ¢ € C(Vy/W1). Let y; be the projection of y in My ;. Then we set y¢(x,y) =
v(Y)@(Vi-x, V1))

The set C x G;(A™) carries a diagonal left action of G;(Q) and left and right
actions of G|(A*) (by left and right multiplication on the second factor). For any com-
pact open subgroup K C G,(A™), a rational polyhedral cone decomposition ¥ is K-
equivariant if forall 1 € G, (Q), ke Kand o € X, h.o.k € .

For any compact open subgroup K C G;(A*>) we say that a rational polyhedral
cone decomposition X of C x G(A%) is K-admissible if:

(1) The decomposition is K-equivariant.

(2) Yor all o C C(Vy/WH) x {y}, and all p € Py ,(A>), we have p.o0 € Z.

(3) Yor all cones o, let W € € be such that o C C(Vy/W%) is in the interior of
C(Vi/W%). Then if there are p € Py 4,(A%), u € K and 4 € G,(Q) satisfying
o Nhpou# P, then in fact i € Py ,(A®).

4) G(Q)\X/K is finite.
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There exist K-admissible rational polyhedral cone decompositions. Any two K-
admissible rational polyhedral cone decompositions can be refined by a third one.
If Lw C HomQ(Sym%VF /W, Q) is a lattice, then a cone

o C HomQ(Sym?gFVF/ W Q)

1s said to be smooth with respect to Lyy if the 5; can be taken to be part of a basis of Lyy.
Assume that for all (W, y) € € x G|(A™) we have lattices

Ly, C Homg(SymyVy/W*, Q).

We say that a rational polyhedral cone decomposition ¥ is smooth with respect to these
lattices if each cone o € X 1s smooth.

We now assume that K = KK, is a reasonable compact open subgroup. We
choose a lattice V' C Vy with the property that K stabilizes V' ®z A%/ and that
V' ® Op, =V ® Oy, for all places v|p such that K, # Par(v) and V' ® O, = V; for
all places v such that K, = Par(v).

Then (O, V', (.)) defines an integral PEL datum and K C G/ (2) where G is the
group scheme over Spec Z of symplectic similitudes of V'.

The theory of toroidal compactification associates a lattice Ly k , C G(Vy /W)
to this integral PEL datum, compact open K, W € € and y € G;(A®) (see [Lanl3,
§5.3] and [Lan16, §3]). The K-admissible rational polyhedral cone decompositions which
satisfy the following extra properties form a cofinal subset of the set of all K-admissible
rational polyhedral cone decompositions:

(1) The decomposition is projective (in the sense of [AMRT'10]).
(2) The decomposition is smooth with respect to the lattices Ly x .

In the rest of the paper, we will consider K-admissible rational polyhedral cone
decompositions which satisfy these extra properties unless explicitly stated.

T heorem 3.5.1.

(1) Let ¥ be a K-admissible polyhedral cone decomposition which is projective. There s
a toroidal compactification Xx 5 of Y. It has a stratification indexed by (G(Q)* N
K)\X/K? = G(Q)"\X /K. The boundary is the reduced complement of Y in Xk 5.
This is a relatwe Cartier divisor denoted by Dx 5.

(2) The unwersal abelian scheme A — Y extends to a semi-abelian scheme A — Xk 5.

(3) If X' 1s a refinement of X, then there are projective maps ws 5 : Xk 3 — Xk.x, and
(Rﬂz/’z)*OXK’E/ = Oxy 5. Let Ix,  and Ixy 5 be the invertible sheaves of the bound-
ary in Xg 5 and Xg 5. Then w5, s Txy ;= IXK,Z/ and (Rng/,g)*IXKYZ, =Ty y-

(4) Suppose that K s reasonable (in the sense of Definition 3.3.3). Then the toroidal compact-
tfication X 5 is flat over Spec Z,, normal, and Cohen-Macaulay. If 3 15 smooth, then
Xk x — SpecZy, is further a local complete intersection. Finally if K, = GSp,(Op,)

Sor all v|p and T is smooth then Xk 5. — Spec Z, is smooth.
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Proof. — 'This follows from [Lanl7, Thm. 6.1]. We simply need to specify the
choices we made to construct the toroidal compactification by normalization (see [Lanl6,
§2]). In the first case that K, = G,(Z,) (the nice case: no level at p, prime to p po-
larization), the compactification is constructed in [Lanl3]. In the second case that
K,= l_[v| ’ K, where K, € {GSp,(Of,), Par(v)}, the compactification can be constructed
as a closed subscheme of some toroidal compactification of a Siegel modular variety
with a prime to p polarization (Zarhin’s trick) (and possibly performing again a blow
up or a blow down at the boundary as explained in [Lanl7]). In the general case
where we have a parahoric level structure, we consider all possible degeneration maps
Yx — ]_[K/,) Yk, where K, — Kj and K) = nvlp K/ with K/ € {GSp,(Op,), Par(v)} and
obtain the toroidal compactification as a closed subscheme of the product of the toroidal
compactifications of the Yk, (and possibly performing again a blow up or a blow down
at the boundary as explained in [Lanl7]).

Now, everything apart from (4) is immediate, while (4) follows from Proposi-
tion 3.5.4 together with the explicit description of the formal completions along boundary
strata given in [Lanl7, Thm. 6.1 (4)]. 0

We also need to consider the action of the group OFX(;:) Recall that we defined a
quotient A of this group in (3.3.15).

Lemma 3.5.2. — The action of Oy (;;) on Yx extends lo Xx 5 and factors through A.

Progf. — 1t 1s possible to prove this directly by looking at the construction of the
toroidal compactification and the boundary charts. We will instead give a simpler indirect
argument. Since Xk y 1s normal, it follows that Xk y 1s the normalization of Yk in Xk 5 X
Spec C. It is therefore sufficient to show that the action extends over C.

We can now use [AMRT'10]. Let ¢ € G, (Ay). By Proposition 3.3.9, the analytifica-
tion of the component Yk, C Yk x Spec G corresponding to ¢ is ' (¢, K)\ HHom®R) "and
we need to show that the group A(K) (which is the subgroup of A acting trivially on the
geometrically connected components) acts on the compactification of I' (¢, K)\ HHem@ER),
By the main results of [AMRT'10], our choice of X provides a partial compactification
HSO‘“‘F*R’ which carries an action of I' (K, ¢). The component of (Xk 5 X Spec G)* cor-
responding to ¢ is isomorphic to I' (¢, K)\Hy """ This space still carries an action of
I'y (¢, K)/ ' (¢, K), which is what we claimed. O

Lemma 3.5.3. — The action of A on Xg 5 s free.

Progf: — Over Yk, this 1s the content of Lemma 3.3.13. We claim that the action
of A is free on the set of non-trivial strata in Xx x. This set is simply G* (Q)\(E \ {0} x
G(Aoo))/K. Letce Gi(A®), (¢, K) =G(Q)"NeKe ' and Ty (¢, K) = G1(Q) T NeKe .
Let X, be the restriction of X to C X {¢}. We need to show that the stabilizer of '} (¢, K)
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acting on X, \ {0} 1s included in I"(¢, K). This will imply that the group A(K) acts freely
on I"(¢, K)\(Z, \ {0}).

Let W e €\ {0}. We denote by 'y (¢, K) and I'y w(e, K) the intersections of Py
with T'(¢, K) and T (¢, K) respectively. Let 0 C C(Vy/W4) x {¢} in the interior. By our
assumption on the cone decomposition, if an element y € I'} w(¢, K) stabilizes o, then its
linear part y; is trivial. We need to see that v(y) is trivial. It is easy to see that we can find
an element y’ € Ty (¢, K) and n € Z-, such that v(y)"¢ = y’.¢ for all ¢ € C(Vy/W+)
(it follows from the very definition of the action that the image of I'yw (¢, K) in the space
of automorphisms of C:(Vy/W+) contains a finite index subgroup of O;°"). We deduce
that y’ stabilizes o and therefore y/ = 1, so that v(y)" = 1 and v(y) = 1 since OF'"
torsion free. [

We form the quotient of X y by the action of OF (;f) This quotient exists because,
on a given connected component of Xk y, this is the quotient by a finite group, and the
component is projective because X is a projective cone decomposition. We shall call such
a quotient a toroidal compactification X'y, of Y. We summarize our findings in the
following proposition: '

Proposition 3.5.4. — The space ng has a stratification indexed by G (Q)*\Z /K. The

map Xk x — X%E is étale and surjective. If K s reasonable, then ngz s a flat local complete
wntersection over Spec Z ), and is normal.

If not necessary, we drop the subscripts K or ¥ and simply write X. We denote the
boundary divisor by D.

3.6. Functorialities. — We now briefly discuss some functorial maps between
Shimura varieties at different levels, which we will make use of when we discuss Hecke
operators in §3.8. All of the functorialities that we consider here extend to the toroidal
compactification for suitable choices of cone decompositions, so we confine our discus-
sions to the interior.

3.6.1. Change of level away fiom p. — Let K = KK, and K’ = (K*)’K, be two
compact open subgroups of G;(A*®) such that K C K'. Then we have finite étale maps
Yx — Yg and Y — YK, given by “forgetting the level structure”; that is, by replacing
the K’-orbit by the corresponding (K”)’-orbit.

3.6.2. Action of the group G,(A*?). — Let g € G;(A*?). Then we can define an

isomorphism
[g] . YK —> Yg—llg{,

by sending an object (A, ¢, A, n, 1,) of Yk to (A, ¢, A, nog, n,), which is immediately seen
to be an object of Y,-1g,.
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We deduce isomorphisms [g] : YGl — Y(’_llKg

3.6.3. Change of level at p: Klingen type correspondences. — We now fix K’ and a place
w above p. We let K, = Hvl ’ K, C G|(Z,) be a reasonable compact open such that K,, =
GSp,(Or,). We let K = [ 1,4, Ky x Kli(w) be another reasonable level structure at p
and let K = Hv;éw K, x Par(w). Set K=K’K,, K’ = K”K} and K" = K”KZ.

Lemma 3.6.4. — There are natural proper surjective, generically finite étale forgetful maps
P Yi — Yg and py: Y — Y.

Proof. — We simply forget the level structure H,, at w. UJ

We now choose once and for all an element x,, € F* which is a uniformizing
element in F,, and a unit in F, for all v # w above p. This element is well defined up to
multiplication by an element of (Of) ;))J’

Lemma 3.6.3. — There is a proper, surjective, generically finite étale map /72 Yx — Y
depending on x,, and sending A to AJHL. It induces a canonical map py - YE} — YK,,

Progf. — This map is defined to take an object (A, ¢, A, n,7,) of Yg' to the object
AU ), 77}) € Yx» defined as follows:

e A’ = A/H:, where H C A[w] is an order p* group scheme, the orthogonal
complement of H,, for the Weil pairing. Write 7 : A — A’ for the natural
1sogeny.

o /(x)=motlx)omr !,

e The quasi-polarization A" is obtained by descending the quasi-polarization x2 .\
from A to A'.

e N'=mon.

e 1, is the data of level structures at places v # w above p deduced from 7, by the
isomorphisms 7 : A[v] = A'[v].

The ambiguity in the choice of x,, disappears when we pass to the quotient stacks
by the action of (Oy) (;)+ and pass to the associated coarse moduli. ]

Remark 3.6.6. — There is another map Yx» — Yk obtained by sending an
abelian surface A to A/H,,; however, we will not need to make use of this map.

3.6.7. Change of level at p: Siegel type correspondences. — We now fix K? and a place w
above p. We let K, = ]_[U‘ K, C G|(Z,) be a reasonable compact open such that K,,
GSp,(Op,) (resp. Kli(w)). We let K’ 1, 20 Ko X Si(w) be another reasonable level
structure at p (resp. K =7, K, x Iw(w)). Set K = K/K,, K’ = K/K/.
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Remark 3.6.8 (Warning). — Note that the use of K and K’ (and p») in this section
(§3.6.7) differs from that in the previous section (§3.6.3). Thus the reader should be careful
when these maps are used to note whether we are in the Klingen or Siegel setting (we
indicate in any ambiguous context by giving references to the corresponding section).
We made this choice since otherwise the number of required subscripts would become
excessively cumbersome.

Lemma 3.6.9. — There are natural forgetful maps py : Yo — Yk and py : YE} — Yy
which are surjective and generically finute.

Proof. — We simply forget the level structure L, at w. 0

Recall that we have chosen an element x,, € F*** which is a uniformizing element
in I, and a unit in F, for all v # w above .

Lemma 3.6.10. — There is a map po : Y — Yk depending on x,,. It induces a canonical
map ps : Yg,‘ — Y.

Proof. — We take an object (A, ¢, A, 1, 1,) of Yg/. We define (A', ', X, 1/, '71/7) €Yk
as follows:

e A'=A/L,, call m : A— A’ the isogeny.

o /() =moulx)omr "

e The quasi-polarization A is obtained by descending the quasi-polarization x,,A
from A to A'.

e N'=mon.

e 7, is a data of level structures at places v # w above p deduced from 1, by the
isomorphisms 7 : A[v] = A'[v].

e In the case K,, = Kli(w), we define H) = Hi/Lw C A'lw].

The ambiguity in the choice of «x,, disappears when we pass to the quotient stacks
by the action of (OF)(X/);Jr and pass to the associated coarse moduli. UJ

3.7. Automorphic vector bundles. — We now work over Z,, and assume from now
on that p splits completely in F. We let S, be the set of places of I above p. We have a
decomposition Oy @z Z, = [],,,Z,. We also denote by v : Op — Z, the projection on
the v-component.

vlp

3.7.1. The principal bundle. — Over Yg we have a prime-to-p isogeny class of
abelian schemes and therefore we have a canonical Barsotti-Tate group scheme G. We
let wg be its conormal sheaf. The sheaf wg carries an action of Op. We have a decom-
position Or ®z Z, =[], ,Zy and accordingly, the sheaf wg decomposes as a product:
wg = nvlp wg., where each wg , is a locally free sheaf of rank 2 over Yk.
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3.7.2. Waeghts for G and G,. — By a dominant algebraic weight « for G we mean a
tuple (%,, Zv)vesp of integers such that £, > /, for all v € S,. By a classical algebraic weight
we mean a dominant algebraic weight which furthermore satisfies /, > 2 for all v € S,.
We will frequently write “weight” for “dominant algebraic weight” where no confusion
can result (note though that we will later also consider p-adic weights). We associate a
locally free sheaf @“ on Yk to each weight k by

" = 1_[ Sym" " wg , @ det” wg., .

v

By a weight « for G| we mean a tuple ((£,, /,)ves,» w) of integers with the property
that £, >/, and k£, — [, = w (mod 2) for each v; again, we say that « is classical algebraic
if [, > 2 for all v € S,. In fact, we will insist that w is even, and we will shortly fix the
choice w = 2. We claim that given w, there is a canonical descent datum on @* for the
map Yx — Y3

For clarity, we describe this descent datum on the level of the groupoid Yk. For all
x € (OF) (;3+’ we define an isomorphism

—

K K K
D) = PAacinm 7 Pacinny

by multiplication by [, v(x)®+:=*)/2 (here the first identification is the tautological one,
noting that the definition of w* does not depend on the polarization).

To check that this defines a descent datum, we have to show that it respects the
existing identifications from the action of Oy " (K?). If x € O;°* (K?), then we may write
x = €” for some € € OF NK’, and we have an isomorphism € : A — A which induces an
isomorphism in the groupoid Yi:

€ (Aa 1’9 A‘a n’ np) - (A’ L9 6_2)‘" 775 nﬁ)

and an isomorphism

e*

K« K
w(A,L,e*Q)L,n,nﬁ) - a)(A,t,)L,r],nj,) > W(A,,m)

which is multiplication by « (€) (again, the first equality is the tautological one, since w*
does not depend on the polarization). Now, k (€) = [, v(€)* ™" =TT, v(e?)®Fh=/2 x
Ny/q(€)” = [T, v(x) ="/ since Nyg(€)” = 1 by our assumption that w is even, so
this agrees with our the isomorphism defined above, as required.

This defines a descent datum for the étale map Yx — Y%. This descent datum is
effective. Indeed, after first identifying the sheaf @ on various connected components of
Yk we are reduced to a finite étale descent for the group A(Ily).

Although the descent datum depends on w, we will regard w as fixed (indeed, in
the main arguments of the paper, we always take w = 2), so we omit it from the notation,
and simply denote the resulting sheaf on Yg' by .
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Remark 3.7.3. — We assume in this remark that we work over F, rather than Z,.
We denote by Yk ; and Ygfl the fibres of Yy and Y' over Spec F, Letk = (ky, [,)yp bea
weight for G. We further assume that £, =/, =0 mod (p— 1). In this case, we claim that
we can define a canonical descent datum for the sheaf @*, from Y ; to Yg‘l. This rests
on the observation that the character Oy — Fy given by € = [T, [v(€)"** mod p] is

trivial. Therefore we can define a descent datum for the action of x € (OF)(X/,;JF, via the
tautological isomorphism

K _ K
DA = P

This remark will be applied to the various Hasse invariants we will construct later.

Finally we will need to consider the canonical extensions of these sheaves to
toroidal compactifications. The conormal sheaf wg/Yk has a canonical extension to Xk x
given by ¢*Q} xg 5 Where Als the semi-abelian scheme of Theorem 3.5.1 (2) and ¢ is its
identity section. This gives an extension of the sheaves w* to X y and an extension of
the sheaves @“1 to Xglz We will denote these extensions by the same symbol.

3.8. Coherent cohomology and Hecke operators.

3.8.1. Basiwes. — Let k = (ky, [,) be a weight. We will study the cohomologies
RI'Xk 5, @) and RI” (X(Igjz, ) as well as their cuspidal variants RI'(Xk x, @ (—=D))
and RI'(X{'y, 0 (=D)).

Lemma 3.8.2. — The cohomologies RI'(Xk 5, @), RI’(X%E, o), RI'Xk 5,
o“(=D)) and RT" (X%E, @ (=D)) are independent of .

Proof. — This is immediate from Theorem 3.5.1 (3). 0J

Because of this lemma, we often drop ¥ from the notation. We now clarify the
relationship between RI' (X, @) and RI” (Xg' , ).

Proposition 3.8.3. — The pull back maps
RI(XY', 0*) = RI'(Xk, ")
and
RT(X{', 0 (=D)) - RT (Xk, " (D))

split in the derwed category of Z,-modules.
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Remark 3.8.4. — It is often easier to work over X rather than X' because the
former has a clear moduli interpretation. Proposition 3.8.3 tells us that we can easily
transfer a good property of the cohomology over X to a property over Xy'.

Proof of Proposition 3.8.3. — Attached to the weight k 1s a descent datum (see §3.7.2)
which takes the form of an action of (Or) ();)Jr on the sheaf " over Xk. Namely, for all

€ € (Oy) ;,;J“, there is an isomorphism € : €*@" — " satisfying the usual cocycle relation.
This map induces a map on cohomology:

€ :RI'Xg, ) > RI'Xk, €*0*) - RI' Xk, o)

and defines the group action.
Recall that there is a commutative diagram:

Xk X!

Z();,}Jr\(Aoo’ﬁ ® F)*/v(K#)(1) 7 ((’)F)();;Jr\(AOO’/’ Q F)* /v(K’)(1)

Each Galois orbit ¢ € [Z&;+\(A°°’p ® F)X/v(K/’)(l)]/Gal(Q/Q) determines a con-
nected component of Za’)Jr\(AOO”’ ® F)*/v(K’)(1), and its fibre is a connected compo-
nent Xg . of Xg 5 which is a proper scheme over SpecZ,. Obviously RI'(Xg, ") =
[[,RC Xk, @) and for all € € (Of) ;};i we have an isomorphism € : RI'(Xg (.., ) —
RI' Xk ., ®°).

The subgroup that fixes a component Xk, is denoted by O;°* (I1;) and the action
of this group on Xg , and RI'(Xx ., ") actually factors through the finite group A(I1y).
Let 7 (¢) be the image of ¢ in

[(On) 3 \NA®” @ ) /v(K)(1)]/Gal(Q/Q).

This determines a connected component Xg‘n([) of X! and the map X, — ngﬂ([) isa
finite étale cover with group A(TIy).

It follows from Lemma 3.8.5 below that RI" (Xg‘ﬂ@, ") 1s split in RI"( Xk, @),
and therefore the map

RI(X{', ) = PRIOKL, . 0) > [ [RT Xk, ) = RT Xk, )
7 (c) ¢
1s split. 0

Lemma 3.8.5. — Let G be a finite group. Let 1 C Z[G] be the augmentation ideal. Let
ST =S be a finite étale morphism with Galois group G. Then f,O1 = Os @ I ®z(61./+Or-
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Progf. — There is an obvious map of coherent sheaves Os @ Ig ®zc) O —
J+O7. The sheaf f,O7 is a locally free sheaf (for the étale topology) of Ox[G]-modules.
Therefore, the above map 1s an isomorphism as this can be checked locally for the étale
topology. UJ

3.8.6. Abstract Hecke algebras. — Let H = C>(G,(A*) //K, Z,) be the convolution
algebra of locally constant, bi-K invariant, compactly supported functions on G,(A>)
with coefficients in Z,. (The Haar measure is a product of local Haar measures, normal-
ized by vol(K,) = 1 for all finite places ¢ of F.) If S is a finite set of places of F, we let H5
be the subalgebra of H of functions whose restriction to GSp, (F,) is the characteristic
function of K| for all s € S. For all finite places s, we let H, be the local Hecke algebra

C®(GSp,(F,) /K., Z,), so that H = @ H,.

3.8.7. Cohomological correspondences — motivation. — We begin by giving some brief
motivation for the way in which we define Hecke operators on coherent cohomology
(following [P1120]).

As usual, the geometric interpretation of Hecke operators is via correspondences

@
N
X Y

(Giving an wmtegral definition of the correspondence associated to a Hecke operator at a
place dividing p is in general difficult. This question will be addressed later in the paper
in some very special cases.)

Let F, G be coherent sheaves on X, Y. We assume that we have a map of sheaves
PsF — piG. When F and G are automorphic vector bundles (which will typically be the
case for us), this map is provided by the differential of the universal isogeny over C.

One would like to use the correspondence to define a corresponding map on coho-
mology RI'(X, F) — RI'(Y, G). This map could be defined by first taking the pull back
via py : RI'(X, F) — RI'(C, p3.F), then using the map p; F — p{G to get to RI'(C, p7G),
and finally applying some trace map to RI'(Y, G). In other words, the action of the cor-
respondence on cohomology should take the form of a map T : R(p)).p3F — G. There
are, however, at least two serious difficulties with making such a definition in our context.

The first obvious difficulty is the existence of the trace map, because in general one
cannot assume that p; is finite flat. Nevertheless, in our cases the existence of the trace
map will follow from the machinery of duality in coherent cohomology and the existence
of certain fundamental classes, which can be constructed because the schemes C, X, Y
will have reasonable geometric properties over the base.

The second difficulty (which already arises for modular forms for GL, /Q) is that
the action of the correspondences defining the Hecke operators at places dividing p is
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typically divisible by a positive power of p, so that one has to divide by this power in order
to define the correct operator mod p. It is hard to check this divisibility at the level of the
derived category.

The solution to this introduced in [Pil20] (which we also employ here) is as fol-
lows. By adjunction we can view T as a map T : p5F — p\G, and in favourable circum-
stances p G will be a sheaf (and not merely a complex). Furthermore it will be sufficiently
nice that we can check the condition that T is divisible by a power of p after restricting to
the complement of a codimension 2 locus, and define our normalized Hecke operators.

3.8.8. Duality for coherent complexes. — We let S be an affine Noetherian scheme. We
say that a morphism f : X — Y of S-schemes is embeddable if there is a smooth S-scheme
P such that / can be factored as a composite

X5PxsY—Y

where ¢ 1s finite and the second map is the natural projection. We say that f is projectively
embeddable if p can be taken to be a projective space over S. In our applications of this
material all of our maps will be obviously projectively embeddable (essentially because
our Shimura varieties are quasi-projective), and we will not comment further upon this.

As usual we write D,,,(Ox) for the derived category of Ox-modules with quasi-
coherent cohomology sheaves, and D;'w,l((’)x) for the bounded-below version. Then if
J :X — Y is an embeddable morphism of S-schemes, there is an exact functor of trian-
gulated categories

S DY, (Oy) = Df(Ox).

If f is projectively embeddable, the functor f* is a right adjoint to Rf, and there is
a natural transformation Rf,f* = Id of endofunctors of D;rmh(oy), which we refer to
as the trace map.

If X — Sis alocal complete intersection then we write Kx /s for the relative canon-
ical sheaf, which may be defined as the determinant of the corresponding cotangent com-
plex. The following is [Pil20, Cor. 4.1.3.1].

Lemma 3.8.9. — Let f : X — Y be an embeddable morphism between two embeddable S-
schemes, such that X — S, Y — S are both local complete intersections of pure relative dimension n.
Then 'Oy = Kx /s Qoy [ *K{{/IS is an invertible sheaf:

We will make repeated use of the following lemma.

Lemma 3.8.10. — Suppose that [ : X — Y is an embeddable morphism of embeddable S-
schemes, each of which is a local complete intersection of pure relative dimension n over S. Let h be a
section of a line bundle L over Y, and suppose that neither h nor f*h is a zero-divisor. White Y —q for
the vanishing locus of h, and X,—y for the vanishing locus of f*h.
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Then_for any locally free sheaf F on'Y, we have an equality of invertible sheaves
Py =S Flyi)-

Progf. — 'This follows from [Har66, Prop. I11.8.8]. More precisely, note that Oy, _,

is represented by the perfect complex of Oy-modules £ A Oy (here we use that /4
is not a zero-divisor). In addition, by Lemma 3.8.9, /*F is a sheaf, and it follows from
the assumption that neither # nor f*4 is a zero-divisor that the derived tensor products
in [Har66, Prop. 111.8.8] are in our case given by the usual tensor product ®. U

3.8.11. Fundamental classes. — In two particular situations, we now construct a
natural map

@ZOXZ\]F*OY—{]F!OY

which we call the fundamental class.
We firstly consider what we call the /e situation, which is the case that:

e X and Y are local complete intersections over S of the same relative dimension,

e X is normal, and

e there is an open V C X which is smooth over S, whose complement is of codi-
mension 2 in X, and an open U C Y which is smooth and such that (V) C U.

In this situation, /'Oy is an invertible sheaf by Lemma 3.8.9, so by the algebraic Hartogs’
lemma, it is enough to specify the fundamental class over V (note that X is normal by
assumption). Again by Lemma 3.8.9 we have f'Oy|y = det Q{,/S ® f*(det Q[lj/s)_l, SO
over V, we can define the fundamental class to be the determinant of the map

df :f*Q{J/s - 9{7/8'

The other case we consider is the finite flat situation, in which f : X — Y is a finite
flat map, so that f, 1s exact, and

Sof 'Oy = Homo, (£,0x, Oy).

We have the usual trace morphism try : f,Ox — Oy, and we define the fundamental class
ﬂOX g %MOY%Ox, Oy) by O() = try.

Note that if X — Y is a finite flat morphism and X, Y are both smooth over S,
then the morphism X — Y is automatically a local complete intersection. The following
compatibility between these definitions is [Pil20, Lem. 4.2.3.1].

Lemma 3.8.12. — Suppose that X — Y s fimite flat, and that X, Y are both smooth over S.
Then

~ a
LX/Y e [Q\I(/s ®Oy OX - Q}l(/s]»

and the determinant det(df) € wx,y =f 'Oy is the trace map try.
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3.8.13. Base change for open immersions. — Consider a Cartesian diagram

J
X —X

s

Y =Y
If 7 is an open immersion, and f is in either of the finite flat or lci situations, then so 1s /7.
Since i* = 7* and j' =*, we have j*f' = (f")'7*, and if / has fundamental class ©, then j*©
is the fundamental class of /.

3.8.14. Fundamental classes and divisors. — We now briefly recall the results of [Pil20,
§4.2.4], which show that the correspondences we define below are suitably well behaved
on the boundaries of our compactified Shimura varieties.

Let Dx < X, Dy < Y be two effective reduced Cartier divisors with respect to S,
with the properties that / : X — Y restricts to a map f|p, : Dx = Dy, and the induced
map Dx — f~!(Dy) is an isomorphism of topological spaces. Write X, Y for the
smooth loci of X, Y. The following is [Pil20, Lem. 4.2.4.1].

Lemma 3.8.13. — Suppose either that we are in the finite flat situation; or that we are in the
ler situation and that furthermore Dx N X™ and Dy NY*™ are normal crossings divisors.
Then the fundamental class © : Ox — f*Oy restricts to a morphism Ox(—Dyx) —

S Ox(=Dy).

3.8.16. Traces and restriction. — In this paper we will have to study how Hecke
operators behave with respect to restriction to subschemes of the Shimura variety. This
section contains some preliminary material. Consider the following setup:

e /:X — Y afinite flat map between smooth varieties over a field £.
e D C Y is a smooth Cartier divisor.
e /(D) =nD’ for D' C X a smooth Cartier divisor.

In this setting we have the following:

e ‘Irace maps on canonical bundles
SiKx = Ky
and
J:Kp — Kp.
e Adjunction isomorphisms

Kp >~ KyD)|p
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and
Kp >~ Kx(D)|p.

If £ is a line bundle on Y, we can use the projection formula to get a map:
J+(Kx ®oy [*L) = Ky ®0, L. We call such a map a twisted trace map. We use a sim-
ilar terminology over D. The goal of this section is to prove the following compatibility
between them.

Proposition 3.8.17. — There is a commutative diagram

J(Bx(=(n—1)D") Ky

| |

Je(Kpy ® Ox(=nD)|y) — Kp ® Oy(=D)[p
Here the vertical maps are restriction followed by adjunction, the top horizontal map comes from the inclu-
ston of Kx(—(n — 1)D’) in Kx followed by the trace, and the bottom horizontal arrow ts the twisted
trace for f : D" — D and the line bundle Oy(—D)|p (note that f*Oy(—D)|p = Ox(—nD)|p).

Progf: — We write Z = Oy(—D) for the ideal sheaf of D and 7' = Ox(—D’) for
the ideal sheaf of D'. First consider the following commutative diagram:

JI" Homoy (Ox, Oy) = fu Homoy (Ox, Ov)

| |

S Homoy1(Ox /T, Oy /L) —~ f, Homoyz(Ox/IOx, Oy/1) — Oy/1

Oy

where Homo, (Ox, Oy) is sheaf of Oy-homomorphisms from f,Ox to Oy, which we view
as a coherent sheaf of Ox-modules. By definition Home, (Ox, Oy) =1 Oy.

Consider first the square on the right: the horizontal maps are evaluation at 1,
while the vertical maps are given by reduction modulo Z, and it is clear that this square
commutes.

Now we consider the left hand square: the horizontal maps are the obvious
inclusions so we must explain why the dotted arrow exists. But a local section s of
" Homeo, (Ox, Oy) will send Z’ into Z (using that Z"" = ZOx) and hence the reduction
of s mod Z factors through Ox/Z".

Finally we note that the square in the statement of the proposition tensored with
K{' may be identified with the outer rectangle of this diagram because we have Kx ®

Ks;l Zf!OY = Homo, (Ox, Oy). O
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3.9. Cohomological correspondences — definitions. — Let S be a Noetherian scheme.
Let X, Y be two S-schemes.

Defination 3.9.1. — A correspondence C over X and Y s a diagram of S-morphisms:

G
N
X Y

where X, Y, G have the same pure relative dimension over S and the morphisms py and py are projectively
embeddable.

Let F be a coherent sheaf over X and G a coherent sheaf over Y.

Definition 3.9.2. — A cohomological correspondence from F to G is the data of a
correspondence C. over X and Y and a map T : R(p1)p5F — G.

The map T can be seen, by adjunction, as a map p;F — pG. It gives rise to a
map still denoted by T on cohomology:

RI'(X, F) E) RI(C, p5F) =RI(Y, R(p1)p5F) N RI'(Y, G).

3.9.3. Hecke action away from p. — Let K = KK, be a reasonable compact open
subgroup of G| (Ay). Let H = C>(G,(A»*) //K?, Z,) be the Hecke algebra away from p.

We claim that there is an action of H” on RI'(Xk 5, @) and RT" (ngx, o). To
this end, let g € G (A*"). We will define an endomorphism of RI"(Xk, @) which corre-
sponds to the action of the double class [K?gK’].

We define (for suitable choices of cone decompositions omitted from the notation)
a correspondence:

XKﬁgKg_l

7N

Xk Xk

where p, is the map induced from the inclusion K N gKg™' C K and the functoriality
of §3.6.1.

The map py is the composite of the map [g] : Xgnx, 1 —> Xkng1k, (s€€ 3.6.2)
and the natural map Xxn,-1x, = Xk deduced from the inclusion K N gKg™' C K and
functoriality of §3.6.1.
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We have a canonical isomorphism pjw“ —> pjw", because the construction of the

sheaf @“ depends only on the p-divisible group. Moreover, because Xk and Xgn,k,-1 are
Ici and smooth outside codimension 2 (for a cofinal subset of the set of all polyhedral cone
decompositions), there is a fundamental class ptOx, — p|Ox,, extending the trace for
the finite étale map p; on the interior, which we can tensor with pj@" to obtain a map
piof — po* =p0x, @ pio*.

Composing the maps pi0* — pio* and pfw* — piw* we obtain a cohomological
correspondence O, : psw* — pw* which induces the operator [KgK] on cohomology:

® |k
RF (XK9 a)K) - RF (XKﬂgKg*I ,p;wk) _i RF (XKﬂgKg*I vlbla) )
B RI(Xk, )

where the last map is induced by the adjunction Tr : R(f).p\ 0 — .

We have a similar definition on cuspidal cohomology. Moreover, all these defini-
tions commute with the action of ((’)F)Z;)’)Jr and therefore we also get an action on the
cohomology RI'(X', @*) and RI'(X{', @* (=D)).

The characteristic functions of the double classes [K’gK’] generate H’ as a Z,-
module. In Proposition 3.9.15 below we prove that when K, =T, , GSp4(Z,) is spher-
ical, the actions we just defined of the [K’gK’] are compatible with products in H? (the
composite action of [K’gK’] and [K’g,K’] is equal to the action of [K/g K/[K’g,K’]
decomposed into sum of elementary double classes) so that we get an action of the Hecke
algebra H’.

The difficulties come from the boundary. Away from the boundary, all the corre-
spondences are finite étale and one can follow the discussion of [FC90, Chap. VII, §3],
to show the compatibility. Following that reference, it should be possible to show in a sim-
ilar fashion that the action of the double class is compatible with product in the Hecke
algebra on the compactified Shimura variety, but giving all the details would involve a
delicate study of the composition of the correspondences at the boundary. We instead
give a different ad hoc proof by exhibiting special complexes computing the cohomology.
These complexes are Cousin complexes associated with the Ekhedal-Oort stratification
on the Shimura variety. The action of all double classes [K’gK?] on the cohomology is
given by a canonical action on the complex. Moreover, each term of the complex is the
global sections of a certain sheaf and the restriction of the sections of this sheaf to the
interior of the Shimura variety is an embedding. We are therefore able to prove that the
action of the double classes is compatible with products in the Hecke algebra because we
know this holds on the non-compact Shimura variety.

Remark 3.9.4. — Over Q,, the property that the action of the double class is
compatible with product in the Hecke algebra follows from [Har90b, Prop. 2.6]. The
strategy of that paper is to define an action of the group G, (Aj;) after passing to the limit
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over the level K’ and then deduce an action of the Hecke algebra at a finite level, but
this strategy requires more work over Z, because at some points one needs to control
the cohomology of finite groups (which vanishes in characteristic zero). Nevertheless,
this is enough to prove that the Hecke algebra H? acts on the torsion free part of the
cohomology (which embeds in the cohomology with Q,-coefficients).

3.9.5. Cousin complexes. — Our main reference for this section is [Kem78]. Let X
be a topological space. Let Six (Ab) be the category of abelian sheaves on X. For a subset
7. € X and abelian sheaf F we denote by I';(F) the subsheaf of F of sections supported
onZ.letZ:20=X>27,2---27,--- be a decreasing sequence of closed subsets of
X (called a filtration). For any abelian sheaf F on X, one can build the Cousin complex
of F with respect to the filtration Z, denoted by Cousz(F) [Kem78, p. 357].

The Cousin complex Cousy(F) is a complex of abelian sheaves in positive degree.
The object in degree 1 is H%i/ZiJrl(F)’ where 7-[%/7%1(-) is (by [Kem78, Lem. 7.3]) the
k-th derived functor of the functor:

Shx (Ab) — Shx (Ab)
G~ [U~ in\ziﬂ (U\Zig1, a9l

The differential H, J700, (F) = 7—[1711 /7., (F) is induced by a certain boundary map. The
Cousin complex has an augmentation F — Cous(F).

We now specialize the discussion: X is a Noetherian scheme and F is a quasi-
coherent sheaf. Then Cous(F) is a complex of quasi-coherent sheaves.

We have the following theorem:

Theorem 3.9.6. — Let X be a Noetherian scheme with a filtration Z. by closed subschemes that
satisfies:

(1) codimx(Z;) > 1.

(2) The morphism Z,; \ Z..y1 — X is affine for all .

Let F be a maximal Cohen—Macaulay coherent sheaf on X. Then Cousy(F) s quasi-isomorphic
to F.

Progf. — This follows from [Kem78, Thm. 10.9] (by definition a sheaf F is locally
Cohen—Macaulay with respect to a filtration Z if Cousy(F) is a resolution of F, see
[Kem?78, p. 358]). [

Remark 3.9.7. — If we further assume that each Z; \ Z;4, is affine, then Cousy (F)
1s a complex of acyclic sheaves by [Kem78, Thm. 9.6].

One can sometimes compute the complex Cousy (F) more explicitly. Write Uy =
X\ Z;41, and write j;1; : Ui <> X for the inclusion. Under the assumption that Z,; \
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Z:y) — X 1is affine, we have by [Kem78, Lem. 8.5(e)] (note that the spectral sequence
there degenerates by [Kem78, Thm. 9.6(c)], as in the proof of [Kem78, Thm. 9.5]):

(3.9.8) /Héi/Z (F)= (jiJrl)*RkFZi\ZHl(‘F|Ui+l)'

i+1

In general, for a Noetherian scheme X and a closed subset Z defined by an ideal sheaf Z,
we have

R'T,(F) =1i_r>n5X¢i(Ox/I"7]:)

n

and these Ext sheaves can be computed by taking projective resolutions of Ox/Z". We
also remark that in the previous limit, we can replace the ideals Z" by any other decreasing
sequence of ideals {J,} with the property that for all n, there is £ and £ such that J, C
I" C,Jk-

Example 3.9.9. — We are going to compute these Ext sheaves in a special case.
Assume that we have effective Cartier divisors Ox Y L, for | <t <1 and assume that
they intersect properly, by which we mean that for all z, the “twisted” Koszul complex:

Kos(s{,...,s) :0— ®[,,_”—> % ®[,l_"—> o= @, L"—=>0x—0
t 1#l

is a projective resolution of Ox/(L", ..., L").
Welet Z=V(L',..., L") and let F be a locally free coherent sheaf. We find
that: Ex#(Ox/(L]", ..., L"), F) =0 unless j = ¢, and

Ext(Ox/(L", ..., L7, F)=Coker(@,s5] : R) Li®F —((X) L))QF).
' #t t

Taking the direct limit over n gives R'T'z(F).

3.9.10. The Cousin complex of the Ekedahl—Oort stratification. — We now assume that
K, =[], GSp,(Z,), and let X = Xk 5 and denote by X* the minimal compactifica-
tion. We have a morphism f : X — X*. We fix an integer n and work over X, =
X x SpecZ/p"Z and X = X* x SpecZ/p"Z, and let Y, denote the interior of X,. We
consider the filtration Z* on X* given by taking Z* to be the closure of all Ekedahl-Oort
strata of codimension . Here are some known facts (see [Box15, Thm. 6.2.3]):

(1) Z* is a filtration.

(2) 27\ Z7,, is affine.
(3) Z:\ Z},, is a set-theoretic local complete intersection in U7, | = X*\ 77, .

We now consider the pull-back Z of Z* on X,,. We deduce that:
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(1) Z is a filtration.
(2) Z;\ Ziz1 — X, is affine.
(3) Z;\ Z;4 1s a set-theoretic local complete intersection in Uy =X, \ Z;4;.

Proposition 3.9.11. — The cohomology RT" (X, @ (—=D)) s computed by
['(X,, Cousz (0" (—=D))).

Proof. — It follows from Theorem 3.9.6 that @*(—D) — Cousz(0“(=D)) 1s a
quasi-isomorphism. It suffices to prove that Cousz(w“(—=D)) is a complex of acyclic
sheaves. By (3.9.8), the sheaf in degree i is equal to (ji+1).R'Tz:7,,, (@*(—=D)|u,,,). This
sheaf is supported on Z; \ Z,;,. We claim that Rﬂ(]'l-Jrl)*Rini\ZM (@ (=D)|y,,,) 1s con-
centrated in degree 0. Sinceﬁ(jiﬂ)*R"in\ZM (@“(=D)|y,,,) is an acyclic sheaf because
it is supported on Z7 \ Z7, |, the proposition will follow from our claim.

Let us prove the claim. By construction, Z; \ Z,;, is a finite disjoint union of
Ekedahl-Oort strata and (]}H)*RTZZ.\ZZ. (@ (=D)lu,,) is a finite direct sum indexed
by these Ekedahl-Oort strata. Let E be an Ekedahl-Oort stratum appearing in Z; \ Z;4,.
It can be written as the intersection of : Cartier divisors in Uy, using the theory of gen-
eralized Hasse invariants (one can also assume that these Cartier divisors are pulled back
from X7; note that a sufficiently large power of each generalized Hasse invariant can be
lifted to X*). Let us denote these Cartier divisors by Ox % Z,. It follows from Example
3.9.9 that the direct summand of the sheaf RI'FZI.\Zi 1 (@(=D)]y,,,) corresponding to E
1s the inductive limit of the sheaves:

H Hom(Kos(s", ..., s"), @ (=D)).

The complex Hom(Kos(s], ..., s"), @ (=D)) is a complex of sheaves acyclic relatively to
the minimal compactification, and concentrated in degree . U

Lemma 3.9.12. — There is an injection of complexes

['(X,, Cousyz(w“(—D))) — I'(Y,, Cousz (0" (—D))).

Progf. — This follows directly from the description of the objects of the complex
Cousyz(w" (—D)) given in the course of the preceding proof. ]

It remains to prove that our Hecke operators act on I'(X,,, Cousy(0*(—D))) and
I'(Y,, Cousz (@ (—=D))). Let g € G(Afi). We consider the correspondence:

XKﬂgKg’ 1

N
Xk Xk
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and more precisely its reduction modulo p”. We have a cohomological correspondence
Py (=D) — P @*(—=D), as defined in §3.9.3.

Lemma 3.9.13. — This cohomological correspondence induces a cohomological correspondence
of complexes compatible with the augmentation:

psCousy(w* (=D)) — pCousy (" (—D))

Remark 3.9.14. — In the above correspondence, the functors g and p; are ap-
plied to each object of the complex. Moreover, for each object Cousy(w*(—D))" of
Cousz(w*(—D)), p,Cousz(@*(—D))' is a sheaf (i.e. it is concentrated in degree 0).

Proof of Lemma 3.9.13. — For each index ¢, we have
Cousz (0 (=D))' = (i41)+R T2z, (@ (=D)|u,,,)-

We choose (by considering powers of generalized Hasse invariants) an increasing
sequence (Z;\ Z;11) of subschemes Uy, with support Z; \ Z,,, which are local complete
intersections, and are cofinal among all subschemes of U, with support Z; \ Z;,.

We have RiFZZ\Z,‘_H (a)"(—D)lUM) = li_r)nk 5Xti(0(zg\zl+l)p " (_D)lUi+l)' Also recall
that Ex/(Oz)\ 7.y, @ (=D)lu,,) = Ext'(Ozp\ 2,41, @ (=D) |y, )1l

We have

P EMOzpz,, 0 @ (=D)u,,,) = Ext (i Oziz,y - 11@ (=D)lu,,,)

by [Har66, Prop. I11.8.8]. One checks that p Oz, = "0t Oz, because the pull
back of a local regular sequence defining (Z; \ Z;1,); 1s again a local regular sequence;

we will not comment on the vanishing of higher pullbacks in the rest of this argument.
We deduce that

1 (Ext Oz @ (=D)lu,.) = Ext (11021, o (=D)lusy,)-
On the other hand there is by adjunction a map:
BEA Oz, @ (=D)luy,) = Ext B30w07,,10 150 (=D)lu,,.)-

Since the Ekedahl-Oort stratification is invariant under prime to p isogenies, we deduce

that p;l Z\7Z; 1) = pfl (Z;\ Zi41). Therefore, for each £, for all large enough ¢, there is

a natural map 7Oz, = $50ziz
We therefore get a map:

i+1)k*

p;gxti(o(zi\lm)k’ wk(_D)|Ui+1) - gxti(p;O(Zz\Ziﬂ)k’péwk(_D)|Ui+1)
— Ext' (i Oz 110 (=D)|u,,)
= p (Ext' (Ozpz,, 0, 0 (=D)|u,,)-
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Passing to the inductive limit over £ and ¢ yields the cohomological correspon-
dence:

péRiFZz‘\Zm (0" (=D) |Ui+l) - P'l RiFZ/\Z¢+1 (0 (=D) |Ui+l )

Moreover this construction is canonical and is compatible with all differentials in
the Cousin complex and with the augmentation. 0J

Proposition 3.9.15. — The Hecke algebra H’ acts on RT (XY, 0*(=D)) and also on
RI(XC', w").

Proof. — By Serre duality, it suffices to treat the case of RT'(X®!, @*(—=D)). The
cohomology RI" (X, @ (—=D)) is represented by

l(i£1 I'(X,, Cousy (o (—D)))

n

and this complex injects into

l(igl I'(Y,, Cousz (0" (—D))).

n

The double class 1gskr acts everywhere. We can restrict to the “G,” direct factor (the
Ekedahl-Oort stratification is preserved by the action of (Or) ;;) and the compatibility
with the product in the Hecke algebra is known on

hm NG

ﬂ

Cousy (0" (—D))).

Therefore it holds everywhere. UJ
Remark 3.9.16. — It follows by an identical argument to the proof of Proposi-

tion 3.9.15 that if K’?, K‘;, K’z are three choices of tame level, and X, 3y, X3 are suitable
choices of polyhedral cone decompositions, then the composite of the Hecke operators

[Kig K5l RF(XK/, - a))—>RF(XKﬁKﬁE,a)")
and
(K@K :REXE, o) > REG o)

A
KLK,. 59
is the Hecke operator

[Klgl ][K gQK 1: RF(X 5 , ) - RI'(XY , ).

K/K,. 2|



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 233

3.9.17. Hecke operators at p: Stegel type operator. — We assume here that K = K/K,
and K, = G|(Z,). Let us fix a place w above p. We are going to define an action of a
Hecke operator T, ; on RI'(Xk 5, o), R’ (ngz, "), and their cuspidal versions. The
action on RI'(Xk 5, @) and RI'(Xk 5, @ (—D)) is not canonical, and depends on the
choice of x,, made in §3.6.3, but the action on RT'(X§'s., @) and RT(Xy'y., 0 (=D)) is
canonical.

Set K = K/K; where K =T, ., GSp,(OF,) x Si(w). In §3.6.7 we defined maps
P, po s Xgr = Xk giving a Hecke correspondence:

Xy
N
Xk Xk

The key geometric properties of this correspondence are (see Proposition 3.4.1):

(1) Xk and Xk are relative complete intersections over Spec Z,, and are pure of
the same dimension,

(2) Xk is smooth over SpecZ,,

(3) Xk is smooth over SpecZ, up to codimension 2 and normal.

In particular, we are in the lci situation in the sense of §3.8.11, so we have an invert-
ible dualizing sheaf p! Ox, and a fundamental class piOx, — p Ox,. Moreover, for all
weights K = (k,, [,) with /, > 0, we have a natural map piw"“ — pjw* provided by the
differential of the isogeny p7G — p5G on Xg .

Composing these maps, we obtain a cohomological correspondence © : pjw* —

hot.

Lemma 3.9.18. — When 1, > 2, this map is divisible by p°.

Progf — We need to prove that © factors through p*p\w*. As Xk is normal and
the source and target are locally free sheaves, it is enough to establish this factorization in
codimension one. As this factorization is furthermore trivial over the generic fibre of X/,
it is enough to prove it over the completed local rings of the generic points of the special
fibre of Xk.

There are three types of generic points in the special fibre classified by the multi-
plicative rank » =0, 1 or 2 of the isogeny ;G — p5G. In each case one calculates sepa-
rately the p-divisibility of the map piw“ — pj@" and of the fundamental class as in the
proof of [Pil20, Lem. 7.1.1]. One finds that the fundamental class pfOx, — p}Ox is
divisible by p* when r =0, p when r = 1, and p° when r = 2, and the map piw* — pio”
is divisible by ° when r = 0, p* when r = 1, and p**™ when r = 2. The result follows as
3, by + 1, ky+ 1, > 3. O
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We can thus consider the normalized cohomological correspondence T, : p™0 :
P — pio*, and we obtain a Hecke operator:

—3a
Tu. : RI(Xk, o) — RT(Xg, i) '— RO (X, f o)
BRI (X, ).
A similar definition applies to cuspidal cohomology and works over Xgl .

Remark 3.9.19. — One readily checks that the Hecke correspondence used to
define T, ; corresponds to the double coset [GSp,(Oy, ) diag(1, 1, phph GSp,(Op,)]
(see [FP21, Rem. 5.6] for instance) which differs by an element of the centre from the
spherical Hecke operator considered in §2.4.7. We justify this discrepancy as follows:
when doing geometry and working with the moduli interpretation, we prefer to use this
Hecke operator, while when doing local representation theory and considering Galois
representations, we prefer to use the Hecke operators considered in §2.4. In this paper
we will systematically work on spaces with fixed central character so that the (normalized)
action of these two Hecke operators are the same. The same remark will apply to all the
Hecke operators at p considered in this paper. We hope this will not cause any confusion.

3.9.20. Hecke operators at p: Klingen type operator. — We again assume that K = K/K,
and K, = G(Z,). Let us fix a place w above p. We are going to define an action

of a Hecke operator T, on RI'(Xk », ®*), RI" (Xg}z, ) and their cuspidal versions.

As before, the action on RI'(Xk 5, ") and RI'(Xk 5, ®“(—D)) is not canonical and

depends on the choice of x, made in §3.6.3, but the action on RF(X%E,C()K) and

RI'(X{'y, 0 (=D)) is canonical.

Remark 3.9.21. — The Hecke operator that we define in this section does not
correspond to the double coset operator [GSp,(Oy,) diag(1, p~", p~", p=2) GSp,(Or,)]
but rather some variant of it that we call T,,. The formula for T, in terms of double
cosets 1s

T, = [GSp,(OF,) diag(1, p~", p~", p~")Par(w)]
x [Par(w) diag(1, 1, 1, p™") GSp,(OF,)]
= plGSp,(O,) diag(1, p~", p~", p7%) GSp, (O, )]
(L +p4p P
x [GSp, (O, diag(p™", p~", p~', p7) GSp, (O, )]

Set K' = K/’K/’J where K} = ]_[U?éw GSp,(OF,) x Kli(w) and K" = K”KZ where
K) = [T, GSp,4(Or,) x Par(w). In §3.6.3, we defined morphisms ) : Xxr — Xk, 2
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Xk — Xgr giving a Hecke correspondence:

Xy

/’2/ Jal

Xy Xk

The key geometric properties are again (see Proposition 3.4.1):

(I) Xk, Xgr and X are relative complete intersections over SpecZ, of the same
(pure) dimension,

(2) Xk is smooth over SpecZ,,

(3) Xk and X are smooth over SpecZ, up to codimension 2 and normal.

We are again in the lci situation, so we have invertible dualizing sheaves p\ Ox, and
pé Ox,, and fundamental classes p7Ox, — 1, Ox, and P3O0x — p’QOXK,,.

For all weights k = (k,, [,) with [, > 0, we have natural maps py0" — pjw" pro-
vided by the differential of the isogeny p;G — p5G on X/, and pje* — ps* provided
by the differential of the isogeny p5G — piG. We therefore obtain two cohomological
correspondences O : piw* — pl@* and Oy : piw* — pho*.

Lemma 3.9.22. — When 1, > 2, the map ©, is divisible by p**™' and the map O is
divisible by p.

Progf: — This can be proved in exactly the same way as Lemma 3.9.18, by an
explicit check over the completed local rings of generic points of the special fibre of Xk .
The details may be found in the proofs of [Pil20, Lem. 7.1.1, 7.1.2]. 0

We can therefore consider the normalized fundamental classes T/, = p~> @, :
pia = plo* and T = p~'Oy : pie* — phw, and we obtain Hecke operators:
T, : R[ Xk, @) - R (X, @)
and

T" : R (Xg, o) = RT (Xgr, o).

We set T, ;=T o T’ . Similar definitions apply to cuspidal cohomology and work over
X'

Remark 3.9.23. — Just as the complexes that we are considering are independent
of the choice of compactification by Lemma 3.8.2, so too are the actions of T, ; and T},
on them. See [Pil20, Prop. 7.2.1] for the case of T, ; the argument for T, ; is similar, but
easier, and is left to the interested reader.
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3.10. Cohomology and automorphic representations. — Let K =[], K, C GSp,(AY®) =
G, Aao) be an open compact subgroup, let S O S, be a finite set of places such that K, =
GSp,(Op,) for v ¢ S, and let

T= ® O[GSp, (F,) // GSp,(Or,)]

vegS

be the ring of spherical Hecke operators away from S. We say that a maximal ideal
m C T is non-Eisenstein if the residue field T/m is a finite extension of F,, and for (any)
inclusion T /m — Fp there exists an irreducible representation p : Gp — GSp, (Fp) with
the property that, for each v ¢ S, we have det(X — p(Frob,))

= X4 — Tv,lxg + (quv 9+ (qz + QU)TU,O)XQ
— qiTU,OTv,IX + q6T2 (mod m)

v 0,0

(cf. (2.4.8)).

Our main aim in this section is to prove the following result.
Theorem 3.10.1. — Let k = (ky, b)) vjoo with k, > 1, > 2 and k, = [, (mod 2) be a
weight and let m be non-Eisenstein.

(1) Fori=0, 1, there is an E[GSp4(A§°) /] K]-equivariant inclusion

(3.10.2) Pk @ECH XL, o (D) ®F

where, on the right hand side, the superscript | - |* indicates the space on which the diamond
operators at places v & S act via | - |*; and on the left hand side, 7w runs over the cuspidal
automorphic representations of GSp,(Ay) with weight « and central character | - |?
that

such

o 11, is holomorphic for those v|oo for which l, > 2, and
o #{v|oo | m, s not holomorphic} = 1.

(2) There ts an absolute constant R such that if for each v|oo

o k,— 1, >R, and
o catherl,=2o0rl, >R,
then the inclusion (3.10.2) us an equality.
(8) If1 =0, then (3.10.2) ts an equality. In fact, a version of this statement holds without having

to localize at a non-Eisenstein maximal ideal; there is an E[GSp4 (AY) //K]-equivariant
wsomorphism

(3.10.3) H (X}, o (D) @ E= P (r™)*

T
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where 7 runs over the cuspidal automorphic representations of GSp,(Ay) with weight
and central character | - |* which are holomorphic at all infinite places.

Remark 3.10.4. — Theorem 3.10.1 1s by no means optimal; the same results
should hold for any cohomological degree ¢, and with a much weaker regularity assump-
tion on « in part (2). However, it seems difficult to deduce results in this generality from
the literature, so we have restricted ourselves to this result, for which we only need to
consider the cohomology of the boundary in degree 0. We explain the proof below, after
proving a corollary and a preparatory lemma.

Theorem 3.10.1 has the following useful corollary.

Corollary 3.10.5. — Suppose that we are in the setting of Theorem 3.10.1 and the hypothesis
on K wn (2) holds. Let ly denote the number of infinite places v with l, = 2. Then

dimp H'(X{', o (=D)" @ E = [ dimp H'(X{', * (—D))" @ E.

Progf. — Since m is non-Eisenstein, the automorphic representations 7w which con-
tribute to (3.10.2) are all of general type in the sense of [Art04] by Lemma 2.9.1. There
are [y ways to choose an infinite place v with [, =2, and we let 7, be generic for this
place and holomorphic at the other infinite places. The result then follows from Theo-
rem 2.9.3. UJ

Remark 3.10.6. — The following lemma is essentially a special case of the much
more general results proved in [HZ01], and can presumably be proved using the tech-
niques of that paper, but since our Shimura varieties do not satisfy the precise assumptions
needed to cite the results of [HZ01], we have chosen to give a direct proof.

Lemma 3.10.7. — Let k = (ky, ly)yjoo be a weight, with k, > 1, > 2 and k, = I,
(mod 2), and let m be a non-Eisenstemn maximal ideal. Let D denote the boundary of Xg'. Then
H’(D, ®)n ® E=0.

Progf. — 1In the case that F = Q this follows from [Fre83, IV, Satz 4.4], as in the
proof of [Pi120, Cor. 15.2.3.1], so we can and do assume that F # Q in what follows. We
let 7 : X§' — X% be the map between toroidal and minimal compactifications. We let
3X* C X5 be the (reduced) boundary of the minimal compactification, which we can
write as 9pX* [ [ 3;X*, where 9;X* is a union of Hilbert modular varieties for the group
Resy/gGLy, and the complement d,X™ is a finite union of points.

Suppose firstly that we are in the case that &, = /, = £ for some £ independent of v.
Then " 1s pulled back from the minimal compactification, and since 7, (@"|p) = @ |yx+,
we have H’(D, ") = H*(0X*, ). (To see that we have an identification 7, (w"|p) =
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@ |yx+, it suffices by the projection formula to show that 7,(Op) = Oyx+. This follows
from the facts that ”*Oxgl = OXI‘;Gl , T.Ip = Lyx+, and R'7, 7, = 0.)

Suppose now that we are not in the case that £, and /, are equal and independent
of v. Then it follows from the results of [Lan13], see [BR16, Prop. 1.5.8], that any element
of H(D, @) vanishes on 7 ~!'(8,X*); so the map H(D, 0*) — H(7w 7' (8, X*), 0*) is
injective, and it suffices to show that H (7 ~!(9,X*), ") is Eisenstein. Again by [BR16,
Prop. 1.5.8] it follows that 7, (@"|;-1(5,x+)) 1s zero if the /, are not all equal, and otherwise
is equal to the sheaf ) (where we are using the usual labelling of weights for sheaves
on Hilbert-Blumenthal modular schemes).

In either case, we have seen that the space that we are considering either vanishes,
or injects into HY(8,X*, o). Now it is convenient to work adelically. Let us fix W € €
with dimp W = 1. Then 9, X* is as follows (where Py and Myy are defined in §3.5):

PLIQVH Y x G (A®) /K
=P @Q\H"Y x Py(A%) x™AY) G, (A%) /K
= M (Q\HIY x My (A%) xPWA&™) G, (A%) /K.
We therefore find that
* K x o K
H(3,X*, m.0™) = (Indj} 42 (M)

where M = limg cygy, ace) HO M (@AY x My (A®) /K, 0®) from which it follows
that the eigensystems arising from H’(3,X*, @) are Eisenstein. Indeed, since we are
assuming that I # Q, it follows from Koecher’s principle that the cohomology groups
H° (M\JXY(Q)\’HEF:Q] X My (A®) /K, @*)) are spaces of Hilbert modular forms, and thus
have associated two-dimensional Galois representations. More precisely, we have Satake
transforms between spherical algebras (say at some unramified place v):

%Gl - Hl\’lw — C[X* (T)]
for which the element [1, 1, @,, @,] is mapped to
1, @y, 1, @]+ @y, |, @, 1] + [o,, &y, 1, 1] + [, @y, 1, @]

=1, @, 1, w,]+[1, @, 1, @,])
+ [wlh 1’ 1’ wv_l]([l’ wlﬂ 1’ wv] + [19 wvv 17 ZD-U])'
This expresses the relation between the Hecke operators on G| and My, so thatif x x 7

is an automorphic representation contributing to M, it will contribute to the cohomology
of G| via the compatible system of representations p, @ (o, ® x). ]
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Before proving Theorem 3.10.1, we introduce some notation. Let
h: RCSC/R(G,,Z) (R) =C* — GSpAr(R)

be the homomorphism sending x + ¢ to the matrix

xlo  9S

Let K" denote the centralizer of £ in GSp,(R) (acting by conjugation). Then since
h(i) =], we see that we may identify K" = R*U(2), so that U(2) is a maximal compact
subgroup of the identity component of GSp,(R). Let gc = g"" @ g~ "' @ g" ! denote the
Hodge structure on g, where g*° = ¢, ¢ is the complex Lie algebra of K", Let p* =g~ !,
p~=g"!, and P, = £,.c ® p~. We now define P~ to be the parabolic with Lie alge-
bra 93, with P~ N GSp,(R) = K". We warn the reader that this parabolic is denoted
by P; in [Har90a], by Q™ in [BHR94], and by Q in [CG18]. (Note, however, that the
fundamental object is really the Lie algebra 3, because P~ only intervenes below via its
Lie algebra.)

For each place v|oo, we write P, and K" for the corresponding groups for
GSp,(F,) = GSp,(R). We write V,, for the representation of K! = R*U(2) such that
the automorphic vector bundle corresponding to V, := ®,c Vi, via Definition 1.3.2
of [BHR94] is identified with . We set P :=[],,, P, and K :=]T, .. K}.

Proof of Theorem 3.10.1. — We begin by proving (3.10.2). By Lemma 3.10.7 we can
and do replace Hi(X(K}I, @ (—=D)) by the interior cohomology

H (XY, ) :=im (H(XY, 0 (D)) » H(XY, o)) .

(This is the only place that we use our assumption that : < 1, or the non-Eisenstein
localization.) Let A5, (G1) C A (G)) be respectively the space of cuspidal automorphic
forms on G, with central character | - |, and the space of square integrable forms with
this central character. By [Har90a, Thm. 2.7], we have inclusions

@ ((T[OO)K ® Hl(LIC P(;O’ Kgo, Moo ® VK))@mcusp(Tl’) g ﬁl(Xgl ’ a)é)‘l?
T EACusp (G1)
and
HX{ 09" c @ (™) @ HiLiePy, K. moe ® V) ™™
€A (G)

where m, () denotes the multiplicity of 7 in A,(G). By Arthur’s multiplicity formula
for GSp, [Art04, GT19], we in fact have m,(77) = m) () = 1 for all 7.
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In the proof of [BHR94, Thm. 4.2.3], it is shown that if m € Ay (G;) with
H(Lie P, K" ; 7o ® V,) # 0 and if the infinitesimal character of 7, is sufficiently far
away from all the root hyperplanes that it does not lie on, then ., is essentially tempered.
In view of the relation between the infinitesimal character of 7, and « arising from the
Casselman—Osborne theorem (see [BHR94, Prop. 2.4.5]), the regularity condition on
the infinitesimal character is exactly what we have assumed on « in (2). Then by [Wal84,
Thm. 4.3], we in fact have 7w € Acusp(Gl), and so the inclusions above are equalities. In
addition, by [Har90a, Thm. 3.5] (a theorem of Mirkovi¢) and [BHR94, Thm. 3.2.1], for
each v|oo we have that H/(Lie P, Kf‘}; 7y, @ Vi, ) = 0 unless either:

e /[, > 2 7=0,and m, is the holomorphic discrete series of weight (%,, /,), or;

e [,=2,7=0, and m, is the holomorphic limit of discrete series of weight (%,, /,),
or;

e [,=2,7=1, and m, is the generic limit of discrete series of weight (%,, /,).

Moreover, in each of these cases that H/(Lie P, Kﬁ; 7, ® V,,) Is nonzero, it is one-
dimensional. The first two parts of the theorem then follow from the Kinneth formula.
We now prove (3.10.3). In this case the map from H" (X;’1 , w“(—D)) to the interior
cohomology is an isomorphism by definition. Furthermore, by [Har90a, Prop. 2.7.2],
the only 7 that contribute are automatically cuspidal (without needing to assume any
regularity conditions). It follows from the theory of lowest weight representations, see for
example [PS09, §2.3], that if H*(Lie P, K"; 7, ® V,,) # 0, then 7, is the holomorphic
(limit of) discrete series of weight (%, /,), as required. ]

4. Hida complexes

In this section, we construct (higher) Hida theories for GSp,(Ag). The classical
Hida theory is developed in [Hid04] and takes the form of a projective module over
the total weight space (which is 2[F : Q]-dimensional). The construction of higher Hida
theory was carried out when F = Q in [Pil20], and takes the shape of a perfect complex
of amplitude [0, 1] over a one dimensional hyperplane of the weight space.

We assume that p splits completely in I and we construct all possible Hida theories,
allowing the weight space at each place above p to be either 1- or 2-dimensional. Many of
our arguments are simply the “product over the places v|p” of the arguments of [Hid04]
and [Pil20]. To keep this paper at a reasonable length, we will often refer to [Pil20] for
the details of arguments which go over directly to our case.

The bookkeeping needed to deal with having multiple places above p is consider-
able, and in the hope of orienting the reader, we begin this section with an overview of
the arguments we will make. The main theorem of this section (and the only theorem
that we will need later in the paper) is Theorem 4.6.1, which proves the existence of in-
tegral Hida complexes, and gives a control theorem for them in sufficiently high weight.
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Say that a classical weight k = (£, [,),, with &, > [, > 2 is “singular” at v if /, = 2, and
“regular” at v if [, > 2. Fix any set I of places above p; these will be the places at which we
interpolate automorphic forms of singular weight, while at the places in I, we interpolate
forms of regular weight. (Thus traditional Hida theory considers the case I = ¢, while the
higher Hida theory of [Pil20] is the case ' = Q and I = {p}.)

There is a Hecke operator U' (an analogue of the U, operator for elliptic mod-
ular forms), which acts locally finitely on a complex of p-adic automorphic forms. The
Ul-ordinary part M; of this complex is a perfect complex over a weight space Aj, con-
centrated in degrees [0, #I]. Furthermore, there is a constant C such that if £, — /[, > C
and [, =2 for v €1, and [, > C for v ¢ I, then the H° of the specialization of Mj in
weight k agrees with the ordinary part of the degree 0 cohomology of X', (We expect
that in fact this specialization should be quasi-isomorphic to the ordinary part of the clas-
sical cohomology, but we do not prove this. We do prove that there is also an injection
of H's from the classical cohomology into that of Mj, which we will make use of in §6.)

The definition of M; is motivated by the traditional case I = # considered in
[Hid04]. In that case one considers the cohomology at infinite Iwahori level over the
ordinary locus, with coefficients in a certain interpolation sheaf which can be thought of
as an interpolation of the highest weight vectors in the finite dimensional representations
of the group GLy/F. Since the ordinary locus is affine in the minimal compactification,
one can prove that there is only cohomology in degree 0. Then one cuts out the ordi-
nary part using a projector attached to U' and proves that this defines a finite projective
module over the Iwasawa algebra.

For general I, we instead consider the cohomology at infinite Klingen level of the
locus which has p-rank at least 1 at places w € I, and infinite Iwahori level over the ordi-
nary (that is, p-rank 2) locus at places w € I‘. This locus is no longer affine and it has coho-
mology in higher degrees. In fact by relating the cohomology of the toroidal and minimal
compactifications, one can show that the cohomology is supported in degrees [0, #I].

One of the major difficulties in the proof of Theorem 4.6.1 is to show that the op-
erator U" acts locally finitely (in order to be able to associate an ordinary projector) and
that the ordinary projection defines a perfect complex. By Nakayama’s lemma for com-
plexes, one reduces to showing that U' has these properties for the cohomology modulo
p, in some fixed weight. In particular, it suffices to consider the case of sufficiently large
weight, 1.e. the case that £, —/, > C and /[, =2 for v € I, and /, > C for v ¢ I, for some
constant C. The first part of the argument is to relate this cohomology with the cohomol-
ogy of the automorphic vector bundle of the corresponding weight over the locus X%l’l
of the special fibre of the Shimura variety which has p-rank at least 1 at the places w € I,
and is ordinary at places w € I*. This boils down to a computation at the level of the
sheaf " itself, and to a computation in the Hecke algebra to show that the U'-operator
decreases the Klingen and Iwahori level.

In the case of Hida theory for 0-dimensional “Shimura varieties” (e.g. p-adic fam-
ilies of automorphic forms on definite unitary groups, as considered in [Che04, Gerl9])
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these arguments at the level of the sheaf and the Hecke algebra are all that is needed.
In the geometric setting, more work is needed to establish the required finiteness of the
ordinary part of the cohomology in characteristic p; recall that we are considering the co-
homology on the locus Xg}il, so the cohomology groups are infinite dimensional before
taking the ordinary parts. One has to show that (in sufficiently large weight, in charac-
teristic p) ordinary cohomology classes on this locus extend to the whole Shimura variety
(which 1s proper and has finite cohomology).

In order to do this, one shows that (again, in sufficiently regular weight, in charac-
teristic p) the Hecke operator U' acts by zero on the complement of Xglil, so that after
passing to ordinary parts, the cohomology agrees with that of the full Shimura variety,
and 1s in particular finite-dimensional.

The vanishing of the Hecke operators on the part of the Shimura variety which
is either of p-rank O (if w € I) or is non-ordinary is accomplished by local calculations,
using the definitions of the Hecke operators as cohomological correspondences. The case
of w € I’ is relatively straightforward, as we are able to use the Hecke operator T, ; to
prove this vanishing. (Note though that in this case we need to use the operator U, o,
which is the operator at Klingen level corresponding to T, in the part of the argument
explained above which takes place at the level of the sheaf.) The case w € I is much more
delicate, as we need to use the operator T',,, which is significantly harder to control. (In
this case, though, we use the same Hecke operators in the argument at the level of the
sheaf as we do for the geometric part of the argument.)

The arguments below are in fact written in roughly the reverse order of the ex-
planation above. We begin in §4.1 by recalling some standard results on Hasse invari-
ants and the p-rank stratification, before proving the vanishing of the Hecke operators in
small p-rank at spherical level in §4.2. In §4.3 and 4.4 we introduce the Igusa tower over
the Shimura variety at Klingen and Iwahori level, and define the interpolation sheaves
whose cohomology we use to define Mj. We then define the Hecke operator U in §4.5,
and in §4.6 we prove Theorem 4.6.1, by relating the ordinary parts of the cohomology at
spherical and Klingen level, and then carrying out the argument sketched above.

4.1. Mod p-geometry: Hasse invariants and stratifications. — In this section, we introduce
the p-rank stratification on our Siegel variety and the definition of several Hasse invariants
attached to this stratification. The discussion follows [Pil20, §6.3, 6.4].

4.1.1. Over X. — We assume that K=K’K,, K, =[], K, with

vlp
K, € {GSp,(Oy,), Par(v)}.
We fix a polyhedral cone decomposition X, and write X = Xk 5 if the context

is clear. We let G = A[p™] be the p-divisible group corresponding to the semi-abelian
scheme A defined over X (well defined up to prime-to-p quasi-isogeny). This p-divisible
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group decomposes as G =[], G,. If K, = GSp,(OF,), the p-divisible group G, defined
over X carries a principal quasi-polarization. If K, = Par(v) then the p-divisible group
G, carries a quasi-polarization of degree p*: G, = GP. Let X, be the reduction of X
modulo p. Then we let

Ha(G,) € H (X, detal; )

be the Hasse invariant corresponding to G,; it is compatible with étale isogenies (by con-
struction) and also with duality.

For any place v|p, we let X;*> = XT** be the open subscheme defined by
Ha(G,) # 0. This is the ordinary locus at v. We let X' be its complement defined by
Ha(G,) = 0. This is the non-ordinary locus at v. It carries the reduced schematic struc-
ture by the proof of [Pil20, Lem. 6.4.1]. (Whenever we use notation of the form X;*?,
X! etc., the superscript is referring to the multiplicative rank of the group scheme G, .)

As a very special case of the general constructions of [Box15, GK19], there is a
secondary Hasse invariant

/ 0~ <ol p7—1
Ha'(G,) e H'(X] ,detawg )

(see also [Pil20, §6.3.2] when K = Par(v)). Its non-vanishing locus is X', the rank 1
locus at v. We define its schematic complement XT“O, the supersingular locus at v, by
the equation Ha'(G,) = 0. It carries a non-reduced schematic structure, see [Pil20, Rem.
6.4.1].

We can intersect the locally closed subschemes we have defined. Consider dis-
joint subsets Ij, ..., 1, C {v|p}, symbols *(2) € {<,>,=} for 1 < ¢ <r and numbers

. *(@Da;, =1,...,r . .
a; €1{0, 1,2} for 1 <7 <r. Then we define X, it " as the intersection of the spaces

- . . : > (012
X forall 1 <7 <rand v € L. It will be convenient to denote by X7 = X""" the

fwlp 1

ordinary locus and by X7' = XlZ the rank 1 locus.

Note that for any disjoint sets I, J, K, the scheme lell'zj bR Cohen—Macaulay,
and indeed is a local complete intersection over SpecF,. To see this, note that XISIIZJIZKQ
is open in X3!, and X' is a complete intersection in X, because it is given by the van-
ishing of the Hasse invariants Ha(G,) for v € 1. Since X itself'is local complete intersec-
tion by Proposition 3.5.4, the result follows. We will in particular repeatedly use this fact
in order to apply Lemma 3.8.10.

We will also frequently use some well-known results on the density of the ordinary
locus, and on the density of the p-rank 1 locus in the p-rank less than or equal to 1
locus. We will need these results in slightly greater generality than has been considered
above. 'To this end, consider disjoint subsets I}, ..., I, as above, and let v|p be a place not
containedin I; U---UI,.

We assume that K =K/’K,, K, = lep’w# K, x K,, and that

K, € {GSp,(Oy,), Par(v), Kli(v), Si(v), Iw(v)},
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while K, € {GSp,(Oy,), Par(w)} for w # v. We can define topological spaces

|XI>'<{(,?IZW|’ |XI>'<{(,?liai’=U2|7 |X;;(’?liai’svl|, and |XI*{(211-%‘»=U1|

using the p-rank stratification as before. The point is that the p-rank is invariant under
isogeny so we can consider the p-rank of any of the Barsotti-Tate groups of the chain.
Note that one could give these spaces a schematic structure by using the Hasse invariants,
but this structure will in general depend on which Barsotti—Tate group of the chain we
use to define the Hasse invariants.

. . . (D1 a,=2, . . *(D1a;
Our claims about density are then the following: |XKylllla | is dense in |XK’lll’a [,
. . . *(Dra, =yl . .
while if we further assume that K, € {GSp,(Oy,), Par(v), Kli(v)}, |XK’l11’a | is dense in
*(D1;a, <yl . .
|XK’lll‘a |. To see this, it suffices to prove the first statement in the case K, = Iw(v), and

the second statement in the case K, = Kli(v). It then suffices to prove the corresponding
statements for the corresponding local models, which follows easily from an explicit cal-
culation. Indeed, the first statement is already proved in [d]J93], while the second follows
from an analysis of the Kottwitz—Rapoport stratification at Iwahori level, and its image
at Klingen level; see [Yull, Thm. 4.2] for a precise statement.

4.1.2. Over XY'. — The p-rank stratification is independent of the polarization
and therefore all of the spaces we have defined in this section carry an induced action of
(Or) (Xp;r. It follows that the stratification descends to a stratification on X}”. We more-

-1 . -1
over observe that the sheaf det a)g , can be canonically descended to a sheaf det a)g , on

X?' (see Remark 3.7.3). It follows that the Hasse invariants Ha(G,) and Ha'(G,) (whose
definition is independent of the polarization) also descend to sections of this sheaf over
X{" and X =" respectively:

Therefore, if we consider disjoint subsets I, ..., I, C {v|p}, symbols *(2) € {<,
>, =} for 1 <7 <randnumbersq; € {0, 1, 2} for ] <: <7, there is a unique locally closed
subscheme (X;‘l)*(z)lﬂi* =t of XE}I whose inverse image in X | is (X j)* @1 =heer,

Remark 4.1.3. — In §4.3.4 below we will define some other locally closed sub-
schemes of the special fibres of the spaces Xk ; at Klingen and Iwahori level, which will
be important in the rest of the paper. We caution the reader that these will not be defined
in terms of the p-ranks of the G, [p], but will rather depend on subschemes of G, [p] given
by the Klingen and Iwahori level structures.

4.2. TVamshing theorem for ordinary cohomology. — We assume that K, = G,(Z,). Let
Kk = (ky, L)y be a weight (recall from §3.7.2 that we are assuming that it satisfies the parity
condition &, — , =0 mod 2). Let S, := {v|p} =I][I* be a partition. We write X} :=
XZ1121 s X, an open subscheme, and similarly X' < X¢'. The main theorem of

this subsection is:
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Theorem 4.2.1. — Let T' =T, ., Tw [ 1yere Tw.1- There is a universal constant C depend-
ing only on p and ¥ but not on the tame level K?' such that if l,, > 2 for all w, k,, — {,, > C _for all
wel, and l, > C for all w € I, then RT’ (X?“I, @ (=D)) carries a locally finite action of T".

Furthermore, under this assumption on k

(1) e(THRD (X?' 1o (=D)) us a perfect complex of amplitude [0, #1].

() The map e(THH(XS", 0 (=D)) — o(THH (X!, 0 (=D)) is an isomorphism.
(3) The map e(THH' (XIGl ,0(=D)) = ¢(THH! (XIG“I, @ (=D)) s imjective.

(4) If furthermore L, > 3 for all w € 1, then

o(THRI (XY, 0 (=D)) = «(THRI(XT, 0¥ (—D))
s a quasi-isomorphism.

Here e('T") is the ordinary projector associated to the operator T' (see §2.11). We
remark that (2), (3), (4) of the theorem hold true for non-cuspidal cohomology as well.

Remark 4.2.2. — Various improvements on Theorem 4.2.1 should be possible.
For example, the reader will see from the proof below that it is possible to prove that
the Hecke operators at each place act locally finitely (rather than just proving it for their
product), provided they satisfy explicit mild bounds on the weights (rather than depending
on the indeterminate constant C); see Remark 4.2.34 for one approach to this. It may also
be possible to give explicit values of C. For the purposes of this paper the statement of
Theorem 4.2.1 suffices, and is well-adapted to a (somewhat involved) inductive proof
working one place at a time.

We now briefly explain the main idea of the proof. We will often work at the level of
X rather than X?l. It is easier to work on X because of the moduli interpretation. One
can always deduce results for the cohomology on X{' from results on the cohomology
for X, by Proposition 3.8.3. We nevertheless warn the reader that X, has infinitely many
connected components and therefore one cannot expect any finiteness results for the
cohomology over X ; accordingly, we work over XO' when we want to show that a Hecke
operator acts locally finitely.

The basic principle underlying these arguments is that the ordinary projectors
e(T'y1), e(Ty,) can be used to kill many cohomology classes. This idea 1s already used
in [Pi120, §7, §8] (this is what we call Klingen vanishing below, because the Hecke op-
erator T, is associated with the Klingen parabolic) and of course also in [Hid04] (this
is what we call Siegel vanishing, because the Hecke operator T, is associated with the
Siegel parabolic).

We will typically not comment on the commutativity of the actions of Hecke oper-
ators at one place with multiplication by Hasse invariants at other places, which is easily
checked.
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4.2.3. TVanishing theorems: Siegel vanishing. — Let K = KK, be a reasonable level
at p. We assume that K, = G(Z,). We let X = Xk y and X6 = Xg'x Let k = (ky, L))
be a weight. We begin with the following theorem.

Theorem 4.2.4. — There is a universal constant G depending only on p and ¥ but not on the

tame level K? such that if ] € S,, and for each w € J, we have l,, > C., then RT" (X?I’Z]Q
locally finite action of TV :=T],,.; Tw.1, and

, ") has a
wej

(THRT (XY, ) = «(THRT(X," 7, )

is a quasi-isomorphism. In particular e(TV)RT (X(l}l’zﬂ, ") 1s a perfect complex. The analogous
statements also hold for cuspidal cohomology.

Remark 4.2.5. — In fact Theorem 4.2.4 is not quite strong enough for our pur-
poses; we will later replace it with Theorem 4.2.13, which is proved in exactly the same
way. Our justification for presenting the material in this way is that the proof of Theo-
rem 4.2.4 is a good warmup for the arguments that we will later make to prove “Klingen
vanishing”, and it seems simplest to make these arguments before considering the Klin-
gen level Hecke operators and the much more complicated statements and arguments
that we make in that context.

We only give the proof in the non-cuspidal case. The arguments go through un-
changed in the cuspidal setting. The proof of Theorem 4.2.4 is by induction on #] (the
case ] = { being vacuous), and depends on several lemmas. In our inductive argument
we will feel free to increase the constant C in a manner depending only on ] without
comment. Write ] =] U {w}, and assume that Theorem 4.2.4 holds for J'.

Recall from §3.9.17 that the correspondence underlying the operator T, ; is Xk
with K’ = KPK;, and K; = Hu;m K, x Si(w). We let (Xx/); denote the special fibre of
this correspondence. Let k = (k,, /,),, be a weight such that /, > 2, so that we have a
cohomological correspondence T, : piw* — p\w*. By reduction modulo p, it follows
from Lemma 3.8.10 (and the flatness of Xx/ and Xk over Z,) that we get a cohomo-
logical correspondence still denoted T, | @ pi (" |x,) = p}(@*|x,). This cohomological
correspondence is a map of locally free sheaves over (Xk/);. As in §3.8.13, this corre-

spondence pulls back to the open subscheme X?I,Z.J/Q

. . . 2
Adopting the notation of §4.1 we consider the dense open subscheme XIZ(J,l =
Zp2. _ zy2 L . . .
(XKJ,J)_'”Q of XKJ,,I, which is by definition the ordinary locus at w (that 1s, the locus for
which G, is ordinary). This scheme is the union of several types of connected compo-

nents. Let p{G,, — p5G,, be the universal map on the p-divisible group. We let (XI?/:T):"’Q’”
be the étale components (that is, those for which the kernel of this isogeny doesn’t

. .. . >v2
contain a multiplicative group), and we let (Xg7 |)=**" be the other components. We
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. Zp2 _ o .
can therefore decompose the cohomological correspondence T,,; over (Xg )™? into

Ty, =Ty, + T where Ty | is the projection of T, ; on the étale components and

T, is the projection on the other components.

Lemma 4.2.6. — The map T';ffl s zero as soon as b, > 3. For all [, > 3 we have a

. . >v2
commutative diagram of maps of sheaves over (XKJ/’I)—"JQ:

Tel
% K ! (BN
P Lo

\L /f_; Ha(Gyw)

l [)THa(gw)

et

P ® detw’é;l) o P ® deta)é;l)

Proof. — The first point follows from an inspection of the proof of Lemma 3.9.18
(since 4, + 1, &y, + 4, > 3). The second point follows from the fact that the Hasse invariant
commutes with étale isogenies. UJ

Lemma 4.2.7. — The following diagram of locally free sheaves on XIZJ? s commutatie for
by > 3:

o o
\L ﬁ;Ha(gu:) l /7THa(gu’)

Tw.l
pi(@f ®detaly) — pl(o* @detals)

Progf. — Since X]Z(J,/T is Cohen—Macaulay and all of the sheaves are locally free,

it suffices to prove the commutativity over a dense open subscheme. We may therefore

. >p2 _
prove it over (X |)™%, so we are done by Lemma 4.2.6. U

. - >p2 . -
Lemma 4.2.8. — Ha(G,,) is not a zero divisor on XlJ , and psHa(G,,) is not a zero divisor
ZJ/Q
on X -

Progf. — Since XIZJ/Q and XZJ/? are Cohen—Macaulay, this follows from the fact
that the non-ordinary loci have codimension 1. UJ

. _ >02,<pl
In what follows, we warn the reader that while the schemes p; ' (X}’ ) =
>u2 >2, <yl . . .
XKJ,’l Xﬁ' O X for 1 = 1,2 have the same underlying topological spaces, they
ir 8
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have different (non reduced) scheme structures. In particular sheaves like p*w"|
for : =1, 2 have different (scheme theoretic) support.

2,=wl

<=y

Lemma 4.2.9. — For all [, > p+ 2 the cohomological correspondence T, | restricts to give a
cohomological correspondence

Tw’l :p;(a)’(l ZJ/2,§w|) _)lbyl (C()K| Z]/Qyiwl)-
Xy Xy

Progf. — Since the cokernel of

ﬁ*Ha(gw) —
pra =" pi(w* ® det a)ﬁgwl)

is p5 (0" @ det wpgzl |XZJ/2,§w1), and (by Lemmas 3.8.10 and 4.2.8) the cokernel of
1

piHa(Gy) H
p!la)" RN pll (0" ® deta)pgwl)
is p (0 @ det a)g;l |X3J,z,5w1), it follows from Lemma 4.2.7 that provided that [, > 3, T, |
1

restricts to give a cohomological correspondence

* K —1 | K h—1
pr(@* @ detw’éw |Xlz_],zsw1) — p (o ®detwfgw |Xlzj,z.sw1),
as required. 0J

Lemma 4.2.10. — There is a universal constant G which depends only on ¥ and p (but not on
the tame level K?) such that the map of Lemma 4.2.9

Tw’l . p; (a)K |X12*I,2,§w ! ) - lb‘l (Q)K |X12J/2,Sw| )
us zero_for all [, > C.

Proof. — We may and do assume that J' = {4, as the general case follows immedi-
ately from this by restriction to an open. We moreover note that it suffices to find such a
constant C for a single tame level K?. Indeed, if K/ € Kg are two choices of tame level,
the natural forgetful map XK}K;; — XK;}K/; commutes with p; and py, and is faithfully flat,

from which it follows that C works for K/ if and only if it works for Kj.

Let J be the ideal defining X' in X and let Z = p*J. We need to prove that
for /,, sufficiently large, the cohomological correspondence over Xg/, T, : p50* — plla)"
factors through T, : pi* — Ip\*.

By definition, we have T, = p>O(x), where (k) is the composite of a map
O, (k) : py* — pjo* and a fundamental class Oy (k) : piw, — P!1 ", so In turn we need
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to show that @ (k) factors through p*Zpi@* (of course, we have already shown that it
factors through p°p! @*).

Let x be a generic point of V(Z) C Xk'. It corresponds to a Barsotti-Tate group
in characteristic ) whose p-rank at w is exactly one. The map p; detwg, — ] detwg, is
zero over k(x) because the isogeny piG,, — p3G,, is not étale at x. Let I(x) be the ideal
defining the Zariski closure ¥ in Xg/. We deduce that the map ©,(k) : p50* — pio
factors through 1(x)" pf*.

It follows that the map © (k) factors through p*pie* (N 1(x)" ptw*. By the Artin—
Rees lemma, it factors through p*Zptw* for 1, larger than a constant C, as required. (We
note that strictly speaking V(I) has infinitely many connected components, however there
are only finitely many orbits for the action of (OF)(?JSJF’ so there is some constant C which
works for all of them.) UJ

Proof of Theorem 4.2.4. — Take C as in Lemma 4.2.10. Recall that we write J =

J U {w}, and we are assuming that the theorem holds for J'. We begin by showing that
the action of TV on R’ (X?]’Z‘]/Q, @) 1s locally finite. By the inductive hypothesis, the
action of TV on this complex is locally finite, and e(TV)RT (X?I’Zy?, ") 1s perfect, so
that in particular the action of TV on (TR (X?I’Z‘]/Q, ") 1s locally finite. It is therefore

enough to show that TV acts locally finitely on (1 — «(TV)RD (X(l}] ’ZJ/Q, o¥). Since TV acts
locally nilpotently on the complex (1 — e(TV)RT (X?I’EJ/Q, @*) by definition, so does TV,
so in particular it acts locally finitely, as required.

Now we consider the exact triangle

G],EJ/Q

RI(X| b2y

L) = RUX,"™, of @ detol; )

GI,Z_]/Q,Swl

— RI(X, Lo @ detaly ) 5

The operator T acts everywhere and is zero on RF(X?]’Z']/Q’Swl,a)K ® deta)g;l) by
Lemma 4.2.10. We therefore deduce that

(THRI(X," ™, ) = THRI(X, "7, 0 @ detaly, ).

Since RT (X?I’Zﬂ, W) = li_r)nn RT (X?lgzj/z, o ® det a)gf*l)), the theorem follows. O

4.2.11. Vawishing theorem: Siegel and Rlingen vanishing. — We now turn to the more
general situation, which involves the study of the Hecke operator T,,. Our analysis is
similar to that of §4.2.3, but it is rather more involved because T, is defined as the
composite of two correspondences and because we need to study the supersingular locus
at w rather than the non-ordinary locus at w. This subsection is devoted to the proof of
the following theorem, which implies most of Theorem 4.2.1.
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Let I, I;, J be pairwise disjoint subsets of S,. Then we will write

1, 1,252

LpJ . ~Skl=
X" =X

G1,=1, 1,21, 1,252
1 .

and X?I’I“'/’J =X

Theorem 4.2.12. — Let 1,,1;,] be pairwise disjoint subsels of S,. Set T"J = [T, Tw ¥
]_[weJ Ty.1. Then there ts a unwersal constant G depending only on p and ¥ but not on the tame
level K? such that if ky, — l, > C and 1, > 2 for all w € 1,, and 1, > C for all w € ], then
RI" (X?I’I“"’J, @*) carries a locally finite action of T, Furthermore:

(1) e(TW)RT (X" ) is a perfect complex.
(2) The map
e(TI/,J)HO (X?l =1l , a)l{) N e(TIbJ)HO(XlGI yIa.bJ’ Cl)K)

is an isomorphism.
(3) The map

e(TI/,J)Hl (X?l»ﬁlal, a)l{) N e(TIbJ)Hl(XlGIyIa.bJ’ Cl)K)

is injective.
(4) If furthermore l,, > 3 for all w € 1, then

((THHRE (X!, ) — o TWHRE (X, )

s a quast-isomorphism.
Moreover, the same results hold for cuspidal cohomology.

We only give the proof in the non-cuspidal setting. The same arguments work in
the cuspidal case. The proof of this result again depends on several lemmas. We will firstly
prove the result in the case I, = ¥, by induction on #]. We will then prove the general
case by induction on #I,.

Recall from §3.9.17, that if we set K’ = K/KJ with Kj =[]
is a cohomological correspondence of Siegel type:

vF#EW Kv X SI(U)), there

Tt 5@ Ix0) = P (@ Ix0)-

By reduction modulo p and Lemma 3.8.10, we again get a cohomological correspon-
dence: Ty 2 p3(@*xe ) = £ (@ Ixe,)- We let XV be the pre-image of X"V in X/,
(via any of the projections, it doesn’t matter). These correspondences may be restricted to
Xlé,“l] whenever w ¢ I, by another application of Lemma 3.8.10, because this correspon-

dence obviously commutes with the Hasse invariants at places in I,.
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Theorem 4.2.13. — There is a universal constant C. depending only on p and ¥ but not on the
tame level K? such that if 1,, ) are disjoint, and if 1, > C _for all w € ], then RT" (XGl =22 , )

has a locally finite action of T?Y :=T], e Lw1, and
3. Gi,=y,1 | Gr=,L2g2
e(T7)RI' (X , ") — e(T™)RI(X , W)
G1,<,1, JQ

is a quasi-isomorphism. In particular e( TR (X ") 1s a perfect complex.

Proof. — The case I, = ¥ is Theorem 4.2.4, and the theorem at hand may be
proved by an identical inductive argument on #J, once we have proved the base case
J =9. But in this case X?l’ =t i proper, so RI" (XGl =l ) is a perfect complex, and
we are done. UJ

We now reintroduce Klingen type correspondences. Let w|p. By §3.9.20 if we
set K'= K/K) with K} =[], K, x Kli(w), and K" = K/K} with K7 =[T,_, K, x
Par(w), there are cohomological correspondences of Klingen type: T, : p5(@"|x,,) —
(@ Ix,) and T7, @ pi(@|x) = py(@*|x,,) for all weights & = (ky, £,) with &, > 1, > 2.
By reduction modulo p and Lemma 3.8.10, we again get cohomological correspondences:
T, : (@0 Ix ) = P (@ Ix,) and T, 2 pi(@]x,,) = po(@F|x ). We let XE}LJ be the
pre-image of Xll"””‘] in Xx',1. These correspondences may be restricted to X "1 whenever
w ¢ I, by another application of Lemma 3.8.10, because they obviously commute with
the Hasse invariants at places in I,.

In the rest of this section we prove Theorem 4.2.12 by induction on #I,. To this
end, choose w € I, write I =T'[ [{w}, and write I, =T' NI, =1,, and I, =T N I,. We
assume that Theorem 4.2.12 holds (for some value of C, which we fix) for all smaller

values of #I, (as we may, having proved the case I, = in Theorem 4.2.4).

We now consider the scheme (X”J) »2 (which is again by definition the sub-

scheme where G, is ordinary), which decomposes into several components. Let piG —

I/
/4G be the universal isogeny of degree p*. We denote by (Xé‘/ﬁf):wz” the “étale” compo-

nents, namely those where the kernel of the universal isogeny has multiplicative rank 1

a, /1 ):w2,net

(so it is as étale as possible), and by (X the other components where the kernel

has multiplicative rank 2.
This provides a decomposition of the correspondence T, =T,
for the projection on

+ T,

w,net

where

T, , stands for the projection on the “étale” components and T

the “non-étale” components.

w, net

We also have an isogeny p5G — p7G of degree p and over (X “’1 )=»%% this isogeny

has multiplicative kernel, while it is étale over (XK,f =v2m (observe that the étale and
non-étale components are interchanged when we pass from the isogeny G — p;g
to the isogeny p5G — piG). This provides a second decomposition T/, =17  + T"

w,el w,net
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r,J
17/ : : a.bN=y,2,net 1" : :
where T7 , stands for the projection on (X |)™=" and I} , for the projection on
U,J_
a,b I N=,2, et
X )™

Lemma 4.2.14. — If [, > 2, and k,, > 3 then over (Xié‘,b]]):ﬂ we have' I, ="T"

— s w,net w,net =
0. Moreover, the following diagrams are commutative:

T

w,et

!
pro" hot

\L /);Ha(gw) l ﬁTHa(gw)

/

Tw.nt _
P @detaly ') — pi(o* @ detwly )

T//

w,et

!
pio* j21cH

l /Ha(Gw) l p3Ha(Gw)

/"

Pi@f @ detaly) — p(e* ® detal;)

Progf. — ThatT, =T} = 0follows from an inspection of the proof of Lemma
3.9.22; more precisely, by the proofs of [Pil20, Lem. 7.1.1, 7.1.2], T}, is divisible
by =2, and T, . 1s divisible by p~'. The commutativity of the second diagram follows

immediately from the fact that the Hasse invariant commutes with étale isogenies. The
commutativity of the first diagram is slightly more delicate; see the proof of [Pil20, Prop.
7.4.1.1], which explains how it reduces to [Pil20, Lem. 6.3.4.1]. 0J

Lemma 4.2.15. — The following diagrams of locally free sheaves on Xiy}l are commutative
Jor b, > 2 and k,, > 3:

!
0" b

l P5Ha(Gw) l piHa(Gw)

4

Tw _
P ®detaly ) —— ph(0* @ detals )

T

w

!
pio* j21cH

l /iHa(Gw) l psHa(Gy)

"

Tw
piof @ detafy ) — ph(e* @detaly )
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Progf. — Since all sheaves are locally free and Xi{bll 1s Cohen—Macaulay, it is

.. [ J\ = .
enough to check the commutativity over the dense open subscheme (X'7)="2, which

1s Lemma 4.2.14. O

Corollary 4.2.16. — Assume that for all v € 1" we have [, > 2 and k, — [, > C, and that

Sor all v € ] we have [, > C.. Then the action of T%J on RT (XGl foar) wQ @) 1s locally finite of
by > 2 and k,, > 3.

41/7"] w2 I:z,bJ

Proof: — We have H* (XGl @*) =lim H* (Xgll
the transition maps (given by multiplication by Ha(G,)) are T"J-equivariant by

Lemma 4.2.15. By the inductive hypothesis, each (T H* Xk ) Crlopd , 0 @ detwg - 1)n) 1s
finite-dimensional and T"J-stable, while T"J acts locally nllpotently on (I — e(T1 1)) x

H*(XGl fo) , 0" @de ta)(p by (because T%J does). The result follows. UJ

1
, 0 @det a)gw ") where

Exactly asin Lemma 4.2.9, forall /, > p+1=p—1+4+2andk, > p+2=34+p—1
we obtain cohomological correspondences:

T, : ps (] I/bJ<wl)_)p1(a) | Ia[J<w1)
Xy
and
T 2 pi ("] I/bJ<ml)_)p2(a) |X1abJ<w1)
K//

a},x]

We now consider the space (Xg» )~ =v! where G, [p] has p-rank 1. We have a uni-
versal quasi-polarization G,, — QB over Xgr. Over the interior of the moduli space, the
kernel of the quasi-polarization is a self dual rank p* group scheme which is either con-

. T I —
nected or an extension of a multiplicative by an étale group scheme. The space (Xé}fd)_wl
decomposes as the union of connected components (Xlé,f’k])_“’l % and (XéfJ) =wlmee for
which the kernel of the quasi-polarization doesn’t contain (respectively contains) a multi-
plicative group (see [Pil20, Lem. 7.4.2.3]).

We now consider the space (Xié’f‘l]):wl, which we view here only as a topological
space (it has multiple natural non-reduced scheme structures defined by the vanishing
of either piHa(G,) or p3Ha(G,)). We have the chain of isogenies p;G — pgg — G

where the composite is multlphcatlon by p. We have a decomposmon of (X )_"’1 asa
union of connected components Xy foJ )_“’1 " (Xg ’”’J)_“1 “and (Xg/ Loy )=w1,00‘ Here the
open and closed subspace (XK/,l )_“’1”" is the locus where the kernel of 135G — PG is an

. | AP N .
étale group scheme; the open and closed subspace (Xy/})™" is the locus where the
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kernel of p5G — piG is a multiplicative group scheme; and the open and closed subspace

I/ kS — . . .
Xy 1])*'“1’00 is the locus where the kernel of p5G — G is a bi-connected group scheme.

It follows from the definitions (see [Pi120, Lem. 7.4.2.4]) that

pQ((XIa,bJ :wl,OO) g (Xla,b’\] =y 1,00

K/, 1 K”,1

(4.2.17)

and that at the level of topological spaces,

Lo

r,J
P2 (X 3

r .
R l)zwl,et) g (Xlg,/f’{):wl,m—et.

(4.2.18) =ulm (X

T T
Over (X¢})=! and (X2}

dences T, and T by projecting on the various components (in other words, composing

=»! we can decompose the cohomological correspon-

with the various idempotents associated to each of these connected components). This
gives us decompositions T, =T, +T, ,+ T, o and T; =T, + T, , +T,  ob-

tained by projecting on the multiplicative, étale and bi-connected components respec-
tively.

Lemma 4.2.19. — The following diagrams of sheaves on Xig/wll are commutative for 1, >
p+1andk,>2p+ 3:

T

w,el

J2CH B
NG

\L p3Ha' (Gw)

=1
P @detag, )] 1,0

K”.I)ZWI

! Kk
netl
1 a. JJ —
!
l piHa' (Gw)
T:l),(l |

21
—— (o @detwy )| v,
w (XK’

T

w,et

pPiot| v

Xy Hmw!

J/ pTHA' (Gw)

pi(@* @ detay, )| o

K,1

/ - / _ 7/
Moreover, T, | ="T" oo =0 and'T

w,m

Proof. — See [Pil20, Prop. 7.4.2.1].

X b‘]):w 1

!k
Dp®*| v g
N

l P5HA (G

T:L et 2
’ —1
— [JEZ(O)K Q detwgw )|(XIMJ _

K1

=0.Ifly = p+2, then T’ ;= 0.

1 )T

1

wl
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We recall that by definition we have T,, =T’ o'l as operators on the cohomology
r . . .. ~ .
over Xé‘b‘]. It will also be useful to consider the composition T, :=T" o T’ defining an

Lo
operator on the cohomology over X5

Lemma 4.2.20. — If b, > p+ 1 and ky, > 2p + 3, then we have T\, =T, , o 'T}
End(RT (X ™", ), and

TwHa/(gw) = Ha/(gw)Tw
e Hom(RI (X" ™", ), RO ™, of @ detw ™).

abJ =wl

(@) T/ (S El’ld(RF (XK// K)))

w,et

Similarly, if ky > 2p + 3, then we have T,y =T

w,et
and

T,Ha'(G,) = Ha'(G,) T,

€ Hom(RT (X1 ™", ), R T ™", 0 @ detw. ).

Proof. — We give the argument for T',,; the argument for T, is essentially the same,
and is left to the reader. From (4.2.17) and (4.2.18) we see that we can write T, as the
sum of the two operators T’ ,, o T"; ,, and (T}, , +T, )o (T} ,+T; ).

By Lemma 4.2.19, we have T;)_m =T, =0 and T, ,=0,s0that T, =T , o
T}, ;- The commutativity with Ha’(g@) then follows from the commutative diagrams in

Lemma 4.2.19. U

Corollary 4.2.21. — Assume that for all places v € 1}, we have [, > 2 and k, > C, and
that_for all places v EJ, we have [, > C. If l, > p+ 1 and k, > 2p + 3, then the action of T"J

on RT (XG1 b =0l ) s locally finite. Similarly, if ky, > 2p + 3, then the action of TWT, on
RI (X o0 a)") is also locally finite.

Progf — Again, we give the proof for T"J, the argument for T, 1" being cssen-

tially identical. We have H*(Xy Grlop) “1 ") = hm H*(XG] o) _")1 o ® deta) 1))

’-] wl

More precisely, for all » > 0, the map H*(XK)I”" o @ deta)"(p ) >

GLL, )=l . .
H* (XK’I1 s ") 1s defined by the composition:
GLI, ,swl I wl 2_
H' (X of @ detol V) » H (X 1T 0 @ detwll )
Ha' w) G =yl
g) H*(X I, ab\] ’a)K)‘



256 GEORGE BOXER, FRANK CALEGARI, TOBY GEE, VINCENT PILLONI

GLL,,J .= . . . .. .
The vector space H* (X el ") 1s therefore an inductive limit of the images
of the spaces

G J:Zwl n
H (X of @ detal ")

under these maps. The first map is obviously T"J-equivariant, and by Lemma 4.2.20,
the second map is also T"J-equivariant. The result follows from our inductive hypothesis

that Theorem 4.2.12 holds for all smaller values of #I,, because by definition we have
G, ,J.<wl Gro =10y 1.2y 1.2)2
Xk.1 = Ag1 - UJ

Lemma 4.2.22. — The following diagram of sheaves on X K/ 1 s commutative for L, > p+1
and ky, > 2p + 3:

T, \
sk . K
an) |( ZzbJ)< 1 plw | ah‘])<w1
K//
l p3Ha' (Gw) l piHa (Gw)

‘ T,
p;‘(a)"®detw’;w_l L p e @detal;, )

r.,J
b
X 5w v Hsw!

Ifl, > p+2and ky, > 2p 4 3, the following diagram is commutative:

T//

w
%K NS
pio*| v pyo*| v
1 J 2 I ,J
(Xli:l;{)l y=u! Xlg}/b,l)iwl

l JYHA () l JEHA (G

piof @ detal; ! e (e @ detaly )|

Id »

K// )< 1

T
Ml
K 1

Progf: — 1t is enough to check the commutativity over a dense open subscheme of
the support of these Cohen—Macaulay sheaves, and this follows from Lemma 4.2.19. [

Since ptHa'(G,,) is not a zero divisor on Xk | < ts g, it follows exactly as in the
)=w

proof of Lemma 4.2.9 that there is for all [, > p*+p and kw > p +2p+2 a cohomological
correspondence:

w 1@ v, I )—>/71(w| ot )

XK” 1 wl
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and similarly for all /, > p* 4+ p+ 1 and k,, > p* 4 2p+ 2 a cohomological correspondence:

T//: *(le v )_> Z(wl{l v ).
w pl ﬁbJ) pz (Xlg;,}ixll):w()

Lemma 4.2.23. — There is a unwversal constant C' which depends only on ¥ and p but not on
the tame level such that

T2 pr(@f] Xg;ﬁf):w‘)) = h(@] XE’;’{‘J):wo)
is zero for all ky, — l, > C' and all l,, > p* + p.
Progf. — See [Pil20, Prop. 7.4.2.2]. 0

We now increase our constant C if necessary, so that C > C’, where C’ is as in
Lemma 4.2.23.

Lemma 4.2.24. — Assume that for all places v € 1), we have |, > 2 and k, — 1, >
G, that I, > C for all v €], and that 1, > p + 2 and ky — Ly = C. Then the map

e(TIbJ)RF(XGI abe <wl K) - e(TIbJ)RF(X(xl abJ
L’lCular e(TIb’-])Rl—‘(XGI abJ =yl

@) s a quasi-isomorphism. In par-

@) 15 a perfect complex.

Progf. — Consider the following diagram of exact triangles:

- T, e
RT (X 7! ) RI (X! o
Ha'(Gy) Ha'(Gw)
RT (X ™ of @ detal; ) —> RF(XGI Ld = @ detals )
RT Xy ™" of @ detal, ') —= B R Gt = Lo @ detawl; )

By Lemma 4.2.23, the rightmost operator 1" acts by zero. We have the ordinary

projectors e(T"J)) on RF(XG] o Su! o) and RF(XG1 fad-So! o ® deta)pzfl), and

the ordmary projectors e(T T%) on R’ (XI(;]/ o) _WI ) and RF(XE,I, losr) _w] o @

det a)gw Y. It follows from the defining properties of the ordinary projectors that after
applying them, the left two vertical arrows T’ are quasi-isomorphisms.
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By Lemma 4.2.22 the projectors commute with multiplication by Ha'(G,,). It fol-
lows from a short diagram chase that the map

e(TWHRT (X! o)

Ha' (gu (TIbJ)RF(X e abJ <wl w“@detwgw_l)

1s a quasi-isomorphism. The claimed quasi-isomorphism now follows by taking an
inductive limit as in the proof of Corollary 4.2.21. By our inductive hypothesis,

e(THHRT (XGl Sl ) 1s a perfect complex, so we are done. ]

Lemma 4.2.25. — Assume that for all places v € 1, we have [, > 2 and k, — 1, > C, that

ly > C forall v € ], and that l,, = p + 1. Then the ordinary cohomology e(T")RT (X | Gl wl,

") 1s a perfect complex, and the map

Gy, ,,bJ_w1 G, abJ*ul

o(T")H" (X @) = o(T")H" (X , %)

is an 1somorphism.

Progf. — The map

Ha'(Gw)

RI (X 07! ) PG R (2 o=t ® detaf) )

is a quasi-isomorphism, which commutes with the projector ¢(T"J) by Lemma 4.2.20. It

follows from Lemma 4.2.24 that ¢(T"J)RI" (ngill"/’x]’:wl, ") is perfect.

We now prove the claimed isomorphism on degree 0 cohomology. Since

L,J<wl . G,
wd =0l g Cohen—Macaulay, and Xy Hlend =

is an open dense subscheme, we have

Gi,
XK1
mjections

Gi, ,,bJ_u.l Gi, abJ—ul

H' (X | ,F) = H (X, ,F)

for any locally free sheaf F, so it is enough to prove surjectivity. In order to do this, it is
enough to prove that for all n > 0, the map

Gl ’I:z [}Jafwl

Ha'(Gy))"
HO(XKJ . W )( a'(Gw))

a, [1’-] <wl

HO(X " o @detwy )

(which commutes with ¢(T,) by Lemma 4.2.20 and the injectivity of the restrictions
H° (XG1 o) ol , F)<— H° (XGl ) =ul , F) discussed above) induces a surjection:

A THHH' (= o)
(Ha’Lg)w)) (TIDJ)HO(X(’I L, —wl ®detw"(” ))'
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In fact, by Lemma 4.2.24, it suffices to prove the surjectivity for n = 1. We consider

the following diagram:

g
G, J <ul Ly GLL ,J.<ul

o T ) HO (X} , @)

J/ Ha'(Gw) l Ha'(Gy)

s , =< Ty Gy.I ;,\J _wl
HO (X, )" , W ®deta)g D — — H'(X( "

| l

p ,=w0 2_ w0 9
HO X 1™ of @ detofy ) — = HOXp ™ of @ detey )

o ® detwgw_l)

Letf € e(T‘bJ)HO(XGI N

, 0 ® det wgwfl). As in the proof of Lemma 4.2.24,
T, induces a bijection

Gi, abJ <wl

o(T, THYH (X)) Lo @detwl, )

Gy, ab’J <wl

— o(TUH (X, =" 0 @ detafy ).

In particular, /=T ¢ for some g € HO(XGl oo <ol o ® detwgwfl) and there-

fore, since the rlghtmost operator T’ acts by zero by Lemma 4.2.23, f has trivial

G, abJ

image in H"(X ; a)" ® detwgzw_l). It follows that / comes from a class f €

H° (XG1 ol _wl ). Replacing f by ¢(T%J)f we deduce the required surjectivity. UJ

Corollary 4.2.26. — Assume that_for all places v € 1,, we have [, > 2 and k, — [, > C, and
that for all places v € J, we have [, > C.. Then T acts locally finitely on RT (X?I’I“"’J, ") and
e(TW)RD (X?1 osd ") 15 a perfect complex.

We have an 1somorphism:

e(leJ)HO(X?IvSIaI’ a)K) ~ e(le,‘J)HO(X?lsIa.bJ’ CL)K)
and an injection:

e(TI;,J)Hl(X?IvSI(ll’ a)K) s e(TI/,,J)Hl(X?l»Ia,hJ’ Cl)K).

If furthermore [, > 3, then the map

J

(TR ) = o(TW)RE (XS )

s a quasi-isomorphism.
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Proof — We begin by showing that T"J acts locally finitely on both
RUCK, ™7 ) and ROKE ™ ) = REK 05! ). For RD(K
"), this is Corollary 4.2.16.

Our argument for RT" (XGl

triangle

wpd-Zul ) 1s slightly more involved. We have an exact

Gi.I a, bJ >yl

RI(X, @) Slaszu?

RI'(X, , %)

b2l 1],

G, ab’-] _w1

G
RE 6,0 gm0 (X

so it is enough to prove that the action of T"J on RT" NURAR AT (X w)[+1] 1s

1

locally finite. We have
G Jzwl
RT om0 (X, b= 1]

(4.2.27)

RI(X, o=t

hm " ®d€ta)g |V(Ha(gw)"))
G a, )J >l
SO 1t 1s enough to prove that the action of T%J on each RI'(X," ™ O

de ta)g |V(H G,y 1s locally finite. In the case n = 1, this is Corollary 4.2.21, and the
general case follows by induction by taking the cohomology of the short exact sequence
of sheaves

X Ha(gw

-D@—D
(4.2.28> 0— o X detw - |V(Ha(gw)"*1) ® de ta)g |V(Ha(gw)")

— 0" ® det C()g |V(Ha(gw ) —> 0
Consider now the following diagram of exact triangles:

RECC RGP =0

I |

Lpdzw2 Ly zw?

RO, ) R, 952 )

i |

C G £y 7u’
RT (1I/bJ<wl(X 3, MJ o)[+1] = RT <,1 e (X AN W) [+1]
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We have already seen that T acts locally finitely on all but the last term of the first
row, so it acts locally finitely on every term in the diagram. The middle vertical arrow is
the identity map. In order to show that the left vertical arrow is a quasi-isomorphism after

applying ¢(T"J), it is therefore enough to prove it for the right vertical arrow. By (4.2.27)
and the similar expression

Gi.L, ,J

RFXGI,I:L/}J,fwl(Xl aa)K)H‘l]
1

G ,J . n(p—1)
=RT (Xl , h_r)na)K & det Cl)gw |V(Ha(gw)”))7

n

it suffices to show that for each n > 1, the map

~ —1
o(THRT (XY, of @ detwg’ " lvata@,n)

GLL ,J. 2wl -1
((TWHRT (X, 7", 0 @ detwg’ ™ Ivtag,m)

1s a quasi-isomorphism. To see this, note that the case n =1 i1s Lemma 4.2.24, and the
general case follows by induction on #, by taking the cohomology of the exact sequence

of sheaves (4.2.28). The remaining claims follow from the quasi-isomorphism just proved
and the inductive hypothesis. U

Corollary 4.2.29. — Assume that for all places v € 1, we have k, — 1, > C and [, > 2, that
Jor all places v € ], we have [, > C.. Then the ordinary cohomology

e(TUHRT (XY | o)
us represented by a perfect complex. Moreover we have an isomorphism:
(TR X = ) > o(TWHHOX Y, )
and an injection:
o(TUYH (X5 ) e o(TUWHH (X 0.
Progf. — To see that

f(TWHRI (X", )
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is represented by a perfect complex, we consider the exact triangle:

ab’J Zwl

RI(X," Lot g

a, b\] _wl

RO of @ detaly)

abJ =wl

— RI(X)" Lof @detaly ) 5

Applying the projector ¢(T"J) everywhere (which commutes with the various maps by
Lemma 4.2.15) we deduce this from Corollary 4.2.26 and Lemma 4.2.25. By our induc-
tive hypothesis, in order to prove the claims about the morphisms

G, <, 1

((TWYHI(X] =, ) > o(THW)H(X Y ),
it is enough to prove the corresponding statements for the morphisms

(TWYHIK ) ) = o TWYHIKE Y| ),

Firstly, the natural restriction map

G 3
HO(X 71 abJ K) N HO(Xflea,bJ’ a)K)
is an isomorphism, because X uad is Cohen-Macaulay, and the complement of X, s
is of codimension at least 2. It remains to prove the injectivity of the map of H's.
We have a commutative diagram of exact triangles:
G
RI(X; ™ o) R (XS )
G :
ROX, ™Y 0 @ detwl ™) ——= ROXT™Y, o @ detwl ")
G wl G =wl
RO of @ detol™") — ROK ™ o @ detw? ™)

The injectivity of e( T H' (X", %) — o(TW)YH' (XY ) therefore fol-
lows from a short diagram chase, using the quasi-isomorphisms provided by Corol-
lary 4.2.26 and the isomorphism on H’s of Lemma 4.2.25. 0J

Proof of Theorem 4.2.12. — This is immediate from Corollaries 4.2.26 and 4.2.29.
O
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4.2.30. A Cousin complex computing RT (X", @* (=D)). — Our goal in this section
1s to provide an explicit Hecke stable complex computing RI" (X?' ! @*(=D)). This com-
plex will be used to complete the proof of Theorem 4.2.1, and will also be used in §4.6
to compare the cohomology at spherical and Klingen levels (by considering the corre-
sponding complex at Klingen level, and the natural map between these complexes). This
complex is the Cousin complex associated to X{""" and the stratification given by the -
rank (see §3.9.5). This section is very similar to §3.9.10 where we introduced the Cousin
complex over the full Shimura variety associated with the Ekedahl-Oort stratification.
The case we consider here 1s, however, much simpler because we have canonical global
equations provided by the partial Hasse invariants for our stratification. We has thus de-
cided, despite redundancy, to give a complete and explicit construction of the Cousin
complex in this case.

Let S be a smooth scheme over a field £ and let £ be an invertible sheaf on S. We
assume that £ = ®”_,L; and that we have non-vanishing sections s; € H(S, £;). We let
D; = V(s;), an effective Cartier divisor on S. Set s = ]_[;1:1 si. Set D =V (s) = U,D;. We
assume that D = U;D; is a strict normal crossing divisor on S.

For all n, consider the following exact complex of coherent sheaves on S:

0—>Og—>£”—>@£” /st — @ U/(Swfn)

1<i<j<d

— > LG 8) =0

This is a complex of length ¢ + 2. For all 0 < £ < d, the object placed in de-
gree £+ 1 1is @15i1<__<ik<d "(shs ooy s) (when we write ,C”/(s”,...,
LryLr(ss L2, szcﬁi;”)). The differential

b /.- P LG

I<i)<--<y<d 1<i|<--<ipy1=d

s'), we mean
'k

takes a section (f; ;. )1<i <..<i<a to the section

.....

O D7) 1 i i =d

where f; 7 ., 1s the class modulo s7 of f;

The followmg diagram is commutatlve

‘Jl+1

0 Oy — L£rtl @?:lﬁn-ﬁ—l/szl-i-l L

SR

st

0 Os L DL L s s
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Passing to the limit over n, we get the following exact complex:

d
0— Os — lim £ — lim @ £'/s) —
ﬁ ﬁ 1
n n =1

lim GB L'y ) = o> Hm L/ (s, ) = 0

no1<i<j<d n

where in all the direct limits, the transition maps are given by multiplication by powers
of s.

i

Lemma 4.2.31. — Let | <ij < - < <d. S L' =® Ly, s =[] s, D =
V(s(s')™"). There is a canonical isomorphism

lim £7/(s1 ... 1) 2 i ((£)'/ (1 -5 lswy

XJ-U X (‘X/)"
Proof. — Easy and left to the reader. 0J

Remark 4.2.32. — The complex

d
0— lim £" — lim ) £"/s) —
noog=1

g @ L0 5) — > LGS, 5 = 0

no1<i<j<d n

is just the Cousin complex of Og associated with the stratification given by the divisors D;.

We now work over S = X?“I. We take £ = ®yer(det G, !, L, = (detG,,)’~ " and
s, = Ha(G,,), and we consider the complex K’ — K' ... — K obtained by applying H"
to the complex

d
lim£" — lim &) L£"/s" — lim L"/(E st
— — : — iy
n no =1 no1<i<j<d
M n n n
— —>1£>n£ JAC I

n

tensored with w*(—=D). (So in the above notation, the indices ¢ will correspond to the
different places v € I, the s; will correspond to Hasse invariants, and the assumption that
the divisor V(s) has strict normal crossings is an easy consequence of the Serre—Tate
theorem and the product structure on the p-divisible group G.)
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It follows from Lemma 4.2.31 that K* equals

. Gi,IL,>yc2 P a(h—
DBycra- lim H'(X,"" 77, o (-D) ® ®(detgw) =y
* [Tyey Ha(Gu) we]
O _Ha(G,)")).
wej

Proposition 4.2.33. — The complex K* computes RT (XS, o (=D)).

Progf. — The argument is the same as in the proof of Proposition 3.9.11. It suffices
to show that each of the sheaves

@ (D) ® (X)(det G,)" ™" /(> " (Ha(G.)")

wej we]j

. G1,I,>1c2 M . . M .
when restricted to X;7"" and then pushed forward to X{""' is acyclic on X', Since
G, L>jc2 . . o . .
[T s XU s affine, it suffices to show that the restriction of this

sheaf to X?I’I’zyz is acyclic. By [Lanl7, Thm. 8.6], this sheaf is acyclic relative to the
minimal compactification and its support in the minimal compactification is the locally

the inclusion X

closed subscheme given by the set of equations:

e Ha(G,)" =0 forw €],
e Ha'(G,) #0forw €],
e Ha(G,) #0 forw €],

which 1s affine. O

Remark 4.2.34. — Using Proposition 4.2.33, one can show that if we have /,, > 2
and &, > 2p+ 3 for w €1, and [, > 3 for w € I, then the individual Hecke operators T,
forw € Tand T, for w € I act locally finitely on R['(X{"", w*(—=D)) (by showing that
they act locally finitely on each term of the complex K*). We leave the details to the

interested reader.
We can finally complete the proof of Theorem 4.2.1.

Proof of Theorem 4.2.1. — Everything is immediate from Theorem 4.2.12 (tak-
ing I, =¥ and ] = I'), except for the claim that ¢(T")RT (X?"l, @“(—=D)) has amplitude
[0, #1], which follows from Proposition 4.2.33. O

4.2.35. Commutativity over the ordinary locus. — While we do not prove the commu-
tativity of the correspondences T',, | and T, we do prove it over the ordinary locus at w,
where all of the correspondences are finite flat over the interior. We will need this result
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at the places w € I°, because we need to make use of both of these Hecke operators in
this case (because the Hecke operator U, », at Klingen level which corresponds to T, is
needed for those parts of the control theorem which take place at the level of the sheaf,
but we need to use T, | to prove the finiteness of cohomology).

Lemma 4.2.36. — Suppose that w € 1, and that [, > 2. Then on RF(X(;”’I, o (—=D))
we have Ty 0 Ty =T, 0T, 1.

Progf. — We can easily compose cohomological correspondences when the projec-
tions are finite flat. In particular we may form the compositions T, o T, ; and T, ; o T,
over the interior, and it is easy to see that the compositions give the same cohomological
correspondence.

In order to check that they commute on RI" (X?“I, @ (—D)) we use a similar trick
to the one that we used to prove Proposition 3.9.15: recall the complex K* of Proposition
4.2.33 which computes RT" (XlG"I, @*(—D)). We may form another complex K'* by ap-
plying the same construction to the interior Y{"' € X! As we have explained above,
the Hecke operators T, and T, ; commute on each term

o (D) ® (R)(det G,)"*" /(> "(Ha(G.)")))

wej wej

Gi,1, >Jr2

H'(Y,

in the definition of K’*, and hence on the subcomplex K* of K'* and thus on
RI(XT, w* (=D)). O

We end this section by proving the following technical result, whose formulation
relies on Lemma 4.2.36. We will make use of it in §4.6, in order to compare the complex
of Proposition 4.2.33 to the analogous complex at Klingen level. Fix a subset J C I; we

1,=5c2 1,=pc2
now consider the space XK =X

Lemma 4.2.37. — There is a universal constant G depending only on p and ¥ but not on the
tame level K? such L‘/zaz‘fl >2 k=0, >Cforallvel,l,>Cforallvel andl, > p+1 forall

v €], then R (X ; bl , @ (—D)) carries a locally finite action Qf;fl = lep Ty [ Tyer Twt-

Proof — Note that by Lemma 4.2.36, all of the Hecke operators in the defini-
tion of T' commute. We begin by showing that the action of T! on RT (XK 1, @ (=D))
is locally finite. To this end, note that by Theorem 4.2.12, the action of T' on
RI (XK 1, @*(—=D)) is locally finite, and e(T)RT (XK 1, @0(—=D)) 1s a perfect complex
ifl,>2 k —[,>Cforall vel, and [, > C for all v € I. Since T = TIHwaTw,
it follows that the action of T is also locally finite (as it acts locally nilpotently on
(1 — (TR (X |, 0*(=D))).

Taking the exact triangles induced by

o HalGu) e ®de ta)g o ®deta)g ' /Ha(G,)
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for all w € J, and using Lemma 4.2.14, we deduce that T' is locally finite on

RF(X;’Zfl, ®“(=D)) for all weights k = (k,, l,) with [, > 2, k, — [, > C for all v el,

ly>Cforallvel and [, > p+ 1 if v € J. Passing to the limit over multiplication by

Ha(G,) for w € 1\ J, we deduce that T is locally finite on RI'(X /"7, 0 (=D)), as
required. 0J
4.3. Formal geometry. — In this section we continue to assume that K = K/K,,

K,= Hv‘p K, with K, € {GSp,(Op,), Par(v)}. Our goal in this section is to define the
Igusa tower at Klingen level, and the p-adic sheaves whose cohomology defines our spaces
of p-adic automorphic forms.

4.3.1. Completion of X. — We adopt the convention that if Z is a scheme
over SpecZ,, then we write Z, for Z ®z,, Z/pZ, and 3 := li_r)n’Z 7, for the formal p-
adic completion of Z, which is by definition a p-adic formal scheme. In particular, we let
X be the formal p-adic completion of Xk, and we write Xz” < Xg' < Xk for the open
formal subschemes corresponding to XEII and XEQI We write Q) for the complement
of the boundary of X, with special fibre Yk ;. We write 9z~ for the ordinary locus on
the interior, and so on.

4.3.2. Deep Rlingen level structure. — Yor all m > 1 we consider the formal scheme
%E}Kli(p’”) — Xz which parametrizes a subgroup H,, C G["] which is locally for the
étale topology isomorphic to fy ® Op; equivalently, H,, = [ |
H,, ., C G, [p"] is isomorphic to fn.

wlp H,, ., where for each w|p,

Proposition 4.3.3. — The morphism Xg';(p") — Xz is affine and étale. Iis fibre
%E?Kﬁ(p’”) over X7 is finite étale.

Proof. — 'This can be proved in exactly the same way as [Pi120, Lem. 9.1.1.1]. I

We denote by %IE’]KH p>) = l<ir_nm %]Z(}Kli (p™) the p-adic formal scheme obtained by
taking the inverse limit (in the category of p-adic formal schemes). It exists because the
transition morphisms are affine (see for example [Far08, Prop. D.4.1], or [Stal3, Tag
01YT] for the corresponding statement for schemes, from which this follows easily). Over
%E}Kli(p‘x’) we have for all places v[p a Barsotti—Tate group of height one and dimension
one Hy , = G,.

>11,Par-m-et, >1c2

4.3.4. Igusa towers. — We fix a partition {v|p} = I[[I’, and we let Xg'|
be the open subscheme of XE{’ZICQ where for each place v € I with K, = Par(Oy,), the
kernel of the quasi-polarization % : G, — G contains a multiplicative group (so away
from the boundary, this kernel is an extension of an étale group of rank p by a multiplica-

tive group of rank p). We then let %IZ{II’PZ‘H"'”’Z"Q be the corresponding open of Xk, and in


http://stacks.math.columbia.edu/tag/01YT
http://stacks.math.columbia.edu/tag/01YT
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order to save some notation, we will for the moment set XL := X=2'""™"= The fibre
of %IZ(}KH(/)’”) over X} is denoted by Xi ¢ (™). Over X ¢ ;(p>) we have for all places
v € I a Barsotti-Tate group of height one and dimension one Hy, , = G,. Observe that
for all v € I, we have a rank 2 multiplicative Barsotti-Tate group G < G, and that
He» <> G is a rank one sub-Barsotti-Tate group.

If K, = GSp,(Oy,) for all v|p, this gives us a convenient alternative description
of Xi i (p). Set

K, = [ [Kli() [ [Iw).

vel velt

Then we have %%’Kh(p) = %}(ﬁ(l)m, where the superscript I refers to the fact that for
each v € I, the Klingen level structure H, is multiplicative, and at each v € I*, we have
extended the given multiplicative Klingen level structure to the canonical (ordinary) Iwa-
hori level structure.

We denote by J&' — %{{ ki (p™°) the profinite-étale torsor of trivializations:

Vo Z,~T,HY ), vy ¢ Z,~T,(G)/Hee)?), veT.

The upper script D stands for the dual of these Barsotti-Tate group schemes and T},
stands for the Tate module which here is a pro-étale sheaf. For all v € I, there is an action
of A € Z; on ¥, mapping ¥, to ¥, oA. For all v € I, there is an action of (A, ) € (Z;)2

on (Y, ¢y), mapping (Y, ¢y) to (Yry 0 A, ¢y 0 11).
The Galois group of the torsor J&' — Xk i (™) is

Te=[]ox [0 =]z ]z

vel vel’ vel vel’

4.3.5. Sheaves of p-adic modular forms. — Let Kl,v =Z,[[O; 1] = Z/)[[Z;]] and
Xg’v = Z/J[[(OFXU)Q]] ~ Zp[[(Z;)Q]] be the one and two variable Iwasawa algebras. Let

Ay = ®uar A1 ®ver Aoy = Z,[[T1]]

and let k7 : T} — le be the universal character.
We define a sheaf Qf over X ,(#™) by the formula:

Qff = (1. 031) 82, A"

where 7 : J&' — Xk ki (p™) is the affine projection, and the group Ty acts diagonally
(via its natural action on 7,51, and via Ky on KI)

We set QF = Q! X, , det’ wg,. The explanation for the twist by this invertible
sheaf is given below in §4.3.6 (see in particular Lemma 4.3.8). This is an invertible sheaf
of Oka(poc)(f@zpAI—modules.
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4.3.6. Comparison with classical sheaves. — Over %K ki (#™) we have for all v[p a
surjective map wg, — oy, , arising from the differential of the inclusion Hy , = G,,.

Let k = ((kv’ Q)UEI’ (/fv, lv)vel") € (ZQ)S}]: kv = 2ifve I: kv = lv if ve If: be an
algebraic weight. By construction there is a surjective map

(4.3.7) 2y, 0~ @uahi.)) Q) @verwg iy, ® 01i}) (@ detw,)

This map should be interpreted as the projection to the highest weight vector.
Moreover over J&' the HodgeTate map (see [Mes72, p. 117], as well as Section 6.1.4
below) provides maps:

Yy D HT
Zp — Tﬁ(Hoo,v) — WH,,

forallv €S,, and

. ) -
Z, = T,((G) /He)?) = wg, .,

forall v eI
These maps induce isomorphisms after tensoring with Qg1 on the left. Therefore
the Hodge—Tate map provides a Z*-reduction of the GL;-torsors wy,, , and wg, /u., -
Let & = ((ky, 2)yer, (ky, b,)verr) be a classical algebraic weight. Then we can natu-
rally identify k with a p-adic weight (that is, an element of Hom(A;, Z,)) via the character:

((xv)vel’ (xv»yv)vd() € TI = 1_[ ) l_[ o U

vel vel’
Let us define Q° = Q" Q3, , Z,.

Lemma 4.3.8. — For all k = ((ky, 2)vers (ks by)ver) € (Z2)% with k, > 2 if v € 1,
ky > 1, if v € I, there is a canonical isomorphism

HT* : (®,a0fi.") Q) @uerwg nr., @ i 2) R)(®y) detwy, ) ~ Q.
Progf. — By definition, it suffices to construct an isomorphism
T*: (@uaoii_) R @uarwf iy, @ Wji2) ~ Q2

where Qf = le ®Zx,.« L. Sections of the sheaf €2f are rules f associating to
(x» (d)U)UEVa (wv)uesl,) € fJ@I(R)a an element

J(x, (9u), () €R
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such that

S (@00 1), (W0 B) = k(s BV (. (1), (1)
=[1TB8: ( (@0), (9)

vES) vel’

for (()"v)vespa (,Bv)vel") S TI-
Sections of the sheaf

ko —2
(®veIwHoo v) ®(®velﬂwg Hay @ a)Hoo.v)
are rules g associating to triples

(x’ (av)vlp’ (bv)velf)

for R a p-adically complete Z,-algebra, x € Xi (™) (R), 4, : R ~ x*wy, ., by : R
x* wg, /H, ., an element

f(xa av’ bv) E R

such that

Sra0n) byo8 ) = [A6 ]88 (. an. by)

vlp vel”

for all (A,) € (R*)%, (8,) € (R)".
To a rule g as above, we associate a rule

HT*(g)(X, (¢v)vel‘, (wv)vesﬁ) =g(9€, (HT(¢U(1)))UEI‘7v (HT(wv(l)))veSp)

It is easy to check that the map HT™ is an isomorphism. 0J

We can now summarize the interpolation property of the sheaf %,

Corollary 4.3.9. — For all k = ((ky, 2)ver, (ks L)ver) € (Z2> with k, > 2 if v €1,

ky > 1, if v € I, there 1s a canonical surjective map:
wklx}(mi(ﬁo") - Q= QEI ®/~\],K ZP'
Progf. — In view of Lemma 4.3.8, this is just the map (4.3.7). U

4.4. Sheaves of p-adic modular forms for G,. — In this section we explain how we can
descend our construction to the Shimura variety for G;. This section is the analogue for
p-adic sheaves of §3.7.2.
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4.4.1. Weght space for G,. — We now assume that p # 2. We let T} be the pro-p
sub-group of 17, so that T} = T‘{ x TV is the product of a finite group T‘J; and TY. We
let A1 = Z;,[[T?]]. There is a canonical projection T} — T? and a canonical character
k1 : T — A[ which identifies A; with the deformation space of the trivial character of
Ty. This canonical projection makes Ay a quotient of A Weletk; =k, ® ((2,2)yp). The
pair (k1, Ap) is the universal deformation space of the character ((2, 2),,) mod p. We let
Q1 — QIZI ®f\1 AI-

If € = ((ky, 2)yers (kv by)vere) 18 a classical algebraic weight such that £, =/, = 2
(mod p — 1), then k defines a Z,-point of Spf’ A; in the following way: we associate to k
the character

((Xv)vel’ (Xv ’_))v)vel") € TI = l_lxﬁv_Q l_[ xl;v—Qyiv—Q

vel velt

which factors through a character of T} and therefore defines a morphism f, : A; — Z,.
The specialization of k1 along the map f recovers the character «.

4.4.2. Descent. — The group (Op);;;fr can be embedded “diagonally” in Ty by
sending x € ((’)F)(X/,’)Jr to ((xy)y € I, (y, xy)verr) where for all places v|p we denote by «x, €
P = Z; the image of x in F,. For an element x € T}, we denote by x, the projection of
x to T}. For an element x € TY, we denote by & the corresponding group element in Aj.
Since T} is a pro-p group, and p > 2, the map x > x* is bijective on T}. Accord-
ingly if x € TY, then we define \/x € TY by the equation (/x)*> = x. We then define a
character d : (Oy) &;Jr — (A)™ (where “d” stands for “descent”) by the formula:

d(x) = /x.

The group (OF)(X/,;Jr acts on X}; in the notation of §3.3, the element x € (Of) (X/,)"L
sends (A, ¢, A, 7= (11,102, ny) to (A, ¢, xA, (1, x19), 17,). We can lift this action to 2! by
setting

XXM —> Qf

to be the composition of the tautological isomorphism (the construction of £2*! doesn’t
depend on the polarization) and multiplication by d(x). The reader can easily check that
this defines an action and is compatible with the construction of §3.7.2; as always, we are
making the choice w = 2.

For all n € Z., U {00}, we can form the quotient of %km(p") by the action of

((9F)(>;)5Jr (which factors through a finite group acting freely) and we denote by %gfl’gh(p”)

the corresponding quotient. The maps X (") — f{g}éli(p”) are étale. We can also

descend the sheaf Q' to a sheaf Q' over %gfl‘gh(p‘”) using the descent datum provided
by d.
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We let My = RT (X' (p™), ©241(=D)) be the cohomology of the p-adic cusp-
idal modular forms of weight «.

Proposition 4.4.3. — The canonical map 1\/[4”"]1"(I — RTI (%{{,Kh(po"), QU(=D)) us splut
in the derwved category of Z,-modules.

Progf. — See the proof of Proposition 3.8.3. UJ

4.5. Hecke operators at p on the cohomology of p-adic modular forms. — In this section we
define Hecke operators at p acting on the cohomology of p-adic modular forms. Recall
that we have fixed a partition S, = {v[p} =I[[I".

4.5.1. Hecke operators of Siegel type. — Let w € I° be a place above p. Let K = K/K,
be a reasonable compact open subgroup with K, = G,(Z,). In §3.9.17 we defined a
Hecke operator attached to the correspondence (for suitable choices of polyhedral cone
decompositions omitted from the notation):

Xy
N
XK XK

where K’ = K/K and K} =[], ,.., GSp4(OF,) x Si(w). The map p» depends on the
choice of an element x,, € F**. We are now going to pull back this correspondence to
a deep Klingen level structure and isolate the “essential part”. As in Remark 3.9.23, the
resulting Hecke operators are easily seen to be independent of the choice of polyhedral
cone decomposition.

Taking formal p-adic completions, we obtain a correspondence:

Xy
N
-%K %K

We consider the fibre product X X, 2 Xk ;i (9"). Recall that by our assumption
that w € I, G,, is an ordinary Barsotti-Tate group. We denote by &€, (™) the open
and closed formal subscheme of this fibre product where the kernel of the canonical
isogeny piG — p3G has trivial multiplicative part (it is open and closed by the rigidity of
multiplicative groups).

There is an obvious map u; : €, 1 (p") = Xi x;(¢"), given by projection onto the
second factor of the fibre product. We claim that the projection €, ;(p") — Xk induced

(4.5.2)
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by po can be lifted to a map uy : €, 1 (p™) — %K i (#™). Indeed, since H,, is multiplicative,
the isogeny p;G — p5G induces an isomorphism from p{H,, to its image in p3G. We call
this image p5H,,. We therefore have a correspondence

Q:w, 1 (ﬁm)
%%{,Kli (pm) xi(,Kli (pm)

We now associate to this correspondence a Hecke operator U, ;.

Remark 4.5.3. — The Hecke operator U, is the standard “U,” operator (at the
place w) that is considered in the usual theory of p-adic modular forms.

Lemma 4.5.4. — There is a normalized trace map Tru] : R(u)Oe¢, ¢y =
O‘%%{,Kli(pm) .

Progf. — The formal schemes €, , (p") and %K ki (@") are smooth over Z,. Con-
sider the map induced by «, on top-differentials:

du; : det Q! — det Q!

xk ki M/Zy Cuw 1 (/2"

This map is divisible by p* by the same arguments as in the proof of Lemma 3.9.18.
Namely, the map u, is totally inseparable and hence a homeomorphism. For any closed
point x € X ¢;;(¢") in the interior, one sees by Serre~Tate theory that the map of com-

—

pleted local rings O%{{ M = Oe, . 1s given by &, W(k()[[ Ty, To v, T3]l —
RuyWE)IIT, 0, Toy, T, 1] where Tjy > T;, if v # w, and Ti,w > (14T, — 1.

By reduction modulo p" of u;, we get a proper map u Gy () — X{{ "
of smooth schemes over SpecZ/p"Z. The above map ; 3du1 induces a map O, ,m), =

u, OXI ¢, or by adjunction a map “pl Tr,” R(ul) Oe, o/t — ((’)xKK (pm))/p
(see §3 8.1 1). Passing to the limit over n yields the map of the lemma.

Remark 4.5.5. — We sketch another argument for the proof of the lemma. Write
Cu1(p")y for the restriction of &, (p") to Q‘jkm(p’”). It is easy to show that the map
Cu 1 (P = Vi ki (p™) is finite flat of degree p*. Therefore, the restriction of the map

of the lemma to Y y;;(p™) is the usual trace map, normalized by a factor p~°. Let X be
the K-admissible polyhedral cone decomposition such that X = Xk x and X (") =
Xk ki (P . We can use the same X to get the (non smooth) toroidal compactification of
Xx.» and then of €, | (p")s. Now we observe that the map €, ;(p")y — x{(,Ku(l’m)E 1s
finite flat and therefore has a trace map. It remains to recall that for any refinement ¥’ of
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3, the map 7 : €, 1(p")x — €1 (p")x Induces a quasi-isomorphism: Rn*chyl(pm)z, =
Oc,.1ms-

To define the Hecke operator U, ; on RI (X[ ¢, (p™), ), RT (X x; ("), @),
and so on, we argue as follows. By the usual formalism, if F is one of Q“ or ", it is
enough to define morphisms «; F — ujF; we can then compose with the trace map of
Lemma 4.5.4.

To this end, note that over €, ;(#") we have the canonical étale isogeny «[G —
u3G, which determines an isomorphism on differentials. We thus have a canonically de-
termined isomorphism u;w“ — wj@" (with no need to normalize). Similarly, since the
canonical isogeny induces an isomorphism «{H,, — u;H,,, we have a canonical isomor-
phism 52 — Q" (again with no need to normalize).

4.5.6. The operator Uxy).1- — We now introduce another Hecke operator of
Siegel type for w € I, which we denote Ukji(y) ;1. This operator will not be used until §5
and §7. We decided to introduce it here because its definition is similar to the other op-
erators of Siegel type introduced in §4.5.1, and because it is convenient to discuss the
commutativity of all of our Hecke operators at p in one go (see Lemma 4.5.15 below).
We defer the details of the normalization of this Hecke operator to §5.3, where we will
consider the operator Ugj,),1 In @ more general context.

We again consider the correspondence (4.5.2), and the product Xg X, x
%iKﬁ(p’”). We denote by Cxiiqw.1 (") the open and closed formal subscheme of this fibre
product where the kernel of the canonical isogeny piG — p5G has trivial intersection with
the group p7H,,. Exactly as above, we obtain a correspondence

Cxiiq), 1 (P")
S
Xk k(0" Xk k(")
We show in Lemma 5.3.2 below that there is a Hecke operator
(4.5.7) Uckiiuy.1 : R(v)) 00" — @,

defined using a trace map normalized by a factor of 1/p*. On the other hand, we have
natural isomorphisms v; €' — viQ(', and tensoring this map with (4.5.7) produces the
desired cohomological correspondence (and associated Hecke operator):

Ukiiw),1 : R(v),0; Q9 — Q.
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4.5.8. Hecke operators of Klingen type. — Let w|p be a place. Let K = K/’K,, be a
reasonable compact open subgroup with K, = G,(Z,). In §3.9.20 we have defined a
Hecke operator attached to the correspondence (again, for suitable choices of polyhedral
cone decompositions omitted from the notation):

Xi
N
Xk

where K’ = KﬁK/’) with Kj@ = Hvlp’#w GSp,(OF,) x Kli(w), and K" = KPKZ with K;’ =
l_[vlp,v;éw GSp,(Oy,) x Par(w). The map py depends on the choice of an element x,, €
" and over X/ we have natural isogenies

XK//

0no = pY —>ng

whose composite is multiplication by x,. As in §4.5.1, we are going to pull back this
correspondence to a deep Klingen level structure and isolate the “essential part” of the
correspondence.

Taking formal p-adic completions, we obtain:

Xx

N

Xk Xk

We consider the fibre product X/ X, 2 Xk x;(¢"). We denote by €, 5 1(p") the
formal subscheme where the kernel of the isogeny piG — 5§ has trivial intersection with
the group piH,,.

Lemma 4.5.9. — The formal subscheme €, 5 (p") is open and closed in Xx/ X, x
X ki (-

Proof. — Let L=piH, NKer(p;G — p3G). Since L is a closed subscheme of ptH,,,
it is finite over Xx' X, x, Xi (") and the condition that L = {0} is therefore open. It
is also closed because if at some point x there is a non-trivial map p{H,,|, = Ker(p{G —
£359) 1+, this map will extend on the completed local ring at x by the rigidity of multiplica-
tive groups. U

There is an obvious map 7, : €, 9, (p") = .’f%’m (™) induced by the projection p;.
We claim that the second projection po, which induces a map €, o ;(p") — Xk, can be
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lifted to a map 7, : €, 0.1 (p") = Xi, 1;(p"). Indeed, over €, 51 (p") the isogeny piG —
145G induces an isomorphism from piH,, to its image in p5G (which we call p3H,,). We
therefore have a correspondence

€y (")
2N
X i (0") Xic (")
We now associate to this correspondence a Hecke operator
U,, € Hom(RT (Xj, i (). ), RT (X (6™, ).
To do so, we have the following lemma.

Lemma 4.5.10. — There is a normalized trace map “#Tr,,1 7 ()« Oeyorpm —

Oka(/,m) :

Progf. — The formal schemes €, o | (p") and X}{,Kh(p’”) are smooth over Z,. Con-
sider the induced map on top differentials:

. 1 |
dr; : det 2 — det Q%.u(ﬁ

Xy i 0"/Zy ")/ 2y

This map is divisible by p* for the same reason as in the proof of Lemma 3.9.22.
Namely, let us fix a closed point x € Xi (") which is in the interior and ordinary
at w. The fibre of r; at x parametrizes the subgroup L = Ker(p{G — p3G) of G, [p] of
étale rank 2, multiplicative rank 1 and trivial intersection with H,,. The total degree
of r, is p*. The fibre of r, over x has p points (corresponding to the choice of the mul-
tiplicative part 1" of L). The inseparability degree is p* (corresponding to finding sec-
tions of G, [p]l/L" — G,[p]”). For any &' € €, 51(p") lying above x, Serre—Tate theory
shows that the map on completed local rings 03@7)’,( — Omw is isomorphic
© @y WH)IIT 4, T, Ty 11 = @y WEW)IIT 1y, oy, Ts 1] where Ti,y i Ty if
v#Fwori=1l,and T;, > (14+T;,) — 1 fori=2,3.

By reduction modulo p" of 7y, we get a proper map 7 : Cyo,1 (0", = X i (0™
of smooth schemes over SpecZ/p"Z. The above map p%drl induces a map Og, , ,m), =

Kli ¥4 K,Kli

TiOX{(Y (m, or by adjunction a map “LTr,” : R« (Oe, oy m /1) — (Oxt )/ 1"
(see §3.8.11). Passing to the limit over 7 yields the map of the lemma. U

Remark 4.5.11. — We could give an alternative proof of Lemma 4.5.10 as in Re-
mark 4.5.5.
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As usual over €, 5 1 (") we have the canonical isogeny 77G — 175G, whose differen-
tial determines a morphism 7;0“ — . We have a commutative diagram

rwg, —= rowy,, — 0

m,w

L

* k
rfwg, — 1rfoy,, — 0

which Zariski locally on affine opens SpfR is isomorphic to

(N
(4.5.12) R2—>R —=0

(I

RZ? — R —=0

It follows that we can and do normalize the morphism 7jw* — rf@* by dividing by p.
When m = 00, the isogeny induces an isomorphism 77 Hy o, — 77 Huo 4, and we therefore
obtain an isomorphism 75 — 17Q“. Combining this with Lemma 4.5.10 gives the
desired operator U/, .

We now exchange the roles of p and p, and consider the fibre product Xx: X, x
%%@’KH (™). We denote by €, 9 9(p") the open and closed formal subscheme where the
kernel of the isogeny p5G — p7G has trivial connected component (so that away from
the boundary, the kernel of this isogeny is étale). Note that by definition this kernel is
contained in the kernel of the quasi-polarization ;G — p5G®, so the kernel of p;G — p1G
has multiplicative rank at least 1.

The projection py induces a map s, : €, 99(p™) — X1 i (™). We claim that the
first projection py : €, 55(p") = Xx can be lifted to a map s : €, 1 2(p") = Xi g, (0.
Indeed, since H,, is connected, we see that over €, 5 9(p") the isogeny p5G — piG in-
duces an isomorphism from p5H,, to its image in p;G (which we call pH,,); and the map
€,29(p") — Xk factors through Xk . Accordingly, we have a correspondence

Cy22(™)
%%{,Kh (pm) x%{”g[{[i (Pm)

We can associate to this correspondence a Hecke operator
UZ, € Hom(RT (x}(,]qi (»™), @), RT (%%(/’,Kli (»™), 1)),

which again depends on the construction of a trace map:
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Lemma 4.5.13. — There is a normalized trace map p~' Tr,, : R(59).O¢, ., —

O:{{{”,Kli (VON

Progf. — This is a calculation in Serre—Tate theory which is similar to the proof
of Lemma 4.5.10. Namely, let us fix a closed point x € .'f%{,,’Kﬁ(p’") which is in the in-
terior. The fibre of sy at x parametrizes rank p étale subgroups in the kernel of the
quasi-polarization G,, — G2 (which is a rank p? finite flat group scheme, extension
of an étale by a multiplicative subgroup). We deduce that the map s, is totally in-
separable at ii degree p./SgefTate theory shows that the map on completed lo-

cal rings Oxiw N e Oe, 5¢m.» 18 isomorphic to ®,,WEx)[[ Ty, Toy, Ts,1]1 —
Ry WEW)IT 1y, Tap, Ts 1] where Tiy > Ty, if v#w or i = 1,2, and Ty, >
(1+Ts5,) —1. O

Over €, 95(p") we have the canonical isogeny s;G — 57G, which is ¢tale, and
therefore determines isomorphisms sjw* — s;0* and s7Q — §5Q“. Combining with
Lemma 4.5.13, we get the desired Hecke operator U’/ .

Weset Uy, o:=U/ oU".

4.5.14. Commutativity of the Hecke operators. — We remind the reader that whenever
we write U, | below, we mean Up,) 1.

Lemma 4.5.15. — The operators {Uxuew).1, Upotver and {U, 1, Uy o}yere commute with
each other on RT" (x%féh(pw), Q1 (=D)).

Proof. — We prove this in the same way as Lemma 4.2.36. We first introduce a
similar complex as in §4.2.30 to compute the cohomology. Namely, there is a complex L
computing RT (X jig)» 7 (=D)), such that Lf = lim Lf where L is

. G1,IL,>c2 K n(h—
By lim H (X ki), ZHZ© (D) @ Q(detG,)"" ™"/
X nwej Ha(Gy) wej
> _(Ha(G,)")
wej

Note that in that formula we use the fact that Ha(G,,)" has a canonical lift to Z/p'Z for
all #’s which are multiples of p"~! and these are cofinal among all natural numbers.

Each term
. Gi,I,>ye K n(p—
(4.5.16) i HO(Xy i Z/4Z ® (D) @ (X)(det G,)"* ™"/
X l_[wg_] Ha(gw) wej
(> _(Ha(G,)")

we]J
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appearing in this complex is stable under the Hecke action and it is therefore enough
to prove the commutativity for each of these terms. Each of the terms (4.5.16) can be
embedded into the corresponding direct limit of cohomology groups taken over the inte-
rior of the moduli space. Over the interior of the moduli space all our correspondences
are finite flat and the commutativity follows from standard properties of the Iwahori and
Klingen Hecke algebras. O

Lemma 4.5.17. — If w € 1 then we have an equality of Hecke operators
Ulww).1 (Uktiw).1 — Unwaw).1) = Uy 0
on RT (X g, Q4(=D)).

Progf. — Using a Cousin complex computing the cohomology as in the proof of
Lemma 4.5.15, we reduce to proving that the underlying (cohomological) correspon-
dences agree away from the boundary. By definition, the correspondence associated to
Upww).1 parameterizes triples (G, H,,, L) where L. C G,[p] is étale, totally isotropic of
degree p*, and has I.N H,, = {0}. Similarly, the correspondence associated to Z,, param-
eterizes triples (G, H,,, M) where M C G,,[p] has multiplicative rank 1, is totally isotropic
of degree p°, and has M N H,, = {0}. Finally, as in [Pil20, Prop. 10.2.1], the correspon-
dence associated to U, s parameterizes triples (G, H,,, N) where N C G, [p*] is totally
isotropic of degree p*, N[p] has degree p*, and N N H,, = {0}.

Comparing these definitions, we see that on the level of underlying correspon-
dences, we have pU, 9 = Upyw).1Zy. Since the normalization factors involved in the
Hecke operators Uy, 5, U1, Zy are respectively p—, p3, p7%, and since 5+ 1 =3+ 3,
the result follows. U

4.6. Perfect complexes of p-adic modular forms. — Let K = KK, be a reasonable com-
pact open subgroup with K, = G,(Z,). Set

UI = HUU,Q HUU,lUv,2~

vel vel’

This is an endomorphism of M{)_ad’n = RF(%E}I’QH@OO), Q(=D)), an object of the
bounded derived category of Aj-modules. In this section we prove the following theo-
rem.

Theorem 4.6.1.

(1) The operator U is locally finite on Mff_ad"q.

(2) Let e(U") be the ordinary projector attached to U' and let My := e(UI)l\/I/f’ad’KI be the
associated direct summand. Then the complex My s a perfect complex of Ay-modules con-
centrated in the interval [0, #I].
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(3) For all classical algebraic weights k = ((ky, ly)y)p) with [, =2 when v € 1 and k, =
by =2 (mod p— 1) for all v|p, there is a canonical quasi-isomorphism:

e(UI)RI‘(%%é)K,,, @ (=D)) — M ®}, , Z,.

(4) There is a unwersal constant C. depending only on p but not on the tame level K such that
Jor all classical algebraic weights k = ((ky, l,)v)p) with [, =2 whenv €1, k, =1, =2
(mod p—1) forall v|p, ky — L, > C when v|p, and [, > C when v € I, the map:

([ [T ][] TV H XL, 0 (D) > HM &%, , Z,)

vlp vel’
is an 1somorphism_for 1 = O and injective for 1 = 1.

We will deduce the theorem from a number of intermediate results. In particular,
we need to analyze the Hecke operators U,, ; and U, » and relate them to T, ; and T,
in order to be able to use the results of §4.2.

4.6.2. Reduction of the correspondence modulo p. — Let w € I'. We begin by considering
the special fibre of the correspondence over %%{,Kli(p) underlying the operator U, ;; we
write G, 1 (p), for this special fibre. By reduction modulo p, it follows from Lemma 3.8.10
that for each classical algebraic weight k we obtain a cohomological correspondence
which we continue to denote by U, ; : u; (wklka(ﬁ)l) — u'1 (" |Xi<.Ku(/'>1)‘

Lemma 4.6.3. — For any place w € 1, we have a commutative diagram

Uw, 1 \
Uy U,

Uy,
uy (0" ® det a)fé_l) . U (0" @ det a)g:}l)

w

Proof: — Since the kernel of ujG — G is étale, and the formation of Ha(G,,)
commutes with étale isogenies, this is immediate. UJ

We now consider the operator Uy, » on Xi ¢:(p)1, where w is any place lying over p.
Taking the special fibres of the correspondences of §4.5.8 with m = 1, we have a corre-
spondence

Cu21(P

X{{”,Kli (Ph X}(,Kli (Ph
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— ria)"|X1

and by Lemma 3.8.10, a cohomological correspondence 7" |x OIS

K’ Kli (020
and a correspondence

(]wiﬂ(ﬁh

Xi ki Xi{”,Kli (P

and again by Lemma 3.8.10, a cohomological correspondence s50°|xt ), —

(IS
sla) |X}(”,Kli(p)l *

We can associate to these cohomological correspondences Hecke operators which

we denote as before as
U;u € Hom(RT" (X%(//,Kli (P, @), RT (X%(,Kli 1, @),
U’ € Hom(RT (X g ()1, @), RT X i ()1, @)).
We continue to write U, » = U/ o U .

Lemma 4.6.4. — For any w|p, we have commutative diagrams

U/
* K Y (IS
@CU nw

l rsHa(Gu) l rtHa(Gw)
—1 U; | —1
B @deta, ) — r(@* @ deta,)

N
* K Yu ! K
S| S%U

l sHa(Gw) J/ syHa(Gw)

i

sH(@* @ detafy ) —= sh(@* ®@detaf )

Proof. — See [Pil20, Lem. 10.5.2.1]. O

4.6.5. Reduction of the correspondences to the non-ordinary locus.

Lemma 4.6.6. — For any w|p, the Hasse invariant Ha(G,,) is not a zero divisor on each
of Cu2,1(P)1 and Coy, 9 9(p) 1.

Progf. — See [Pil20, Lem. 10.5.2.2]. OJ
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We now assume w € I (otherwise the schemes we consider would be empty) and
consider the rank one locus at w, XK_Ié”hl ()1, which by definition is the vanishing locus
of Ha(G,) in XK ci(?)1. Taking the zero locus of Ha(G,) at all entries of the corre-
spondences Cy, 1 (p)1, Cy.o.9(p)1 and Cyy9.1(p)1 (and taking into account Lemmas 4.6.3
and 4.6.4), we obtain correspondences

;wll (Ph

KKh (p)l KK]] (p)l

wQ 1(/7)1

K/_/]f(h(p)l K Kl (17)1

;wylg(ﬁ)l

Xgi (01 X k()1
By Lemmas 3.8.10 and 4.6.6, we also obtain cohomological correspondences

7" |1 ol > rw lL=w

G izt () = 110 i o Kk 01

K,Kli, 1

and

50" xkwi gy, = 50 “Ixizul -

We can associate to these cohomological correspondences Hecke operators which
we again write as

U, € Hom(RT (X34 ()1, @), RT (X341 (0)1, @),
U, € Hom(RI' (X% ()1, @), R (X34 (01, @),

w

U e Hom(RF(XK Kl "), @), RF(XK/, Kh(ﬁ)h ")).

We of course continue to write U,, o = U o U’ .
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By Lemmas 4.6.3 and 4.6.4, the long exact sequence

O B XY (91, 0 @ detaly )

H*(XKKh(p)l’wK)
— H' (X501, 0° @ detaly )

1s Uy, »- and U, ;-equivariant.

Lemma 4.6.7. — We have commutative diagrams

Uu),l
Uo 0" |xtmui ), N
l wsHa'(Gu) l ufHa'(Gy)
Lw 1
(0 @ detal; 'l b)) = 71 (@F ®detal; |y b=l )
U,
T |XL,,";;1 on no It g,
l 7;Ha,(gw) \L "THa/(gu')
U/

75 (" ®detwg |X1 ul(p)l) —— (" ®deta)g |X1 wl(p)l)

v,
S w |XK_131)11 (p)l SQa) |XK/_’ul}§lh(p)l
\L STHa/(gw) l A‘;Ha/(gw)
(a) (024 detwp |X _wl(ﬁ)l) — 52(60 & deta)p |XK/_u;§lh({))l)
Proof — See [Pi1120, Lem. 10.5.3.1]. U

4. 6 8 Comparison of Upo, Uy and T, Ty na special case — We fix J C I. The
space XK[ Kh (p)1 carries a finite étale map to the space XK i " Studied in §4.2.35.
This map is given by forgetting the multiplicative groups H, of order p at the places
v € J°. Therefore, it has degree (p + 1)*'. Let k = (k,, [,) be a classical algebraic weight.
We have an injective map

_J] —JLQ

HO(X "7, 0 (D)) — H' Xy b ™ (0)1, 0 (—=D)).

We assume that [, > 3 if v € I, that &, > 3, [, > 2 if v € I, and moreover that
ly>p+1andk, > 2p+ 3 if v €]. On the left hand side, we have an action of T, for w|p
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and T, ; for w € I'. On the right hand side, we have an action of U, s for w|p and U, ,
for w € I. This follows from the fact that all these Hecke operators have been proved to

commute with the Hasse invariants (by Lemmas 4.2.7, 4.2.15, 4.2.19, 4.6.3, 4.6.4, 4.6.7).
The main result of this subsection is:

Proposition 4.6.9. — There s a unwersal constant C. depending only on p and ¥ but not on
the tame level K such that if l,, > 2 for all w, ky,, — L, > G _for all w|p, and l,, > C for all w € ",
then:

(1) The operator U' = nwlp Upo [1yere Uw,i is locally finite on

G1,IL=11,=7¢2 K
HO(XK,IKHJ ()1, 0 (—=D)).

@) Let T' =TT, Tw [Tuer Tuni- The map

~ G,IL=11,=7¢2 P Gi,IL=11,=1¢2 P
A(THH Xy 777, 0 (D)) = «(UDH K ey ()1, 0 (=D))
s an isomorphism.
(3) This isomorphism s equivariant for the action of T, 1 on the left and U, | on the right for
allw eI and of T, and U, 5 for all w € J.

This result establishes a first relation between the cohomology at Klingen level and
spherical level and will allow us to reduce a big proportion of the proof of Theorem 4.6.1
to Theorem 4.2.1.

Remark 4.6.10. — One can interpret this result as saying that the ordinarity con-
dition prevents the existence of “newforms” of Klingen level.

We have a finite étale map:

I,:Jl,:J(Q I,:Jl,:]c?
Xigi - 0= Xy )1

which parametrizes multiplicative subgroups of order p, H,, C G, [p] for all w € J*. We
introduce various Hecke operators that decrease the level at places w € J° and compare
them with our existing Hecke operators.

We first define a correspondence for each w € J° (with X, defined below),

L=y1,=p2 L=Jl,=_f2
X7 Xg )



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 285

as follows. We let x; : X, — (XI ==y

parametrizes subgroups L, C G,[p*], where L, is totally isotropic of étale rank p* and
multiplicative rank p. A standard computation shows that x; is finite flat. For a suitable
222 which on the
p-divisible group is given by G > G/L,, (since we are only dealing with H° cohomology
groups, we will for the most part suppress the discussion of the boundary in this section).

We can define an operator, using the usual procedure, associated to X, T, €

End(H((X ™)1, 0 (-D))).

If we denote by XK élll _]Cg(p)l — (X;:ﬂ’:‘]&)l the finite étale cover that parame-
trizes subgroups H, C G,[p] of order p, then we observe that the projection xy lifts to
a map X, —> XK ]élll R (p)1 by sending (G, L,) to (G/L,, Gy,[pl/Ly) and therefore one

can promote T, to maps T/ and T” fitting in a commutative diagram (where vertical

)1 be the natural forgetful map, where X,

choice of polyhedral decomposition, there is a map xy : X, = (Xg

maps are the injections given by the obvious pull back maps):

T

I,=y11,=2 « w I,=711,=2 P
(4.6.11) HO Xy ()1, @ (D)) ——= HOXg " ()1, @ (=D))

T ]

0= K T 0(x T2 K
H ((Xk )1, @ (=D)) —— H(Xg )1, @ (=D))

On the other hand we have already defined a Hecke operator T, on

HO((XI b I[2)1, @ (—D)). We also have a chain of finite étale maps:
=1,=52 N L=j1,=2
KIéh - P — Kliliwj P — X R
where the first map forgets the multiplicative subgroup of order p, H,, C G,/[p] for w €
J°\ {w}. We have defined an operator U,, , on H’ (XK_I‘Q1 _yz(]))l, @*(—D)), but clearly it

descends to an operator on H’ (XL&JJL (p)1, @ (—=D)) because only the Klingen level

structure at w matters in the definition of U, o.

Lemma 4.6.12. — Assume that k,, — [, > 1.

(1) We have T, = Ty
(2) Wehave Uy, 0T =U, 90U, ,.

Proof — See [Pil20, Lem. 11.1.1.1, Lem. 11.1.1.3]. O

Lemma 4.6.13. — Let w € J. The canonical map HO(X(’II ! _](2
H’ (XI((I}KIH e 2(/7)1, @* (—D)) intertwines the actions of Ty, and U, .

w*(=D)) —
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Progf. — By Lemma 4.2.19 we have T,, =T, , o T}, which corresponds to U, o

by definition of the right hand side. 0J

Lemma 4.6.14. — Let w € I°. The canonical map HO(XEHI’ZJI’ZJL.Q,a)"(—D)) —
H (X! Kh‘“’=f2(p) 1, @ (=D)) intertwines the actions of Ty, and Uy, ;.

Progf. — By Lemma 4.2.6, we have T, = T”U’J’l, which corresponds to U, by
definition on the right hand side. UJ

Corollary 4.6.15. — Suppose that we have l,, > 2 and k,, — b, > 1 for all w € J°. Then the

action of Ty Uno on HUCXie i ? ™ (0)1, 0¥ (=D)) is locally finite, the action of TT, ey T is
locally finite on HO(XG1 L=l ](2 @ (=D)), and the map
Gy,I,=11,=¢2 K
([ TR X777, 0 (—D))
wej’
=11,=1c2 K
= o[ ] Uu) B X567 (01, 0 (D))

wej¢

is surjective.

Progf. — Combining the diagrams (4.6.11) for all w € J, we see that there is a
commutative diagram:

l_[we_]fTH
=yl,=y¢2 P =yl,=2 P
HO Xy "2 ()1, 0 (D)) H X ()1, 0 (=D))

T

e nwe_]f Tw pl — —
HO (X, 777, 0 (D)) H (X | 777, 0t (D))

where the vertical maps ¢ are the natural injections. We deduce from Lemma 4.6.12
that Hwey U,y 0 (Hwey T,) = Hwey Uy 0 Hwey w2 The argument now follows
the proofs of [Pil20, Cor. 11.1.1.1, Cor. 11.1.1.2]. We deduce that l_[wey w acts

locally finitely on HO(Xj'} " _yz,a)"(—D)) by Lemma 4.2.15. It follows that for
any f € H" (XEII’;’TJ l':J[Z([o)l, ®“(=D)), there is a ]_[wejf T, -stable finite-dimensional vec-

tor space V containing (l_[we‘ T,)'f, and then the subspace of HO(XK Khﬂ 1’:'][2([7)1,
@* (—D)) spanned by ¢(V), ]—[wey U,.ot(V), [, and ]_[wejr U, of is finite-dimensional and
]_[wey w.o-stable, so ]_[wejf w2 acts locally finitely, as claimed.
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To prove the claimed surjectivity, if f € e(]_[welc U, Q)HO(XK KII_JI’:']CQ([))I,

o’ (—D)), then one checks from the definitions that we have

S=ed[ U [ T T w2 ™. O

weJ weje wej wej

It remains to prove the injectivity of the map considered in Proposition 4.6.9 (2).
This will be done by exhibiting an inverse up to a certain power of p. For this reason,

it 1s necessary to lift the situation to a Zp—ﬂat base. This is done by considering certain

formal schemes. Let us denote by .%‘ ? the formal completion of .’{GI’I’Z 7 along

XKl T2 We also denote by %K Kh_ sl 2([)) the formal completion of Xy Kh_VQ( )
along XKlth T _IKQ(p)l. We denote by I the ideal of definition of these formal schemes.

Observe that p € T and that I/p = (Ha(G,) detwg ", w €]).
We consider the modules

HOx 7" 0f(=D)) and HOEL "7 (p), o (—D)),

which are I- adically complete and separated, and also Z,-flat. Moreover, the natural map

H° (%Gl A o*(=D)) - H° (Xk, Kh_Jl’:JL'Q(p), ®*(—D)) reduces modulo I to the map
HO((X RS @ ( D)) — HO(XIngl’i=J"=J‘Q(p)1, @*(=D)) (we are using here that
(X b )1 and XK Kh_ B ()1 have affine image in the minimal compactification

and thus that higher cuspidal cohomology over these spaces vanishes).
We can lift the map

G ,l,;]l,:JrQ

Tw . HO((XK )1’ (,()K(—D)) N HO((XEI,I,:.]L:JCQ)]’ a)K(_D))

Gi,1, Jl ]52 I,:‘]l,:‘][Q

to a map Ty : H(Xs o (—D)) — HO(XL"
dences X, lift to Correspondences on the formal schemes).
There is a trace map

, w(=D)) (the correspon-

Tr:HOG 0 7 (), 0 (—D)) » HO(xe 777, 0 (—D))

. . , Gy, I,=11,=<2 1L, L=y1,=2
associated to the finite étale map Xy gy N () = S

Lemma 4.6.16. — For any n € Z |, we have the congruence

Tro(J[Uu2) 0t =pT(J]T)"(/) (mod ptesro=ivy
wej¢ weJ¢

G1.L=1, ](2

Sor any f € HY (XK o“(—D)).
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Proof. — We have

Tro(] [ Un2)"ou(f (G, w)) = nZW%ZZ(Zﬂg/(@w L), @)

wej’ wel’ L

where H,, runs over all multiplicative subgroups of rank p of G, [p] and L, , runs over
all totally isotropic subgroups of order p*" of G, [p*], with trivial intersection with H,,
(this implies that L, , is locally in the étale topology an extension of Z/p"Z © Z./ p”QZ by
), and where  is a trivialization of wg and ' is a rational trivialization of wg/ (@, 1.,
defined by the condition that 7*®@’ = w for the isogeny G — G /(€L ,). Given a group
L, ., we can find p subgroups H,, of order p and of multiplicative type such that L,, , N
H,, = {0}. This means that the groups L,, , in the formula defining Tro (]|, o Uy.2)ot(f)

occur with multiplicity . On the other hand,

[1T/ G0 = /ﬁ S S G/ @l )

wej’ wel¢ L

where L, runs over all totally isotropic subgroups of order 4° of G,,[*] with multiplicative
rank 1. Now we observe that

(JTTw /G, )

weJ’

1 / in ko —
- WZE(@/(@wLw,n),w) (mod g io—ie)
' we* Lu,

where L,,, runs over all totally isotropic subgroups of order p*" of G, [p*"], which are
locally in the étale topology an extension of Z/p"Z @ Z/ p”QZ by . Indeed, if we write

It G o = nzuqJﬁgZZﬂg/(@w ), @)

wejJ¢ wel’ L, ,

using the definition of ]_[wE . T,, we find that all the groups L, appear exactly one
time among the groups L, ,, and that all the remaining groups precisely contain the
multiplicative subgroup of Gu [#] (and these give a contribution divisible by p*«=%)), ]

Lemma 4.6.17. — Assume that for all w € J°, we have k,, — 1, > p™". Then the natural
map

~ G, IL=(1,=2 P
([ [TH X777, 0 (—D))

wej’

= ([ Uu H 7 7 ()1, 0 (~D))

wej’



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 289

s byective.

Progf. — We will show that the map:

ce[]TwB @ T 0 (-D))

w EJ c

= e[ U H @G (), 0 (—D))

wejJ¢

is bijective (note that it is legitimate to apply the ordinary projectors on these spaces,
because they can be written as projective limits (modding out by I") of spaces carrying a
locally finite action). The result will then follow by taking reduction modulo I. The map
is surjective by Corollary 4.6.15 (and using I-adic approximation). It remains to prove
injectivity. Let us take

fed[]Tor @7 o (-Dy),

wej’

with /7 0 and ¢(f) = 0. Without loss of generality, we can suppose that

Sepe[ ] TR @777 0t (-D)).

wej’

It follows from Lemma 4.6.16 that Tr(if) = p¥'f (mod p™w*w=") Therefore, f €
Pttt o[, T HOE 7, 0 (~D)). This is a contradiction. O

Proof of Proposition 4.6.9. — 'This is immediate from Corollary 4.6.15, Lemma
4.6.17, and Lemmas 4.6.12, 4.6.13 and 4.6.14. ]

4.6.18. Comparison of the cohomology on X%(GKIII ()1 and X%(G]‘ — We now deduce the

following proposition.

Proposition 4.6.19. — There s a uniwversal constant C. depending only on p and ¥ but not
on the tame level K? such that if l,, > 2 for all w, ky, — b, > C for all w|p, and l,, > C jfor all
w € 1, then the operator U' is locally finite on RT (Xié;léli (p)1, @ (—=D)) and there is a canonical

quast-isomorphism:

d(THRT (X, @0 (=D)) — e(UNRT (X 3hi(p)1, @ (—D)).
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Proof. — 1In §4.2.30, we constructed a complex K* computing explicitly the coho-
mology RI'(Xg', @*(—D)). We recall that K¥ =

. Gi,I,>1c2 K (p—
S lm H(X T, 0 (D) ® Q) (det G,)" "/
X Hwej Ha(Gy) wejJ
O (Ha(G.)")).
wej

In exactly the same way; there is a complex L* computing RI” (XK (P, 0 (=D)),
such that LF =

Gjam— lim HGGT (), 0" (—D) © @) et G
x [Typey Ha(Guw) we]
O (Ha(G.)")).
wej

It therefore suffices to prove that for each ] C I and each n> 1, U' is locally finite

on
H' (X" ()1, 0 (D) ® R)(det G,V /(Y (Ha(Gu)"))).
wejJ wejJ
and the map
(THH (X (1. 0 (=D) ® R)(det G,)" /(Y (Ha(G,)")) —
weJ wej
((UNH" (X" (1, 0 (D) @ R)(det G, /(> (Ha(G.)")))
weJ weJ

is an isomorphism. In the case n = 1, this is Proposition 4.6.9, and the general case follows
by induction on 7, using the short exact sequence

0— o (-D)® ®(det gw)(’H)(ﬁfl)/(Z(Ha(gw)"”)) —

wejJ wej

" (=D) ® Q) (detG,)" ™" /(Y " (Ha(G,)") —

wej wejJ

o (-D) ® Q)(det G,)"*"" /(Y (Ha(G,))) — 0

we]J wej

and the acyclicity of these sheaves (for which see the proof of Proposition 4.2.33). 0
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4.6.20. The proof of Theorem 4.6.1.

Lemma 4.6.21. — If « = ((ky, [,)v)p) 5 a classical algebraic weight with I, = 2 when
velandk,=1,=2 (mod p— 1) for all v|p, then for each n > 2 there is a diagonal map making
a commutative dagram:

RT (X (), 0 (—D)) RO (XL ("), 0 (—D))

R

RI(XG (), 0 (=D)) — RLXgt' (")), * (=D))

Progf. — This is an easy computation in the Hecke algebra, see the proof of [Pi120,
Thm. 11.3.1]. O

We now make repeated use of Nakayama’s lemma for complexes, in the form
of [Pi120, Prop. 2.2.1, Prop. 2.2.2]. In fact, we need the following slight strengthening
of [Pil20, Prop. 2.2.1], which is proved in the same way; for ease of reference we explain
how it follows from results in the literature.

Lemma 4.6.22. — Let R be a complete local Noetherian ring with maximal ideal w, and
let M® be a bounded complex of m-adically complete and separated, flat R-modules, with the property
that the cohomology groups of M* @r R/m are finite-dimensional and concentrated in degrees [a, b].
Then M* is a perfect complex, concentrated in degrees [a, b].

Progf. — 1t follows from [Pi1120, Prop. 2.2.1] that M* is a perfect complex, and it
then follows from [K'T'17, Lem. 2.3, Cor. 2.7] that it is concentrated in degrees [a, b]. U

All the complexes we consider below can be represented by bounded complexes of
flat, complete and separated Z,-modules (resp. A;-modules), as can be seen by consider-
ing a Cech complex for any finite affine cover, so the hypotheses of Lemma 4.6.22 apply

in our situation.

Lemma 4.6.23. — For all classical algebraic weghts k = ((ky, l,)v)p) with b, > 2 for
all w, k, — 1, > C for all w|p, and 1, > C for all w € 1°, the operator U is locally finite on
RI" (%ﬁ}fgh(pw), @ (—D)) and there is a canonical quasi-isomorphism:

d(THRT (X, 0 (D)) — e(UHRT(XR5:(0™), 0 (—D)).

Proof. — By Proposition 4.6.19, together with [Pil20, Prop. 2.2.2, Prop. 2.3.1], the
action of U! is locally finite on RT" (%}fK'h (), @ (—=D)), and the map

«(THRT (X, 0 (—=D)) — e(UHRT (X 3:(p), 0 (=D))
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is a quasi-isomorphism. It follows easily from Lemma 4.6.21 that U' is locally fi-
nite on RT(XE3:(6°), @*(=D)) and that the map e(UDRT (X3 (p), (D)) —
e(UHRT (%ié’léh(poo), ®“(—D)) is a quasi-isomorphism, as required. ]

Let k = (k,, ;) be a classical algebraic weight. Let Kw* denote the kernel of the
surjection of Corollary 4.3.9, so that over X . (6™), so we have a short exact sequence
of sheaves

0— Ko — o = Q= 0.

A key step in the comparison between the ordinary forms of these weights is the following
basic lemma.

Lemma 4.6.24. — For any w|p, we have U,, o € pEnd(RT (%K (), Kao')).
Proof. — This follows immediately from an examination of (4.5.12). 0J

Lemma 4.6.25. — For all classical algebraic weights k = ((ky, l,)y),) with [, = 2
when v € 1 and k, = [, = 2 (mod p — 1) for all v|p, the operator U is locally finite on
RF(.’{E'Kh(p"O) @ (—=D)) and RF(%K 1™, (=D)), and the map

e(UNRT (X5 (), @ (=D)) — e(UNRT (X' (47), °(=D))

is a quasi-isomorphism.

Proof. — We consider the exact triangle
RT (X (67), Ko (=D)) = RT (X (6™, @ (=D))
— R (i (0™), 2°(=D)).
By Lemma 4.6.24, the operator U is topologically nilpotent on
R (X5 (0), Keo* (=D)),

so in particular it acts locally finitely with e(U") = 0.

If we further assume that [, > 2 for all w, £, — [, > C for all w|p, and
Ly > C for all w € I, then it follows from Lemma 4.6.23 that U' is locally finite on
RI (%K ki (P™), @ (=D)). Therefore in this case, it follows from the above exact triangle
that U is locally finite on RT (%K (™), “(=D)).

Again using [Pil20, Prop. 2.3.1], we deduce that U is locally finite on the complex
RI (%g'th(po") Q“(=D)) for any weight K and therefore (again using the above exact

triangle) it 1s also locally finite on RI" (%K ki (), @ (—=D)) for any weight «, as required.
O
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Lemma 4.6.26. — For all classical algebraic weights k = ((ky, 1,)y),) with [, = 2 when
velLk=0=2 (modp—1), for al vip, b, > 2 for all w, ky, — b, > C for all w €1,
and 1, > C for all w € I°, the complex e(UHRT (%}fﬁh(pm), Q(=D)) s a perfect complex of
Z,-modules concentrated in degrees [0, #1].

Progf. — 'This follows from Lemma 4.6.25, Lemma 4.6.23 and Theorem 4.2.1
(noting that T' divides T', so that e(TI)Rl"(X?l’l,a)"(—D)) i1s a direct summand of
o(THRI (X, ¥ (—D))). O

Lemma 4.6.27. — The operator U' is locally finite on RT (Xg5:(p%), Q1(=D)), and
e(UNRT (%i&(’;ﬁh (p™), QU(=D)) s a perfect complex of Ay-modules concentrated in degree [0, #I].

Proof. — This follows from Lemma 4.6.26 by Nakayama’s lemma, in the form of
Lemma 4.6.22 and [Pi120, Prop. 2.3.1]. O

Proof of Theorem 4.6.1. — Parts (1) and (2) are Lemma 4.6.27. Part (3) is Lemma
4.6.25, together with Lemma 4.6.21, which shows that the natural map

((UHRT (X55(0), 0 (D)) = «(UHRT (X5 (0™), @ (=D))

is a quasi-isomorphism. Part (4) follows from Theorem 4.2.1, together with Proposi-
tion 4.6.19 and Lemma 4.6.25. O

5. Doubling

In this section, we prove a doubling result (see Theorems 5.8.6 and 5.8.4) which
1s the key ingredient for proving local-global compatibility in §7.9. The general ideal
of doubling is that certain spaces of ordinary low weight modular forms admit (at least)
two degeneracy maps to spaces of ordinary modular forms of either higher weight or
higher level. For example, the space of weight one elliptic modular forms modulo p of
level '} (N), 1 N, admits degeneracy maps f/ +— Ha - f and f +> f? (where Ha is the
Hasse invariant) to spaces of forms of weight p and level I'; (N). (Alternatively, after di-
viding by Ha, these degeneracy maps can also be thought of as maps from classical forms
of level I'}(N) and weight one to ordinary p-adic modular forms of level I'}(IN) and
weight one.) If one can show that the direct sum of two copies of the original space em-
beds under the direct sum of these degeneracy maps, then, following ideas going back
to Gross [Gro90] and isolated and expanded by [Wiel4] (see also [CG18] for further
exploitation of these ideas), one can make deductions about the local properties of the
Galois representations of interest.

Let us explicate this in the example of weight one forms mentioned above (the fol-
lowing is implicit in the first few lines of [Gro90, p. 499] and explicit in [Edi92, Prop. 2.7]).
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If / is a weight one elliptic modular cuspidal eigenform with Nebentypus character x and
T)-eigenvalue a, satisfying al% # 4% (p), one can show that the associated Galois represen-
tation is unramified at p in the following way. Since the polynomial X* — ¢,X + x (p) has
distinct roots, one can show using the degeneracy maps above (and having established
doubling) that there are two weight p ordinary forms congruent to / with level I'; (IN)
and T,-eigenvalues given by the roots & and B of X* — 4, X 4 x (). Using the known
properties of the corresponding Galois representations, one shows that the restriction
to p 1s an extension of distinct unramified characters, and thus that the extension is split
(because the representations corresponding to the two weight p forms are extensions in
the opposite orders).

The above argument for local-global compatibility at p works equally well in the
ordinary symplectic case once we have established a doubling theorem, and we will use
this in §7.9 below. Before proceeding, we begin by recalling the doubling argument in
more detail in the case of GLy /Q.

5.1. The case of GLy /Q, — For the moment, let X denote the special fibre of a
classical modular curve of level I'j (N) with N > 5 with pt N, and let @ denote the usual
mvertible line bundle on X (as in [Gro90, §2]). The doubling strategy of [CG 18, Call8]
may be reduced to ruling out the existence of simultaneous eigenforms f € H(X, w)
for the operators T, and U,. This is easily seen: indeed if / is a simultaneous eigenform
for T, and U,, then it is also an eigenform for V, =T}, — U, which is immediately seen
to be impossible by examining the action on g¢-expansions. This argument does not di-
rectly generalize to the symplectic case (even over Q), and instead, the paper [CG20]
employs a rather labyrinthian argument involving ¢-expansions to prove an analogous
result for GSp, /Q. In this paper, we give a different argument which is based on analyz-
ing the behavior of the U, operator at the non ordinary locus. This argument in this form
appears to be new even for modular forms of weight one (although there are certainly
some echos of this argument in papers such as [Joc82, Ser73, Cail4]), and so we present
it first as a warm up for the general symplectic case.

If f € H (X, w), we may think of U,/ as a section of H (X \ SS, w) for the finite
set SS of supersingular points of X. We claim that there is a commutative diagram

Ha.U
(5.1.1) HO(X, w) — = H'(X, o)

l !

H(SS, w) — HO(SS, o)

where the vertical maps are the natural restriction maps, and the lower horizontal map
is an isomorphism. The existence of such a diagram can be proved in several ways; for
example it can be checked in the same way as the corresponding statements for GSp, /F



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 295

later in this section, by using the Kodaira—Spencer isomorphism to describe the U, op-
erator as a trace map on differentials.

Suppose that f is a U,-eigenform in H’(X, w) with non-zero eigenvalue. Con-
sidering the commutative diagram (5.1.1), we see that since Ha - U,/ maps to zero
in H'(SS, ), the restriction of f to SS must vanish. Thus f = Ha - g for some g €
H’(X, w*7*), and this cohomology group vanishes if p > 2, so f = 0 in this case. If p = 2,
the only non-zero sections of H’(X, Ox) are constants, and we deduce that f is a multiple
of the Hasse invariant.

In the rest of this section we prove a generalization of this to the Hilbert-Siegel
case. The analogue of the commutative diagram (5.1.1) in the Siegel case (with F = Q) is
the following commutative diagram (where we write Y=! for the locus in the interior of
the special fibre of the Shimura variety with Klingen level H which is multiplicative, and
we write Y=! for the divisor where the abelian variety is non ordinary:)

Ha- U1

HO(YZ!, 0?) HO(YZ!, /)

HO(Y=!, 0?) HO(Y=", o/*)

However, in contrast to the modular curve case, the map on the bottom line of this dia-
gram is probably not injective, so we cannot conclude as before. Instead, we construct a

larger commutative diagram

Up_g
HO(Yzl, 6()2) HO(YZI’ wp—H) HO(YZI, w?)
HO(Y:I’ w?) HO(Yzl, wp+1) HO(Yzl, a)Q)'

If we assume that / € H(Y=!, 0?) is also a U,,-eigenform with nonzero eigenvalue
(which suffices for our purposes), we can use this diagram to make a similar argument
to the above, considering the composite morphisms from the top left to the lower right
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hand corner. It may help the reader to note that there is an analogous diagram for GLs:

#)

/\

Ha-U,
H'(X, w) — H*X, o) H(X, w)

l | |

H(SS, w) — = HO(SS, o) — = H'(SS, w)

(again, the existence of this diagram can be checked in the same way as our calculations
below). We see that if U,/ has no poles, then the image of / in the bottom right hand
copy of H(SS, @) vanishes; since the diamond operator (p) is an isomorphism, it follows
that the restriction of / to SS vanishes, and we conclude as before.

There is an additional complication in the Hilbert—Siegel case, which is that rather

than considering the entire Shimura variety, we are only working on an open sub-
>yerl, >ypere2
K/’(I)Kp’le . . . L. . X
modular forms is not obvious. We sketch a proof for this vanishing in §5.9 below, using

space X . This means that the vanishing of the space of (partial) negative weight
Fourier—Jacobi expansions (which ultimately reduces to the vanishing of spaces of Hilbert
modular forms of partial negative weight), but we do not rely on this result. Instead, we
give a complete proof of a slightly weaker result which is nonetheless sufficient for our
purposes; this argument does not use the boundary, but rather considers the behavior of
another Hecke operator Uxyy).1 — Unyw).1 (called Z,, below) along the w-non-ordinary
locus.

5.2. Conventions. — Throughout this section, we fix a set  C S, and a prime w € L.
Recall that, as in §4.3.4, for each subset I C S, we set

K, (D) = [ [Kli(v) [ [Iw).
vel veld

>verl, >yere2

ol
and we write X 1= X5

. We will use the following simplified notation:

. vel L, > pere
e We write X| for the space XE/}?II)K; el
e We write X)="? for the open subspace where A[w™] is ordinary.
e We write X[=' for the (reduced) complement of this open subspace, which is a

divisor in XI1 .

We also write Y7, Y5 =% and Y; ="' for their interiors. We use the analogous notation X',
' etc. for the corresponding formal schemes. We denote detwg by @ and detwg, by
w,,. We will finally denote the partial Hasse invariant Ha(G,) € H (X}, %) by Ha,,.



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 297

5.3. The operator Uxyy,1. — We now define a Hecke operator Ugj)1 (see
also § 4.5.6). We again consider the p-adic completion of the correspondence considered
in §3.9.17

Xk
N
%K %K

where we recall that K = K/K,, with K, =[], GSp,(Or,) and K’ = K’K| with K =
Si(w) X [],2, GSpy(OF,).

We can form the fibre product Xx X, x X'. As X' — Xk is étale by Proposition
4.3.3, this inherits the properties of Xx» deduced from the theories of local models and
toroidal compactifications. In particular it is flat over Z,, normal, Cohen-Macaulay, and
the ordinary locus is dense in the special fibre, see §3.4, Theorem 3.5.1, and §4.1. We
denote by Ckjiw).1 the open and closed formal subscheme of this fibre product where the
kernel of the canonical isogeny p;G — p5G has trivial intersection with the multiplicative
group pyH,,.

We obtain a correspondence

CKiiw),1
N
Xt Xt

where v; : €xjiwy.1 —> X' is induced by the projection Xg: x bLXK X' = X'and v, is de-
fined as follows: the projection X/ X, x, X' = Xx composed with p, : X — Xk in-
duces a map Ckji).1 — Xk which we would like to lift to a map vy : ki), 1 — X' In
other words, given a point of Cxyi.1, we need to give multiplicative subgroups of order
p,H,, Cp5G, forallw’ € S,. But for all w’ € S, the kernel of the isogeny G, — p5Gur
has trivial intersection with p{H,,, (for w’ # w it is an isomorphism, and for w’ = w this
was assumed in the definition of Ckjy 1) and we take H', to be the image of pTH,,» under
this isogeny.

Lemma 5.3.1. — We have R(v1),Oe¢yyy, = 1) Oeyy,, and there is a trace map
R(Ul)*OQ:KH(w),l - O.%I'

Proof. — We have X = Xk 5 for a smooth polyhedral cone decomposition £ and
we have Xx' = Xk . We can now assume that £’ = ¥ because we have Rﬂ*OxK/ o =
O%K/I for m : Xx/.5» — X'y the projection (we note that the cone decomposition at level
K’ may not be smooth but we will not need this). Since ¥ = X', the map v, is quasi-finite,
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and (since it 1s proper) is therefore finite. Hence we have R(Ul)*OCmi(w,l = (Ul)*OEKn(w),l-
Moreover, as €xjiyy.1 is Cohen—Macaulay and X! is regular, we deduce that the map v,
1s also flat, and so it has an associated trace map. 0J

We let €1:<i'f(2w),1 be the open formal subscheme where viG,, (or equivalently v;G,)
is ordinary. It restricts to a correspondence over X~ Over Q:I?fffw),p the multiplica-
tive rank of ker(v;G, — v3G,) is either 0 or 1 (it cannot be 2 because H,, has trivial
intersection with ker(v{G — v;G)), and hence we have a decomposition

=w2 _ g=wlet | | =w2,m-et
Q:Kli(w),l - Q:Kli(w),l Q:Kli(w),l
=w2,el =w2,m-et

where €jin ) is the locus where the isogeny viG — v;G is étale, while Cji """ is the
locus where ker(v;G — v;G) has multiplicative rank 1.
For any weight « = (£, /,), we have a map

vy — viw[1/p]

induced from the universal isogeny (we note that we are not assuming /,, > 0.) Tensoring
this map with the trace map of Lemma 5.3.1, we obtain a map of sheaves over X':

O, : Rv)) w0 — “[1/p].
We now define UKli(w),l :p_lw_l(@,{ if Zw < 2 and UKli(w),l :[7_3®K if lw > 2.

Lemma 5.3.2. — We have Uxgiwy,1 = (Rv)), 050" — o,

Proof. — We follow the same strategy as the proof of Lemma 3.9.18. Both the
source and target of this map are locally free sheaves over the smooth formal scheme X'.
To prove that the map is indeed p-integral, it is enough to prove it over the ordinary locus,
and we check it separately on each type of component.

On the component of the map corresponding to Czﬁa’f){l, the 1sogeny is étale over
the ordinary locus and therefore the map v;w“ — viw*[1/p] is actually an isomorphism
V" — viw, while the trace map is divisible by p” (see the proof of Lemma 3.9.18).

On the component of the map corresponding to Cifi’fx:?, the isogeny has multi-
plicative rank one over the ordinary locus and therefore the map

vy — viw[1/p]

is actually a map

vyt — p’“’vfw“,
while the trace map is divisible by p (again see the proof of Lemma 3.9.18).
Therefore, on the étale component, the map is divisible by p* and on the
multiplicative-étale component it is divisible by p»*!. 0J
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5.4. The operators Uy and Z,,. — Now we consider some Hecke operators on
X"=»2. The restriction of ®, to X"=»? decomposes as a sum ©, = O + " according
to the decomposition of CI:{fi)(Qw),l' We define normalized cohomological correspondences

-3 —ly—1 gym-
UIw(w),I :ﬁ @f{t and Zw :p @Zl “,

Lemma 5.4.1. — The cohomological correspondences Uy and Z.,, are p-integral.

Proof. — This follows from the proof of Lemma 5.3.2. UJ

We have the following identities of Hecke operators over the ordinary locus at w:

(1) Ukiiwy.1 = Unwuy.1 + 220y if £, > 2,
(2) Ukiiqw).1 =[727ZwUIw(w),1 +7Z,1ifl, <2.

It follows in particular that:

(1) Ukiitw),1 = Unyw),1 mod piff, > 2,
(2) Ukiiwy),1 =2y mod pifl, <2.

Another important property is the following:

Proposition 5.4.2. — For any weight k, we have the _following identities of cohomological cor-

L=u2
respondences over X7

(1) Z,Ha, =Ha,Z,,
(2) UIw(w),lHaw = HawUlw(w),l-

Proof. — The correspondence Z,, is the tensor product of the fundamental class
(deduced from the trace map normalized by p~') and a map vijw* — viw* which is
obtained by normalizing the natural map by a factor p~". It suffices to check that for
" = wﬁ)—l this normalized map matches the Hasse invariants vyHa(G, ) and vyHa(G,).
This 1s the content of [Pil20, Lem. 6.2.4.1]. The case of Uy, 1s clear because the
universal isogeny is étale. O

Finally, we will need the following property:
Proposition 5.4.3. — If [, <0, the cohomological correspondence over XI1 :
Ukiitw).1 : (01)50,0° = o
actors through
Ukiiw).1 © (01)5050° — o (=X7™").

Before giving the proof we need some preparations. Let BT/F, be the smooth
algebraic stack of quasi-polarized 1-truncated Barsotti-Tate groups of height 2 and di-
mension 1 over SpecF,. Let Y/F, be a modular curve of level prime to p. The map
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Y — BT is a presentation of BT (that is, it is a smooth surjection). We denote by E the

—p Ha(l)
universal object on BT. We have a Cartier divisor a) 7757 Ogr whose support is the

non-ordinary locus of BT. Let 7 : BT}, — BT be the representable finite flat map which
parametrizes a subgroup H C E of order p. Let Y((p) be a modular curve of Iwahori level
at p. The map Yo(p) — BT}, is a presentation of BT},,. Over BT}, we have a universal
morphism g : E/H — E with kernel H” (using the polarization to identify E and E°, E/H
and (E/H)P). By differentiating, we get a map of line bundles ds : wr, ® wg /IH — Ogry, -

Lemma 5.4.4. — We have a canonical factorization (dg)®* : (w ® wy, /IH)®2 — n*wé_ﬁ —

OBTI\A ‘

Proof. — 1t suffices to prove the claim over any presentation of BT',,. We therefore
reduce to proving the statement over the modular curve Y,(p). The vanishing locus of
m*(Ha(E)) is a product of Artinian local rings of length p+1 (the degree of ) indexed by
the supersingular points. The vanishing locus of dg is the entire irreducible component
of Yo (p) which is degree p over Y via 7 (this is the component where H is generically
étale). Therefore, for any supersingular point x € Y, the image of dg in Oy, ®oy k(x)
defines a closed subscheme of length p, and hence the ideal generated by the image of
dg in Oy, ®oy k(x) is both nilpotent and length 1. It follows that (dg)* maps to zero in
OY(J(/’) Qoy k(x). O

Proof of Proposition 5.4.5. — Let k be a weight with [, < 2. Let «’ be another
weight with (k,, ) = (£, [)) for v #w, k, — [, =k, — [/, and [/, = 2. Let us denote
by Ukiiw.1(2) 1 (01),v70¢ — @ the cohomological correspondence in weight k. Let
Ukiiw),1 : (v1)4v]@" — @ be the cohomological correspondence in weight «. The proof
of Lemma 5.3.2 shows that the map v2 detw? — videtw*[1/p] induces a regu-
lar map p"~?v} detw?? — v detw 2, and that moreover Ugy,) | is obtained from
Ukiiw),1(2) by twisting by thls map. It thus suffices to show that on the special fibre,
%0} detw? — v} detw!»? factors through v} det wh=2(=X}=") when [, < 0.

This statement is local in a neighbourhood of X}=' and we can therefore replace
X" by its completion along this closed subscheme. We may also work on the interior of the
moduli space, as the interior of the divisor X['=" is dense. Therefore, we may suppose that
G, comes equipped with a multiplicative sub-Barsotti-Tate subgroup G of rank 1, and
we denote by G = (G")*/G™, which is a Barsotti-Tate group scheme of height 2 and
dimension 1. The isogeny v;G,, — v;G,, induces an isomorphism v;G), — v;G! and a
degree p map v{Gy — v;*gﬁj’.

The normalized map p~'v} af — viw,'is the tensor product of the isomorphism
V; ngm — vy a)gm and the map: p~ vza)gm, — vy a)gw which is the transpose of the map
Viwgy —> V;wgw obtained by dlfferentla‘ung the dual i isogeny: v;(Gu) — v Gy The result
follows from Lemma 5.4.4. 0
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Corollary 5.4.5. — Let k be a weight with [, < 0. Let f € H*(X}, @) be such that Z.,,f =
Buf for some B, # 0. Then f = 0.

Proof. — Since [, <0, we have Z,, = Ugjiy),1 on H’(X!, @*). Assume that f # 0,
and let 7 be the order of vanishing of /" along X7'. By considering Ha(G,,) ™/ and using
Proposition 5.4.2 we can suppose that n = 0. This contradicts Proposition 5.4.3. U

3.5. Preliminaries on Rodaira—Spencer. — In this section, we recall the Kodaira—
Spencer map and its compatibility with certain functorialities. A convenient reference
for what we need 1s [Lan13].

Let S be a Z(,-scheme and let X be a smooth S-scheme of relative dimension
3[F : Q]. Suppose that we have a tuple (A, ¢, A) with

e A/X an abelian scheme of dimension 2[F : Q].

e 1 : Oy — End(A) ® Z(;) making Lie (A) into a locally free O ®7z Ox-module of
rank 2.

e A:A — Alaprime to p, Op-linear quasi-polarization such that A[p*] : A[p>] —
A'[p*>] is an isomorphism.

Then we have the first de Rham cohomology of A/X together with its Hodge
filtration

0— wy— HR(A/X) > 0}, — 0
as well as the Gauss—Manin connection
Hy (A/X) = Hp (A/X) ® Q5.

Passing to subquotients for the Hodge filtration we obtain the Kodaira-Spencer map for
A

\% 1

The polarization A induces an isomorphism A* : @y — w4. Using this we may obtain a
Kodaira—Spencer map for (A, 1)

WA ® Wy = Qy s

Then one checks (see [Lan13, Prop. 6.2.5.18]) that this map factors through the quotient
SyméX@,OF wa of wa ® wy, so that we obtain a map

2 1

As usual, if Y/S is a smooth scheme of relative dimension d, we write Ky s for the relative
canonical bundle A“€), ss- We will be especially interested in the induced map on top
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exterior powers
3[F: 2 3
VAN : QJ(SYH’IOX@OF CI)A) = dCt((j)A) — KX/S-

Proposition 5.5.1. — Suppose that (A, 1, X) and (A', (', X") are tuples as above and that
we have a prime to p quasi-isogeny ¢ : A — A satispying ¢t = (¢ and ¢'N'$p = xA for some
x € Op @ Zyy. Then we have a commutative diagram

det(wy)® — Kx/s

i o l Nrjg®)?

det(wy)® — Kx/s

Proof. — 1t follows from the definitions that under the Kodaira—Spencer maps,
o*: Syméx(goF wy —> Syméx(g)@F w, induces the endomorphism of Q4 /s given by mult-
plication by x. The result follows on passing to top exterior powers. UJ

Proposition 5.5.2. — Let f : X =Y be a finite flat map of smooth S-schemes of relative di-
mension 3[F : Q] and let (A, 1, ) /Y be a tuple as above. Then the Kodaira—Spencer map is compatible
with base change in the sense that there is a commutative diagram

Srdet(@a)’ — [*Kyys

| |

det(a)AX)3 — Kxs

where the horizontal maps are the Kodaira—Spencer maps for A and Ax, the right vertical map s pullback
on differentials, and the left vertical map s the natural isomorphism.
Moreover it is compatible with traces in the sense that there is a commutative diagram

ﬁdet(a)AX)S H‘ﬂKX/S

| |

dCt(O)A)3 —_— KY/S

where again the horizontal arrows are the Rodaira—Spencer maps for Ax and A while the vertical map
on the lefi comes from the (unnormalized) trace map on functions f,Ox — Oy and the isomorphism
Wiy 2 wa, and the right vertical map s the trace map on dualizing sheaves.
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Proof. — The commutativity of the first diagram follows from the compatibility
of the formation of de Rham cohomology with flat base change, and the compatibility
of the Gauss—Manin connection with flat base change (which in turn follows from the
compatibility of the Hodge to de Rham spectral sequence with flat base change).

To see that the second diagram commutes, it is by adjunction equivalent to show
that the lower square in the following diagram commutes.

SHdet(wp)? — S Kys
2
det(way)? — Kx/s

2

SHdet(wy)? — f!KY/S

Since we have already seen that the upper square commutes, and since the indicated
vertical arrows are isomorphisms, the commutativity of the lower square is equivalent
to the commutativity of the outer square. This commutativity follows from unwinding
the definitions; indeed, this outer square is the natural one obtained from the Kodaira—
Spencer morphisms and the natural transformation from f* to f* (which is given by the
trace of the morphism f). U

Finally, we recall the Kodaira—Spencer isomorphism for our Shimura varieties.
Proposition 3.5.3. — The Kodaira—Spencer map
w® — Ky /z,
is an 1somorphism.

Proof. — This follows from the usual Kodaira-Spencer isomorphism [Lanl3,
Thm. 6.4.1.1] and the compatibility with étale base change proved in Proposition 5.5.2
(noting that the formation of the canonical sheaf is compatible with étale base change).

O

5.6. The Hecke operator Uy, and traces for partial Frobenius. — We recall the con-

struction of the Hecke operator Uy, ,),1. We have a correspondence (see §5.4, where this

correspondence was denoted QE{Q’(QJ’){I but we adopt here a simplified notation €?,)
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where €! parameterizes a point (A, ¢, A, {Hy}ves,» m) of "=? along with an étale max-
imal isotropic subgroup L,, C A[w]. The map p; simply forgets L,,. To describe py, con-
sider the étale isogeny 7 : A — A/L,,. Then py sends (A, ¢, A, {H, }yes,) to A/L,, with the
induced action of Op ® Z,, the prime to p quasi-polarization obtained by descending
xyA, and the level structures 7w (H,) and 7 (7). Since the subgroup Alx,]/L, of A/L, is
the canonical multiplicative subgroup of Alx, ], we see that p, is an isomorphism.

For any weight k for G, pullback by the universal étale isogeny over €! induces an
isomorphism of sheaves piw“ — piw*, and the Hecke operator Uy,y,),i s obtained from
the composition of maps of sheaves over 9)"=»?

“l,'l‘r »
» n
D@ = prapiot = o,

Now we turn to the Kodaira—Spencer isomorphism ® 2 Kgyi.—:2.
Proposition 5.6.1. — There is a commutative diagram of sheaves on )"=»>

l Nejglw)
/)3

bty Ryrvyz, —= Korourg,

where the vertical arrows are the Kodaira—Spencer isomorphism, and the top horizontal arrow s Uy 1.
The bottom horizontal arrow s defined as follows: since po s an isomorphism, we may identify
P3Ryr=u2/z, with Kei jz,, and the morphism then comes from the trace map for py on dualhizing

. e Np/g (1w)°
sheaves, multiplied by a_factor of —5 € Z(Xp).

Proof. — This follows from Propositions 5.5.1 and 5.5.2. UJ

We note that although we are primarily interested in using Proposition 5.6.1 on the
special fibre, we cannot apply Propositions 5.5.1 and 5.5.2 directly on the special fibre
because some of the maps in the commutative square reduce to 0 modulo p.

We may also describe Uy, .1 in weights other than parallel weight 3 using traces
on differentials. For any weight k = (k,, [,)yes, we let k — 3 = (k, — 3,1, — 3). Then
tensoring the Kodaira—Spencer isomorphism with @~ we have an isomorphism @* >~
Kyr-u2/z, ® @* 3. Then we have a commutative diagram of sheaves on 9)"=»2

150" o

|

pl,*ﬁ;(K@I.:u72/Zj)®a)K73) — (pl,*pfz‘KQJl,:wz/zﬁ)(X)w"*\% — K@I,:WQ/Z!’@(J)K*g
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where on the bottom row, the first map is an isomorphism coming from the projection
formula and the isomorphism pj0* ™ 2 pt@*~ and the second map is the tensor product
of the map of Proposition 5.6.1 and the identity.

We would now like to understand the behavior of Uy,(,).1 beyond the w-ordinary
locus on the special fibre. In order to do this we make the following definition.

Defination 5.6.2. — We define a “partial Frobenius™ map
F,: Y] = Y]

as follows: given a pownt (A, ¢, &, {Hy}yes,, 1) of Y’ we may consider the maximal isotropic subgroup
L, C Alw] defined by

L, = ker(F: A[w™] — A[w>]?)
and form the subgroup of degree p*™** =2

L, =L, x HA[U] CA
vFW

and the isogeny w : A — A = A/L,,. L, is isotropic for the polarization {:T;)\. which thus descends to
a principal polarization Xk on AJL,,. Then the map F,, is defined by

Fu(A, 0, (Hobues, ) = A, 7, A, (H,ves,, )

where A, and A are as described above, 1 is the induced action of Or ® Z), H, = 7H, Jorv #w,
H, =H? c A[w®]? ~ (A/L,)[w™], and fj = ]—{nn.
Note that this definition depends on the choice of x,.

To explain why we call the map F,, a partial Frobenius, observe that according to
the product decomposition

Alpe1=[JA™]

vlp

we have A[w™] = A[w™]/L, ~ A[w™®]? while A[v™®] ~ A[v™] for all v # w. In partic-
ular, according to the local product structure of Y] coming from the Serre—Tate theorem
and the product decomposition of the p-divisible group A[p*], F,, looks like Frobenius
on the factor corresponding to w.

As a consequence of this we may record

Proposition 5.6.3. — ¥, is finite flat of degree p°. It restricts to a map F,, : YII’:’”1 — YII’:"'l
which is finite flat of degree p*.
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Proof. — Using the Serre—Tate theorem and the description of I, on the p-divisible
group above, this follows from the fact that Frobenius on a smooth variety of dimension
n 1s finite flat of degree p". UJ

The identification A[w™] ~ A[w™]® induces a canonical isomorphism F* w,, ~
! while the isomorphisms A[v™®] ~ A[v™] for v # w induce canonical isomorphisms
F w, >~ w,.

The point of this definition is that if we identify € with 9"=»2 via py, the map
/1 on the special fibre is simply the partial Frobenius F,, restricted to Y;="*. Moreover
making these identifications, the isogeny ptG,, — p5G,, becomes V : G — G, (as its dual
is Frobenius) and so the pullback map piw,, — pfw, becomes Ha,, : 0, = %,

As in §3.8.16, we may consider trace maps for I, on differentials Fy Ky — Ky
Tensoring with any line bundle £ on Y} and using the projection formula Fy Ky ® L~
Fy Ky ® F* L), we obtain a twisted trace map

Fy . Kyt ® Fr L) — Ky ® L.
We may similarly consider twisted trace maps for line bundles on the divisor Yll’:“’l.
Now we restrict to parallel weight 2 and work on the special fibre. With the identi-

fications we have made, our discussion above shows that we have a commutative diagram
IL=ow
of sheaves on Y| *

ULww),1
Fy 0 w

Npjglw)® |
Qf‘SHaw

b —
Fus(Kyim2 @ 07") —— Fu Ko @0~ @0y ) ——= Kympr @™
1 1 1

Now we want to extend this description to all of Y}. Here is the first main result of
this section.

Proposition 5.6.4. — The map Ha, - Uy : Fuo0® = 0® @ @l of sheaves on Yy ="
extends to Y\ and fits in to a commutative diagram of sheaves on Y'

Hay, - Uny(w),1

—1
Fo w? o? @ ol

Nr/Q Gw )3 —1
RL 3‘3 Ha/,:J

2 —
FueRyimn ®07") —— FuuKyim @07 @0l ) —— Ky @, @™

Progf. — To prove the proposition, it suffices to establish the commutativity of the
diagram over Y} =7, as the vertical maps are isomorphisms, and the maps on the bottom



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 307

are already defined over Y}. This commutativity follows from the discussion above and
the fact that F* Ha,, = Ha’, . O

,=wl

Now we are going to restrict to the divisor Y7 ="', The Kodaira-Spencer isomor-

phism Ky >~ o’ of Proposition 5.5.3 induces by the adjunction formula an isomorphism
KY']:"" ~ w’ (9] a){’fl |Y11‘=“’1 .

Proposition 5.6.5. — There is a commutative diagram of sheaves on Y}

— — —1)? _ —1
Fw,*(liyl1 ® w l) - Fw,*(KYIl Qw l®wr(1fj )) - I<Yl1 ® w l®wﬁ)

_ 1— —_
Fw,*(KYI,:ml ®w ! ® wy ﬁ) KYI.:wl ®w !
1 1

where the vertical maps are obtained from restriction and the adjunction formula as recalled above, and
the bottom horizontal map is a twisted trace for ¥, on the divisor Yll’z"’1 and the line bundle ™.

Progff — The commutativity of this diagram follows from Proposition 3.8.17,
where in the notation of that proposition we take X =Y =Y}, D'=D = YII’:“‘I, f=F,
and n = p, and identify (QYI1 (Yy="") with o' via Ha,, (tensor the commutative diagram
of Proposition 3.8.17 with o' ® w7 1. 0

We may then define a map y; : Fwy*(a)2|yll,:w1) — o' Q! |YI{:"’1 by the diagram

(5.6.6) Fyp(@?lyimu) & @ Wy

Fw’*(KY11,=wI Qo '® a)llv_/’) Em—— KY11,=w1 Qw!

Npyg ()
3

where the vertical maps are Kodaira—Spencer and the bottom horizontal map is

times the twisted trace for o™".

Now combining Proposition 5.6.4 with Proposition 5.6.5 with the definition of y,
by (5.6.6) we have proved the following.
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Proposition 5.6.7. — There is a commutative diagram

Hay - Ugyw),1

HO(YI, w?) HO(YI, w? R 0){1}_1)

| |

- 7i -
HO(YII’_"’I , (1)2|Y111=wl) . HO(YII,—wl, w0’ ® wﬁ;l |YII'=“’1)

where the vertical maps are restrictions and the horizontal maps are as explained above.

3.7. The Hecke operator U, o on the w-non ordinary locus. — In this section we consider
the Hecke operator U, 5 that was first introduced in §4.5.8. We consider the correspon-
dence

1
Q:w,Q

N
2 2

which is the composition of the correspondences €, 9 (p) and €, 99(p) considered in
§4.5.8 (or more precisely their restrictions to the interior of the moduli space). The
correspondence €, 9 admits the following direct description: it parametrizes isogenies
/iG — psG whose kernel K,, is a totally isotropic subgroup of G, [p*] which has trivial
intersection with the group piH,,. To see this, note that K,, fits into an exact sequence
0 — Kylpl = K, = K,,/Ky[p] = 0 where K, [p] is a finite flat group scheme of rank
/® and étale rank p, and K, /K, [p] is a finite étale group scheme of rank p.

There is yet another description of €, , that will be important for us. To any point
(G, A, {Hy}ies,» m) € ' we can associate a subgroup L, C G[4*] as follows: the finite
flat group scheme x;,'H,,/H: C G,,/H: of degree p* contains a canonical multiplicative
subgroup L, of degree p (as x~'H,, /G, [p] >~ H,, is multiplicative and G, [p]/H;; ~ HY
is étale, we see that x,'H,,/HZ is isomorphic at geometric points to wy x Z/pZ, and
hence over the entire (reduced) special fibre, the kernel of Frobenius on x,'H, /HZ is
a multiplicative group of order p which lifts uniquely over 9)'). Then we may define
the group L, to be the preimage of L under the isogeny A — A/H;. Observe that
L, C A[w?] is a totally isotropic subgroup of degree p*. Then we take

gzmngﬁ.
vF#W

We temporarily write SD{U?SP}] for the formal completion of Yk with K, =

GSp,(Or,) [ Tyer, v Kli(0) [ T, IW(v), along the open subvariety of the special fibre
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where A[w*] has p-rank > 1, H, is multiplicative for v € I, v # w, and L, is multiplica-
tive for v € I*. Then there is a natural map f : ' — @;_Sph which forgets the Klingen
level structure H,, at w. It is étale and affine (see Proposition 4.3.3).

We define a map v, : 9' — D! by sending a point (G, ¢, A, {H, Yves,» ) to

G /L, with the polarization descended from )» the induced action of Oy and the level

w—sph

structures 2y and wH, for v # w where 7 : G — G/L, is the isogeny.

Lemma 5.7.1. — The correspondence €, o fils in the following Cartesian diagram

jal
o — Y
J/ b2 J/f

Proof. — Let ptG — p5G be the universal isogeny over € ,. Then the composite

of this isogeny with the isogeny p3G — p3G/ L, identifies with multlphcatlon by p* on
no- O

Lemma 5.7.2. — The map py : €, , — D" is finite flat of degree p*.

Progf — The correspondence €, , is smooth, and the map p; is generically étale
of degree p* and finite. It follows from miracle flatness that it is finite flat. U

We can now deduce the following important relation between €, , and F2 over
Yll’:w 1 .

Proposmon 5 7 3. — The restriction of py to the scheme theoretic prezmage [)2 LYY=y ds an
wsomorphism to Y ' Making this identification, p, becomes F? YI =l Y1

Proof. — We observe that the restriction of / to Y;=" is an isomorphism. This
implies that the restriction of py is an isomorphism. Now we examine the definition of
L,. The key observation is that L,, coincides with the kernel of Frob2 Q — g@ ) Tt
suffices to check this on geometric points. Over a geometric point of Y> ="' the p-divisible
group G,, has a decomposition into a product of multiplicative, slope é and étale group p-
divisible groups: G,, = G x G2 x G". Then the kernel of Frob? is simply G2[p] % gg[pQ],
and this group equals L,,. O

Pullback by the universal isogeny over €, , induces a morphism 8 : piw, — pwy,
as well as isomorphisms pyw, — pjw, for v # w. The following proposition is implicitly
contained in Lemma 4.6.4, but we briefly recall the argument.
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Proposition 5.7 .4.

(1) The map 8y s divisible by p and the resulting map 5 = 1%80 D Phwyy —> plwy, is an iso-
morphism.
(2) Under the isomorphism 8'~" : pyolt > prah ™" we have p{Ha,, = psHa,,.

Progf: — Because €, , is smooth we are free to check the first claim on the ordinary
locus where it simply follows from the fact that the isogeny p;G — p5G has kernel of
multiplicative rank one. The second claim follows from [Pil20, Lem. 10.5.2.1]. 0

Making the identifications of the Proposition 5.7.3, we may view the restriction of
8 to Y>="" as an isomorphism

-1 . 2 ~
L (FY'w, ~ o
1

=wl

. - . - = 2_
or equivalently as a non vanishing section & |YI]1’="’1 e HO(Y; ™, @’ ~1). We also denote by

8" T1ystws £5@w = [ 1,2y b1 @ the isomorphism coming from the pullback of differentials.
In weights k = (%,, {,) with [, > 0, the Hecke operator

Uy ot prapo — o

is defined by tensoring the unnormalized trace map p1 .50yt — Oyt with the unnor-
malized pullback map pi0* — pjw*
equivalently, the normalized map pjw* — pj@" is constructed with the help of the oper-
ator §).

First we may use the Kodaira—Spencer isomorphism to describe U, 5 in weight 3

in terms of traces on differentials.

, and normalizing by a factor of pg%w (see §4.5.8;

Proposition 5.7.5. — There is a commutative diagram of sheaves on )"

U, ¢
% 3 w2 3
VAR 212 = W

Np/0 ()b
\L F/Q(w) o \L

10

a3 Ryyz, — Koz,

where the vertical arrows are the Kodaira—Spencer isomorphism, and the bottom horizontal arrow is
defined as follows: since ps is étale, we may wdentrfy p3Ko1/z, with Kq,,z /z,» and the morphism then

Nryg (xw)° x
7 € Z( -

comes_from the trace map for py on dualizing sheaves, multiplied by a factor of

Proof. — This follows from Propositions 5.5.1 and 5.5.2. UJ
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In parallel weight 2 we can still express the cohomological correspondence U, o
by using a similar commutative diagram of sheaves on 2)":

9 Uw.?
AR ) w?
; Xw 6
l N”%#tr@(a’a)*l
D15 Keyjz, @ 0") Koz, ® 0™

We can restrict to Y"=*! and obtain the following:

Proposition 5.7.6. — There is a commutative diagram

pl*p;(KYIl ®(U_l) KY% ®w_1

I,=y1 -1 I,=y1 -1
ﬁl,*ﬁﬁ(KYI{:wl ® Oy (=Y, Myt=ut @ @7 —> Kyl ® Oy (=Y Myt=u1 ® @

4

() (Kypowt @07 @0 ) Kyimn © 07 @y

where:

)

o The upper vertical maps are obtained by restriction to Yy="" and the adjunction isomorphism
Kyl] [yL=w1 2 KYIl‘:wl ® OYII .

o The lower vertical maps are obtained from making the identification of po with id and py with
T2 of Proposition 5.7.3 as well as using the isomorphism Ha,, : O(Y7™"") — /"

o The top horizontal arrow is the composition of (88") ™" and the twisted trace for ™" on K{(I s
as on the bottom row of the diagram immediately preceding this proposition.

o The muddle horizontal arrow is multiplication by (88") |;11_:w1 Jollowed by the twisted trace for
1

1 on the sheaf Oy (=Y ™) @ 0"
o The bottom horizontal arrow s multiplication by 8|;{? " |;11_:w1 Jollowed by the twisted
1 1

o ()P

trace for ¥2, on the line bundle ™" @ w) " (normalized by the p-adic unit W)
Proof. — The commutativity of the top square follows from Proposition 3.8.17

while the commutativity of the bottom square follows from Proposition 5.7.4. The rea-

8’ |;1 in the bottom horizontal arrow is because we

son we get multiplication by & |;f o
1 1

=wl

multiply the original (68") |;Il,=m1 with 8 |;Il;f ; which arises when relating the isomorphisms
1 1

pr(Ha,, : OY;™") — o) fori=1,2. O
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Our goal from now on is to interpret the bottom horizontal line of this diagram in
terms of the map y; of (5.6.6). We introduce a map ¥ : F,, ,(0* @ ! |Y11,=,,,|) — a)2|Y11,=“,|
defined by the diagram

Y2

< —1
(5.7.7) Fu (@’ @y y1=u1) @ y=t
-1 -1 1-p? 1 1—p
Fy s Ryt @ 071 By Kyt @07 @y 1) —> Kyt @0 @y
-—_—

where the vertical maps are induced by Kodaira—Spencer, and on the bottom the first
horizontal map is multiplication by & |;11,:w1 , while the second is the twisted trace for £ =
1

. . . N )3

o' ® w)~’ (normalized by the p-adic unit Lﬁ“)

We now consider the composition y, o y; : (Ffu)*(a)2|Y11,:w1) — o’ yh=ul.
Proposition 5.7.8. — There is a commutative diagram

71 Y2
(F2)s (@] y1mn1) —————> Fya(@ @ ol o) ————> @] 1w
Y, ’ Y Y,

c — —p3 _
EDiKyimn @07 @0 ?)  E)uKymn @07 @y ) > Kyt @0~ 00y 7
-

—pa—1
RN

where the vertical arrows are given by the Kodaira—Spencer isomorphism and on the bottom row we first
— . . . . ) Xw 6

multiply by & |Yf? _,1 and then lake a twisted trace for ¥2 (normalized by the p-adic unit N“‘;#) and

1

the line bundle L = 0! ® w}[ﬁ |Y11-:wl .
Proof. — This follows from the fact that I} § |le,=“)1 =4 |f{ L=l * 0J
1

Combining Proposition 5.7.6 with Proposition 5.7.8 we have proved the following:

Proposition 5.7.9. — There is a commutative diagram

Uw,?

HO(Y!, 0?) HO(Y!, 0?)
! |

_ y20y1 _ .
:[_I0 (YII’_wl N 0)2 |Y1].=w 1 ) - HO (YII»—w ! 5 a)z |Y]l,=w] )

where the vertical maps are restrictions and the horizontal maps are as explained above.
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5.8. Main doubling results. — There is an obvious injective restriction map:
H'(X], 0*(=D)) > H'(X; ™, (D))

which is equivariant for the action of the Hecke algebra away from w, and for the actions
of Uy, and U, . We now compare the action of Ugjy).1, which acts on both the left
hand and right hand modules, and Uy, 1, which acts on the right hand module.

We have defined a Hecke operator Z,, on HO(XII‘Z“’Q, ®?(=D)) with Ukiiw),1 =
Ulww).1 + Zy (see §5.4).

Lemma 5.8.1. — On H® (XII’ZWQ, @’ (=D)) we have the wdentaty of operators Uy 1 Loy =
Uy.o.

Progf. — This is immediate from Lemma 4.5.17. 0

We introduce the doubling map:

H'(X}, 0*(-D)) ® H'(X}, 0’ (—-D)) - H'(X|=™"*, »*(-D))
9> f+7Zug

=2

In this formula / and g on the right hand side are viewed as sections of H?(X}="?,
*(—D)) via the above restriction map.

We can define an operator that we formally denote by Uy, on the left hand
side by the following matrix:

U (w), Uw,‘
Ulw(w),lz( Ki(l)l 02)

Lemma 5.8.2. — The doubling map is equivariant for the action of Uy The operator
ULvwy1 on H'(X!, 0*(—=D)) @ H'(X}, @*(—D)) commutes with the action of U,, 5.

Proof. — The equivariance follows from Lemma 5.8.1, and the commutativity fol-
lows from Lemma 4.5.15. H

We now consider the U, y-ordinary part:
o(Uu ) H' (X, 07 (=D)) @ (U, ) H' (X, 0 (=D)).

We have restricted to the direct factor H (X", 0?(=D)) of H*(X!, @?(—=D)) in order
to be able to use local finiteness and apply ordinary projectors.
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Lemma 5.8.3.
(1) The image of
e(U, ) H (X7, 0 (=D)) @ e(U,, ) H'(X{", 0° (D))

via the doubling map lands in (Ut 1 Uy 0) HC (XlGl L=e2 2 (—D)).
(2) The operator Uyyyy.1 5 (left and right) invertible on

(U, o) H'(X{, 0*(—=D)) @ e(U,, o) H' (X", 0*(~D)).

(3) On e(U, ) HOXT", 0?(=D)) @ e(U,, o) HO (X, w?(=D)) we have the identity
Ukiiw),1 = Ulw).1 + Uw’QUI_Wl(v),l. In particular Uxypy.1 and Uy commute with
each other.

Progf. — The doubling map
H'(X, (D)) @ H' (X", o (=D)) » H'(X]""™*, *(=D))

can be written as an inductive limit of maps between finite dimensional vector spaces

stable under the Uy, and U, o operators, so we will freely use the usual prop-

erties of linear endomorphisms on finite dimensional vector spaces. We first observe

that the operator U, o is invertible on e(Uw,Q)HO(X?“I, ’(—D)). Concretely, for any
. NI

S €e(U, ) H'(XT", *(=D)) we have ¢(U,,0)f =f = Ul ,f for N large enough, and

- N1 .
Uw’lizf = UZJ’Q /. Therefore we may consider the operator

0 —U,.:
U_l( w,2
w2 <1 UKIi(w),l)
on ¢(Uy, o) HO (XS, 02(=D)) @ e(U,, ) H (X", w?(—=D)), and it is straightforward to
check (using that Uy, and U, 9 commute, as we noted in the proof of Lemma 5.8.2)

that this 1s a 2-sided inverse of Uyy).1. This proves the first and second points. The third
point is obvious from the formulae defining Uy,),1 and Ugy}(w)’l. U

We now prove our doubling theorems, combining ingredients from the previous
sections.

Theorem 5.8.4. — Suppose that w € 1 and that f € HO (XS, 0?(=D)) satisfies
UKli(w),lf = (O[w + ﬁw)f; UIw(w),lf == auzf: and Uwzf = aw,Bwf; where Uy, ,Bw 7é 0. Then
f=0.

Proof — First suppose that the restriction of £ to X{h="!
write f = Ha,g for some g € H' (X" »? ® w,~"(—D)). Moreover because we have

is zero. Then we may
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7.,/ = B/ by hypothesis, we would then have Z,,g = B,,g by Proposition 5.4.2. But then
by Corollary 5.4.5, g = 0 and hence f = 0.

Now we may suppose that the restriction of /* to X?l’ is nonzero. Combining
Proposition 5.6.7 with Proposition 5.7.9 there is a commutative diagram

L=yl

HO(Y?I’I, 602) HO(Y?LI,:wl’ CL)2|Y?1,L=WI)
Hay Unyw),1 l Y1
U H° YGlsI 2 ! 0yvGrL=wl 2 !
w,2 ( 1 , W ® ) ) E— H (Yl , ® w |Y?1,L=w1)

| »

HO(Y?] J=yl ’ w? |Y?1,L:w1)

HO(YIGI’I, C()Q)

where the horizontal maps are the natural restriction maps, and the vertical maps on the
right column are as in diagrams (5.6.6) and (5.7.7).

If we start with / in the top left of the diagram, we obtain something nonzero on
the bottom right because Uy, of = e, By/ and the restriction of / to Y""="" is nonzero.
The commutativity of the diagram implies that Ha,, Uy, |/ has nonzero restriction to
Y7 h=! On the other hand, because Ulyw).\f = tufs Hay Unyw). |/ = o Ha,,/ which
vanishes along Y"""="'_ This is a contradiction. UJ

Remark 5.8.5. — In fact, something stronger than Theorem 5.8.4 is true: if w €1,
and f € H(X{"!, 0*(—=D)) satisfies U, of # 0, then Upu).f ¢ HX", 0?(=D)).
This can be proved in exactly the same way as Theorem 5.8.4, given the following

strengthening of Corollary 5.4.5: if w € I, then
H(X{! 12 0 @ wly 7 (—=D)) = 0.

K,(DK?,1°

In the case p > 3, we will sketch a proof of this result in §5.9 using Fourier—Jacobi ex-
pansions, but since a complete argument in the case p = 3 would involve developing
considerably more of the details of toroidal compactifications than we need in the rest of
the paper, we have decided not to give the details.

When p > 3, this vanishing result holds even for non cusp forms, so the same is
true of Theorem 5.8.4.

We can now prove the injectivity of the doubling map.

Theorem 5.8.6 (Doubling). — The doubling map
(U, o) H'(X{, 0*(=D)) @ e(U,, ) H'(X{", 0*(=D))

— €(Ulw(w),1Uw,2)H0 (X?l b=l w’(—D))

s injective.
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Proof. — Assume the map is not injective. By Lemma 5.8.2, the kernel is an in-
ductive limit of finite dimensional vector spaces stable under the commuting operators
U, .2 and Upyy.1. We may therefore take a nonzero simultaneous eigenvector (f, g) for
U, .2 and Uy, in this kernel, with respective eigenvalues o, 8,, and B, for some «,,,
Bw 7 0 (the eigenvalues are nonzero because we are by assumption in the ordinary space
for both Uy,y),1 and U, o). It follows from the definition of the action of Uy, that
S = —Buwg and Uxjiw) |f = (ay + By)f. Since we are also assuming that / + Z,,g = 0,
we see that the image of £ in H(X{""="?, w?(=D)) satisfies Upy).|f = otf. The result
follows from Theorem 5.8.4 (note that the eigenvalues for Uy, and U, 9 are nonzero
because we are in the ordinary space for these operators by hypothesis). U

Remark 5.8.7. — We now put the Theorem 5.8.6 in a form that is used in §7.9.
Assume that M C e(U,, o)H° (X?l’l, o’ (=D)) ® l_:',, is a finite dimensional vector space,
stable under Uy, and U, 9. Assume that there are distinct elements «y,, B, € I_?px such
that Ugjiw).1 — (2w + Bw) and U, 9 — o, B, are nilpotent on M. The sub-algebra £ of
End(M) generated by Ukjiwy.1 and U, 5 is therefore a local Artinian algebra and there
are elements @,,, ,B~w € & satisfying @, = @, mod mg and By = B, mod mg and such
that on M @ M we have (UIw(w),l — &w)(UIw(w),l — Bw) =0.

We can define maps ¢z, : M — M @M by [+ (f, —é;lf) for &, € {ay, By} Then
one checks easily that the map t,, @ tg, : M @& M — M @ M is an isomorphism and that
the composite with the doubling map takes the form (f}, /o) — ((1 — ,3~ng Vl(w)’])fl +(1—
&wUI_wl(w)’l)fg). The first and second components of this map therefore define injective
maps

M = (U1 Un ) H' (X772, 0¥ (=D))y

Iw, 1 *%‘w ’

for &, respectively equal to «, and B,,.

3.9. Jawishing i partial negative weight: Fourier—jacobi expansions. — We end this sec-
tion by giving a proof of the following vanishing result in “partial negative weight”,
which partially strengthens Corollary 5.4.5 but is not needed in this paper (see also Re-
mark 5.8.5).

Proposition 3.9.1. — Assume w € 1. If p > 3 and [F : Q] > 1, then

0~¢1 P 1—py _
H (XK/,(I)K/’,I’C‘) Qw,”)=0.

Remark 5.9.2. — We have a sketch of an argument to show that if p = 3, then
H° (X{%(UK/,J, ®* @ wl7(=D)) = 0. We also have a sketch of an argument for F = Q,
But to give complete proofs would require us to justify certain properties of Fourier—
Jacobi expansion for which we could not find references (for example we would need to

have good geometric theory of cuspidal Fourier—Jacobi forms).
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We will prove Proposition 5.9.1 by restriction to a boundary stratum, and ulti-
mately reducing to the vanishing of spaces of Hilbert modular forms of partial negative
weight.

We let K, =[], , GSp,(Or,), and by possibly shrinking K/ we may assume that
it is a principal level structure in the sense of [Lanl3, §1.3.6]. We let ¢ € Z&;Jr\(Aoo’ﬁ ®
F)*/v(K?), and we may work with the connected component Xx ;. of Xk ;. We now
choose a boundary stratum 7Z < Xk, corresponding to a one dimensional totally
1sotropic factor W € € (see §3.5). It means that the restriction of the semi-abelian scheme
along Z is an extension of an abelian scheme A of dimension [F : Q] with Og-action by a
torus T of dimension [F : Q] with Op-action.

Let H :=ker(Resy/g GLy — (Resy/g G,,)/G,,). The abelian scheme of dimension
[ : Q] is parametrized by a (connected) Shimura variety for the group H (this is a
Hilbert-Blumenthal modular variety) that we denote by Yy, and is a moduli space of
1somorphism classes of triples (A, ¢, A, n):

) A — SpecR is an abelian scheme,

) t:Or = End(G) ® Z,, is an action,

) Lie(A) is a locally free Oy ®z R-module of rank 1,

4) A : A — A'is a prime to p, Op-linear quasi-polarization such that for all v|p,
Ker(A : A[v>®] — A'[v™]) is trivial,

(5) n is a prime to p level structure.

(
(
(
(

We denote by Xy, a toroidal compactification of Yy ;. We have partial Hasse
invariants A, for all v|p. Let Yj; | C X}, | be the Zariski opens where A, is invertible for
allv e I': We have a map Z — Yy,; and we let Z' = Z xy,, Yy .

The étale map Xk, mrs,1 — Xx,1 has a section along 7' < X, which is provided
by the rank one multiplicative groups T[v] for all v € I. Therefore the map Xx,mkr,1 —
Xk, has a section restricted to the completion of X | along Z'.

Proposition 5.9.3 (Fourier—facobi expansion principle). — There is a natural injective Fourier—
Jacobi expansion map

H (X} s, 100 @ @ 0} ) — [[H° AL o’ ®@w,”® L)

Ecat

where a is a_fractional ideal of O and a* are the positive elements, A} — Y}, | is an abelian scheme
isogenous to the universal abelian scheme A and L is an invertible sheaf over A, rigidified along the
identily section.

Proof. — The existence of such a map follows from the description of the toroidal
boundary charts, as in [FC90, §V] or [Lanl3, §6.2.3,§7.1]. It is obtained by restricting
sections to the completion along Z'. The sheaves L; are obtained by pullback from a
Poincaré bundle which is rigidified along the identity section.
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The injectivity result is clear as long as we can show that X} oKe.1,. 18 connected.
This follows directly from the connectedness of Xk ;. and the irredpucibility of the Igusa
tower, for which see [Hid04, Cor. 8.17] or [Hid09, Thm. 0.1]. U

We will now prove the vanishing of the groups H’(Al, @* ® 0 ” ® L;). We first
need the following preliminary lemma.

Lemma 5.9.4. — Let S be a scheme and let A — S be an abelian scheme. Let L be an
invertible sheaf on A, nigidified along the unit section. Then for all n € Z,, L |A[ @8 trivial.

Proof. — 1Tt is well-known ([Mum08, Chap. 11, §6 and §8]) that »*L ~ L" ® L,
where Ly is a sheaf algebraically equivalent to zero. Moreover n*Ly >~ L{. Therefore
Lr ~ L)' ® n*ﬁal is trivial on A[n]. O

Now we may prove the following sequence of vanishing results for negative weight
forms. (Note that the first part is a very special case of the main theorem of [DKI17],
although the argument there is different.)

Proposition 3.9.5. — Assume that [F : Q) > 1. Let k = (ky)yes, be a weight for H and
suppose that there is a w € 1 such that k,, < 0. Then:

(1) H* (Y1, @) =0.
(2) HO(YL’I, o) =0.
(3) Forany & € at, HY(A], 0* ® L) =0.

Progf. — We derive each claim in turn from the previous one:

(1) Let G, C Yu,1 be the simultaneous vanishing locus of the Hasse invariants A,
for v # w; it 1s a (union of) smooth curves (since p is split completely, this is an
easy local calculation). Furthermore, because [F: Q] > 1, it is also proper (note
that if [[': Q] = 1, then C,, = Yy, is not proper).

By the existence of the secondary Hasse invariants, w,|c, 15 a torsion
line bundle for v # w, while w,|¢, has positive degree on each component.
Let Z be the ideal sheaf of C,, in Yy ;. It follows from the Kodaira—Spencer
isomorphism that we have an isomorphism

/7 =P

vFW

Thus for all m > 0, Z"/Z""" = Sym" Z/Z? is a direct sum of torsion line bun-
dles. Because £, < 0, it follows that Z" /Z"+! ® w* is a direct sum of line bundles
of negative degree, and hence has no sections. The result follows from this and
the fact that every irreducible component of Xy, contains a component of C,,
(by considering the formal expansion of any form along C,,).



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 319

2) If f € H(Y}y |, @), then, for ¢, 3> 0 forallv € I',

fl_[AiU € HO(YHJ, " X ®w;v(ﬁ—l))

velt velt

and hence vanishes by part (1). Thus the same conclusion holds for /.

(3) Forall n € Z, with (n, p) = 1 we will show that any section of / € H(Al, * ®
L) vanishes on the n-torsion subgroup AI1 [7], and hence vanishes identically.
After replacing f by f° " we can assume that Ly is the trivial sheaf (see Lemma
5.9.4). We then consider the norm of /" for each irreducible component of the
finite étale map Aj[n] — Y}, to reduce to part (2). U

Proof of Prop. 5.9.1. — This 1s an immediate consequence of Proposition 5.9.3 and
Proposition 5.9.5 (3), because all the terms in the Fourier—Jacobi expansion will be zero.

O

6. Higher Coleman theory

In this section, we construct (higher) Coleman theories for GSp,(Ayp). As in §4,
we assume that p splits completely in F and we construct all possible Coleman theories,
allowing the weight space at each place above p to be either one or two-dimensional. In
the case that F = Q this was carried out in [AIP15] and [Pi120]. Many of our arguments
are simply the “product over the places v|p” of the arguments of [AIP15] and [Pil20]. To
keep this paper at a reasonable length, we will often refer to these papers for the details
of arguments which go over directly to our case.

The main results of this section are Theorem 6.5.8 (a classicality result for over-
convergent cohomology classes of small slope), and Theorem 6.6.4 (which shows that in
the case that I has size at most one, the cohomology of the Hida complex M; constructed
in §4 1s overconvergent, once p is inverted). These results together improve (at the expense
of inverting p) on the classicality results of §4, in that they do not require the weight to be
sufficiently large; this is crucial for our applications to abelian surfaces, which correspond
to modular forms of parallel weight 2.

We begin in §6.1 with the construction at the level of formal schemes of a version
of the analytic sheaves of overconvergent forms that we will use later in this section.
The purpose of these sheaves is to allow us in §6.2 to show that the cohomology of our
analytic complexes is concentrated in degrees [0, #I]; as usual, this involves a comparison
of the toroidal and minimal compactifications, and we do not know how to carry out this
argument purely in the analytic setting. In §6.3 we construct the corresponding structures
in the analytic world, and we show that an appropriate Hecke operator (a product of “U,”
operators at the places dividing p) acts compactly.
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We then recall in §6.4 the analytic BGG resolution comparing the cohomology
with locally analytic coefficients to that with algebraic coefficients, which is one of the
ingredients in our small slope classicality theorem, which is proved in §6.5, the other
ingredient being a version of the analytic continuation argument of [Kas06]. Finally,
in §6.6 we apply our results to the complexes constructed in §4.6. We are only able to
show that the ordinary cohomology is overconvergent if #1 < 1; fortunately, this suffices
for the arguments that we make in §7.

6.1. Sheaves of overconvergent and locally analytic modular forms: the formal construction. —
In this section the base is C,, the p-adic completion of an algebraic closure of Q,. We
will construct overconvergent versions of our interpolation sheaves 2! and develop a
finite slope theory. It is necessary to connect the ordinary theory and the slope 0 over-
convergent theory, because we are only able to prove a strong classicality theorem in the
overconvergent setting. In the first part of this section, we begin by working at a formal
level. The reason is that we need to prove a vanishing theorem (Theorem 6.2.6) for the
overconvergent cohomology and we don’t know how to prove it without using formal
models.

6.1.1. Slope decompositions. — We very briefly recall the basics of the theory of slope
decompositions for compact operators, which was introduced in [ASO8] and further de-
veloped in [Urb11]. Given a vector space M over G, with a linear endomorphism U, and
a rational number £, an A-slope decomposition of M with respect to U is a decomposi-
tion M = M=" @ M>" into U-stable subspaces, where

e M=" is finite-dimensional,

e all of the eigenvalues a of U on M=" have v(a) < 4, and

e if Q) is a monic polynomial whose roots all have valuation less than /4, then Q(U)
acts invertibly on M>".

If slope decompositions exist, they are unique. If they exist for all 4, then we say that the
finite slope part is the union of the M=" for all 4 € Q,

The notion of a slope decomposition can be generalized to the case of modules
over a G,-Banach algebra A. In particular, it is known that compact operators on pro-
jective A-Banach modules admit slope decompositions locally on Max A. It is explained
in [Urbl1, §2] and [Pil20, §13] how to generalize this notion to perfect complexes of
modules over Banach algebras. In brief, an endomorphism U of a perfect complex is
said to be compact if it admits a representative U as an endomorphism of a bounded
complex M* of projective Banach modules, which is compact in each degree. Then one
may consider the product of characteristic power series of U on the individual M, and
the corresponding spectral variety for U as in [Col97]. The complex M* determines a
complex of coherent sheaves M?* over this spectral variety, and one defines the spectral
variety of U to be the support of the cohomology sheaves H*(M?*). One checks that this
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is independent of the choice of M* and U. The sheaves H*(M?®) over the spectral variety
for U admit slope decompositions.

6.1.2. Recollections about formal Banach sheaves. — An admissible O, -algebra is a flat
Og,-algebra which is a quotient of a converging power series ring Og, (X1, ..., X,) by
a finitely generated ideal. In this section we work with quasi-compact and separated
p-adic formal schemes over Spf Og, which admit an open covering by formal spectra
of admissible algebras. We call these formal schemes admissible. (In some parts of the
literature, an admissible affine formal scheme SpfA is one for which A is admissible, in
the sense that it is a complete and separated topological ring, which is linearly topologized
and has an ideal of definition, i.e. an open ideal I such that every neighbourhood of 0
contains some power of I. Our admissible algebras are a special case of this definition,
and we hope that our terminology will not cause any confusion.)

We recall some definitions taken from [AIP15, Defn. A.1.1.1]. We let G be an
admissible formal scheme. A formal Banach sheaf over & is a family (§,),>0 of quasi-
coherent sheaves such that:

(1) §, is a sheaf of Og /p"-modules,
(2) §, 1is flat over Ocp /P,
(3) For all 0 <m < n, we have isomorphisms §, ®Ocﬁ Oc¢ 3 /P =T

We can associate to (§,), a sheaf § over G equal to the inverse limit l(lgln S, (the
maps in the inverse limit are those provided by (3) above). Since §, = § ®Ocﬁ Ocp /p", the
sheaf § clearly determines the (§§,) and we identify § and the family (§§,) in the sequel.
We say that a Banach sheaf § is flat if §, is a flat Og /p"-module for all .

We say that a Banach sheaf § is small if there exists a coherent Og /p-module
JF such that §; is an inductive limit of coherent sheaves li_n;jeN $1,; and the quotients
S1,j+1/81 are direct summands of F.

We now recall a vanishing result from [AIP15].

Theorem 6.1.3. — Let G be an admussible formal scheme. Assume that & admats a projective
map S — &' o an affine admissible formal scheme which induces an isomorphism of the associated
analytic adic spaces over Spa(Gy, Og,). Let § be a small Banach sheaf over &. Let $L be an affine

cover of &. Then the Cech complex
Cech(tl, §) ®oc, Cy

us acyclic in positive degree.

Progf. — This is a special case of [AIP15, Thm. A.1.2.2]. Indeed, the proof
of [AIP15, Thm. A.1.2.2] is by reducing to this case, which is case (1) of that proof.  [J
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6.1.4. Recollections about the Hodge—Tate period map. — If H — Spec S is a finite flat
group scheme, we denote by H its Cartier dual and by wyp the conormal sheaf of HP
along its unit section. This is a coherent Os-module. We can view wyp as an_fppf -sheaf of
abelian groups. If ¢: T — S is an S-scheme, we let wpn (T) = H(T, ¢*wgp). There is a
well-known Hodge—Tate map HTy : H — wpp of fhpf-sheaves of abelian groups which
associates to any S-scheme T and point x € H(T) the differential x* dz, where we are
(thanks to Cartier duality) viewing x as a morphism x : H2 — G,,|1 of T-group schemes.

Let K = K,K’ be a neat compact open subgroup with K, =[], , GSp,(Or,).
Consider the non- compacuﬁed Shimura variety Yg — Spec Og,. We denote by Yk —
Spf Og, the associated p-adic formal scheme. We fix a toroidal compactification Yx <
Xk and denote by Xk the p-adic formal scheme associated to Xk. Let Vg < &k be the
associated analytic adic spaces over Spa (C,, Og,).

Let n = (ny)ves, € ZSE”O. We let K(p") be the compact open subgroup defined by
K (" = K,(p")K? where K,(¢") =[], Ker(GSp,(Or,) = GSp,(Of, /™)) is the princi-
pal congruence subgroup of level 7.

We let Ykgn.c, > Yk X $pec Oc, Spec G, be the Shimura variety with level
K(p") structure over SpecC,. This map is finite étale with Galois group equal to
l_[vl / GSp, (O, /p™). Associated to our choice of polyhedral cone decomposition we have
a toroidal compactification Yk ¢, = Xkn).c,- We denote by Vi) <> Xk the asso-
ciated analytic spaces over Spa(C,, Og,). The map Xy — Xk is finite flat. We denote
by Xk (n — Xk the normalization of Xk in Xk and by Yk, the normalization of Qg
in Vg These are admissible formal schemes (see [PS16a, §1.1]). There is a universal,
Op-linear map l—[vlp(OFv /1" Or)* — T1,,, Gulp™] over Y, which is symplectic up to a
similitude factor and is an isomorphism on the associated analytic adic spaces.

There is a Hodge—Tate period map HT : [, , G.[p" 1 — [1,, wg,/p" wg, (we are
using the quasi-polarization of G, to identify G, and G) which we can compose with
l_[v|p(OFU /PO )t — Hv\p G,[p"] to obtain an Op-linear map of sheaves over Yk )

HT : [[(Or, /5 Ot — [ we, /1" ws,

vlp vlp

We claim that this map admits an extension

HT: [ [0, /0 Or)" = [ [ wa, /" w,

vlp vlp

over Xk . When F = Q, this is the content of [PS16a, Prop. 1.2]. For a general F we
can use the Koecher principle of [Lanl7, Thm. 8.7].
According to a result of Fargues ([Farl0, Thm. 7], see also [PS16a, Thm. 1.5]),

the cokernel of the linearization of HT is annihilated by pﬁ% . By [PS16a, §1.4] when
F = Q (and an immediate generalization for general F), there exists an admissible formal
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scheme .'fﬁ"é,,) — Xk (), which is the normalization of a blow-up (the ideal of the blow-up
is finitely generated and contains a power of p), and a modification a)g"d C wg such that:

(1) wg is alocally free Op ® (’)x%}l) -module of rank 2,

@) priwg C ol C wg,
c O e—late ma actorizes imnto a ma
3) The Hodge—T: p HT factorizes i p

[0 0 = [T o

v|p v|p

and the linearized map

ﬂu—L mo
HT®1: H(OFv/p"” Or)'® (’)%%n) — Ha)gzd/p g
vlp v|p

1s surjective.

We say a few words about the construction of this formal model. We first intro-

mod

duce the subsheaf wg™ of wg generated over Xggn by pﬁ%l wg and local lifts of
HT(]_[U| /,(OFU /" Or,)?") in wg. The sheaf wgad constructed in this way is not locally
mod

free, but becomes locally free after pulling back to Xg{,, (and we continue to denote

this pulled back sheaf by a)g”d). We now describe the procedure used to construct %ﬁ"(‘;n).
Zariski locally over X, we can find a map

H(OFU ®z, O}:K(pn))4 — g
vlp

by considering local lifts of the Hodge-Tate classes in wg, and the image of this map 1s
wg”d. Zariski locally, we can trivialize wg and we can represent the above map by a 2 x 4
matrix at each place v|p. The formal scheme is obtained by taking the normalization of
the blow-up of the ideal which is the product at all places v dividing p of the ideal locally
generated by the 2 x 2-minors of the matrix at v.

We denote by ¢, ,...,¢,4 the canonical basis of (’);fv. We let € = (&), €
[, ([0, 7y — /ﬁ] N Q). We define an admissible formal scheme Xk (€) — %}2”(;,,) (an

open subscheme of an admissible blowup of %ﬁ”(d,,)) by the conditions that:

o HT(e,)) € ool /p" T ap for all vlp,

o HT () € pra/p" Tl forall v e I

For all v € I, the Hodge-Tate map factorizes into an isomorphism HT ® 1 :
OxK(pn) (E)/pEU ev,B @ O%K(pn) (E)/pEU&JA- - a)gzd/pfua)gzd

For all v|p, we let Fili™ C a)gj’i /P be the sub-module generated by HT (¢, ) and
HT (e, 3).



324 GEORGE BOXER, FRANK CALEGARI, TOBY GEE, VINCENT PILLONI

Lemma 6.1.5. — Fili™ is a locally fiee Oz, (€) /b - module of rank one, and is locally a
direct factor in a)gzd /P wgzd.

Proof — See [Pi1120, Lem. 12.2.2.1]. 0

We let Gr" = wgzd / (pevwgzd + Fili™). Then for all v|p, the Hodge—Tate map in-

duces an isomorphism:
HT ® 1: (Oxy (€) /1" )epa = Gri™.
If v € I, the Hodge—Tate map also induces an isomorphism

HT ® 1 : (Oxy, (€) /1)y 3 — Fil™.

6.1.6. Flag varieties. — We denote by §£, — %ﬁ”(’;n) the flag formal scheme which
mod

parametrizes locally free direct summands of rank one (as Op ® (’)xﬁn&/ﬂ)-modules) Filwg

mod

in wg". This space decomposes into a product §&, =[], , 5Ly, over all places v above
.

Let w = (w,) € Hv‘ﬁ[(), €1 NQ, We let §£, ¢, — Xk (€) be the moduli space
of locally free direct summands of rank one Fila)gzd C wgzd such that Fila)gjd = ki)™
mod p*.

We let w' = (w)) € l_[vlp[o’ w,] N Q. We let Sﬂzé’w’w, — §L, c.w be the moduli
space parametrizing:

(1) For all v|p a basis p, : O+ —> wgpi [Filwgmwa such that p,(1) = HT (¢, 4)

mod ", -
(2) Yor all v eI, a basis v, : O+

n,e,w,w’

— Fil(,l)g;rm{/ SuCh that Uv(l) == HT(@U’g)
mod p*r.

6.1.7. Some groups. — The group l_[u|p GSp, (O, /p™) acts on Xk and %ﬁ"&).
The parabolic subgroup [, B(Or, /™) [ [, KIi(Op, /p™) acts on Xk (€).

Let us denote by Xk (€) the quotient of Xk (€) by the action of this finite
group. This is an admissible formal scheme.

We have maps B(O, /™) — (O, /p™)*)? provided by the last two diagonal en-
tries and Kli(Oy, /p™) — (Op, /p™)* provided by the last diagonal entry.

We denote by T°, the formal group defined by

TR =] [a+p" R[] +p"R)’

vel vel’

for any admissible Og,-algebra R.
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We denote by %, the group

Ty (R) = [ [Or A+ p"R) [ J(OF (1 4+ pR))?

vel vel’

for any admissible Og,-algebra R.
Finally, we denote by ¥, the fibre product

T X, 50, [ [BOr,/p™) [ [ KOy, /).

vel¢ vel

+ - 0 0
6.1.8. Torsors. — The map §L,_, ,» = L, cw is a T ~torsor. The group T,
acts on p, and v,. This action extends to an action of ¥, on Sﬂze’w w > Xk (€),

compatible with the action of [ [, .. B(Og, /p™) [ ,; Kli(Op, /p™) on Xk (€).

6.1.9. Formal Banach sheaves. — Let A be a normal admissible O, -algebra. Let
Kt [ 1yer OF, [ e (OF,)* = A* be a character, which we assume is w’-analytic, in the
sense that it extends to a pairing ¥, X Spf A — G,,.

We denote by 7, : Sﬂzé,w’w

sheaf of Ogg, . , ®A-modules,

, —> §L,.c.w the projection. We can define an invertible

SKA = ((ﬂl)*Ong’fu ®A)Tgﬂ

) w’

where the invariants are taken for the diagonal action.

We let 75 : §£, ¢ w — Xk (€). This is an affine map. We define a formal Banach
sheaf &*" = (715),. £ over Xk (€); this is independent of the choice of w’, as is easily
seen from the construction.

Finally, we let 7r3 : Xk (€) = Xgam(€), and we define 4" = ((775) &< W) T
This is a formal Banach sheaf over Xk ) (€).

6.1.10. Some properties. — For each v € I we choose an element 7, € {2, 3}. Let
Xk (€, (1)) be the open subset of Xk, (€) where Fili*" is generated by HT(¢;) for all
vel

Lemma 6.1.11. — The quasi-coherent sheaf &> / p™ v restricted to Xk (€, (1y)) s an

infy, wy

inductive limat of coherent sheaves which are extensions of the sheaf Oy e (i) /P
Proof. — This can be proved in the same way as [AIP15, Lem. 8.1.6.2]. U
Lemma 6.1.12. — The quasi-coherent sheaf & " /p is a flat sheaf of Oxy () / p-modules.

Progf. — See [Pil20, Lem. 12.6.2.1]. O
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6.2. Vanishing theorem.

6.2.1. The mimimal compactification. — The main result of this subsection is Theo-
rem 6.2.6. As in the proof of Theorem 4.2.1, we will use the minimal compactification,
and in particular the facts that the pushforward of our sheaves to the minimal compact-
ification are supported on open subsets that admit an explicit affine cover, and that the
higher derived pushforwards from the toroidal to minimal compactifications of the cusp-
idal cohomology vanish.

We denote by X} the minimal compactification of Q. There is a natural map
Xk — X§. The invertible sheaf detwg over Xk descends to an invertible sheaf still de-
noted by detwg over Xj.. Let n = (n,) € Zipo. In this subsection we consider only the case
that n, is independent of v, and accordingly we will write 7 for n,. We let X§ ., be the
Stein factorization of the morphism: Xk — Xj. This is a normal admissible formal
scheme. In [PS16a, Cor. 1.4] it is proved that the determinant of the Hodge—Tate map
on %K(ﬁn)I

AHT : Q) A* (O, /p'Or,)" — Q) detag, /1"

vlp vlp

is the pull back of a map denoted the same way:

AHT : R) A2(Or, /405t — X) detawg, /1!

vlp vlp

I .
which is defined over X ..

Remark 6.2.2. — Literally, the determinant of the Hodge—"Tate map is a map:
NTY(Op/p'Op) — detwg/p'.

But using the action of O, it is easy to see that it factors through the direct factor

&,, A*(Or, /1" Or,)".

By [PS16a, §1.4] (for I = Q, and the same construction for general F), there is a
normal admissible formal scheme .'f;_([;',f()’d — X%, which is the normalization of a blow
up and carries a locally free modification det a)g"d C detwg such that:

2rQJ y
(1) p771 detwg C detwg™ C detwg.

(2) The Hodge—Tate map factorizes into a surjective map:

2 " 4 od . n AEQ
®A (OF,/t"OF,)" ® Ox*x?ﬁ"{’ — detwg™ /p" T
vlp
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The construction %I’Z"Z')d follows a similar procedure as the construction of %K( .
vlp AZ (041;) ®
- Q, , detwg, and consider the normalization of the blow up of the ideal which

explained in Section 6.1.4: one can lift locally the map A?HT to a map X)
Oxx

K"
is locally the product at all places v of the ideals generated by the coeflicients of the
above map at the place v. By the universal properties of blow-ups and normalizations,
there is a map %ﬁ“(’;n — %f&;ﬁ;‘j. Let € = (¢,) € ]_[W]([O, n— 21[;_:?]] N Q). We denote by

sk —mod

K(p,,) (€) —> Z{K(pn) the formal scheme defined by the condition:

o HT(e, 1) AHT(e) ®yppuro HT (01, ) AHT (e ,) € 5 det /0 forall
vlpand 1 <15, ky <4,
2[F:
o HT(e,2) AHT(6) @iy HT (e, ) AHT (6 4) € p det /' 7" for all

vel and | <1y, ky <4.

Jv

There is a Cartesian diagram (see the proof of [Pil20, Lem. 12.9.1.1]):

mod
%K(p”)(e) E—— %}2{'@”)

.

Xigp(©) — iy

By the proof of [Sch15, Thm. 4.3.1, pp 1029-30] (see also [PS16a, Thm. 1.16]), there is
an integer N such that for all n > N, there is a normal admissible formal scheme %I*{(/f;l)l
* mad

and a projective map Xy, Zf}k{(ﬁ)T which 1s an 1somorphism on the associated ana-
lytic spaces and satisfies:

(1) The invertible sheaf det a)g"”d descends to an ample invertible sheaf on %:‘{(pl;lf .

(2) For all rational numbers € > 0, there is n(€) > N such that if n > n(e€), then
there are sections g, ,),, € HO(.'{K(/),,) , det a)’”"d satisfying ¢, =
®.,HT (e,5,) AHT (e, ,) in deta)’”"d/p forall 1 <4¢,5, <4.

Let € = (¢,) € (Q.0)¥. Let n > sup, n(€,). We define a formal scheme
%;‘{_([,H)T (€) > %K(p,, by the condition:

e for all v|p, for all (¢, jy)v € ({1,2, 3,4} x {1, 2,3, 4Mh%, such that i, = 1, we
have s, ; ) € p det w’””d

o forallv el forall (5, 0)v) € ({1,2, 3,4} x {1, 2,3, 41h*, such that 7, = 2, we
have s, ;) € p* det a)’”"d.
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We have a Cartesian diagram

—mod
Xk (€) — Xy

l l

X - X
where both vertical maps are projective maps and induce isomorphisms on the associated
analytic generic fibres.

Forallv eI, let s, € {2, 3}. We define an open subspace %Ep]j)T(e, () of%’&;;(e)
by the condition that SCiy, D) ver, (3,4)pere ?é 0.

We similarly define an open subspace ff*K(p,,)(e , (1)) of %I*((Pn)(e ) by the condition
that @, HT (¢, ;) AHT(ey.4) Qperr HT'(ey3) AHT (¢, 4) #0 forall v e l.

Lemma 6.2.3. — We have a projective map %;‘qﬂ)(e, (%)) — %E_(;I)T (e, (1)) which is an

wsomorphism on the associated analytic adic spaces. Moreover, %*K_(/f{)T (€, () 15 an affine formal scheme.

Progf. — The first point is clear. The second point follows from the ampleness of

det a)g”d on .’fl*{_(pl;l)T (€) and the fact that %I”;_(;,I)T (€, (1)) 1s the open subscheme defined by

the non-vanishing of a section of an ample sheaf. 0

6.2.4. Vanishing. — We have a map 7 : Xg () (€) — Z{I*((pn) (€). We denote as usual
by D the boundary divisor.

Proposition 6.2.5. — We have R'mt, Oz, ) (=D) =0 for all i > 0.

Progf. — This can be proved in exactly the same way as [Pil20, Prop. 12.9.2.1]
(which is the case F = Q). U

Theorem 6.2.6. — Let € = (€,) € Q_ipo. Let n = (n,) with inf, n, > sup, n(e,). The
complex

RT Xk (€), 8" @ (detwl™)*(=D))[1/4]

has cohomology concentrated in degrees [0, #1].

Progf. — Consider the hypercube [2, 3]'. We can associate to it a category denoted
by C. Its objects are the faces o of the hypercube. By definition, a face is a product [ [, A,
where for each v € I, &, € {2, 3, [2, 3]} (our convention is that faces are closed). There is
amap o' — o between faces if ¢’ is included in 0.
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We now define a functor C¥ — Op(.’fl*{?;ﬁgd(e )), where the target is the category of

open subsets of %*Kzﬁgd(e) (whose morphisms are open immersions). It sends a face o to

U,, the intersection of all the formal schemes fff{(;ﬁ,’gd(e, (1)) for (z,)yer € 0 (we recall that
o € {2, 3}).

Write f: Xk (€) = %;‘{(%d(e) for the map defined above. For all o € C, consider
the following Cartesian diagram:

xK(pﬂ) (€)s — xK(p”) (€)

)

U, X' (©)

where j is the natural open immersion.
Let SA(Xg(n(€)) be the category of sheaves on Xk (€). We define a functor
C — Sh(Xk ) (€)) which sends o to the sheaf

Gy = 40" (B @ (detwy)* (=D)[1/p]).

We deduce from Lemmas 6.1.11 and 6.1.12, together with Proposition 6.2.5, that
the sheaf £,&,, is a small formal Banach sheaf and that R'/,&, = 0 for all 7 > 0. It follows
from Theorem 6.1.3 (which applies because of Lemma 6.2.3) that £.&,, is acyclic.

We deduce that the cohomology RI'(Xkn (€), &+ & (det a)_g"”d)Q(—D)[l /pl) 1s
represented by the complex C® concentrated in degree 0 to #I, whose ith term is
Do dimo—H’ (Xk(n(€), B5) and whose differentials are alternating sums of the restriction
maps H” (X (€), 84) = H Xk (€), 8,) for 0’ C o, dimo’ = dimo — 1. O

6.3. Sheaves of overconvergent and locally analytic modular forms: the analytic construction. —
We now translate our previous formal constructions to the analytic setting, which is well
adapted for the spectral theory.

6.3.1. Analytic Hilbert—Siegel varieties. — This section is parallel to [Pil20, §12.7].
We let Xk be the generic fibre of Xk (. We write Xk for the generic fibre of Xx. We
let Xk (€) C Xk be the generic fibre of Xk (€). We let Xk, (€) be the generic
fibre of Xk (€). We now give a modular interpretation of this last space. Let A be the
universal semi-abelian scheme and G be its p-divisible group. Let wg be the conormal
sheaf of A at the origin and let @/ C wg be the subsheaf of integral differentials (we use
the slight abuse of notation to write wg instead of w,). These are sheaves over Xk on the
analytic site.

We let a)g’d’+ be the subsheaf of a)ér generated by the image of the HodgeTate
map. This is an étale sheaf over Xx.

The fibres of the map Xk ) (€) — Xk parametrize:
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e lor all v € I, a subgroup H,,, C G,[p™] which is locally for the étale topology
isomorphic to Z/p"™Z and is locally for the étale topology generated by an ele-
ment ¢, ; which satisfies HT'(¢,.1) = 0 in a)”"’d e

e For all v € ', totally isotropic subgroups HMU c L,,, C Gy[p™] such that H, ,,
is locally for the étale topology isomorphic to Z/p™Z, L, ,, is locally for the étale
topology isomorphic to (Z/4™Z)*, and is locally for the étale topology generated
by elements ¢, ; and ¢, » which satisfy HT'(¢,,;) = HT(¢, 9) =0 in a)m”d * b

We can define for all v|p an étale sheaf Fili"" = Im(HT : H,, ® O Xicam (©)
/p®). This is a étale locally free sheaf of O% ©) /p’-modules of rank 1. We let
Grc“‘“ = gzd T/ + FI).

v

We have 1somorphisms deduced from the Hodge—Tate map:

« HT:HD, @ O% /" — Gri™ for all vlp,
e HT:(L,,/H,,)" ® Ok o/ = F™ for all v € T

mod +
Xray

We let F Lk m,e,w = Xkam(€) be the moduli space of flags Filwg C wg satisfying
Filwg, N wg™* /pm = Fil&™ /p.

We let X+ (€) = Xgam(€) be the étale cover parametrizing trivializations:

o Z/p"Ze,, — HY forall vp,

o Z/pZe,s — (L,,,/H,,, )" forall v el

We let ]:EE(LP,,

trivializations of*

= FLRpy.ew X Xigam(e) X+ (€) be the moduli space of

)€, w,w

e for all v|p, p, : Ofﬁga 5 — Grwg, = wg,/Filwg, such that p,(1) =
e w,w’
HT(e,.4) modulo p*v
o forallvel, v, : Ofﬁz(m) — Filwg, such that v,(1) = HT (¢, 35) modulo
P

We can connect these definitions with the constructions of the previous sections.
Let FL, e.0 = Xk (€) be the analytic space associated to §£, ¢ ,,. Let F L . be the

n,e,w, w
analytic space associated to SS” cw

Lemma 6.3.2. — We have
FLyew= fﬁK(I,/ﬂ),e,w X X,y (€) XK(/)”)(G)
and

+ +
F,E A ‘FEK(I,p”),G,w,U)/ XXK(I./)”)'*’ (6) XK(p") (6)'

n,e,w,w

Progf. — This follows from the definitions. 0J
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6.3.3. Banach sheaves. — We let L be the invertible sheaf over FL, ., X
Spa(A[1/p], A) associated to £. We let G*+* be the Banach sheaf over Xk (€) associ-
ated to &+, We let 4" be the Banach sheaf over Xk ;) (€) attached to §**. A direct
definition of F**" is the following. Let  : F EE(L , — Xk, (€) be the affine pro-
jection. Let T, be the generic fibre of T,. This group acts naturally on F. [,IJQ(L Y ew s
trivially on Xk ) (€), and the morphism 7 is equivariant for the action. It follows from
the definitions that

P, €,w,w

Fnt = (7'[*0]:£+ ®A)Tw/

K.ph),e,w,w’
where the invariants are for the diagonal action (with the action on the second factor

being via k).

6.3.4. Locally analytic overconvergent cohomology. — We define the n, e-convergent,
cuspidal w-analytic cohomology of weight parametrized by A to be:

Coup(n, €, W, K4 ® (2, 2),) := R (X ) (€), F @ (detwg)® (=D)).

For € > €, n > n, w > w, we have maps: Cy(n, €, W, ka ® (2,2),,) = Cp(, €', 0,
Ka (24 (2’ 2)v|/))

Passing to the limit over 7, €, w, we define the ith cohomology groups of cuspidal,
overconvergent, locally analytic cohomology of weight parametrized by A:

Hiusp(Ta KA ® (2’ 2)1}\1)) = li_n;Hi(Ccusp(na €, W, kxn ® (2’ 2)U\p))

6.3.5. Properties of locally analytic overconvergent cohomology. —

Proposition 6.3.6. — The complex C . (n, €, W, kn @ (2, 2)y),) s represented by a bounded
complex of projective Banach A[1/p]-modules.

Progf — This follows easily by considering a Cech complex; see [Pil20, Prop.
12.8.2.1]. O

Proposition 6.3.7. — The cohomology Himp(T, Ka ® (2, 2)yp) vamishes for i ¢ [0, #1].

Proof. — This follows from Theorem 6.2.6. U

6.3.8. Descent. — We now assume that the character

ka0 []©05) — A

vel velt

is trivial on the torsion subgroup of [ [,o; O [, (Or,)? (of order prime to p since p > 2).
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The group ((’)F)a;’)+ acts on Xk, and the action factors through a finite group.

We let Xé’(}y m be the quotient. The action of (OF)&5+ can be lifted to the sheaf F**" by
setting

x TN

for all x € (OF)(?;JF, to be the composition of the tautological isomorphism (the polar-
ization is not used in the construction of the sheaf) and multiplication by the character

d:(Op)H = Af — A* of §4.4.2.

We denote by F* “2':% the descended sheaf on ?C'IE’(II - We let

Ccusp(le n, €, W, Kp 02y (2’ 2)1)\[7)

be the cohomology of the sheaf
Gy
Fia ' @ (detwg)?(—D)

over Xlg’(llyﬁn)(e). This is a direct factor of Ciy(n, €, w,kx ® (2,2),,). We also let
Hiusﬁ(Gl ’ T’ Ka ® (2’ 2)U|[)) = li_n)lHi(Ccusp(Gl N, €, W, Ky & (2’ 2)vlp))

6.3.9. Spectral theory: construction of the operator U, 9. — Firstly let v € I. We define
an analytic adic space s, : C, 9 = Xk, (€) which parametrizes isogenies A — A" with
associated Barsotti-Tate group G — G’ whose kernel is a group M, C G,[p*] which:

e is totally isotropic and locally isomorphic to (O, /pOf,)* @ Oy, /p* Ok,

e has trivial intersection with H, ,, .
There is a second projection s; : C, o = Xy v, (€") where:

o ' = (n,),, where n
o ¢ = (€y)y), where €

=n, + 1, and n), = n, if V' # v.
=e€,+1,and €, =€, if V' #v.

=~

e~

This map is provided by sending (A, A’) to A", equipped with the subgroups:
e H, =Im(H,,, ) forallv' #v,

. L:/,nj =Im(Ly, ) forall v' € I',
° H;,nvﬂ =1Im(p~'H,,,) where p~'H,, is the pre-image in G,[p"*'] of H,,,,.

One checks as in [Pil20, Lem. 13.2.1.1] (see also Lemma 6.3.13 below) that the
image of s, lands in Xy v (€'). The natural map wg — wg induces a natural map
s;‘]-"’“\’w/ — sFFNY ] where w' = (wy) with w), = wy if v # v, and w, = w, + 1.
(See [Pil20, Lem. 13.2.2.1].) We deduce that there is a normalized map s;‘]:’(A'w/ ®
(detwg)?(—=D) — SFFNY @ (det wg)*(—D) obtained by taking the tensor product of
the above map and the normalized map (by p~?) s (detwg)®(—D) — s7(detwg)*(—D).
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We can therefore construct a Hecke operator U, s : RT'(Xgqpm(€), F4" &
(detwg)?*(—D)) — R (Xkam, FN" ® (det wg)?(—D)) by the following composition:

RT (Xgqpm(€), F4 @ (detwg)*(—D))
— R (X 1) (€), T ® (detwg)*(—D))
— RT(Cy 0, S F" @ (detwg)(—D))
— RT(C,, s* F @ (detwg)*(—D))
— R (X (€), (51)45] F ® (detwg)’(=D))

—3 T .
TR (X (€), F4 @ (detwg)*(—D)).

Now let v € I’ We define an analytic adic space s, : C, 9 = &g m(€) which
parametrizes isogenies G — G’ whose kernel is a group M, C G, [$*] which:

e is totally isotropic and locally isomorphic to (O, /pOf,)?* @ Oy, /p*O,, and
e locally in the étale topology there is a symplectic isomorphism (G,)[p>] ~
(F,/OF,)* such that
— M, is generated by p"e,.0, 7 ey 3, p 200 4,
— H,,, 1s generated by p~"™e¢, 1, and
— L., 1s generated by p™™e, 1 and p"e, 9.

There is a second projection s, : C, » = Xk ) (€), sending (G, G') to G’, equipped
with the subgroups:

o H), =Im(H,,,) forall v’ #v.

o L, =Im(L,,,) forall v/ eI, v’ #v.

e In the notation above, H), , is the group generated by the image in G’ of p™™¢, |
and L;  is the group generated by the image of p™"¢,; and p ™ e, 9. One
checks easily that these groups only depend on M,,, H, ,, and L, ,, (and not on
the choice of symplectic basis).

Again, there is a natural map s; 4" — sfF*4"_ (See [Pil20, Lem. 13.2.2.1] and
[AIP15, §6.2].) We deduce that there is a normalized map s§F**" ® (detwg)?(—D) —
sEFY @ (detwg)?(—D) obtained by taking the tensor product of the above map and
the normalized map (by p~?) sy (det wg)*(=D) — st (detwg)*(—D).

We can therefore construct a Hecke operator U, s : RI'(Xgqpm(€), F4" &
(detwg)?*(—D)) — R (Xkapm, F4" ® (det wg)?(—D)) by the following composition:

RT (X pm(€), F" @ (detwg)*(—D))
— RI'(C, 9, s F" @ (detwg)*(—D))
— RI(C,o, sTF™Y ® (detwg)?(—D))
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— RT (X (€), (5)as5] F " ® (detwg)”(—D))

' STRE (X (€), F @ (detwg) (= D)).

Remark 6.3.10. — When v € I we observe that U, 5 itself is not improving ana-
lyticity and convergence in the v direction (while it visibly does so in the case v € I). We
next define an operator U, ; when v € I'. We will then show that the composite operator
U, U, » improves analyticity and convergence. (This is related to our needing to use both
the operators T, and T, | at places v € I’ in §4.)

6.3.11. Spectral theory: construction of the operator U, ;. — We let v € I°. We define
an analytic adic space ¢ : C,; — Xgm(€) which parametrizes isogenies A — A" with
associated Barsotti-Tate groups G — G’ whose kernel is a group M, C G, [p] which:

e is totally isotropic and locally isomorphic to (O, /pOF,)?,
e has trivial intersection with L, ,, .

There is a second projection 4 : C, | — Xk, (€), given by sending (A, A’) to A/,
equipped with the subgroups:

d H;/,ﬂ , = Im(Hv/,nU/) fOI' all U/>
o L:)’,ﬂ , = Im(Lv’,nv/) fOI‘ all l)/ eI

There is a natural map #F*" — fF4" (again see [Pil20, Lem. 13.2.2.1] and
[AIP15, §6.2]). We deduce that there is a map t;‘]:"f"w/ ® (detwg)*(—D) — £ F" @
(detwg)?(—D) obtained by taking the tensor product of the above map and the map
£ (detwg)*(—D) — £ (detwg)*(—D).

We can therefore construct a Hecke operator U, ; : RI'(Xgqm(€), F 4" &
(detwg)*(—=D)) — RT (Xkaypm, F 4" ® (det wg)?(—D)) by the following composition:

RI (Xgqm(e), F*" @ (detwg)®(—D))
— RI(C,.1, F " @ (detwg)’(—D))
— RI(C,.1, £ F" @ (detwg)®(—D))
— R (X (€), (1) F" @ (detwg)’(—D))

73 v
'SIRD (Xkapm(€), F V" ® (detwg)?*(=D)).

6.3.12. Spectral theory: construction of the operator U, U, 5. — Let v € I We now
consider the composite operator U, U, 5. Our main task it to show that this operator
improves convergence and analyticity in the v-direction. We begin by giving the corre-
spondence corresponding to this composite.
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We define an analytic adic space u; : C, = Xk, (€) which parametrizes isogenies
A — A’ with associated Barsotti-Tate groups G — G’ whose kernel is a group M, C

G.[p?] which:

e is totally isotropic and locally isomorphic to Oy, /pOr, Oy, /p*Op, ® Ok, /* O, ,
e locally in the étale topology there is a symplectic isomorphism (G,)[p>] ~
(F,/Ok,)* such that
— M, is generated by p " e,.0, p 2,3, p 00 4,
— H,,, 1s generated by p~"™e¢, 1, and
— Ly, 1s generated by p™"¢, | and p~"¢, ».

There is a second projection uy : C, = X 4 (€'), given by sending (A, A") to A/,
equipped with the subgroups:

e H, =Im(H,,, ) forallv'#v,

o L, =Im(L,,, ) forallv' €I, v # v,

e In the notation above, H; , |, is the group generated by the image in G’ of
p" e, and L, 41 is the group generated by the image of p" e, and

" %, 9. One checks easily that these groups only depend on M,, H,,, and
Ly.,-

Lemma 6.3.13. — The umage of uy lands in XK(I,pn’)(G/)'

Progf. — We argue in the same way as in the proof of [Pil20, Lem. 13.2.1.1]. We fix
SYmpleCtiC bases (%,i)lgigat Opr(g), (%,)13‘54 Opr(g/), (ﬁ)lgng ofngd, and (}7)151‘52 of
a)g‘/’d (compatible with the canonical filtration) such that there is a commutative diagram:

diag(1,p.p%.4°)

T,(G) T,(G,)

| |

diag(p?,p°)
mod s mod

wgv wg/

By definition we have that HT'(e, ), HT'(¢,0) € peva)gzd. On the other hand,
HT(e 3), HI'(¢, 4) generate a)gzd and HT(¢, 5), HT (¢, ,) generate a)gzd. The group
Ly,+1 is generated by diag(1, p, p°, p°) - e,y = ¢, | and diag(1, p, p*, p°) - p~'evo = €, .
Therefore we deduce that HT' (¢, ), HT (¢, ,) EpE”Ha)g”d. O

There is again a natural map uﬁ}—"“’wl — uf FM" where w' = (wy) with w), = w,
is V' # v and w, = w, + 1; see [Pil20, Lem. 13.2.2.1] and [AIP15, §6.2]. We deduce
that there is a normalized map uﬁ]:"f"w’ ® (detwg)?(—D) = ui F4" ® (detwg)*(—D)
obtained by taking the tensor product of the above map and the normalized map (by p~?)
iy (detwg)®(—D) — uj(detwg)*(—D).
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We can therefore construct a Hecke operator U, yU, | : RT'(Xgqpm(€), F" ®
(detwg)*(—D)) — RT (Xkapm, FM" ® (det wg)?(—D)) by the following composition:

RT (X pm(€), F4" ® (detwg)*(—D))

5 RI (X ) (€), F"' @ (detwg)*(—D))
— RI(C,, 3 F*" @ (detwg)*(—D))
— RI(C,, l F" ® (detwg)?(—D))

— RT (X (€), ()l F @ (detwg)?(—D))
_6 v
"STRT (X (€), F @ (detwg) (= D))

We now set U' =[], Uvo [ [ e Us1 Uy o.

Lemma 6.3.14. — The operator U" acting on Cop(Gron, €, w, kKA Q (2, 2)y)y) is compact.
Moreover, forn+1 = (n,+1)yp, €e+1 = (€, + 1), and w+ 1 = (w, + 1), we have a factorization
(where the vertical maps are the natural restriction maps):

ul
Cap(Grom €, w, k3 ®(2,2)yp) ——————> Cay(Gr.n €, w, ki, ® (2, 2)u))

|

U

Cup(Grnt+ e+ 1, w+1,63®(2,2),) — Cuy(Giontle+ 1, w+ 1,44 ®(2,2)y,)

Progf. — By construction, the action of U' can be factored into
} G
RE (XL (€), F2 0 @ (detwg)*(—D))
— RI(X o (€ + 1), FA @ (detwg)? (—D))
U Gy e w 2
— RI' (X (€), F " ® (detwg)™ (D))

where n + 1= (n, + 1),y and € + 1 = (¢, + 1),, w + 1 = (w, + 1),. It is enough
3 G 3
to show that the map RT(X) ) (€), F4'" ® (detwg)*(—D)) — RT (X i (e +

1), ‘FK‘Sl’w-ﬁ-l ® (detwg)?(—D)) is compact. This follows by consideration of an appro-
priate Cech complex, as in [Pil20, Lem. 13.2.4.1]. U

6.3.15. Spectral theory: local constancy of the Euler characteristics. — Let W, be the set
of weights k = ((ky, 4,))v)p € Z>, with [, =2ifv €L, k, =, =2 mod(p — 1) for all v|p. It
1s equipped with the p-adic topology.
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For all k € W, we let C,,,(Gy, n, €, w, k) be n, e-convergent, w-analytic coho-
mology of weight k and we set Himp(Gl, T,K) = 1'£>nHi(Cm,,(G1, n, €, w, k)). In other
words, following the notation of §6.3.8, we have A = C, and kx =k ® (=2, —2),),. It
follows from Lemma 6.3.14 that the cohomology groups e(UI)Him(Gl, T, k) are finite-
dimensional. The following standard consequence of our constructions will be crucial
in our comparison in §6.6 of the complexes constructed in §4 and the overconvergent
cohomology we are considering in this section.

Theorem 6.3.16. — The map

W, —>Z
k> Y (=1 dime(UYH,,, (G, T, x)

us locally constant.

Progf. — This follows from Coleman’s theory [Col97, §A5], as in [Pil20, §13.4].
Indeed, there is a perfect complex C* interpolating C,,,(G1, n, €, w, k) over the spectral
variety, and the dimensions of the slope zero parts of the C' are locally constant. UJ

Remark 6.3.17. — In particular if #1 = 1, we deduce that

K = dime(UDH), (G, T, 1) — dime(UYH,,, (G, T, )
1s locally constant. We will use this in §6.6 to reduce the comparison of ordinary and over-
convergent cohomology to the case of high weight, where the control theorems proved

in §4 apply.

6.4. Locally analytic overconvergent classes and algebraic overconvergent classes. — Let k =
((ky, 1))y with [, =2 ifv €L, k, =, =2 mod (p — 1) be a dominant algebraic weight.
Proposition 6.4.1. — On H' (G, T, &), the slopes of (U, 1)yer and (Uy,2)u)p are > —3.

cusp

On H?mp(Gl, T, k) they are > 0.

Proof. — The proof of [Pil20, Prop. 13.3.1.1] goes through essentially without
change. U

Below, we denote by F“" =lim
—>w

]:‘K,w’
» .

/<
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Proposition 6.4.2. — Let ik = ((ky, [,)) v with l, =2 1fv el k, =1, =2mod (p— 1)
be a dominant algebraic weight. There is a relative analytic BGG resolution:

0 — o (=D) = F*" @ (detwg)’(—D)
— P F*" @ (detwg)*(=D) — -+

seWd)

— P F*" @ (detwg)* (D) — 0

SEW®

where W is the Weyl group of GLo(F ®¢ Q,), WY stands. for the elements of length i in W, and e is
the twisted Weyl action.

Progf. — This 13 a relative version of the main result of [Jonll], and is proved
in [AIP15,§7.2]. (Note though that there is a minor error there; one needs to replace "
with 7" as defined above, but having made this change, the arguments go through
unchanged.) UJ

The actions of U, ; and U, by cohomological correspondences on the sheaf
F*" Q@ (detwg)*(—D) restrict to actions on the subsheaf w*(—D) (and the action of
U' is compact on the cohomology).

Corollary 6.4.3. — Let k = ((ky, [,))vp with [, =2 ifvel, k,=1L,=2mod (p — 1)
be a dominant algebraic weight. Then the map

«(UDH' (X (€), 0 (=D))
— e(UDH' (X (€), F" ® (detwg)’(=D))

is an somorphism for 1 = 0 and injective if 1 = 1. It is an isomorphism _for 1 = 1 if we further assume
that ky, — 1, > 3 _for all v|p.

Proof — Proposition 6.4.2 gives a spectral sequence Ef’ = D ewr H (X 1) (€),
Fov @ (detwg)?(—D)) converging to HT(Xiq ) (€), @ (—D)). We shall see that
the ordinary projector kills the terms E['? of the spectral sequence for p > 1 under a
suitable normalization of the action of the Hecke operators and suitable assumptions
on the weight k. We analyze the differentials of proposition 6.4.2: @ o F*°" &
(detwg)*(=D) = P iy F*" @ (detwg)?(—D). We let W = l_[vy;{lw w,} with
£(w,) = 1. For any subset J of places diving p, we let w; = ]_[veJ w,. The above
map is given by the product of the maps 6, : F****" ® (detwg)?(—=D) — F*v" ®
(detwg)*(—D) for s = wy (for a subset J of cardinality ¢) and s’ = wyy,) for v ¢ J. By
[AIP15, §7.3], this map induces on cohomology an equivariant map for the operators
U,.; for w # v and U, ;; and on the other hand, we have U, 306, , = pv=*1g o U, ,.
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A way to interpret this relation is to say that the spectral sequence is equivariant for
the action of Hecke operators, if the standard action of U, », on Hi(XK(Lpn) (e), FrUeer &
(detwg)*(—D)) is twisted by multiplication by p*~»*! if v € J. The corollary therefore
follows from the slope bounds of Propositions 6.4.1. U

6.5. Small slope forms are classical.

6.5.1. Fargues’ degree function. — We now recall some results on the degree of quasi-
finite flat group schemes, following the papers [Farl0, Farl1]. Let K be a complete valued
extension of Q, with corresponding valuation v : K — R U {00}, which we assume to be
normalized so that v(p) = 1. We also write v : Ox/pOx — [0, 1] for the induced map.
If M is a finitely presented torsion Og-module, then we can write M = @'_, Ok /x; for
some x; € Ok, and we set degM := Z;Zl v(x; mod p).

If H is a group scheme over Ok, we let wy denote the conormal sheaf to the
identity section. If H is finite flat, then wy is finitely presented and torsion over Ok, and
following Fargues we define the degree of H to be

degH := deg wy.

More generally, let A — A’ be an isogeny of semi-abelian schemes with associated
p-divisible groups G — G’ over some analytic adic space S. We denote by wg and wg: the
conormal sheaves of A and A’ along their unit sections and by @ and /, the subsheaf
of integral differentials (which means that locally on S they arise from differentials on a
formal model of A or A'). Let H be the kernel of G — G’. This is a quasi-finite group
scheme. 'To this isogeny we may attach a section dy of the locally free sheaf of rank one
detwg ® det a)él. Moreover, this section lies in the subsheaf (detwg )™ ® (det a)él)Jr of
integral differential forms. For each point x € S, we may compute the associated norm
|81, by choosing a trivialization of (detwg)* ® (det w§1)+ in a neighbourhood of x and
viewing dy as a function (the norm |8y, 1s independent of the trivialization). If x € S
is a rank one point with associated valuation normalized by v,(p) = 1, and if H, C G,
extends to a finite flat group scheme on a formal model &, of G, over Speck(x)™, then
v,(8p) = deg H,.

6.5.2. Neghbourhoods of the ordinary locus. — Recall from §4.3 that we define

K, (D) = [ [Kli() [ [Iw).

vel vel’

We can consider Xg,qks. Let XKpr(l) be the associated analytic space. For each
v|p, we have an isogeny G — G’ whose kernel is a quasi-finite group scheme H,, which is
of order p away from the boundary. For each v € I, we have an isogeny G — G’ whose
kernel is a quasi-finite group scheme L, which is of order p* away from the boundary.



340 GEORGE BOXER, FRANK CALEGARI, TOBY GEE, VINCENT PILLONI

Let XIQI‘,JIKP(D be the subset of rank one points. To each rank one point x is associated
a rank one valuation v, : OXK o R U {oo} which we normalize by v,(p) = 1. If v € I,
pOKL .

we define deg, : X{(A}}Kp(l) — [0, 1] by deg, (x) = v,(8y,). Similarly, for all v € I*, we define

deg, : XI?/}KP(I) — [0, 2] by deg, (x) = v.(é1,,).
We can put all these degree functions together into a function

deg : X0 = [0, 11" x [0, 21"

For each rational interval J C [0, 1]' x [0, 2]", there is a unique quasi-compact
open subset Xxrk, 1 (J) C Xk, such that Xk, ) (O™ =deg™'(]).
Of particular interest is the multiplicative locus:

XE}PI?p(I) = XKﬂKp(l)({l}l x {2}").
Let (&,) € ([0, 11" x [0, 2]") N Q_Sf’ and set

XK/’K/;(I)((GU)UGS/,) = XK/’K/;(I)(I_[[I — €y, 1]1 X 1_[[2 — €y, Q]F)-

vel vel’

1 . .
Observe that Xﬁ‘f{ﬁ(l) = XK/’K,,(I)((O)UES/,) while {XKPK/)(I)((Gv)veSp)}ev—)()*,VveSp IS a

fundamental system of strict neighbourhoods of Xf{n,‘l‘lgpa).

All these spaces are stable under the action of OF(?;JF on the polarization, and

descend to open subspaces of Xg}{p(l). We can therefore add a superscript G; to any of

these spaces with the obvious meaning.

6.5.3. Comparison between spaces of overconvergent cohomology. — In this section we
make the connection between the spaces XKpr(I)((ev)vesp) (with €, € ([0, 11" x [0, 21N
Q) that we just introduced and the spaces X1 ((€,)ves,) (say for parallel n € Z-| and
with €, € ([0,n — %1] N Q)¥) introduced in §6.1.4. Both types of spaces are neighbour-
hoods of the multiplicative locus in an appropriate sense. The previous spaces are well
adapted to the construction of interpolation sheaves and eigenvarieties while these new
spaces appear naturally when one wants to prove classicity theorems.

There is a natural forgetful map XK(I,pﬂ)((Gu)uesp) — XKﬁKp(l). By [P1120, Lem.
14.1.1] (for the places v € I, and a trivial extension for the places v € I), this map fac-
tors into a map Xk ((€x)ves,) = Ak, mre (1 — %(ﬂ — €+ Ifl))uel X (2 — %(ﬂ — €+

€

ﬁ))vepr). Observe that when €, = n — and n— o0, 1 — %(n — €, + ﬁ) — 1 and

=1

— %(n —€,+ lﬁ) — 2. Conversely, by [Pil20, Lem. 14.1.2], there is a natural inclusion:
XK];(I)K/]((GU)UES/,) —> XK(L}?)((I — /}—Ll)vesﬁ) fOI' all €y > 1 — % if vel and €y > 2 — ’% if
vel.

Lemma 6.5.4. — Let (¢,) € ([1 — %, D' x [2 — %, DY N Q. Let k be a classical
algebraic weight.
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(1) The cohomology RT" (XK/;K/](I) ((Gu)ves,,), ") carries an action of the operators U, | and
U,.o.
(2) The operator [ [,c; Uy [ 1yer Uv,1 s compact RT (XIS,}KP(D ((€0)ves,), @°).

(3) The canonical map RT° (Xlg,}(ﬁ(l)((éu)ues,,), o) — R (XIS(IL,,)((l - ﬁ)vesp)a )

induces a quast-isomorphism on the finite slope part for [ |,c; Uv.o [ [,cpc Uv.1-
(4) The same holds for cuspidal cohomology.

Progf. — The definition of the operators is a routine computation. To prove com-
pactness, we need to show that the operators improve convergence. This is entirely par-
allel to Lemma 6.3.14. For the degree functions considered here this follows from of
[Pill1, Prop. 2.3.6]. The quasi-isomorphism follows from an easy analytic continuation
argument (see Lemma 6.5.18 below, for example). U

It is sometimes convenient to consider the dagger space

(6.5.5) xpet = Jim Kok, ((€0)ves,)

KPR,y (D) *

and its Gj-variant. In view of the previous lemma we can define the complex
e«(UNRT (X (", @ (=D)) as being equal to e(UNRIT (X ) (€0)ves,), ).

Lemma 6.5.6. — The complex e(UI)Rr(Xg(;;g,{”, w*(=D)) is a perfect complex sup-
ported in degrees [0, #1].

Progf. — That the cohomology vanishes outside of degrees [0, #I] follows as usual
by pushing forward to the minimal compactification. The finiteness of the cohomology
follows from the compactness of U, U

6.5.7. Main classicity theorem. — We now state our main classicity result for over-
convergent cohomology, which we will prove using a generalization of the analytic con-
tinuation method of [Kas06] to higher degree cohomology, which was proved in [Pil20,
§3]. Let k = (ky, [,),, be a dominant algebraic weight. There is a canonical restriction
map

RT (X, rr» @ (—D)) = RO(XH, 0 (=D))

K, (DK
which is equivariant for the Hecke operators U, ; and U, ,.
Theorem 6.5.8. — The canonical map
RF(XIgI(I)Kﬁ, o (—D)[U,y <k +14, —3vel, U, <l —3vel]

RO, o0 (DDUss <k + 4 =3vel Uy <l —3vell

s a quasi-isomorphism.
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Remark 6.5.9. — The meaning of [U, 9 <k, + /[, —3vel, U, </, —3vel]
in Theorem 6.5.8 is the obvious one: it means the part of slope less than £, + [, — 3
for U, at v € I and less than [, — 3 for U, ; at v € I'. (Note that while the individual
operators U, |, U, » do not act compactly on the complex on the right hand side, their
product U does by Lemma 6.5.4 It follows the individual operators U, ;, U, 5 act com-
pactly on the part of the complex with bounded slope for U, and so this small slope part
1s well-defined by the procedure explained at the start of this section.)

Remark 6.5.10. — When I = ¢}, Theorem 6.5.8 (for H) is proved in [BPS16]. It
may be possible to improve on the bound /, — 3 at the places v € I, but this does not
matter for our purposes.

6.5.11. Hecke correspondences again. — Let w € 1. We consider the following cor-
respondence, whose corresponding Hecke operator is U, , (the nth iterate of U, y):
byts byng : G — Xk, ks, which parametrizes (G, {H,}ver, {H, C Ly}yer, G — G)
where the isogeny G — G, has kernel M, ,, C G,,[*"] which is totally isotropic and locally
isomorphic to (O, /p")? & O, /p*, and satisfies M, ,, N H,, = {0}. The first projection is

tw,n,l ((g, {Hv}veb {Hw - Lv}vel‘a g - gn)) = (gv {HU}U617 {Hv - Lv}vel‘)
and the second projection is
tw,n,?((gv {Hv}uela {Hv C Lv}velf’ g - gn)) = (gm {H;}vela {H; C L:;}velf)

where {H' },c1 and {H) C L },¢1c are the images of {H,},¢; and {H, C L, },er in G,.
There are cohomological correspondences

(twn )by 0@ = @, (b 1)ty , o0 (=D) > & (=D),
which give U;, ,. Moreover, these cohomological correspondences restrict to
(hwn, )y (@) = PO, (y)aly 0 (@ (=D))TF
(@ (=D))

and they induce maps on cohomology in the usual way.

Let w € I'. We consider the correspondence: 4, .1, tw.no : ij)’) — XKp(DKp which
parametrizes (G, {H,}ver, {H, C Ly}verr, G = G,) where the isogeny G — G, has kernel
M, » C Gylp"] which is totally isotropic, locally isomorphic to (Oy, / p")?, and satisfies
M,., N L,, = {0}. The first projection is

b ,n,1 ((Q, {Hybver, {Hw C Ly}ver, G — gn)) = (G, {H,}ver, {H, C Ly }yer)
and the second projection is

twn2 (G, (HyYoer, {(Hy C Li}oer, G = G))) = (G {H, }oer, {H, C L }ocr)
where H) and H C L are the images of H, and H, C L, in G,.
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The Hecke operator attached to this correspondence is U? | (the nth iterate of

w, 1
Uy.1)- More precisely, there are cohomological correspondences

(twn 1) sy 0@ = @ (bon1)st,, , 0" (=D) = & (=D).
Moreover, these cohomological correspondences restrict to

(hon )ty (@) = p7(@) T, ()l o (@ (=D)TF
— p (@ (=D)*,
and they induce maps on cohomology.

Lemma 6.5.12. — Let w € 1. Let x = (G, {H,}ye1, {H, C Ly}verr, G — G)) €
C4 (Spa(K, Ok)).

(1) Ifveland v # w, we have degH, = degH’ .

(2) Ifv eI, we have degL, = degL.; .

(3) We have degH!, > degH,,, and in case of equality, degH,, € {0, 1}.
(4) degH! =1 —degM, ,,/M, ,[pl.

(5) degM, ,[pl/pM, o = 1, and deg pM, ,, > degM, ,, /M, ,[p].
(6) Lete > 0. IfdegM,, < 3 — 2¢, then degH/ > €.

Progf. — Parts (1) and (2) follow because the maps H, — H/, L, — L. are isomor-
phisms. The remaining parts are [Pi120, Lem. 14.3.1, Cor. 14.3.1]. O

Lemma 6.5.13. — Let w € I°. Let x = (G, {H,}ye1, {H, C Ly}verr, G — G)) €
C(Spa(K, Ok)).

(1) Ifv €1, we have degH, = degH.

2) Ifvel and v # w, we have degL, = degL,,

(3) We have deg L, > degL.,,, and in case of equality, degL,, € {0, 1, 2}.
(4) degL), =2 —degM, ,,.

Proof. — Parts (1) and (2) follow as in Lemma 6.5.12. Parts (3) and (4) follow
from [Pill 1, Prop. 2.3.1, 2.3.2, Lem. 2.3.4] (and their proofs). UJ

Corollary 6.5.14. — Let w € I°. Let | > €' > € > 0. There exists n € Z~q such that _for
all intervals l_[#va C [0, 17" x [0, 2" \w)

U, (KX, (] [Jo x 11+ €,2) € X e ([ [Jo x [1+ €2
v#£W v#EW

Proof. — 'This follows from Lemma 6.5.13 (3) and the maximum principle; see
[Pill1, Prop. 2.3.6]. O
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Corollary 6.5.15. — Let w € 1. Let 1 > €' > € > 0. There exists n € Z~ such that for all
wlervals ]_[#wjv c [0, 11"} x [0, 2],

U, (X, ([ [Jo x Te, 1) € X, ([ [Jo x L€/, 1)

v#EwW vF#EW

Proof. — This follows in the same way as Corollary 6.5.14, using Lemma 6.5.12 (3).
0J

6.5.16. Fist analytic continuation result. — Let J = HUVJU c [0, 17" x [0, 2]" be a
product of intervals.

Lemma 6.5.17. — Let w € I°. Assume that J,, = [2 — €, 2]. The operator U, | acts on
H' (X, (), ©°).

Progf — 1In view of Lemma 6.5.13 (3), the correspondence C{ restricts to

.
lw1,2: CY) X w11 Xgp ) Xk, (J) = Xk, (J)- U

We denote by Hi(XKp(DKp (J), @*)*~Yu1 the finite slope subspace for U, ;. This is
the subspace generated by classes which are annihilated by a polynomial in U, ; with
non-zero constant term.

Lemma 6.5.18. — For all 1 > €' > € > 0, the restriction map

Hi(XK/JKp(I)(l_[JU X [2 —€',2]), )~V
vFEW

—> Hi(XKf’K/,(I)(HJU X [2 — €, 2]), w’{)/{?—Uu:.l
v#wW

is an 1somorphism.

Progf. — Take n as in Corollary 6.5.14. Let f € H"(XKpr(I)(]_[#wJU x [2 —
€,2]), *)*~Uni be a cohomology class. Let P(X) = X" + a,_, X" + - - - 4+ a be a poly-
nomial with gy # 0 such that P(U,, )/ = 0. Therefore, if we set Q(X) = —a, "PX) —
ay), we obtain that Q(U,, )/ = /. By iteration we get that Q(U,, ;)"f = /. The operator

Q(U,)" - H' (X, ([ [Jo x [2 =€, 2D), )
vEW

— Hi(XKﬁKp(I)(l_[JU X [2 — €, 2]), Cl)K)
v#W
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can be factored into:

H' (X, ([ [Jo x 12 = €,2D), )

v£wW
QU ) p
=7 H (X, ([ [Jo x [2—€.2D). )
v#W
5 H (X, (] [Jo x [2—€.2D), 0),
v#EW

where the map Qﬁj\u:)” is the one coming from Corollary 6.5.14. We therefore get an
extension f of f to

Hi(XKﬁK,,(I)(l_[Jv x [2—€,2]), 0)
vFEW

—_—

by setting j‘ = Q(U,.1)"f. This proves the surjectivity of the map of the corollary:.

We now prove injectivity. Let f, g € Hi(XKﬁKp(D(]_[v#va x [2 =€, 2]), ) ~Vuw
be two classes having the same restriction to Hi(XKpr(D(Hv#va x [2—¢€,2]), <)~ Vur,
We can find a polynomial P as before such that P(U,, ;)f = P(U,, )g = 0. Therefore,
using the same notation as before, we get that Q(U,, ;)f =/ and Q(U,, )g =g. We can
factor the operator Q(U,, ;)" into:

Hi(XK/’K/](I)(l_[Jv x [2—€,2]), ")

v#W
S H Xk, (] [Jo x [2—€, 2D, )
vEW
Q(/U\u_v,/)” i ’ K
- H (XKpr(I)(l_[JU x [2—=¢€,2]), 0")
vFEW
Since res(f) = res(g), we deduce that f = g. UJ

The following two lemmas are the analogue of Lemma 6.5.18 for a place w € L.
The proofs are identical and left to the reader.

Lemma 6.5.19. — Let w € 1. Assume that J,, = [1 — €, 1]. The operator U,, o acts on
HZ(XKPK[,(I) D, ).

We denote by Hi(XKp(I)Kp (J), @*)"~U»2 the finite slope subspace. This is the sub-
space generated by classes which are annihilated by a polynomial in U,, o with non-zero
constant term.
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Lemma 6.5.20. — For all 1 > € > €' > 0, the restriction map

Hi(XK/’KI,(I)(l_[JU X [1—¢,1)]), a)K)ff*Uw,z
v#EW

- Hi(XK/]K[;(I)(l_[Jv x [1—¢€,1)]), w'()ﬂ'—Uw,z
vFEW

is an 1somorphism.

6.5.21. More analytic continuation results. — Let w € I'. Let 0 < € < 1. The cohomo-
logical correspondences:

(l‘w,n,l)*(tw,n,Q)*((wK)|XKP(1)K/;(]_[U#_H,J.,x[1+e,2])) - a)K|XK[I(I)K/;(HU¢U,JUX[1+e,2])
and
(tw,rz,l)*(tw,n,Q)*((wK)|XK1)(1)K/;(]_[U#U,J,,x[O,Q])) = O | e ([T Jux10.20

can be related if we work with torsion coefficients.

Proposition 6.5.22. — Let 0 < € < €'. There is a factorization of the Hecke correspon-
dence U} |

Ly (1—€")—3
(a)/(/pn( (1—€") )(CUK)++)|XKP(1)KP(Hu¢m.IvX[H'GvQ])

/

(tw,n,1)*(tw,n,2)*((wk)++ |XK/;(I)K/)(HU¢w.]v ><[1+€,2]))

(" /p =173 (<) ++) |XK/)(I)K/J(HU#W‘JU><[O,2])

/

(tw,n, 1 )* (tw,n,Q) * ((wK)++ |XK/)(I)K17 (ToszwJvx [0,2]))

Progf — Let x € XKﬁ(l)Kﬁ(n#va x [0, 2])). We have to find a neighbourhood U

of x and to construct a canonical map
-1
(t2) " (@) |2 o (T o xti+e20) (1 (U))

Ly (1—€")—3
N (a)/«/pn( (1—€") )(wK)++)|XKﬁ(I)Kﬁ(Hv7&w\JUX[O’Q])(U).
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Pick €” € (e, €) such that for all y € £,!

w,n, 1

(x) corresponding to a subgroup M,, , C
G, we have |8y, |, # |p”(1_6”) |,. It follows that there exists an open neighbourhood U
of x and a disjoint decomposition zfu_jglngl(U) = V][[W, such that for all y € W, we have
18a,,, 1, > [1"17<7],, and for all y € V, we have |8y, |, < [#"17"],.

The cohomological correspondence is a map:

£ @)V @ L ()W) = o (V).

The image of £ (@)™ (V) lands in p"@1=<=9(w*)**(U) (see [Pil20, Lem.
14.6.1]). Therefore, we have a factorization:

£ @) (U) = 2 (@) W) = @ /D7D () ).

1

On the other hand, we claim that ¢, , (W) C XKp(I)K”(nu;Eva x [1 +€,2])).
Indeed, let ¥’ € U and let ' € ¢, , ({x}). Without loss of generality, we may assume

that ' and ' are rank one points. Let us define M, ; = M,, ,|y[¢'] for all 1 <7 <n. Then

b
we have a sequence of isogenies:

gwlx’ - gwlx’/Mw,l —> > gwlx’/Mw,n

We let L,, ; be the image of L, | in G,,/M,, ; (so that L,, , = Ly, ,,¢»))- Then, by Lemma
6.5.13 (4), we have that degL,, , =2 — degM,, ,/M,, ,—1. On the other hand, for all 1 <
t<n—1, the map p: My ;11/M,; = M, ;/M, ;1 is a generic isomorphism. It follows
that degM,, ;+1/M,,; < degM,, ;/M,,;_. Since degM,,, = >_"_, degM,, ;/M,, ;i and
degM,, , < n(l —€”), we deduce that degM,, ,/M,, ,—; < 1 —€" and therefore degL,, , >
1 +€” > 1+ ¢, as required.

We can therefore produce the expected map as the composition:

-1
(tw,rz,Q)*((a)K)++ |XK[,(I)K/’(HU#,”JUx[H—e,Q])) (tw,n,l (U))

= () (@) L T Joxtize2) W) = £, (@) (W)

N w/c/pn(lv(lfe’)f?)) (a)K)++(U). 0

Corollary 6.5.23. — Let P =X"~+a,_ X" '+ -+ ay be a polynomial, with the property
that all the roots a of P satisfy v(a) < b, — 3. Then there is a map

ext . Hi(XKp(I)K/’(l_[Jv X [1 + €, 2]), Q)K)[P(le) = 0] -
v#EW

(liinHi(XK/,(I)Kﬁ(l_[Ju x [0, 2]), w”/p”(w”)++)> [P(U,,1) =0]
v£wW
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such that the composite of ext followed by restriction to XKp(I)Kp(n ’ ?éwjv X [1+€,2)) is the natural
map induced by 0 — @ [p ().
Furthermore, the composite of the restriction map

H' (X, e ([ [ x [0, 2D), @) [P(U,,,1) = 0] —
v#W

Hi(XKp(I)KP(l_[JU x [1+¢€,2]), o*)[P(U, ) =0]
vFW

Jollowed by ext is the natural map induced by * — @ /p"(@*) .

Proof. — Let € > 0 be such that for all roots @ of P, we have /,(1 —€') — 3 > v(a).
Let o = inf,{/,(1 —€') =3 —v(a)} (so that in particular & > 0). By Lemma 6.5.18, we can
assume that 0 < € < €'. Suppose that f € Hi(XK/,(I)Kp(]_[U;‘éwJU X [1 4+ €, 2]), ®) satisfies
P(U,.1)f = 0. By rescaling /', we can and do also assume that / € Hi(XKp(I)Kp (I Ty v %

[1+¢€,2]), (@)*). Let Q(X) = —a; ' (P(X) — a) so that Q(U,, ))f = 1.
Since Q(U,, ;) can be written as a sum of products of the lan’b where a runs over
the roots of P, it follows from Proposition 6.5.22 that the map

QU+ H' (X, o (] [Jo x [1+€,2D), (@)
vF#EW

— H (X, o ([ [Jo x [1+€,2]), )
v#W

— H'(Xg,are ([ [Jo x [1+€.2D). @)/ (@) ™)
v#EW

can actually be factored into:

H (X, 1y ([TyoenJv % [1+€,2D), (@) )

QU )"

H' (X, s ([TypnJv X [0, 2D), (@) /p™ (@) )

_

Hi(XK[,(I)KP(HU;ﬁwJU x [1+€,2]), (@) /p" (@)
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We define sections f, € Hi(XKﬁ(I)Kp (Hvaéwjv x [0, 2]), @ /p"* () *T) by f, = Q(U,, 1)"(f).
It follows from the definitions that f, =/, in

H (X, e (] [Jo x 10, 21), @ /p= Do e=<hme (g) )
v#W

and that Q(U,, 1)/, =/, in

H (X, awe ([ [Jo x 10, 2D), @ /0077 () 7)
v#W

(see the proof of [Pil20, Cor. 14.6.1] for a similar verification). We let ext(f) be the pro-

jective system given by the f,.
It remains to check that if / is the restriction of a class in

H' (X, e (] [Jw x 10, 2D), %),
v#wW

then the f, are obtained from the natural map @* — @*/p"(@*)*". This follows easily
from the factorization

Hi(XKp(I)KP(HU¢va x [0, 2]), (@)t )

QU,, )"
H (X, i (o X 10,20, (@) /9" (@) )

Q(Uu). 1 )”

H (X, o [z Jw % [+ €, 2D), @)/ (@) )

The next proposition and corollary are the analogue of the above results for a place
w € L. The proofs are virtually identical to the above, and are left to the reader (or look
at [Pi120, Prop. 14.6.1, Cor. 14.6.1]).



350 GEORGE BOXER, FRANK CALEGARI, TOBY GEE, VINCENT PILLONI

Proposition 6.5.24. — Let w € 1, and let 0 < € < €'. There is a_factorization of the Hecke
correspondence Uy, »:

(b +hw —3—2€'ky
(wk/pﬂ( + 2¢ )(a)K)++)|XK//(1)KP(]_[U#“)\],,><[e,l])

/

(tw,n,1)*(tw,n,2)*((wk)++ |XK1)(I)KP(1_[U#U,J1;X[€, 1]))

S

—3—2€"ky,
(wk/pn(lw+ w—3—2€ ku)(wk)-H_)|XKﬁ(1)Kﬁ(Hu¢vaX[O’1])

/

(1 (o, 2)* (@) L (T, o<1, 00)

Corollary 6.5.25. — Let w € 1, and let | > € > 0. Let P=X"+ a,, | X" ' + ... +q
be a polynomual, with the property that all the roots a of P satisfy v(a) < ky, + ly — 3. Then there is a

map

ext: H'(X ([ [Jo x €, 11), @) [P(U,, 5) = 0] —
vFW

(nian(pra)Kﬁ(HJv x [0, 1)), wk/p"(wK)**)) [P(U,..2) = 0]

vF#W
such that the composite of ext followed by restriction to Xk, ([ ], 2o X (€, 1]) is the natural map
induced by @ — * /p" (@)t
Furthermore, the composite of the restriction map

H (X, awe ([ [Jo % [0, 1), 0)[P(U,,5) = 0] —
vFW

H (X, awe ([ [Jo x L€, 1), @)[P(U,,5) = 0]
vF#W

Jollowed by ext is the natural map induced by @* — @ /p"(@*) ™.

6.5.26. Proof of the main classicality theorem. — Let S C S, be a subset. Let J(S, €) =
[ Toesl0s 11 X T TyesnrelO0, 21 X [ Tsemglés 11 X [Tenpe[ L + €, 2]. We say that a cohomology
class f € Hi(XKﬁ(I)Kp (J(S, €), @) 1s of finite slope if for all v|p, there is a polynomial P, all
of whose roots are nonzero, such that:
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e ifve If, PU(UU,I)f: 0,
e ifvel,P,(U,, ) =0.

Lemma 6.5.27. — The canonical map

H'( X("(DKPG(S €)), w) = limH' (X, I(I)K,,(](S €)), 0 /P (@)

us surjective and induces an isomorphism on the finite slope part.

Progf. — The surjectivity follows from [Pil20, Prop. 3.2.1]. The injectivity can be
proved in exactly the same way as [Pil20, Lem. 14.7.1]. We have put the superscript G,
because we need some finiteness property to deduce the injectivity. U

Lemma 6.5.28. — Choose polynomials P, such that

o ifvel’, all theroots a of P, satisfy v(a) < [, — 3, and
o ifvel, all theroots a of P, satispy v(a) <k, + [, — 3.

Write Uy =U,  fvel,and U, =U,, ifvel. If S C T, then the natural restriction map

HI(X Y (T, €)), @) [Py (U,) = O,

H(XE 0 (S, €), 0P, (U,) = Ol,es,
is an isomorphism.

Progf. — By induction, it is enough to treat the case T =S U {w} for some w.
The result then follows from Lemma 6.5.27 (applied to both S and T), together with
Corollary 6.5.23 and Corollary 6.5.25. 0J

Proof of Theorem 6.5.8. — This follows immediately from Lemma 6.5.28, applied
with the choices S =@ and T =S, U

6.6. Application to ordinary cohomology. — In this section we study the case #I =1,
where we are able to relate the Hida complexes constructed in §4 to the overconvergent
cohomology considered in this section. Our first result is the following, which shows in
particular that in this case the ordinary classes in H' are overconvergent. The proof can
be viewed as a generalization of the familiar argument for GL; which shows that ordinary
p-adic modular forms are overconvergent (see [BT99, Lem. 1]), by using the continuity
of the ordinary projector to the finite-dimensional space of ordinary forms.
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Recall that we defined the complex M; in Theorem 4.6.1. By Theorem 4.6.1 (3),
for all classical algebraic weights k with [, =2 forveland £, =/, =2 (mod p— 1) for
all v[p we have

M, ®11;1,/c C'p — E(UI)RF (XGl,mult " (=D)).

K, (DK/ >
Proposition 6.6.1. — Suppose that #1 = 1. For all classical algebraic weights k with [, = 2
Jorvelandk,=10,=2 (mod p— 1) for all v|p, the restriction map

e(UNRT (X, 0 (=D) - M; %, €,

induces an injective map on H® and a surjective map on H'.

Progf — The injectivity of the map on H' is clear. In the case F = Q, the surjec-
tivity of the map on H's is proved in [Pil20, Lem. 14.8.2]; we now recall this argument
in our setting. Let 7w : Xk, mrr — X;p(l)m be the projection to the minimal compactifica-

tion; as usual, we have R'm,@*(=D) = 0 for i > 0. Let Xﬁpﬁ?ﬁp be the image of Xg‘?ﬁw
I

(the rigid analytic generic fibre of %KP(I)K,,) in the minimal compactification; it admits an
affinoid cover X, = U U Us.

Then the complex R['(X™! @ (—D)) is represented by the complex

K,(DK?*
H’(U,, »*(-D)) ® H’(Uy, 0" (—D)) = H(U; N U,, 0 (—D)).

The terms of this complex are Banach spaces; a norm giving their topology is provided
by taking an appropriate formal model. The topology on HI(XIE“/}“(II‘)KP, ®“(=D)) 1s the
induced quotient topology, which coincides with the topology obtained by declaring that

H! (%%(p(l)K/” " (—D)) is open and bounded.

The complex RT" (Xf{r; Lzllt)l{{,], @ (—=D)) 1s represented by the subcomplex of overcon-

vergent sections
H’(U), 0“"(=D)) ® H(Uy, " (=D)) - H*(U, N Uy, (D)),
where by definition for an open U,

@“T(U) := li_ml @ (V)
VouU
where V runs over the strict neighbourhoods of U.

It follows in particular that the map

HY (X @ (=D) = H' (A 0 (=D))

K,(DK#>
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has dense image. The operator U' is continuous on H' (Xlg‘;lf)w,, @ (—=D)) (consider the

action of U' on H! (:{%ip(l)K/” " (—D))), so the projection

HI(XG|,mull C()K(—D)) - e(UI)Hl(XGl,mull (J)K(—D))

Ky(DK? K,(DK? *

is also continuous (we have introduced the superscript G| to make sure that the projector

e(U") is well defined, the passage from the cohomology of XII{TLL;IISK, to the cohomology of

XIS; l(iTK“}Jt is given by a projector so all density statements are preserved). It follows that the
induced map

e(UNH' (XE0mitT (¢ (—D)) — «(UHHN(XSE™E of (=D))

K,(K’ K, (DK’ *

has dense image. But the target is a finite-dimensional Banach space over G,, so its topol-
ogy is the unique one extending that on G, and in particular it contains no proper dense
subspaces, so we are done. UJ

Proposition 6.6.2. — Suppose that #1 < 1. For all classical algebraic weights k with [, = 2
Jor v € 1, we have the equality of Euler characteristics:

EC(«(UDRI (X i, @ (=D))) = ECOM; ®F,, C)).

Proof. — By Theorem 4.6.1 and Lemma 6.5.6, both complexes are perfect com-
plexes in degrees [0, 1]. By Corollary 6.4.3 and Proposition 6.3.7, we have that
EC(e(UNH!, (Gy, T, k) < EC(e(UNRT (X115, o (=D)))

Ky(DK!
and the inequality is an equality if £, — /, > 3 for all v|p. By Proposition 6.6.1, we have
that
EC(e(UI)RF (XGlymult,T a)K(—D))) < EC(MI ®}.\I’K C/,)

K,(DK/ >

Consequently; it suffices to prove that

EC(«(UYH,,, (G, T, 1)) = ECM; ®7, , C)).
By Theorem 6.3.16, and Theorem 4.6.1, both Euler characteristics under consideration
are locally constant functions of k. It therefore suffices to prove the statement when /, > C
for all v € I, and £, — [, > C for all v|p. In this range of weights we can compare these
cohomology to classical cohomology:.
It follows from Theorem 6.5.8 that
«(UDRT (X (i, @ (=D))) = e(UHRT (X!

K,(DK#>

o (=D))).
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We claim that the natural map
R (XS (~D)) = RI(XE o 0 (~D))
induces a quasi-isomorphism

@ (=D))) = (UHRT (X!

K,(DK/>

e(THRI (XE!

K/K,’

o (=D))).

Indeed, by Theorem 3.10.1 (2), the cohomology groups on each side can be computed
in terms of automorphic representations, and the claim follows from Proposition 2.4.26
as explained in Remark 6.6.3 below.

Now, it follows from Theorem 4.6.1 that the map ¢(T")RT (XIS;’IK,; w*(—=D)) —
M; ®kw C, is an isomorphism on H’ and is injective on H'. Putting this all together, the
proposition follows. 0J

Remark 6.6.3. — Let us point out a subtle point in the proof of Proposi-
tion 6.6.2. In order to use Proposition 2.4.26 one needs to check that for any v|p, any
representation 1, of GSp,(Op,) contributing to either e(TI)RF(XIngﬁ,a)" (—D))) or

«(UHRT (XS’I(I)KP, ®"(—D))) is ordinary. For all places v € I, this is true essentially by
definition since the two Hecke operators at v|p occur in the projector. For places v € 1,
this 1s a bit more subtle since only one operator T', or U, 5 is involved in the definition of
the projector. The U, 9-ordinarity of a local representation , with Hecke parameters

1—ky/2 1—ky/2 —1 ,ky/2 —1 ,ky/2
[ap' =2, B p 072, B P2, o g

implies that o, 8, is a p-adic unit. Ordinarity means that o, and B, are both p-adic units.
This 1s implied by U, 9-ordinarity if we assume the Katz—Mazur inequality which says the
Newton polygon is above the Hodge polygon with the same initial and terminal point.
Indeed, in our case, the Katz—Mazur inequality translates into the condition that «,, and
B, are p-adic integers.

However, this inequality is subtle at non-cohomological weights. For I = Q the
Katz—Mazur inequality for H” and H' classes is proved in [Pil20, Prop. 14.9.1], and the
argument generalizes without difficulty to our case. We also remark that for classes in the
H’, we can use eigenvarieties to deduce that the Katz—Mazur inequality holds in non-
cohomological weights because it holds at cohomological weights. A similar argument
will apply for classes in the H' once eigenvarieties are constructed for H' cohomology
classes. Note that alternatively we could force the Katz—Mazur inequality by localizing
further at certain p-adically integral eigenvalues of the operators T, ; and Uky),1, and
in fact such a localization will be in force in the rest of the paper. We could also directly
deduce the Katz—Mazur inequality for classes in the H' from the corresponding inequal-
ity for classes in the H’ after making a non-Eisenstein localization (because after making
such a localization, the Euler characteristic vanishes). Such a localization will also be
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in force in the rest of the paper. In view of this, we do not spell out the details of the
generalization of [Pil20, Prop. 14.9.1] to our setting.

Theorem 6.6.4. — Suppose that #1 < 1. For all classical algebraic weights k with [, = 2
Jor v € 1, we have a canonical isomorphism:

e(UI)RF(XGl,mult,T C()K(_D)) — MI ®I[;I’K C/;

K,(DK? >

Progf. — Tor all classical algebraic weights, let us denote by &;(x) the dimension
of H'(M; ®kLK C,) and by d; (k) the dimension of e(UI)Him(Gl, T, k). We deduce from
Proposition 6.6.2 that d, (k) — dy(k) = df(/c) — dg(/{) for all k. Therefore d; (k) — a’lT(K) =
do(k) — a’g («) for all k. By Proposition 6.6.1, the first difference is non-positive and the
second difference is non-negative, so both are equal to zero. We deduce in particular that
the map e(UI)Himp(Gl, T, k) = H' (M; ®I/;I’K C,) is an isomorphism.

We now consider the composite

((UDH (X 0 (=D)) — e(UHH!, (G1, T.6) > H(M; ®F, Cy).

K,(DK/

By Proposition 6.6.1 this composite map is an isomorphism for : = 0, and is surjective
for : = 1. On the other hand, the first map is injective for : = 1 by Corollary 6.4.3, and
we have just seen that the second map is an isomorphism. It follows that the composite is
injective for z = 1, and is thus an isomorphism, as required. UJ

Finally, we deduce the following classicity theorem.

Theorem 6.6.5. — Suppose that #1 < 1, and that k s a classical algebraic weight with [, = 2
fvel,andl, >4 ifv ¢ 1. Then the canonical map

e(UDRT (X! @ (=D)[1/p] = M1 ®5,, Q,

is a quasi-isomorphism.

Progf. — 'This follows from Theorem 6.6.4 and Theorem 6.5.8. U

7. The Taylor-Wiles/Calegari—-Geraghty method

In this section, we implement the Taylor-Wiles patching method to patch the com-
plexes Mj constructed in §4. More precisely, we carry out the analogue of the patching
argument using “balanced modules” which was introduced in [CG 18], and used there to
study weight one modular forms for GL, /Q. This argument works in situations where
the cohomology appears in at most two degrees, which for us means that #I < 1; we
are restricted to working in this case due to the limitations of our understanding of the
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cohomology of our complexes in higher degree, as was the case in §4 and §6. For our

modularity result, it is crucial to be able to work with I = S,; we will do this in §8 by con-

sidering the spaces of modular forms coming from the various complexes with #I < 1.
The papers [GT05, Pil12, CG20] apply the Taylor-Wiles method to GSp, over Q,

but a number of changes are needed in order to apply it over general totally real fields. We

do not attempt to prove results in maximal generality, but instead develop the minimal
amount of material that we need. The reader familiar with the literature on modularity
lifting theorems will not find many surprises, but we highlight a few things that may be

less standard:

In §7.3, we study the ordinary deformation rings at places dividing p. We show
that their generic fibres are irreducible under a rather mild p-distinguishedness
assumption; in particular, this assumption is not sufficient to guarantee that the
deformation rings are formally smooth, and it takes us some effort to prove
the irreducibility. Working in this generality is important for our applications
to modularity of abelian surfaces in §10. For the potential modularity results
of §9, however, it would be enough to work with a stronger p-distinguishedness
assumption which would guarantee the formal smoothness.

In §7.4, we prove the statements about local deformation rings needed for Tay-
lor’s “Ihara avoidance argument”; the proofs are similar to those for GL,, al-
though there are some complications which arise because the relationship be-
tween conjugacy classes and characteristic polynomials i1s more complicated.
We also need to do some additional work to handle the case p = 3; again, this is
crucial for §10, although it is not needed for §9.

In §7.5, we study the “big image” conditions needed in the Taylor-Wiles
method. Here our approach is slightly different from that of [CHTO08] and the
papers that followed it; again, this is with the applications of §10 in mind, where
it is important to be able to consider representations with image GSp,(Fs). For
the same reason, when we impose a condition at an auxiliary prime which will
allow us to assume that our Shimura varieties are at neat level, we make the
weakest hypothesis that we can, at the expense of slightly complicating the cor-
responding local representation theory.

We make repeated use of the doubling results of §5; they are needed in order to
prove local-global compatibility for the Galois representations we consider, and
also to compare the spaces of p-adic modular forms for different I.

Our implementation of the “lhara avoidance” argument of [Tay08] uses the
framework of [EG14, Shol8], and compares the underlying cycles of various
patched modules. In particular, we use the patched modules with I = ¢ to prove
alocal result, which we then apply to the patched modules with #I = 1. In order
to apply Thara avoidance, we repeatedly use the fact that the Galois representa-
tion associated to our abelian surface is pure, to deduce that the corresponding
points on the generic fibres of the local deformation rings are smooth; we use
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this smoothness to be able to compute the dimensions of various spaces of p-adic
automorphic forms, using a characteristic 0 version of the freeness arguments of
Diamond and Fujiwara [Dia97]. While we do not use the full strength of purity,
since we make arguments with base change we would otherwise need to impose
a hypothesis of being “stably generic” on our local Galois representations, and
we do not know of any natural examples where this condition is known, but
purity is not.

Having carried out the patching argument, we know from the results of §6 that for each I
with #I <1 there is a nonzero space of ordinary p-adic modular forms corresponding to
our given Galois representation, which are “overconvergent in the direction of I”. We will
combine these spaces in §8, using as an input that by a version of Diamond’s multiplicity
one argument [Dia97], we know the dimensions of these spaces when #I <1 (they are
given by the expected product of local terms). (Here we are again using our assumption
that the local Galois representations are pure, in order to know that the corresponding
points of the generic fibres of the local deformation rings are smooth. A similar charac-
teristic zero version of Diamond’s argument first appeared in [All16].)

7.1. Galots deformation rings. — We let E be a finite extension of Q, with ring of
integers O, uniformizer A and residue field £. We will always assume that E is chosen
to be large enough such that all irreducible components of all deformation rings that we
consider, and all irreducible components of their special fibres, are geometrically irre-
ducible. (We are always free to enlarge E in all of the arguments that we make, so this is
not a serious assumption.) Given a complete Noetherian local O-algebra A with residue
field £, we let CNL, denote the category of complete Noetherian local A-algebras with
residue field £. We refer to an object in CNL, as a CNL,-algebra.

We fix a totally real field F, and let S, be the set of places of I above p. We assume
that E contains all embeddings of I into an algebraic closure of E. We also fix a contin-
uous absolutely irreducible homomorphism p : Gy — GSp, (k). We assume throughout
that p > 2.

Let S be a finite set of finite places of I containing S, and all places at which p is
ramified. We write F for the maximal subextension of F/F which is unramified outside S,
and write Gy g for Gal(Fs/F). For each v € S, we fix A, € CNLp, and set A = @uesAv,
where the completed tensor product is taken over . Then CNL, is a subcategory of
CNL,, for each v € S, via the canonical map A, — A.

Remark 7.1.1. — In our applications, we will take A, = O if v 1 p. If v|p, then we
will take A, to be an Iwasawa algebra.

Fix a character ¥ : Gpg — A™ lifting v o p.
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Defimation 7.1.2. — A lift, also called a lifting, of 0|c;, is a continuous homomorphism
o : Gp, = GSp,(A) to a CNLy -algebra A, such that p mod my = plg,, and v o p =Yg, .

We let DUD denote the set-valued functor on CNL,, that sends A to the set of lifts
of plg;, to A. This functor is representable (see for example [Ball2, Thm. 1.2.2]), and
we denote the representing object by RY.

Let x € Spec RP[1/p] be a closed point. By [Tay08, Lem. 1.6] the residue field of x
is a finite extension E'/E. Let p, : Gy, = GL,(E’) be the corresponding specialization of
the universal lifting. By an argument of Kisin, (RF[1/p])” is the universal lifting ring for
Py, 1e. if A is an Artinian local E'-algebra with residue field E" and if p : I' — GSp,(A)
is a continuous representation lifting p,, then there is a unique continuous map of E'-
algebras (RUD[I /pD7 — A so that the universal lift pushes forward to p. (See [AllL6,
Thm. 1.2.1] for the analogous result for GL,; the result for GSp, can be proved by an
identical argument.) We say that x is smooth if (RD[1/p])" is regular. Let ad” p, denote
the Lie algebra g°(E’) with the adjoint action of Gy via p,; then we have the following
convenient criterion for x to be smooth.

Lemma 7.1.3. — Suppose that v { p. Then the point x is smooth if and only if
(ad’ p) ()6 = 0. In particular, if p, s pure, then x 1s smooth.

Progf. — The first claim is a special case of [BG19, Cor. 3.3.4, Rem. 3.3.6]. If p,
is pure, then Homg/ (g, 1(0x, 0:(1)) = 0 (because the definition of purity is easily seen to
preclude the existence of a morphism between the corresponding Weil-Deligne repre-
sentations), as required. 0J

Definition 7.1.4. — A local deformation problem for plg;, 5 a subfunctor D, of DY
satisfying the following:

o D, is represented by a quotient R, of RS,
o [or all A € CNL,,, p € D,(A), and a € ker(GSp,(A) — GSp,(k)), we have
apa~!t € Dy(A).

Definition 7.1.5. — A global deformation problem is a tuple

S = (ﬁ, Sa {AU}UESv Wa {DU}UES)v

where:

e 0,5, {A,}ves and ¥ are as above.
o loreach v € S, D, 1s a local deformation problem for pcy, -

As in the local case, a &ff (or lifiing) of p 1s a continuous homomorphism p : Gy g —
GSp,(A) to a CNLj-algebra A, such that p mod my = and p o v = . We say that
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two lifts py, po : Gps — GSp,(A) are strctly equivalent if there is an a € ker(GSp,(A) —
GSp, (k) such that py = ap,a". A deformation of p is a strict equivalence class of lifts of 5.
For a global deformation problem

S= (ﬁa S, {Av}vesv W, {DU}UES)’

we say that a lift p : Gp — GSp,(A) is of type S if p|g;, € Dy(A) for each v € S. Note that
if p; and p, are strictly equivalent lifts of p, and p, is of type S, then so is py. A deformation
of ype S is a strict equivalence class of lifts of type S, and we denote by Dg the set-valued
functor that takes a CNL,-algebra A to the set of lifts p : Gy — GSp,(A) of type S.

Given a subset T C S, a T-framed lift of type S is a tuple (p, {yy}ver), where p is a lift
of type S, and y, € ker(GSp,(A) — GSp, (k)) for each v € T. We say that two T-framed
lifts (o1, {yu}ver) and (oo, {y,}ver) to a CNL-algebra A are strictly equivalent if there
is an a € ker(GSp,(A) — GSp, (k) such that py = ap;a”!, and y, = ay, for each v € T.
A strict equivalence class of T-framed lifts of type S is called a T-framed deformation of type
S. We denote by Dj the set valued functor that sends a CNL,-algebra A to the set of
T-framed deformations to A of type S.

The functors Ds and Dy are representable (as we are assuming that p is absolutely
irreducible), and we denote their representing objects by Rs and R respectively. If T is
empty, then Rs = Rg, and otherwise the natural map Rg — RS is formally smooth
of relative dimension 11#T — 1. Indeed 'DT — Dg is a torsor under (I1,c1 GSpy /G,
Define 7 to be the coordinate ring of ([],. GSpJf) / G, over A. This is a power series
algebra over A in 11#7T — 1 variables.

Lemma 71.1.6. — The choice of a representative ps: Gy — GSp,(Rs) for the universal
tpe S deformation determines a splitting of the torsor D§ — Ds and a canonical isomorphism Rg =
Rs®, 7.

Proof. — 'This is obvious. U

7.2. Galois cohomology and presentations. — Fix a global deformation problem

S = (ﬁ, Sa {AU}UES’ 1/’7 {DU}UES)9

and for each v € S, let R, denote the object representing D,. Let T be a subset of S
containing S, with the property that A, = = O and D, = D" for all v € S \. T. Define
R = ®,crR,, with the completed tensor product being taken over . Itis canonically
a A-algebra, via the canonical isomorphism ®verAy = ®yesA,. For each v e T, the
morphism Dg — D, given by (p, {Vs}ver) — yv*1p|GFU ¥y induces a local A,-algebra
morphism R, — Rg. We thus have a local A-algebra morphism RE’IOC — R%.

The relative tangent space of this map is computed by a standard calculation in
Galois cohomology, which we now recall. We let adp (resp. ad’p) denote g(k) (resp.
g°(k)), with the adjoint Gp-action via p.
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The trace pairing (X, Y) +— tr(XY) on ad”p is perfect and Gp-equivariant, so
ad’p(1) is isomorphic to the Tate dual of ad’p. We define

Hi (ad’p) :=ker (H%FS/F, ad'p) — [ [H'(F,, ad’ 5)) ,

veT

Hg, (ad’5(1)) :=ker (Hl(FS/F, ad’p(1))— ]_[ H'(F,, ad" ﬁ(l))) .

veS\T

Proposition 7.2.1. — Continue to assume that T contains S,, and that for all v € S \.'T we
have A, = O and D,y = DS Then there is a local A-algebra surjection Rg’l‘)c[[Xl, s X =
Rg, with

g=hsi (ad’ p(1)) = K (Fs/F,ad’ B(1)) = Y K'(F,, ad" )

v|oo

+ Z (F,,ad"B(1)) + #T — 1.

veS\T

Progf. — We follow [Kis09, §3.2]. By [Kis09, Lem. 3.2.2] (or rather the same state-
ment for GSp,, which has an identical proof), the claim of the proposition holds with

g=hb 1 (ad’ ) — ' (Fs/F, adp) + Y _ K'(F,, adp).

veT

By [DDT97, Thm. 2.19] (and the assumption that p is absolutely irreducible, which
implies that #°(Fs/F, ad p°) = 0), we have

hs +(ad’ D) = sy 1 (ad”p(1)) — 2'(Fs/F, ad’ B(1)) — Z/ZO(FU, ad’p)

v|oco

+ ) M (F.ad’p) = ) K(F,ad D).

veS\T veS
The result follows from the local Euler characteristic formula and Tate local duality. [J
7.3. Local deformation problems, | = p. — Assume from now on that p splits com-

pletely in F. Let v be a place of I lying over p. If x € £, then we write A, : G, = £* for
the unramified character with A, (Frob,) = «.
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Defination 7.3.1. — We say that 0|g,;, is p-distinguished weight 2 ordinary if it is
conjugate to a representation of the form

Az, O * *
0 Ag, * *
0 0 Fhg o |
0 0 0 g
where o, # B,
If lay, s p-distinguished weight 2 ordinary, then we say that a lft p : Gg, — GSp,(O)
of Play, 8 p-distinguished weight 2 ordinary if p atself 1s conjugate to a representation of the form

Aoy O * *
0 Ag, * *
0 0 e'i 0
0 0 e At

where ., By Lifi &, B, respectively. Note that p is then automatically semistable, although not neces-
sarily crystalline.

Remark 7.3.2. — The terminology “weight 2 ordinary” is not ideal, but we were
unable to find a better alternative. Possibilities include “P-ordinary” (referring to the
Siegel parabolic subgroup), which clashes with “p-distinguished”, or “semistable ordi-
nary”. We could of course restrict to the crystalline case and use “flat ordinary” repre-
sentations, but as it costs us little to allow semistable representations, and it may prove to
be useful in future applications, we have not done this.

Remark 7.3.3. — Tor the purposes of proving the potential modularity of abelian
surfaces, it would suffice to work with a stronger p-distinguishedness hypothesis, as
in [CG20]. In particular, by assuming that none of @, _i, @,B, are equal to 1, we could
arrange that the various deformation rings considered in this section are formally smooth.
However, such a hypothesis is very restrictive in the case p = 3, and in particular would
seriously restrict the applicability of our modularity lifting theorems to proving the mod-
ularity (as opposed to potential modularity) of particular abelian surfaces.

We assume from now on that plg,, is p-distinguished weight 2 ordinary for all v|p;
the roles of @,, B, in the definition of p-distinguished weight 2 ordinary are symmetric,
and we fix a labelling of @,), BU for each v|p.

Set Ay,1 = O[[OF (D], Ay = OO ()*1], where Of (p) = 1 + pOy, denotes
the pro-p completion of Of . Both A, and A, » are formally smooth over O (because
we are assuming that F, = Q,). Let A, be either A, ; or A, . There is a canonical
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character Iy, — Of (p) given by Art;v1 , and we define a pair of characters 0, ; : Iy, — A,
1=1,2 as follows: if A, = A, 1, then we let 6, | =6, o =6, be the natural character and
if A, = A, then we let 6, ; correspond to the embedding OF (p) to (O (p))? given by
the ¢th copy.

Let ¢, denote a choice of either @, or Bv, and write ?; = Evﬁv /?U for the other
choice. Recall that we have the Borel subgroup B of GSp, consisting of matrices of the
form

* %k ok
0 x *x =x
0 0 *x =%
0 0 0 =%

We let P denote the subgroup of B consisting of matrices of the form

O O O *
O O % O
O ¥ ¥ ¥
* O ¥ *

If A € CNL,,, then we say that a lift p5 : Gy, = GSp,(A) of plg;, 1s (B, ?,)-
ordinary if there is an increasing filtration of free A-submodules

0=Fil"cFil' c.--cFil*=A"

of A* by A[Gy, ]-submodules such that the action of Gy, on Fil’ / Fil'~! is via a character Xi
with X = As,, Xo = Aey, X1l = 0u1s Xoly, =6s0,and xs=¢"" x5, xa ="' x; .

By [CHTO08, Lem. 2.4.6] such a filtration is unique; since {(Fil*")*} gives an-
other filtration satisfying the same conditions, we see that p, 1s ker(GSp,(A) — GSp(k))-
conjugate to a representation of the form

X1 % * *
0 xo * *
0 0 ely! *
0 0 0 e x !

where x;, xo are as above.

If Ay = A, (so that 6, = 0,,), then we say that ps is P-ordinary if it is both
(B, @,)-ordinary and (B, Bv)-ordinary; equivalently, if p5 is ker(GSp,(A) — GSp(k))-
conjugate to a representation of the form

x1 O * *
0 xo * *
0 0 &e'x' 0
0 0 0 ey, !
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If Ay = Ay (resp. Ay, = A, ) then we let Df’g" (resp. DF) be the subfunctor of (B, ?,)-
ordinary lifts (resp. of P-ordinary lifts). By [CHT08, Lem. 2.4.6], we see that 'Df’g” and DY
are local deformation problems in the sense of Definition 7.1.4, so they are represented
by CNL,,-algebras le'?”, RY respectively.

Most of the rest of this section is devoted to the proof of the following result.

Proposition 7.3.4. — The generic fibres le’;“ [1/p1, RP[1/p] are irreducible, and are of rela-
tive dimensions 16 and 14 respectively over Q,.

Our arguments are rather ad hoc, and will require a number of preliminary lem-
mas.

7.3.5. Ordinary deformation rings for GLy. — We begin by studying some ordinary
deformation rings for GLy. As well as being a warmup for our main arguments, we will
often be able to show that our deformation rings for GSp, are formally smooth over a
completed tensor product of deformation rings for GLy, thus reducing to this case.

Let7: Gg, = GLy(£) be of the form

)\,a *
0 g 'A)

Set A = O[[1 4 pZ,]], and write 6 : Ig, — A for the canonical character defined above.
If A € CNLy, then we say that a lift of 7 to 7 : Gg, = GLy(A) is ordinary if it is
ker(GLy(A) = GLy(k))-conjugate to a representation of the form

X *
0 8—1X—1

where ¥ = Az and x| lo, = 0. As above, this is a local deformation problem, and is repre-

sented by a CNL,-algebra R®>E where B, denotes the Borel subgroup of GL; of upper
triangular matrices.
We write

(g A e
r= 0 5_1)\.51 )

where 7,2 is a cocycle in Z' (Q,, €A-7). Rescaling our basis vectors has the effect of chang-
ing 7,2 by a coboundary, so we can and do think of 7,2 as a class in H' (Qy, €A2).
Let by be the Lie algebra of By, given by the matrices

V4 Xy X2
b2_( 0 v—xa>’
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where ad%2 corresponds to v = 0. With respect to the basis given by the matrices cor-

responding to the variables {x,2, x,} — that is, the basis { <8 (1)) , (é _Ol> } — the

Galois representation ad%2 7 1s given explicitly as follows:

Ehgz  —20,2
0 1 '

Note that if M is annihilated by p, then H? (Q,, M) is given by HO(Qp, M*Y ~
HomGQ{) (M, g)". It follows that 4> (Q,, adOB2 7) = 0 unless @” = 1 and 71,2 = 0, in which
case we have 7°(Q,, ad%2 7) = 1. We write R®? for R®25 unless we particularly want to
emphasize the GLy-framing variables.

Lemma 1.3.6. — The generic fibre R®2[1/p] is irreducible, and has relative dimension 5
over Q.

Proof. — By a standard argument (see [Maz89, Prop. 2]), R®? has a presentation
of the form O[[xy, ..., %11/ 01, ..., 9), where

r=4— hO(Qp, adg, 7) + A (Qﬁ’ ad%2 7)
=3 — 1(Qy, ad} ) + £ (Q, ad}, 7,
s=h(Q,, ad} 7).

Note that, a priorz, even when s > 0, some of the y; may vanish, although one does not
expect this to happen. By the local Euler characteristic formula, r — s = 3 4+ dim ad?32 T=
5. In particular, if HQ(QJ,, ad%2 7) = 0, then R® is formally smooth over O of relative
dimension 5, and we are done.

If HQ(Qﬁ, adlo52 7) # 0, then the above discussion shows that & = £1, 7 is split,
and s = h*(Q,, ad%2 7) = 1. Since any quotient of a formal power series ring by a single
relation is a local complete intersection, it follows from the presentation of the previous
paragraph that R®? is a local complete intersection, and in particular Sy. Note that, at
this point, we don’t know if the relation y, is non-zero or not, so we do not as yet know
the dimension of R®2,

Twisting by a quadratic character, we can and do suppose that @ = 1, so that 7 =
1 ® &' We begin by showing that Spec R®[1/p] is connected, following [Ger19, Lem.
3.13]. Note that the map Spec R®2[1/p] — Spec A[1/p] admits a section, because we
can always find a lift of the form x @ x ~'e™'. Since Spec A[1/p] is connected, it there-
fore suffices to show that the fibres of this map over closed points x of Spec A[1/p] are
connected.

By (for example) the proof of [BLGGT14b, Lem. 1.2.2] (see also [BG19, Lem.
3.4.1]), the irreducible components of Spec R®2[1/p] are fixed by conjugation by elements
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of GLy(R??) whose image in GLy(k) is diagonal. It is therefore obviously the case that all
the closed points which are conjugate to representations of the form x @ x ~'e™! lic in
the same connected component of the fibre over x, so it suffices to show that each closed
point of the form

(X *
=\o g~y !

lies in the same connected component as the corresponding point with % = 0. To this
end, we consider the representation

r, - diag(¢, t rdiag(s, )7 — GLy(O(2)).

Note that the specializations of this representation at t = 0 and ¢ = | correspond to the
two closed points that we are considering.

Letting A C O(¢) be the closed subalgebra generated by the matrix entries of the
elements of the image 7,, one checks exactly as in the proof of [BLGGT14b, Lem. 1.2.2]
that A is a complete local Noetherian O-algebra with residue field £. Since 7 is split, it
follows that the representation 7, arises from a map R®> — A. Since A is a domain (being
a subring of O(t)), we see that the points corresponding to ¢ = 0 and ¢ = 1 lie on the same
irreducible component, as required.

To see that R2[1/p] is moreover irreducible, it is enough to check that it is normal,
or equivalently that it is R} and Sy. We have already seen that it is Sy, and to show
that it is Ry, it suffices to show that there is an open regular subscheme U of R®2[1/p]
whose complement has codimension at least 2. We will in fact show that there is such
a subscheme with the property that the tangent space at any closed point ¥ € U has
dimension 5, thus also proving the statement about the dimension of R®2[1/p] (if the one
relation in our presentation of R® was trivial, then R®* would be formally smooth of
relative dimension 6, and there would be no such points).

Over R®2, we have a universal lifting 7" : Gq, = Gl (RP2), and we let H2 ; :=
H?(Gy,, ad%2 r"V), a finite R®2-module. Since the cohomology of Gq, vanishes in degree
greater than 2, the formation of H? is compatible with specialization, so that in particular
if x is a closed point of R®2[1/p] with corresponding representation 7, : Gq, = GLu(E,)
(with E, a finite extension of Q,), then HQ(GQP, ad%2 ) = ngd Qg E.

We let U be the complement of the support of H2 ; in Spec RE2[1/p]. (It is not
obvious a priort that U is not empty, but we will prove this below.) Then at any closed
point x € U, we have H? (G, ad%2 1) = 0, so by a standard Galois cohomology calcula-
tion (essentially identical to the one used in the first paragraph of this proof), U is formally
smooth over Q, at x, with relative tangent space of dimension 5. It follows that U is reg-
ular.

The complement of U is the support of H?, so just as above, its closed points are
those x for which p, is a direct sum of two characters whose ratio is the cyclotomic char-
acter. But in any Zariski open neighbourhood of such a point there are points of U (for
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example, points which are a direct sum of two characters whose ratio is not the cyclotomic
character, given by twisting the characters occurring in p, by unramified characters), so U
is dense in Spec R®[1/p], and Spec RB2[1/p] is equidimensional of relative dimension 5
over Q,.

It remains to show that the complement of U (that is, the support of H?) has codi-
mension at least 2, or equivalently that it has relative dimension at most 3 over Q,. In
fact, it has relative dimension at most 2 over Q,: the only freedom we have is to make
twists of the two characters in p, (and the determinant is fixed), so the corresponding

. . . . . . . . 1 0
dimension is the dimension of GL, minus the dimension of the centralizer of < 0 e >,

which equals 4 — 2 = 2, so we are done.

Let RB2Y denote the By-valued framed deformation ring of 7 with fixed determi-
nant. It follows from the assumption that 7 is p-distinguished that R is formally smooth
over RPN of relative dimension

dimad(;, —dimady, =3 —2=1

(see Lemma 7.3.12 for the details of an analogous argument in the symplectic case).

It will prove useful to give (somewhat) explicit descriptions of R (and thus R®?)
in a number of explicit cases. Lemma 7.3.7 below will also give another proof of
Lemma 7.3.6, although not one we shall generalize to the symplectic context.

Let y € £, and let

=1q-1
Fe ()‘V € A 1”)
0 &2,
Via restriction to the character in the upper left hand corner, the ring R®Y is naturally
an algebra over the universal deformation ring R°™ for GL,;. This gives a map

RO — RPN,

The ring R%™ is formally smooth of relative dimension 2 over O, and also formally
smooth over the Iwasawa algebra A corresponding to restricting the character to inertia.
Let us choose isomorphisms A = O[[y,]] and REM = O[[y1, »2]]. In the lemma below,
we shall use y; for the variables of RPN corresponding to the algebra structure over R%M
we use x; for framing variables, and z; for variables related to extensions (informally cor-
responding to the upper right corner). More precisely, by “framing variables” we mean
the following: the map ¢+ (1 + £¢)7 gives an isomorphism

7'(Q,. adjy ) — Homo(R™", k[e]/(e”)) = Hom;(m/m”, k),

where m is the maximal ideal of R®>~ and on the level of reduced tangent spaces, the
framing variables are by definition the coboundaries B! (Qy, ad%2) cZ! (Q,, ad%2).
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Lemma 1.3.77. — Let m denote the maximal ideal of RPN, The ring RPN is a complete
intersection, is flat over A, and is irreducible of relative dimension 4 over O. The rings RPN g5 RO -
algebras have the following explicit presentations.

() Ify* # 1 and n # 0, then RE2N ~ O[[x,, X9, 915 92]]-

) Ify?# 1 and n =0, then R®N >~ O[[xy, 21,91, 911

(3) Ify* =1 butn # 0, then:

(@) RB2N s formally smooth over O,
(b) RPN is formally smooth over A unless 1) is peu ramifiée,
(c) RE2N~ O[[xy, x9, 21 0211/ 8, where g, = ¢y +dyys mod (A, m?) for [e, :
d,1 € P'(k), and where [c, : d,] depends only on n € H'(%).
4) Ify*=1andn =0, then:
(a) R®2N >~ O[[x1, 21, 20,01, 9011/g, where
g=zp1+zyr mod (A, m’),
(b) The special fibre RE2N /A is not formally smooth.

Remark 7.3.8. — Explicit descriptions of ordinary deformation rings (even over
general extensions K/Q,) for GL, have been given by Bockle in [B00, §7]. However, we
require some precise information about these rings as algebras over R®M and A which
is not explicitly given in the required form in [B0O0], and thus we have found it easier to

give the argument below. However, all the methods below already appear (in a more
complicated setting) in previous work of Bockle and others.

Proof. — We first note that ad]032 is simply the 2-dimensional representation given
by

0— k()\iE) — ad]032 — k=0,

and where the extension class is given by 7 (so this s just a twist of 7). The framed tangent
space has dimension

dimZ'(Q,, ady ) = dimH'(Q,, ady ) + dimB'(Q,, ady, ),
with precisely
dim ald%2 —dimH° (Q,, adOBQ)

framing variables. The maps from R®™ and from A correspond on tangent spaces to the
maps 7' (Q,, ad%Q) — H! (Q,, k) and ZI(QJ,, adOBQ) — HI(IQP, k) given by the composites
of the maps

7(Q,, ad%z) — H'(Q,, adOBQ) — H'(Q,, k) — HI(I%, k).

We now consider the four possible cases in turn.
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If y? # 1 and  # 0, then H*(Q,, ad%Q) is trivial, and there are two framing vari-
ables x; and xy. The map from HI(Q,,, ad%o) to Hl(Qp,k) is an isomorphism. Note
that H? (Q,, ad%Q) =0, and so RP>Y is formally smooth over O and all statements are
clear in this case.

If y? # 1 and n = 0, then H°(Q,, ad%Q) = k and there is only one framing vari-
able x;. However, the map from H' (Q,, ad%Q) to H! (Q,, k) is now surjective with ker-
nel H' (Q,, k(gA,2)), which is of dimension one. Note that H? (Qy, ad%Q) =0, and so RP»Y
is formally smooth formally smooth over O and once again all statements are clear.

If y2 =1 but n # 0, then HQ(%,ad%Q) = 0 and the tangent space has di-
mension four, exactly two dimensions coming from framing, one dimension from the
image of H' (Q,,8) in H! (Qy, ad%Q), and one dimension coming from the image
of H'(Q,, ady ) in H'(Q,, k). To compute the image, it suffices to consider the (surjective)
map from H' (Qp, k) to H? (Q,, €) and determine the kernel, or, taking duals, considering
the map H’(Q,, k) - H'(Q,, %) and taking the image. The image of the latter map is
precisely given by 7.

The corresponding ring will fail to be flat over the space of weights A precisely
when the image of

H'(Q,, ady) — H'(Q,. k)

maps to zero in H' (Ig,, k), or equivalently when the image is unramified. Under Tate lo-
cal duality for H! (Q,, k) x H! (Q,, €) — k, the unramified classes are exactly annihilated
by the peu ramifiée classes. Hence the failure of formal smoothness over A occurs pre-
cisely when 7 is peu ramifi¢e. All the claims follow except possibly the claim that R
is flat over A, which is also transparent except in the peu ramifée case, where RN
is formally smooth over O and is the quotient of a formally smooth A-algebra by the
relation g, = yo mod (m?, 1). This will be flat over A as long as y; ¢ ARP>™, which
can be easily ruled out by looking at points in characteristic zero. For example, we see
from [GHLS17, Theorem 2.1.8] that the fibre over every point in A[1/p] is non-trivial.
In particular, there are points where the restriction to inertia of the character lifting A, is
finite of arbitrarily large order, so that v(yy) becomes arbitrarily close to 0, which would
not be possible if y, € ARB2Y,

It remains to consider the case when 7= 1 @ ¢~'. The representation underly-
ing 7 decomposes as a direct sum which induces corresponding decompositions of ad%2
and ad&L2 respectively. In particular, the adjoint ad%2 = k @ € of 7 thought of as inside
the Borel is naturally a direct summand of adOGL2 =kdede ' Let Z(Q,, ad%g) denote
the 1-cocycles with values in ad%Q. There is a natural surjection

21(Qy adj) — H'(Q,, ad} ) =H'(Q,, h) ® H'(Q,, 7).

We now chose a basis for Z'(Q,, ad%Q) as follows:
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(1) r generates the kernel Bl(Qb, ad%Q) onl(Qp, ad%Q) — HI(Q/], ad%g).

(2) s, and s, generate H' (Q,, k), where s, is unramified and s, is ramified.

(3) & and & generate H'(Q,, ), where £, is trés ramifiée and 4 is peu ramifiée.
(4) Under the alternating cup product pairing

H'(Q,, k) x H'(Q,,8) - H*(Q,, &) ~ £,
we have 5; U f; = ;.

We now define the dual basis of
m/(m?, 1) = Hom,(Hom;(m/m?, k), k)

to be given by «;, ;, and z; for : =1 for x; and ¢ = 1, 2 for y; and z;, where
xi(1) =i (5) = zi(4;) = 6y,

and all other combinations vanish. The representation ad%2 (p) has a Lie algebra structure
via the map

ady, (P) x ady, (9) = ady, (P), (A, B) > AB — BA.

The corresponding cup product on cohomology groups composed with this Lie algebra
structure induces a symmetric bilinear pairing (the bracket cup product)

M:Z'(Q,, ady)* — H'(Q,, ady))* — H*(Q,, ady),

Writing H'(Q,, ad%z) =H"(Q,, k) ® H'(Q,, %), this map can be given explicitly in our
case as follows:

M(a, b) = M((a1, ay), (b1, by)) = 2(ay U by — ay U by).

(Note that U is alternating so this map is indeed symmetric.) As noted by in [Maz89, §1.6],
the image of the corresponding map gives the quadratic relations in the deformation ring,
which produces the desired quadratic relation g.

More precisely, note that H*(Q,, ad%Q) = H*(Q,, €) is l-dimensional. By [BJ15,
Lem. 5.2], the relation g can be determined (up to the required order) by the relation
given by the image of the natural map

HX(Q,, ad})¥ — (Z(Q,, ad} )")?

induced by the bracket cup product. But now the non-zero terms can be read off from
the explicit form of M(a, b) above and the description of our basis of m/(m?, 1) as a dual
basis to the explicit basis of Z'(Q,, ady ). It follows that, after rescaling, the leading term
of g is given by 9,21 + y929, as required.
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Part (4b) 1s a straightforward consequences of the presentation just determined
above. Note that the structure over R and A is one again determined by the corre-
sponding map from H'(Q,, ad%2) to H'(Q,, ), and from our explicit description above
this corresponds to our choice of the parameters », and y,. UJ

We also have:

Lemma 1.3.9. — The points of R®2[1/p] which are non-smooth over A are — up to unram-
ified twist — crystalline extensions of €' by 1.

Progf. — This 1is the characteristic zero version of the computation done in the
proof of Lemma 7.3.7(3b), and amounts to noting that in the Tate duality pairing

H'(Q,, Q) x H'(Q,, Q,(1)) - Q,,

the unramified classes in the first group are annihilated exactly by the crystalline exten-
sions in the second. O

We next introduce a class of partially framed deformation rings, which will allow
us to relate framed deformation rings for different groups.

7.3.10. Partially framed deformation rings. — Since we are assuming that F, = Q,,
for the rest of this section we write Q, instead of F, and p instead of p|g;, . We shall
also henceforth (in this section) write R® for REE“ and R” for R". These are framed
deformation rings with respect to GSp,, and as such, could also be denoted by R*F
and RPY to emphasize the framing, However, the images of the corresponding Galois
representations may always be conjugated to land in B or P respectively. In particular,
we may consider deformation rings in which the image is required to actually land inside
these subgroups rather than land there up to conjugation.

Definition 7.3.11. — Let D® and DN denote the subfunctors consisting of deformations
which land inside B or P respectively. Let R®N and R¥N denote the corresponding deformation rings.

(Here the adornment N represents that the framing is all taking place inside the
“upper right corner” corresponding to B or P respectively.) The ring R®Y may be identi-
fied with the universal framed deformation of p with fixed similitude character thought
of as a representation to B. The ring R is not quite the universal deformation ring of o
to P (framed in P) with fixed similitude character, because we are imposing an extra con-
dition on the restriction of the first two diagonal entries to inertia. On the other hand,
if RPunv = RPwnivD denotes the deformations to GSp, of fixed similitude character which
may be conjugated to P (without imposing this condition on inertia), then there is also a

RP,uniV,Q

corresponding ring which is the universal P-framed deformation of p with fixed



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 371

similitude character. Note that there are tautological maps R® — R®Yand R? — R re-
spectively. Let us write adgsy, , adg, and adp for the groups adgsy, (0), adg(p), and adp(p)
respectively. Since p is odd, there exist corresponding direct factors ad%sm, ady, and adj
corresponding to deformations with fixed similitude character.

Lemma 7.3.12. — Suppose that p s p-distinguished weight 2 ordinary.
(1) There exists a splitting

RB,V N RB,D N RB‘Q
which realizes R® = R®Y as formally smooth over R®Y of relative dimension
dim ad%Sp4 —dimady =10 — 6 =4.
(2) There exists splittings

RP,umv,Q N RP,umv,D — RP,unw,Q’

RP,W N RP,D — RP,W

which realize R® and R™™ as formally smooth over R*N and R¥*™N respectively, of
relative dimension

dim ad%mt — dim adg =10—-5=05.

Progf. — As previously noted, the p-distinguished hypothesis implies the existence
(by [CHTO08, Lem. 2.4.6]) of a unique Galois stable filtration Fil' on (R®")*. In particular,
we may choose a splitting of this filtration by a symplectic matrix M € GSp,(R®Y) with
the property that M =1 mod m. Conjugation by M induces the desired map from GSp,-
framed deformations to B-framed deformations, and thus induces a splitting from R
to R®. In the P case, one can additionally choose the splitting such that the choice of new
vector in Fil” is Galois stable, and then the corresponding conjugate is valued in P.

The p-distinguished hypothesis implies that the maps

H’(Q,, ady) — H(Q,, adp) — H(Q,, ad(,Sp

are all isomorphisms (see for example the explicit descriptions of ady and ady, following
the proof of this lemma). By construction, the reduced tangent spaces of RBH and RBN
are given by extensions of H' (Q,, ad® ) (in both cases) by B! (Q,, ad ) and Bl(Qﬁ, ad%)
respectively (and analogously with P). On the other hand, the map on B' groups is pre-
cisely dual to the map

ady /H’(Q,, adp) — adGSp /H(Q,, adGSp
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(and once more similarly with P). Hence, from the identification of H’ groups above,
it follows that the map on reduced tangent spaces corresponding to R®H — RENis an
injection whose cokernel has dimension

(dim ad(’S — dim HO(QJ, adGSp )) — (dim ad?3 —dim HO(QJ], ad%))
=dim adGsm — dim ad

(And similarly in the P case with B replaced by P.)

We now prove the maps are formally smooth, which will be a direct consequence of
the fact that the obstruction group is given (for R®Y and R®Y or for RP"v:H and RPN
and R™Y and R™Y) by the groups H*(Q,, ady) and H*(Q,, ad}) respectively. We con-
sider first the case of B; for snnphatx of notation, we drop B from the superscripts
from now on. Consider a surjection R := RV[[x}, xo, x3, x4]] — R which induces an
isomorphism on reduced tangent spaces, arid let J denote the kernel (so it suffices to
show that J = 0). Let m be the radical of R. Recall that we have a unique symplec-
tic filtration Fil' on (RF)* = (R/J)Jr and a choice of splitting corresponding to the ma-
trix M. Lift this to a filtration Fil' for R/mj, and consider a corresponding set theo-
retic deformation p : Go, — GSp4(§/fﬁJ) which preserves this filtration. (There are
no issues lifting filtrations because the symplectic group is formally smooth) The cor-
responding 2-cocycle [¢] € HQ(Qp ad(ng ) ® J/m] then lands in HQ(QP ad’ p) ®J/mJ.
Now choose a symplectic splitting of this filtration lifting the one for Fil', Conjugat-
ing p by the corresponding matrix M (lifting M above) gives a set theoretic map MpM™ :
from GQp to B(R/ mJ). But this map lifts p :Gq, — B(RY). By universality of p ™",
since R/ mJ is an R Y-algebra, there is no obstructlon to lifting this to a B- representatlon
of Gq,, and hence the class [¢] becomes trivial in the corresponding obstruction group for
the B-deformation problem. Since the obstruction group in this case is H*(Q,, ady) for
both the B-deformation problem and the ordinary GSp,-deformation problem, it follows
that [¢] 1s trivial and hence that J = 0.

The same argument applies to P, except now the splitting of Fil' has to be chosen
so that it is preserved by Gq, — equivalently, an identification of the first two eigenspaces
to R/J to ensure that the deformation is of P-type. In the case of R", one addltlonally

requires the set theoretic lift to act diagonally after restriction to inertia on . 0J

7.3.13. The GSp,-deformation rings. — We are assuming that p|c, has image of
the form

Ag O Efl,x%'naﬂ 2 A N
0 Ag 5—%;;7,52 A Mg
0 0 E—ug 0

0 0 0 g
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where @ # B, and where we write 15 to denote a (possibly zero) class in H' (Q,, €A5). Our
analysis of the deformation rings (particularly in the B case) will depend on which of these
classes are equal to zero or not.

The dimensions of B and P are 7 and 6 respectively. Recall that we are consid-
ering deformations of p to B or P with fixed similitude character. For p > 2, the adjoint
representations p and b admit a splitting with a canonical one dimensional summand cor-
responding to varying the similitude character. Let ad% (p) C b and adg(ﬁ) C p denote
the complementary 6 and 5 dimensional subspaces. Explicitly, b is given as follows:

V4 Xy  —Xap Xap X2
0 1% + X/g Xﬁ? Xaﬁ
b—
0 0 V — Xg Xo/B
0 0 0 V — X

where the subspace with x,,3 = 0 corresponds to p, and the subspace v =0 cor-
responds to ad}. With respect to the basis given by the matrices corresponding
to {xy2, Xg2, Xep, Xa/8, Xa» Xg}, the Galois representation ad%(ﬁ) 1s given explicitly as fol-
lows:

( gAy2 O 0 2)\&)\; Nap — 22 0
0 Ep 0 0 0 —2mp
0 0 €Agp )La)\; N2 —Nap —Nap
0 0 0 AEA; 0 0
0 0 0 0 1 0
\ 0o 0 0 0 0 1)

and, on the space adg(ﬁ) - ad%(ﬁ) with respect to the basis {x,2, xg2, X4, Xy, ¥} (DOt @
direct summand!), we have

EAg? 0 0 — 212 0
0 5)»32 B 0 0 —2np2
0 0 Fhg N s
0 0 0 1 0
0 0 0 0 1

As in the case of GLy above, we may compute HQ(%, ad’(p)) for P and B by
counting whether the subspaces generated by {x,2, X2, x4} generate € subspaces and
whether these subspaces split. The following lemma is immediate from the explicit de-
scription above.

Lemma 1.3.14. — The dimension of H*(Q,, ady (D)) is zero unless one of the following
holds:
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(1) The classes Nog and 02 are both zero, and & = 1.

(2) The class ng2 is zero, and EQ = 1. In thus case, either:
(@) The conditions of part (1) also hold, or:
(b) The dimension of H*(Q,, ady(p)) is 1, and there is a Q,,-equivariant map from the
representation V underlying p to the Borel of GL(2) corresponding to the representation

Az 0 1 0
— B — -
W_<O 5_1)\/;1>_)\‘ﬁ®<0 §—1>’

and the corresponding map relating H> (Q,, ad% (p)) = H? (Q,, ad% (V) to
H? (Q,, ad%2 (W) s an isomorphism.
(3) The classes nop and ng2 are both zero, and apf =1.

Moreover, the dimension of H? (Q,, ad% (p)) ts > 2 only in case (2a), in which it has dimension 2.

We could give a similar (but easier) computation of H? (Q,, adg(ﬁ)), but it is not
needed in the sequel so it is omitted.

Recall that R""" denotes the universal deformation ring for P. The quotient R”
is given by imposing the condition that the action of inertia on Fil* (given by the upper
left 2 x 2 matrix after changing basis) is through a scalar. Recall that we also have cor-
responding rings RPN and R™Y where the image lands in P directly (rather than up
to conjugation). Any deformation of type R¥""Y determines deformations of the three
2-dimensional subquotients of 7, given respectively by the extension 75 of £ 'A2" by Ag,
by the extension 7 of At by Az, and the extension 75p of E_l)\%l by Agz. Similarly,
any triple of such deformations with the appropriate coincidences of the correspond-
ing characters defines a representation of type P. (These identifications require that we
work with N framings rather than [J framings, since otherwise there would be superfluous
framing variables in this identification.)

Let Ry = RP2Y for 7, and Ry = R®2Y for 7. Let Ryg = RE>™N 4 for 7,45,
where RE2™ 4 is the framed By deformation ring in which one does not fix the de-
terminant, so (since p > 2) one has that RB>N 4t = RB2Ng RO i formally smooth
over RP2Y of relative dimension 2. There are natural maps from Ry, Rp, and Rup
to RPN and RPY respectively. Write RS %611 = REUIQ,REM for the deformation
ring corresponding to the pair of characters (A,,, Ag,). We have the following:

Lemma 1.3.15. — The ring R¥™ s formally smooth over
RPN~ (Ry®0Rp) ®gors «61i Rap
of relative dimension 5. The ring RY is formally smooth over
RPN o~ (RA®ARB)®RGL1 6L Rap

of relative dimension 5.
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Proof. — The 1somorphisms follow directly from the discussion above, and the
statement about formal smoothness is Lemma 7.3.12. O

We now prove the P-part of Proposition 7.3.4.

Proposition 7.3.16. — Suppose that p is p-distinguished. Then R**™™ and R are both com-
plete intersections. Moreover, they are connected in characteristic zero, and the non-smooth locus in char-
acleristic zero has codimension at least two. In particular, the generic fibres R¥"™[1/p] and R¥[1/p]
are irreducible of dimensions 15 and 14 over Q,, respectively.

Proof. — The strategy is as follows. By Lemma 7.3.15, we can immediately re-
duce to the rings RPN and R"Y respectively and prove that they satisfy the same
properties above (with 15 and 14 replaced by 10 and 9 respectively). Given the explicit
form of the presentations for the 2-dimensional By-deformation rings, in order to show
that RPN and R®Y are complete intersections, one can simply write down enough
about the equations for the tensor products in Lemma 7.3.15 and observe (for the appro-
priate value d = 10 or 9 in either case) that they are either:

(1) Formally smooth of the relative dimension d over O,

(2) Given as a quotient of a power series ring in  + 1 variables by one relation,

(3) Given as a quotient of a power series ring in d 4 2 variables by a 2-generator
prime ideal which is not contained in (1).

(The last example occurs only in a single case.) We say more about this computation
below.

For the remaining claims, it suffices to prove that the generic fibre is connected
and that our tensor products are R; and Sy (and thus normal); since they are complete
intersections, it is enough to show that the non-smooth points have codimension at least 2.
It is convenient to consider two separate cases.

Suppose that o8 = 1. In this case, it follows from the p-distinguishedness hypothesis
that a? # 1 and B? # 1. In this case, the rings above have a particularly simple form
even over 0. Namely, Ry and Ry are formally smooth over O and over A, and the
resulting tensor product is formally smooth over Rug, and thus the result follows from
Lemma 7.3.7, since the rings R~ satisfy all the required geometric properties above.

Now suppose that @f8 # 1. In this case, Ryp is formally smooth over R <11 "and
by Lemma 7.3.15, RP"Y and RPY are formally smooth over RA®@RB or Ro\® Ry re-
spectively. Let us now consider the case of R™Y, which corresponds to Ry& 4Ry, the case
of R\®oRj being casier and also following immediately from Lemma 7.3.7. Since R,
and Ry are either smooth or have a non-smooth locus of codimension 4 (correspond-
ing to twists of 1 @ ¢! by a (possibly trivial) unramified quadratic character), it is cer-
tainly the case that the points on the generic fibre of RA® Ry which are non-smooth
on R,®eRy have codimension at least 2. Hence it suffices to consider the non-smooth
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points of RA® Ry which are smooth on RA@)@RB. In particular, such a point must have
a tangent space of dimension 8, and will be smooth if and only if it has an infinitesimal
deformation which does not lie on RA®,Ry. Equivalently, given a point x = (x4, x3) on
the generic fibre of RA® ARg[1/p], it will be smooth if it has a deformation in which the
weight over A varies for one x5 or xg but remains fixed for the other point. Equivalently,
we can look for a deformation of x = (xa, xp) such that one point is fixed but the other
point varies over A[1/p]. For x5 or xp, such a deformation exists as long as x5 (or xp) is a
smooth point over A. But the non-smooth points in characteristic zero over the space of
weights A are (up to unramified twist) exactly the crystalline extensions of ¢! by 1 (see
Lemma 7.3.9), and hence these non-smooth points certainly have codimension at least 2.
To show it is connected, it suffices to note that, for each fibre of Ry above A, any x4 is
connected over this fibre to a point which is smooth over A. This reduces to showing
that any extension of ¢! by 1 which is crystalline has a deformation to a non-crystalline
extension. But this is trivially achieved by a perturbation of the extension class, noting
that H'(Q,, ¢) is free of rank 2 and the crystalline subspace is a line of rank 1.

It remains to prove the claim that these rings are complete intersections in all the
possible cases. Almost all the time, the tensor product is either immediately seen to be
formally smooth of the right dimension, or given by a single non-zero equation and of
the right dimension. In fact, the only way in which there can be two equations is when
two of the rings Ry, Ry, and Rap are not formally smooth. This implies that at least

two of @’, EQ, and @f are equal to one, and this trivially only happens when @* = 1
and 32 =1, and hence aff # 1. Thus the only possible case when there exist at least two
equations is when & = BQ = 1 and 7> = ng = 0. The corresponding tensor product is
then

O[[XA,l, KA, 15 RA,25 VA 15 VA, 25 XB,15 KB, 15 ZB,QJ’B,]]]

modulo the ideal (noting tensoring over A forces ya o = yp9):

(zavan +za99a0 4+, 2B + 2B9YA2 + ).

This pair of elements is easily seen to generate a height 2 prime ideal.

The cases when there are no equations and the rings are formally smooth are
trivial. In the cases when there is an extra generator one has to show that the resulting
equation is non-zero. Essentially the most subtle case of this form occurs when @” = EQ =
1 and ng and g are both non-zero and peu ramifiée. In that case, there are naively two
equations which have the following form:

DA = /l(XA,l, ZA,1s ZA,QJ’A,I),

DA = /Z(XB,l, ZB,15 ZB,QJ/B,l),
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which immediately reduces to one equation. (Here 7 is the same £ because both extensions
generate the same line — the other cases are trivial). We then need to show that the
resulting equation obtained by taking the difference of the RHS is non-zero. But this is
obviously the case unless the RHS is zero. If this is true, then y, o is zero in R~/ which
is impossible since R is flat over A. UJ

Proof of Proposition 7.3.4. — By Proposition 7.3.16, we only need to prove the re-
sults for R®. As in the proof of Lemma 7.3.6, we have a presentation of R® of the
form O[[xy, ..., %11/ 01, - .., 7,), where

r=11-1(Q,ady ) +4(Q.ad} p). 5= (Qy. ad} 7).

so that by the local Euler characteristic formula, r —s = 104-dim ad% 7= 16. In particular,
if H? (Q,, ad%(ﬁ)) =0, then R® is formally smooth over O of relative dimension 16, and
there is nothing to prove.

It is therefore enough to consider each of the cases of Lemma 7.3.14. In case (2b),
we see that R® is formally smooth of relative dimension 11 over the deformation
ring R®>Y for 7 = A5 @ )%1571, so the result follows from Lemma 7.3.6. From the pre-
sentation in the previous paragraph, we see that in cases (1) and (3), R® is a complete
intersection, while in case (2a), we see that every irreducible component of R® has rel-
ative dimension at least 16 over . By Lemma 7.3.12, we may (and we do) pass freely
between R® and R®Y when convenient.

Suppose that we are in case (3), and suppose that 7,2 # 0. Let ¢ be the representa-
tion with the same @, 8 as P, but with 2 =7 g2 = Nap = 0. Let RB be the corresponding
deformation ring. We claim that in fact ng and RBY are isomorphic. To see this, note
firstly that since af =1, and @ # B, we have a” # 1. Let

— )‘-E a?
r= ( 0 )\;7715—1)'

We have already shown that, in this case, RV is formally smooth over A. In fact, we
can be more explicit. Write A for what we called R above, so that A is the formally
smooth A-algebra of relative dimension 1 which carries the additional information of
the actual lift of Az (rather than just its restriction to inertia), so that REY and RB2 Ya
naturally A- algebras Let Az : Gq, — A be the universal lift of Az. Then since & ;é 1

H'(Gy,, )\.g ¢) is a free A-module of rank 1, and the universal lift of 7 is represented by

0 A— 7!
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univ

where 752 lifts 742. It is then easy to verify that if o
lift of @ to RY™, then

is the universal upper-triangular

0 univ +

oS O O O
o O O O

is a lift of p. This gives a map Rg‘Q — R®Y and we can obtain a map R®Y — Rg’Q in
the same way:. It is clear that the composites of these maps are the identities, so that Rg’w
and R®Y are isomorphic, as claimed.

Accordingly, whenever we are in case (3), we will assume from now on that 1,2 = 0.
It is now easy to see that in each of the cases (1), (2a), and (3), Spec RBY[1/p] is connected.
Indeed, in each case we have 1,2 = 1,5 = 0, so by arguing as in the proof of Lemma 7.3.6
(using conjugation by diag(¢, 1, 1, 1)), we see that every closed point of Spec RBY[1/p]
may be path connected to one which lands in P((_lﬁ). Now we may immediately conclude
by knowing the corresponding result for Spec RP*"Y[1/p] proved in Proposition 7.3.16.

To obtain irreducibility we now argue as in the proof of Lemma 7.3.6, by studying
the singular locus of Spec R®[1/p]. More precisely, we let p* : Gq, > GSp, (RP) be the
universal lifting, and let H* := H? (Gq,, ad% "), a finite R®-module, which is compati-
ble with specialization. Let U be the complement of the support of H? in Spec RE[1/4].
At any closed point x € U with corresponding representation p, : Ggo, = GSp,(E,), we
have H? (Gq,, ad% 0.) =0, so it follows that U is formally smooth over E, at x of relative
dimension 16. In particular, U is regular.

The points in the complement of U are those for which H*(Gyg,, ady p,) # 0.
We claim that this has codimension at least 2. We may explicitly describe this locus
as follows (this description follows easily from the explicit description of ady preceding
Lemma 7.3.14). In case (1), we may suppose without loss of generality (by twisting with a
quadratic character if necessary) that @ = 1, and then the points in the complement of U
are those conjugate to representations of the form

1 0 0 0
0 * 0
0 0 ely' 0
0 0 0 g1

where y lifts A3. The locus of such points has dimension at most 13; indeed, the action of
PGSp, by conjugation contributes at most 10 to the dimension, and the choice of x and *
at most 3 (there is a two-dimensional family of choices of x, and if x? is non-trivial then
the choice of * gives one more dimension, while if x? is trivial then it gives 2 dimensions).
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In case (2a), we have in addition the points of the form

x % 0 0
0 i 0 0
0 0 e 'A, *
0 0 0 e (xH™!

where x’ lifts Az = 1. The locus of such points again has dimension at most 13.
In case (3), we have the points of the form

X * 0 *
0 x! 0 0
0 0 &'y * ’

0 0 0 ely!

where yx lifts Az. The locus of such points has dimension at most 14 (with 2 dimensions for
the choice of x, and then generically one dimension each for the choices of the extension
class of x 7! by x and of e™'x ™! by x, or two dimensions each if x* = 1).

Thus in cases (1) and (3), since we know that R® is a complete intersection, we
see that it is normal (being R, and S,), so we are done. The case (2b) having already
been dealt with, we are left with case (2a), where we have seen that every irreducible
component of Spec R®[1/p] has dimension at least 16, while the complement of U has
dimension at most 12. It now suffices to show that R® is a complete intersection, and thus
also normal as above, and to check that Spec R®[1/p] has dimension exactly 16.

We have a presentation of R = R® of the form O[[x, ..., x18]11/ (1, 99). This 1s
a complete intersection as long as dim(R) < 19 — 2 = 17, which also implies that the
relative dimension of R over O is 16, and so the dimension of the generic fibre is 16.
Assume otherwise, so that dim(R) > 18. Then the support of R in Spec O[[xy, ..., x15]]
contains a height one prime p of O[[x1, ..., x13]]. Suppose firstly that p has residue char-
acteristic zero, and let T denote the corresponding closed subscheme of Spec R[1/p],
which will have dimension 17. For any closed point x € T with corresponding rep-
resentation p, : Gq, = GSp,(E,), the tangent space at x certainly has dimension at
least dim(T) = 17. Hence there is an inequality

11— 7°(Qy, adg p,) + 4 (Qy, ady p,) > 17,

and so, by the Euler characteristic formula, 4* (Gq,, ad(})3 py) > 17 — 16 > 1. In particular,
it follows that x lies in the support of H?, and hence that T C U. But we have already
seen that U has dimension at most 12, and this is a contradiction.

Hence R can only fail to be a complete intersection if the support of R contains (1).
It follows that dim(R/A) = dim(k[[xy, ..., x13]]), and hence that R/A = k[[x, ..., x15]].
Twisting, we may without loss of generality assume that 8 = 1. Let 7= 1 ® & ', and

let RB2Y denote the corresponding fixed determinant deformation ring to the Borel
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of GL(2). By realizing 7 as the subquotient of the representation p given by the span
of the second and third standard basis vectors, there is an induced map

V¥ :REY 5 RY 5 R— R/A =[x, ..., x15]].

Let W denote the representation underlying 7, and (as previously) V the representation
underlying p. Let us now consider the induced map on reduced tangent spaces. To com-
pute this, we may look at the corresponding deformation rings, and consider the in-
duced map on tangent spaces. For R®>Y, the tangent space is given by Z'(Q,, ad%2 (W)).
For RY, it is given by Z'(Qp, ad%(V)). Note that we are assuming that 1, = 1,2 =
ng2 = 0, and so p is completely split, and so ad%2 is a direct summand of ad%. Thus
Zl(Q,,, ad%2 W)) — ZI(Q‘], adg(V)) is injective. On the other hand, Lemma 7.3.7 (4b)
shows that (for this 7) the ring R®>Y/A is not formally smooth. But this is a contradiction; a
minimal set of generators of the maximal ideal of RB>V/ satisfy at least one polynomial
relation, but their images under ¥ do not satisfy any such relation under our assumptions
because the map on tangent spaces is injective and (as we are currently assuming) RY/A
and R/A 1s formally smooth. Hence A also cannot be in the support of R, and thus R is
a complete intersection. 0J

Remark 71.3.17. — The last argument shows that, in case (2a), the ring R = R®
1s a complete intersection. But we certainly expect (in this and in all other cases) the
stronger properties that R is flat over O and R/ is also a complete intersection, whereas
the argument only shows that dim(R/A) < 17, rather than dim(R) — 1 = 16, which
would be necessary in order for A to be a regular element. In general, we have often only
attempted to prove exactly enough about the deformation rings that we require for the
argument, rather than giving a fuller account of their geometric properties. We apologize
to readers who examine this argument in closer detail who were hoping for something
more comprehensive.

As in §7.1, we say that a closed point x of Rf’?”[l/p] (resp. RE[1/p]) is smooth
if (REEU[I/ p]). 1s regular (resp. (Rf’gv[l /pD). 1s regular). We say that the corresponding
Galois representation p, is pure if it is de Rham, and if WD(p,) is pure (that 1s, it arises
as the base extension of a pure Weil-Deligne representation over a number field).

Lemma 7.3.18. — If x s a closed point of the generic fibre (y‘Rf’gv[l/p] or RP[1/p], and x
us pure, then it is smooth.

Progf: — We first consider the case of B. From the proof of Proposition 7.3.4, we
see that it is enough to check that H*(Gg,, ady p,) = 0. By Tate local duality, this means
that it is enough to check that HomGQﬁ (pxs p(1)) = 0, and therefore it is enough to
check that HomWDQﬁ (WD(p,), WD(p,(1))) = 0. This follows easily from the definition
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of purity. The same argument also applies to RF"™[1/p]. We now consider RY[1/p].
The non-smooth points x of RI[1/p] are either non-smooth in RY™[1/p] (for which
the previous argument applies) or, via the isomorphism of Lemma 7.3.15 and the proof
of Proposition 7.3.16, arise in the following way: the representation p, admits a 2-
dimensional reducible subquotient 7, such that the corresponding point on the defor-
mation ring R®2[1/] is not smooth over A,. By Lemma 7.3.9, such representations are
(up to unramified twist) a crystalline extension of ¢ ' by 1. Since these are not pure (and
purity is preserved by taking subquotients), the representation p, is also not pure, and we
are also done in this case. UJ

7.4. Local deformation problems, | # p.

7.4.1. Unobstructed deformations. — Assume that v { p.

Proposition 7.4.2. — IfH(F,, ad” p(1)) = 0, then RD is isomorphic to a power series ring
over O in 10 variables. If furthermore p|g,, is unramified, then so are all of its lifs.

Proof. — By Tate duality, the condition is equivalent to H*(F,, ad’p) =0, and the
result follows from a standard calculation in obstruction theory (see e.g. [T1196, §5.2]). U

7.4.3. ‘laylor—Wiles deformations. — Assume that ¢, = 1 mod p, and that both ¥ |g,,
and pl|g,, are unramified. We take A, = O. We assume that p(Frob,) has 4 dis-
tinct eigenvalues in £, and we fix an ordering of them as o, oy, &3 = ¥ (Frob,)/ay,
oy = Y (Irob,)/a;. For each i =1, 2, let ¥, : Gy, — £* be the unramified character that
sends Frob, to «;.

Lemma 7.4.4. — Let p : Gy, — GSp,(A) be any lft of p. There are unique continuous
characters y; : Gy, — A* for 1 = 1,2, such that p is GSp,(A)-conjugate to a lft of the form
YDy, D W)/{l @ Yy, where y, mod my =7y, foreach i =1, 2.

Progf. — This can be proved in exactly the same way as [GT05, Lem. 5.1.1]. U

Let A, = k(v)*(p)?, where k(v)*(p) is the maximal p-power quotient of £(v)*, and
let p : G, — GSp,(RY) denote the universal lift. Then p is GSp,(RY)-conjugate to a
lift of the form y, ® v, ® ¥y, ' ® ¥y, ' asin Lemma 7.4.4. For i = 1, 2, the character
¥; o Arty, |(9va factors through £(v)*(p), so we obtain a canonical local O-algebra mor-

phism O[A,] — RUD. Note that this depends on the choice of ordering o, ..., . It is
straightforward to check that this morphism is formally smooth of relative dimension 10.

7.4.5. lhara avoidance deformations. — Let v be a finite place of IF with ¢, = 1 mod p.

Assume further that p|g,, is trivial, and that ¥|g,;, is unramified and has trivial reduction
modulo A. We take A, = O.
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Let x = (X1, x2) be a pair of continuous characters x; : Oy — O* that are trivial
modulo A. We let DX be the functor of lifts p : Gy, = GSp,(A) such that for all o € I,
the characteristic polynomial of p (o) is

(X = x1(Arty,) (0) (X = xa(Art (0)))
X (X = xo(Arty (0)) ™)X = i (Arg, (0) 7).

Then DX is a local deformation problem, and we denote its representing object
by RX.

Lemma 7.4.6. — If x1, xo # 1 and x| # XQﬂ, then every closed point of Spec RX[1/p] us
smooth.

Progf. — We can choose o € Iy, with )(I(ArtF_v1 (0)), xo (Artrfv1 (), x1 (ArtF_v1 (o)1,
X2 (Ar‘[;v1 (0))7" pairwise distinct. As in Lemma 7.1.3, we need to check that for every
point x, we have Homg/gy, (04, 0x(1)) = 0. Any such homomorphism would have to
respect the eigenspaces for p, (o), and must therefore be zero. U

The proof of the following two results occupies the rest of this subsection.

Proposition 7.4.77. — Assume that x, = xo = 1. Then R} satisfies the following properties:

(1) SpecR! is equidimensional of dimension 11 and every generic point has characteristic zero.
(2) Every generic point of SpecRl /(LX) is the specialization of a unique generic point of
SpecR!.

Proposition 7.4.8. — Assume that x1, xo # 1 and x; # )(2jE L Then Spec RX s wrreducible
of dimension 11, and its generic point has characteristic zero.

We follow the strategy of [Tay08] (which proves the corresponding results for GL,)
closely. A source of minor complications in the case of GSp, is that nilpotent centralizers
need not be connected. Even though we are interested only in deformation rings with
fixed multiplier, we have found it more convenient to carry out the analysis without fixing
multipliers until the end. We also take advantage of the fact that we only care about GSp,
(rather than, say, GSp,,) to be a bit more ad hoc in our arguments.

Throughout the rest of this section, ¢ will denote an integer which is not a multiple

of p.

7.4.9. Preliminaries on nilpotent matrices. — Let U C GSp, /O be the closed sub-
scheme of matrices with characteristic polynomial (X — 1)*, and let ' C Lie (GSp,)
be the closed subscheme of matrices with characteristic polynomial X*.

In [TayO8], under the assumption that p > n, Taylor uses truncations to de-
gree X"~ of the usual exponential and logarithm maps in order to relate unipotent
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and nilpotent matrices (see in particular [Tay08, Lem. 2.4]). For p > 3, we could in
the same way use the truncations to order X* of the usual exponential and logarith-
mic maps. However, both exp and log to third order involve terms of the form X*/3!
and (X — 1)%/3, which we need to avoid when working in residue characteristic three.
In the proof of [Thol2, Lem. 3.15] an alternative approach is given (again in the case
of GL,), using the maps exp, = 1 + N and log, = (U — 1) in order to avoid assumptions
on the characteristic. However, neither the matrices I + N for nilpotent N nor U — 1
for unipotent U will in general be symplectic, and thus our truncated exponential and
logarithm maps must be at least quadratic. This motivates the following definitions.

For p > 3, we have the following modified versions of the exponential and loga-
rithm map, which are the same as the usual definitions up to and including order X?:

expy : N = U
2 N3
N—>I+N+—+ —
2 2
and
log, : U > N
U-17°
Ul—)(U—I)—T.

It is easily verified that these maps do indeed have image U, respectively A/, and that
they are in fact inverses to each other, and in particular are bijective. Additionally, they
commute with the conjugation action of GSp,, and for m € Z satisty

exp, (mN + m*N3) =expy,(N)",  log,(U") = mlog,(U) + m" log, (U)%,

where m* = (m — m®)/3 € Z.
We define the following elements of N (O):

0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 1

NO_O’NI_OOOO’NQ_OOOO’

0 0 0 0 0 0 0 0
01 0 0
00 1 0
N3_000—1
00 0 0

We also let N; C NV be the reduced, locally closed subscheme consisting of nilpo-
tent matrices of rank 7, so that N; € V..
The following is an analogue of [Tay08, Lem. 2.5].
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Proposition 7.4.10.

(1) Zgsp,(N;) @5 a smooth group scheme over Spec O with fibres of dimensions 11,7,5, 3
Jori=20,1,2,3. Each connected component of Z.gsy,, (N;) s irreducible with irreducible
special fibre. Moreover, Z.gs,,, (N;) is wrreducible except when 1 = 2, in which case it has
two components.

(2) Locally in the étale topology, the universal nilpotent matrix over N; is conjugate to N; by a
section of GSp,.

(3) N is smooth over Spec O with irreducible fibres of dimensions 0, 4,6, 8 fori =0, 1, 2, 3.
In particular, N is irreducible.

Proof. — Part (1) can be checked by brute force calculation. For instance in the
most interesting case when 7 = 2 a direct computation (using that p > 2) shows that

ZGSp4(N2) =~ O[x,), Z, W, o, ﬂ9 ya 8’ (wx _)/Z)_l]/
(v, wz,py —wa —x8 — 2f)

where the matrix is given by

o on =
oo 8 '«
N o= R OR
gL >

and from this all the properties are clear (for instance, the two components are given by
y=w=_0and y=2z=0).

For part (2), we explain the case when ¢ = 2. The others are similar but easier.
We may view the universal nilpotent N over A; as an endomorphism of O}, with the
“standard” symplectic form 1. Then, by the definition of Ay, ker(N) is a local direct
summand of rank 2. Then one checks that

U Oj\/Q/kerN X Ojvz/kerN—> O,
(v, w) = ¥ (Nv, w)

is a well defined non-degenerate symmetric pairing;

Etale locally, one may trivialize ': For any point x € N5 we may pick a
Zariski open neighbourhood x € U = Spec A C N, over which Oj‘vz/ kerN has a ba-
sis f1,. 0 with ¥'(f1, /o) = 0 and ¥'(fi, /1), ¥'(f2, o) € A*. Let A’ be the étale A-algebra
ALY (h, )y /¥ (. )], so that over U’ = Spec A/, (On,/kerN)y has a basis f;' =
SN G = BN o) with ¥/ () = ¥ G f3) = 1 and ¥/ (F/, f7) = 0. Now
lift /{ and f] to sections ¢; and e of Of,. We may further arrange that ¥ (e, &) = 0 by
replacing e¢; by e; — ¥ (e1, &9)Ne;. Then Ney, Ney, ¢, ¢ forms a symplectic basis for Oé/,
and if we let g € GSp, have these elements as columns, then Ny = gNgg™'.
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Finally we turn to part (3). For each ¢, there is a map
GSp, = N,
1
gr>eNig .
By the first two parts of the proposition, this map is smooth and surjective. Indeed, it
suffices to check this after base change to a suitable étale cover U — AN/;, over which it
becomes isomorphic to Zgs,, (N;)y — U. It follows that N is smooth over O. The fibres
of N; are irreducible because those of GSp, are, and the statement about dimensions

follows from the computation of the dimensions of the fibres of GSp, — N; in part (1).
O

Remark 7.4.11. — By contrast to the situation for GL, considered in [Tay08], it
is no longer the case that Zgs), (IN;) is connected, nor is it true that the universal matrix
over N, is Zariski locally conjugate to N; (both fail when i = 2).

7.4.12. Some spaces of polynomials. — Let P = G’ be the diagonal torus in GSp,;
we somewhat abusively write

P={X-a)X-pX-yf HX-ya™)
where the order of the linear factors matters, and we let
P= 75/W = (X'"+ X+ X2+ aX+q | a) € Gy, agao = a?},

so that there is a finite map 7 : PP, given by multiplying out the linear factors. We
consider some reduced closed subspaces of P:

Py="P

Pr=r(X-a)X - X—-yp HX—-ya™)|ya~" =qa})
Pr=r({X—a)X—ga)X—yglaH)(X—ya™)})
Ps=r1({X =o)X = ga)X = ga) (X = ¢’)})

We will find it useful to consider some explicit elements of GSp,(R), for an O-
algebra R. For «, B, y € R* we let

®o(at, B, y) =diag(ar, B, ¥~ ya )
®, (a, B) = diag(qa, B, qa*/ B, )
cDQ,a(aa V) = diag(qa’ Va_l’ o, )/q_la_l)
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(0 ga 0 0
_{e8 0 0 0
cI)Q,b(a’ ﬁ) - O O O o
\0 0 B 0

/q o 0 4(1—412)“ 0
6

0 Qo 0 A=)

Q;(x) = 1 6

0 0 ga 0

\ 0 0 0 o

7.4.13. Spaces of matrices. — We define N(¢g) to be the closed subscheme of
GSp, XN consisting of pairs (®, N) satisfying

PN~ =log, (exp,(N)?) = ¢N + ¢*N°,

where as above we write ¢* = (¢ — ¢*)/3. This definition is motivated by the following,
The actual equation we wish to study has the form

dUD ! = U

for a unipotent matrix U. If we let N = log,(U), we have U = exp,(IN), and so, apply-
ing log, to the equation above, one finds precisely that

PN ' = log, (U’) = log, (exp,(N)?).

Noting that
1 *
N = ;(qN +N%) — %(qN + N,

we see that the centralizers of N and ¢N + ¢*N° coincide. It follows that if (®,N) is a

point of NV (¢), then (¥, N) is another point if and only if W®~! centralizes N if and

only if W~'® centralizes N. Note also that if N* = 0, then the condition on @ is simply

that DN®~! = ¢N, while, if ¢ = 1, then the equation is simply that PN®~' = N.
Consider the projection

N(q)—>N
(®,N) — N

and let NV'(¢); denote the locally closed preimage of N;. We let Z;/N; be the centralizer
of the universal element over ;. Then there is an action of Z; on N (¢); by z- (®,N) =
(2P, N).

Proposition 7.4.14. — The above action makes N'(q); into a Z;-torsor over N..
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Proof. — By Proposition 7.4.10, we may check the proposition after base change
to a suitable étale cover U — N;, over which the universal nilpotent over U is of the form
N~ ! for some g € GSp,(U). Let ®; be any of the explicit choices of ® given above
for N; (for : = 2, take any specialization of either ®, , or ®, ;). Then one readily checks
that (®;, N;) is a point on N '(¢);, and that

(Z)u— (N(Q)i)U
2 (g®ig ! gNg™)

is an isomorphism compatible with the Z;-action. UJ

Corollary 7.4.15. — Fori =0, 1, 2, 3, N'(¢); is smooth over O with fibres equidimensional
of dimension 11. For i # 2, N'(q); is irreducible with nonempty irreducible special fibre, while N'(g),
has two connected components, each of which is irreducible with nonempty irreducible special fibre.

Progf: — The smoothness and dimension are an immediate consequence of Propo-
sitions 7.4.10 and 7.4.14. Moreover, for i # 2, N'(q); — N is flat with irreducible fibres,
and N is irreducible, and hence N (g); is irreducible. The same argument applies to the
special fibre.

Now we explain why N (¢), has two connected components. As we explained in the
proof of Proposition 7.4.10, over Ny we have the rank 2 non-degenerate quadratic space
O}\/Q / ker(N) with quadratic form given by v > ¥ (v, Nv). Over N; we have N* =0, so
the relation ®N = ¢gN® holds on N (¢)s, which implies that ® preserves ker(N) and the

computation
VU (dv, Ndv) = ¢ ' (Pv, PNv) = ¢~ 'v(P)¥ (v, Nv)

shows that ® is an element of the general orthogonal group of this quadratic space.

This general orthogonal group has two components (corresponding to whether the
determinant and multiplier agree or differ by a sign). As a result we may write N (¢); =
N (@)a.. ] [N (9).s where N (g)s., is the locus where @ lies in the identity component and
N ()9, is the locus where @ lies in the nonidentity component. Each of these loci is
in fact nonempty; for example, we can consider points of the form (¥, (o, ), Ny) and
(®y.4(a, B), Ny). As N'(¢)2.. and N (¢)s 5 are unions of connected components, the action
of Z, restricts to an action of the identity component Z3 on each of them, and one casily
checks that they must each be torsors for Z7, and so the same argument as above shows
that AV'(¢)2., and N (g)9,; are irreducible with nonempty irreducible special fibre. U

For the rest of this section, we will continue to use the notation N(g)s, and
N (), for the two connected components of A (¢), as introduced in the proof of Corol-
lary 7.4.15. We also write ./\Tq) . for the Zariski closure of N'(¢);, (N (¢); ) for the Zariski
closure of its special fibre, and so on.
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Proposition 7.4.16. — The irreducible components of N (q) are N'(¢)y. ., N(¢),,, and
N(g); for i = 0,1,3. The irreducible components of the special fibre N'(9)x are (N (¢)2..¥),

N(@a.s¥), and (N (¢)ix) for i = 0,1, 3. Each irreducible component of N'(q) has irreducible
and generically reduced special fibre.

Proof. — N (g) is set theoretically the disjoint union of the five locally closed sub-
schemes N (9)s.., N'(¢)2.5, and N (g); for i = 0, 1, 3, which are each irreducible and of
the same dimension by Corollary 7.4.15. Hence their closures are the irreducible com-
ponents of N'(¢). The same argument applies to the special fibre. L

To prove the last statement it will suffice to prove that for : =0, 1, 2, 3, N (@),
does not contain the generic points of N'(g); ¢ for j # i. Indeed it already follows from
Corollary 7.4.15 that (N (¢)2.,)r does not contain the generic point of N'(¢)s., ¢ and vice
versa; and we also see that the special fibre of each irreducible component of N (g) is
reduced at the generic point of the corresponding component of N (¢).

In order to do this for 1 =0, 1, 2, 3, let N'(¢); C N'(¢) be the reduced closed sub-
scheme consisting of pairs (P, N) such that rank(N) < ¢ and the characteristic poly-
nomial charg(X) is in P;. An easy calculation shows that N (g); C NV (g),, and hence
N(g), € N(g).. (One can either follow the proof of [Thol2, Lem. 3.15], or observe
that we have seen above that it is enough to check that this holds for the points of the
form (z;®;, N;) for our explicit choices of ®; and for z; € Z;.) Thus to conclude the proof,
all we have to do is exhibit a point on each irreducible component of N (¢)g which is only

contained in one of the A/(g).’s. For instance, we may take the following five points:

o (Py(a, B,y),0) for general values of a, B, y € F.
(® (o, B), N)) for general values of o, B € F.
(®y,(a, ¥), Ny) for general values of o, y € F.

(P9 4(c, B), Ny) for general values of o, B € F.
(@3(1), N3). O

For x, y € O* and ¢ a positive integer which is not a multiple of p, we let M (x, y; ¢)
be the closed subscheme of GSp} /O consisting of pairs (®, ¥) satisfying:

e The characteristic polynomial of ¥ is (X — x)(X — »)(X —y H (X —x7).
o OXP ! =37,

We note that the order of x and y doesn’t matter.
There is evidently an isomorphism

M1, 1;9) = N(9
(@, 2) > (D,log,(X)).

We now have the following analogue of [Tay08, Lem. 3.2].
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Proposition 71.4.17. — Let q be a positive integer with ¢ =1 (mod p).

(1) Let M, be the irreducible components of M(1, 1; q) with their reduced subscheme struc-
ture. Then the special fibres M ¥ are distinct, generically reduced and irreducible, and their
reductions are precisely the irreducible components of M(1, 1; q)§.

(2) Suppose that either ¢ # 1 and x, y are non trivial (¢ — 1)st roots of 1 in 1 + AO with
x #yE s or that g =1 and x, y are arbitrary elements of 1 + AO. Then M (x, y; q)*® is
Slat over O.

Proof:

(1) This is an immediate consequence of Proposition 7.4.16 and the isomorphism
M(1, 1; 9) ~ N (g) above.
(2) When ¢ # 1, we observe that, as x, y, ', x~! are distinct (¢ — 1)st roots of unity,

chars(X) = (X = (X =) (X =+ H(X =) )X = D).

Hence, by the Cayley-Hamilton theorem, 27 = X. This implies that there is
an isomorphism M (x, y; ¢) = M(x, y; 1). We are therefore reduced to the case
that ¢ = 1.

To show that M(x, y; 1)™ is flat over O, it suffices to show that each
generic point of its special fibre is the specialization of a point of the generic
fibre. It suffices in turn to show that a Zariski dense set of points of the spe-
cial fibre lift to the generic fibre. Then as x and » reduce to 1, we have
M(x,y; g = M(1, 1; 1)g 22 N (1)g. This isomorphism, combined with the
proof of Proposition 7.4.16, shows that the following five kinds of F-points are
Zariski dense in M(x, p; 1)F (because the corresponding points are dense in

each ./\7\(;)1):

(g@o(er, B, )" 1)

(g®i(a, B)g ", gexp,(Ng™)
(g®o.u(a, )¢ ", gexp,(No)g ™)
(g, (e, B)g ", gexp,(No)g™")
(gPs3(a)g™", gexp,(N3)g™)

where @, B,y € F and g€ GSp4(F). Then letting «, B, 7 € W(F) and g€
GSp,(W(F)) be lifts, we can lift these to W(F) points of M(x, y; 1) of the
following form (recall that we are in the case ¢ =1):

@@, B, 7z, gdiag(x, y, ™', s g™

@®1(@, Bz, gdiag(x, ™", 7" exp,(N1)g™")

@Dy (@, P)g ", gdiag(x, p, ™", ¥ ") expy(Ng)z ™)
(FDy4(@, B)7~", gdiag(A, X(A")~'X) exp,(N)g "), where

X = ((1) (1)), and A is a 2 by 2 matrix with coefficients in W(F)
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0 &
which has trivial reduction, commutes with ( ; g) and has eigen-
: . 0 «
values «, y (for the existence of such a matrix, use that B o has
distinct eigenvalues mod p, and is therefore diagonalizable).
o (Ds(@)g ", gdiag(x, p, =", ¥ ") expy(Ng)g™h). [

Next we have an analogue of [Tay08, Lem. 3.4].

Proposition 7.4.18. — Let ¢ > 1 with g=1 (mod p) and let x, y be non trivial (¢ — 1)st
rools of 1 in 1 + 1O with x # 3. Let R = O pma gy, 1,1 be the complete local ring of M(x, y; q)
at the point (1, 1) of the special fibre. Then Spec R[1/p] is connected.

Progf. — The proof of [Tay08, Lem. 3.4] carries over with minor modifications.
Let gy denote the maximal ideal of R[1/p] corresponding to (P, X;) with P triv-
ial and ¥, the diagonal matrix diag(x,y,x',»™!), and let g be another maximal
ideal, corresponding to a pair (®, X). We need to show that g is in the same con-
nected component as ). One deduces as in [Tay08] that © is in the same connected
component of Spec(R[1/p]) as the maximal ideal corresponding to (E~'®E, E7'ZE)
where E € GSp,(O) is arbitrary. In order to pass to an upper triangular form, we require
the existence of a filtration Fil' of £(g)* such that:

(1) Each Fil' is preserved by ® and X.

(2) The graded pieces gr' are one dimensional and their eigenvalues (in order) are
a, B, yB~", ya~!, which are the generalized eigenvalues of ®.

(3) The orthogonal complement of Fil' is Fil*™".

As in the proof of Proposition 7.4.17, ® and ¥ commute, so we may choose Fil' to be a
common eigenvector of ® and . We define Fil® to be the orthogonal complement of Fil',
and then choose Fil” to be any lift of a common eigenvector of ® and % in Fil* / Fil',
The constructions of paths in [Tay08] from upper triangular to diagonal and be-
tween diagonal matrices (eventually to (P, () and thus connecting g to ) have obvi-
ous symplectic modifications. 0J

7.4.19. Application to deformation rings. — Now let x = (X1, x2) be a pair of contin-
uous characters x; : Oy — O that are trivial mod A, let f?ff be the functor on CNLg
of continuous homomorphisms p : Gy, = GSp,(A) which are trivial mod m, and such
that for o € Ij,, the characteristic polynomial of p (o) is

(X = x1(Artg) (0) (X = xa(Art (0)))
X (X = xa(Art (0)) ™)X = i (Argg, (0) 7).
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As in §7.4, we let DX C f)ff be the subfunctor of p with v o p =&~!. The functors '153}
and DX are representable by rings RX and RX. We also let D, be the functor with D, (A)
parameterizing continuous unramified characters ¥ : Gy, — A* which are trivial mod
my. It is representable by O[[T]] with universal object x"" : Gy, — O[[T]]* given by
X"V (Frob,) =14+T.

For any A € CNLp, then as A is complete and p > 2,

l+my—1+my

te> ¢
is a bijection and we denote its inverse by x > /x. Then we have
Proposition 7.4.20. — There is an isomorphism of functors
DX x D, — DX
(0, Y= p @Y

Consequently there 1s an isomorphism R [[T]] 2~ Rﬁ

Progf. — For the inverse we may take the natural transformation

D — D* x D,

pr>(p®ye-wop) e (op)

The only thing that we need to check is that if p € f)fj (A) then v o p is trivial on Iy, . For
o €1y, (vop(c))? is the constant term of the characteristic polynomial of p (o) which is
1 by definition. But also vo p(0) =1 (mod m,), and hencevop(o)=1asp>2. [

We may now relate these deformation rings to the spaces of matrices considered in
this section.

Proposition 7.4.21. — Let 0 be a chosen topological generator of the tame inertia subgroup of
Gy,. Let x = x, (Artrfv1 (0)) and y = x9 (AlrtF_v1 (0)). Then

.
RY 2 OmMeyign. (.-

Proof. — Since D¢, is trivial, any lifting of it factors through the quotient T, =
Gy, /Py, , where Pg, denotes the maximal pro-prime-to-p subgroup of Iy, (that is, the ker-
nel of any non-trivial homomorphism Iy, — Z,). If ¢ is an arithmetic Frobenius element
in Gy, then the group T, is topologically generated by ¢ and the image of o, subject to
the constraints that o generates a pro-p group, and that po¢ ™' = o%. The result then
follows from the definitions. l
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We can now conclude the proofs of Propositions 7.4.7 and 7.4.8 exactly as

in [Tay08].

Proof of Proposiion 7.4.7. — Combining Propositions 7.4.17 (1) and 7.4.21 with
[Tay08, Lem. 2.7] proves the corresponding result for R!. The result for R} follows from
this and Proposition 7.4.20. ]

Proof of Proposition 7.4.8. — Proposition 7.4.17 implies that (f{x)”d is flat over O.
Proposition 7.4.18 implies that SpeC(RX[l/p]) is connected. On the other hand, by
Lemma 7.4.6, for any closed point x € Spec(R¥[1/p]), the localization (RX [1/p]), 1s reg-
ular and hence a domain. Then the result follows from Propositions 7.4.17 (2) and 7.4.21,
as in the proof of [Tay08, Prop. 3.1]. 0J

7.5. Bug image conditions and vast representations.

7.5.1. Enormous subgroups. — Following [CG18, KT17] (which give the analogous
definition for GL,) we now define the notion of “enormous image,” with some minor
modifications.

Definition 7.5.2. — We say that a subgroup H C GSp, (k) s enormous if it satisfies the
Jollowing conditions:

(E1) H'(H, ad") = 0 for the 10-dimensional representation ad".
(E2) H acts absolutely irreducibly in ils natural representation, in particular, H' (H, ad”) =0.
(E3) For all simple k[H]-submodules W C k ® ad’, there is an element h € H such that

o /€ GSp, (k) has 4 distinct exgenvalues, and
o | u5 an eigenvalue for the action of h on W.

If H only satisfies (E2) and (E3), then we say that H s weakly enormous.

Lemma 7.5.3. — IfH and H' are subgroups of GSp,, (k) with the same image in PGSp, (k),
then H s enormous (resp. weakly enormous) if and only if H' is enormous (resp. weakly enormous).

Proof. — Suppose that P is the projective image of H in PGSp, (k) and Z is the
kernel. Then the action of H on ad’ factors through P. In particular, H’(P, ad’) =
H’(H, ad”), and there is an inflation—restriction sequence

0— H'(P,ad’) - H'(H, ad’) - H'(Z,ad")" =0

Hence all the conditions in the definitions of enormousness and weakly enormousness
depend only on the projective representation. 0J

Note that if H' C H is weakly enormous, then so is H, but if H is enormous, then H
1s not necessarily enormous.
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Remark 7.5.4. — Some “big image” conditions in the literature have the addi-
tional assumption that H has no p-power quotient. In practice, however, that hypothesis
is often only used in a very weak way, namely, to ensure that the image of p restricted
to Gr, coincides with the restriction to GF@#\') for all N > 1. The stronger hypoth-
esis has the unfortunate side effect of ruling out some perfectly fine Galois represen-
tations to which the Taylor-Wiles method applies, most notably, surjective representa-
tions p : Gg — GLy(Fs3) with cyclotomic determinant (exactly the case which arises in
the original work of Wiles!). In order not to rule out some interesting subgroups which
occur for p = 3, we therefore do not assume this hypothesis.

Let p > 3. The cyclotomic character induces a homomorphism:
Gr—Z, ~(Z/pL)" & (1 +pZ,) — (1 +pZ,).

If p 1s unramified in F, then this composite map is surjective. In general, the image con-
tains 1+ p° for some integer 8. In order to address the passage from F(,) to F(,x) in the
Taylor-Wiles argument, we have the following lemma:

Lemma 7.5.5. — Suppose that p > 3. Let
p : Gy — GSp, (k)

be a continuous homomorphism. Then there exists an integer & depending only on ¥ such that the image
of p restricted to GF(CﬁN) us independent of N for N> 148 of p>50r N>2+6 forp=3. If pis
unramified in ¥, then one may take 5 = 1.

Proof. — There is a canonical injective homomorphism
Gal(F(g)/F) > 2/ Z)"

for all N, and we will identify Gal(¥(¢,~) /F) with its image in (Z/ PNZ)* in the below. We
choose § such that for all N, the image contains 1 + 4. In particular, if p is unramified
in F, we can take § = 1.

Let M denote the fixed field of p. There are natural maps as follows:

Gal(M(¢v+1)/F) — Gal(M/F) x Gal(F({+)/F)

Gal(M(¢,x)/F) = Gal(M/F) x Gal(F(Z,x)/F)

where the composites of the horizontal maps with the projections to each factor are sur-
jective. The images of p restricted to F(¢,x) and F(g,x+1) coincide precisely when the left
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hand vertical map has non-trivial kernel (necessarily of order p). We prove this is so under
our assumptions on N.

It suffices to show that the horizontal image of the upper map contains an element
of the form (idys, 1 +mp™) for some m with (m, p) = 1. By the surjectivity onto the second
factor, it contains an element of the form (g, 1 + /). Let m be the \]I:)rime to p order of g,
so that /4 := g" has p-power order. Since p > 2, we have (g, 1 + )" " = (" ", 1 +mp~),
and hence we are done providing the order of £ divides pN°. Yet all p-power elements
of GSp, (k) have order dividing p if p > 5 or order dividing p? if p = 3. (The p-Sylow
subgroup of GSp, (k) consists of unipotent matrices which satisfy (o — 1)* =0, so ot =1
when pf > 4.) O

In anticipation of Lemma 7.5.9 below, we make the following definition:

Definition 7.5.6. — A representation p : Gy — GSp, (k) s vast if one of the following two
conditions holds:

(1) The image of p restricted to Gp(%N) us enormous for all sufficiently large N.
(2) The vmage of p restricted to GF(I,,N) is weakly enormous for all sufficiently large N, and the

Sfixed field L of ad’ P does not contain &,

Remark 7.5.7. — If p is unramified in F, then, in Definition 7.5.6, one may replace
sufficiently large N by N = 3, since, by Lemma 7.5.5, the image in this case does not depend
on N for N > 3.

Remark 7.5.8. — By Lemma 7.5.3, p is vast if and only if any twist of p by a
character is vast.

The following lemma will prove useful for constructing Taylor—-Wiles primes:

Lemma 7.5.9. — Suppose that p > 3. Let p : Gy — GSp, (k) be a continuous representation.
Fix an integer N > 1. Suppose either that:

(1) The fixed field L of ad’ p does not contain g, or

(2) The restriction of p to GF%\I) has enormous tmage.

Then
H'(L(g)/F, ad’ 5(1)) = 0.

In particular, if p s vast, then the conclusion above holds for all sufficiently large N.

Progf. — We first consider the case when ¢, ¢ L. By inflation—restriction, it suffices
to prove that the groups

H'(L(g)/F, ad” (1)),  H'(L(g»)/L(g), ad’ p(1)) D
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both vanish. The group Gal(L(¢,)/L) C Gal(L.(¢,)/F) acts trivially (by conjugation) on
both the group Gal(L(¢,~)/L(¢,)) and the module ad’. However, it acts by non-trivial
scalars on the twist ad’(1) since we are assuming ¢, ¢ L. Hence the second group vanishes
after taking invariants. Applying inflation—restriction now to the first group, it suffices to
prove that the groups

H'(L/F, (ad” p(1)) &My - H(L(g,) /L, ad” p(1)) %10/

both vanish. The second group vanishes because p { [L(¢,) : L]. The first group van-
ishes because ad”p is fixed by Gal(L.(¢,)/L) and thus has no invariants after being
twisted by the mod-p cyclotomic character (which by assumption is a non-trivial char-
acter of Gal(L(¢,)/L)).

Now we consider the second case. Let M denote the splitting field of p, so that M /L.
is a (possibly trivial) cyclic extension of degree prime to p. Inflation—restriction shows that
we have an injection

H' (L(g) /F, ad’ p(1)) <> H' (M(g) /F, ad’ B(1)),

so it suffices to show that the latter group vanishes. By inflation—restriction, it is enough
to show that the cohomology groups

H' (F(¢x)/F, H'(M(gx [F(gx), ad” (1)),
H'(M(¢n) /F(gn), ad’ (1))

both vanish. We are assuming that
H = Gal(M(Z) /F(¢»))
1s enormous. Thus to show that both groups above vanish, it suffices to note that
H(H, ad”) = H'(H,ad’) =0
because H is enormous. UJ

Remark 7.5.10. — The two parts of this proof are essentially standard — in par-
ticular the first part is exactly the same as the proof of Lemma 5.3 of [Pill1].

We will require a weakly enormous (or in practice vast) image assumption in order
to use the Cebotarev density theorem to guarantee the existence of Taylor—Wiles primes.
Similarly, the following condition will allow us to use Cebotarev to arrange for our level
structures to be neat by increasing the level at an auxiliary prime.

Definition 7.5.11. — We say that a subgroup H C GSp, (k) s tidy if there is an h € H
with v(h) # 1, and such that no two eigenvalues of h have ratio v(h) (but the eigenvalues need not be
distinct). We say that a representation p : Gy — GSp, (k) s tidy if it has tidy image.
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Note that the property of tidiness is inherited from subgroups.

Lemma 7.5.12. — Suppose that H C GSp, (k) is absolutely irreducible, and the centre Z.
of H has order at least 3. Then H 1is tidy.

Progf. — By Schur’s lemma, the centre is cyclic and any element in the centre
1s scalar with eigenvalues (¢, ¢, ¢, ¢) for some ¢. It |Z]| > 3, there thus exists such an
element / in the centre with ¢* # 1. Since v(k) = ¢? # 1, and since the ratio of every pair
of eigenvalues is 1 7 v(4), it follows that H 1s tidy. ([l

Lemma 7.5.13. — Let A C GLy(F)) x GLy(F,) be the subgroup of pairs (A, B)
with det(A) = det(B), and consider A as a subgroup of GSp,(F,) via the map of §2.2. If p > 5
and A C H, then H s tidy.

Progf. — The argument is very similar to the proof Lemma 7.5.12. The group A
contains a cyclic subgroup of scalar matrices of order p — 1 > 2. U

Lemma 7.5.14. — If p > 11 and H C GSp, (k) s absolutely irreducible, then cond:-
tions (E1) and (E2) are satisfied.

Proof — This 1s immediate from [Thol2, Thm. A.9]. 0

Lemma 7.5.15. — If p > 3, then H = Sp,(F,) s enormous and G = GSp,(F,) is tid).
Ifp : Gy — GSp,(F,) is a surjective representation with similitude character €', then p is vast and
tidy.

Progf — For all such p, the representation ad’ is absolutely irreducible. Hence for
weak enormity it suffices to note that H contains elements with distinct eigenvalues, and
every such element has at least one eigenvalue 1 on ad”. Thus for enormity it suffices to
check that H' (Sp,(F)), ad”) = 0. For p > 11, this follows from Lemma 7.5.14. For p = 3,
5, and 7, it can be checked directly using magma [BCP97]. (All of the magma code and
output for this paper can be found at the github respository here [BCGP21].)

For tidiness, the centre of G has order p— 1 so the result follows from Lemma 7.5.12
when p > 3. (It also follows from Lemma 7.5.13.) When p = 3, the group GSp,(Fs)
contains an element g of order 20 with v(g) = —1; more precisely, its eigenvalues are of
the form ¢, ¢%,¢%, ¢ for a 20th root of unity ¢, and v(g) = ¢'° = ¢*° = —1. The ratios
of the pairs of eigenvalues are of the form ¢3~!, ¢%7! and ¢*~!, and since none of these
quantities is equal to ¢'" = —1, we are done.

For vastness, note that the image of p restricted to Gy, will be H = Sp, (F,). Since
this group has no quotients of p-power order (indeed PSp,(F,) is simple), the image of
the restriction of p to GF(%N) will also be H for all N. Hence the image of p restricted
to GF(%N) is always H and hence enormous; thus p is vast. UJ
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7.5.16. Representations induced from index two subgroups. — Suppose that G C Sp, (k)
is an absolutely irreducible subgroup such that the underlying representation W be-
comes reducible on an index two subgroup H. Write x for the quadratic charac-
ter x : G = G/H — £ (we assume the characteristic of £ is different from 2). Write
G/H = {1, 0}. Then one may write W|g =V @ V?, and one has the following G-

equivariant decompositions (not necessarily into irreducibles):
WRW=WW"=F®k(x)® Ind§j(ad’(V)) ® As(V) ® As(V) ® x,
ad”(W) = Sym*(W) = Indf;(ad’(V)) ® As(V),
AN (W) =k@ k(x) ®As(V) ® x.

Here As(V) is the Asai representation, which satisfies As(V)|g =V ® V?. These identi-
fications follow from computing what happens over H and noting that W >~>W & x.

Lemma 7.5.17. — Suppose that As(V) and Indﬁ (ad"(V)) are absolutely vrreducible rep-
resentations of G. Suppose that G \ H has an element g of order neither dividing 4 nor divisible by p.
Then G satusfies condition (E3) of enormousness.

Proof. — Let g be an element of G \ H. Since W is induced, the eigenvalues of g
are invariant under multiplication by —1. Since G C Sp, (%), the eigenvalues are invari-
ant under inversion. It follows that the eigenvalues are of the form («, a”l, —a,—a™h)
for some a. If g has order neither dividing 4 nor divisible by p, then o* # 1 and these
eigenvalues are all distinct. To show (E3), it is enough to show that any such element g
has an eigenvalue 1 on both As(V) and Indﬁ(ado(\/)). Let I = (g), and work in the
Grothendieck group of representations of I'. The representation Sym? differs from A2 by
containing the squares of all the eigenvalues. Hence

[Sym?] = [A%] + [a?, a2, a?, a7 7).
Moreover, since x (¢) = —1,

(A =[]+ [—1] 4 [-As(V)].
It follows by counting eigenvalues in W ® W that

(A 1=[11+ [-1]1+[1, -1, —a® —a 7],

[Sym’]=[-1, L&’ e * ]+ [1, -1, % —a’, 0%, —a 7],
from which it follows that

[As(W]=[=1,1,a%, a7,

Indjj(ad’ (V) =[1, —1,a%, —a*, a2, —a 7],

both of which have 1 as an eigenvalue. UJ
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Lemma 7.5.18. — Assume k has characteristic p > 3. Let G be the group SLo(k) 2 Z/2Z =
(SLg (k) x SLo(k)) X Z)2Z, where the semi-direct product swaps the two copres of SLg (k), considered

as a subgroup of Sp,(k) as mn §2.2. Then G s weakly enormous, and is_furthermore enormous if
#Hk# 5.

Proof. — We begin by checking that property (El) holds. Let H = SLy(k) X
SLo(k) = A x B, say, and let V4 and Vg denote the tautological 2-dimensional rep-
resentations of A and B, so that W|g = VA & Vj, and Sme(W)|H =ad’W)|y =
ad’(Vy) ® ad’ (V) @ Vi ® Vi. Since H(G, ad’(W)) = H' (H, ad”(W))%/H, it suffices
to prove that

H'(H, ad’(W)) = H'(A x B, ad’(W)) = 0.
By inflation—restriction, we see that there are exact sequences:
H'(A, ad’(V4)) = H'(A x B,ad"(V4)) = (H'(B, ) @ ad’ (V) =0,
0=H'"(A, (VA® Vp)") > H'(A x B, Vs ® Vp)
— (H'(B, V) ® V4)* =0.

Thus it remains to show that H'(A, ad’(V,)) = 0. But this is the same as showing that
H' (SLy(k), Sym* (k%)) = 0.

This holds for #£ # 5 (which we are assuming) by [DDT97, Lem. 2.48].

Property (E2) is obvious. For property (E3), it suffices by Lemma 7.5.17 to show
that G \ H contains an element g of order not dividing 4 and not divisible by p. Since p* — 1
1s always divisible by 8, there exists a matrix ¢ € A of order exactly 8. The automor-
phism o : A x B— B x A of order 2 identifies A with B, and with respect to this identi-
fication let g = 0 (a, @) = (a, a)o. Then g = (a*, @°) has order 4, so g has order 8 which
does not divide 4 and is not divisible by p, as required. UJ

For p =5 one has the following substitute:

Lemma 7.5.19. — Let H/F be a quadratic extension, and let 7 : Gy — GLy(F5) be a
surjective representation with determinant €. Let p : Gy — GSp, (Fs) be the induction of 7 to T,
and assume that the image of PGy, @5 equal to G = SLy(F5) 2 Z/2Z. Assume furthermore that 5 is
unramified in ¥. Then G := p(Gr.y)) is weakly enormous for all N > 1 and &5 does not lie in the

fixed field of ad” D in particular, o is vast.

Proof. — Since the abelianization of G has order prime to 5, the image of p
over F(&s5) 1s the same as the image over F(¢5v) for any N, and is weakly enormous by
Lemma 7.5.18. Let I" denote the image of p. Since 5 is unramified in I and the similitude
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character of I' is inverse cyclotomic, it follows that the similitude character is surjective
and [I" : G] = 4. In particular, the group I" is the full pre-image of G in GSp,(F,), and is
generated by pairs (A, B) in GLy(F,) with det(A) = det(B) together with an involution
sending (A, B) to (B, A). The fixed field L of ad”p is the fixed field of the projective
representation. But one can now observe directly that the image of I' in PGSp, (F5)
has abelianization (Z/2Z @ Z/2Z), which does not surject onto Gal(F(¢5)/F) = Z/4Z.
So ¢, ¢ L, and p is vast, as required. [

7.5.20. The enormous subgroups of Sp,(F3). — By an exhaustive search, one can
determine precisely which of the subgroups of Sp,(Fs) are enormous. There are 162
conjugacy classes of subgroups, and it turns out that precisely 11 of them are enormous,
of orders 40, 128, 160, 192, 240, 320, 384, 384, 1152, 1920, and 51840 respectively.
Our main interest will be in representations p to GSp,(Fs) which are vast and tidy. In
particular, it is of interest to consider subgroups G of GSp, (Fs;) which are tidy and such
that H = Sp,(Fs5) N G is enormous. Sometimes the tautological 4-dimensional repre-
sentation V of one of these groups G fails to be absolutely irreducible on an index two
subgroup — necessarily this subgroup is not H = G N Sp, (F3) because we are assuming
that H is enormous and hence acts absolutely irreducibly on V. The representation V
underlying G restricted to this index two subgroup either becomes reducible over Fs or
over a non-trivial extension of Fs. In the former case, we say that G is split induced. In
this case, the index two subgroup is necessarily a subgroup of

A = {(A, B) C GLy(F,) x GLy(F,) where det(A) = det(B)}

and G 1s a subgroup of I' := A x Z/2Z where Z/2Z swaps the factors. Hence we may
write the index two subgroup in this case as G N A.
We collect a number of interesting examples in the following lemma.

Lemma 7.5.21. — The following groups G C GSp,(Fs) are tidy, and such that the index
two subgroup H = G N Sp, (Fs3) w5 enormous.

(1) The group G = GSp,(F3).

(2) A group G of order 3840. The projective image has index 27 in PGSp, (F3). It
may be identified as the stabilizer of the natural action of PGSp, (Fs) on the 27
lines of a cubic surface.

(3) Split Inductions. The following subgroups of I' = A x Z/2Z.:

(a) The group G =T of order 2304.

(b) The two groups G of index 3 in I'. They are the two groups of order 768
inside GSp,(Fs3) up to conjugacy, and they are distinguished by their in-
tersections H = G N Sp,(Fs) C SLy(F3) : Z/2Z and H N A C SLy(Fs)*.
Note there is a homomorphism x : SLy(F3) — Ay — Z/3Z. One inter-
section HN A is given by pairs (A, B) with x(A) = x(B), and the other
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by pairs with x (A) = —x (B). Note that these groups are abstractly isomor-
phic (the outer automorphism of SLy(F3) sends x to — ) but not conjugate
inside GSp, (F3).

(4) Other Inductions. A group G of order 480 with projective image S5 x Z/2Z.
There is an isomorphism PSLy (Fq) = Ag, and hence a projective Fy represen-
tation of the subgroup A; C Ag. This 1s not unique — there are two natural
conjugacy classes of A; permuted by the exotic automorphism of Ag. But that
automorphism is induced by Frob; acting on the field of coefficients Fy, so the
choice does not matter. There is a corresponding lift:

As — GLy(Fy)

by a group A5 which is a central extension of As by Z/4Z. The outer au-
tomorphism group of A; is (Z/2Z)?, and there is a unique such outer auto-
morphism which acts by —1 on the centre and by an outer automorphism
on As;. Moreover, this lifts to a genuine automorphism o of As of order 2.
Then G := K5 X (o) C GSp,(F3) has order 480. This is the only enormous
subgroup which both has induced image and is not solvable. Warning: The
group G is not determined up to conjugacy by its order. Indeed, there exists a
second conjugacy class of subgroups G of order 480 with H = G’' N Sp, (F5)
of order 240 such that G’ contains Kg) with index two and such that the corre-
sponding outer automorphism is given by the class of o. The group G’, how-
ever, is not a semi-direct product. The groups G and G’ can be distinguished
as follows: the group PGSp, (F3) has a natural action on 40 points correspond-
ing to the action on P?(Fs3). The orbits of G are of size 20 and 20 respectively
whereas G’ acts transitively.

Proof. — This can be proved using the computer algebra package magma
[BCGP21]. We omit the details. Note, however, that case (3a) was proved in Lemma
7.5.18. O

Lemma 7.5.22. — Suppose that p > 3, that K/ s a quadratic extension such that K s
unramified at p, and that 7 : Gx — GLg(k) restricted to G,y has image SLo(k). Choose o €
Gy \ Gk, and assume that Proj7® % Proj7, but that det?® = det7 is equal to €. Let p :=
Indgi 7: Gy — GSp, (k). If p = 3, assume that the fixed fields corresponding to the kernels of Proj7
and Proj7° are disjoint. Then p s vast and tidy.

Progf. — Note that F is necessarily unramified at p (since K 1s). By Lemmas 7.5.18
and 7.5.19, in order to show that p is vast, it suffices to show that for all N > 1, the image

of p restricted to F({,x) is G = SLy (k) ¢ Z/2Z. First assume that #£ > 3. Then PSLy (k)
is simple. If the image of 7 is disjoint from the image of 7, it would follow by Goursat’s
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Lemma that the image of plgy, is the group SL, (k)*, and hence the image of D¢y, )
’ »
is also SI(k)?, and thus the image of Plc o 1s SLo (k) * Z/2Z. Since the automorphism
”

group of PSLy (%) 1s PGLy (%), it follows that the projective representations associated to 7
and 7° have the same image if and only if they are the same. Since we are assuming
otherwise, we are done unless £ = Fj.

Now assume that £ = F3, and so the images of 7 and 77 restricted to K(¢3) are both
isomorphic to SLy(F3), which is a degree two central extension of Ay. The non-trivial
quotients of SLy(F;) are given by PSLy(Fs5) = A, and Z/3Z. By assumption, the fixed
fields corresponding to the kernels of Proj7 and Proj7’ are disjoint and both have Galois
group Ay. Thus by Goursat’s lemma, the image of p restricted to F(¢3) 1s SLo(F3) :Z/2Z.
This is enormous, by Lemma 7.5.21. The abelianization of this group has order prime
to 3, so the image of p restricted to F(¢3v) is also of this form.

Tidiness follows for p > 5 by Lemma 7.5.13. For p = 3, the image contains an ele-
ment g of order 8 with v(g) = —1 and eigenvalues (¢, —¢ ™', ¢, —¢ ') for a primitive 8th
root of unity ¢. The ratio of any two eigenvalues is either trivial or is a primitive fourth
root of unity. U

Remark 7.5.23. — When p = 3, we may weaken the hypotheses of this lemma
slightly. By Lemma 7.5.21 and Lemma 7.5.5, it suffices that the image of p restricted
to F(&y7) 1s either SLy(F3) 2 Z/2Z or one of the subgroups of SLy(Fs3) 2 Z/2Z of in-
dex three and order 384 considered in Lemma 7.5.21. Unfortunately, the hypothesis
that Proj7 is distinct from Proj7° is not quite enough to force this. For example, it is pos-
sible that the image of p restricted to F(¢3) might be the (unique) subgroup of order 384
in SLy(F3) : Z/27Z with abelianization Z/6Z, and this means it is possible that the image
of p restricted to F(go) is the 2-Sylow subgroup of SLy(F3):Z/2Z of order 128. However,
this latter subgroup is not enormous.

7.5.24. Crossing with dihedral extensions. — The goal of this section is to construct
certain representations induced from quadratic fields K/F which will allow us to prove
modularity results for elliptic curves over K even when K is neither totally real nor CM
(see Theorem 10.1.4). Suppose that I is a totally real field in which p splits completely,
and let K/F be an arbitrary quadratic extension of I in which p is unramified.

Lemma 7.5.25. — There exists a Galois extension H/F containing K such that:

(1) D = Gal(H/F) is the dihedral group of order 8, and Gal(H/K) = (Z/2Z)*.
(2) H/F s the Galots closure over ¥ of a quadratic extension M /K.
(3) H/F s unramified at each v|p, and (Frob,) € D is not central.

Furthermore, H/F may be chosen to be linearly disjoint_from any given fixed finite extension of ¥ linearly
disjoint from K/F.
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Proof. — Let L/F be a second quadratic extension to be chosen later. The obstruc-
tion to constructing a dihedral extension H/F containing K and L as quadratic subfields
with Gal(H/K) =~ Gal(H/L) >~ (Z/2Z)* is the vanishing of the cup product xx U xi,,
where xx, x1, € H'(F,F,) are the quadratic characters corresponding to the fields K
and L. Equivalently, if L. = F(/B) and K = F(/@), it is the condition of requiring
that B € Ng/p(K*); if 8 = N(x + y4/«), then one may take

H=F(/a, VB, x+va).

The extension M = K(y/x + y4/«) will have Galois closure H over F. Suppose B can be
chosen so that every v|p is inert in L, and moreover such that 8 is prime to p. Then H/M
will be unramified at each v|p, and Frob, will be non-central, since the fixed field of the
non-trivial central element is the compositum K.L.

We now construct many such 8. Note that I, >~ Q, by assumption, and we may
assume that « is a v-adic unit for all v|p. Let us consider Nk ,p(K*), which consists of the
non-zero elements of F of the form x* — ay” where x, y € F. The quadratic form

xQ—ayQ—yzQZO mod v

for any y # 0 always has a non-trivial solution with z # 0. Hence, by taking y to be
any quadratic non-residue in F, we may choose x and y modulo v so that X —ay? is
a non-zero quadratic non-residue. Making such a choice for all v|p, we find that g =
x> — ay® is a v-adic unit and a quadratic non-residue modulo v for all v|p. Since p > 2,
the resulting extension L = F(4/B) is thus inert at all primes v|p, giving rise to the desired
extension H/F.

Finally, by taking x and y sufficiently close to 1 and 0 respectively in Oy, for
any finite set of auxiliary primes w, can ensure that H/K splits completely at any such
collection of primes, and hence we may ensure H/F is linearly disjoint from any fixed
finite extension of I which is linearly disjoint from K, as required. O

We may write D as D = (q, b|a* = b* = (ab)* = 1), where [a, b] is the order two
element of the centre of D.

Lemma 7.5.26. — Let7: Gy —> Gl (Fp) be an absolutely irreducible Galots representation
with determinant €. Suppose that, for each v|p, the restriction TGy, takes the shape

Xv *
0 E*lxv—l

Jor some unramified character x,. Let K/F be an arbitrary quadratic extension linearly disjoint from
the fixed field ¥(7) of the kernel of 7, let H/F be any corresponding D-extension as guaranteed by



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 403

Lemma 7.5.25, chosen to be linearly disjoint from ¥(7), and let M/K be a quadratic extension with
Galots closure H/Y. Let p be the following symplectic induction

0= Indgg (Flax ® dmyk),

where Sk 15 the quadratic character corresponding to the extension M /K, and the induction is con-
structed as in $2.2. Let I denote the image of 7, and let G denote the image of p. Then:

(1) D is weight 2 ordinary and p-distinguished with similitude character €.

(2) If'V denotes the underlying representation of G given by 7, and U the 2-dimensional faithful
representation of Gal(H/¥) = D, then p is gwen by V & U. In particular, p is absolutely
urreducible.

(3) If T has a central element of order 2, then the image of p s

G = xD)/(—1=[a, b]).

Otherwise, the image 1s G =T" x D.

Proof. — The restriction of 7 to Gk has determinant €', which is preserved by the
quadratic twist, and hence the induction also has ' as the similitude character. The
induction of dyy/k from Gg to Gy is precisely the representation U of D = Gal(H/F).

By the construction of Lemma 7.5.25, for each place v|p, Frob, € D is not central.
It follows that the restriction of Gal(H/F) acting on U to the decomposition group at v
is of the form ¥ @ x for distinct unramified characters ¢ and x. Then the representa-
tion p|g;, naturally takes the form 7|, ® ¥ @ 7|c,, ® x. This is automatically weight 2
ordinary and p-distinguished.

Finally, the image of p is the image of the map I' x D — GL(V ® U), and the
kernel of this map is given by the elements of the form (z, 2z~ 1) with z central. O

We now show that many of the groups G occurring as the image of representa-
tions p as constructed in Lemma 7.5.26 have big image.

Lemma7.5.27. — Let p > 5, and suppose that we are in the setting of Lemma 7.5.206. Suppose
either that U' = GLo(F,) or that p = 5 and T is the pre-image in GLo(F5) of Sy C S5 = PGLy(F5).
Then G N Sp,(F,) is enormous unless I' = GLy(F,) and p =5, in which case G N Sp,(F,) s
weakly enormous. In any case, p s vast and tidy.

Proof — By Lemma 7.5.26, G acts faithfully on W =V ® U, where V is the tauto-
logical representation of I', and U is the faithful 2-dimensional representation of D, with
image G = (I' x D)/(—1 = [a, b]). We begin by checking condition (E3). Clearly

WeW'=(VeV) e UeU.
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The latter factor is the regular representation of the abelianization of D, and is a di-
rect sum of characters of order dividing 2. The first factor is the direct sum of ad’(V)
with the trivial character. Both the trivial representation and the adjoint representation
of GLy(F,) have the property that 1 is always an eigenvalue of any element. Hence, for
any irreducible summand of W®@ W*, 1 will always be an eigenvalue on an index two sub-
group X C G which is the kernel of one of the degree 2 characters of D. Yet given g € I',
there is an element in ¥ with eigenvalues the roots of g together with the negatives of
the roots of g. Hence it suffices to note that I" N SLy(F,) has an element with eigenval-
ues {o, @'} with @ # o™, (In particular, in the case that p =5 and T is the central
cover of Sy, one could take g to have order 3.)

For I' = GLy(F,), p > 5, since D has order prime to p, (El) reduces to the fact
that H' (SLy(F,), Sme(Fﬁ)) = 0, which is [DDT97, Lem. 2.48]. If p = 5, the group G
is of order 384 = 4%|S,|, and therefore satisfies (E1) automatically because the order is
prime to p.

For the final claim, note firstly that for each N > 1, we have ﬁ(GF@pN)) =GN
Sp,(F,). Indeed this is clear for N = 1 (as the similitude factor of p is ¢ 7!), and since G has
no quotients of order p, the same is true for all N > 1. That p is vast is then an immediate
consequence of the previous claims except in the case when I' = GLy(F;), where G N
Sp, (F5) is not enormous. But in this case, exactly as in the proof of Lemma 7.5.19, the
image of the projective representation factors through PGLy(F5) x (Z/2Z)? which does
not surject onto Z/4Z, and hence the fixed field of the adjoint representation cannot
contain {5 when E is unramified at p = 5. Finally, for tidiness, we note that I" and hence G
contains a centre of order at least p — 1, and we are done by Lemma 7.5.12. 0J

7.6. Taylor—Wiles primes. — We again fix a global deformation problem
S = (ﬁ’ S5 {AU}UES’ 1/’7 {DU}UES)'

Then we define a Taplor—Wiles datum to be a tuple (Q, (&t 1, ..., ¥y 4)yeq) consisting of:

o A finite set of finite places Q) of F, disjoint from S, such that ¢, = 1 mod p for
eachv € Q.

e loreachv e Q,anordering@, |, 0,9, @y 3 = J(Frobv)a;é, Uy = J(Frobv)ﬁ;ll
of the eigenvalues of p(Irob,), which are assumed to be £-rational and pairwise
distinct.

Given a Taylor-Wiles datum (Q, (@y,1, ..., @, 4)veq), we define the augmented global
deformation problem

So =0, SUQ, {A,}res U {Oheqs ¥, {Dyhves U DT} eq)-

Set Ag = l_[veQAU‘ For each v € Q, the fixed ordering «, |, ..., o, 4, determines
a A[Ag]-algebra structure on RgQ for any subset T of S (via the homomorphisms
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O[A,] — RUD defined in §7.4.3). Letting ag = ker(A[Ag] — A) be the augmentation
ideal, the natural surjection RgQ — R has kernel aQRgQ

Lemma 7.6.1. — Assume that p is vast, that p > 3 is unramified in ¥, that ¥ = e~', and
that k contains all of the eigenvalues of all elements of p(Gr(,)). Let ¢ > B (Fs/F, ad" p(1)). Then
Jor every N > 1, there is a choice of Taylor—Wiles datum (Q, (0,1, ..., &y 1)veqy) Salisfying the
Jollowing:

(1) #Qn=1g.

(2) Foreach v € Qy, ¢, = 1 mod p~.

) I, (adB(1) =0.

Proof. — Without loss of generality, we may assume that N > 3, and hence (by the
definition of vastness and Remark 7.5.7) that p(GF(; v) 1s weakly enormous. By defini-
tion, we have

HY, ((ad'p(1) =ker [ ' (Fo/F,ad’5(1) — [ ',y ad’ 5(1)
veQN

By induction, it suffices to show that given any cocycle k representing a nonzero element

of H!

St q(ad0 p(1)), there are infinitely many finite places v of I such that

e v splits in F(¢,v);
e p(Frob,) has 4-distinct eigenvalues @, 1, ..., @y 4 In £;
e the image of ¥ in H'(F,, ad’p(1)) is nonzero.

By Cebotarev, we are reduced to showing that given any cocycle k representing a nonzero
element of H' (Fs/F, ad” p(1)), there is some o € GF({/]I\' ) such that

e p(0) has distinct (k-rational) eigenvalues;
o p.k(c) #0, where p, : ad’p — (ad’ p)7 is the o -equivariant projection.

(The latter condition guarantees that the image of k¥ in H' (F,, ad’p(1)) is not a cobound-
ary.) Let L/F be the fixed field of ad” p. The kernel of the restriction map

H'(Fs/F, ad" (1)) — H' (Fs/L(g), ad”’ p(1))*"
is, by inflation—restriction, isomorphic to
H' (Gal(L(g)/F), ad’ B(1)).

The assumption that p is vast implies by Lemma 7.5.9 that this group vanishes. In
particular, the restriction of « defines a nonzero Gf~(;pN)—equivariant homomorphism

Gal(Fs/L(gn)) — ad’p. Let W be a nonzero irreducible sub—GF(;/N)—representation of
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the £-span of k (Gal(Fs/L(¢,~)). Since ﬁ(GF@ﬁN)) is weakly enormous and £ is sufficiently
large, there exists 0y € Gy ) such that p(oy) has distinct £-rational eigenvalues and such
that W = 0 (this follows from the vastness assumption, in particular, by condition (E3)
of 7.5.2). This implies that x (Gal(Fs/L(¢,~)) is not contained in the kernel of the oy-
equivariant projection p,, : ad’p — (ad’ 0)?. If po,k(00) # 0, then we take o = 0y.
Otherwise, we choose T € GL(%N) such that p,k(7) # 0, and we take o = t0y; since
p(0) =p(0y) and k(0) = k(0y) + k(T), we are done. ]

Definition 7.6.2. — We say that p : Gy — GSp,(F,) is odd if the similitude character r
is odd, 1.e. if for each place v|0o of ¥ with corresponding complex conjugation c,,, we have ¥ (¢,) = —1.

Corollary 7.6.3. — Assume that p is odd, that p is vast, and that k contains all of the
eigenvalues of all elements of p(Gr,). Let ¢ > W' (Fs/F, ad’ p(1)). Then for every N > 1, there is
a choice of Taylor—Wiles datum (Qy, (00,1, . . ., 0y 4)veqy) Salisfying the following:

(1) #Qn=g¢.
(2) Foreach v € Qy, ¢, = 1 mod p~. ‘
(3) There is a local A-algebra surjection RZ’IOC[[XI, o X = Rgo‘\] with g = 2q —

A[F: Q]+ #S— 1.

Proof. — By Proposition 7.2.1 and Theorem 7.6.1, the claim holds with g instead
equal to

#HS— 1 — ZhO(FU, ad’p) + Z K (F,, ad" B (1)).
v|oo veQN

(Note that the assumption that p is vast implies that 4°(Fs/F, ad” p(1)) = 0.) For v € Qx,
by the assumptions that ¢, = 1 mod p and that p|g,, has distinct eigenvalues we have

K(F,,ad’ (1)) = K (F,, ad" p) = 2.

For v|oo we have 4(F,, ad”p) = 4 by the assumption that p is odd. It follows that g =
2¢ —4[F : Q] +#S — 1, as claimed. O

7.7. Global Galois deformation problems. — We now begin to introduce the framework
that we need to carry out our Taylor-Wiles patching argument. As always, F is a totally
real field in which the prime p > 3 splits completely, and we write S, for the set of primes
of I dividing p. Let 0 := Gy — GSp, (k) be an absolutely irreducible representation. We
assume the following hypotheses.

Hypothesis 7.7.1.

(1) The representation p is vast and tidy.
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(2) Ifv €5, then plg,, is p-distinguished weight 2 ordinary.
(3) There is a set of finite places R of F which is disjoint from S,, such that
(a) If v e R, then plg,, is trivial, and ¢, = 1 (mod p). If p = 3 then we further
insist that ¢, = 1 (mod 9).
(b) Ifv ¢S, UR, then p|g,, 1s unramified.

Set ¥ =&, and drop ¥ from our notation for global deformation problems from
now on. Let I C S, be a set of places of cardinality #I. We will eventually need to assume
that #I < 1, although the more formal parts of the patching construction can be carried
out without this assumption, so we do not impose it yet. We write I for S, \ I.

By the Cebotarev density theorem and our assumption that p(Gy) is tidy, we can
find an unramified place vy ¢ RUS, of I with the properties that

e ¢, #1 (mod p),
e no two eigenvalues of p(IFrob,,) have ratio ¢,,, and
e vy has residue characteristic greater than 5.

Then H*(F,,, ad p) = H(F,,, ad p(1))¥ = 0. We set S=R U S, U {v}.

The reason for choosing vy 1s that all liftings of ﬁ|GFU0 are automatically unramified
by Proposition 7.4.2, and our choice of level structure at v, will guarantee that our level
structures will be neat, by Lemma 7.8.3.

For each v € R we choose a pair of characters x, = (Xu.1, Xv.2), where x,; :
Or, — O* are trivial modulo A. (Note that at this stage the characters x,; are al-
lowed to be trivial.) We write x for the tuple (x,),er as well as for the induced character

X = HveR Xv - l_[veR IW(U) — O~

For each place v|p, we fix A,, (and thus 6,) as in §7.3, in the following way: if v € I,
then we take A, = O[[Of (p)]], while if v ¢ I, then we take A, = O[[(Of, (»))*1]. We
write ¢ = {Ev}vesp for a choice of @, or EU at each v € S;.

We have the corresponding global deformation problem

8= (@S (Auihoer U {Auher U O ess,
{DM}yer U (D"} e U{D },ex U (D).

Let (Q, (0,1, ..., @y 1)veq) be a choice of Taylor-Wiles datum. We set Sg =S U Q and
define the associated global deformation problem

o= 0.5, {Avi}oar U {Avolver U (Olesis,»

(DM} yer U D" pere U{D hyer U (DT yesorusy)-

Note that by definition S)I(’TQ does not depend on the choice of ¢, for v € I.
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7.8. Taylor—Wiles systems: initial construction. — In the next two sections, we will con-
struct the Taylor-Wiles systems that we will patch in §7.11, using an abstract patching
criterion explained in §7.10.1. (§7.8 is mainly concerned with the construction of the
Taylor—Wiles systems, whereas §7.9 is mainly concerned with proving the required local—
global compatibility statements for the corresponding Galois representations.)

Since we are only dealing with the cases that #I < 1, we do not need to make
use of the full machinery of patching complexes developed in [CG18, KT'17, GN20J;
rather, we can and do use the notion of “balanced” modules introduced in [CG18, §2],
which we recalled in §2.10. This has the advantage that we do not need to consider
local global compatibility at places dividing p for Galois representations associated to
classes in higher degrees of cohomology, but rather just have to prove the vanishing of the
Euler characteristic of a certain perfect complex, which follows from a calculation of the
cohomology in terms of automorphic forms.

We now make the following hypotheses on a representation p : Gy — GSp, (%),
which include those made in Hypothesis 7.7.1.

Hypothesis 7.8.1.

(I) Fis a totally real field in which the prime p > 3 splits completely; we write S,
for the set of primes of F dividing p.

(2) The representation p is vast and tidy.

(3) For each v € Sy, plg;, is p-distinguished weight 2 ordinary.

(4) There is a set of finite places R of F which is disjoint from S,, such that
(@) If v € R, then plg,, is trivial, and ¢, =1 (mod p). If p =3, then ¢, =1

(mod 9).

(b) If v ¢ S, UR, then moreover p|g;, is unramified.

(5) There is an ordinary cuspidal automorphic representation 7 of GSp,(Ay) of
parallel weight 2 with central character | - |? such that:
@) Py =P.
(b) If v e RUS,, then "™ £ 0.

(©) Ifv ¢ RUS,, then my ) £ 0,

As in §7.7, by the assumption that p(Gy) is tidy we can and do choose an unrami-
fied place vy ¢ R US, with the properties that

e ¢, #1 (mod p),
e no two eigenvalues of p(IFrob,,) have ratio ¢,,, and
e the residue characteristic of vy 1s greater than 5.

Definition 7.8.2. — We define an open compact subgroup K =[], K, of GSp,(Ay ") as
Jollows:

o Ifv¢S,URU {v}, then K, = GSp,(O,).
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o JfveRU{vy}, then K, = Iw;(v).

For any Taylor—Wiles datum (Q, (0,1, ..., 0y 4)veq), we have open compact subgroups K’g(Q),
K (Q) of K given by

o Ifv¢Q, hen Ki(Q), =K (Q), =K.
o IfveQ, thn Ki(Q), = Iw(v), K{(Q), = Iw, (v).

We define the open compact subgroup group Kb(Q, R) as follows:

e Ifv ¢ QUR, then Ki(Q,R), =K.
o Ifve QUR, then K(Q, R), = Tw(v).

Finally, we let K (Q, R) = K/ (Q). (Note that we already have K} (Q), = Tw, (v) for v € R.)

The following lemma (applied with v = vj) guarantees that for any compact open
subgroup K, C GSp, (F,), K,Kf(Q) and K,K/ (Q) are neat.

Lemma 7.8.3. — Suppose that K = [ [, K, C GSp,(AYX) is an open compact subgroup and
that there exists a place v of ¥ such that v is absolutely unramified of residue characteristic greater than 5,
and K, = Iw(v). Then K is neat.

Proof — Suppose that there is an element g, € K, which has an eigenvalue ¢ € T,
which is a root of unity; by the definition of “neat” (see Definition 3.2.1), it is enough
to check that we must have { = 1. Since the reduction modulo v of the characteristic
polynomial of g is (X — 1)*, the v-adic valuation of (1 — ¢) is at least 1/4. On the other
hand, if v has residue characteristic / and ¢ # 1 is a root of unity, then the v-adic valuation
of (1 —¢) is either 0, or is at most 1/(/ — 1), so we are done, as / > 5 by assumption. [

We let

T= @ OIGSp,E))GSp, (O]

v¢S,URU{vp}

be the ring of spherical Hecke operators away from the bad places, and similarly we set

Te= (X)  OIGSp,(F.)// GSp,(Or,)].

V¢S, URU{up}UQ.

We let ™ C T be the maximal ideal corresponding to p (the “an” stands for “anaemic”);
so by definition m containins A, and the polynomials det(X — p(Frob,)) and Q,(X) are
congruent modulo m for each v ¢ S, U R U {1y}, where in a slight abuse of notation,
ifv ¢ S,URU{vy} we write Q,(X) € T[X] for the polynomial

X4 - TU,IX3 + (quv,Q + (q,?: + QU)’--[‘U,O)><2 - quU,OTU,IX + q6T2

v 0,0
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(cf. (2.4.8)). Similarly we write m*2 C T2 for the maximal ideal corresponding to p. For
any choice of I we let

T' = T[{Uy.0, Ukicon1» Uvobvets {Up0, Us s Unahoerd]
and
T2 = TQ[{UU,Ov Uxkiiwy.15 Uv2}ver, {Uv0, Un 1y Uy obver]
and additionally for any choice of ¢ we let m!* C T' be the maximal ideal
(7.8.4) mh = @, {Uvo— 1, Uy — a0y Butves,, {Ukiiw).1 — @ — Butver,
U1 — & loer)
and we let M2 C T2 be the maximal ideal
mhre = (ﬁian’Q, {Upo—1,U, 0 — avlgv}vesp, {Ukiiw),1 — &ty — By vers
{Up1 = Fulver).

Let x = (Xuv.15 Xv.2)ver be any choice of p-power order characters of Iy, for v €
R, and also write yx, for the corresponding characters of T'(k(v)) given by x, o Arty,,
Xv,2 © AI‘th .

Then we consider the Aj-module

ol
ML = RHom(I)\[(MKp, ADe y 12,
and the A{[Ag]-module
ol
M**2 = RHom, (MK’;@’ USVETOR PR
where:

. M;{,f denotes the complex M} defined in Theorem 4.6.1, at tame level K’.

e The localizations m*", m"*2 are defined above.

e The localization M, is with respect to the maximal ideals m, of the subalgebras
O[T(F,)/T(Ox,)1] of the pro-v Iwahori Hecke algebras H,(v) for v € Q as
considered in §2.4.29, so that A e m,, U,y — 1 € m,, and U, and U, , are
respectively congruent to @, , &, &, » modulo f,.

e The subscript x denotes that we take the x-coinvariants for the action
of [ [,cg T(k(v)).

e The subscript | - |* denotes that we are fixing the central character, by taking
coinvariants under T', o — qU_Q forallv ¢S, UR U {v}.

The following lemma motivates our definition using RHom{ (M*®, A), and will be
useful for proving various properties of M**W helow (see also Remark 7.8.7).
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Lemma 7.8.5. — Let A € CNLp, and let M* be a perfect complex of A-modules bounded
below by 0. Set M := RHomQ (M®, A). Then, writing * for the usual duality of finite-dimensional
vector spaces and ™ _for Pontryagin duals, we have

(1) M®, k= H"M* Q% k)*.
(2) For any homomorphism of O-algebras A — E, M @, E. = (H°(M* ®% E))*.
(8) For any homomorphism of O-algebras A — O,

M ®, O = Hom(H (M* ®% E/O), E/O) = H'(M* @% E/O)".

Proof. — Let P* =P’ — P' — ... — P be a bounded complex of finite projec-
tive A-modules which is bounded below by 0 and is quasi-isomorphic to M*. Then, by
definition, we have an exact sequence

Hom, (P!, A) = Hom, (P°, A) - M — 0.

In particular it follows that for any A-algebra R, we have an exact sequence of R-modules
Homg (P' ®, R, R) = Homp (P’ ®, R,R) > M ®, R — 0.

On the other hand, by definition, we have an exact sequence of R-modules
0— H'M ®%“R)—>P'®,R— P'®, R,

and therefore, for a field R = F, an exact sequence

Homp(P' ®, F, F) — Homp(P’ ®, F, F) — Homp(H'(M* ®% F), F)

— 0.

Parts (1) and (2) follow immediately with F = E or I = £. Part (3) follows from
Lemma 7.8.6 below, applied to the morphism P’ ® , O — P! ®, O. 0J

Lemma 7.8.6. — If ¢ : M — N s a morphism of finite free O-modules, and ¢pp;0 =
¢ QE/O isthemap M ® E/O — N QE/O, then the Pontryagin dual ¢y, of Prj0 s the map

¢r,0 : Hom(N, O) - Hom(M, O).

In particular, the Pontryagin dual of ker(¢y,0) is coker(¢y; /(’J)'

Progf: — Because M and N are free, the Pontryagin duals of M ® E/O and N ®
E/O are Hom(M, O) and Hom(N, O) respectively, and the result follows immediately.
O
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Remark 7.8.7. — In [CG18] and [CG20], the patched modules are constructed
by first taking cohomology with coefficients in E/QO and then taking Pontryagin duals.

Lemma 7.8.5 (3) explains how our construction coincides with this in the special case
when A = O.

Definition 7.8.8. — For any 1 C S, aweight is a homomorphism k = Ay — O; by definition,
K corresponds to a tuple (0,1, 0y 2)ves, where 0, ; : Iy, — O is a character with trivial reduction,
and moreover 0,1 = 0, 9 for v € 1. We let p, C Ay denote the kernel of this homomorphism.

We say that k 1is classical if there are integers k, > 1, > 2 such that 0, = e®+)/2=2
00 =02 (50 that ky =1, =2 or p+1 (mod 2(p— 1)), and if v € 1, we must have [, = 2).
If K 1s classical, then we wrile 0* for the automorphic vector bundle corresponding to (ky, l,)ves,, as
in§3.7.

For any 1 we denote by ko the classical algebraic weight where k, = [, = 2 for all v. For 1 =10
we pick some sufficiently regular classical algebraic weight, K.q; for example, we could choose the one
given by the characters 0,y = ™"V and 6, y = eN7D for all v € S,, where N is sufficiently large.

Remark 7.8.9. — In practice we choose k., so that we can apply Theorems 3.10.1
and 6.6.5 in weight k,.,. We will do this without comment from now on.

We will now prove some very important properties of the action of Ag on the
modules that we patch. It will also be important for us to understand the action of the
diamond operators at the places in R (that is, at the places involved in the “Ihara avoid-

ance” argument). We can and do treat the places in () and in R simultaneously; recall,
by Definition 7.8.2, we have the groups K?(Q) and K/ (Q, R) such that

e Ifv ¢ QUR, then Kj(Q, R), = K’ which equals K/ (Q),.
o Ifv € QUR, then K4(Q, R), = Iw(v) which contains K} (Q), = Tw; (v).

In particular, there is an inclusion K4 (Q) € K5(Q, R). In contexts in which we
particularly want to emphasize the fact that K]f (Q) has level structure Iw, (v) at v € R,
we write K/ (Q, R) = K/ (Q).

Let K, be any reasonable level structure at p (for example K, (I)). Let XK,,K{j QR),=
be the Shimura variety of the corresponding level KpKf)(Q R) for a choice X of good
polyhedral cone decomposition. Over the interior YK{,K{’)(QJR) we have forall v e Q UR

a flag of subgroups 0 C H, C L, C HUl C A[v] and all the graded pieces are étale £(v)-
group schemes of rank 1. We now consider the Shimura variety XK;,K’{(Q,R),E for the same
choice of cone decomposition.

Proposition 7.8.10.

(1) Forallve QUR, the groups H,, L,/H,, HUl /Ly and Alv]/ (Hj) extend to finite étale
k(v)-group schemes of rank 1 over XK[;KS QR),z-
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(2) The map XK/JK/{ QR)s XKﬁK{j QR).® is finite étale with group [ |, cQUR T(k()), and
XKﬁle:(QR))E identifies with the torsor of trivializations of the groups H,, L, /H,, Hy /L,
and Alv]/ (HUL), compatible with duality.

Progf. — We observe that when F = Q) this is the content of [Strl5, §2.4.5]. The
argument can be adapted to our setting. The extension problem is local so let us pick
o € X and consider the completion (X g @r).5)s = Spf R of X,k r),x along the
o-stratum. The semi-abelian scheme A over Spf R is obtained by Mumford’s construc-
tion as the quotient of a semi-abelian scheme B of constant toric rank by a finite free
Op-module X,. Let U, < SpecR be the Zariski open complement of the boundary and
let us consider any of the groups H,, L,/H,, HvL /L, or A[v]/ (Hvl). If this group 1s a
subquotient of B[v], then since B exists over all SpecR and B[v] is a finite étale group
scheme, the group extends as a subquotient of B[v]. Otherwise, the group maps isomor-
phically to its image in A[v]/B[v] = X, ®p, £(v) and is constant over U,. Therefore it
extends to the constant group scheme. This proves (1).

/
We may now define a scheme XKpK’{(QR),E —

alizations of the (extended) groups H,, L,/H,, HUL /L, and A[v]/ (Hi), compatible with
duality for all v[p. This scheme is canonically isomorphic to XKﬁK/{(Q,R)’E because the two
schemes are generically equal, and both are normal, and finite flat over Xk, K (QR).E O

XK,]KG QR),x 3 the torsor of trivi-

Proposition 7.8.11.

(1) M*?%Q s g finite fiee Ayl Aql-module.
(2) IfHL=1, then M*"Ris a balanced Ai[ Aq]-module.

Progf. — The complex M'K,f @ (which is the complex M; defined in Theorem 4.6.1
1

for the tame level K/ (Q)) is a perfect complex of Aj-modules of amplitude [0, #1]. We
claim that it is actually a perfect complex of A{[[], cQUR T (k(v))]-modules of amplitude
[0, #I].

The complex M;{’ﬁll(@ is obtained by considering the cohomology over
Xk, k! (@ ki Of the sheaf of Aj-modules €%(—D) and applying the ordinary idem-
potent. Equivalently, it is obtained by considering the cohomology over :{KﬁK{’; @).Kiige) OF
the sheaf of Aj-modules

QU-D)®

( ) OxK},K{')(Q,R).KIi(pOQ) xK/)K/f (Q,R),Kli(p®)

and applying the ordinary idempotent. Using the independence of the cohomology with
respect to choices of toroidal compactifications, we may assume that we are in the setting
of Proposition 7.8.10, so that the morphism :{K,,K/{(Q,R),Kh(pm — :{K,,K{’] (Q.R),Kligee) 18 finite
étale with group HUEQURT(/{(U)). Therefore, it follows (by considering a suitable étale
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covering to compute the cohomology) that M®! s represented by a bounded complex
g P gy, k(@) P Y P

of flat complete A[[], cqur T(k(v))]-modules. We can apply Lemma 4.6.22 (or rather
its straightforward extension to the semi-local situation; see also [Nak84, Prop. 2]) to

conclude that M;{,I © is a perfect complex of Af[[] T(k(v))]-modules of amplitude
1

veQUR
oI x

[0, #I]. It follows that the corresponding complex MK,,(Q)
1

is a perfect complex of A{[Ag]-

modules, also of amplitude [0, #1].

Given an ideal M"*, we can flocalize the complex with respect to the action of a
lift of a suitable idempotent for this ideal in the Hecke algebra, and this localization also
preserves the property of being perfect of the correct amplitude. (The endomorphism
ring at the level of derived categories of a perfect complex of A; modules is a finite A
module. So, if one has a commutative subalgebra, it is a semi-local ring. See the discussion
following [KT17, Lem. 2.12] for a lengthier treatment of such localizations.)

It remains to consider the passage to coinvariants under the centre. To this end,
consider the spaces

YAk 0 oI
M~ = 1{I—IOI’I1AI (MK/’ , AI)fﬁI,?)X ,

M*1Q = RHom, (M;;(Q), AD &I, fig

obtained before taking coinvariants under the centre. The component groups of our
Shimura varieties are indexed by a finite abelian (ray) class group C = F*\A; /U for
some U. The action of ¥y € A} on components is via the class [y]?, and the action of
the central character on our cohomology groups is via | - |* times a character of C.
Let C = C, & C’, where C,, is the p-Sylow subgroup of C. There are always natural
isomorphisms of O[Ag] modules

$117 = M1 90 O[C,
Sirtr o Ml o O[C,

with A acting trivially on the second factor. The reason for such an isomorphism is that,
after localization at a maximal ideal m of the Hecke algebra, the elements of the centre
which act through an element of order prime to p are already determined, because they
are fixed modulo m and the polynomial T — 1 1s separable modulo p if (m, p) = 1.
On the other hand, if we consider only the connected components corresponding to the
subgroup C’, the entire space is canonically isomorphic to |C,| copies of this space, and
moreover, the action of C/C/ = C, on these components is transitive and fixed point
free (this crucially uses that p # 2). Hence working with the | - |? part of the cohomology
is simply equivalent to working with the components indexed by C? instead of C, and
the passage between the cohomology (or complexes) for either of these two spaces (even

before localization) is simply to tensor with O[C,].
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. . K@
of amplitude [0, 0]. By Lemma 2.10.2, to prove part (2), it is enough to prove that the
corresponding perfect complex (of amplitude [0, 1]) has Euler characteristic 0 after lo-

Part (1) follows immediately from these considerations, because M is perfect

calization at M. We can check this modulo any prime ideal of Ay, so the result follows
from Theorem 6.6.5 and Corollary 3.10.5. U

7.9. Taylor—Wiles systems: local-global compatibility. — We write T*¥ for the Ai-
subalgebra of End,,(M*'7) generated by the image of T'. Similarly, we write T*1#Q
for the Aj-subalgebra of End,, (M**:Q) generated by the image of T"2. We remind the
reader that none of these objects depend on the choice of 7, for v € I (but they do depend
on the choice of ?, for v ¢ I). If v € I, then by Hensel’s lemma and our assumption that
@, # B,, we can write

X? — Ukl X+ U, = X —&,)(X — B,)

where &,, ,3~U e T Q are respectively lifts of @, Bv.

If I C T, then there is a natural surjective map A; — Ay, corresponding to the
closed immersion Spec Ay — Spec A; given by 6,1 =6, for all v € I'. Then we have
the following key doubling statement:

Proposition 7.9.1 (Doubling). — For each chowce of ¢, and each 1 C U, there are natural sur-
Jections

4
MY @, Ay — MXTT
and
!
b]X,L?sQ ®AI AI’ — b]X,I 5.Q

which commute with all the Hecke operators away from 1"\ 1. Furthermore, if v € I' \ 1, then these
surjections are equivariant with respect to Uy, o and U, o, and intertwine the actions of Uy, | on the source
and ¢, on the target.

Proof of Proposition 7.9.1. — We give the proof for M*¥ as the argument for
Mx-1%Q i5 identical. By induction, it suffices to consider the case that I' = 1 U {v} for
some v ¢ I. We have a map of complexes

o1 o1
Mg, — Mg,
induced by the restriction map coming from the inclusion

G G
xK,Kli(poo) — xK,KIi(pDC) )
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together with the natural map A; — Ay. This induces a map
MXL? ®a, Ar N MX’I/,?,

and the map that we are seeking is the map o U, —?v o 7. Itis clear that this satisfies all
of the claimed properties except possibly for the surjectivity and the claimed intertwining
of U, and ?,.

To see the intertwining, it is convenient to introduce the module M*-T-7=»2

, whose
definition is
TE=2 _ 0 1 )
MX = RHOHIAI/ (M;(p ®AI AI/, AI/ l’ﬁl’.f’x’l,‘Q ,
that is, it is defined in the same way as M*'1¥| but we are now over the weight space Ay,
rather than Aj, and we localize with respect to the Hecke operator (Uxyiq),1 — (o, + Bo)),
rather than (Uy,).1 —?,). By Lemma 4.5.17, on M 7=02 e have the identity

Uv,l(UKli(v),l - Uv,l) = UU,Q’
or equivalently (writing {e,, B,} = {?,, ?}) the identity
(7.9.2) (U, =) (U, —7,) =0.

We need to show that U, :?v on MXL? ®a, Ar. Now, noting that Mx-L? ®a, Av 13
a subspace of M*!"#=2 (because it is obtained from it by localizing with respect to
(U1 — &), and because (7.9.2) holds on M*!"#=?) we see that (7.9.2) also holds
on M*1? ® A; Ar; since Ugypy, acts via ¢, modulo the maximal ideal of T* L7 it follows
from Hensel’s lemma that U, ; = ¢, on M*'* ®,, Ay, as required.

It only remains to check the surjectivity. By Nakamaya’s lemma, it is enough to
check surjectivity modulo my ,, or equivalently (by Lemma 7.8.5) the injectivity of the

map
e(U"YH' (Xig g 1 @ (D))o 1

(7.9.3) Uy 1=,
e(UHH? (X;;}(;)K,]’I, @ (—=D)) gty

on the special fibre. This follows from Theorem 5.8.6, as in Remark 5.8.7. O

Recall from §7.3 that if v € I, we defined a character 6, : Iy, — A, andif v ¢ I we
defined a pair of characters 6, 1, 0,5 : Iy, — A. We extend all of these characters to Gy,
by sending Artg, (p) = 1. In the following theorem, we allow the Taylor-Wiles datum

(Q, (@15 ..., @y 4)yeq) to be empty.
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Theorem 71.9.4. — There is a unique continuous representation
NRAON LE,
p* L Gy — GSp, (T*1FQ)
which is a deformation of B of type S~ . Such that the induced homomorphism RSI ¢ — TXLQ g
homomorphism of A1l Aq|-algebras, and moreover such that

(1) Ifv ¢S, URU (v} UQ, then det(X — p*'*%(Frob,)) = Q,(X).
(2) Ifvel, then

A, 0, 0 * *

prLEQ 25,00 * *

e =1 0 o alete 0

0 0 0 19 Tg—!
(3) Ifvel, then

)\Um@v,l * * *
X,I,?,QI ~ 0 )»UU,Q/UL,JGU,Q * *
v 0 0 Ao oy Ora€™! *
0 0 0 Aoy Ooe”

Proof. — First we treat the case I = . By Proposition 7.8.11, M*##Q is a finite
free Ay-module, so there is an injection of T”2Lmodules

M TTM 2,

where the product is over all weights k = (ky, [,)yjoo With &k, > l, >4, ky =L, =20r p+ 1
(mod 2(p — 1)). (Note that these points are scheme-theoretically dense in Spec Ay.)
From the definition of M*#**2 TLemma 7.8.5, and Theorem 6.6.5, we have

<) TE)=Xo}oer, -2
)mI .Q 9

1.5.Q _ 0
0@, B)Y = @ H (X

and by Theorem 3.10.1, we have

HO(XY! “>®E~@< SR, o F,

K} (QK,#)’

where in the sum, 7 runs over all the cuspidal automorphic representations of weight
(%, &), with 77, holomorphic for each v|oo, and 7y is the finite part of 7.
Next we observe that for such a m, if the T2 module

e(@)( K 1 (QK,(9) ® E) T(A(U)) Xvbver. |2
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is nonzero, then 7 has central character | - |* and by Proposition 2.4.26, 7 1s ordinary, and
moreover T@ Q acts on it through a character ©, : T2 > E, and the ordinary Hecke
parameters are (0, (U, ), ©,(U, /U, 1)).

We now argue as in the proof of [CHTO08, Prop. 3.4.4]. By Theorem 2.7.2, Propo-
sition 2.4.13, Proposition 2.4.28, Proposition 2.4.30, and Remark 2.4.31, there is a Galois
representation p, , : Gy — GSp,(E) such that

o Ifv ¢S, URU{v}UQ,then p; lc,, is unramified and det(X — p, 1(Frob,)) =
0, (Qy(X)).

o IfvesS,, then

A@y (Uy.1)00,1 * * *
A@s (Uy /Uy 1)00,2 * *

N 1.—-1
prplGr, 0 0 hoh a0 *

0 0 0 rorw, P!
e IfveR, thenforall o €Iy, det(X — p(0)) is equal to
(X = o (At (0)) (X = x0.1 (Arty ! (0)) !
X (X = x0,2(0) (X = o oAty (@) 7).
o Ifv e, then

—-1.,—1 —-1,.,—1
Plor, = Vo1 @ Vo2 @™ Voo BV,

—X . . —
for characters y, ; : Gr, = E  satistying ¥; = Ag, ,. Furthermore T(F,) acts on
(r™™ (”))mal . via the characters y, ; o Arty,.

o9

After conjugation, we may assume that p, , is valued in Oy for some finite exten-
sion K, /E, and since p,, , = 0, we may assume after further conjugation that p,, , =p.
Let A be the subring of k@ @, Oy, consisting of those elements (a, (a;),) € kB P, Ok,
such that for all 7 the reduction of ¢, modulo the maximal ideal of Oy, is equal
to a (where the direct sum is over the infinitely many 7 corresponding to the infinitely
many k). Then A is a local A-algebra with residue field £ (with the A-algebra structure
coming from that on O, given by «). Set

pa =0 ® D pry: G — GSp,(A).

e

There is a natural injection T*?*2 — A (this map is injective because T*?*2 is re-
duced, by a standard argument using Proposition 2.4.26). We can choose (for example,
by ordering the k) a decreasing sequence of ideals I, of A with N,I, = (0) such that each
A/I, is an object of CNL,, and it follows from [GG12, Lem. 7.1.1] that for each n the
representation py @a A/l is ker(GSp,(A/I,) — GSp,(k))-conjugate to a representation

pX 2L Gy — GSp, (TH"F2/ (1, N T*"Q)),
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After possibly conjugating again, we can assume that p; flj’?’Q (mod 1,) = pX "2 and
we set pXFQ = =lim o #+Q By construction this satisfies the required propertles at
places v ¢ S, U Q (in partlcular at the places v € R, the deformation is of the required
type by the deﬁmtlon of RX).

It remains to verify the claimed properties of p***|, for v € S, U Q. Suppose
that v € S,. We claim firstly that it is enough to show that there are elements v, 1, v, 9 €
(T*%52)* guch that

Ay, Gv1 * * *

Vo, 1
0 Ay, oBu0 * *
X,V),?,Q ~ Vy,2
(7'9'5) Y |GF,, - 0 0 )‘\Zl 9]} 218_1 %
0 0 0 alore

Indeed, if this holds, then the equalities v, ; = U, ; and v, » = U, /U, can be checked
after composing with the injection T*#%2 < A where they follow from local-global
compatibility for the oy ,lcy, . Now, (7.9.5) is equivalent to asking that the homomor-
phism RY — T*#%Q corresponding to p* Q. factors through the quotient RE’;L’,
and this can again be checked after composing with the injection T*##Q < A as re-
quired.

Suppose now that v € ), so that we need to check that the morphism RS;',?Q —

T 17 Q45 A -equivariant. By Lemma 7.4.4, there are unique characters y, 1, .02 : Gy, —
(T*"* > lifting Ag, ,, Ag,, respectively such that p*** Qg =y, 1 @ Y0 ® yuoe™' @
Yv.16~ 1. We claim that the action of T(F,) on MxXLEQ g given by y, 1 0 Artg,, V.9 0 Arty,;
this can be checked after composing with the injection T*?*2 < A so it follows from
the analogous result for p, 4|, recalled above. Restricting this claim to T(Op, ) gives the
result.

We are done in the case that I = ). We now prove the result for general I by
induction on #I. Accordingly, assume that the result holds for some I # S,, choose w € I,
and set I' =T1U {w}. By Proposition 7.9.1 we have a natural surjection of Ay-algebras

~ ~
TX,I,?,Q ®A1 AI’ s TX’I ,?,Q’

and we let p%""#Q be the pushforward of p*1*2. Tt follows from the result for T that we
need only check that property (2) holds for v = w. However, we could equally well have
performed the same construction with ?,, replaced with ¥ (the two candidates for p*'#Q
are conjugate by property (1), the Cebotarev density theorem, and [GG12, Lem. 7.1.1]),
so from (3) and the equivariance properties for Hecke operators at w in Proposition 7.9.1,
we see that p* ’I/’?’QIGFw admits both 44,6, and A3 6,, as subcharacters. Since @, # Ew,
the result follows. UJ

As a corollary, we have the following result about Galois representations associated
to automorphic representations of parallel weight 2. As ever, some of the hypotheses in
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this result could be relaxed (in particular, the assumption that p,, , is vast and tidy can
presumably easily be relaxed to irreducibility), but in the interests of brevity we have
contented ourselves with this result, as it is sufficient for our purposes.

Corollary 7.9.6. — Let v be a cuspidal automorphic representation of GSp, (Ay) of parallel
weight 2 with central character | - |*. Fix a prime p > 2, and assume that 7t is ordinary. Then there is
a continuous semisimple representation prp - Gy — GL4(Q,) such that

(1) For each finite place v { p, at which 7w, is unramified, px. )l Gy, is unramified and

dCt(X - pn‘p(FrObu)) = Q.U(X)

Suppose further that p.. , s vast and tdy, and that for each v|p, the ordinary Hecke parameters o, B,
of T, satisfy o, # EU. Then py. ), can be conjugated to be valued in GSp, (Q), and

(2) vopg,=e"

(3) For each finite place v £ p, we have
WD (05 lcp, )" = recgr,,(m, @ lv|9/%)>.

(4) For each place v|p, then
, *
*

v

.
0 0 Ale™!

~1 0
PrplGe, = 0 0 Acle—!
0 ”

Proof. — 'This could be proved by repeating the arguments of [Mok14, §4], using
Theorem 7.9.4 instead of the results of [MT15]. For brevity, we instead explain how to
deduce the result from [Mokl4, Thm. 4.14] and Theorem 7.9.4.

Firstly, if 7 is not of general type in the sense of [Art04], then the existence
of a (unique) semisimple reducible representation o, satisfying (1) is an easy conse-
quence of standard results on Galois representations for GL; and GLj (see the proof
of Lemma 2.9.1), and parts (2)-(4) are then vacuous.

Accordingly, for the remainder of the proof we assume that 7 is of general
type, in which case the existence of a representation p,, satisfying (1) and (3) follows
from [Mokl4, Thm. 4.14], except that this representation is only given to be valued

in GL4@) rather than Gsp4(Q).
—kerﬁmp

Choose a solvable extension of totally real fields I /F, linearly disjoint from F
over I, with the properties that p splits completely in I, and that there is an automorphic
representation IT of GSp,(Ay) of parallel weight 2 and central character | - |?, which is
a base change of 7 (that is, for each finite place w of I, lying over a place v of F, we

have recgr y(I) = recgr () |w,, ), which is holomorphic at all infinite places, and which
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satisfies TI™®) £ 0 for all finite places w of F' (the existence of such an F' and IT follows
from [Mokl14, Prop. 4.13]).

We claim that if pr, admits a symplectic pairing with multiplier £, then so
does pr . Indeed, since pn ) = prlc,, 1s irreducible, it admits at most one perfect pairing

1

with multiplier £~'; while by (1), pr, admits a perfect pairing with multiplier ', which
must therefore also be symplectic. In addition (4) holds for pr, if and only if it holds
for p.,. Replacing F by F' and 7 by I1, we can and do assume that 7" # 0 for all
finite places v of F.

Taking p :=p, ,, we see that Hypothesis 7.8.1 holds, so the required properties
of pr, follow immediately from Theorem 7.9.4, taking I =S,, x =1 and Q = #. (Note
that as in the proof of Theorem 7.9.4, it follows from Theorem 3.10.1 that v contributes
to M!5n79 ) O

We now turn to the final lemmas that we need to prove in order to construct our
Taylor-Wiles systems.

Lemma 7.9.7. — Let A € CNLo, and let f* : C* — D* be a morphism of bounded com-
plexes of mus-adically complete and separated flat A-modules. Supposed that the induced morphism
C* ®% A/m;, — D* Q% A/my is a quasi-isomorphism. Then f* is a quasi-isomorphism.

Progf. — See [Pil20, Prop. 2.2]. 0

Proposition 7.9.8. — The natural map NM*1+2 — MXLT gnduces an isomorphism
(M)(,I,?,Q)AQ%M)(,L?.

Proof. — We follow the proof of [KT17, Lem. 6.25]. We claim that we have natural

isomorphisms

xLEQ ~ x.LE,Q
(7.9.9) M )AQ — MK{;(Q)
and
XvLF’Q. -~ X,I,?
(7.9.10) Mo —M

whose composite is the claimed isomorphism. We begin with (7.9.9). It suffices to show
that we have a natural isomorphism in the derived category

(M"; )l_[vEQ_T(k(U)) NE M.’; )
K (Q) Ky (Q)

As in the proof of Proposition 7.8.11, the complex on the left (before taking invariants)
is a perfect complex of AI[HUEQT(k(v))]-modules. But now the result is immediate
from Proposition 7.8.10, as the map XK],K/f @z XK,,K{j (s 1s finite étale with group

[Toco T*)).
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We now turn to proving (7.9.10). Again, we mostly work on the level of complexes.
We begin by considering the composite
o1 o1 o1

(MK{;(@)ﬁan,Q’ﬁiQ —> (MKg(Q))ﬁian,Q —> (MK/,)ﬁ‘lan,Q.
By Lemma 7.9.7, these maps induce quasi-isomorphism of complexes if the following
maps are isomorphisms

H*(M;{’%(Q) ® F)gna,m — H*(MI{%(Q) ® k)gne — H (M) ® k) ganc.
This follows formally from Lemmas 2.4.36 and 2.4.37, applied at each place in Q, be-
cause, for K = GSp,(Oy,) and K’ = Iw(v), we have the identities of Hecke operators

[KIK[K'1K] = [K : K]
[K'TKI[KIK] = ek = tgsp,0n, )

and we note that [K1K'] is the trace from level K’ to GSp,(Op,) and [K'1K] is the
inclusion from level K to level K’ (recall that since p > 2, [K: K'] = [GSp,(OF,) : Iw(v)]
is not divisible by p).

Finally, consider the natural map

(M) ma — (M)

For our purposes, it suffices to prove that this map becomes an isomorphism after ap-
plying RHom"(—, A). Since this map is a localisation, it suffices to check that it is an
1somorphism modulo the maximal ideal of A; so by Lemma 7.8.5 (1), it is in turn enough
to prove that

H'(M) ® k)gne — H (M) ® £) e

K?

is an isomorphism, or in other words, that m™ is the unique maximal ideal n of T lying
over M2 and in the support of HO(M;{}I ® k). Equivalently, we need to show that the
Hecke eigenvalues away from the primes in Q) (which are prime to the level) determine
the Hecke eigenvalues at Q). This follows from the fact that the Hecke eigenvalues at
primes of good reduction and residue characteristic different from p are determined by
the Galois representation (exactly as in the proof of Theorem 7.9.4, this local-global com-
patibility statement for H” is a consequence of the corresponding local-global compatibil-
ity statement for the Galois representations in Theorem 2.7.2). But the Galois represen-
tation itself is determined from m*2 by the Cebotarev density theorem. Hence n = m™,
as required. U

7.10. An abstract patching criterion. — We have the following slight variant on [CG18,
Prop. 2.3, Prop. 6.6] (although our formulation is also informed by [K'T'17, Prop. 3.1]);
we leave the details of the proof as an exercise for the interested reader.
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Proposition 7.10.1. — Let ly be equal to either O or 1, let A € CNLp, let So :=
Allxi, ..., x,]1 for some ¢ > 1, and set a :=ker(Soo — A). Let Sio D11 DIy D ... bea
decreasing sequence of open ideals of Soo with NxIn = 0. For each N > 1 we set Sy = Soo /In.

Suppose that we are given the following data.

o Objects R, RX of CNLy.

o Objects R', R* of CNL,, an R'-module M, and an R* -module MX, each of which is
Sfimate as a N-module. Furthermore if ly = 0, then they are both free as A-modules, and if
ly =1, then they are balanced A -modules.

o For each integer N > 1, finite Sx-modules My, MY, which are free if ly = 0 and balanced
if ly = 1, together with isomorphisms of Sx-modules My, /a — M ®s,. Sx, ML /a —
MX ®s_ Sx (where the action of Soe on M, MX is via the augmentation So, — A).

o For cach N > 1, objects Ry, R of CNLsy, and maps of Sx-algebras Ry, — R'/Ix,
R{ — R*/Iy and Ry, — Ends, (My), RE — Ends, (MY, such that the two follow-

ing diagrams commute.

Ry Ends, (My)

| l

R'Y/Iy — EndA/IN(Ml ®s.. Sn)

R{ Ends, (M%)

| |

R*/Ix —— Enda i, (M* ®s_, Sn)

o Foreach N > 1, surjections of A-algebras R., — Ry, RX — R{.

We suppose also that we are given the following compatibilities between the data indexed by 1 and the
data indexed by X .

o isomorphisms of A/A-algebras R /A = RX /A, R' /L ZRX /A, and Ry /2 = RE/A,
compatible with the surjections R’ — Ry and RX, — R{.

o An isomorphism of R' /X = RX /A -modules M /1. = MX /.

o For each N > 1, isomorphisms of Sx/r-modules My /A = ML/, compatible with all
actions, and such that the following diagram commutes, where we write | _for the kernel of the
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composite A — S = Soo/In.

ML/(ha) ——= ME/(h,a)
M/ Jx) ——= MY/, Jx)

Then we can find the following data.

o Homomorphisms of A-algebras Soo — RL,, Sec = RX..

o Finite Soo-modules M, MX_, which are free if ly = 0 and balanced if by = 1, together with
isomorphisms M, ®s. A —> M, and MX, ®s., A —> M.

o Commutative diagrams of So-algebras

Rl — > Ends_(M.)

RS

R! —~ End,(M))

RY —— Ends_(MX)

R

RX — End,(M*)

o An isomorphism M./ — MZX_ /%, compatible with the actions of R._ /A —> RX /A,
such that the following diagram commutes.

Mg)o/()‘" a) - Mgo/()" a)

| |

M! /A M” /A

7.11. The patching construction. — We now apply Proposition 7.10.1 to our spaces
of p-adic automorphic forms. We continue to assume that Hypothesis 7.8.1 holds.

Enlarging E if necessary, we can and do assume that E contains a primitive pth
root of unity, and a primitive 9th root of unity if p = 3. By Hypothesis 7.8.1 (4a), for
each v € R we can and do choose a pair of non-trivial characters x, = (Xu.1, Xv.2), with
Xv.i - Op, — O* which are trivial modulo A, and such that x,,; # xf% We will now apply
the constructions of the previous sections, simultaneously using both this choice of x, and
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also the choice x = l. In the former case we will label our objects as we did before, and
in the latter we will replace x by 1.
Let

g=h'(Fs/F,ad’p(1)), g=2¢—4[F:Q]+#S—1,

and set Ay, = Z,Q,q. Let Soo = T[[Ax]], where T is as in §7.1. Viewing Sy, as an aug-
mented A-algebra, we let a denote the augmentation ideal.

For each N > 1, we fix a choice of Taylor-Wiles datum (Qx;, (@1, ..., &y 4)veqy)
as in Corollary 7.6.3. For N = 0, we set Qy = ). For each N > I, we let Ay = A, =
]_[UEQN k(v)*(p)* and fix a surjection A, — Ay. The kernel of this surjection is contained
in (pNZ,)*, since each v € Qy satisfies ¢, = 1 mod p~. We let A be the trivial group,
viewed as a quotient of A,,. We write Sx = T [Ax].

For each N > 0, we set Ry = Rgi; and R{Y =Rg 17~ Note that Ry =RY

and R RI f . Let Rl = RS 11(;(: and RoOLHle = RS, Ik;‘ denote the corresponding

completed tensor product of local deformatlon rings, as in §7 2. By definition we have

R = (@,aR)DB@,cr Ry (@ uerR,)BR,,.
RO = (8, RO @, RYB @RISR},

Vo’

with all completed tensor products being taken over O.

S.1 S.1 :
For any N > 1, we have RSI(;C = RUERee and RSI(;C = RxL8l¢ There are canon-
QN

ical isomorphisms RE7H0¢ /(1) = RXHc/(3) and Ry 17 /(W) ZREMY /(M) for all N > 0.
For each N > 1, R}" and Rf{v’l’? are canonically A[Ay]-algebras and there are canonical
isomorphisms RY" @aay A =R and Rff{l’? Qaan] A = Rg’l’?, which are compatible
with the isomorphisms modulo A.

Fix representatives Psits Pgit of the universal deformations which are identified
modulo A (via the identifications Rs}f /() = RS{,? /(A)). By Lemma 7.1.6, these give

rise to an R'Palgebra structure on Ry""®,7 and an R*M¢_algebra structure on
Rf&’l’?® AT; the canonical isomorphism R!'I7lec /(1) = Rx-L7lec /(1) §s compatible with
these algebra structures and with the canonical isomorphisms Rll\f” /(W) ERY L /(A). We
let RLI and R%' be formal power series rings in g variables over R!I10¢ and Rx-L e
respectively. By Proposition 7.2.1 and Corollary 7.6.3, we can choose local A-algebra
surjections RL — R ®, T and RXY — REY®, T for every N > 0. We can and do
assume that these are compatible with our fixed identifications modulo A, and with the
natural isomorphisms Rll\jl’? aran A = Ré’LF and Rf{v’l’? aran A = Rg’l’?.

Fix a subset I C S, of cardinality #I < 1, and a choice of 7. We now apply Propo-
sition 7.10.1, taking (in the notation established in §7.7):

e A tobe Aj.
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e S., Sy to be as above.
LI 17 1,007 5
e R = RUMRX :=RLM RU=RyY ROG=RI RL =Ry ®,T,RE =
,00,7 %
RET'®AT.
o M': =M Mx =ML ML =MW, T, MY i= MO, T

By Theorem 7.9.4, Proposition 7.9.8 and Proposition 7.8.11, this data satisfies the as-
sumptions of Proposition 7.10.1. Consequently, we have:

e Aj-algebra homomorphisms So, — R and S,, — RX!.

e Finite So,-modules M, M%¥ which are free if #1 = 0 and balanced if #1 = 1,
together with isomorphisms M;l*/a = M"17 Mx-17 /a = M2-LF,

e Morphisms of Sy-algebras R — Ends (M"'7), RX' — Ends (M*1F),
which are compatible with the actions of R', R* on M""!* M-I respectively.

e Isomorphisms

M})’OL?/)\'M})’OL? ~ M())(O,L?/)\’M)O(O,L?, MLL?/)\.MLL? ~ MX,I,?/)\’MX,I,?

compatible with the actions of R /(1) >~ RX /(X)) and RMF /(1) ~ R*M /()
and the above isomorphisms.

We now briefly pause to introduce some notation that will be in force throughout
the rest of §7. We will need to work with O-flat modules M over complete local Noethe-
rian -algebras R which are not necessarily O-flat, but for which we have good control
of R[1/p]. There are various ways that we could do this, but we have found it conve-
nient to reduce to the O-flat case in the following way. For a Noetherian complete local
QO-algebra R we denote by R’ the maximal O-flat quotient of R (i.e. the image of R in
R[1/p], or equivalently the quotient of R by its ideal of p-power torsion). Note that if M
is an R-module that is O-flat then it is naturally an R’-module.

Returning to the situation at hand, by definition, S, is formally smooth over A;
of relative dimension 2¢ + 11#S — 1, and A; is formally smooth over O. By Proposi-
tions 7.3.4, 7.4.7,7.4.8, and 7.4.2, and [BLGHT 11, Lem. 3.3], (RL")" and (RX"")" are
equidimensional of relative dimension g+ 10#S 4 4[F : Q] —#I over A;. By the definition
of g, we conclude that

(7.11.1) dim(R5Y) = dim(R%) = dim S, — #1.

Proposition 7.11.2. — M});)I*? s a maximal Cohen—Macaulay (R})’OL?)/ -module, and M&L?
is a maximal Cohen—Macaulay (Rgél’?)/ -module.

Progf. — These statements have identical proofs, so we give the argument for the
first of them. From (7.11.1), we see that the support of M in Spec Sy, has codimension
at least #I. By [CG18, Lem. 6.2] (applied to a resolution S, — S._ of ML if #I =1
— such a resolution exists, by Lemma 2.10.2 — and to M) itself if #1 = 0), we see
that the codimension is precisely #1, and that M has depth dim S, — #I = dim(R 7Y’
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over Sy. It follows that the depth of M&L? over (R});)L?)’ is at least dim(Ré&I’?)’, so that
ML is maximal Cohen—Macaulay over (RL7)’, as required. ]

7.12. Cycles and modules over products of local deformation rings. — In preparation for
our study of the dimensions of certain spaces of p-adic modular forms in the next sec-
tion, we formalize some arguments which are at the heart of our version of the “Ihara
avoidance” argument of [Tay08]. Following [EG 4], we use the language of cycles on the
special fibres of (completed tensor products of) local deformation rings; our perspective is
also informed by [Shol8].

We recall some notation for cycles and multiplicities from [EG 14, §2]. In particu-
lar, if R is an equidimensional Noetherian local ring of dimension 4 then by a cycle (or a
d-cycle) on Spec R we mean simply a formal Z-linear combination of the generic points
of SpecR. We denote the group of cycles on R by Z¢(R) (or just Z(R), with the un-
derstanding that we will only consider top-dimensional cycles). If M is a finite R-module
then the cycle of M is defined by

Z(M,R) = "leng,(M,) 1

n

where the sum is over the generic points  of SpecR and leng, (M,)) denotes the length
of M, as a R;,-module.

If R is an equidimensional, flat, Noetherian O-algebra of dimension d 4+ 1 and 7
is a generic point of Spec R then we write R” for the quotient of R by the minimal prime
corresponding to 1, and we let 7 = Z(R"7/(1), R/(A)). Then [EG 14, Prop. 2.2.13] states
that if M is a finite R-module which is O-flat, then

Z(M/AM, R/(A)) = leng, (M,) - 7

n

where the sum is over the generic points n of R.

Next we recall several facts about completed tensor products. As in §7.11, if
R € CNLp, we let R’ denote the maximal p-torsion free quotient of R. Let R}, Ry €
CNLo. First we note that the natural map R,®R, — R/, @R; induces an isomorphism
(R,®R,) ~ R’l(/X\)R’Q. (Indeed this follows from the fact that the kernel is p-power torsion
and that R/ ®R/, is O-flat, see [Thol5, Lem. 1.3].)

Now suppose that R; and Ry are O-flat and equidimensional of dimensions d; + 1
and dy + 1 respectively, and further assume that all the irreducible components of SpecR;
and SpecR;/(A) for i = 1, 2 are geometrically irreducible (for instance by enlarging O
if necessary). Write R = R;®Ry; then R is O-flat and equidimensional of dimension
dy + dy + 1. (This, and the other facts recalled in this paragraph, can be read off from
[Thol), Lem 1.4].) Moreover if n; is a generic point of Spec R; for ¢ = 1, 2 then the kernel
of the natural map

R — RI'®RP
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is a minimal prime of R which corresponds to a generic point of Spec R which we denote
by n = (11, n9), and the generic points of SpecR are precisely the (1, 12) as n; ranges
over the generic points of Spec R; for = 1, 2. Similarly if p; C R;/(2) is a minimal prime
fori=1, 2 then

(p1, p2) = ker (R/(A) — Ry /(A p)®Ro/ (A, PQ))

is a minimal prime of R/(1), and every minimal prime of R/(A) has this form. It follows
that there is an isomorphism

ZAR /(M) @ Z2(Ry/ (M) = ZHT2(R/ (1)),
m & na = (01, n2).

According to [EG14, Lem. 2.2.14], if M, is a finite R;-module for : = 1, 2, so that
we may form the R-module M = M, ®oM,, then under the above isomorphism we have

(7.12.1) Z(M, /AM,, R, /(1) ® Z(My/AMy, Ry /(1)) = Z(M/AM, R/(1)).

In particular for a generic point n = (1;,19) of R we have an isomorphism R7 >~
R"®R™ of R-modules and hence, in the notation introduced above, under this isomor-
phism we have 1 =7, ® 1.

We wish to apply this discussion to the rings

Rl = ®UGRR:}» R* = ®UERR5

as well as to R! = R'®R and R* = R*®R, for some auxiliary R € CNLo with the
property that R’ is irreducible. (In applications R! and R* will be RLE and RXM for
some choice of I and #; so R is formally smooth over a completed tensor product of the
deformation rings considered in Proposition 7.3.4, and R’ is indeed irreducible.)

We recall that for each v € R we have R}J /(A) = RX/(A). Passing to p-torsion free
quotients, it is not the case that (R}))’ /() 1is identified with (RX)’/(A), but Propositions
7.4.7 and 7.4.8 imply that at least the underlying topological spaces of Spec(R!)' /(%)
and Spec(R¥)'/()A) coincide with that of SpecR!/(%) = SpecR*/(X), and so in par-
ticular Z((R)Y /() = Z((RX)'/(1)). Passmg to products we obtain identifications
Z(RY/()) = Z(R*)'/(1)) and Z(R)'/ (1)) = Z(R*)'/(W).

Lemma 7.12.2. — Let M" be a finite O ) flat R! -module, and let M* be a finite O-flat
Rx -module, such that M' /AM"' >~ MX /AM* as R! /(D) = Rx /(X)-modules. Then

ZM'/aM, (RYY /(1) = Z(MX /AMX, (R%)' /(1))

under the identification of Z((R"Y /(M) with Z((RX)' /(X)) from above.
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Proof. — As we explained above we have two quotients (R )'/(A) and (RX ) /(A)
of R'/(1) = R*/(1) whose spectra have the same underlylng topological space. Each
generlc point of this space corresponds to minimal prlrnes p! and p* of (RY' /(1) and
(RX) /(X) as well as to a (not necessarily minimal) prime p of R! /(A) = Rx /(A) which is
the preimage of both p! and p*. Then we claim that we have equalities

len gy /gy, (M'/AMD)p1) = leng ), (M'/AM),)
= len((ﬁx),/(k))px ((M*/AMX) )

which exactly gives the statement of the lemma. Both equalities follow from the fact that
if A — B is a surjective map of rings and M 1is a finite length B-module then leny (M) =
leng(M). ]

For the next lemma we need to introduce some more notation. From a tuple
n = (Ny)ver of generic pomts 1y of Spec(R})’ for v € R we obtain a generic point 7
of Spec(R') (resp a generic pomt also denoted 1 of SpeC(R )") and moreover these are
all of the generic points of Spec(R')’ (resp. of Spec(R )"). By Proposition 7.4.7, if , ; and
Ny, are two distinct generic points of Spec(R})’ for some v € R, then the cycles 77, | and
7,0 have disjoint support.

It follows from this and (7.12.1) that if 1, and 7, are two distinct generic points of
Spec(R' (resp. of SpeC(R )’) then the supports of 77, and 7, are disjoint. Finally recall
that by Proposition 7.4.8, for each v € R, Spec(R})" is irreducible. Passing to products,
Spec(R*)" and Spec(RX)’ are irreducible as well. We denote the unique generic point of
either by n*.

As already indicated, in the statement and proof of the following lemma, we freely
identify the generic points of SpeC(R ) and Spec(R')’ (and we also identify the generic
points of Spec(R')'/(A) and Spec(R')' /(1))

Lemma 7.12.3. — Suppose there exists a_finite, O-flat R-module M, and a finite, O-flat
R* module MX, along with an isomorphism M' /A M >~ MX /AM”* ¢ Rl/ ) = Rx / (X)-modules.
Suppose furthermore that M is supported on at least one generic point 1 of SpeC(R ). Then there exist
unique positive integers d, labelled by generic points n = (1) ver of Spec(R") such that

(1) As elements of Z((R')' /(X)) = Z((R*)' /(X)) we have
(7.12.4) =Y dj
n

where the sum s over the generic points 1 of Spec (R
(2) For each generic point n of Spec(R') we have

(7.12.5) len(ﬁl)/n (M:}) = d,; len(ﬁx)zx (Mﬁ).

In particular M" is supported on every generic point of Spec Ry
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Proof. — As explained above, the cycles 77 as n ranges over the generic points of
Spec(R')" have disjoint support. Thus the formula (7.12.4) uniquely determines the inte-
gers d;. Moreover, as the cycle n* is supported on every generic point of Spec(R*)'/ (%),
(7.12.4) also implies that the integers 4, must be positive, if they exist.

Now using [EG 14, Prop. 2.2.13] as recalled above, we have

ZM'/AaMY, (RY (V) = Zlen(ﬁl);} M. -7

n

and
ZOMX [AMF, (RYY' /(1) = lengey, M - 77

and moreover these two cycles coincide by Lemma 7.12.2.

Our hypothesis that M' is supported on some generic point 1 of (RYY implies that
lengy, M}7 > 0. Hence by the above equality of cycles, len(ﬁx);ﬂ M}, > 0. Because the
cycles 7 have disjoint support, we must have that

len(f{l)% (M:])
n len(ﬁx);x (Mi(’)()

is an integer for each generic point 7 of Spec(R')’, and for this choice of a’,’i, the formu-
las (7.12.4) and (7.12.5) hold. O

Remark 7.12.6. — We note that the “multiplicities” ¢, in Lemma 7.12.3 are inde-

pendent of the modules M!' and M* and even of the auxiliary ring R. In the next section
they will be given a local representation-theoretic interpretation (see Proposition 7.13.5
and Remark 7.13.12).

Remark 7.12.7. — In §7.13 we will use Lemma 7.12.3 to compute the dimen-
sions of spaces of p-adic modular forms at Iwahori level. The idea of comparing patched
modules over R and RX!'" goes back to [Tay08]; the key point is that RX[1/p] is
a domain, which guarantees that the support of an appropriate patched module is all
of Spec Rgl’?, and the 1somorphism RCI;OI’? /(A) = Rgl’? /(X)) which allows us to transfer
this information to RL!.

7.13. Multiplicities of patched spaces of p-adic automorphic forms. — We now make use
of our patching constructions to determine the multiplicities of systems of eigenvalues
corresponding to p in spaces of p-adic automorphic forms with #1 < 1.

We begin by introducing some notation and assumptions. We suppose that we have
fixed a representation p : Gy — GSp,(O), which satisfies the following properties. (While
this list of properties may appear to be too restrictive to be useful, we will later use base
change to reduce to this situation.)
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Hypothesis 7.13.1.

(1) Fis a totally real field in which the prime p > 3 splits completely; we write S,
for the set of primes of I dividing p.

(2) vop= el

(3) For each finite place v of F, plg,, 1s pure.

(4) For each v €S, plg;, is p-distinguished weight 2 ordinary, with unit eigenval-
ues o, B, € E.

(5) There is a finite set R of primes of F not dividing p such thatif v ¢ RUS,, then

Plcg, 1s unramified, while if v € R, then:

e ¢, =1 (mod p), and if p = 3 then further ¢, =1 (mod 9).
® plgy, is trivial.
® 0lgg, has only unipotent ramification.

(6) There exists 7 = ®,7, an ordinary cuspidal automorphic representation for
GSp, /F of parallel weight 2 and central character | - |, such that Py =P,
and such that:

e Forallv ¢ RUS,, m, is unramified.
e forallve RUS,, TvW £,
e For each finite place v of F, o [g;, 1s pure.

(7) The representation p is vast and tidy.

Remark 7.13.2. — Note in particular that Hypothesis 7.13.1 implies that Hypoth-
esis 7.8.1 holds for p.

Asin §7.7, it follows from Hypothesis 7.13.1, and in particular from the hypothesis
that p(Gy) is tidy, that:

(8) There exists an absolutely unramified prime vy ¢ S, U R with ¢,, # 1 (mod p)
and residue characteristic greater than 5, such that ,0|GFU0 is unramified, and
o (Frob,,) has (not necessarily distinct) eigenvalues with the property that no
ratio of these eigenvalues is congruent to ¢,, modulo A.

Given a closed point x € Spec R"[1/p] or x € Spec R*7[1/p], we will always
assume that E is large enough to contain the residue field of x, so that in particular x
parameterizes a Galois representation p, : G — GSp,(O). We denote by p, the height
one prime ideal which is the kernel of the corresponding homomorphism R''* — E
or R** — E, and we also use the same symbol p, for the ideals obtained by pulling
back under the homomorphisms R'"1#1°¢ — RLLF — R or under the homomorphisms
RoEC - RXLT — ROV As in §7.4, we say that x (or p, or p,) is smooth if Ry (resp.

Rg;l’?’loc) is a regular local ring (note that this is equivalent to their completions being

re gular) .



432 GEORGE BOXER, FRANK CALEGARI, TOBY GEE, VINCENT PILLONI

For a Galois representation p" : Gy — GSp,(0) giving rise to a point ¥’ on one of
the deformation rings R'"'" or R*M¥ we let p** C T be the corresponding prime ideal.
Explicitly, this is the prime ideal generated by the coefficients of the polynomials Q,,(X) —
det(X — p'(Frob,)) for v ¢ RUS, U {v}. (As before, the “an” stands for “anaemic”.)

For any choice of I and 7, we let pI " C T' denote the prime ideal

(7.13.3) v = (P AUpo— 1, Uy — Ol;ﬂ,c}ves,), {Uxiiwy.1 — Ol; - ﬂ;}uel,
{Uv,l - FU}UEI”),

where, forve S, o) =a, (mod 1), B/ = B, (mod A) and ¢ ela, B} are determined
by the local representations p'|,, asin §7.3.

Definition 7.13.4. — Let KM = [1opy.00 Ko and K = [1opy.00 Ky s where

o K, =1Iw(v) and K|, =Iw, (v) for v e R.
° KUU = K/vo = IW](UO).
o K, =K, =GSp,(Oy,) forvéRU{v).

We now define some spaces of p-adic modular forms. For any I C S, ?, classical
algebraic weight «, and choice of K™ as in Definition 7.13.4, we let

S, i, = @UHDH @S o 0 (=D)ur) ®0 E[{U0 — Lies,
{Upo— C];Q}veR» {Tyo— q;Q}vgéS,,URU{vo}]

We also let

Le — (SL? )nveR Iw(v)/Iwy (v)=y
KPR, (1), x 1, KPIWIK ,(T)

be the subspace with “nebentypus” corresponding to x. By Lemma 7.8.5 (2), we have
1somorphisms

M/ MMDIL/PT 2= (S, g )
M S MEEDL/p] 22 (S g 0y )

In particular, with this notation in place, for a Galois representation p’ : Gy —
GSp,(O) giving rise to a point on one of the deformation rings R""* or R*!'" and of
weight « (i.e. such that the composition A; = R'""" — E or A} - R* — E is k) we
have

M /o MIOL/p) = VM fp MU IL/p] 2 (S g o [BD

(M /p METL/p] = (MU fp MU/ 2 (S BVD
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In order to state our results on the dimensions of eigenspaces of p-adic automorphic
forms, we need to make a further study of the local deformation rings at places v € R.

Proposition 7.13.5. — Let 1, be a generic point of Spec R! for some v € R. The set of
9 € (SpecR ™) (E) such that the L-packet L(p,) contains a generic representation is nonempty, and
the number

dy, = Y dimmg™
)

wel(py

is independent of such a y. More explicitly, the rank n(n,) of the monodromy operator N s generically
constant on Spec R}, and

yn(n,) =0, then d, = 8;
o n(ny) =1, then dy = 4;
fn(n,) =2, then dy = 4;
fn(n,) =3, then d, = 1.

Progf. — 'This can be read off from [RS07b, Tables A.7, A.15] (note that the rank
of the monodromy operator is given in the column of [RS07b, Table A.15] headed “a”;
note also that the unipotent L-packets which contain supercuspidal representations also
contain generic non-supercuspidal representations, namely those of type Va and Xla,
see [RS07c, §1], and [RSO7b, Table A.1]). We see that:

e On the unramified components (those with n(n,) = 0), the L-packets containing
a generic representation are singletons {7} of type I (unramified principal series),
so d,, = 8.

o If n(n,) = 1, the L-packets containing a generic representation are single-
tons {rr} of type Ila, so d,, = 4.

o Ifn(n,) =2, the L-packets containing a generic representation are either single-
tons {m} of type Illa, or pairs {m,, 7;} of respective types VIa and VIb, and in
either case d,, = 4. (Note that the representations of type Va do not contribute,
as they never correspond to residually trivial Galois representations.)

e I'nally, if n(n,) = 3, then the L-packets containing a generic representation are
singletons of type IVa (unramified twists of Steinberg) and d,, = 1. U

We write 77 = (1,)ver for a tuple of generic points 1, of SpecR! for v € R, which
as explained in §7.12 gives rise to a generic point, also denoted 1, of R'"%1°¢ or of RL!7.
We let

dy =[]

veR
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where d,, is as in Proposition 7.13.5. We also let d, = d,, for the generic point i of R!"11o¢
that the local representations of p lie on (this point is unique, as the representations p|c;,
are pure by assumption). Concretely, by Proposition 7.13.5, we have

d,= gRolgR1+R:|

where for : =0, 1, 2, 3, R; C R is the set of primes v € R for which n(p|c;,) = i.
We can now state our main result about p-adic modularity at Iwahori level.

Theorem 7.13.6. — Assume Hypothesis 7.15.1 for p = p,. For any 1 with #1 < 1, and any
choice of ¥, we have

. L7
dlmE S

g KAIWK (1)

[pM7] = 84,

Remark 7.13.7. — 'The reason for the factor of 8 = |W| on the right hand side
is that we are working at Iwahori level at the auxiliary place vy, and not imposing any
conditions on the Hecke operators at this place. It would be possible to impose such
conditions and remove this factor, but we have found it more convenient not to do so
(and 1t makes no difference for our main automorphy lifting theorems).

Before proving the theorem we recall a standard lemma, essentially due indepen-
dently to Diamond and Fujiwara (see e.g. [Di1a97]) which is the key to proving “multiplic-
ity one” (or “multiplicity 84,”) results in characteristic 0 using the Taylor-Wiles method.

Lemma 7.13.8. — Let R be either (R(;L?)/ or (Rgc;l’?)/ﬁ)r some choice of 1 and ¢ and let M
be a maximal Cohen—Macaulay R-module. Let x € Spec R[1/p] be a smooth closed point with residue
Jield E., and let p,, C R be the corresponding prime ideal. Then My, is a_free Ry, -module, and hence if
1 1s the unique generic pownt of R specializing to x, then

dimg, M, = dimg (M/p.M)[1/p].
Progf — The first statement follows from the fact that a maximal Cohen—

Macaulay module over a regular local ring is free, and the second statement is an im-
mediate consequence of this freeness. UJ

We also record the following proposition on “doubling”:

Proposition 7.13.9. — Let p = p,. For any choice of 1 C S,, w € I, K? as in Defini-
tion 7.13.4, and ?, there is an injection
. lU{w}? =TU{w),? 1,? ~1,F
(Uw,1 — ?:u) : SKQ,KﬁKﬁ(Iu{w})[px = SKQ,KPKP(I)[px I
Progf: — This immediately reduces to the corresponding statement with O-

coeflicients, and hence to the injectivity of the map (7.9.3) (with w = v), which we proved
in the course of the proof of Proposition 7.9.1. 0J
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We are now ready to prove Theorem 7.13.6.

Proof of Theorem 7.13.6. — WEe first consider the case that I = ¢J. As M"? is a max-
imal Cohen-Macaulay (R!'*)’-module, it is supported on some irreducible component
of Spec(R""”%)" and hence we may apply Lemma 7.12.3 to the R.**-module M',*** and
the RL?"-module M%?. In particular we conclude that M.,” is supported on every
irreducible component of Spec(R"%7)’.

As Mé&?’? is a finite free Sg,-module, and (R;f’?)red acts faithfully on M;f”? (and
is therefore finite and torsion free over S), the map Spec(RL*%) — SpecS,, is sur-
Jective and generalizing by [Stal3, Tag 080T]. It follows that we may pick some g :
Gr — GSp,(0) whose corresponding point is in the support of Ml’@’?/p,(mng’@’? and
such that p and 0.4 (or their corresponding points x and x,.,) lie on the same component
of RI?%; we write n for the generic point corresponding to this component. Similarly, we
may pick some p7, : Gr = GSp,(O) whose corresponding point x/, is in the support of
MXT i NMEPT,

By Proposition 7.13.11 below, we have

iy (M, ML P = dieng 7 g 011 = 84,

and

dimp(MZ"/p, ME"1/p] = dime SY7 e, [P 1=8.

Xreg

In addition, there are automorphic representations 7, nrxcg of GSp, (Ar) of weight K.,
and central character | - |? such that Prtvegp = Preg and prx , = pE .
Applying Lemma 7.13.8 to p, and p,, (which we may, by our assumptions on p,

and by Theorem 2.7.2 for py,,, together with Lemmas 7.1.3 and 7.3.18), we obtain

dimp (ML /p. ML )[1/p]
= dim e, M = dimp (M /p,, MI)[1/p] = 84,

Si’jw,w 7] = MY /p. MYPH[1/p1,

the theorem is proved for I = /.
Before we go on to the case that #1 = 1, we note that we may also apply Proposi-
tion 7.13.11 and Lemma 7.13.8 to p,x and conclude that
dim

ME = dimp (M2 /p g ME")[1/p] = 8.

(Rx,ﬂ‘?
00,7

)

By another application of Lemma 7.12.3 this implies that d; = d, (where & is as in
Lemma 7.12.3). Following Remark 7.12.6, we will apply this in the case #I = 1 below.
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Now consider the case that #I = 1. We consider the automorphic representation 7
of Hypothesis 7.13.1. By assumption, for all finite places v of F the representation o, ,|cy,
is pure, and therefore determines a unique component of R1,”*, which we denote by 7,.
Arguing as above, we find that d; =4, , (where @) is as in Lemma 7.12.3). Write pL? for

the height one prime ideal determined by p, ,. Then by Proposition 7.13.11 we find that

(7.13.10)  dimg S o [F5]2 84,

Again M!¥ is a maximal Cohen—Macaulay (R';*)’-module and so we may apply Lem-
mas 7.12.3 and 7.13.8 to the RL}*-module M'* and the R%!'*-module M%!'*. We find
that

[ - 1 -
— dimg S, e, [Py ] = = dimp (ML /By MU [1/p]
d, : ’ d,
L. LL?
A dim gy Moo’y
= dlm(RéOIn?X ) M)O(O”I’;X
L 1L?
= ——dimgr My,
Pr.p
[ -
= —— dimp (M /B M /7]
Pr,p
Lo Lf R
=7 dimg, SKQ,KNWK,, o [p,].
Pr.p
It follows from (7.13.10) that
dimg, slij,],pr(D [77] > 84,.
On the other hand by Proposition 7.13.9, we have that
. 1,¢ ~I, . 0,? ol K&
dlmE SKQ,KP'IWKp(I) [pi ?] =< dlmE SKQ’K/I,IW'K/)(Q) [pf ?] - 8dp ’
and so the theorem is proved. 0J

Proposition 7.13.11. — In the notation of the proof of Theorem 7.15.6, we have

. ?,¢ ol R T
dlmE SKreg,K/”IWK/;(M) [pxmg] - 8dp’

: 784 d /BT
dlmE SKrcgﬂKp‘le K, (@), x [‘p X ] - 8,

Xreg

. I,¢ hd B4
dlmE SKZ’Kﬁ,I\VK/)(I) [pﬂ ] = 8dpn.p'
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In addition, there are automorphic representations 7,eq, 7%, of GSp,(Ay) of weight Kyeq and
2 ~ ~
ceniral character | - |* such that pg,., ) = Preg and Prip = Pig-

Proof. — By Theorem 6.6.5 and Theorem 3.10.1, dimg, Sf;;,KNWK,) " [ﬁﬁfﬂi] is equal

to

2 : dimg (77 YK Kr @ (U =% U= B s,

T

where the sum is over all the cuspidal automorphic representations 7 of weight k., such
that 7t has central character | - |?, 7, is holomorphic for all places v|oco, and Prp = Pregs
and we write %, 81 for the lifts of @,, Bv determined by prlcy, . In particular, note
that we can take 7., to be any of the automorphic representations 7 contributing to the
sum.

Since Py is irreducible, such a 7 is of general type in the sense of [Art04]
by Lemma 2.9.1, and therefore corresponds to an essentially self-dual regular alge-
braic cuspidal automorphic representation IT of GL4(Af). By strong multiplicity one
for GL, [JS81], IT is uniquely determined by the condition that pr ) = pree, so by Theo-
rem 2.9.3 we see that we can rewrite the above sum as

Z dim 7 ]_[ Z dim 77

Tty EL(preglGFvU ) veR Ty EL(preg‘GFv )

(note that at all places v ¢ RUS, U {vy}, we are taking the space of hyperspecial invariants
in an unramified representation, which is 1-dimensional; and at the places v € S, the
contribution is 1-dimensional by Propositions 2.4.24 and 2.4.26).

By Proposition 2.4.6, m,, is an irreducible unramified principal series represen-
tation; indeed, by the choice of vy, pﬂ’ﬁ|GFv0 is unramified, and no two eigenvalues
of ,owl(;FU0 (Frob,,) can have ratio ¢,,. It follows from Propositions 2.4.3 and 2.4.4 that

we have dim Trggvl(””) = 8. The claim then follows from Proposition 7.13.5 (which we can
apply, because for each place v € R, pre4lay, 15 pure by Theorem 2.7.2 (4), and therefore
the corresponding Weil-Deligne representation is generic by Lemma 7.1.3, so that the
corresponding L-packet contains a generic representation by Proposition 2.4.22).

The statement for pf, reduces in the same way to the claim that for each place v €
R, we have

> dimmOr =1,

mvelpleglcy,)

which follows from Proposition 2.4.28. Finally, in the case of 87,y ) [By], the result
follows as above, by computing the contribution of the automorphic representation 7 of

Hypothesis 7.13.1 (note that it contributes by Theorem 3.10.1). UJ
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Remark 7.13.12. — 1In the course of the proof of Theorem 7.13.6, we showed that
for the generic point 7 corresponding to p, the quantity d, of Lemma 7.12.3 is equal
to d,. It is presumably possible to go further following [Shol8], and to use our patched
modules to show that for each v € R and each generic point 7, of SpecR], if we write

Z(SpecR}™ /(L) =1,
then

Z(Spec(RN)™ /(W) =Y dy, 7.

M

where d,, is as in Proposition 7.13.5.

8. Etale descent and the main modularity lifting theorem

8.1. Introduction. — Our main goal is to remove the assumption #1 < 1 of Theo-
rem 7.13.6 in order to eventually apply Theorem 6.5.8 with I =S,, and from this con-
clude that we have constructed classical automorphic representations. The starting point
is to consider the spaces of p-adic automorphic forms considered in Theorem 7.13.6 for
both #1 = 1 and #1 = 0. By studying the way in which these spaces are related, we will be
able to (inductively) determine precise linear combinations of such forms which belong
to spaces of p-adic automorphic forms for larger #I. Our argument uses the doubling
results of §5, the analytic continuation results of §6, and étale descent. Finally, we apply
solvable base change to prove our main modularity lifting theorem.

We briefly indicate some of the main features of our argument. As we mentioned
in the introduction, the analytic continuation arguments that we are using here are anal-
ogous to those used for Hilbert modular forms of weight at least two, rather than those
of weight one — in particular, there is no “gluing” of the kind used in [BT99], and we are
simply analytically continuing a single form at a time (using the method of Kassaei se-
ries [Kas06]). This part of the argument is quite standard, although we have to take some
care to show that the regions that we have analytically continued to are large enough. For
this reason, we ignore the issues of analytic continuation in this introduction.

We show that the conclusion of Theorem 7.13.6 holds for all I by induction on #I.
The key step is to go from #I < | to #I < 2; indeed, the general inductive step considers
two places vy, vy dividing p, and essentially ignores the other places above p, so for the
purpose of exposition we assume that S, = {v, vo}. Write «;, B; for e, B,,, 1 =1,2. We
denote the various spaces of forms considered in Theorem 7.13.6 with I =¥ by V,, 4,,
Vi, 005 Vai.pss Vg, (s0 that for example on V,, 4, the eigenvalue of U, ; is &) and the
eigenvalue of U,, | 13 ay). Each of these spaces has dimension d := 8d,,, and considering
the action of U,, ; and U,, ;, we see that these spaces together span a 4d-dimensional
space of p-adic modular forms of Iwahori level.
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We expect that this space contains a d-dimensional subspace of p-adic modular
forms which descend to Klingen level (and are suitably overconvergent in both the v,
and vy directions). The difficulty (even if 4 = 1) is in identifying this subspace; recall that
there is no obvious relationship between the Hecke eigenvalues and Fourier coefficients.
However, we also have the spaces of forms for I = {v;} and I = {v,}, which we denote
by Vo, ast+825 VBi.as+82s Vai+B1.a05 Vai+81,6.» Where for example the forms in V, o,44, have
Klingen level at vy (and are highly overconvergent in the vy direction), and are Uiy, 1-
eigenforms with eigenvalue oy + By. Again, all of these spaces has dimension & by Theo-
rem 7.13.6.

Now, the relations between the Hecke operators at Klingen and Iwahori levels
(more precisely, Lemma 4.5.17) imply that we have a map

(Ul)l,l - ﬁl) : V(xl-‘rﬂl,o@ - Val,ag-

Furthermore, this map is injective by Proposition 7.13.9 (that is, by our main doubling
results), and since the source and target both have dimension , this map is in fact an
isomorphism. Similarly, we have an isomorphism

(le‘l - :31) :Va|+ﬁ|»ﬂ2 - Valsﬂ?

and thus an isomorphism of 24-dimensional spaces

(8'1'1) (le‘l - :31) :Va|+ﬂ1»a2 ®Val+ﬁla52 ;> Val,az @Vm,ﬂz'

By pulling back from Iwahori to Klingen level, we can think of V 4,44, as a d-
dimensional subspace of the target of (8.1.1). The inverse image of this space in the source
of (8.1.1) 1s the d-dimensional space of forms that we are seeking; considered as living on
the right hand side of (8.1.1), it comes from Klingen level at vy, and on the left hand side
of (8.1.1), it comes from Klingen level at v;. We make this precise using an argument with
étale descent.

8.2. Elale descent. — In this section we carry out the argument explained above,
showing that the conclusion of Theorem 7.13.6 holds for all I by induction on #I (in
fact, we show slightly more, keeping track of the overconvergence of our p-adic modular
forms). Recall that by definition for each choice of I, 7 we have

S = H X5 0 @ (D)) ®0 E[{Uy 0 — hes,.

K9, Kp.Ipr 1)) K/z.Ipr {I0°
—2 —2
{Uv,O — 4, Joers {Tv,O — 4, }v¢spuRu{uo}]

The maximal ideal m"* of the Hecke algebra is defined in equation (7.8.4). It con-
tains an ordinary projector. We have given ourselves (see the beginning of §7.13) a Galois
representation p satisfying Hypothesis 7.13.1. We want to prove that it is modular. Asso-
ciated to this representation is a point x on the deformation space of p and an ideal p.’*
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(see equation (7.13.3)) of the Hecke algebra contained in jll’? whose definition we recall
here for convenience. It is the ideal of the Hecke algebra T' given by

Q) OIGSp,(F,)// GSp,(Or,)]

v¢S,URU{up)
X [{Uy,0, Ukiiwy, 1> Up,2}vels {Uv,0, Uy 1, Uy o tver]

which is generated by:

e the coefficients of det(X — p(Frob,)) — Q,(X) for each v ¢ S, UR U {v}, and
L4 {UU,O -1, UU,Q - avﬂv}vespa {UKli(u),l — Oy — ,Bv}vela {Uv,l - ?U}UEI‘> where, for
v €S, a,, B, are determined by p|g,., as in Definition 7.3.1.

Recall that Xéﬁ}vKﬁ @ 18 the analytic adic space over G, associated to ff;fllep(D. By

definition, we have:

Lf
S

e, KAIWK, (T)

[Y] ®; C, = «(UNH (X @ (=D))[p"].

Kp:Iw K/; @

We may also introduce overconvergent versions of these spaces. Recall that we

XGl,mult,T .

defined the dagger space KK, @) 10 (6.5.5) (whose associated rigid analytic space 1s

Gy,I
Kﬁ*I‘“'Kp(I)>'
There 1s a natural anCCthC restriction map:

((UHH (XL o (=D)) — e(UNH Xy ) @ (—=D)).

Kp.IwKﬁ {1 K[l,I\VK[I 1
Let
Le, T _ 1 0 G1,mult, T 20 1,
SKQ,K/)’IWK/;(I) - E(U )H (XKP‘IWK/;(I)’ @ ( D)) m SKQ,K/”IWK[](I) ® C/)

where the intersection is taken inside ¢(U')H" (Xlg,ffiKﬂ O’ w’*(=D)).

Theorem 8.2.1. — Assume that p satisfies Hypothesis 7.13.1. Then for any 1 C S, and choice
of ¢, we have

. 1? Ly g Le,§ ~Ley
dlmE S/(Q,K/]*IWK/,(I) [px ] - dlm(],, SKQ,KP'I“'Kp(I) [px ] - 8dp'

Before proving this theorem, we record the following important corollary.

Corollary 8.2.2. — Suppose that p satisfies Hypothesis 7.13.1. Then p is modular. More
precisely, there is an ordinary automorphic representation 7' of GSp,(Ay) of parallel weight 2 and
central character | - |2, with P p = p, and for every finite place v of ¥ we have

WD(pley, ) ™ Zrecary(m, ® [v| 7).
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Progf. — The existence of 7’ with p, , = p is immediate from Theorem 8.2.1,
taking I = S,, together with Theorem 6.5.8 and Theorem 3.10.1. By Corollary 7.9.6 we
have

WD (play, ) Zrecar, (7, ® [v|7%)*

at all finite places v of I, so we need only prove that the monodromy operators agree at
the places v € R. Since p|g,, is pure by assumption, it follows from Lemma 2.5.1 that it
suffices to prove, in the notation of Section 2.3, that n(p|g,, ) < n(r,).

Now, if 7, 1s any irreducible admissible representation of GSp,(F,), then an exam-
ination of [RS07b, Table A.15] (noting that the column there headed “a” records n(r,))
shows that:

e n(m,) > 1 if and only if (77,)GSP+Or) = ),
e n(m,) > 2 if and only if (77,)CP(Or) = ()P =,
e n(m,) = 3 if and only if (77,)Xi") = (77,)5® = 0.

Suppose that n(p|g;, ) = 1, so that we need to show that (7])O5P1Or) = (), Suppose
for the sake of contradiction that (7r/)%P+(©r) £ 0; then by Hida theory (more precisely,
by Theorem 7.9.4 and its proof), the Galois representation p,/, is a p-adic limit of Ga-
lois representations p, ,, where 7" has regular weight and satisfies (r/")“P+(©r) £ 0. In
particular, by Theorem 2.7.2, n(ox |y, ) = n(s,)) = 0. By the semicontinuity of the rank
of the nilpotent operator N in such a family, it follows that n(p|g;, ) = 0, a contradiction.
We leave the (very similar) arguments in the cases n(p|g;, ) = 2, 3 to the reader. 0J

Proof of Theorem 8.2.1. — We prove this by induction on #I. The result is true
for =¥ and #1 = 1 by Theorem 7.13.6 and Theorem 6.6.4 (ordinary implies over-
convergent if #I < 1). For any I, the restriction map

L7,
S,,T

I,? I? vd B4
KQ,K/"IWK[,(I) [px ] - SKQ,KP’I“'Kp(I) [px ] ®E C[)

1s injective, while by Proposition 7.13.9 (and a simple induction) we see that for any I,

the dimension of S/ [ﬁi’?] is at most 8d,. It therefore suffices to show that

K9, K2 Ipr [0
i’;’gﬁ.wﬁ o [ﬁi*?] has dimension at least 84,. We may assume that #I > 2, and hence we
may write I as a disjoint union J U {v,, vy} for two primes v;|p. We fix the choice of ¢ at
all primes in JUI°.
By the inductive hypothesis applied to J, for each choice of ¢ at v, and v,
. . J.ot
the corresponding eigenspace SKQ’K,,JWK/] 0

eigenspaces by Vi, a, Vg.ass Vai.p> Va.p, (S0 that for example on V,, 4, the eigen-

[ﬁ{f] is 8d,-dimensional, and we denote these

value of U, | is o) and the eigenvalue of U,, ; is o). Considering the action of U, ,
and U,, ;, we see that these spaces span a 4 x 8d, = 32d,-dimensional subspace V of
HO (A% o, @?(=D)).

K/),Iw Kp (D ’
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By the inductive hypothesis applied to J U {v;} and the two possible choices of ¢
at vy (the choice at v; is irrelevant), we see that the eigenspaces S‘I{i,l?ljl’j’l;,(]um}) [f’lU{Ul}’?]
are both 8d,-dimensional, and we denote the corresponding spaces by Vg ig a,
and Vg, 44, 6,- Similarly, the inductive hypothesis applied to JU{v,} yields 84, -dimensional
spaces Va,aytp, and Vi, oy 44,

Recall that our goal is to construct an 8d,-dimensional space of eigenforms
Vai+81,as+p Which are eigenforms for the operators Ukjiy,),1 and Uk, (and for the
Hecke operators at all the other places), and which lie in

H (X @ (=D)).
WK, (X)
We will combine the analytic continuation results of §6 with a descent argument to prove
the existence of the sought-after eigenforms.

We need to introduce some notation in order to be able to describe the adic spaces
we are working with. Recall that XK/J.IWK/7(I) is the analytic space associated to Xgpivk L)
For each v € I, H, refers to the quasi-finite subgroup (of order p over the interior of the
moduli space) related to the Klingen level structure, and for each v € I, L, D H, refers
to the quasi-finite (maximally isotropic rank p? over the interior of the moduli space)
subgroup corresponding to the Iwahori level structure.

For any tuple (e,) € [O, 11" x [0,2]" we defined an analytic adic space
Xrivg, @ ((€y)ves,) which is the open subspace of Xk, 1) where:

(1) If v € I, the degree of the subgroup H,, which takes values in [0, 1], is greater
or equal than 1 — €,.

(2) Ifv € I, the degree of the subgroup L, of rank p?, which takes values in [0, 2],
is greater or equal than 2 — €,. Note that we have deg(L,) = deg(H,) +
deg(L,/H,).

It will be convenient to adopt the following notation in this proof (note that I is
fixed). We write (cf. (6.5.5))

Xmult — XK/},IWKﬁ(I) ((O)vesp) P

mult, __ mult, T R T
X - XK/),IWK o lim XK/"IWKI,(I)((EU)UGSp)’
4 €,—07F

and X™“* for the dagger space

It} . :
A™E = lim XKI’»IWKﬁ(I)((EU)UES/,\{Ul,vQ})a

€,—01

where we take the limit over all primes except v, and vy. It follows that:

Xmult,‘i' — hm Xmult,:lt(evl , Evg)a

€y €0y =07
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and there are maps of locally ringed spaces X™! — Amut? — ymulti By adding the

subscript Iw(v;) (or Iw(vy), or Iw(v, v9)) to Amult) ymult: s ymultt e mean the space

where one has now added an Iwahori level structure at v, (or vy, or v; and vy) to the

relevant space. For i = 1, 2 we write &' = degH,,, 4" = degL,,, whenever these quanti-

ties are defined. We will adorn X™! and X™"* with superscripts indicating the regions

(which will typically strictly contain X™" and A™!"*) where various inequalities hold.
Returning to the spaces we defined above, we have

Vi, 5, C HOADS  0*(=D)),

K IwgK U)a
ul
V?1+?/ %9 C HO(XH;I\EIE (IU {v1})’ a)Q(_D))?
mul p
Vi, i, © HOXGMS ®’(—D)).

KWK, (JUfva))?

mult, ¥, dH>1—e,d§Izl—e,d{“>l,d£“>l
Lemma 8.2.3. — The elements of Vs s, extend to X"

Jor some € > 0. Sumlarly, the elements of Veie, 6 and V?1,?2+?; extend to the spaces
mult,#,d>1—€,d>1,d1 > 1—¢
Iw(v)

mult,#,d>1—€,d>1—¢,db>1

L 2T and X respectively for some € > 0.

Progf. — This follows from Lemma 6.5.18 (taking I there to be J, J U {vy} and
J U {v;} respectively). Note that our forms are ordinary for U, ; for the appropriate w,
and therefore of finite slope for these operators. UJ

By Koecher’s principle, all of our cohomology groups may be replaced by the co-
homology of the corresponding open spaces of “good reduction” Y™t ¢ Amult| ymultt =
AmultE and Ymuitt ¢ xymultt respectively. (Since the sheaf w? is pulled back from the min-
imal compactification, the form of Koecher’s principle we are using is just the following
statement: if X is a normal formal scheme, ) C X is an open formal subscheme whose
complement is codimension > 2, and £/X is a line bundle, then H*(X, £) = H* (), £).
That the boundary in the minimal compactification does indeed have codimension > 2
follows from an analysis of the blowup in the boundary charts.) We now restrict to these
spaces to avoid minor technical issues related to the boundary. In particular we will want
to use that forgetting the level structure induces finite étale maps between our spaces. The
reader will check easily that the forms we construct are indeed cuspidal because they are
obtained by “descent” of cuspidal forms.

For any € > 0 and for ¢ = 1, 2 there is a finite étale map:

H H
ymuhid zl—€dy>1-€ _s Yrultdizl-edlz1-e
Tw(v;) .

There is a corresponding fibre product map (still finite étale):

mult, >lfe d>1-¢ mult, I I>l,€’d5121,€

’ 2 = 71‘5
wa(vl,vg) wa(v

(and similarly for g¢,,).
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We now somewhat abusively also write Vi, 14, o, Instead of ¢; Vi, 14, 4,- We claim
that the action of (U,, ; — B;) induces an isomorphism

(8.2.4) (Uv1,1 - :31) :Va1+/31»0l2 ;> VOél,OQ'

To see this, note that (U,, ; — B,) is injective by Proposition 7.13.9, and both spaces have
the same dimension.

In the same way, we have an isomorphism (U, 1 — o) : Vg 48, a0 RN Vi, ay, SO WE
see that in fact the span of Vi, 1, o, and Uy, 1V, 18, .4, 13 exactly Vy, o, ® Vg, o,. It follows

: It df > 1—e,df1 > 1—€,di>1
from Lemma 8.2.3 that the forms in V, 4, @ Vj, o, extend to yruthdzimed=lmad>

Tw(v1,v9) for

some € > 0.
Set

mult,:]:,del—e,dyzl—e,d%>1

Ue = wa(vl,vQ) .

The map ¢y, restricts to an étale map:

mult,,d>1—€,dl1>1—¢

qvy : Ue > wa(vl)

We claim that for € sufficiently small, the restriction of ¢,, to Uy is surjective. Note that a

pre-image of a point in yx:ff;j?zl_é'dyzl_é (without any condition on dy’) corresponds to
a choice of L. = L,,, which is determined by a line in H*/H C A[v,]/H for H=H,,. We
need to show that deg(L.) > 1 for at least one such L.

Let us first assume that deg(H) = 1. Then we can choose any line C C H*/H
with deg(C) > 0 (such a C exists as HY/H is not étale) and the corresponding L has
deg(L) = deg(H) + deg(C) > 1.

We pass from deg(H) =1 to deg(H) > 1 — ¢ by a continuity argument. The func-

. . . It,%,d7 > 1—e,dll>1— .
tion which sends a rank one point x € y{“wjm ! “2=" {0 the maximum of deg(L)

1s continuous. It follows that for ¢ sufficiently small, we can ensure the existence of a
subgroup L such that deg(L) > 1.
Consider the corresponding descent diagram:

Gug,1 v It di>1—e.dfH>1—
D) mult, §,d;" > 1 e,d2 >1—€

e —
UG X mult,i.d{—lzlfe,d;]zlfe U€ UE ylw(m) °

Tw(v)) qv9.2

Lemma 8.2.5. — Afler possibly further shrinking € > 0, any element of Ve, o,+p, descends to

mult,#,d7>1—¢,df>1—¢

wa(vl)

Proof. — Any element of V, 4,4, tautologically satisfies descent over the (smaller)
mult,#,d7>1—€,db>1,d8 > 1—€,d)> 1

space Vi o) C Uc to

mult, §,d>1—€,dk>1,d > 1—e,d}> 1 mult, §,d>1—¢,dk>1,d > 1—¢

Gv, (ylw(vl,vg) )= Tw(v1)
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since it is (by Lemma 8.2.3) obtained simply by pulling back a form on this space
under ¢,,. Therefore, we deduce that for any element G € Vg, 4,44,, we have that
q:Q,lG = q:Q,QG on

mult,#,d1>1—€,dt>1,d > 1—€,d}>1

wa(m ,09)

mult, §,d1>1—€,d>1,d > 1—€,d}>1
Xl g1z 1—e.dll>1 - yIW(vl,UQ) .
Iw(vy)

The point is now to show that each connected component of

Ue X mult,£,d > 1—,dfT > 1-¢ Ue
Tw(v))

intersects
mult,i,d{{zl—e,d{“> 1,d§21—e,d£‘> 1
yIW(Ul ,02)

mult, §,d1>1—¢,d>1,d > 1—€,d}>1
mull,f]:.d%—lzlfe,(lé{zlfé yIV\"(U] ,‘U‘_))
Tw(vy)

so that we have that ¢, |G = ¢;, ;G on Ue X121 i1 Ue and can perform the
Iw(vy)

descent of G.

It follows from [Poi08, Thm. 2] that after possibly further shrinking €, there is a
surjective map
(8.2.6) mo(Up X T Ug) = m0(Ue X _uesatizi—eatizi—e Ue)-

1 2
Tw(vy) Iw(vy)

We need to see that ¢;, ;G =g¢;, ,G on

Ue x mul, > 1 el =1 Ue.
Iw(vy)

By (8.2.6), it 1s enough to show ¢, ,G = ¢}, ,G on the subspace

UOX

mult,i‘d}—l=d§l=l UO'
Iw(vy)

As discussed above, this identity holds over the region

mult,#,d=d=1,d\>1,dk>1 mult, #,dH=d=1,dl>1,d}>1
wa(vl,vg) X ez dH=db=1 wa(vl,vz)
Tw(vy)

by definition. It therefore suffices to show that this region intersects all connected com-

ponents of Uj x M =dtl 1 U,.
Tw(vy)
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Accordingly, it i3 enough to show that every connected component of

U, x il . aH =gt = Up contains a point which is non-ordinary at v;. Indeed, if such
Iw(vy)

a point had 4" = 1, then we would have deg(H,,) = deg(L,,) = 1, which implies
that deg(L,,/H,,) =0, so L,,/H,, is étale, and the point is ordinary at v, a contra-
diction.

We will prove in Corollary 8.2.9 below that any connected component of either of
the spaces

mult, a7 =d{T=1, mult,,di=df=1,=,,2

=y, 1
wa(vl) ’ ylw(vl)

contains a point which is non-ordinary at v;. Recall that the superscripts =,, 1 and =, 2
respectively mean the rank 1 and the ordinary locus at vs.

=y 1 It,i,dM=d=1,=, 1 =092
Now we observe that the maps U,” — ), ?v]) b * and U," —
mult, ,dl=df=1,=,,2 .,
Vweon) are both finite étale. It follows from Lemma 8.2.7 below that any

=l =2 =yl = 1

connected component of any of the spaces U, , U;”", U, ” x T S O > or
Tw(vy)
=192 =py2 . . . . .
U, ™" X naeaigio, Uy contains a point which is non-ordinary at v,. It finally follows
) =dy
Tw(v)
that any component of U, x il 1, ¢H=dH Uy contains a point which is non-ordinary at vy,
. Tw(vy)

as required. UJ

We can now complete the proof of Theorem 8.2.1. Consider the diagram:

mult,#,d7>1—€,df > 1—¢

yIW(Ul»UQ)

v, mult,,d>1—€,df > 1—¢
wa(vz)

) qvg

H H
ymulhi»dl zl—€dyzl=e mult i > 1—e > 1
Iw(vy)

By Lemma 8.2.5, we have proved that all elements of our spaces Vg, 1p, 4, and

. mult, §,di1>1—¢,dl1>1—€
V14,4, are sections on the whole Yy, ) and that all elements of our spaces

. It,i,dM>1—e,dfl>1—¢
Vay.antpy and Vi, 4,16, are sections on the whole Yy, )" : . We can pull back

. mult, §,dH>1—¢,dl>1—¢
these sections to Yy, ) : :

The isomorphism (8.2.4) and the similar isomorphism (U, 1 — B1) : Vo 18,5 N
V4, g, induce an isomorphism

(le,l - :31) : V011+/31,012 & Vot1+ﬂ1,ﬁ2 ? Vﬂtl,w @ Val,ﬁz’
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and we define Vg 48, a0+p, to be the preimage of Vg, ayip, C Vayao @ Vg, 5, under
this isomorphism. This is an 8d,-dimensional space of eigenforms with the appropri-
ate eigenvalues, so we only need to check that all of the elements of Vi, 14, 4,4, descend
to ymult,i,d{‘z1—e,d;zl—e

Consider an element F of this space. By definition, I has the property that (U, , —

mult, f,dH>1—€,dl1>1—¢ mult, .4 >1—€,dff >1—¢

BF on ywl wy - is pulled back from Yy via ¢;,. Let G =

H .
deg(qu,) "' qu,.+F be the trace of F to Y™+ dizi—ediz1-¢ The form F comes via pullback
from Ymulttdizl=ed=1=¢ if and only if F = ¢,,G- Since the trace map at vy commutes
with Uy, ; (for the usual reasons, ultimately coming down to Serre—Tate theory and the

product structure on the p-divisible group), we deduce (since ¢,, 1s surjective) that (U, ; —
B1)(¢,,G —F) =0, so that F = ¢; G (because (U,, | — B1) is injective) as required. U

We conclude this section with some lemmas that were used above. We first record
the following easy lemma:

Lemma 8.2.77. — If S — T s a finite étale map of adic spaces of finite type over a field, then
the tmage of any connected component of S is a connected component of 'I'.

Proof. — Since S and T are of finite type, they have only finitely many connected
components. In particular the connected components of S and T are precisely the con-
nected subsets of S and T which are both open and closed. Since finite étale morphisms
are both open and closed [Hub96, Lem. 1.4.5, Prop. 1.7.8], the result is immediate. [J

Next we have the following lemma and its corollary:

={vy, 112)1
KAWK,(D),1°

Lemma 8.2.8. — Any connected component of Y contains a pownt in Y

K# IWK (1) 1
=, 1,=0,2

contains a point in YK (K. 1

)2
and any connected component of YKF (D,

Corollary 8.2.9. — Any connected component of either of the spaces

mult’;d —d =1,=y,1 mult, ~,d —d =1,=yy2

wa(vl) wa(v])
contains a point which is non-ordinary at v, .

mult, §,dT=d1=1,=,, 1 e H_H_q _ 1. ., )
Progf. — Themap Yy, *  ° — yrulthdr=d=1.=,1 i finite étale, so it suf-

ymuh,i,d{*=d§=1,=v2 1 ymult,i,dlﬂ=d§=1 ‘=0y2

fices to prove the claims for and

. Also, the map
mult f.dj =dl=1

— Y™ induces an isomorphism of 7y’s, because both spaces have the
same rank one points and any higher rank point admits a generalization to a rank one

point. Thus Y™ == is the tube of Y L= | and Y™ I=»? {5 the tube of Yoo

KAWK,(I), 1 KAIWK,(I),1°

7[)2

Since all these spaces are smooth, the tube of a connected component in Y KK (D, is
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connected for : = 1, 2. But now by Lemma 8.2.8 these components contain points which
have rank one at v; and hence are not ordinary at v;. O

The rest of this section 1s devoted to proving Lemma 8.2.8. This statement is a very
special case of a general expectation that “all possible specializations between EKOR
strata are realized.” Unfortunately, as far as we are aware, this exact statement does not
yet appear in the literature, but we will explain how it can be deduced from what is avail-
able using standard techniques. This will necessitate a small digression into the theory of
stratifications of special fibres of Shimura varieties.

To aid the reader’s understanding, we first recall a general strategy for producing
specializations between strata: first one produces a specialization to a point of a very spe-
cial stratum, and then one uses deformation theory at that special point to “go back up”
to the desired stratum. For achieving the first step, there is also a standard strategy: if one
can show that open strata are (quasi)-affine, while the closures of strata are proper, then
it follows that any component of any stratum must specialize to a point of a zero dimen-
sional stratum. This argument becomes a bit more complicated for non compact Shimura
varieties, where one must study the extension of the stratification to the boundary of the
minimal compactification. In order to use results readily available in the literature, we
will carry out the first step at spherical level, then carry out the second step at Iwahori
level, and finally explain how this implies the result that we want at level K,(I).

First we consider the Ekedahl-Oort stratification at spherical level, see for instance
[VWI3]. Let K, = l_[vl ’ GSp,(Oy,). Then Yxriwg,1 has an Ekedahl-Oort stratification
into 41" strata, according to the four possibilities for each of the finite flat group schemes
Gulp] at geometric points. Let G| | = E[p] for E a supersingular elliptic curve. Then these
four possibilities are:

Ordinary: G, [p] >~ ,u,}f X (Zp/lel,,)2

prank 1: G, [pl = u, x Z,/pZ, x G

Supergeneral: G,,[p] is connected-connected, but not isomorphic to Gf ;.
Superspecial: G, [p] >~ G7 ;.

This stratification refines the p-rank stratification, with the last two cases corresponding
to G,, having p-rank 0. We call a point of Ygswg, superspecial if G, [p] is superspecial
for all w|p. This is the unique zero dimensional stratum.

Lemma 8.2.10. — Let ] C S,. Each irreducible component of Y22 contains a pownt of

KAIWK,, 1
=s,0
KAIWK,,1

Y in its closure.

Proof. — It 1s shown in [Box15, GK19] that the Ekedahl-Oort stratification ex-
tends to a stratification of the minimal compactification of Ygswk, 1, and that each (open)
stratum 1s affine. Moreover the superspecial locus does not intersect the boundary:. It fol-
lows that any component of any Ekedahl-Oort stratum contains a superspecial point in
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its closure. By the explicit description of the Ekedahl-Oort stratification recalled above,

the p-rank strata in the statement of the lemma are also Ekedahl-Oort strata. O

Now we will switch to Iwahori level and consider the Kottwitz—Rapoport strat-
ification, see for instance [NGO02]. Let K;W = l_[vl ) Iw(v). Then YK,],IWK;H and its local

model Mllgil =11, ’ Mll?f(u),l carry a Kottwitz—Rapoport stratification. In fact, there is a
Kottwitz—Rapoport stratification of M, ; and the stratification of ME}?}I is simply the

loc

Iw(v) are indexed by a set Adm(u) of cardinality 13.

This set, as well as the partial ordering given by closure, 1s pictured in [Yu08, p. 1273].
We will use below the following argument, which is a consequence of the theory of

local models. If C is an irreducible component of the Kottwitz—Rapoport stratum labeled

product stratification. The strata of M

by w € Adm(u)¥, then the closure C has a decomposition into strata:

c=]]Cu

w' <w

A priori the strata C,, might be empty, although it is expected that they are always
nonempty. However, the theory of local models implies that if C,, is nonempty, then
so is C,, for any w” satisfying w’ < w” < w.

We will not need to recall in detail the definition of the Kottwitz—Rapoport strat-
ification. We do recall that, as explained in [YuO8], the Kottwitz—Rapoport invariant
determines whether the groups of order p, H,, and L, /H,,, are étale, multiplicative, or
connected-connected (and so in particular the Kottwitz—Rapoport invariant determines
the p-rank of G, a theorem of Genestier—Ng6). Conversely these invariants determine
the Kottwitz—Rapoport invariant when the p-rank of G, is not 0. All of this is recorded
in the table in [Yu08, p. 1276].

We will use the following points:

e There is a Kottwitz—Rapoport condition, sys157 in [YuO8], which corresponds
to the condition that G,, is ordinary and L,, = G[F] (equivalently L,, is multi-
plicative).

e There is a Kottwitz—Rapoport condition, s;5,7 in [Yu08], which corresponds to
the condition that G,, has p-rank 1, H,, is multiplicative, and L,, = G[F] (equiv-
alently H,, 1s multiplicative and L,,/H,, is connected-connected).

e There are three Kottwitz—Rapoport conditions, 7, 5,7, and 5,7 in [Yu08], which
have p-rank 0 and are in the closure of the first stratum recalled above. We
observe crucially that they are also all in the closure of the second stratum re-
called above. We refer to these three strata as the canonical p-rank 0 Kottwitz—
Rapoport strata (here “canonical” refers to the fact that L, = G,[F] is the
canonical subgroup of G,).
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=jc2,=y1,m—can

ForJ C Sp we write Y /)I\sK{Iw 1

is ordinary and L,, = G, [F], while for w € ], G,, has p-rank 1, H,, is multiplicative, and
» = Gy [F]. By what we have just recalled, this is a Kottwitz—Rapoport stratum.

for the locus in Yk | where for w € J, Gu

=y 2,=y1,m—can

g | contains a

Lemma 8.2.11. — For ] € J' € S, any irreducible component of Y .

=yl 1,m—can

12, .
pownt of Y o wn ts closure.

Ko Iw KI\\ 1

Proof. — Letm : YK,;,IWK}:V,1 — Ygswvg,,1 be the projection from Iwahori to spherical
:JrQ,ZJ 1,m—can
Kb IwKIw 1

the fibres correspond to the p+ 1 choices of H,, for w € J°).

level. It is proper, and the Kottwitszapoport stratum Y maps finitely onto

the p-rank stratum YKp I“K 1 (

2,1, ) . .

If C is an irreducible component of Y ih\ K{ '1" “ , then 77 (C) 1s an irreducible component
—12,=1 — ) . C

of YKi“WKi 1 By Lemma 8.2.10, the closure 7 (C) contains a point which is p-rank 0 for

all w € S,. By the properness of 7 it follows that the closure C contains a point which is
p-rank O for all w € S,,.

By what we have shown, in the closure C, at least one of the canonical p-rank 0
Kottwitz—Rapoport strata is nonempty. Now we apply the argument with local models
and the explicit description of the closure relations between the strata recalled above to
conclude. U

Remark 8.2.12. — One could give a more direct proof of Lemma 8.2.11, avoiding
the consideration of the Ekedahl-Oort stratification and the superspecial locus at spheri-
cal level, if one knew that the Kottwitz—Rapoport stratification of YK,;,IWKZIJW extended to a
stratification of the minimal compactification, for which the (open) strata are quasi-affine.
However we lack a reference for these facts.

Proof of Lemma 8.2.8. — Let 7 : YKp,le}I)\»'J — Ygowg,m,1 be the projection from
Iwahori to K,(I) level. On Yrovg,@.1, 7 has a “canonical section” s : Yk, —>
YKp.IwK;W,], defined by taking L,, = G, [F] for w € I (recall that on Yxotwg, .1, Hy is mul-
tiplicative by definition, and hence H,, € G,,[F]). It follows that for ] C I, s and 7 define
TR and Y i2 T We deduce the

AR KAIWK, (D), 1
following statement from Lemma 8.2.11: for | EJ’ C I, every irreducible component of

=251 : - L=)c2=y1
YK,,,IWKXJ(I)’1 contains a point of YKNWK,, N

Applying this with ] = {v.}, J' = {v;, v} and J =0, ] = {vl} we conclude that any

mutually inverse isomorphisms between Y

1n its closure.

=Sp\{ vz)Qy_vQI

KAV, (I) | in its closure, and

irreducible component of Y contains a point of Yo

K- I“K o,1
= L=52 .

KOVK (1), 1 in its closure.

any irreducible component of Y. contains a point of Y

prK ,(D), 1
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. . =Sp\g) 2:=vy L . . =y 1

Finally as recalled at the start of Section 4.1, YKNWK/](I),I is dense in YK/,.IWK,](D’1 and
=S,2 . . = 2

Y. ) isdensein Y] and the lemma follows. ]

KAWEK,(I), 1 KAWK, (D), 1

8.3. Solvable base change. — We will use solvable base change to deduce our main
modularity lifting theorem from Corollary 8.2.2. We firstly prove a couple of preparatory
lemmas, beginning with the following well-known result.

Lemma 8.3.1. — Let K be a number field, and let p : Gx — GLAQ}) be an wrreducible
representation which preserves a generalized symplectic form with similitude character v. Then either v s
uniquely determined by p, o1, if p also admits a similitude character v with \ # 1, then ' has finite
order and p 1s reducible over a quadratic subfield of the fixed field of & and hence also over the fixed field

oy

Progf. — Let V denote the underlying representation of p, and let v and vy denote
two possible similitude characters. Then there is an inclusion v @ vy C Hom(V*, V), or
equivalently, 1 & ¥ C Hom(V*(v), V). It follows that V >~ V*(v) and V= V*(v{/), and
thus V>~ V(¥), and also V >~ V() >~ V(¥?). By comparing determinants, it follows
that ¥* is trivial, and hence either ¥ or /? is a quadratic character n such that V >~ V(1)
and hence 1 & n C Hom(V, V). By Schur’s Lemma, V becomes reducible over the fixed
field of n, which by construction 1s a quadratic subfield of the fixed field of . U

We now prove a slightly technical lemma on solvable base change; it is an analogue
of [BLGHT11, Lem. 1.3] for GSp,, but the proof is slightly more involved.

Lemma 8.3.2. — Suppose that p > 2 splits completely in the totally real field ¥/ Q. Let ¥'/F
be a solvable extension of totally real fields. Suppose that p : Gy — GSp,(Q,) satisfies:

yvop=gl

) Forall v|p, play, s p-distinguished weight 2 ordinary.

) The representation p is vast and tidy.

4) ple, s wrreducible. Furthermore, there 1s an ordinary automorphic representation 7' of
GSp,(Ap) of parallel weight 2 and central character | - |*, such_for every finite place w

of ¥ we have

(1
2
3
(

WD(,O|GF;“)F_SS = recGT,p(JT:U ® [v| 7).
(So in particular, px ) = pla,-)

Then p is modular. More precisely, there is an ordinary automorphic representation 7w of GSp,(Ay) of
parallel weight 2 and central character | - |, with py, » = p. Furthermore, for every finite place v of F
we have

WD(plg,, )" ™ = recer ) (m, @ [v| ).
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Proof. — Since p,, is irreducible, 7' must be of general type in the sense
of [Art04], so that it corresponds to a cuspidal automorphic representation IT" of
GL4(Ay). By induction we may reduce to the case that I/F is cyclic of prime degree,
in which case it follows from [AC89, Thm. 4.2 of §3] that there is an automorphic repre-
sentation IT of GL4(Ay) with BCyp p(IT) = IT'.

We can write

2 2
L, 0, Ael- 1) =t 1 Aol 7y
v

where the product is over the characters ¥ of Ay /F*Np pAj. The left hand side has a
simple pole at s = 1 (by the assumption that IT" is the transfer of ), while by the main
result of [Sha97], all but at most one factor on the right hand side is holomorphic and
non-vanishing at s = 1. Thus some factor on the right hand side must also have a simple
pole at s = 1, say L3(s, I, /\2 Q-2 .

It follows from Theorem 2.9.3 that IT is the transfer of a cuspidal automorphic
representation 7 of GSp,(Ay) with central character | - |*¥. Since BCp wp(IT) =TI, we
see that 7 is of parallel weight 2. Letting o, , : Gy — GSpAQ}) be the Galois represen-
tation corresponding to 7 (whose existence follows from [Mokl14, Thm. 3.5] exactly as in
the proof of Theorem 2.7.2), we have o ,lc,, = plc,,, so that (since F'/F is cyclic of prime
degree, and p|g,, is irreducible) p, , differs from p by a twist by a character of Gal(I" /F).

Replacing 7 by the corresponding twist, we may assume that p, , and p are iso-
morphic when considered as representations valued in GL, (Qﬁ). We claim that we nec-

! so that 7 has central character | - |?. Indeed, this

essarily have vo p =vo p,,=¢"
follows from Lemma 8.3.1, since it holds after restriction to Gy, and plg,, is irreducible
by assumption. So o, , = p, as required.

Since we have assumed that p is vast and tidy, it follows from Corollary 7.9.6 that

for every finite place v of F we have
WD(play,)® = recgr(m, ® v 7).

It remains to check that the monodromy operators agree; but this may be checked after
base change, and since 7’ is the base change of 7, it follows from the assumption that
\/\71)(/<)|(“,F4”)F_SS = recgr,)(7T,, ® [v]~9/2). O]

8.4. The main modularity lifting theorem. — We now prove our main modularity lifting
theorem.

Theorem 8.4.1. — Suppose that p > 3 splits complelely in the totally real field ¥ / Q. Suppose
that p : Gy — GSp4(Q¢) satisfies:

(1) vop=g¢~.
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(2) The representation p ts vast and tidy in the sense of Definitions 7.5.6 and 7.5.11.

(3) Forall v|p, play, 15 p-distinguished weight 2 ordinary in the sense of Defination 7.3.1.

(4) There exists 7 of parallel weight 2 and central character | - |*, which is ordinary at all v|p,
such that p,, , = p.

(5) For all fimte places v of ¥, plc,., and psplc,, are pure.

Then p is modular. More precisely, there is an ordinary automorphic representation ' of GSp,(Ar)
of parallel weight 2 and central character | - |* which satisfies pyr , = p. Furthermore, for every finite
place v of ¥ we have

WD (plge,)' ™ Erecar,(, ® [v] 7).

Proof. — Choose a solvable extension of totally real fields I'/F, linearly disjoint
from F*'? over F, with the following properties:

e / splits completely in F.

e At every place w of IV lying over a place v { p of F for which 7, or plg,, is
ramified, ElGFqﬂ is trivial, ,0|GF,w has only unipotent ramification, and ¢, = 1
(mod ).

e There is an automorphic representation 7" of GSp,(Ay) of parallel weight 2
which is a base change of 7 (in the sense that for each finite place w of I, lying
over a place v of I, we have recgr (") = recGT,p(n)|w% ) Furthermore, for all

finite places w of F' we have (7)™ #£ 0.

(The last property can be arranged by [Mokl4, Prop. 4.13].) Then plg, satisfies
Hypothesis 7.13.1, so the result follows from Corollary 8.2.2 (applied to plg,) and
Lemma 8.3.2. U

8.5. Base change and automorphy lifting. — Throughout the paper, we have fixed the
similitude factor of our Galois representations to be ¢!, in order to streamline both the
notation and some arguments. We now explain how to use base change to relax this
condition in our main automorphy lifting theorem. We do not use this result elsewhere
in the paper, so we have contented ourselves with a slightly ugly statement, and with a
sketch of the proof.

Defimtion 8.5.1. — We say that a representation p : Gg, — GSPA,(Q,) is twisted p-
distinguished weight 2 ordinary if i s an unramified twist of a representation which is p-
distinguished weight 2 ordinary in the sense of Defimition 7.3.1. Similarly, we say that an admussible
representation 1, of GSp,(Q,) s twisted ordinary if it is an unramfied twist of an ordinary repre-
sentation.

Theorem 8.3.2. — Suppose that p > 3 splils complelely in the totally real field ¥ / Q. Suppose
that p : Gy — GSp,(Q,) satisfies:
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(1) vop= x&~', where x is a totally even finite order character, which is unramified at all

places dividing p.
(2) The representation p s vast and tidy in the sense of Definitions 7.5.6 and 7.5.11.
(3) Forall v|p, play, s twisted p-distinguished weight 2 ordinary.
(4) There exists 7w of parallel weight 2, which is twisted ordinary at all v|p, such that p,, ,
(5) For all finate places v of ¥, play, and pr plcy, are pure.

~

2.

Then p s modular. More precisely, there is a twisted ordinary automorphic representation 7' of
GSp,(Ay) of parallel weight 2 which satisfies py: , = p. Furthermore, for every finite place v of ¥

we have

WD(plg, )" Zrecar, (r, ® [v| ).

Proof. — Let x’ be the finite order character Gy — 6_: such that v o p, = x’e~L.
Note that x’ is totally even (since we have ¥’ = X by assumption). We can choose a
quadratic extension of totally real fields F'/F, linearly disjoint from F*? over F, such
that:

e / splits completely in I, and
e there are finite order characters ¥, ¥ : Gp — 6: such that x|g, = Y2,
Xl = (W)
Indeed, the obstruction to taking the square root of a character is in the 2-torsion of the
Brauer group, and there are no obstructions to taking a square root of either x or x’ at
the places dividing p (because both characters are unramified at such places) or at the
infinite places (because x, x’ are totally even).

Let g be the base change of 7 to . Since plg, ® v @ (Y) 7! o Artp satisfy
the hypotheses of Theorem 8.4.1, it follows that p|g, ® ¥ is modular, so p|g; itself is
modular. The result follows from Lemma 8.3.2 (or rather, from an obvious generalization
of this lemma to the case of more general central characters, which may be proved in the
same way). 0J

9. Potential modularity of abelian surfaces

We now use the potential automorphy methods introduced in [Tay02] to prove
the potential modularity of abelian surfaces. It is presumably possible to follow [Tay02,
§1] quite closely, but we instead make use of potential modularity results for GL, and the
local to global principle of [Call2, §3] (see also [MB90, Thm. 1.2]).

9.1. Compatible systems and potential automorphy. — Recall that the notion of a C-
algebraic automorphic representation is defined in [BG14], and in the case of auto-
morphic representations of GL,, this definition agrees with the notion of an algebraic
automorphic representation defined in [Clo90].
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Definition 9.1.1. — Let K be a number field and let R be a strictly compatible system of
representations of Gg. We say that R s automorphic if there is an automorphic representation T1

of GL,,(Ax), with the properties that:

(1) IT @ an tsobaric direct sum of cuspidal automorphic representations B!_, T1; where each T1;
ws a G-algebraic cuspidal automorphic representation of some GL,, (Ax).

(2) The fixed field My of the subgroup of Aut(QG) consisting of those o € Aut(C) with
OTI%° = T[1*° is a number field.

(3) For each finite place v of K, WD, (R) = @.rec(IT; , | det |{!7"/%).

Remark 9.1.2. — There are many (conjecturally equivalent) variants of Defini-
tion 9.1.1 that could be made. The definition is in some sense redundant, because con-
dition (2) is implied by condition (3); indeed, by the definition of a compatible system, it
follows that for all but finitely many v, I1, is an unramified principal series representation,
defined over a number field which may be chosen independently of v. Condition (2) then
follows from strong multiplicity one for isobaric representations [JS81]. The reason that
we have chosen to include the condition separately is that conjecturally (see [Clo90]) con-
dition (1) implies condition (2), and also implies the existence of a compatible system R
satisfying condition (3).

In fact, the only cases of Definition 9.1.1 that we will need to consider are those
where either:

(1) Each IT; is regular algebraic, or
(2) K is totally real, IT is cuspidal, and IT is the transfer to GL4 of a cuspidal auto-
morphic representation of GSp, of parallel weight 2 and central character | - |2.

In either case, condition (2) is satisfied by [Clo90, Thm. 3.13] and [BHR94, Thm. 3.2.2])
respectively.

Remark 9.1.3. — The reader may wonder why we did not demand an analogue of
condition (3) of Definition 9.1.1 at the infinite places. One reason is that we do not need
to do so, as condition (3) already determined IT uniquely (indeed, as in Remark 9.1.2,
this 1s already true if one only considers condition (3) at all but finitely many places). The
main reason that we do not make a requirement at the infinite places is that (in keeping
with the literature) our definition of a compatible system does not include a requirement
that the /-adic representations are compatible on complex conjugations, which makes it
harder to formulate a precise compatibility. One could certainly ask (as in [BG14]) that
the Hodge—Tate weights of R correspond to the infinitesimal character of IT, but to save
introducing additional notation and terminology we have not done so.

Remark 9.1.4. — As explained in Remark 9.1.2, condition (3) of Definition 9.1.1
at all but finitely many places v determines IT uniquely. One might ask whether if this
condition holds for all but finitely many v, it necessarily holds for all v. In general this is
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a hard problem; indeed even if (3) is known up to semisimplification, it is often difficult
to show that the monodromy operators agree. If however R is pure and IT is generic
then the agreement of monodromy operators is automatic; we will use this fact in our
arguments below.

If 'R and IT are as in Definition 9.1.1, we as usual have Gamma factors L, (IT, )
for each place v|oo of K, and we set

An(R.s)=L(R,s) [ [L.(IL. .

v|oo

This is of course just the usual completed L-function of II, but we have included R
in the notation to emphasize that the L-functions of IT and R agree — note that here
it is important that we know Definition 9.1.1 (3) at all finite places, and not just at al-
most all places, or up to semisimplification. As noted above, since we do not a prion
demand any local-global compatibility at 0o for our compatible system R, we use the
automorphic representation IT in this definition mostly as a convenient way to write
down the correct Gamma factors at infinity. For those who find this notation unpleasant,
note that — 1in the restrictive context of abelian surfaces over totally real fields — we
defined a function A(R,s) in (2.8.4) by explicitly writing down the Gamma factors in
question, and then (for all the A and IT that arise in this paper) we indeed have equali-
ties A(IT, 5) = Ag(Ra, 5) = A(Ra, 9).

We also have an epsilon factor €(IT), and a conductor N(IT), and by [G]72, Cor.
13.8], An(R, s) admits a meromorphic continuation to the entire complex plane, and
satisfies the functional equation

9.1.5) An(R, ) = e(MHNID “An(RY, 1 — ).

Definition 9.1.6. — Let A/K be an abelian variety. We say that A is automorphic if R
us automorphic in the sense of Definition 9.1.1. We say that it 1s potentially automorphic if there is
a finite extension of number fields 1/K such that R x|, ts automorphic.

Remark 9.1.7. — If A/K is an abelian variety, and A is automorphic with the
corresponding IT being of the form considered in Remark 9.1.2, then the Gamma fac-
tors L, (I1, s) and the conductor N(IT) agree with those defined for the compatible sys-
tem R, in §2.8. Indeed, for the Gamma factors this is a direct consequence of the def-
initions, and the conductor respects the local Langlands correspondence. In particular,
we have Ap(Ra,s) = A(Ra, 5), and the functional equations (2.8.5) and (9.1.5) agree;
so A(Ra, s) satisfies the expected meromorphic continuation and functional equation.

Definition 9.1.8. — Let ¥ be a totally real. We say that a representation p : Gy —>
GSp,(Q,) s modular vf there is a cuspidal automorphic representation of GSp,(Ay) of paral-
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lel weight 2 and central character | - |* for each finite place v of ¥ we have WD (pz plc,, ) ™ =
recgr,, (7T, ® |v|7%%); in particular, p = P p-

We say that r is potentially modular if there is a finite Galous extension ¥' /¥ of totally real
JSields such that r|c,, s modular.

If A/F s an abelian surface, we say that A is modular (resp. potentially modular) if pa , 15
modular (resp. potentially modular) for some (equivalently, for any) prime p.

Remark 9.1.9. — The relationship between the definitions of what it means for
an abelian surface A/F to be (potentially) automorphic or modular is somewhat compli-
cated, because of the various possibilities in Arthur’s classification of the discrete spectrum
of GSp, (Ar). In this paper we will only show that A is (potentially) modular if the corre-
sponding automorphic representation of GSp, is of general type, in which case A is also
(potentially) automorphic, essentially by the definition of “general type”; note that this is
the case considered in Remark 9.1.2 (2).

We now prove some technical lemmas that we will use in proving our main po-
tential automorphy/modularity results. A weakly compatible system R is defined to be
irreducible if there is a set £ of rational primes of Dirichlet density 1 such that for A|/ € £
the representation 7, is irreducible. We say that it is strongly irreducible if for all finite exten-
sions F'/F the compatible system R/, is irreducible. If n = 2, then we say that R has
weight 0 if H; (R) = {0, 1} for each 7, and we say that R is odd if det R (¢,) = —1 for all
v]oo. If m is a cuspidal automorphic representation of GLy(Ar) of weight 0, then R (1)
is odd and has weight 0.

We have the following standard lemma.

Lemma 9.1.10. — Let R be a rank two weakly compatible system.

(1) The following are equivalent:
(a) R s wrreducible.
(b) For all A the representation 1, 1s wrreducible.
(c) For some A the representation 1, is wrreducible.
(2) If'R is irreducible and regular, then the following are equivalent:
(@) R s strongly vrreducible.
(b) Sym* R is irreducible.
(c) For all », Sym? 1, is irreducible.
(d) For some A, Sym?® r, is irreducible.
1If these equivalent conditions do not hold, then there is a quadratic extension ¥' /¥ and a
weakly (equivalently, strongly) compatible system X of characters of Gy such that

R =Indg!, X.

(8) If'R is strongly irreducible and regular, then for a density one set of primes | of Q, if |l is
a place of M, then the image of 7, contains SLy(Oyp/1).
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Proof — This is well known. Part (1) is [ACCT18, Lem. 7.1.1], and part (3)
is [ACCT18, Lem. 7.1.3]. For part (2), note that by [ACC* 18, Lem. 7.1.2], either R
is strongly irreducible, or we can write R = Indgi/ X It follows that if 'R is not strongly

irreducible, then Sym? 7, is reducible for every A.

Conversely, if Sym? 7, is reducible for some A, then there is a nontrivial character ¥
such that r, = 7, ® Y. Considering determinants, ¥ is a quadratic character. Letting I'/F
be the quadratic extension corresponding to ¥, it follows from Schur’s lemma that 7, |¢,,
1s reducible, so by part (1), R is not strongly irreducible. 0J

We now use a standard trick with restriction of scalars to give some slight improve-
ments to some applications of the theorem of Moret-Bailly.

Proposition 9.1.11. — Let ¥, /¥ be a finite extension of totally real fields, and let p, g > 2
be distinct primes which split completely n ¥\. Let 7 : Gy, — GLo(F,) be a representation with
determinant €.

Suppose that for each place v|q of ¥y, 7lc,,  is of the form (Ag” 8_&_1) Suppose also
that 7 1s unramafied at all places above p. '

Let F@°Y/F he a finite extension. Then there is a finite Galois extension ¥' /¥ of totally real
fields in which p and q split completely and which is linearly disjoint from F\F@°YV /¥ and a g-ordinary
cuspidal automorphic representation ™ of GLo(Ag, 1) of weight O and trivial central character which us
unramified at all places dividing pq and which satisfies , , = ?|GF1F,.

Progf. — In the case Iy = F, this is a straightforward consequence of [Sno09, Thm.
8.2.1]. Indeed, in Snowden’s notation, we take p =77, ¥ = 1, we let S consist of the
places dividing pg and we let ¢ assign the type A at places lying over ¢ and type AB at
places lying over p. To prove the general case, one simply replaces the scheme X to which
Snowden applies the theorem of Moret-Bailly with the restriction of scalars Resy, /p X, .

O

Proposition 9.1.12. — Let G be a finite group, let E./Q be a finite extension, and let S be a
finite set of places of E.. Let ¥ /E. be a finite extension, and let FV /¥, be a finite extension, linearly
disjoint from E' /E.

Let S'/S be the set of places of ' lying over places of S. For each finite place v € S', let H, JE!
be a finite Galots extension together with a fixed inclusion ¢, : Gal(H /E.) — G with image D,,. For
each real infinite place v € S', let ¢, € G be an element of order dividing 2.

Then there exists a number field K/E and a finite Galois extension of number fields 1./ K such
that if we set K' = KE', L' = LE/, then

(1) There is an isomorphism Gal(L'/K') = G.
(2) L//E is linearly disjoint from E'F@°D /E,
(3) All places in S split completely in K.
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(4) For all fimite places w of K’ above v € S', the local extension L, /K’ s equal to H /E. .
Moreover, there 1s a commutative diagram:

Gal(L,/K)) — D,, C G

Gal(H,/E)) —— D, C G

v

(5) For all real places w|oo of K" above v € S', complex comjugation ¢,, € G s conjugate o ¢, .

Proof. — The case E' = E 1s [Call2, Prop. 3.2] (see also [MB90, Thm. 1.2]).
The general case may be proved in exactly the same way, by replacing the applica-
tion of [Call2, Thm. 3.1] to (an open subscheme of) Xs/E with an application of it
to RCSF//E Xg. ]

9.2. Abelian surfaces. — We begin by recalling some results from [FKRSI12]
and [Joh17], which allow us to deal with various cases where the abelian surfaces have
extra endomorphisms, and can be handled with the potential automorphy theorems
of [BLGGT14b]. Let A/F be an abelian surface over a totally real field F, and let L/F
be the minimal extension over which all its endomorphisms are defined. This is a Galois
extension, and following [FKRS12] we say that the Galois type of A/F is the Gal(L/F)-
module Endy,(A) ®z R. These possible Galois types are classified in [FKRS12], and they
are divided up into 6 families A-F.

The precise classification of monodromy groups in these references is not actually
strictly necessary for our purposes. Write {pa ;} for the compatible system of Galois repre-
sentations {H' (A, Q))}. In practice, it suffices to know that the /-adic representations p,
fall into precisely one of the following categories independently of /:

(1
(2
(3
(4

strongly irreducible (type A),
reducible (type B[C,], C, E[C,], some D, some F),
potentially abelian but not reducible (of type the remaining D and F cases),

—_ ==

induced from a quadratic extension K/F but not potentially abelian, in which

case either:

(a) the two 2-dimensional representations over K are equivalent up to twist
(type E[D,]), or

(b) the two 2-dimensional representations over K are not equivalent up to twist

(type B[Cy]).

Proposition 9.2.1. — Suppose that AJY is not of type A or B[Cy]. Then A s potentially
automorphic.
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Proof. — We freely use the discussion of [Johl17, §4]. In cases D, F, Ay, is of CM
type, so the compatible system R, is potentially abelian, and in particular potentially
automorphic.

In cases B[C,], G, and the cases of type E other than those of type E[D,], it follows
from the discussions at the beginnings of [Joh17, §4.2, 4.4, 4.5] that we can write Ry =
R\ @ R: where each R/, is an irreducible, odd, weight 0 weakly compatible system of
rank 2 /-adic representations of Gr. The potential automorphy of R, therefore follows
from [BLGGT14b, Thm. 5.4.1].

It remains to treat the case that A is of type E[D,]. In this case, as explained
in [Johl7, §4.5-4.6], there is a quadratic extension F'/F and a strongly irreducible
weakly compatible system S = {s;} of weight 0 representations of Gy which is defined
over Q such that R = Indg; S. Furthermore, there is a finite order character § of Gp
such that if we write Gal(}'/F) = {1, 0}, then s7 =5, ® §,.

It follows from Lemma 9.1.10 (2) and [BLGGT 14b, Prop. 5.3.2] that for a density
one set of primes /, Sym2 Siley @ is irreducible, / is unramified in ¥, and both s; and &,
are crystalline at all primes above /. Fix one such [ > 7.

Since Projs? = Projs,, it follows from Schur’s lemma that Projs; extends to a rep-
resentation Gy — PGLQ(Q). By [Patl9, Lem. 2.3.17, 2.7.4], we may lift this to a rep-
resentation 7 : Gy — GLy(Q,) which is unramified at all but finitely many places, and is
Hodge—Tate at all places dividing /, with Hodge—Tate weights (0, 1). By construction,
there 1s a character ¢ : Gp — QX such that 7|g, = 5, ® ¥. Since ¥ is Hodge-Tate of
weight 0, it has finite order.

Since / is unramified in I and s, is crystalline at all primes above /, after possibly
replacing 7 by a twist by a finite order character, we may assume that it is crystalline at
all places dividing /. By [CG13, Prop. 2.5], 7 is odd, so by [BLGGT14b, Thm. 4.5.1], 7
is potentially automorphic. Since

Gy Gr (~ —1
pas = Indd!, 5 ZInde!, (Flo, @ ¥ 1),

it follows that R is potentially automorphic, as required. U

We say that A/F is challenging if it has type A (which is the case that End¢ A = Z)
or B[Cy]. In the latter case, as explained in [Johl7, §4.3], there is a quadratic ex-
tension K/F, and a strongly irreducible weakly compatible system S = {s;} of rank 2,
weight 0 representations of Gk with determinant &, such that R = Indgg S. Further-
more, writing Gal(K/F) = {1, 0}, s7 and 5; do not become isomorphic after restriction
to any finite extension of K. (The case when K/F is totally real can be handled using
potential automorphy theorems for GLy, but our argument (at this point at least) does
not need to distinguish between the various infinity types of K.)

Lemma 9.2.2. — If A/ 15 a challenging abelian surface, then _for a density one set of primes [,
D, 18 vast and tidy.
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Proof. — 1f End¢ A = Z, then, for all sufficiently large /, 0, ,(Gr) = GSp,(F))
by [Ser00], so the claim follows from Lemma 7.5.15.

If A is of type B[Cy], then writing ps, = Indgi s, we see from Lemma 7.5.22
and Lemma 9.1.10 (3) that we need only check that for a density one set of primes /,
we have Projs] # Projs,. (Note that the inverse of the mod [ cyclotomic character is
surjective for all / which are unramified in F.) To see this, note that since Proj sy # Proj s,
we have Sym”s7 % Sym”s; by [DK00, Appendix, Thm. B]. There is therefore some
finite place v of F at which the compatible systems {Sym? 57}, {Sym?s;} are unramified,
for which the eigenvalues of Frob, differ for the two compatible systems. Then the same
applies for Sym”57, Sym? 5, for all sufficiently large /, so that in particular Proj57 # Proj5,
as required. UJ

Defination 9.2.3. — Let A/ be an abelian surface over a totally real field. We say that a
rational prime p > 3 is a good prime for A if:

o A admits a polarization of degree prime to p.

o p splits completely in I

o The representation p , is vast and tid).

o For each place v|p, paylcy, 15 p-distinguished weight 2 ordinary.

Remark 9.2.4. — The point of Definition 9.2.3 is that the good primes p are the
ones for which we can apply our modularity lifting theorem (Theorem 8.4.1) to p4 .

Lemma 9.2.5. — Let A/Y be a challenging abelian surface. Then the set of rational primes
which are good primes for A has relative density one in the set of primes which split completely in F.

Progf. — By Lemma 9.2.2, it suffices to show that p, ,lgy, is p-distinguished
weight 2 ordinary for a density one set of finite places v of I (with residue characteris-
tic p). To do this, we follow the approaches of [Saw16] and [CG20, Lem. A.7]. Consider
the places v of F that are split over a prime p of Q, for which A has good reduction;
the set of such primes has density one. Fix a prime / # p. The characteristic polynomial
of pa (Frob,) is of the form

xF — a X+ apn® — parx +p2
where a;, ay are integers.

Then A has good ordinary reduction at v if and only if p 1 a. If this holds, then
we see that p )|, will be p-distinguished weight 2 ordinary if and only if a’ — 4ay is not
divisible by p. By the Weil bounds, we have |a;| < 4./p, |a; — 2p| < 4p, so if a — 4ay is
divisible by p, then it is equal to pc for ¢ in some finite list of integers, independent of p.

Let G be the Zariski closure of pa ;(Gp) in GSp,, and write V for the standard
representation of GSp,, and x for the similitude character. Arguing exactly as in the proof
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of [Sawl6, Thm. 1], it follows from the Cebotarev density theorem that it is enough to
show that the virtual representation (V®* — 4 A? V) ® x~! does not have constant trace
on any connected component of G.

By the proof of [Saw16, Thm. 3], we can replace G by the Sato—Tate group of A,
which is either the connected group USp, (if A has type A), or the normalizer of SU, x
SU, in USp, (if A has type B[C,])) (which has two connected components). The result
now follows easily from an explicit check. O

Lemma 9.2.6. — Let A/Y be a challenging abelian surface. Then there are distinct rational
primes p, q such that p and q are both good primes for A, and for all places v|p of ¥, p, ,(Frob,) has
distinct eigenvalues.

Progf. — By Lemma 9.2.5, a density one subset of the set of rational primes which
split completely in F are good primes. Let p be any good prime for A; then, for each
place v[p of F, pa ylc;, has p-distinguished weight 2 ordinary reduction, and in particular
the eigenvalues of the crystalline Frobenius Frob, on T,A are distinct. Consequently, for
all but finitely many rational primes ¢ of good reduction for A, p, ,(Frob,) has distinct
eigenvalues for all places v|p. O

If ¢ 1s a good prime for an abelian surface A/F, then for each place w|g of F we
may write

Az, O * *
_ ~| 0 Ag, * *
Prden =[ 0 0" ezt 0

Then we write

e, O 0 0

— s 0 )\'Ew 0 0

(IOA,I/|GFw) = 0 0 E_IA:I 0
Buw

0 0 0 &',

When reading the proofs of the following two results, it may be helpful to recall that our
convention 1s that the representation p, , is the dual of A[p]; this accounts for the various
duals occurring in the proofs.

Lemma 9.2.7. — Let A/F be an abelian surface over a totally real field, and let p, g be primes
as in Lemma 9.2.6. Fix a totally real quadratic extension ¥y /¥ in which p and q split completely, and
which s linearly disjoint from the kernels of the actions of Gy on A[p] and Alq].

Then there ts a finite Galots extension of totally real fields ¥' /¥, and a representation 7, :
Gy, = GLo(F,), with the following properties:
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(1) p and q both split completely in F'.

(2) ¥'/F s linearly disjoint from ¥\ /¥ and from the kernels of the actions of Gy on A[p]
and Alq].

(3) det?, =2 "

4) 7,(Gpr,) = GLy(F,), and the projective image of 7, is not equal to ils conjugate un-
der Gal(F'F, /).

(5) Setp,:= Indgfjk,] 7, : Gy — GSp,(F,) with similitude factor €. Then

o for any place w|q of ¥ and any place w'|lw of ¥', b |c, = (0o ,lcp, )" and
o for any place v|p of ¥ and any place v'|v of ¥', p |G, = Paglcr, -

(6) The representation p,, is vast and tidy.

Proof. — Fix a finite place v of I not dividing pg and splitting in F,. We apply
Proposition 9.1.12, taking E=F, E' =F;, G = GLy(F,), S to be the set of places divid-
ing pqroo, and F@° o be the extension cut out by the intersection of the kernels of o, P
and p, ,. For each infinite place v € S’ we choose ¢, to have eigenvalues {1, —1}. For each
place w € S dividing pgt we write w = w,wy for its decomposition in F,. If w|p, then the
eigenvalues of (A[g]"|g,, ) (Frob,) can be written as e, By, B, poet, while if w|qg we
use the notation above. In either case, we choose Ewl to correspond to the representa-
tion (AS"’ 8&%}), and awz to correspond to (kg'” 8_10)»,;"1) Finally, if w = t, then
we choose Ewl , $w2 to have determinant €', in such a way that Ewl is unramified, while
Proj EwQ is ramified.

We obtain an extension F'/F (the extension K/E from Proposition 9.1.12, with
the ¢, there being our ¢,) and a representation 7, : Gp,p — GLo(F,) which satisfies (1),
and (2). It need not satisfy (3), but by construction € det7, is an even character which is
trivial at all places dividing pgr. The obstruction to the existence of a square root of € det 7,
is therefore a class in the 2-torsion of Bry, which is trivial at all places dividing pgroo.

We can therefore replace I by a quadratic totally real extension in which p, ¢,
t split completely, and assume that € det7, has a square root. By [AT09, Ch. X, Thm.
5] we can (by replacing this square root by a twist by a quadratic character) arrange
that the square root is trivial at all places dividing pgt. Replacing 7, by its twist by this
square root, we ensure (3), at which point (5) follows (note that for each place v|p of F,
PaglGy, 1s unramified with distinct eigenvalues of Frob,, and is therefore semisimple).
Considering the places lying over t, we see that (4) is satisfied. Finally, (6) then follows
from Lemma 7.5.22. U

Theorem 9.2.8. — Let A/F be a challenging abelian surface over a totally real field. Then A
is potentially modular. More precisely, there is a finite Galois extension of totally real fields ¥' /¥ and a
prime p splitting complelely in ¥' such that pyplc,, ts modular and irreducible.
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Progf. — Let p, ¢, F1, F', 7, and p, be as in Lemma 9.2.7. Let Y/F' denote the
moduli space of triples (B, 1,,1,) consisting of abelian surfaces B and symplectic isomor-
phisms

1, : Blpl — Alpllg,

1,:Blg) — P,

This is smooth and geometrically connected. (Over either G or Q, we may identify Y with
the moduli space of principally polarized abelian surfaces with full level pg structure.)

We claim that for each place v|pgoo of F/, the subspace 2, := Y"4(F)) C Y(F))
consisting of points corresponding to abelian surfaces with good ordinary reduction
(When v is finite) is nonempty. If v|oo, this follows from detr,” = ¢, while if v|p, then A
itself gives a point of Y(F)) (by point (5) of Lemma 9.2.7). Finally, if v|¢, the canonical
lift of A modulo v gives a point of Y(F). (Since A has good ordinary reduction at v|p
and v|q, the corresponding point on Y does indeed land in €2,,.)

By [BLGGT14b, Prop. 3.1.1] (a theorem of Moret-Bailly), we may find a finite
Galois totally real extension F”/F" in which p and ¢ split completely, and which is linearly
disjoint from the compositum of FiF" and the kernels of the actions of Gy on A[p], Alg]
and p,, with the property that Y(F") N[, 1y 20 7 0. Let B/F” be a corresponding abelian
surface, which by construction will have good ordinary reduction for all v[p and vlg.

By Proposition 9.1.11, after replacing I’/I” with a further totally real extension,
we can maintain all of the above assumptions, and we can further suppose that there is
a g-ordinary automorphic representation ® of GLy(Ap ) of weight 0 and trivial central
character, which is unramified at all places dividing p¢g and which satisfies p, , = TglGy, -

It follows from [Rob01, Thm. 8.6] that there is an automorphic representation 7
of GSp, (Ay») of parallel weight 2 and trivial central character whose transfer to GLy (Ag»)

. .. . . . ~ Gy
is the automorphic induction of ® @ | - |, so that in particular p, , = IndG; o Prgs SO that
1

Py = ﬁq|GF,,. In addition, 7 is ordinary, by construction. The representation p, , is pure
at all finite places because py , is (for the places away from ¢, this is proved in [Bla06],
and for the places dividing ¢ it is for example a very special case of the main theorem
of [Carl4]).

We can therefore apply Theorem 8.4.1 to pg,, and conclude that it is modular.
Thus pg, is modular, and applying Theorem 8.4.1 a second time, we deduce that pa 4|,
is modular, as required. (The purity of pg,, pp, and p,, at all finite places is part of
Proposition 2.8.1.) O

9.3. Potential modularity and meromorphic continuation. — We now deduce the mero-
morphic continuation and functional equation of the L-functions associated to abelian
surfaces over totally real fields from our potential modularity (and automorphy) results.



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 465

Theorem 9.3.1. — Let ¥ be a totally real field, and let AJ¥ be an abelian surface. Then R
us potentially automorphic, and Comjecture 2.8.6 holds for A, for each 0 <1 < 4.

Proof — Since H'(A, Q)) = A'H'(A, Q)), it is enough to treat the cases i = 1, 2.
Note that since for any R we have ¢(R)e(R") = N(R) (see [Tat79, (3.4.7)]), and we
have Hi(A, Q)" = Hi(A, Q))(?), the claimed functional equation will follow from (2.8.5)
in the case R = H'(A, Q).

To see that the meromorphic continuation and the functional equation (2.8.5)
hold, note firstly that if A has type D or F, then the compatible system R, is poten-
tially abelian, and the result follows from a standard argument with Brauer’s theorem,;
more precisely, it is immediate from [Joh17, Prop. 11, Lem. 14]. In the general case, the
same argument (see e.g. the proof of [Tay02, Cor. 2.2]) shows that it is enough to show
that there is a Galois extension of totally real fields F'/F such that for each Galois exten-
sion F'/F” with Gal(I'/F") solvable, the compatible systems Rulg,, and /\QRA|GF,, are
both automorphic. (Note that the meromorphic continuation and functional equations
for the compatible systems follow from the functional equations (9.1.5) for the corre-
sponding automorphic representations.)

Suppose now that A has type B[C,], G, or is of type E but not of type E[D,].
Then as we saw in the proof of 9.2.1, we can write Ry = R} & R3 where R}, R} are
irreducible, odd, weight 0 weakly compatible systems of rank 2 [-adic representations
of Gy. It follows from [BLGGT14b, Thm. 5.4.1] that there is a Galois extension of to-
tally real fields F'/F such that Rl\lgF/, Rik}p are automorphic and irreducible. It follows
from [BLGHT11, Lem. 1.3] that for each Galois extension F'/F” with Gal(F'/F") solv-
able, R}AlGFN 5 Rik}

. are automorphic. Thus R4|g,, is automorphic, and since we have

/\QRAlGFu = detRMGF,, S detRi|GF// & (R}JGF,, ® Ri|GF,,) )

it follows from [Ram00, Thm. M] that /\Q'RA|GF,, is also automorphic, as required.

In the remaining cases, namely those of types A, B[C,], or E[D,], it follows from
Theorem 9.2.8, (the proof of) Proposition 9.2.1, Lemma 2.9.1 and Theorem 2.9.3, to-
gether with Lemma 8.3.2, that there is a Galois extension of totally real fields F'/F such
that for some p, and all Galois extension I'/F" with Gal(F'/F") solvable, pa4lc,, is ir-
reducible and modular (and also automorphic). By the main result of [Hen09] (which
1s a refinement of the main result of [Kim03]), together with Theorem 2.9.3, we see
that A?pa |G, is automorphic, as required. UJ

Remark 9.3.2. — Ouwur use of the results of [Kim03] and [Hen09] in the proof of
Theorem 9.3.1 is almost certainly overkill, and can be avoided by working with automor-
phic forms on GSp, rather than GL, as we now explain. Since the four 4-dimensional
Galois representations H'(A, Q)) are generalized symplectic with respect to the Weil
pairing, the exterior square A’H'(A, Q)) = H*(A, Q,) decomposes as the direct sum
of a 5-dimensional Galois representation and the one dimensional summand Q,(—1).
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(The corresponding Galois invariant classes in H2(A, Q,(1)) are generated by the image
of a hyperplane section under the cycle map.) Once one knows that the 4-dimensional
representation H' (A, Q)) corresponds (potentially) to an automorphic representation 7
for GSp,, then the L-function associated to the 5-dimensional summand of H?(A, Q) is
none other than the degree 5 standard L-function, whose analytic properties have been
known for some time (see §6.3 of [GPSR87]). On the other hand, many of our arguments
in this paper do crucially require passing between GSp, and GL; using Theorem 2.9.3
and Lemma 2.9.1. In particular, the proof of Theorem 9.3.1 uses base change in the
form of Lemma 8.3.2, and therefore depends directly on Theorem 2.9.3; and of course
our main modularity lifting theorems also depend on these results, in particular to prove
that the modules that we patch are balanced.

If C/F is a curve over a number field, then we can define the completed L-functions
A(C, 5s) and the completed Hasse—Weil L-function A(C, s) exactly as for abelian vari-
eties. By definition we have A (C, s) = A (Jac(C), s), where Jac(C) is the Jacobian of C.

Corollary 9.3.3. — Let C/F be a genus two curve over a totally real field. Then the com-
pleted Hasse—Weil Li-function A(C, s) has a meromorphic continuation to the entire complex plane, and
satusfies a_functional equation of the form A(C, s) = eNTA(C, 3 — ) wheree € R and N € Q.

Proof — This follows from Theorem 9.3.1 with A = Jac(C). ]

Finally, we treat the case of genus one curves over quadratic extensions of totally
real fields.

Theorem 9.3.4. — Let K/F be a quadratic extension of a totally real field ¥, and let E/K
be either a genus one curve or an elliptic curve. Then ¥ is potentially modular. More precisely, there is
a Galois extension of totally real fields ¥' /¥ and a weight O cuspidal automorphic representation 7 of
GLy(Aky) with trivial central character such that for each prime [, we have pg, |G, = Px.i, and in
Jact for each finite place v of KF' we have WD, (pEJIGKF,U ) Zrec(m, | det |1/?).

Furthermore, Conjecture 2.8.6 holds for E.

Progf. — We may immediately replace E by its Jacobian and hence assume that E
is an elliptic curve. If E is CM, then it is modular, while if E is isogenous to a twist of
its Galois conjugate over F, then the result follows as in the proof of Proposition 9.2.1.
We therefore assume that neither of these applies, and set A = Resg,r E. Then A is an
abelian surface of type B[Cs], and Ry = Indgi Rg. By Theorem 9.2.8, there is a Ga-
lois extension of totally real fields F'/F, linearly disjoint from K/F, and an automorphic
representation 7 of GSp, (Ay) such that pa 4|, = Ox,-

Let IT be the transfer of 7 to GL4(Ap). If k is the quadratic character of Gp
corresponding to K’ := KF'/F', it follows that [T ® (k o Artp o det) = I1, so by [AC89,
Thm. 4.2, 5.1 of §3] there is a cuspidal automorphic representation ® of GLy(K') such
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that IT is the automorphic induction of ® & | det|. Write Gal(K'/F") = {1, t}. We claim
that w is of weight 0 and has trivial central character. Admitting this claim, it follows from
Theorem 2.7.3 that we can write

PEplGe @ (Peplo ) = oxyp @ Pr ),

where all four 2-dimensional representations are irreducible. After possibly replacing =
by m*, we conclude that pg |G, = P, so that by Theorem 2.7.3, for each place v { p
of K" we have WD, (o, /|G, , )™ = rec(m, | det |- 1/2)%. It follows that in fact

F—ss ~ -1/2
WD, (bl )™ Zrec(m,| det|;'/*)

(because we know the corresponding statement for A). Repeating the argument for a
second prime p, we see that this holds for all finite places v.

It remains to prove the claim. By Lemma 2.6.1, for each place v|oo of K/, either =,
corresponds to ¢ 1, or v is complex, and the L-parameter of 1, is scalar, given by (z/2)*';
in particular, in either case it is algebraic, and so the central character x of 7 is algebraic.
Moreover, if x, is trivial, then the second case cannot occur, so that & automatically has
weight 0. We therefore assume from now on that x, 7# 1, and derive a contradiction.

Since [TV =T ® | - |72, we have

nHr =’ H(x")",
so that either ®¥ = m, or ¥ = n*. In the former case, we would have ® = ¥ =
nt X !, from which it follows (if x, # 1) that x, is the character of a quadratic exten-
sion I'/K" and 7 is induced from GL(1) /L. This implies that Pa,p 1s potentially abelian,
and thus that E is CM, a contradiction.

We can therefore assume that T¥ = ®t”, so that ), = X ! and we shall derive a
contradiction from these assumptions. Write x for the p-adic character Ggr — (_2; corre-
sponding to the algebraic character x». Let v{p be a place of K’ for which p, ylc,, is un-
ramified, and let the eigenvalues of pg, ,(Frob,) be {a,, ¢,/a,} and those of (o )" (Frob,)
be {Bu, u/Bv}. Now, a,q;'/? is either a Satake parameter of ™ or =", so (using
that xzr = X;I) it follows that one of B,, ¢,/ay, ¢,/ By 1s equal to either ¢, x (Frob,)/«, or
QUX_1 (FrObv)/av~

Since x is non-trivial, there is a set of places S of K’ of positive density such
that x (Frob,) # 1. Shrinking S if necessary, we deduce that there exists a set S of positive
density so that one of the following equalities holds for all v € S:

qux (Frob,)/a, = By,

¢ X (Frob,) /o, = ¢,/ By,
qux ' (Frob,)/a, = By,
gox ' (Frob,)/at, = ¢,/ B
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By symmetry (replacing x by x ' if necessary and B, by ¢,/B, if necessary), we may
assume that o, 8, = ¢, x (Frob,) for all v € S.

Now, the representations pg lc,, and (plc,, )" have monodromy groups GL(2)
by [Ser68, Thm. IV.2.2] and are not twist equivalent (by our running assumptions). It
follows that the monodromy group of their tensor product is the identity component
of GO(4). Since this is connected, we deduce by considering the formal character of the
corresponding Lie algebra sl x gl, that for any fixed character &, the generic element of
the tensor product £ ' ® p ® p” does not have 1 has an eigenvalue.

However, for each place v € S, we have (since x (Frob,) =a,8,/¢, for v e S):

g™ (WX () @ (o, g/} ® {Bu, o/ By = (1, 3/ B 4/ By s quety ).

Since S has positive density, this is a contradiction, as required. UJ

9.4. K3 surfaces of large rank. — If A is an abelian surface over a totally real field F,
then one may define the Kummer surface Km(A) to be the resolution of the quotient
of A under the map x > —x. The variety Km(A) is a smooth projective algebraic K3
surface with (geometric) Picard number > 17. (All Picard numbers in this section will be
geometric Picard numbers.)

Proposition 9.4.1. — Let A be an abelian surface over a totally real field ¥, and let X =
Km(A). Then Conjecture 1.1.1 holds for X.

Progf. — The cohomology groups H*(X, Q,) are trivial in odd degree. In even
degree, they are generated by H*(A, Q,) plus the 16 dimensional space of Tate cycles
in H*(X, Q,) spanned by the 16 exceptional divisors in the resolution X — A/(£1).
The latter classes are all defined over a finite extension of @, and hence the Galois rep-
resentation (up to twist) they generate is an Artin representation. Hence the result fol-
lows from Theorem 9.3.1 applied to A, together with the meromorphic continuation of
Artin L-functions. U

More generally, if a K3 surface X/F admits a Shioda—Inose structure [Mor84, §6]
over F, then H*(X, Q,) ~ H*(Km(A), Q,) for some abelian surface A/F, and Prop 9.4.1
implies Conjecture 1.1.1 for X. It might also happen that X/F admits a Shioda—Inose
structure over some finite extension E. Recall Ribet’s notion of a Q-curve ([Rib04]) as an
elliptic curve over Q all of whose conjugates by Gg are isogenous:

Defination 9.4.2. — An F-abelian variety is an abelian variety A over a Galois extension E/F
all of whose Gal(E/F)-compugates are isogenous to A over E.

Suppose that the conjugates A° over A are isogenous to (at most) quadratic twists
of A (as necessarily happens if {1} are the only automorphisms in Endg(A)). Then the
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Galois representations associated to A’H'(A) and thus to Km(A) extend (even as com-
patible systems with Q-coefficients) to Gy. Moreover, the (absolutely irreducible) projec-
tive Galois representations associated to H'(A) also extend to Gy, and thus, from the
vanishing of H?(Gy, Q/Z) due to Tate, also give rise to Gy representations (now with
coeflicients). If I is totally real and A is an F-abelian surface, one expects that the meth-
ods of this paper will have implications for the potential modularity of A. (Note that for
primes p splitting completely in E, the mod p representations over F locally arise from
abelian surfaces over Q, — namely A itself.) We have not endeavored to undertake the
task of proving results along these lines, however, since verifying that the Galois repre-
sentations extend in the appropriate manner (especially when all the different possibili-
ties for Endg(A) are taken into account) would necessitate a somewhat involved analysis
which we avoid due to issues of time and space.

9.4.3. General K3 surfaces of Picard rank > 17. — An algebraic K3 surface of Picard
number 17 or 18 need not admit a Shioda—Inose structure even over G ([Mor84]). There
need not even be a correspondence between X and an abelian surface A inducing a
Hodge isometry of transcendental lattices (Tx ® Q) > (T'x ® Q). The problem, as noted
in [Mor84], is the following. Let U denote the hyperbolic plane — the lattice of rank two
generated by two isotropic vectors which pair to 1. Then there are obstructions on the
lattices T'x of signature (2,20 — p(X)) = (2, 3) or (2, 2) which arise from K3 surfaces
to admit an injection of the form (T, ® Q) < (U ® Q)*. One might still hope to con-
struct abelian varieties from K3 surfaces of large Picard rank by directly lifting the weight
two polarized Hodge structure on Tx to a weight one Hodge structure of the smallest
possible dimension. This amounts to considering the GSpin cover of the corresponding
orthogonal group and relating that (in an ad hoc manner) to weight one Hodge structures
via the identification of the associated Shimura variety as one of Hodge type. This dif-
fers slightly from the Kuga—Satake construction in which one has a functorial map from
weight two Hodge structures to weight one Hodge structures via the Clifford algebra con-
struction — the latter gives rise to abelian varieties in a uniform way, but introduces (in
general) auxiliary dimensions, and, for a transcendental lattice Tx of rank 5, would pro-
duce an abelian variety of dimension 2° = 8. In the case of interest to us, the correspond-
ing GSpin Shimura variety will now (over G) be precisely the moduli of abelian four-
folds with quaternionic multiplication (as considered in [KR99]), where the degenerate
case D = My (Q) corresponds to the usual moduli space of abelian surfaces. In particular,
we arrive at the conclusion that a K3 surface with p(X) = 17 or 18 should either admit a
correspondence with an abelian surface A inducing an isometry (Tx ® Q) >~ (Tx ® Q),
or there will exist an abelian fourfold A with quaternionic multiplication (a fake abelian
surface, see the discussion after the statement of Lemma 10.3.2) and a correspondence
inducing an injection (Tx ® Q)* < (T ® Q). This can also be predicted more arith-
metically by using the Yoga of motives. For convenience, suppose that p(X/F) = 17.
Let 'R be the compatible system associated to the transcendental motive (that is, the
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motive associated to the transcendental lattice), and assume that the Galois representa-
tions 7, are strongly irreducible for a density one set of primes p. One can try to lift R (up
to quadratic twist) to a 4-dimensional compatible system S via the isogeny GSp, — GOs,
and then realize § as the motive associated to an abelian surface. This happens, for ex-
ample, when X = Km(A) for some A over F. In general, however, one encounters two
obstructions. The first is that one should expect to have to extend coefficients of the mo-
tive by a compositum of quadratic fields. This is because a characteristic polynomial of an
element in GO; with coefficients in Q lifts to a characteristic polynomial for GSp, whose
coefficients lie either in Q or +/D - Q for some D. (This is an elementary computation
with symmetric polynomials.) Let °S denote the compatible system obtained by applying
an automorphism o € Ggq to the coefficients of S. Since A’S =R = A*(°S), the irre-
ducibility assumptions imply that S is a quadratic twist of ?S for all o € Gg acting on the
coefficients. The restriction of S will thus have rational coefficients over some field E/F
with Gal(E/F) = (Z/2Z)" where all the quadratic twists become trivial. If this restriction
corresponds to an abelian surface A, this would predict (and even imply, see the remarks
at end of [Mor84]) that there existed an algebraic cycle on X x Km(A) which identified
the corresponding transcendental lattices over Q. Moreover, the abelian surface A would
be an F-abelian surface in the sense of Definition 9.4.2. On the other hand, even suppos-
ing S has Q-coefficients over E, it need not be the case that S comes from an abelian
surface, even though (for weight reasons) it must be an abelian motive. One also has to
allow the possibility that it comes from a fake abelian surface, that is, a fourfold A with
quaternionic multiplication (see the proof of Lemma 10.3.2). In summary, given a K3
surface X of Picard rank at least 17 over a number field F, one should be able to associate
to X a canonical isogeny class of F-abelian surfaces or F-fake abelian surfaces. Under
sufficiently big image hypotheses, it should be possible to rigorously justify the arguments
of this paragraph using the methods and language of [Pat19, §4].

9.4.4. Fake Kummer surfaces. — This raises the natural question as to whether, given
an abelian fourfold with an inclusion D < End’(A) (a fake abelian surface), there are
any natural geometrical constructions which produce a K3 surface (or, conversely, a con-
struction in the other direction). For that matter, one might ask for an explicit geometric
construction of either of these objects. Given six lines in general position in P?, the desin-
gularization X of the double cover branched over those lines is, in general, a K3 surface
of Picard rank 16. If the 6 lines are all tangent to a smooth conic, however, then the K3
surface generically has Picard rank 17, and moreover X is the Kummer surface associ-
ated to the Jacobian of the hyperelliptic curve obtained as the double cover of the conic
branched at the six tangent points [Mor85]. This suggests looking for other degenera-
tions of the six lines which could give rise to transcendental lattices with different integral
structures.

The following construction, suggested to the authors by Madhav Nori, gives
a 3 =20 — 17 dimensional rational family of such degenerations corresponding to D =
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(—1,3)q. Given a generic point in this family of Picard number 17, the correspond-
ing K3 cannot be isogenous to a Kummer surface, and so indeed defines a genuine
false Kummer surface. It is an interesting question to determine whether one can also
see the corresponding abelian fourfold from this construction — possibly associated to
a generalized Prym variety of some natural cover of curves under the map 7 : X — P2,
Consider five lines L; for i = 1,...5 in P?. These determine a conic C which passes
through the intersections L; N Ly, Ly N Ls, Ls N Ly, Ly N Ls, and L; N L;, which we
denote by P, for : = 1,...5. Let L denote a sixth line which is tangent to C at Ps.

Note that C - Z?:l Li=2 (Z?:l PZ-) is divisible by 2. Let Y denote the degree 2 cover

of P? and X its desingularization. The lifts of P, in Y for =1, ..., 5 are ordinary dou-
ble points, and so the exceptional divisors E; in X satisfy E;,.E; = —2. Let M = 2?21 E;.
If 7w : X — P? denotes the projection, then 7' (C) = M + D, where D is now an ev-
erywhere unramified double cover of C. But C >~ P!, so D must decompose into two
components A + B meeting transversally at 7' (Ps). Note that M.M = 5(—2) = —10,
that A.B = 1 (meeting transversally at 7 ~!(Ps)), and 7~ '(C).7~'(C) = 2(C.C) = 8.
Moreover, A.M = B.M =5, intersecting in E; for : = 1,...5. It follows that, if we
let E=A — B, then E.E is equal to

(A+B+M).(A+B+M)—2(A+B).M—MM —4.AB
—=8—920+10—4=—6.

The class E 1s transverse to all exceptional classes as well as the pre-image of the hyper-
plane class, so gives a new class in NS(X). Note that U ® Q >~ ((2k) @ (—24)) ® Q
for any integer k. The transcendental lattice of the generic X is (U? @ (—2)%)q
6y (—6) U B (—Q)Q)Q, hence the corresponding transcendental lattice of this re-
stricted family is rationally contained in (U @ (—6) @ (—2)%)q. Since this rational family
has dimension 20 — 17 = 3, the generic member will have Picard rank 17. As the form of
the corresponding orthogonal group does not split, the lattice does not admit an injection
into (U ® Q)*, and so X is not isogenous to any Kummer surface. Indeed, from the ra-
tional structure of the resulting lattice, the corresponding fake abelian surface A will have
endomorphisms by D = (=1, 3)q. (A related example was also considered in [LPS13] —
in particular the divisor denoted in [LPS13] by Xg.)

9.4.5. An example. — Take the conic to be y = x*, and the points P; fori=1,...5
to be (n, n*) forn=—2, ..., 2. Now choose the point of tangency Pg to be at (3,9),s0 Y
can be given by:
w’ = (=2 +2) (x+2) (0 — 42 (=3x +y+ 22 (Bx +y + 22)
X (=6x+r+92).
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The classes considered above are all defined over Q, and so Pic(X/Q) > 17. Let R =
(Q, S, {r,}) denote the corresponding 5-dimensional compatible system of GO5(Q,)-
representations. One checks that the set S of places of bad reduction is contained in
the set of primes {p < 11,23, 37, co}. Using both the determination of S and the fact
that R(1) is self-dual, one computes that the determinant of R(1) is ¥, the quadratic
character associated to K = Q(v/—2-3-7-23-37). The compatible system R(1) ® ¥
is valued in SO;5(Q,). The corresponding symplectic compatible system S of rank 4 need

not have coefficients in Q, since it may come from a Q-abelian variety in the sense of
Definition 9.4.2. Indeed, it has coefficients in Q(+/3), and °S ~ S ® ¥, where o is the
non-trivial element of Gal(Q(\/g) /Q), and ¥ is the character as above of conductor Ag.
In particular, although A 1s a Q-fourfold, the field of definition will be K.

Over G, one expects that Nori’s construction gives a rational parameteriza-
tion of a component of the GSpin Shimura variety associated to the quaternion al-
gebra D = (—1, 3)g with some small (possibly trivial) level structure. Over Q, the Q-
structure appears (by examining examples) to be associated to a twisted form associated

to Q-fourfolds A over a quadratic extension whose associated rank four motive over Q
has coefficients in Q(«/g).

10. Applications to modularity

In this section, we apply our main modularity lifting theorem (Theorem 8.4.1) to
prove modularity theorems for abelian surfaces. The methods generalize those of [Wil95,
SBT97] for elliptic curves. In §10.3 and §10.4, we show that our results confirm the
paramodular conjecture of [BK14] in many cases, but that there are counterexamples to
the original formulation of the conjecture (arising from “fake abelian surfaces”).

10.1. First modularity results. — We begin this section with a proof of Theorem 1.1.7
of the introduction.

Proposition 10.1.1. — Let ¥ be a totally real field in which p > 2 splits completely. Let A/F
be an abelian surface with good ordinary reduction at all places v|p, and suppose that at each v|p, the
unit root crystalline eigenvalues are distinct modulo p. Assume that A admits a polarization of degree
prime to p. Let

Ba,: Ge — GSp,(F))

denote the dual of the mod p Galois representation associated to Alp], and assume that p , 1s vast and
tudy. Assume that p , is ordinarily modular, in the sense that there exists 7w of parallel weight 2 and
central character | - |* which is unramified and ordinary at all v|p, such that Py =Dy, s and Pr Gy,
us pure for all finite places v of ¥. Then A is modular. More precisely, there s an ordinary automorphic

representation 7w’ of GSp,(Ar) of parallel weight 2 and central character | - |* which satisfies pyr , =
PA,p-
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Proof. — As before, we write p5 , : Gy — GSp,(Q,) for the Galois representation
associated to the dual of the p-adic Tate module of A. The assumption that A admits
a polarization of degree prime to p implies that the image of p,, lands in GSp,(Z),)
and p, , lands in GSp,(F,). By Proposition 2.8.1, the representation p,, is pure for
all places v of F. The assumption that A has good ordinary reduction for all v|p and
distinct unit root crystalline eigenvalues for all v|p implies that the representations py
restricted to Gy, are p-distinguished weight 2 ordinary. Prop 10.1.1 is then an immediate
consequence of Theorem 8.4.1. O

Remark 10.1.2. — If A does not have a polarization of order prime to p, then,
by considering the kernel A[A] of any polarization A : A — A’, we deduce that the
representation Pay " Gg — Aut(A[p]) = GL4(F,) is reducible. Hence one could re-
place the assumption of the existence of a polarization on A of order prime to p in
Prop. 10.1.1 by the assumption that the Galois representation associated to A[p] is ir-
reducible. On the other hand, we do not phrase our theorem in this way for the fol-
lowing reason: if A does not have a polarization of order prime to p, then it need not
even be the case that the (necessarily reducible) representation p, , : Gq = GL4(F,)
associated to A[p] lands in any conjugate of GSp,(F,). Indeed, let E/Q be any ellip-
tic curve such that 73 : Gg — GLy(F3) has surjective image, let K/Q be an auxil-
iary degree 3 cyclic extension, let B = Resg/g(E), and let A denote the kernel of the
map B — E induced from the trace map Z[Gal(K/Q)] — Z. Then A is an abelian
surface, and 0, 3 >~ 753 ® W, where W € EXtéQ(F3, F;) i1s the unique non-trivial ex-
tension which splits over Gal(K/Q). The group theoretic image of 7, 5 is isomorphic
to GLy(Fs) x Z/3Z, but this is not isomorphic to any subgroup of GSp, (Fs). These ex-
amples are also related to the failure of the Shafarevich—Tate group III to have square
order — William Stein [Ste04] found abelian surfaces A exactly of the form considered
above with 3||TII(A)[3*].

We now give some examples where one can directly establish the modularity of
certain residual representations.

Proposiion 10.1.3. — Let ¥ be a totally real field in which p > 2 splits completely. Let p,
Gy — GSp,(F,) be an absolutely irreducible representation with similitude factor ™'
and tidy and p-distinguished weight 2 ordinary. Suppose furthermore that either:

which s vast

(1) p=3, and p5 is induced from a 2-dimensional representation with inverse cyclotomic deter-
minant over a totally real quadratic extension £/ ¥ in which 3 is unramified.

(2) p=23, and p5 s induced from a 2-dimensional representation valued in GLqo(F5) with
wmverse cyclotomic determinant over a totally real quadratic extension E/Y in which 5 is
unramified.

(3) o, is induced from a character of a quartic CM extension H/F in which p splits completely.
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Then p,, is ordinarily modulay, that is, there exists 7t of parallel weight 2 and central character | - |2
which is unramified and ordinary at all v|p, such that p, , = p, and px plcy, is pure for all finite

places v of F.

Proof. — Suppose that we are in one of the first two settings, so that p = 3 or 5,
and p = Indgg 0 for some representation o : Gy — GLy (Fp) with determinant ¢!, The
assumptions on p imply that §|GE<I/;) is absolutely irreducible, and the restriction of ¢ to
the inertia group at any prime w|p is an extension of ¢! by 1. If p = 5, the condition
on the determinant and the fact that E is unramified at p additionally ensures that the
projective image of @ is not As. The representation 9 locally has the structure of a rep-
resentation associated to an ordinary Hilbert modular form of parallel weight two and
trivial nebentypus. Suppose that ¢ is modular. It follows from [BLGG13, Thm. A] that ¢
does indeed arise from a Hilbert modular form of this kind, and we may take 7 to be
the automorphic induction of this form from E to F. Since E/F is unramified, this will
preserve the property of being ordinary. As in the proof of Theorem 9.2.8, purity follows
from the main results of [Bla06, Car14]. Hence it suffices to establish the modularity of o.

If 0 has solvable image, then, from a classification of the finite subgroups of GLy (k)
for a finite field £ (see for example [SD73]), we deduce that the projective image of 0 is
either Ay, Sy, or dihedral, and is in particular a subgroup of PGLy(C). By a theorem
of Tate (see [Ser77, Theorem 4]), this implies that there exists a characteristic zero lift
of © which is totally odd with finite solvable image, and the result follows from an appli-
cation of the theorems of Langlands and Tunnell ([Lan80, Tun81]) as in §5 of [Wil95].
It remains to consider the representations with vast non-solvable image. For p = 3, the
only non-solvable induced representations which are vast come from representations
(Lemma 7.5.21 (4)) 05 : Gr = GLo(Fy) with projective image A;. The modularity of
such a representation follows as in the solvable case, except now invoking the odd Artin
conjecture for totally real fields ([PS16b, Thm. 0.3]) rather than Langlands—Tunnell. Al-
ternatively, the arguments of [ElI05] over Q may be adapted to this setting.

Thus we are left with the case of non-solvable representations ¢ : Gy — GLy(F5)
with determinant &~
Wintenberger implies the existence of characteristic zero lifts of the required form (for
example by [Sno09, Thm. 7.2.1] — the assumption that 5 is unramified in E guarantees
that [E(&5) : E] = 4). To show that such a lift is modular, it suffices (by, for example, the
main theorem of [Kis09]) to show that ¢ is modular. However, this follows from a stan-
dard argument going back to [SBT97, Tay03] by realizing ¢ as the 5-torsion of a modular
elliptic curve over a solvable extension. In our situation, we may explicitly invoke [PS16b,
Prop. 2.1.3].

Suppose finally that p, = IndgiI X, where H/F is a quartic CM extension in

which p splits completely. Let v[p be a prime in F. The assumption that p, is ordinary
1

, which necessarily are surjective. The method of Khare—

implies that for two of the primes w|v of H the restriction of x to inertia at w is ¢, and
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it is trivial at the other two primes above v. Let ¥ denote an algebraic Grossencharac-
ter of Gy with conductor prime to p and CM type corresponding to the mod-p weights
of x. If ¥, is the p-adic avatar of ¥, then, by construction, the character ¥,/ x mod p is
unramified at p, and hence, after twisting ¥ by the Teichmuller lift of this character, we
may assume that ¥, = x mod p. Let E/F denote the intermediate real quadratic field
inside H. Then the automorphic induction of ¥ to GLy(Ag) 1s a Hilbert modular form of
parallel weight two which is ordinary at all v|p and has trivial central character. Inducing
once more to I, we obtain the required form 7. U

For explicit examples of abelian surfaces A/Q with End¢(A) = Z whose mod-3
or mod-5 representations p, , satisfy Prop. 10.1.3 — and hence, by Prop. 10.1.1, are
modular — see [CC.G20]. In contrast to the examples found in [BPP*19] and [BK20] of
large prime conductor, the examples found in [CCG20] have good reduction outside 2,
3,5,and 7.

We also have the following application to modularity over number fields which
need not be totally real (or even CM).

Theorem 10.1.4. — Let ¥ be a totally real field in which 5 splits completely, and let K /T be
a quadratic extension in which 5 is unramified. Let E/K be an elliptic curve which has good ordinary
reduction or semistable ordinary reduction for all places w|5 of K. Finally, assume that the representa-
tion Oy, 5 - Gk — GLo(F5) has the following properties:

(1) The projective image of Oy, 5 is either S5 = PGLy(F5) or S,.
(2) There exists a representation 75 : Gy — Glo(Fs) with determinant €= such that 75|, =

OF 5-

Then E s modular. In particular, there exist infinitely many modular elliptic curves over K up to twist
which are not CM and do not come from any subfield of K.

For example, one could take F to be Q(+/d) for any d = 1,4 mod 5, and then
take K = Q(+/d), which is a field of mixed signature.

Progf. — 1t suffices to prove that the twist of E by some quadratic character is
modular. We now apply Lemma 7.5.26 to the representation 75 of Gy to obtain a repre-
sentation

? = Indg! (75l ® Suyx) = Indg! (@), 5 @ Sniyk),

where dy/k is the character of an auxiliary quadratic extension. By Lemma 7.5.27, this
representation is vast and tidy and p-distinguished weight 2 ordinary.

As in the proof of Proposition 10.1.3, it follows from our hypotheses that 75 comes
from an ordinary Hilbert modular form = for F. By taking the base change of this form
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to K/F, twisting by the quadratic character dy/k, and then inducing back to F, we con-
struct a 7 of parallel weight 2 and central character | - |* which is unramified and ordi-
nary at all v|p such that p,, , = p. Again, the purity of p, , follows from the main results

of [Bla06, Carl14]. It follows from Theorem 8.4.1 that

0= Indgf\, (Ok.5 ® dni/k)

is modular, and hence (exactly as in the proof of Theorem 9.3.4) that gg 5 ® dy/x and
hence E is modular.

It is easy to produce examples of E satistying the hypotheses of the theorem (start-
ing with an elliptic curve over Q, for example). Using the fact that the genus zero
curve X(Qy, ;) is isomorphic to P' over K (there being at least one rational point coming
from E), we deduce that there will be infinitely many such points. On the other hand,
by choosing such points with appropriate local properties (for example, ramified at one
prime w above v but not at the other) we may find infinitely many examples which do
not arise via base change. Since the mod 5-representations associated to these curves are
not projectively dihedral or cyclic, they also cannot have CM. 0J

10.2. Abelian varieties with fixed 3-torsion. — We have produced a number of residual
representations mod p for small p which are automorphic. It is natural to ask whether
any such representation (satisfying necessary local conditions) arises from infinitely many
abelian surfaces over F. The corresponding question for 2-dimensional representations
has a positive answer precisely when p = 2, 3, or 5, where the corresponding moduli space
is a smooth curve of genus zero. We show that for abelian surfaces there is a positive
answer for p =2 and p = 3. When p > 5, the moduli space in question is of general
type [HS02], and so one would not expect (in general) that they admit infinitely many
rational points not lying on a special Shimura subvariety, although we do not attempt to
address this question.

When p = 2, the problem is pretty much obvious. The fact that the corresponding
moduli space for the trivial representation p is rational goes back to Igusa (see [HS02,
Theorem IV.1.4] and [Igu64]). The fact that the corresponding moduli space for non-
trivial 0 1s unirational is also surely well-known (we shall now give a sketch of this re-
sult although we shall never use this fact). Fix a representation p : Gy — GSp,(Fy).
Since GSp,(Fy) > Sg, one may write any G-extension L of F for G C 54 as the split-
ting field of a degree 6 separable polynomial f(x) over F. If one then takes A to be the
Jacobian of the curve »* = g(x) for any g(x) with QJx]/g(x) >~ QJx]/f(x), then p is the
representation associated to the 2-torsion of A. An elementary computation shows that
this gives a 3 = 6 — dim PGL, dimensional family of abelian surfaces up to isomorphism
with fixed p for any such p. Explicitly, one may let ¢; for : =1 to 6 be any basis over Q
of the étale Q-algebra QJx]//(x), and then let g(x) be the minimal polynomial of ) #e;.
(The Jacobian A depends only on g(x) up to the action of PGL; on P'.)
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This leaves the case p = 3. The answer in this case can be extracted from the
very extensive literature on the subject, essentially following the main idea of [SBT97].
Fixp : Gy — GSp,(Fs3) with inverse cyclotomic similitude character, and let V denote the
underling symplectic space over Fs. Let B(p)/F denote the moduli space of pairs (A, 13)
consisting of abelian surfaces A and symplectic isomorphisms

15:A[3] — VY.

(The dual is here because our Galois representations have been normalized cohomologi-
cally, so it is the dual representations which actually occur inside the p-adic Tate modules.)
The variety B(p) is smooth and geometrically connected. Over G, we may identify B
with the moduli space of principally polarized abelian surfaces with full level 3 structure.
This space is well-known to be a (geometrically) rational threefold, and is isomorphic
to an open subvariety of the Burkhardt quartic [Bur91, Cob06, Bak46, Hun96, BN 18],
specifically, the complement in the Burkhardt quartic of the Hessian hypersurface.

The Burkhardt quartic is exceptional for a number of different reasons, not least of
which is that it admits an action of the group PSp, (Fs) (tautologically from the descrip-
tion above). If V= (u3)? @ (Z/3Z)*, we write B for B(p). One knows ([BN18]) that B
is rational over Q. Suppose we knew that p actually came from an abelian surface A,
so that B(p) admitted a smooth rational point over F. One might ask whether this is
enough to force the twist B(p) to be rational over F; this question is resolved in the nega-
tive in [CC20]. The difficulty in a naive attempt to replicate the argument of Taylor and
Shepherd-Barron ([SBT97]) in this case is that the birational map B — P? is not equiv-
ariant with respect to PSp,(F3) and any embedding PSp, (Fs;) — PGL4(§) = Aut(P?).
This means that a PSp, (Fs)-twist of B does not naturally inherit the structure of a Severi—
Brauer variety.

It turns out, however, that we are lucky. There exists a cover P(p) — B(p) of de-
gree 6 corresponding to an additional choice of level 2 structure of A, namely an odd
theta characteristic, (or, for A = Jac(C), a Weierstrass point on the corresponding genus
two curve C). The cover P(p) now does have the property that it is not only rational,
but PSp, (Fs)-equivariantly rational, which allows us to deduce the rationality of P(p)
in favourable circumstances, and hence the unirationality of B(p). In particular, this al-
lows us to construct infinitely many rational points on B() which correspond to abelian
surfaces A with Endg(A) = Z, as in the following theorem.

Theorem 10.2.1. — Fix p : Gy — GSp,(F3) with similitude character €. Then B(p)
w5 unirational over ¥, and there exist infinitely many principally polarized abelian surfaces AJF up to
twist with Endg(A) = Z and such that 15 : A[3] >~ V(p)". Moreover, we may additionally assume
that these A are Jacobians of curves which have a rational Weierstrass point, and may thus be written
i the form y* = f(x) where f(x) is a quintic polynomial. Suppose, in addition, that for all v|3, the
representation Py, arises as the 3-torsion of an abelian surface over ¥, with good ordinary reduction.
Then we may additionally assume that these A also all have good ordinary reduction for all v|3.
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Note that, as with of [SBT97, Thm. 1.2], we do not need to impose any further
local hypotheses at any primes after we impose the global condition on the similitude
character. (In particular, if K is a local field of characteristic zero, then by using a glob-
alization argument as in [Call2, Thm. 3.1], this implies that the only requirement on a
mod 3-representation p : Gx — GSp,(Fs) to arise from a principally polarized abelian
surface over K is that the similitude character is ¢7'.)

The remainder of this section is devoted to the proof of Theorem 10.2.1. We start
by defining the non-Galois degree 6 cover P of B and recalling its basic properties.

Definition 10.2.2. — Let B(2) := Ay (6) — Ay (3) = B denote the cover of B corresponding
to a choice of full level-2 structure. It 1s a Galois cover with Galois group S¢ = PSp,(Fy), where we fix
this identification up to conjugacy by dentifying S¢ generically with the Galows group of the Weierstrass
pownts on C with Jac(C) = A. (This identification can be made explicit using the map t below.)
Then P denotes the intermediate cover over B corresponding to the comjugacy class of subgroups S5 C
Se = PSp, (Fy) which fix a point.

A more natural definition of P is given in terms of theta characteristics. Namely, P
may be identified with the moduli space A (3)~ of principally polarized abelian surfaces
with a symmetric odd theta structure of level 3 (see [DLO08, §2.3]). Recall that there is
a natural Torelli map 7 : My (3) — Ay(3) which is a bijection away from the Humbert
surface consisting of principally polarized abelian surfaces which split as the product of
two elliptic curves. A rational point on P in the image of 7 corresponds to A = Jac(C),
together with a symplectic isomorphism from A[3] to (u3)? @ (Z/3Z)* and the data of a
rational Weierstrass point on C, which (after moving this point to infinity) means that C
can be written in the form »* = f(x) for a quintic polynomial f(x).

The level 3-structure on B pulled back to P gives an action over Q(+/—3) of the
group PSp,(Fs). If one gives PSp,(Fs) the structure of an étale group scheme over Q
by viewing it as the group G of symplectic automorphisms of uj x (Z/3Z)* mod-
ulo (—1, —1), then this action descends to Q. Equivalently, the twisting of any auto-
morphism in PSp,(F3) by the action of 0 € Ggq is accounted for by the Galois action
on uj x (Z/3Z)? (as in the formula for 06 below).

Proposition 10.2.3. — The variety P s rational over Q. Moreover, there exists a birational
map P — P° over Q which is equivariant with respect to the action of G for some action of G on P°.

Proof. — The G-equivariant map P — Pa is the odd theta map denoted Th™
in §2.4 of [DLO8]. The fact that Th™ is a birational isomorphism is [Bol07, Theo-
rem 0.0.1]. 0

We now turn to the proof of Theorem 10.2.1. From Proposition 10.2.3, it fol-
lows that the rationality of P(p) over F is equivalent to the rationality of P*(p) over F,
where P?(p) is the twist of P® arising from the projective representation associated
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to p. The action of Sp,(F3) on M% x (Z/3Z)* over Q(¢3) induces a homomorphism 6
from Sp,(Fs3) to Aut(P) and hence to Aut(P?). This map satisfies

g 0 0 0 Ho) 0 0 0

B 0 e) 0 0 0 e '(g) 0 0
00(a) = 0 o 1 0o|%*|l o 0 1 0
0 0 0 1 0 0 0 1

Since P has similitude factor €', we can associate to p a cocycle

e (o) 0 0 0
iy 0 e (o) 0 O

o0 ] p (o) 0 0 10 ,
0 0 0 1

in H'(F, PGL, (@), and P?(0) is the twist of P? by this cocycle.

Lemma 10.2.4. — If p : Gy — GSp,(F3) has similitude factor e =", then P(p) is rational.

Proof. — The proof is very similar to the proof of [SBT97, Lem. 1.1]. We need to
show that the cocycle in H'(F, PGL,(Q)) corresponding to p vanishes, so it is enough
to show that it comes from H'(F, GL,(Q)). It is therefore enough (following the argu-
ment in [SBT97]) to show that we can lift the induced homomorphism 6 : PSp, (F3) —
PGL4(Q) to a unigue homomorphism g Sp,(Fs) — GL4(Q). Since PSp,(Fs) is perfect
(indeed simple) it has a unique Schur cover (Darstellungsgruppe). Since the Schur multi-
plier of PSp, (F;) has order 2 ((CCN*85]), the Darstellungsgruppe of PSp, (F5) may be
identified with Sp, (F3), and in particular the projective representation 6 lifts to a genuine
homomorphism 0 : Sp,(F3) — GL4(Q) It remains to show this lift is unique.

We claim this follows from the fact that Sp,(Fs) is perfect. Indeed, because the
group 1s perfect, every element of Sp,(Fs;) can be written as a product of commuta-
tors [g h]. Hence it suffices to show that 9([g h)) is unlquely defined. But 9([g h)) =
[0 (9), 0(/1)], and the commutator of any two elements of GL,(Q) depends only on their
images in PGL,(Q), as required. We note (although we do not use this fact) that PSp, (F3)
has no faithful 4-dimensional representations (again by [CCN*85]) and so the represen-
tation 6 of Sp, (F) is faithful. O

Remark 10.2.5. — Note that the corresponding facts (that PSLy (F5) is simple with
Darstellungsgruppe SLy(F5)) lead to a proof of [SBT97, Lem. 1.1]. This differs slightly
from the original proof in [SBT97] as follows: Instead of using the fact that PSLy(F5)
has Schur multiplier Z/2Z and deducing that any irreducible projective representation ¢
lifts to a representation 9 : SLy (F5) — GLy(Q), the authors use the fact that the kernel
of SLy(Q) — PSLy(Q) has order 2, and so @ automatically lifts to a representation of
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a degree 2 central extension of PSLy(Fs) to SLy(Q), and then argue that the image
(and hence source) is SLy(F5) (because the split central extension would give a faithful 2-
dimensional representation of PSLy (F5)).

We have now proved under the given hypothesis on p that P(p) is rational, and
hence B(p) is unirational. Moreover, twisting P by p leaves the level structure at the
odd theta characteristic unchanged, so that all the corresponding abelian varieties in the
image of the Torelli map are Jacobians of curves C of the form »* = f(x) where f(x) is a
quintic (after moving the rational Weierstrass point to infinity).

Proof of Theorem 10.2.1. We need to show that infinitely many of the corresponding
points of P(p) do not admit any extra endomorphisms over G. We show that we may
find infinitely many A such that the Galois representation associated to A[5] has image
containing Sp, (Fs). If A/F did admit extra endomorphisms over F, then, from the clas-
sification of the possible Galois types of endomorphism structures on A recalled at the
beginning of §9.2, the Galois representation associated to the 5-adic Tate module of A
would become reducible after making an extension of degree at most 2. But the action
of Sp,(F5) on F} remains absolutely irreducible after restriction to any index two sub-
group, which forces Endg(A) = Z. (In this argument, 5 could have been replaced by any
prime p independent of the level structure.)

We will now arrange this condition by an application of Hilbert irreducibility as
in the proof of [SBT97, Theorem 1.2]. Let R(p) — P(p) be the fibre product of P(p)
with A5(5) — Ajy. This is a Galois cover with Galois group PSp, (F;). Recall that P(p)
is rational. By Hilbert irreducibility ([Ser89, §9.2, 9.6]), we may find infinitely many
points x € P(p)(F) so that the Galois group of the splitting field of any preimage y € R(p)
of x contains PSp,(F5), and moreover, we may restrict x to any non-trivial open sub-
set of P(p)(F,) for all v in some finite set of primes S. If A denotes the corresponding
abelian surface, it follows that the projective Galois representation associated to 0, 5 con-
tains PSp,(F;), and thus the image of o, ; itself contains Sp,(Fs). If we now use the
assumption that P(p)(F,) has points corresponding to abelian surfaces with good or-
dinary reduction at all v|3, then (since the ordinary condition is open) we can choose
our x € P(p)(F) so that A/F has good ordinary reduction for all v|3. ]

We obtain the following corollary:

Theorem 10.2.6. — Let ¥ be a totally real field in which 3 splits completely. Then there exist
infinately many abelian surfaces A /¥ up to twist with Ende(A) = Z which are modular, and which do
not come _from any proper subfield of ¥ (in the sense that, for each p, there 1s no twist of the corresponding
Galots representation py , which extends to the absolute Galois group of a proper subfield of F).

Progf. — Let H/F be a quadratic extension in which every prime v|3 is inert, and
let o be the non-trivial element of Gal(H/F). Let E/H be an elliptic curve with good
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ordinary reduction for all v|3, such that oy, 3 : Gy — GLy(F3) is surjective, and such that
the projective images of py, 5 and 0y, 4 are totally disjoint. Since X(1) has genus zero, this
can be achieved by choosing a global point which lies over a suitable choice of smooth
point in X(1)(k,) (with £, = Oy /w) for suitably chosen primes w which split over F, for
example ensuring that py, 5(Frob,,) and py, ;(Frob,.) give distinct elements of PGLy (F3).
Similarly, by making choices above primes of Q which split completely in H, we may
ensure that p = Indg; Py, 3 does not descend after twisting to any proper subfield of F.
By Lemma 7.5.22, p 1s vast and tidy. The fact that each prime v|3 in H/F is in-
ert implies that p is 3-distinguished and finite flat, and hence 3-distinguished weight 2
ordinary. It follows from Proposition 10.1.3 that p is ordinarily modular. The represen-
tation p at each v|3 arises locally from an abelian variety over F, with good ordinary
reduction, because it does so globally — namely, the restriction of scalars of E from H,
to I, It follows from Theorem 10.2.1 that there are infinitely many abelian surfaces A
with up to twist with good ordinary reduction at each place v|3 and satisfying A[3] = p.
The choice of p ensures that any such A does not descend (even after twist) to any subfield
of F. Finally, every such A is modular by Proposition 10.1.1. O

10.3. The Paramodular conjecture. — We end this section with a discussion of the re-
lationship between our results and the “paramodular conjecture” of [BK14] (cf. also the
remarks in [Yos80, §8, p. 243]). Recall that this conjecture states that there should be a
bijection (determined by the compatibility of Frobenius eigenvalues and Hecke eigenval-
ues at unramified places) between isogeny classes of abelian surfaces A/Q of conductor N
with Endg A = Z, and holomorphic cuspidal Siegel newforms of weight 2 and paramod-
ular level N which are “non-lifts” and have rational Hecke eigenvalues, considered up
to scalar multiplication. Here “non-lifts” means that they are orthogonal to the space
of Gritsenko lifts. We explain in this section why the paramodular conjecture as origi-
nally formulated in [BK14] is not true. The issue is that Siegel newforms of weight 2
and paramodular level N with rational eigenvalues will not always correspond to abelian
surfaces. In light of the observations of this paper, Brumer and Kramer have modified
their conjecture in [BK19] along the lines suggested by the analysis presented here — we
reproduce their updated conjecture in this paper as Conjecture 10.4.3 below. In order to
distinguish between the two versions of this conjecture, we refer to the original formula-
tion (given above) as the original paramodular conjecture, and the modified version (Con-
jecture 10.4.3) as the paramodular conjecture. Both of these conjectures posit an injective
map from isogeny classes of abelian surfaces A/Q of conductor N with Endg A =Z to
Siegel newforms of weight 2 and paramodular level N, which are “non-lifts” and have ra-
tional Hecke eigenvalues, and hence, when talking about the implication in this direction,
we do not distinguish between different versions of the conjecture.

We firstly show that all of our examples of modular abelian varieties verify the
paramodular conjecture, before giving a more general explanation of the relationship
between the paramodular conjecture and the Langlands program, and then explaining
some counterexamples to the original paramodular conjecture.
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Lemma 10.3.1. — Any abelian variety A/ Q satisfying the hypotheses of Proposition 10.1.1
satusfies the paramodular conjecture; that is, there is a corresponding holomorphic cuspidal Siegel newform
of weight (2,2) and paramodular level equal to the conductor of A, which s a non-lft, has rational
Hecke eigenvalues, and is unique up to scalars.

Proof. — By Proposition 10.1.1 (or more precisely by Theorem 8.4.1, as applied in
the proof of Proposition 10.1.1) there is an L-packet of cuspidal automorphic representa-
tions 7w of weight 2 and general type corresponding to A, whose L-parameters coincide
with those determined by A. The claim that there is a unique corresponding newform of
level equal to the conductor of A is now a consequence of the theory of newforms due to
Roberts and Schmidt [RS07b] (which assumes that we are working with representations
of trivial central character, but this is harmless, as we can reduce to this case by twisting 7
by | - |). This newform is certainly a non-lift, as 7 is of general type (see the discussion
following this lemma for a more precise description of the non-lifts), and it has rational
Hecke eigenvalues by local-global compatibility.

More precisely, by [Sch18, Thm. 1.1], for each prime v of Q, there is a unique
paramodular representation in the L-packet at v, namely the unique generic represen-
tation. Since representations of general type are stable, this gives rise to a unique 7 of
weight 2 which has a paramodular vector at each finite place. Furthermore, for each v
the space of paramodular vectors at minimal paramodular level is one-dimensional
by [RSO7b, Thm. 7.5.1], and this minimal paramodular level coincides with the con-
ductor of the corresponding L-parameter (and thus with that of A) by [RS07b, Thm.
7.5.4(i11)] and the main theorem of [GT11a]. U

We now discuss the paramodular conjecture more broadly. Firstly, we discuss the
automorphic side of the conjecture. As explained in [Sch18], the space of Siegel modular
forms of weight 2 and fixed level can be written as an orthogonal sum of spaces spanned
by eigenforms in automorphic representations of the various types in Arthur’s classifi-
cation. The Gritsenko lifts are precisely those of Saito—Kurokawa type, while those of
one-dimensional type do not contribute to the cuspidal spectrum. Since abelian surfaces
with Endg A = Z should correspond to automorphic representations of general type (as
their corresponding Galois representations are irreducible), we see that it is implicit in
the statement of the conjecture that there are no paramodular eigenforms (at least with
rational Hecke eigenvalues) of Yoshida, Soudry, or Howe—Piatetski-Shapiro type.

This 1s indeed the case, as i3 proved in [Sch18, Sch20]. The case of Yoshida type
is [Sch18, Lem. 2.5]; in this case, the parameters are unstable, and the corresponding
packet of representations does not satisfy the required sign condition. Indeed, at each
finite place, the condition that the representation admits a paramodular vector forces the
sign to be trivial, whereas the condition of being the holomorphic limit of discrete series
at infinity gives a non-trivial sign. Note that the analogous argument would fail for totally
real fields of even degree.
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The cases of Soudry and Howe—Piatetski-Shapiro type are [Sch20, Prop. 5.1]. In
these cases the obstructions to the existence of paramodular vectors are at finite places;
it turns out that at the places where these representations are ramified, there are no
paramodular vectors. In these cases the representations are parameterized by certain
Hecke characters, and the fact that the representations are ramified at some finite place
comes from the fact that any Hecke character must be ramified. Accordingly, the analo-
gous argument could fail for totally real fields of class number greater than 1.

It follows from this discussion that the original paramodular conjecture is equiva-
lent to the claim that there is a bijection between isogeny classes of abelian surfaces A/Q
with Endg A = Z, and cuspidal automorphic representations IT of GL;(Ag) of sym-
plectic type with multiplier | - |2, whose infinity type is the one corresponding to the L-
parameter ¢.; o, and whose Hecke eigenvalues are all rational. In one direction, given A,
the existence of IT is certainly predicted by the Fontaine-Mazur-Langlands conjecture,
the rationality of its Hecke eigenvalues following from strong multiplicity one. We now
explore the converse direction.

Lemma 10.3.2. — Let ¥ be a totally real field. Assume the Fontaine—Mazur Conjecture, the
Standard Congectures, the Hodge Conjecture, and that the Galots representations associated to any cuspidal
automorphic representation T1 for GL4(Ay) whose infinity type for each v|oo corresponds to the L-
parameter ¢o.1 o form an vrreducible weakly compatible system. Let T1 be such a representation with the
properties that its Hecke eigenvalues are rational, and that T1 is of symplectic type with multiplier | - |°.
Then, associated to T1, there exists a corresponding motive A/ such that either:

(1) A/F s an abelian surface.
(2) A/F is an abelian fourfold with endomorphisms over ¥ by an order in a quaternion alge-

braD/Q.

Moreover, tf A/ F is an abelian fourfold with Endy(A) ® Q = Endc¢(A) ® Q an indefinite quaternion

algebra D /Q, and one assumes only standard automorphy conjectures, then there exists a corresponding T1
of symplectic type with rational eigenvalues and multiplier | - |°.

One might reasonably (following Serre [DR73, §0.7, p. DeRa-13]) call an abelian
fourfold A with endomorphisms by an order in a quaternion algebra D/Q a fake (or false)
abelian surface (fausse surface abélienne).

Sketch of proof. — (For a more detailed proof of a closely related result, see [PVZ16,
Thm. 3.1].) One first obtains from IT a rank 4 symplectic weakly compatible irreducible
family of p-adic Galois representations

R=(Q,S,{Q,X)}, {r}, {H:}
with H, = (0,0, 1, 1) for all T|oo, and such that

r,: Gy — Gsp4(@)
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has inverse cyclotomic similitude character. The Fontaine-Mazur conjecture implies
that R arises from a pure irreducible motive M over I with coefficients in Q (we also
now assume the standard conjectures [Kle94]). Concretely, this means that M is irre-
ducible and that for each prime p, the p-adic étale realization of M, H.,(M, Q,) ®q, Q
contains 7,. By the Brauer—Nesbitt theorem, all the twists of 7, by automorphisms of the
coefficient field @ are isomorphic to 7,. Therefore, if we assume the Tate conjecture, we

deduce that H' (M, Q,) ®q, (_lﬁ is a sum of copies of 7,. The rank of M is therefore 44 for
some d. Let Endg(M) ® Q = D. Since M is simple, D is a division algebra. The centre
of D is a number field E. We claim that E = Q. It suffices to show that, for all p, the centre
of D ®Q§p s Qp By the Tate conjecture, however, we can determine D ® Qﬁ from the
endomorphisms of the p-adic étale realization of M, which is isomorphic to a direct sum
of d copies of 7,. It follows that End@[GF](r;) is a matrix algebra over Qﬁ, and thus has

centre 61] Hence E = Q.

Let us fix an embedding I — C. The Hodge realization of M is a polarized Hodge
structure of weight one, which gives a polarized torus, and thus (by Riemann) an abelian
variety B over C. Since M is defined over F, we deduce that, for any automorphism o
of G over F, B? is isogenous to B. Let 24 be the dimension of B and r be the degree of
its polarization. Let Ay, be the coarse moduli space of abelian varieties of dimension 24
with a degree r polarization. This is a scheme of finite type over Q. We base change it to
F. Let [B] be the point on Ay, associated to B. The set of points on Ay, , isogenous to [B]
is countable. On the other hand, if the residue field of [B] in Ay, is transcendental over
F, we deduce that its orbit under Aut(CG/F) is uncountable because there are uncountably
many ways to embed a transcendental field of finite type over F into C. It follows that
[B] is defined over a finite algebraic extension L of I and that B is defined over a finite
algebraic extension L/ of L. Moreover, M|;; = h'(B). We now consider C = Resy//¢B, an
abelian scheme over F. Looking at the p-adic étale realization G, of C for a prime p, we
find that C, =M, ® Ind;//r1 where M, stands for the p-adic realization of M. We now
let A be the simple factor of C whose p-adic étale realization contains 7,. Then R arises
from h'(A). It follows from the Tate conjecture that h'(A) and the motive M we started
with are in fact isomorphic.

Now taking into account that the centre of D is Q, we deduce from the Albert
classification (see [MumO08, Thm. 2, p. 201]) that A is one of the following three types:

(I) Type I: A/F is an abelian surface with Endg(A) =Z.

(2) Type II: A/F is an abelian fourfold with Endg(A) ® Q = D, an indefinite
quaternion algebra over Q.

(3) Type III: A/F is an abelian fourfold with Endg(A) ® Q = D, a definite quater-
nion algebra over Q.

(Note that Type IV of the Albert classification cannot occur, because the centre I'=Q
of D 1s not a totally imaginary CM field.)
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Suppose that A/Q is an abelian fourfold with Endg(A) ® Q = Endc(A) ® Q =D
for some indefinite quaternion algebra D/Q (and thus of Type II above). We now con-
struct a suitable compatible system R, which (by standard automorphy conjectures) will
give rise to a suitable I'T. The Mumford—Tate conjecture is known for the varieties of type
IT [Chi92, Chi90], and the semisimple part b of the Lie algebra of the Mumford—Tate
group of A is (for almost all p) sp,. Let p be any prime which splits D. Then H'(A, Q,) has
an action of D ® Q, = M,(Q,). In particular, it decomposes as V,, @ V,, for an irreducible
4-dimensional representation V, whose monodromy group is contained in GSp,(Q,).

If Q,(T) denotes the degree 8 polynomial in Z[T] coming from the character-
istic polynomial of Frobenius at v, then every root of Q, (1) has even multiplicity, and
thus Q,(T) = P,(T)? for a degree 4 polynomial P,(T) € Z[T], which will be the charac-
teristic polynomial of Frobenius at v on V,. By the Weil conjectures, the roots of Q, (T)
obey the usual symmetry associated to a weight one motive, and so the same is true
for P,(T). This implies that V; >V, ® ¢!, Since the Galois representation has big
image in V,, any isomorphism V, >V, ® x forces x to be trivial, and thus from the
identification V) >V, ® ¢~! above we deduce that the similitude character is inverse
cyclotomic. In particular, by standard automorphy conjectures, V will be associated with
a IT as in the theorem. By strong multiplicity one [JS81], the rationality of Hecke eigen-
values at almost all primes (in particular primes of good reduction) forces rationality at
all primes. UJ

10.4. Examples and counterexamples. — In this section, we give some examples of
abelian fourfolds A/F with Endp(A) ® Q = D for a quaternion algebra D/Q. In
Lemma 10.4.4, we prove the existence of such A which also satisfy End¢(A) ® Q = D for
some indefinite D/Q. But first, we construct abelian fourfolds A/Q with Endp(A) ® Q =
D, and such that (under standard conjectures, and even unconditionally in some cases),
they correspond to a IT as above which comes from a paramodular eigenform with ratio-
nal Hecke eigenvalues, and thus contradict the original paramodular conjecture.

10.4.1. Abelian fourfolds of type 1II. — We expect that case (3) considered in the
proof of Lemma 10.3.2 cannot occur. While we do not show that here, we instead discuss
a minor subtlety which occurs when trying to construct examples of this kind.

Let E/Q be an elliptic curve (say without complex multiplication). Let FF/Q be (say)
a totally real field with Gal(F/Q) = Q, the quaternion group of order 8. The group Q
has an irreducible representation W/Q of dimension 4, which contains a stable integral
lattice A C W. Note that, for any prime p, there is a decomposition W @ Qﬁ =VaeV for
an irreducible 2-dimensional faithful representation V of (). Now let us define:

A=E'=E®zA.

We find that A is simple over Q, and Endg(A) ® Q = Endg(W) = D, where D/Q is
the Hamilton quaternions. The corresponding compatible system R arises from Galois



486 GEORGE BOXER, FRANK CALEGARI, TOBY GEE, VINCENT PILLONI

representations
Py =15, V:Gqg—> Gb,(@).

For p # 2, the image of this Galois representation lies in GL4(Q,). On the other hand,
the possible symplectic forms associated to p, are the one dimensional summands of

A’p = (Sym” pr,, ® det(V)) @ (det(pp,) ® Sym*(V)).
1

Since det pg, = &~
tude character if and only if Sym*(V) contains the trivial representation. But det(V) = 1

, we obtain symplectic representations with inverse cyclotomic simili-

for the faithful complex 2-dimensional representation of Q, so Sym*(V) is the direct sum
of the three non-trivial quadratic characters of (), and these compatible families do not
have the required form.

More generally, suppose that A/Q is an abelian fourfold with Endg(A) ® Q =
D for some definite quaternion algebra D. The corresponding Shimura curves Xp
parametrizing such objects lie in the exceptional class of Shimura varieties with the prop-
erty that there is a strict containment D C End¢(A) for all complex points A of Xp
(see [BLO4, §9.9]). Since D/Q is definite, the semisimple part h of the Lie algebra of
the Mumford-Tate group should (for almost all p) be contained in s0, = sly x sl, rather
than sp, (by [MZ95, §6.1]). This forces the representations V, to decompose (as Qﬁ-
representations) as the tensor product of a representation coming from a modular form
with an Artin representation. We expect it should be possible to make a careful case by
case analysis to rule out this case occurring, but we have not attempted to do this.

10.4.2. Abelian fourfolds of type II. — One can produce examples of abelian four-
folds with endomorphisms by an order in an indefinite quaternion algebra D/Q by tak-
ing the tensor product of a 2-dimensional representation with an Artin representation.
Let B/Q be an abelian surface of GL(2)-type with endomorphisms by an order in a
quaternion algebra D which are defined over a quadratic extension K/Q, and then
take . C V to be a lattice in a 2-dimensional dihedral representation V over Q which
is induced from a quadratic character x of K which does not extend to Q (so the action
of Gg on V is through a dihedral group of order 8). Then one can take A =B ®z L,
which may be identified with the restriction of scalars of the quadratic twist B® x of B
from K to Q.

The action of an order of D on B and B ® x over K extends to an action of this
order of D on A. We obtain a compatible system R of Galois representations

=15, ®V:Gq— GLi(Q,).

Because V is induced from Gk, it follows that the characteristic polynomials of Frobenius
of this representation all have coefficients in Q, It now suffices to show that p, preserves
a symplectic form with inverse cyclotomic similitude character. The argument proceeds
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exactly as in §10.4.1, except now we have the isomorphism A*V 2 xi,q. In particular,
the trivial character is a summand of Sym”V, and thus p, preserves a symplectic form
with similitude character ¢~'. The representations p, do not arise from abelian surfaces
over Q, since that would contradict the Tate conjecture for abelian varieties [Fal83].
Moreover, they are easily seen to be modular. Hence these give counterexamples to the
original paramodular conjecture.

For an explicit example, one could take B to be the modular abelian surface which
is a quotient of J(243) with coefficient field Q_(\/g) (see [Cre92, Table 3]), which is
geometrically simple and obtains quaternionic multiplication over Q(+/—3). Then take
any non-Galois invariant quadratic character x of Q(v/—3), and let A = Resg/o(B® x).

In light of Lemma 10.3.2, Brumer and Kramer have formulated the following
natural modification of the original paramodular conjecture (see [BK19]):

Conjecture 10.4.3 (Paramodular Conjecture of Brumer—Kramer). — Let Ax denote the set of
isogeny classes of abelian surfaces A/ Q with Endg A = Z and conductor N, and By the set of isogeny
classes of fake abelian surfaces (QM abelian fourfolds) B/Q of conductor N* with Endg B an order
in a non-split quaternion algebra D/ Q. Let Px denote the set of holomorphic weight 2 paramodular
Jorms f of level N up to nonzero scaling which have rational Hecke eigenvalues and lie in the orthogonal
complement to the space of Gritsenko lifls. Then there is a bijection between the set Ax U Bx and Px
such that

L(C, s) = L(f, s, spin) if C € Ay and L(C, s) = L(f, s, spin) if C € By.

We conclude with some remarks on the possible existence of abelian fourfolds
which satisfy case (2) of Lemma 10.3.2 and additionally have no further endomorphisms
over G (such varieties will necessarily be geometrically simple).

Expected Lemma 10.4.4. — There exists a totally real field ¥, an indefinite quaternion alge-
bra D, and an abelian fourfold A/¥ with Endp(A) @ Q = End¢(A) ® Q =D.

-1,3
Sketch. — Let D =

be the unique quaternion algebra over Q ramified

at (exactly) 2 and 3. Let Op denote the maximal order in D. In the standard way, one
may also write down an involution f obtained by conjugating the standard involution so
that trp,q(xx") is positive definite, and write down a non-degenerate alternating form v
on (0}) ® Q which satisfies various compatibilities with f. Associated to Op, in the usual
way is a Shimura stack (of level one) X parametrizing tuples (A, A, t) where A is an S-
abelian fourfold over S, A is a principal polarization over S, and ¢ : Op — End(A) is an
injective homomorphism such that the Rosati involution induced by A restricts to { and
such that v is compatible with the polarization on homology as an Op-module. X is a
smooth Deligne-Mumford stack over Q with a single geometric component (cf. [KR99]).
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The complex points X(C) are uniformized by the Siegel upper half space of dimen-
sion 3, and the generic point of X over € has endomorphisms precisely by Op, (see §9.9
of [BLO4]).

By [Mil79], there exists an abelian surface B/C with End¢(B) ® Q = D, that
the Rosati involution on EndB is x — x', and such that the restriction of scalars of B
from G to R gives a point in X(R). (Another way to view this is to consider X as a GSpin
Shimura variety associated to a 5 dimensional quadratic space as in [KR99], and then
signature (1, 2) subspaces will give Shimura curve subvarieties.)

This is not quite sufficient, however, to guarantee a point over X(F) for a totally
real field F with the correct endomorphisms, nor even a point over X(Q), since one
has to remove from X(C) a countable union of proper Shimura subvarieties, which
might a priori exhaust the Q-points of X. Moreover, due to the stackiness of X, there
are issues comparing fields of definition versus fields of moduli. We therefore employ a
trick already used in the proof of Theorem 10.2.1. Namely, impose level structure by
choosing a large prime p > 3 and fixing a surjective representation p : Gg — GSp,(F,)
with inverse cyclotomic similitude character. (Such representations are abundant — one
source are the duals of the p-torsion of abelian surfaces over Q.) Then X admits a
geometrically connected cover X(p) defined over Q with level structure correspond-
ing to A[p]Y = p @ p, with a suitable choice of polarization and compatible action
of (On ®Z,)/p = (My(Z,))/p = My(F,).

The variety X(p) is a fine moduli space which is now a smooth variety over Q
with real points, since the point Res¢/r(B) considered above has the appropriate level
structure over R. Employing the theorem of Moret-Bailly [MB89], we may deduce the
existence of a totally real field I and a corresponding abelian variety A/F such that F is
disjoint from the splitting field of p. Because X(p) is a fine moduli space, the variety A
has endomorphisms by Op over F. It now suffices to show that it has no further endomor-
phisms over C. The dual of the Tate module of A decomposes as a Galois representation
as p @ p where p : Gp — GSp,(Z,) is a lift of p. Since p > 5, the assumption that p has
surjective image implies that p also has surjective image. However, if A admitted extra
endomorphisms over any extension of F, then the image of p restricted to some open
subgroup would lie inside a proper algebraic subgroup of GSp,(Q,), contradicting the
fact that image contains an open subgroup of GSp,(Z,). UJ

It would be interesting to know whether (for suitable choices) these varieties have
points over Q which correspond to A/Q with End¢(A) ® Q = D, but this is not so
easy to determine by pure thought. However, the specific X chosen above (ramified at
only 2 and 3) is possibly the most likely choice to be rational, since it corresponds to the
indefinite quaternion algebra D/Q of smallest discriminant. The construction of Nori
in §9.4.4 suggests that, for this D, the moduli space is at least geometrically rational.
Note, however, that there will be field of moduli issues when one works at level one, so
even the rationality of this space over Q does not imply the existence of such A.
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10.4.5. Cremona’s question. — We finally consider two 2-dimensional irreducible
compatible systems S of representations of G for some quadratic extension K/Q, with
inverse cyclotomic determinant, Hodge—Tate weights (0, 1), and coefficients in Q. Note
that, for such a family S, there is a corresponding family R = Indgg S of 4-dimensional
symplectic representations with inverse cyclotomic similitude character. An argument
very similar to (but easier than) Lemma 10.3.2 shows that (assuming all conjectures) ei-
ther § comes from an elliptic curve, or it arises from a so-called fake elliptic curve, namely,
an abelian surface B/K with Endg (B) ® Q = D for some indefinite quaternion alge-
bra D. The latter can exist only when K is an imaginary quadratic field. Conjecturally,
such compatible systems are in bijection with cuspidal cohomological ® for GL(2)/K
with trivial central character and Hecke eigenvalues in Q.

One source of such B/K is to take abelian surfaces over Q of GL(2)-type which
acquire quaternionic multiplication over K/Q. Assuming the Hodge conjecture and the
standard conjectures, it follows that [Cre92, Question 1'] (cf. [Cre84, Conjecture, p. 278])
is equivalent to asking that all fake elliptic curves B over K descend to Q after twisting
by some quadratic character (equivalently, B is isogenous to a twist of B for the non-
trivial element o € Gal(K/Q)). We call such B non-autochthonous because it implies that
the corresponding conjectural m arises via functoriality from a smaller rank group (cf.
footnote 2 of [AGMZ20]). In this section, we show that the answer to this question is false,
namely, we construct autochthonous fake elliptic curves B/K. If one takes the restric-
tion of scalars A = Resg /g (B) of such surfaces, then the fourfolds A give rise to further
examples in opposition to the original paramodular conjecture.

We continue to let D be the quaternion algebra ramified at precisely 2 and 3.
The Shimura curve giving rise to fake elliptic curves with endomorphisms by a maximal
order in Oy has genus zero, and is well-known (see for example [BG08, Thm. 11]) to be
isomorphic over Q to:

X24+Y*+32%=0.

Moreover, more usefully for our purposes, Baba and Granath in [BGO8] give ex-
plicit models for genus two curves with endomorphisms by Op. For a certain pa-
rameter j, they write down a model ([BGO8, Thm. 15]) of a genus two curve C
over Q_(\/—_6j) such that its endomorphisms are all defined (by [BGOS8, Prop. 19])

over K := Q(,/—0y, \ﬁ, v —27(j 4 16)). With a view to choosing K = Q(+/—6), we let
7 =3./J, X=-27+16), Y =4,
and look for solutions to the equation above with X, Z € Q(+/—6). One such solution

is given by y = —32/27, but the corresponding surface is not autochthonous. Thus, we
parametrize the conic and choose a random such point. Without making too much effort
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to optimize the height of j, one finds that

_ 4(14+24-6)

10.4.5 '
( ) J 57

is a suitable point.
Lemma 10.4.6. — Let C be the following genus two curve:

2 2 3 4 5 6
Y =ap+ X+ agx” + asx’ + aux + asx” + agx”,

where a; are given by the following table, where n =1 — 4/ —6:

! a;

0 210 % (V=6 —4)

1 210 . nb .3

2 27 . (9v/—6 +24)
3 —28.p*

4 2. % . (=94/—6 4 60)
5 2t.n-3

6 -2./-6

The sextic has discriminant 2° - 35 - (1 — o/—6)*" - (2 — s/—6)°. Let B =Jac(C)/Q(\/—_6), and
let A = Resg(/=5)/0(B). Then Endg(A) ® Q =D and End¢(A) ® Q = My(D), where D/Q
is the quatermion algebra ramified at precisely 2 and 3. Then B is autochthonous, and B gives rise
to an irreducible 2-dimensional compatible system of Galois representations S of Gg with Hodge—
Tate weights (0, 1) and inverse cyclotomic determinant, and A gives rise to a 4-dimensional compatible
system R of 4-dimensional p-adic Galois representations of Gg with coefficients in Q unramified outside
0f{2, 3,5, 7, p}, each of which is absolutely irreducible and symplectic with inverse cyclotomic multiplier.

Proof — Let K = Q(+/—6). The curve C is the specialization of the curve
in [BGO8, Thm. 15] to the parameter j as in equation 10.4.5, and

—9J=6+4
QTJF, t=—2(27j+ 16) = —16/—6 — 40.

K— -0 =

By [BGO8, Prop. 19], we deduce that the endomorphisms of C are defined over the
field K(ﬁ,,/—(27j+ 16)) = K. We now show that B is autochthonous. Let p =
(11,/=6 —4) and q = (11, /=6 4+ 4). Then the curves X, = C(Ok/p) and X, =
C(Ox/q) over Fy; are given explicitly as follows:

X 9" = 3x% + 35" + 2" + 10x° + 8x” + 9x,

Xy 9" =8x" 4+ & + 108" + 61 + 34" + 4x + 4.
We compute the zeta functions using magma (see [BCGP21]) to be as follows:
(1 _ Qp—s +pl—2s)2 _ (1 _p—s +p1—25)2

7(X,, ) = . Z(Xo,5) = .
(X1:9) (1 —p=)(1 = p'=) (X2 (I=p=)(A=p')
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If B were autochthonous, then in particular the zeta functions of X, Xy would differ by
a twist by a finite order character, but this is impossible since 2 # +1.
If p > 3, then p splits in D, so there are Galois representations

Ty - GK — GLQ (QJ?)

with V,(B)Y =7, @ r,. For all p, there also exist corresponding representations 7, : Gx —
GL, (Qp) such that, for p > 3, the representation 7, is the representation obtained from 7,
by extending scalars. We now prove that End¢(B) ® Q = D. If this were not true, then B
would geometrically have to be isogenous to E x E for some elliptic curve E with com-
plex multiplication. This implies that B itself has complex multiplication over G, which
implies that the representations 7, are potentially reducible. But as the representations 7,
have distinct Hodge—Tate weights, if they become reducible they do so over a quadratic
extension. This quadratic extension L/K must be ramified only at primes of bad reduc-
tion of B, and for p which are inert in /K, one must have g, = 0. But this can be ruled
out by computation (the only prime p of norm less than 1000 with g, = 0 has norm 97).

Hence End¢(B) ® Q =D and Endg(A) ® Q = D, where A = Resgq(B). It also
follows that the representations 7, and 7, have inverse cyclotomic determinant (as oth-
erwise they would be isomorphic to their twists by a finite order character, and thus
potentially reducible). Moreover, with p, := Ind%?},, one has

_ _ G G ~
Np=As(G)De ' de ' Nk, Sym’Indge p, = Indg > Sym®7,,

and thus p, is absolutely irreducible and can be chosen to have image in GSp, (Qp) with
inverse cyclotomic similitude character. Finally, the characteristic polynomials of Frobe-
nius will, by construction, be degree 4 polynomials with coefficients in Q. U

Since one expects the compatible system S to be modular (it is certainly po-
tentially modular, by [ACC*18]), it follows that Cremona’s question [Cre92, Ques-
tion 1']) 1s incompatible with standard modularity conjectures. (Similarly, the modularity

of R = IndggS 1s incompatible with the original paramodular conjecture, although we
have already shown the latter to be false.) Of course, from the discussion above, there
are natural modifications that one could make to Cremona’s question (along the lines of
Conjecture 10.4.3) — namely, to include all fake elliptic curves over K, autochthonous
or otherwise.

One can presumably show that the 2-dimensional Gg-representations 7, over the
field K = Q(\/—_G) arising from B = Jac(C) are modular for GL(2)/K. As in the proof
of Lemma 10.3.1, we would then obtain a cuspidal cohomological automorphic repre-
sentation 1 for GL(2)/K with trivial central character and rational eigenvalues. Since 7
does not arise (up to twist) from base change, this would answer in the negative [Cre92,
Question '], because the existence of a corresponding elliptic curve E/K would be in-
compatible with the existence of B by Faltings’ isogeny theorem [Fal83].
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The modularity of the representations 7, can in principle be established using the
Faltings—Serre method (cf. [BDPcS15]). Possibly some computational advantage would
be gained by replacing C with a curve obtained from a more careful choice of generic
point on the Shimura curve (in order to work at a manageable level). As it turns out, Cia-
ran Schembri [Sch19] has independently found examples of autochthonous fake elliptic
curves which he has verified are modular.
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