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ABSTRACT

We show that abelian surfaces (and consequently curves of genus 2) over totally real fields are potentially modular.
As a consequence, we obtain the expected meromorphic continuation and functional equations of their Hasse–Weil zeta
functions. We furthermore show the modularity of infinitely many abelian surfaces A over Q with EndC A = Z. We also
deduce modularity and potential modularity results for genus one curves over (not necessarily CM) quadratic extensions
of totally real fields.
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1. Introduction

1.1. Our main theorems. — Let X be a smooth, projective variety of dimension m

over a number field F with good reduction outside a finite set of primes S. Associated
to X, one may write down a global Hasse–Weil zeta function:

ζX(s)=
∏ 1

1−N(x)−s
,
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where the product runs over all the closed points x of some (any) smooth proper integral
model X /OF[1/S] for X. (We suppress S from the notation — different choices of S
only change ζX(s) by a finite number of Euler factors.) The function ζX(s) is absolutely
convergent for Re(s) > 1+ m. We have the following:

Conjecture 1.1.1 (Hasse–Weil Conjecture, cf. [Ser70], in particular Conj. C9). — The func-

tion ζX(s) extends to a meromorphic function of C. There exists a positive real number A ∈ R>0,

non-zero rational functions Pv(T) for v|S, and infinite Gamma factors �v(s) for v|∞ such that:

ξ(s)= ζX(s) ·As/2 ·
∏

v|∞
�v(s) ·

∏

v|S
Pv(N(v)−s)

satisfies the functional equation ξ(s)=w · ξ(m+ 1− s) with w =±1.

(In Serre’s formulation of the conjecture, the Gamma factors are also given explic-
itly in terms of the Archimedean Hodge structures of X.) This conjecture appears to be
first formulated in print (albeit in a less precise form and only for curves) on the final
page of [Wei52]. If F=Q and X is a point, then ζX(s) is the Riemann zeta function, and
Conjecture 1.1.1 follows from Riemann’s functional equation [Rie59]. If F is a general
number field but X is still a point, then ζX(s) is the Dedekind zeta function ζF(s), and
Conjecture 1.1.1 is a theorem of Hecke [Hec20]. If X is a curve of genus zero, then (up
to bad Euler factors) ζX(s) = ζF(s)ζF(s − 1), and Conjecture 1.1.1 follows immediately.
More generally, if X is any smooth projective variety whose cohomology is generated by
algebraic cycles over F, then ζX(s) is a finite product of Artin L-functions (up to transla-
tion), and Conjecture 1.1.1 in this case is a consequence of Brauer’s theorem [Bra47]. In
the case when the Galois representations associated to the l-adic cohomology of X are po-

tentially abelian (e.g. an abelian variety with CM), Conjecture 1.1.1 is also a consequence
of the results of Hecke and Brauer.

The fundamental work of Wiles [Wil95, TW95] and the subsequent work of
Breuil, Conrad, Diamond, and Taylor [CDT99, BCDT01] proved Conjecture 1.1.1
for curves X/Q of genus one, since (again up to a finite number of Euler factors)
ζX(s) = ζQ(s)ζQ(s − 1)/L(E, s) (where E = Jac(X)), and the modularity of E implies
the holomorphy and functional equation for L(E, s). More generally, the potential mod-
ularity results of [Tay02] imply Conjecture 1.1.1 for curves X/F of genus one over any
totally real field. The methods used in these papers have been vastly generalized over
the past 25 years due to the enormous efforts of many people. On the other hand, these
methods have until recently been extremely reliant on the assumption that the Hodge
numbers hp,q = dim Hp,q

dR(X) = dim Hp(X,�q) of X are at most 1 for all p and q, or at
least that such an inequality holds (suitably interpreted) for the irreducible motives oc-
curring in the cohomology of X. While many such motives exist inside the cohomology
of Shimura varieties, there is a paucity of natural geometric examples satisfying this con-
dition. For example, if X is a curve of genus g, then h1,0 = h0,1 = g, and so the original
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Taylor–Wiles method only applies when g = 0 or 1. For genus two curves, we prove the
following theorem.

Theorem 1.1.2. — Let X be either a genus two curve or an abelian surface over a totally real

field F. Then Conjecture 1.1.1 holds for X.

We prove Theorem 1.1.2 as a corollary of the following theorem.

Theorem 1.1.3. — Let X be either a genus two curve or an abelian surface over a totally real

field F. Then X is potentially automorphic.

Here by potentially automorphic we mean that there exists a finite Galois ex-
tension L/F such that the compatible system of Galois representations R attached
to H1(XQ,Qp) (as p varies) over L is automorphic in a precisely circumscribed sense
which we make explicit in Definition 9.1.1. (See also Remark 9.1.9 for a discussion of
how we distinguish between automorphic and modular in this paper; this distinction is made
purely for technical convenience, and can safely be ignored while reading this introduc-
tion.) In particular, an immediate consequence is that the L-function of H1(XQ,Qp) as

a GL-representation extends to a holomorphic function on all of C. Theorem 1.1.2 fol-
lows from Theorem 1.1.3 via a standard argument with Brauer’s theorem and base
change, together (in the case of abelian surfaces) with known functorialities in small
rank. (Some care must be taken in this deduction if the p-adic Galois representations
associated to X become reducible after restriction to L; this issue does not arise in the
most interesting cases of Theorem 1.1.3, in particular the case of an abelian surface X
with EndC(X)= Z.)

Theorem 1.1.3 (and thus also Theorem 1.1.2) is a consequence of Theorem 9.3.1
and Corollary 9.3.3, which in turn are deduced from our main modularity lifting theo-
rem, Theorem 8.4.1. As a consequence of Theorem 1.1.3, we also deduce the following
potential modularity result for genus one curves (see Theorem 9.3.4):

Theorem 1.1.4. — Let X be a genus one curve over a quadratic extension K/F of a totally real

field F. Then X is potentially modular.

When K/F is totally real, this result has been known for some time ([Tay02]).
When K/F is totally imaginary, however, the result was only recently proved in
[ACC+18]. For all other quadratic extensions (such as F = Q(

√
2) and K = Q(

4
√

2)),
the result is new. (See the remarks in §1.4.4 for a comparison between the methods of this
paper with those of [ACC+18].)

Just as elliptic curves over Q can be associated (via the modularity theorem) to
modular forms of weight 2, the Langlands program predicts that abelian surfaces over Q
should be modular in the sense that they correspond to certain weight 2 Siegel modular
forms. This is because (due to the existence of polarizations) the Galois representations as-
sociated to the p-adic Tate modules of abelian surfaces are naturally valued in GSp4(Qp),



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 157

and GSp4 is its own Langlands dual group. A consideration of the Hodge–Tate weights
then suggests that the corresponding automorphic forms on GSp4 should be of weight 2
(see §10.3 for a more detailed discussion of this).

Our methods also have implications for the modularity (as opposed to potential mod-
ularity) of abelian surfaces over totally real fields. Here is an example of what can be
proven by our methods.

Theorem 1.1.5. — There exist infinitely many modular abelian surfaces A/Q up to twist

with EndC A= Z.

As a consequence, one deduces that the L-function associated to A in Theo-
rem 1.1.5 (that is, the L-function associated to the Galois representation H1(AQ,Qp)

for any prime p) has a holomorphic continuation to the entire complex plane. Note that
Theorem 1.1.3 only implies that this L-function has a meromorphic continuation, with
no control over any possible poles. (This is for essentially the same reason that Brauer’s
theorem proves the meromorphic continuation of Artin L-functions, but not the holo-
morphic continuation.) In fact, we can also prove an analogous theorem for any totally
real field F in which 3 splits completely; see Theorem 10.2.6.

To put Theorem 1.1.5 into context, note firstly that if EndC(A) �= Z, then the Ga-
lois representations associated to A become reducible over some finite extension, and
hence one may use (or prove) special cases of functoriality to reduce the problem to
the modularity of representations of dimensions 2 or 1. Results of this kind appear in
the papers [Yos80, Yos84, RS07a, JLR12, DK16, BDPcS15]. (Several of these argu-
ments could now be redone more systematically in light of the monumental work of
Arthur [Art04, Art13].)

In the “typical” case that EndC(A)= Z, Brumer and Kramer [BK14] formulated
the paramodular conjecture, which gives a precise prescription for the “optimal” level struc-
ture for an automorphic form corresponding to a given abelian surface; in particular, this
in principle reduces the conjecture for a given A to an explicit computation of a (finite-
dimensional) space of Siegel modular forms. They furthermore showed that the smallest
prime conductor of an abelian surface is 277; in combination with the computations
of [PY15], this demonstrates that the conjecture is true in prime conductor less than 277
(because there are neither any abelian surfaces nor suitable Siegel modular forms).

These considerations are taken further in the recent papers [BPP+19, BK20].
In particular, these papers succeed in establishing for the first time the modularity of
(finitely many, up to twist) abelian surfaces A with EndC(A)= Z. (The explicit examples
in [BPP+19] are conductors 277, 353, and 587, and the example in [BK20] is of conduc-
tor 731. It should be noted that the abelian surfaces considered in Theorem 1.1.5 do not
include any of these examples; as explained below, Theorem 1.1.5 is proved by proving
the existence of infinitely many abelian surfaces to which our modularity lifting theorems
apply, rather than by starting with explicit examples of small conductor.) These papers
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ultimately rely on elaborate explicit computations of low weight Siegel modular forms,
developed in part by Poor and Yuen [PY15, PSY17, BPY16].

1.1.6. Our modularity lifting theorem. — We now state our main modularity lifting
theorem as it applies to abelian surfaces. The following theorem is proved in §10, see
Proposition 10.1.1. (It is possible to slightly weaken the hypothesis at v|p to deal with
certain abelian surfaces which have semistable reduction at v|p.)

Theorem 1.1.7. — Let F be a totally real field in which p > 2 splits completely. Let A/F be

an abelian surface with good ordinary reduction at all places v|p, and suppose that, at each v|p, the unit

root crystalline eigenvalues are distinct modulo p. Assume that A admits a polarization of degree prime

to p. Let

ρA,p :GF →GSp4(Fp)

denote the dual of the mod-p Galois representation associated to A[p], and assume that ρA,p is vast

and tidy in the sense of Definitions 7.5.6 and 7.5.11. Assume that ρA,p is ordinarily modular, in the

sense that there exists an automorphic representation π of GSp4 /F of parallel weight 2 and central

character | · |2 which is ordinary at all v|p, such that ρπ,p
∼= ρA,p, and ρπ,p|GFv

is pure for all finite

places v of F. Then A is modular, corresponding to a Hilbert–Siegel eigenform of parallel weight two.

Moreover, Proposition 10.1.3 shows that the modularity hypotheses on ρA,p can be
omitted in the following situations:

(1) p = 3, and ρA,3 is induced from a 2-dimensional representation with inverse
cyclotomic determinant defined over a totally real quadratic extension E/F in
which 3 is unramified.

(2) p = 5, and ρA,5 is induced from a 2-dimensional representation valued
in GL2(F5) with inverse cyclotomic character defined over a totally real
quadratic extension E/F in which 5 is unramified.

(3) ρA,p is induced from a character of a quartic CM field H/F in which p splits
completely.

Theorem 1.1.7 may be viewed as the genus two analogue of [Wil95, Thm. 0.2],
which is the main modularity lifting result proved in that paper. Proposition 10.1.3 is then
the analogue of [Wil95, Thm. 0.6], which is a modularity result for residually projectively
dihedral representations. The reason one cannot prove an analogue of [Wil95, Thm.
0.3] (which proves that all ordinary semistable elliptic curves over Q with ρE,3 absolutely
irreducible are modular) is that there is no argument to reduce the residual modularity
of a surjective mod-3 representation ρ3 : GF → GSp4(F3) (as in §5 of ibid ) to special
cases of the Artin Conjecture (proved by Langlands–Tunnell). Note that the difficulty is
not simply that GSp4(F3) is not solvable (some of the indicated representations above
for p = 3 and 5 are non-solvable), but also that Artin representations do not contribute
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to the coherent cohomology of Shimura varieties in any setting other than holomorphic
(Hilbert) modular forms of weight one.

For E/F a totally real quadratic extension, the inductions of (modular) representa-
tions � :GE →GL2(F3) with determinant ε−1 to GF provide a large source of residually
modular ρ. We then show that any such ρ : GF → GSp4(F3) with suitable determinant
and local conditions at places v|3 is equal to ρA,3 for infinitely many abelian surfaces A/F
with EndC(A)= Z and with good ordinary reduction at v|3 (see Theorem 10.2.1). The-
orem 1.1.7 then implies that all such A are modular, and hence implies Theorem 1.1.5.

1.2. An overview of our argument. — Let A be an abelian surface over a totally real
field F. We may assume that EndF(A) = Z as otherwise, A is of GL2-type, in which
case it is known that A is potentially modular. If EndF(A) = Z, a generalization of the
paramodular conjecture predicts the existence of a holomorphic weight 2 Hilbert–Siegel
modular cuspidal eigenform f (for the group GSp4/F) associated to A in the sense that
we have an equality of L-functions L(f , s) = L(H1(A), s). If such an equality holds, we
say that A is modular.

In this paper, we establish that (under some mild further restrictions on A), after
possibly replacing the field F by a finite totally real extension F′, the conjecture is true.

Remark 1.2.1. — There are situations where we don’t prove (even potentially) the
paramodular conjecture for A. This is due to the presence of non-trivial endomorphisms
of A over Q. Nevertheless, we always express the L-function of A using automorphic
forms on groups GLi/K for i ∈ {1, 2, 4} and K a number field, and thus establish Con-
jecture 1.1.1.

On the surface, the modularity conjecture for abelian surfaces appears to be a
generalization of the modularity conjecture for elliptic curves. However, this analogy is
somewhat misleading. Elliptic curves are regular motives with weights (0, 1), whereas
abelian surfaces are irregular motives with weights (0, 0, 1, 1). On the automorphic side,
weight 2 Hilbert modular cuspforms occur in a single degree of the Betti and coherent
cohomology of the Hilbert modular varieties. Under mild assumptions, there is an elliptic
curve associated to any Hilbert modular cuspidal eigenform with rational Hecke field.

In contrast, weight 2 Hilbert–Siegel modular cuspforms only occur in the coher-
ent cohomology of the Hilbert–Siegel modular variety. More precisely, a holomorphic
weight 2 Hilbert–Siegel modular cuspidal eigenform can be viewed as a section of a
line bundle ω2 over the Hilbert–Siegel modular variety X; here X is a smooth algebraic
variety defined over Q of dimension 3[F :Q] which parametrizes abelian schemes of di-
mension 2[F :Q] equipped with an action of OF, a level structure, and a polarization.
Moreover, in the “generic case”, such an eigenform contributes to cohomology in de-
grees 0 to [F : Q]. Since the Hecke eigenvalues associated to such modular forms are
not realized in the étale cohomology of a Shimura variety, we don’t know how to asso-
ciate a “motive” to a weight 2 Hilbert–Siegel modular cuspidal eigenform, but only a
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compatible system of Galois representations which should correspond to the system of
�-adic realizations of this motive. These Galois representations are constructed by using
congruences.

From a technical point of view, it turns out that the modularity conjecture for
abelian surfaces over a totally real field F is closely related to the 2-dimensional odd
Artin conjecture for F (now a theorem), which is the existence of a bijection preserving
L-functions between the following objects:

• Irreducible, totally odd, two dimensional complex representations of the abso-
lute Galois group of F, and

• Hilbert modular cuspidal eigenforms (newforms) of weight one.

2-dimensional odd Artin representations have irregular Hodge–Tate weights (0, 0),
and Hilbert modular forms of weight one only occur in the coherent cohomology of the
Hilbert modular variety, where they contribute in degrees 0 to [F :Q].

We now review some of the strategies employed in the proof of Artin’s conjecture,
as they have served as an inspiration for our current work. As with almost all modu-
larity theorems, one proceeds by combining a modularity lifting theorem with residual
modularity (that is, the modularity of the mod p representation). In the case of Artin’s
conjecture, residual modularity ultimately (if quite indirectly) comes from the Langlands–
Tunnell theorem, whereas in our setting, the residual potential modularity comes from a
straightforward application of Taylor’s method [Tay02] using a theorem of Moret-Bailly.
Accordingly, we ignore the question of residual modularity for the rest of this introduc-
tion, and concentrate on explaining the modularity lifting theorems.

The first modularity (lifting) theorems which applied to two dimensional odd Artin
representations ρ over Q were obtained by Buzzard–Taylor and Buzzard [BT99, Buz03].
There is an obstruction to generalizing the Taylor–Wiles method (which was origi-
nally applied in the regular case of Hodge–Tate weights (0, 1) and weight two modular
forms [Wil95, TW95]) to the irregular case of weights (0, 0) and weight one modular
forms. This obstruction lies in the fact that weight one forms occur in degrees 0 and 1 of
the coherent cohomology and that there exist non-liftable mod p weight one eigenforms.
(There is also a reflection of this obstruction on the Galois theoretic side — the corre-
sponding local deformation ring at p has dimension one less in the irregular weight case.)
Instead, Buzzard and Taylor proceed quite differently.

Choose a prime p and view ρ as a p-adic representation with finite image. We
also assume that ρ is unramified at p and let α, β denote the Frobenius eigenvalues. For
simplicity, we also assume that α �= β (where the bar denotes reduction modulo p). We
have that

ρ|GQp
	
(

λα 0
0 λβ

)

for the unramified characters λα and λβ taking a Frobenius element to α,β respectively.



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 161

The strategy of Buzzard and Taylor is to first replace the space of classical weight
one modular forms by a bigger space of ordinary p-adic modular forms of weight one.
On the Galois side, classical weight one eigenforms (of level prime to p) have associated
Galois representations which are unramified at p, while an ordinary p-adic modular form
f of weight one has an associated Galois representation which may be ramified at p of
the form:

ρf |IQp
	
(

1 ∗
0 1

)

Moreover, f should be classical if and only if ∗ = 0. A key advantage of working
with ordinary p-adic modular forms is that they are defined as sections of a line bundle
over the ordinary locus, which is affine, and thus only occur in cohomological degree 0.
It follows that ordinary p-adic modular forms of weight one are unobstructed for congru-
ences and one can (assuming residual modularity) apply the Taylor–Wiles method in this
setting to deduce the existence of two p-adic ordinary weight one modular forms fα and
fβ such that ρfα = ρfβ = ρ and Upfα = αfα , Upfβ = βfβ .

We observe that the existence of both fα and fβ witnesses the fact that ρ is un-
ramified at p. In order to show that fα and fβ are classical forms of weight one, one
forms the linear combinations h = (αfα − βfβ)/(α − β) and g = (fα − fβ)/(α − β).
The property that ρfα = ρfβ = ρ and the explicit relation between q-expansions and
Hecke eigenvalues translates into the geometric property that Frob(h) = g. Using rigid
analytic techniques, one can show that this property implies that fα, fβ are classical
forms of weight one. This strategy has been successfully generalized to any totally real
field [Sas13, KST14, Kas16, PS16b, Pil17].

From a different direction, the paper [CG18] introduced an alternate method for
proving modularity lifting results in weight one, by modifying the method of Taylor–Wiles
and exploiting the Galois representations associated to coherent cohomology classes in all
degrees. This method eliminates the delicate classicality theorem in weight one because
one only works with classical (but possibly higher degree) cohomology. This method al-
lows in principle to deal with any obstructed situation, but requires some non-trivial in-
put. For 2-dimensional odd Artin representations over a totally real fields, one needs to
prove that (after suitable localization at a maximal ideal of the Hecke algebra) the co-
homology in weight one is supported in degrees 0 to [F :Q] (this is actually automatic
here for cohomological dimension reasons), and that the Galois representations in all co-
homological degrees satisfy a form of local-global compatibility (at places above p). This
last property has been proved when F =Q where one can reduce to studying degree 0
torsion cohomology classes and use the “doubling method” described below, but has not
yet been proved for all primes p over a general totally real field (though see [ERX17] for
some partial results).

After this discussion of Artin’s conjecture, we return to the paramodular conjec-
ture. We first assume that F=Q and fix a prime p. We assume that A has ordinary good
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reduction at p so that

ρA,p|GQp
	

⎛

⎜⎜⎝

λα 0 ∗ ∗
0 λβ ∗ ∗
0 0 λ−1

β ε−1 0
0 0 0 λ−1

α ε−1

⎞

⎟⎟⎠ ,

where, additionally, we assume that α �= β . (The Weil bounds together with the Ce-
botarev density theorem guarantee an ample source of such primes p.) Tilouine and
his collaborators [TU95, Til98, TU99, MT02, GT05, Til06a, Til09] developed mod-
ularity lifting results for GSp4 /Q in regular weight. In the case of Hodge–Tate weights
(0, 0, 1, 1), the paper [Pil12] applied these techniques to ordinary p-adic modular forms
of weight 2 to produce (under technical assumptions) two p-adic eigenforms fα and fβ
associated to A (see also [Til06a, Til12], where the case of certain GSp4-type abelian
varieties is treated).

Similarly to the case of GL2/Q, an ordinary p-adic modular form of weight 2 has
a Galois representation whose restriction to inertia at p has the shape:

⎛

⎜⎜⎝

1 ∗1 ∗ ∗
0 1 ∗ ∗
0 0 ε−1 ∗2

0 0 0 ε−1

⎞

⎟⎟⎠ .

Such a form should be classical if and only if its Galois representation is de Rham —
equivalently: ∗1 = ∗2 = 0 (because of the symplectic structure, the vanishing of ∗1 is
equivalent to the vanishing of ∗2).

As before, the existence of both fα and fβ witnesses the property that A is de Rham
at p. One difficulty, however, is that the Fourier expansions of Siegel modular forms are
not explicitly determined by the Hecke eigenvalues (although we often have an abstract
multiplicity one theorem). In particular, one doesn’t know how to deduce geometrically
from ρfα = ρfβ = ρA,p that there exist suitable linear combinations of fα and fβ giving rise
to the desired form f by mimicking the Buzzard–Taylor argument.

In another direction, in [CG20] the modified Taylor–Wiles method was applied
to low weight Siegel modular forms over Q. There were a number of serious difficul-
ties which prevented the authors from deducing any unconditional modularity lifting for
abelian surfaces. The idea of the method is to consider (a suitable localization of) the
full cohomology complex R�(X,ω2) where X is an integral model over Zp of the Siegel
threefold. The required inputs are:

(1) to prove that the cohomology is only supported in degrees 0 and 1, and
(2) to prove local-global compatibility for the cohomology classes.

The first point is subtle in the weight of interest, because the cohomology groups
will not generally vanish before localization at some non-Eisenstein maximal ideal m (and
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indeed this point was not established in weight 2 in [CG20]). The paper [CG20] proved
the second point for torsion degree 0 cohomology classes, using a “doubling” argument
that we will return to below.

One crucial new ingredient which allows us to proceed in the symplectic case and
deal with (1) is the higher Hida theory developed for GSp4 over Q in [Pil20]. The idea
of [Pil20] is (loosely speaking) to work over the larger space which is the complement of
the supersingular locus (the rank ≥ 1 strata), which is now no longer affine. (Since we are
working in mixed characteristic, one should imagine this taking place in the category of
formal schemes, as in classical Hida theory.) Since the cohomological dimension of these
spaces is one (more precisely, the image of these spaces in the minimal compactification
has cohomological dimension one, which is sufficient for our purposes), there should ex-
ist complexes of amplitude [0, 1] computing the coherent cohomology of all the relevant
vector bundles. The main result of [Pil20] is that suitably constructed Hida idempotents
cut down such a complex to a perfect complex, and moreover that the cohomology of
this perfect complex is computed in characteristic zero by the space of weight 2 automor-
phic forms of interest. A crucial ingredient in order to study the coherent cohomology is
therefore the introduction of Hecke operators at p and their associated projectors.

A version over Q of our modularity lifting theorem could be proved by apply-
ing the patching method of [CG18] to the higher Hida complexes of [Pil20]. It should
nevertheless be noted that, even if we were only interested in theorems over Q, we are
forced to prove a modularity lifting theorem for any totally real field F (and prime p which
splits completely in it). This is because we need to employ Taylor’s Ihara avoidance tech-
nique [Tay08] to deal with issues of level raising and lowering at places away from p,
and this step crucially relies on using solvable base change. We can then combine this
modularity lifting result with base change techniques and the Moret-Bailly argument to
achieve residual potential modularity, in order to prove our main potential modularity
theorem.

In the light of the above discussion, in order to prove a modularity lifting theo-
rem for Hilbert–Siegel modular forms it is natural to consider (a suitable localization
of) either the cohomology complex R�(X,ω2) where X is an integral model over Zp of
the Hilbert–Siegel space, or of the ordinary part of the cohomology complex for a sub-
space of X obtained from the p-rank stratification. The required inputs for the modified
Taylor–Wiles method are now:

(1) to prove that the cohomology is only supported in degrees 0 to [F :Q], and
(2) to prove local-global compatibility for the cohomology classes.

It is to some extent possible to solve (1) using higher Hida theory (although there
are some issues), but (2) seems to be a more serious problem because we only know how
to prove that the Galois representations associated to torsion classes in Hi satisfy the right
local-global compatibility condition at v|p if i = 0. Accordingly, we are unable to argue
directly with such complexes.
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Let the number of non-zero degrees of cohomology of the spaces we are consider-
ing be l0 + 1; we refer to l0 as the defect. (The original Taylor–Wiles method only applies
if l0 = 0, while if l0 > 0 we use the method of [CG18]. As mentioned above, l0 also has a
Galois-theoretic interpretation: the sum of the dimensions of the local deformation rings
is l0 less than the corresponding dimension in the defect 0 case.) One key trick we employ
in this paper is to reduce to situations where we only have to consider cohomology in
at most two degrees (so the defect is at most one), i.e. it suffices to work with complexes
consisting of at most two terms. This is where we take advantage of the product situation
at p (because p splits in the totally real field). (Implicitly, what happens in this case is that
any cohomology occurring in H1 can also be seen via the Bockstein homomorphism as
coming from H0, provided that the characteristic zero classes in H1 are also seen by the
characteristic zero classes in H0, and this can be established by automorphic considera-
tions; so we only have to prove local-global compatibility for H0.) We now explain how
we do this in slightly more detail.

We assume that A has ordinary good reduction at all places v|p, so that

ρA,p|GFv
	

⎛

⎜⎜⎝

λαv
0 ∗ ∗

0 λβv
∗ ∗

0 0 λ−1
βv

ε−1 0
0 0 0 λ−1

αv
ε−1

⎞

⎟⎟⎠ ,

where we furthermore assume that αv �= βv .
Although we expect that there should be a weight 2 eigenform associated to A of

spherical level at p (because A has good reduction at p), it turns out that because A is
ordinary at p, it is more natural to look for an eigenform f associated to A of Klingen
level at p. The Klingen level structure is given by choosing a subgroup of order p inside
A[v] for all v|p. At Klingen level at v, there is a Hecke operator UKli(v),1 whose eigenvalue
on f should be αv + βv , and a second Hecke operator UKli(v),2 whose eigenvalue should
be αvβv . We observe that the second operator has an invertible eigenvalue (we say that
f is Klingen ordinary) and this corresponds to the fact that the Galois representation
ρA,p|GFv

is ordinary.
There is another level structure that plays a role: the Iwahori level structure given

by choosing a complete self dual flag of subgroups inside A[v]. For each v|p, there are
two degeneracy maps from Iwahori level to Klingen level, and there are Hecke oper-
ators UIw(v),1, UIw(v),2 = UKli(v),2 at Iwahori level. Pulling back the expected form f by
the degeneracy maps should yield eigenforms at Iwahori level which have eigenvalues αv

and βv for UIw(v),1 (we call them Iwahori ordinary).
We now return to the question of using modularity lifting theorems to find f . First

of all, modularity lifting theorems with p-adic ordinary modular forms (i.e. with l0 = 0)
allow us to construct 2[F:Q] Iwahori ordinary p-adic modular forms whose eigenvalue
for UIw(v),1 is αv or βv , and whose eigenvalue for UKli(v),2 is αvβv . We suspect that these
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forms are classical, but as explained before, we don’t know how to establish any geometric
relation between them.

As a second step we apply a modularity lifting theorem in the case that the defect
l0 equals one. Let us isolate a place v|p. Using higher Hida theory, we construct a perfect
complex of amplitude [0, 1] which is obtained by taking the ordinary (more precisely
Iwahori ordinary at w �= v, Klingen ordinary at v) cohomology of the open subspace
of the Hilbert–Siegel Shimura variety which is ordinary and carries an Iwahori level
structure at all places w �= v, and has p-rank at least one at v and carries a Klingen level
structure.

We manage to prove that this cohomology carries a Galois representation which
has the following type of local-global compatibility property:

(1) For all places w|p, w �= v:

ρA,p|IFw
	

⎛

⎜⎜⎝

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 ε−1 ∗
0 0 0 ε−1

⎞

⎟⎟⎠ .

(2) For v:

ρA,p|IFv
	

⎛

⎜⎜⎝

1 0 ∗ ∗
0 1 ∗ ∗
0 0 ε−1 0
0 0 0 ε−1

⎞

⎟⎟⎠ .

Using the methods of [CG18], we can prove a modularity lifting theorem, and
produce 2[F:Q]−1 p-adic modular forms (which converge a lot more in the v direction)
whose eigenvalue for UIw(w),1 is αw or βw if w �= v, and whose eigenvalue for UKli(v),1

is αv + βv , and whose eigenvalue for UKli(w),2 =UIw(w),2 is αwβw for all w|p.
Our last step is to prove lots of linear relations between all these forms we have

constructed. This step ultimately relies upon an abstract multiplicity one result which we
prove using the Taylor–Wiles method. Exploiting these linear relations and using étale
descent techniques, we first manage to construct a Klingen ordinary weight 2 modular
form defined on the open subspace of the Hilbert–Siegel Shimura variety which has p-
rank at least one at all v|p and carries a Klingen level structure. We then manage, using
analytic continuation techniques, to prove that this form extends to the full Shimura
variety and is therefore classical.

1.3. An outline of the paper. — We briefly explain the outline of the paper; we refer
the reader to the introductions to the individual sections for a further explanation of their
contents, and for some elaborations on the overview of our arguments above.
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In §2 we recall some more or less standard background material on Galois repre-
sentations, the local Langlands correspondence, local representation theory, and related
topics. §3 discusses the Shimura varieties which we use, and some properties of their
integral models and compactifications, and recalls the approach to the normalization of
Hecke operators on coherent cohomology via cohomological correspondences which was
introduced in [Pil20].

In §4 we construct the Hida complexes that we work with, and prove some of their
basic properties (in particular, we prove that they are perfect complexes). In §5 we es-
tablish the “doubling” results that we will later use to prove local–global compatibility
for Hilbert–Siegel modular forms over torsion rings. The basic strategy (employed in a
number of other places, see [Gro90, Edi92, Wie14, CG18, CG20]) is to show that we
can embed (via degeneracy maps) two copies of our space of ordinary modular forms
at Klingen level into a space of ordinary modular forms of Iwahori level. This allows
us to show that the corresponding Galois representations are ordinary (in the Iwahori
sense) in two different ways, namely, with αw and βw as unramified subspaces. Then
the genericity assumption αw �= βw forces there to be a 2-dimensional unramified sum-
mand of our representation. The key technical difficulty is proving that the direct sum
of the degeneracy maps does indeed give an embedding. All previous incarnations of
the doubling phenomenon ultimately relied on the q-expansion principle, but our ar-
gument is more geometric, and ultimately rests on analyzing the effect of the Hecke
operator Zw =UKli(w),1 −UIw(w),1 along the w-non-ordinary locus.

In §6 we prove that a characteristic zero classicality result for the H0 of our Hida
complexes, using Coleman theory. We also show that the complexes we consider are bal-
anced, in the sense that they have Euler characteristic zero, using a somewhat intricate
interplay between three objects — the complex of classical forms, the complex of over-
convergent forms, and our complex of (Klingen) ordinary forms.

In §7 we carry out our main Taylor–Wiles patching arguments in the cases that
l0 = 0 and l0 = 1. We then prove our main modularity lifting theorem in §8, using analytic
continuation, étale descent, and linear algebra arguments based on the doubling results
of §5 to reduce to the classicality results of §6.

In §9, we apply our main automorphy lifting theorem to prove the potential au-
tomorphy of abelian surfaces. The basic idea is to use a version of the p-q trick (first
employed by Wiles as the 3-5 trick), together with an application of a theorem of Moret-
Bailly, to connect general abelian surfaces via a chain of congruences to the restriction
of scalars of an elliptic curve over a totally real quadratic extension of F, which we know
already by [Tay02] to be potentially modular. We are also left to deal directly with some
cases of abelian surfaces with small Mumford–Tate groups, which can mostly be done im-
mediately with an appeal to the theory of Grossencharacters. We also include a number
of applications as mentioned in the introduction, including elliptic curves over quadratic
extensions of F.



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 167

In §10, we give applications to the automorphy of abelian surfaces. We show that,
given any mod 3 representation ρ :GQ →GSp4(F3) with (inverse) cyclotomic similitude
character, it can be realized (in infinitely many ways) as the 3-torsion of an abelian surface
over Q. Here we exploit some classical geometry related to the Burkhardt quartic, which
is isomorphic to a compactification of A2(3). The key point is to show that the variety
given by the twist of A2(3) by ρ has sufficiently many rational points. We do this by
proving it is unirational over Q via a map of degree at most 6. The argument is similar
to that of [SBT97], except that it is applied not to the twist of A2(3) itself but to a twist of
a degree 6 rational cover, which has the pleasing property (unlike the Burkhardt quartic
itself) that the birational map to P3 over Q can be made equivariant with respect to the
action of the automorphism group PSp4(F3). Finally, we conclude with a discussion of
the paramodular conjecture and its relationship to the standard conjectures, and explain
why the original formulation of this conjecture requires a minor modification.

1.4. Some further remarks. — For length reasons, we did not try to optimize all of our
theorems — for example, our arguments would surely extend to prove the potential au-
tomorphy of some GSp4-type abelian varieties, but sticking with abelian surfaces makes
the Moret-Bailly arguments somewhat simpler, and (by using a trick) we manage to avoid
any character building whatsoever. However, we have gone to some lengths to treat the
case p= 3, and to use a weaker notion of p-distinguishedness than in [CG20]; while this
is not necessary for our applications to potential modularity, it significantly increases the
applicability of our theorems to actual modularity problems.

1.4.1. The work of Arthur. — It should be noted that we use Arthur’s multiplicity
formula for the discrete spectrum of GSp4, as announced in [Art04]. A proof of this
(relying on Arthur’s work for symplectic and orthogonal groups in [Art13]) was given
in [GT19], but this proof is only as unconditional as the results of [Art13] and [MW16a,
MW16b]. In particular, it depends on cases of the twisted weighted fundamental lemma
that were announced in [CL10], but whose proofs have not yet appeared, as well as on
the references [A24], [A25], [A26] and [A27] in [Art13], which at the time of writing
have not appeared publicly.

1.4.2. Curves of higher genus. — One may well ask whether the methods of this pa-
per could be used to prove (potential) modularity of curves of genus g ≥ 3 whose Jacobians
have trivial endomorphism rings. At the moment, this seems exceedingly unlikely with-
out some substantial new idea. All generalizations of the Taylor–Wiles method to this
point require that the automorphic representations in question are associated to the Betti
cohomology groups of locally symmetric spaces, or the coherent cohomology groups of
Shimura varieties, which have integral structures and hence allow one to talk about con-

gruences between automorphic forms. Symplectic motives of rank 2g over Q are conjec-
turally associated to automorphic representations for the (split) orthogonal group SO2g+1
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(when g = 1 or g = 2, there are well-known exceptional isomorphisms which allow us to
replace SO2g+1 by the groups GL2 and GSp4 respectively). Following [BK14], Gross has
made some precise conjectures concerning the level structures of newforms associated to
such conjectural automorphic representations in [Gro16].

The automorphic representations contributing to the Betti cohomology groups
of locally symmetric spaces have regular infinitesimal characters, so can only be used
for g = 1. The automorphic representations contributing to the coherent cohomology
of orthogonal Shimura varieties are representations of the inner form SO(2g − 1, 2)

of SO2g+1 (which is non-split if g > 1), whose infinity components π∞ are furthermore
either discrete series, or non-degenerate limits of discrete series.

If g = 1, the representations considered by Gross in [Gro16] are discrete series,
and if g = 2, they are non-degenerate limits of discrete series, but if g ≥ 3, then neither
possibility occurs, so the automorphic representations do not contribute to the cohomol-
ogy (of any kind) of the corresponding Shimura variety. (Another way of seeing this is
to compute the possible infinitesimal characters of the automorphic representations cor-
responding to automorphic vector bundles on the Shimura variety, or equivalently the
Hodge–Tate weights of the expected 2g-dimensional symplectic Galois representations;
one finds that no Hodge–Tate weight can occur with multiplicity bigger than 2, while
the symplectic Galois representations coming from the étale H1 of a curve of genus g

have weights 0, 1 each occurring with multiplicity g.) In particular, the general modular-
ity problem for curves of genus g ≥ 3 seems at least as hard as proving non-solvable cases
of the Artin conjecture for totally even representations, and even proving the modularity
of a single such curve with Mumford–Tate group GSp2g seems completely out of reach.

On the other hand, there are some special families in higher genus which may well
be amenable to our method. In particular, the Tate module of a cyclic trigonal genus three
curve (so-called Picard curves, with affine equations of the form y3 = x4 + ax2 + bx + c)
defined over Q splits (over Q(

√−3)) into two essentially conjugate self-dual irregular 3-
dimensional representations of GQ(

√−3). These Galois representations conjecturally cor-
respond (see the appendix to [Til06a]) to automorphic representations π for a form
of U(2, 1)/Q (splitting over Q(

√−3)) such that π∞ is a non-degenerate limit of discrete
series and contributes to the coherent cohomology of the associated Shimura variety. The
methods of this paper should apply (in principle) to these curves.

1.4.3. K3 surfaces. — Our results should also have applications to the Hasse–Weil
conjecture for K3 surfaces over totally real fields with geometric Picard number ≥ 17.
While we do not undertake a detailed study of this problem here, we discuss it in §9.4.

1.4.4. A comparison of this paper with [ACC+18]. — It follows from Theorem 1.1.3
that any elliptic curve E over a CM field K/F is potentially modular (simply consider
the abelian surface given by Weil restriction of scalars of E from K to F). This result
is also proved in [ACC+18]. Perhaps surprisingly, there is relatively little overlap be-
tween the two proofs. For example, our argument does not require any of the results of
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Scholze [Sch15] on the construction of Galois representations, nor the derived version of
Ihara avoidance required in [ACC+18]. The only common theme is the use of the modi-
fied Taylor–Wiles method of [CG18]. To further illustrate the difference, it is also proved
in [ACC+18] that the nth symmetric power of any such E is potentially automorphic,
which is not directly accessible from our approach. On the other hand, we also deduce
(Theorem 1.1.4) the potential modularity of elliptic curves over fields like F = Q(

4
√

2),
which seems out of reach using the methods of [ACC+18].

2. Background material

In this section we recall a variety of more or less well-known results that we will use
in the body of the paper.

2.1. Notation and conventions.

2.1.1. GSp4. — We define GSp4 to be the reductive group over Z defined as a
subgroup of GL4 by

GSp4(R)= {g ∈GL4(R) : gJgt = ν(g)J}
where ν(g) is the similitude factor (which is uniquely determined by g, and which we
sometimes call the multiplier factor), and J is the antisymmetric matrix

(
0 s

−s 0

)

where s=
(

0 1
1 0

)
. Note that the map ν : g �→ ν(g) is a homomorphism GSp4 →Gm.

We let Sp4 be the subgroup with ν = 1, and we let B ⊂ G = GSp4 be the Borel
subgroup of upper triangular matrices, and T ⊂ B be the diagonal maximal torus.
Write WG = NG(T)/T for the Weyl group of (G, T). It acts on the character group

via w · λ(t) = λ(w−1tw). It is generated by s1 =
(

s 02

02 s

)
and s2 =

⎛

⎝
1 0 0
0 s′ 0
0 0 1

⎞

⎠ where

s′ =
(

0 1
−1 0

)
, and admits the presentation

WG = 〈s1, s2|s2
1 = s2

2 = (s1s2)
4 = 1〉.

Write X∗(T) (resp. X∗(T)) for the group of characters (resp. cocharacters) of T. We
identify X∗(T) with the lattice in Z3 of triples (a, b; c) ∈ Z3 such that c ≡ a+ b (mod 2)

via

λ : t = diag(t1, t2, νt−1
2 , νt−1

1 ) �→ ta
1tb

2ν
(c−a−b)/2.



170 GEORGE BOXER, FRANK CALEGARI, TOBY GEE, VINCENT PILLONI

In particular, the central character is given by λ(diag(z, z, z, z)) = zc. The simple roots
are α1 = (1,−1;0) and α2 = (0, 2;0); α1 is the short root. Note that the αi determine
the reflections si. The similitude factor is (0, 0;2).

The root datum (G, B, T) determines the dual root datum (Ĝ, B̂, T̂), where Ĝ
is the dual group GSpin5. We always identify GSpin5 with GSp4 via the spin isomor-
phism (see for example [MT02, §3.2] for a detailed explanation of this). In particular, the
cocharacter in X∗(T̂) corresponding to the character (a, b; c) ∈ X∗(T) defined above is
given by

t �→ diag(t(a+b+c)/2, t(a−b+c)/2, t(−a+b+c)/2, t(−a−b+c)/2).

We write g and b for the Lie algebras of GSp4 and B, and g0 and b0 for the Lie
algebras of Sp4 and B ∩ Sp4. If v is a finite place of a number field F, with residue
field k(v), then we have the standard parahoric subgroups of GSp4(Fv):

• The hyperspecial subgroup GSp4(OFv
).

• The paramodular subgroup Par(v), the stabilizer in GSp4(Fv) of OFv
⊕OFv

⊕
OFv

⊕�vOFv
, where �v ∈OFv

is a uniformizer.
• The Siegel parahoric Si(v), the preimage in GSp4(OFv

) of those matrices
in GSp4(k(v)) of the form

⎛

⎜⎜⎝

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
0 0 ∗ ∗
0 0 ∗ ∗

⎞

⎟⎟⎠ .

• the Klingen parahoric Kli(v), the preimage in GSp4(OFv
) of those matrices

in GSp4(k(v)) of the form
⎛

⎜⎜⎝

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 0 ∗

⎞

⎟⎟⎠ .

• the Iwahori subgroup Iw(v), the preimage of B(k(v)) in GSp4(OFv
).

2.1.2. Algebra. — If R is a local ring we write mR for the maximal ideal of R.
If M is a perfect field, we let M denote an algebraic closure of M and GM the

absolute Galois group Gal(M/M). For each prime p not equal to the characteristic of M,
we let εp denote the p-adic cyclotomic character and εp its reduction modulo p. We will
usually drop p from the notation and simply write ε, ε.

If K is a finite extension of Qp for some p, we write Knr for its maximal unramified
extension; IK for the inertia subgroup of GK; FrobK ∈GK/IK for the geometric Frobenius;



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 171

and WK for the Weil group. If L/K is a Galois extension we will write IL/K for the inertia
subgroup of Gal(L/K). We will write ArtK :K× ∼−→Wab

K for the Artin map normalized
to send uniformizers to geometric Frobenius elements.

If ρ is a continuous representation of GK over Ql for some l �= p, valued ei-
ther in some GLn or in GSp4, then we write WD(ρ) for the corresponding Weil–
Deligne representation. (By definition, a GSp4-valued Weil–Deligne representation is
just a GSp4-valued representation of the Weil–Deligne group, i.e. it is considered up
to GSp4-conjugacy). If ρ is a de Rham representation of GK on a Qp-vector space W,
then we will write WD(ρ) for the corresponding Weil–Deligne representation of WK,
and if τ : K ↪→Qp is a continuous embedding of fields, then we will write HTτ (ρ) for
the multiset of Hodge–Tate numbers of ρ with respect to τ , which by definition contains
i with multiplicity dimQp

(W⊗τ,K K̂(i))GK. Thus, for example, HTτ (ε)= {−1}.
Let K/Q be a finite extension. If v is a finite place of K we write k(v) for its residue

field, qv for #k(v), and Frobv for FrobKv
. If v is a real place of K, then we will let [cv]

denote the conjugacy class in GK consisting of complex conjugations associated to v.
We will frequently adopt the following notation: we let p > 2 be prime, and we let

E be a finite extension of Qp with ring of integers O, uniformizer λ and residue field k.
We will sometimes use the following well-known lemma without comment.

Lemma 2.1.3. — Let � be a group and let L be an algebraically closed field. Then a semisimple

representation � → GSp4(L) is determined up to conjugacy by the composite � → GSp4(L) →
GL4(L)×GL1(L), where the second factor records the similitude character.

Proof. — This follows (for example) from the proof of Lemma 6.1 of [GT11a]. �

2.1.4. Galois cohomology. — If L/K is an extension of fields, k is a field, and
V is a finite-dimensional k-vector space with an action of Gal(L/K), then we write
Hi(L/K, V) for Hi(Gal(L/K), V), and hi(L/K, V) for dimk Hi(L/K, V). We write
Hi(K, V) and hi(K, V) for Hi(K/K, V) and hi(K/K, V) respectively.

2.1.5. Automorphic representations. — We will use the letter π for automorphic rep-
resentations of GSp4, � for automorphic representations of GLn (usually with n = 4),
and π for automorphic representations of GL2. We decorate these in various ways, and
aim to be consistent in such decorations. For example, � will usually denote the transfer
to GL4 of π in the sense of §2.9, so that for example �′

2 will denote the transfer of π ′2.

2.2. Induction of two-dimensional representations. — We will sometimes want to induce
representations from GL2 to GSp4. Suppose that K/F is a quadratic extension of fields,
and that r :GK →GL2(L) is a representation, for some field L. Choose σ ∈GF \GK, and
assume that det r extends to a character χ of GF Let ρ := IndGF

GK
r :GF →GL4(L). The
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representation ∧2ρ admits the characters χ and χ ⊗ηF/K as constituents, where ηF/K de-
notes the quadratic character. In particular, the representation ρ generally preserves two
symplectic forms, and hence gives rise to two representations ρ1, ρ2 :GF →GSp4(L) with
similitude factors χ and χ ⊗ηF/K respectively. To describe these more explicitly, let V de-
note a model for r so that W=V⊕σV is a model for ρ. Then the Galois action of W pre-
serves (up to scalar) the symplectic form given by choosing an arbitrary non-degenerate
symplectic form on V, letting σV and V be orthogonal, and then defining σv1 ∧ σv2

consistently to be either χ(σ)v1∧ v2 or −χ(σ)v1∧ v2 = χ ⊗ ηF/K(σ )v1 ∧ v2. The image
of (A, B) ∈ GL2(E)×GL2(E) with det(A) = det(B) inside GSp4 relative to our choice
of J can be given by

⎛

⎜⎜⎝

∗ 0 0 ∗
0 ∗ ∗ 0
0 ∗ ∗ 0
∗ 0 0 ∗

⎞

⎟⎟⎠∩GSp4(E).

In our applications, it will always be the case that det r is the inverse of the cy-
clotomic character of GK, and we will write simply write IndGF

GK
r for the corresponding

symplectic representation with similitude factor the inverse of the cyclotomic character
of GF. For example, if K/F is a quadratic extension of number fields, E is an elliptic curve
over K, and r is the dual of the p-adic Tate module of E, then IndGF

GK
r is the dual of the

p-adic Tate module of the abelian surface A=ResK/F E, and the corresponding symplec-
tic structure on this representation coincides with the one coming from the Weil pairing
on A. This is because the representation on the Tate module of A is the induction of
the corresponding representation on the Tate module of E, and because the similitude
character on the Tate module of an abelian variety is always given by the cyclotomic
character.

2.3. The non-archimedean local Langlands correspondence. — Let K/Ql be a finite ex-
tension for some l. We will let recK be the local Langlands correspondence of [HT01],
so that if π is an irreducible complex admissible representation of GLn(K), then recK(π)

is a Frobenius semi-simple Weil–Deligne representation of the Weil group WK. We will
write rec for recK when the choice of K is clear.

If (r, N) is a Weil–Deligne representation of WK we will write (r, N)F−ss for its
Frobenius semisimplification. If πi is an irreducible smooth representation of GLni

(K) for
i = 1, 2 we will write π1 � π2 for the irreducible smooth representation of GLn1+n2(K)

with rec(π1 � π2) = rec(π1)⊕ rec(π2). If L/K is a finite extension and if π is an irre-
ducible smooth representation of GLn(K) we will write BCL/K(π) for the base change of
π to L which is characterized by recL(BCL/K(π))= recK(π)|WL.

We denote the local Langlands correspondence of [GT11a] by recGT; this is a
surjective finite-to-one map from the set of equivalence classes of irreducible smooth
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complex representations of GSp4(K) to the set of GSp4-conjugacy classes of GSp4(C)-
valued Weil–Deligne representations of WK, which we normalize so that recGT(π ⊗ (χ ◦
ν))= recGT(π)⊗ rec(χ), and ν ◦ recGT(π)= rec(ωπ), where ωπ is the central character
of π .

We fix once and for all for each prime p an isomorphism ı = ıp : C ∼= Qp. We
will generally omit these isomorphisms from our notation, in order to avoid clutter. In
particular, we will frequently use that ı determines a square root of p in Qp (corresponding
to the positive square root of p in C). We write recp and recGT,p for the local Langlands
correspondences for Qp-representations given by conjugating by ı. These depend on ı,
but in practice this does not cause us any difficulty; see Remark 2.3.2.

Definition 2.3.1. — If ρ :GK →GSp4(Qp) is a continuous representation for some p �= l,

then we write L(ρ) for the L-packet associated to ρ, which by definition is the set of equivalence classes of

irreducible smooth Qp-representations π of GSp4(K) with the property that recGT,p(π ⊗ |ν|−3/2)∼=
WD(ρ)F−ss.

(In accordance with the convention explained above, note that |ν|−3/2 makes sense
because we have a fixed square root of p.)

Remark 2.3.2. — It is presumably possibly to show that the twist of recGT in Defi-
nition 2.3.1 (which will be present whenever we consider recGT,p) gives a local Langlands
correspondence for Qp-representations which is independent of the choice of ı, but we
have not tried to establish this, as we do not need it. We make (implicit) use of this for
unramified representations, and of the statement that the rank of the monodromy opera-
tor associated to a representation with Iwahori-fixed vectors is independent of the choice
of ı, both of which are easily verified explicitly.

Remark 2.3.3. — We will from now on usually regard automorphic represen-
tations as being defined over Qp, rather than C, by means of the fixed isomorphism
ı : C∼=Qp. We will not in general draw attention to this, and no confusion should arise
on the few occasions (for example, when considering compatible systems) where we think
of them as being over C.

If L/K is a finite solvable Galois extension of number fields and if π is a cuspidal
automorphic representation of GLn(AK), we will write BCL/K(π) for its base change to L
(which exists by the main results of [AC89]), an (isobaric) automorphic representation of
GLn(AL) satisfying

BCL/K(π)w = BCLw/Kv
(πv)

for all places w of L where v = w|K is the restriction of w to K. If πi is an automor-
phic representation of GLni

(AK) for i = 1, 2 we will write π1 � π2 for the automorphic
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representation of GLn1+n2(AK) satisfying

(π1 � π2)v = π1,v � π2,v

for all places v of K.
If (r, N) is a Weil–Deligne representation, then we write n((r, N)) for the rank

of N. If π is an irreducible admissible representation of GLn(K) (resp. GSp4(K)), then
we write n(π) for n(rec(π)) (resp. n(recGT(π))).

2.4. Local representation theory. — In this section, we recall a number of more or less
well-known results about the representation theory of GSp4(K), where K is a local field
of characteristic zero. Some of these results are in [GT05], but for convenience we have
gathered them all together here, and have usually given proofs. Since our applications
of this material are all global, and some of the definitions we make (such as the normal-
izations of Hecke operators at places dividing p) depend on global information, we have
chosen to work in the same global setting that we consider in the rest of the paper.

Let p > 2 be prime, and let F be a totally real field in which p splits completely.
Let E/Qp be a finite extension with ring of integers O and residue field k. Let v be a
finite place of F, and fix a uniformizer �v ∈OFv

. For most of this section, we will allow v

to divide p, although at the end of the section, we will prove some results (which follow
those of [KT17] for GLn) under the assumption that qv ≡ 1 (mod p). We fix once and
for all a square root q1/2

v ∈ E.

2.4.1. Generalities. — We begin by recalling some results on Iwahori Hecke alge-
bras. It costs us nothing to recall these in a more general setting, so we temporarily let
G/OFv

be a split reductive group with T ⊂ B = T ·U a maximal torus and Borel (with
unipotent radical U), and let N be the normalizer of T in G. Let W= N(Fv)/T(Fv) be
the Weyl group. Let � ⊂ X∗(T) be the simple roots. We write W̃ = N(Fv)/T(OFv

) for
the extended affine Weyl group.

Let Iw(v) = ker(G(OFv
)→ B(k(v))) be an Iwahori subgroup, and let Iw1(v) =

ker(G(OFv
)→U(k(v))) be a pro-v Iwahori subgroup. Let

H1 =H1(v)=O[Iw1(v)\G(Fv)/Iw1(v)] =O[G(Fv)//Iw1(v)]
be the pro-v Iwahori Hecke algebra. (Here G//K denotes K\G/K — we tend to prefer
the first notation but we also sometimes use the second notation since it is more compact
and some of our expressions are already typographically somewhat complicated.)

We let T(OFv
)1 = (ker T(OFv

)→T(k(v))). We also let

T(Fv)
+ = {x ∈T(Fv) | α(x) ∈OFv

,∀α ∈�}.
For g ∈G(Fv), we write [Iw1(v)gIw1(v)] ∈H1 for the characteristic function of the dou-
ble coset Iw1(v)gIw1(v).
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Proposition 2.4.2. — For x, y ∈T(Fv)
+, we have

[Iw1(v)xIw1(v)] · [Iw1(v)yIw1(v)] = [Iw1(v)xyIw1(v)]
and moreover [Iw1(v)xIw1(v)] ∈ (H1[1/p])×. If v � p, then in fact [Iw1(v)xIw1(v)] ∈H×

1 .

Proof. — The first statement is a special case of [Cas, Lem. 4.1.5], while the rest is
immediate from [Vig05, Cor. 1]. �

As a result, there is a homomorphism

T(Fv)→ (H1[1/p])×

which is defined as follows: write x ∈T(Fv) as x= yz−1 with y, z ∈ T(Fv)
+ and send x to

(δ
1/2
B (y)[Iw1(v)yIw1(v)])(δ1/2

B (z)[Iw1(v)zIw1(v)])−1

where δB is the modulus character. The kernel of this homomorphism is T(OFv
)1. If v � p,

then the image of the homomorphism is in H×
1 .

Proposition 2.4.3. — Let π be a smooth admissible E[G(Fv)]-module. Then the map

π → πU, where πU is the (normalized) Jacquet module, induces an isomorphism of E[T(Fv)]-modules

π Iw1(v) → (πU)T(OFv )1 .

Proof. — By [Cas, Lem. 4.1.1] (noting that the Jacquet module in this reference
is not the normalized Jacquet module), the map π → πU induces an E[T(Fv)]-module
homomorphism π Iw1(v) → (πU)T(OFv )1 . It is an isomorphism by [Cas, Prop. 4.1.4] and
Proposition 2.4.2. �

For a character χ : T(Fv)→ E
×

, write π(χ)= n-IndG(Fv)

B(Fv) χ for the corresponding
principal series representation. Then we recall

Proposition 2.4.4. — For χ :T(Fv)→ E
×

there is an isomorphism of E[T(Fv)]-modules

(π(χ)U)ss 	
⊕

w∈W

E(w · χ).

Proof. — This is a special case of [Cas, Thm. 6.3.5]. �

We say that π(χ) is a tame principal series if χ is trivial on T(OFv
)1 and an unramified

principal series if χ is trivial on T(OFv
). The results recalled above immediately imply the

well-known facts that if π is an irreducible smooth E[G(Fv)]-module, then π Iw1(v) �= {0}
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if and only if π is a constituent of a tame principal series, and π Iw(v) �= {0} if and only if
π is a constituent of an unramified principal series.

Write H := O[Iw(v)\G(Fv)/Iw(v)] for the Iwahori Hecke algebra. This enjoys
similar properties to those of H1 recalled above; in particular, the analogue of Proposi-
tion 2.4.2 gives an embedding E[X∗(T)] ↪→H[1/p], and if v � p, then this restricts to an
embedding O[X∗(T)] ↪→H.

2.4.5. Principal series for GSp4. — We now specialize our discussion to G=GSp4.
We recall some known results on constituents of unramified principal series representa-
tions; many of these results are originally due to [ST93], but for convenience we refer to
the tables in [RS07b, App. A]. (Note that the compatibility of the proposed Langlands
parameters in [RS07b, App. A.5] with the correspondence recGT is proved in [GT11b,
Prop. 13.1].)

If χ1, χ2, σ are characters of F×v , then we write

χ1 × χ2 � σ := n-IndGSp4(Fv)

B(Fv) χ1 ⊗ χ2 ⊗ σ,

where

χ1 ⊗ χ2 ⊗ σ :

⎛

⎜⎜⎝

a ∗ ∗ ∗
b ∗ ∗

cb−1 ∗
ca−1

⎞

⎟⎟⎠ �→ χ1(a)χ2(b)σ (c).

Proposition 2.4.6.

(1) χ1 × χ2 � σ is irreducible if and only if none of χ1, χ2, χ1χ
±1
2 is equal to | · |±1

v .

(2) If π is an irreducible constituent of χ1 × χ2 � σ , then

recGT,p(π)ss=σ ◦Art−1
Fv
⊗ (

(χ1χ2)◦Art−1
Fv
⊕χ1 ◦Art−1

Fv
⊕χ2 ◦Art−1

Fv
⊕1

)
.

(3) If χ1×χ2 � σ is irreducible, then recGT,p(χ1×χ2 � σ) is semisimple (that is, N= 0).

Proof. — Part (1) is [ST93, Lem. 3.2]. Parts (2) and (3) follow immediately from
rows I–VI of [RS07b, Table A.7]. �

2.4.7. Spherical Hecke operators. — Define matrices

βv,0 = diag(�v,�v,�v,�v),

βv,1 = diag(�v,�v, 1, 1),

βv,2 = diag(� 2
v ,�v,�v, 1).



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 177

We have the spherical Hecke operators Tv,i = [GSp4(OFv
)βv,i GSp4(OFv

)], which
are independent of �v . It is easy to check (using Proposition 2.4.6 (2)) that if π is an un-
ramified representation of GSp4(Fv) (that is, if πGSp4(OFv ) �= 0, so that π is a constituent
of an unramified principal series), then the characteristic polynomial of recGT,p(π ⊗
|ν|−3/2)(Frobv) is

(2.4.8) Qv(X) :=X4 − tv,1X3 + (qvtv,2 + (q3
v + qv)tv,0)X2 − q3

vtv,0tv,1X+ q6
vt2

v,0,

where we are writing tv,i for the eigenvalue of the operator Tv,i on πGSp4(OFv ).

Definition 2.4.9. — We say that the Hecke parameters of π are the roots of Qv(X),

ordered in such a way that the pairs of roots (1, 4) and (2, 3) both multiply to give the value γv of the

similitude character evaluated on Frobv . We write these Hecke parameters as [αv,βv, γvβ
−1
v , γvα

−1
v ],

where implicitly we view these terms as labelling the vertices of a square:

αv βv

γvβ
−1
v γvα

−1
v

and the ordering is unique up to the action of the Weyl group D8 = Sym(�). In particular, the data of

the quadruple [αv,βv, γvβ
−1
v , γvα

−1
v ] carries with it the value of the similitude character.

We will be concerned with the case that the central character of π is given by
a �→ |a|2, in which case the Hecke parameters have the form [αv,βv, qvβ

−1
v , qvα

−1
v ].

2.4.10. Iwahori Hecke operators.

Definition 2.4.11. — We say that an unramified principal series π(χ) is general if the

Hecke parameters are pairwise distinct and no ratio of them is qv . In particular, π(χ) is irreducible, and

|W · χ | = 8.

We have Iwahori Hecke operators Unaive
Iw(v),i = [Iw(v)βv,iIw(v)]. The notation

“Unaive” is intended to indicated that we have not yet appropriately normalized these
operators, as we will shortly do in the case that v|p. Then we have

Proposition 2.4.12. — Let π be a general unramified principal series with Hecke parameters

[αv,βv, qvβ
−1
v , qvα

−1
v ]. Then π Iw(v) is a direct sum of 8 one-dimensional simultaneous eigenspaces

for the Unaive
Iw(v),i . For a given (ordered) choice of αv and βv the corresponding eigenvalues are uv,0 = q−2

v ,

uv,1 = αv , and uv,2 = q−1
v αvβv .

Proof. — The first part is immediate from Propositions 2.4.3 and 2.4.4. To com-
pute the eigenvalues, by the definition of the Hecke parameters and Proposition 2.4.6
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we have αv = q3/2
v (χ1χ2σ)(�v), βv = q3/2

v (χ1σ)(�v) and qv = q3
v(χ1χ2σ

2)(�v). We
then have uv,i = δB(βv,i)

−1/2(χ1 ⊗ χ2 ⊗ σ)(βv,i), so that uv,0 = (χ1χ2σ)2(�v) = q−2
v ,

uv,1 = q3/2
v (χ1χ2σ)(�v)= αv , uv,2 = q2

v(χ
2
1 χ2σ

2)(�v)= q−1
v αvβv , as required. �

Proposition 2.4.12 has the following converse:

Proposition 2.4.13. — Let π be an irreducible admissible representation of GSp4(Fv), and

suppose that π Iw(v) contains an eigenvector for the Unaive
Iw(v),i with eigenvalues uvi

satisfying uv0 = q−2
v ,

uv,1 = αv and uv,2 = q−1
v αvβv such that no ratio of a pair of [αv,βv, qvβ

−1
v , qvα

−1
v ] is qv . Then π

is the unramified principal series with Hecke parameters [αv,βv, qvβ
−1
v , qvα

−1
v ].

Proof. — Reversing the calculation in the previous proof, we let χ = χ1 ⊗ χ2 ⊗ σ

be the unramified character with χ1(�v) = αvβvq−1
v , χ2(�v) = αvβ

−1
v , and σ(�v) =

α−1
v q−1/2

v . We see that there is an inequality HomT(Fv)(π
Iw(v), χ) �= {0}, and hence

Hom(π,π(χ)) �= {0} by Proposition 2.4.3 and Frobenius reciprocity. Finally, by Proposi-
tion 2.4.6, π(χ) is also irreducible. �

2.4.14. Parahoric level Hecke operators for GL2. — We will also need to consider cer-
tain parahoric Hecke algebra and investigate how they relate to the Iwahori Hecke alge-
bra.

We begin by recalling some standard results for the group GL2. We let Iw(v)′ ⊂
GL2(OFv

) be the Iwahori subgroup of matrices which are upper triangular modulo �v

(we put a prime because Iw(v) is used to denote the Iwahori subgroup in GSp4(OFv
)).

We introduce the following operators in the spherical Hecke algebra HSph[1/p]:

(1) TGL2
v,1 = [GL2(OFv

)

(
�v 0
0 1

)
GL2(OFv

)],

(2) TGL2
v,0 = [GL2(OFv

)

(
�v 0
0 �v

)
GL2(OFv

)].
We also define the following operators in the Iwahori Hecke algebra HIw(v)′ [1/p]:

(1) UGL2
v,1 = [Iw(v)′

(
�v 0
0 1

)
Iw(v)′],

(2) UGL2
v,0 = [Iw(v)′

(
�v 0
0 �v

)
Iw(v)′],

(3) e
GL2
Sph = [GL2(OFv

)].
For any element f of the centre of the Iwahori Hecke algebra, the element e

GL2
Sph f

defines an element of the spherical Hecke algebra.

Lemma 2.4.15. — The centre Z(HIw(v)′ [1/p]) of the Iwahori Hecke algebra is generated

by UGL2
v,0 and qvUGL2

v,0 (UGL2
v,1 )−1 + UGL2

v,1 , the map e
GL2
Sph : Z(HIw(v)′ [1/p]) → HSph[1/p] is an

isomorphism and we have the following identities:
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(1) e
GL2
Sph UGL2

v,0 =TGL2
v,0 ,

(2) e
GL2
Sph (qvUGL2

v,0 (UGL2
v,1 )−1 +UGL2

v,1 )=Tv,1.

Proof. — This follows from [HKP10, §1, §2, §4.6]. �

2.4.16. Klingen level Hecke operators. — We have Klingen Hecke operators Unaive
Kli(v),i =

[Kli(v)βv,iKli(v)].
Proposition 2.4.17. — Let π be a general unramified principal series with Hecke parameters

[αv,βv, qvβ
−1
v , qvα

−1
v ]. Then πKli(v) is a direct sum of 4 one-dimensional simultaneous eigenspaces

for the Unaive
Kli(v),i . For a given choice of {αv,βv}, the eigenvalues are uv,0 = q−2

v , uv,1 = αv + βv , and

uv,2 = q−1
v αvβv .

Proof. — This follows from a direct computation, see [GT05, Prop. 3.2.1, Cor.
3.2.2]. �

Remark 2.4.18. — We sketch another (related) proof of Proposition 2.4.17. Let
us denote by HIw(v)[1/p] the Iwahori Hecke algebra and by ZKli(v)(HIw(v)[1/p]) the
sub-algebra generated by Unaive

Iw(v),1 + qv(Unaive
Iw(v),1)

−1Unaive
Iw(v),2, Unaive

Iw(v),2, Unaive
Iw(v),0. One checks

that ZKli(v)(HIw(v)[1/p]) commutes with eKli(v) = [Kli(v)] by using Bernstein’s relation
([HKP10, §1.15]). Therefore we get a map: eKli(v) : ZKli(v)(HIw(v)[1/p]) → HKli(v)[1/p]
where HKli(v)[1/p] is the Klingen Hecke algebra. We claim that:

• eKli(v)(Unaive
Iw(v),1 + qv(Unaive

Iw(v),1)
−1Unaive

Iw(v),2)=Unaive
Kli(v),1,

• eKli(v)Unaive
Iw(v),2 =Unaive

Kli(v),2,
• eKli(v)Unaive

Iw(v),0 =Unaive
Kli(v),0.

The claim can be checked after restricting all these functions to the Levi GL2 ×
GL1 of the Klingen parabolic by [Vig98, Prop. II.5], so it follows from Lemma 2.4.15.
The result then follows from Proposition 2.4.12.

Remark 2.4.19. — Proposition 2.4.17 could also be proved using Jacquet modules
(as could analogous results for invariants at other level structures which admit parahoric
factorizations).

Proposition 2.4.20. — Let π be an irreducible admissible representation of GSp4(Fv), and

suppose that πKli(v) contains an eigenvector for the Unaive
Kli(v),i with eigenvalues uvi

satisfying uv0 = q−2
v ,

uv,1 = αv + βv and uv,2 = q−1
v αvβv such that no ratio of a pair of {αv,βv, qvβ

−1
v , qvα

−1
v } is qv .

Then π is the unramified principal series with Hecke parameters [αv,βv, qvβ
−1
v , qvα

−1
v ].

Proof. — As in the proof of Proposition 2.4.13, we deduce from π Iw(v) �= 0 that π

is a constituent of an unramified principal series representation. The central character of
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such a constituent is unramified and so is determined by the value on Frobenius. From
the equation uv0 = q−2

v , we deduce that the central character of π is | · |2, and hence
the central character of π ⊗ |ν|−3/2 is | · |−1, and hence that the similitude character
of recGT,p(π ⊗ |ν|−3/2) is the inverse of the cyclotomic character ε−1. In particular, the
value of the similitude character of the Weil–Deligne representation on Frobv is qv , and
thus π is a constituent of an unramified principal series representation with Hecke pa-
rameters [α′v, β ′v, qv(β

′
v)
−1, qv(α

′
v)
−1]. (Note that the ordering of these eigenvalues above

is determined up to the action of D8.) Comparing to Proposition 2.4.17, without loss
of generality, we may rearrange the Hecke parameters of π so that we deduce the two
equations

α′v + β ′v = αv + βv, α′vβ
′
v = αvβv,

and thus (again up to reordering) α′v = αv and β ′v = βv . By Proposition 2.4.6, the principal
series π is irreducible. �

2.4.21. Generic unipotent representations. — We say that a GSp4(E)-valued Weil–
Deligne representation r is generic if ad(r)(1) has no invariants, and is unipotent if rss is
unramified.

Proposition 2.4.22. — Let r be unipotent. Then the L-packet corresponding to r contains a

generic representation if and only if r is generic.

Proof. — By the main theorem of [GT11a] (part vii), the L-packet L(r) contains a
generic representation if and only if the adjoint L-factor L(s, ad(rF−ss)) is holomorphic at
s= 1, which, by definition, is easily seen to be equivalent to the statement that ad(rF−ss)(1)

has no invariants. Thus we are reduced to checking that r is generic if and only if rF−ss is
generic. Let W denote the vector space underlying the representation ad(r)(1). We are
reduced to showing that Hom(E, W)= 0 if and only if Hom(E, WF−ss)= 0.

One implication is trivial. For the reverse implication, a map from E to WF−ss is
the same as giving a vector x in W which lies in the kernel of N and is a generalized
eigenvector for the Frobenius φ with eigenvalue 1. For a suitable choice of n ∈ N, the
vector y = (φ − 1)nx will be non-zero and a genuine eigenvector for φ with eigenvalue
one. On the other hand, since x lies in the kernel of N, so does φx, because Nφx =
q−1

v φNx = 0. Similarly, any polynomial in φ applied to x also lies in the kernel of N.
Thus y also lies in the kernel of N and gives rise to a nonzero element of Hom(E, W). �

2.4.23. Normalized Hecke operators, ordinary representations, and ordinary projectors. — In
this section, we assume that v|p. We fix integers k ≥ l ≥ 2, and k ≡ l (mod 2) (these
will correspond to the weights of our automorphic forms; see Section 2.6). Then we will
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consider normalized Hecke operators at Iwahori and Klingen level defined by

UIw(v),0 = p2Unaive
Iw(v),0 UKli(v),0 = p2Unaive

Kli(v),0

UIw(v),1 = p(k+l)/2−2Unaive
Iw(v),1 UKli(v),1 = p(k+l)/2−2Unaive

Kli(v),1

UIw(v),2 = pk−1Unaive
Iw(v),2 UKli(v),2 = pk−1Unaive

Kli(v),2

We will often write Uv,i for the operators UIw(v),i when the context is clear. We will also
keep writing Uv,0 for the Hecke operator p2[Kvβv,0Kv] for any subgroup Kv of Iw(v) (be-
cause Uv,0 lies in the centre of the Iwahori Hecke algebra and therefore p2[Kvβv,0Kv] =
eKv

Uv,0). We will also often write Uv,2 for the Hecke operator UKli(v),2 for the same reason
(see Remark 2.4.18). We can and do also normalize the Siegel Hecke operators in the
same way, so that for example USi(v),1 = p(k+l)/2−2Unaive

Si(v),1.
An irreducible smooth E[GSp4(Fv)]-representation with central character | · |2 is

said to be ordinary of weights k ≥ l ≥ 2 if there exists an eigenvector v ∈ π Iw(v) for UIw(v),i

with eigenvalues uv,i with vp(uv,i)= 0. If αv and βv are defined by αv = uv,1, βv = uv,2/uv,1,
then, by Proposition 2.4.4, π is a constituent of an unramified principal series with Hecke
parameters

[αvp2−(k+l)/2, βvp−(k−l)/2, β−1
v p1+(k−l)/2, α−1

v p(k+l)/2−1].
We say that π is p-distinguished if these four Satake parameters are pairwise distinct, or in
other words if either l > 2 or αv �= βv .

If l > 2, then again by Proposition 2.4.4, v ∈ π Iw(v) is the unique eigenvector (up
to scale) with unit eigenvalues for the UIw(v),i . In this case, the ordered pair (αv,βv) is
uniquely determined by π , and we call (αv,βv) the ordinary Hecke parameters of π . If l = 2
and π is p-distinguished, then there may also be an eigenvector v′ ∈ π Iw(v) with unit
eigenvalues UIw(v),1v

′ = βvv
′, UIw(v),2v

′ = αvβvv
′ (we will see below that in fact such a v′

always exists.) Thus at least the set {αv,βv} is determined by π and we again call them
the ordinary Hecke parameters of π .

We let ereg be the ordinary projector (in the sense of Section 2.11) associated
to UIw(v),1UIw(v),2, and let eirreg be the ordinary projector associated to UKli(v),2.

Proposition 2.4.24. — Let π be an ordinary p-distinguished representation of weights k ≥
l ≥ 2, with ordinary Hecke parameters (αv,βv) (or {αv,βv} if l = 2). Assume that either k > l > 3
or l = 2.

(1) If k > l > 3 or if l = 2 and k > 2, then π is an irreducible principal series.

(2) If k = l = 2, then in the sense of the tables of [RS07c, §1], π is a representation of type Va
if {αv,βv} = {1,−1}, IIIa if αvβv = 1, IIa if #{αv,βv}∩ {1,−1} = 1, or otherwise

is an irreducible unramified principal series.

In all cases, π is generic and the L-packet L(π) of π contains no other ordinary representations.

Moreover:
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(1) k > l > 3 then

dim eregπ
Iw(v) = 1

on which UIw(v),i has eigenvalues 1, αv,αvβv for i = 0, 1, 2.

(2) If l = 2 then

dim eregπ
Iw(v) = 2

and there are two eigenspaces for UIw(v),i , with eigenvalues 1, αv,αvβv and 1, βv,αvβv

respectively, and moreover

dim eirregπ
Kli(v) = 1

with UKli(v),i eigenvalues 1, αv + βv,αvβv , for i = 0, 1, 2.

Proof. — As remarked above, by Proposition 2.4.4, π is a constituent of an unram-
ified principal series with Hecke parameters

[αvp2−(k+l)/2, βvp−(k−l)/2, β−1
v p1+(k−l)/2, α−1

v p(k+l)/2−1].
If either k > l > 3 or l = 2 and k > 2, no ratio of a pair of these parameters can be p, and
hence π is an irreducible principal series by Proposition 2.4.6.

In the remaining case, k = l = 2, the Satake parameters are [αv,βv,β−1
v p, α−1

v p],
and the corresponding principal series may be reducible when one of α2

v, β2
v , αvβv is

equal to 1. The constituents of these principal series are listed in the tables [RS07c, §1].
The case that either α2

v = 1 or β2
v = 1 but not both corresponds to type II, the case that

α2
v = β2

v = 1 corresponds to type V, and the case that αvβv = 1 corresponds to type III.
For each constituent π of such a principal series, the tables give a computation

of the Jacquet module π ss
U, which is equal to πU because αv �= βv . This allows us, by

Proposition 2.4.3, to determine the simultaneous eigenvalues of the UIw(v),i on π Iw(v). At
this point the result follows from an inspection of the tables. �

We now turn to the global situation. Recall that we have fixed an isomorphism ı :
Qp
∼=C, so that in particular in the following definition we can and do identify the infinite

places of F with the places dividing p. See Section 2.6 for our conventions regarding the
weights of automorphic representations.

Definition 2.4.25. — Let π be a cuspidal automorphic representation of GSp4(AF) with

central character | · |2 and weight (kv, lv)v|∞, where kv ≥ lv ≥ 2 and kv ≡ lv (mod 2) for all v|∞.

Then we say that π is ordinary if for each place v|p, πv is ordinary of weights kv ≥ lv ≥ 2.
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The following proposition will be useful for going between ordinary p-adic modular
forms and ordinary automorphic representations. For each subset I⊂ Sp we set

Kp(I)=
∏

v∈I

Kli(v)
∏

v∈Ic

Iw(v).

We also let e(I)=∏
v∈I eirreg

∏
v /∈I ereg.

Proposition 2.4.26. — Let π be a cuspidal automorphic representation of GSp4(AF) of weight

(kv, lv)v|∞ with kv ≥ lv ≥ 2 and with central character | · |2, and fix tuples of p-adic units (αv,βv)v|p.
Assume that for each v ∈ Sp, either kv > lv > 3 or lv = 2 and αv �= βv .

Let I′ = {v ∈ Sp | lv = 2} and let I⊂ I′ be a subset. Then π is ordinary with ordinary Hecke

parameters (αv,βv)v|p if and only if

(⊗v∈Sp
πv)

Kp(I)

contains a vector which is:

• for each v ∈ Ic, an eigenvector for the normalized UIw(v),0, UIw(v),1, and UIw(v),2, with

respective eigenvalues 1, αv , and αvβv , and

• for each v ∈ I, an eigenvector for UKli(v),0, UKli(v),1, and UKli(v),2 with respective eigenvalues

1, αv + βv , and αvβv .

Moreover in this case

dim e(I)(⊗v∈Sp
πv)

Kp(I) = 2#(I′−I).

Note that if π is ordinary with ordinary Hecke parameters (αv,βv)v|p but v /∈ I′,
then the UKli(v),1 eigenvalue will not be of the form αv+βv , but rather, up to some ordering
of αv and βv , be of the form αv + plv−2βv .

Proof. — This is simply Proposition 2.4.24 applied for each v ∈ Sp. �

2.4.27. An instance of the local Langlands correspondence. — Given a pair of characters
χv,1, χv,2 : k(v)× →O×, which we regard as characters of O×

Fv
by inflation, we define a

character of χv of T(O) by

χv :T(OFv
)→O×

(a, b, cb−1, ca−1) �→ χv,1(ab−1)χv,2(abc−1).

Then if M is an H1-module, we write

Mχv = {m ∈M | tm= χv(t)m ∀t ∈T(k(v))}
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and

Mχv
=M/〈tm− χv(t)m | t ∈T(k(v)), m ∈M〉.

Then we record:

Proposition 2.4.28. — If π is an irreducible smooth E[GSp4(Fv)]-module with the property

that (π Iw1(v))χv �= {0}, then, for all σ ∈WFv
,

det(X− recGT,p(π)(σ ))= (X− χv,1(Art−1
Fv

(σ )))(X− χv,1(Art−1
Fv

(σ ))−1)

(X− χv,2(Art−1
Fv

(σ )))(X− χv,2(Art−1
Fv

(σ ))−1).

If, moreover, the characters χv,1, χ−1
v,1, χv,2, χ−1

v,2 are pairwise distinct, then there is an equal-

ity dimE(π Iw1(v))χv = 1.

Proof. — This is an immediate consequence of Propositions 2.4.3, 2.4.4 and 2.4.6.
�

2.4.29. The case qv ≡ 1 (mod p). — We suppose from now on for the rest of this
section that qv ≡ 1 (mod p). Recall that we have a homomorphism T(Fv)/T(OFv

)1 →
H×

1 , and thus an (injective) homomorphism O[T(Fv)/T(OFv
)1] → H1; we identify

O[T(Fv)/T(OFv
)1] with its image in H1. Given elements α1, α2 ∈ F

×
p , we let mα1,α2

denote the kernel of the homomorphism O[T(Fv)/T(OFv
)1] → Fp induced by the

character T(Fv)/T(OFv
)1 → F

×
p sending T(OFv

) �→ 1, diag(�v,�v,�v,�) �→ 1,
diag(�v,�v, 1, 1) �→ α1, and diag(� 2

v ,�v,�v, 1) �→ α1α2.

Proposition 2.4.30. — Let π be an irreducible smooth E[GSp4(Fv)]-module with central

character | · |2 and with (π Iw1(v))mα1,α2
�= {0}. Suppose α±1

1 , α±1
2 are pairwise distinct. Then

recGT,p(π)= γ1 ⊕ γ2 ⊕ ε−1γ −1
2 ⊕ ε−1γ −1

1

for characters γi of GFv
with γ i = λαi

(the unramified character taking Frobv to αi ), and T(k(v)) acts

on (π Iw1(v))mα1,α2
via (γi ◦ArtFv

)|O×
Fv

.

Proof. — From Proposition 2.4.28, we know the characteristic polynomial of the
corresponding representation, and thus immediately deduce that the semi-simplification
of the Galois representation has the required form. It thus suffices to show that, under
the hypothesis on αi , that all Galois representations are semi-simple. Suppose otherwise.
Two tamely ramified characters admit an extension if and only if their ratio is unramified
and takes the value qv on Frobenius. Since qv ≡ 1 mod p and ε is trivial modulo p, this
implies that α±1

1 , α±1
2 are not distinct, a contradiction. �
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Remark 2.4.31. — Let Z be the centre of GSp4, let �v be the maximal p-power
quotient of T(k(v))/Z(k(v)), and let �′

v = ker(T(k(v)) → �v). If the π of Proposi-
tion 2.4.30 additionally satisfies the condition that (π Iw1(v))

�′v
mα1,α2

�= {0}, then we immedi-

ately deduce that �v also acts on (π Iw1(v))
�′v
mα1,α2

via (γi ◦ArtFv
)|O×

Fv
.

We now prove some results about the Iwahori Hecke algebra (under our running
assumption that qv ≡ 1 (mod p)). We follow [KT17, §5] closely, and our proofs are essen-
tially an immediate adaptation of their arguments from GLn to GSp4. As recalled above,
we have an embedding O[X∗(T)] ↪→H. This can be refined to give the Bernstein pre-
sentation of H (see e.g. [HKP10, §1]), which is an algebra isomorphism

H∼=O[X∗(T)]⊗̃OO[Iw(v)\GSp4(OFv
)/Iw(v)],

where the twisted tensor product ⊗̃O is determined by the following relations, where
sα ∈W is simple, corresponding to the simple root α, and μ ∈X∗(T):

(2.4.32) Tsαθλ = θsα(λ)Tsα +
(
qv − 1

)θs(λ) − θλ

1− θ−α∨
.

Here we are writing θμ for the image in H of the group element eμ of O[X∗(T)] corre-
sponding to μ, and for w ∈W we write Tw := [Iw(v)ẇIw(v)] where ẇ ∈GSp4(OFv

) is
any representative for w.

Lemma 2.4.33. — There is a natural isomorphism H⊗O k ∼= k[X∗(T) � W].

Proof. — We claim that the natural k-linear map k[W] → k[Iw(v)\GSp4(OFv
)/

Iw(v)] sending w �→ Tw is an algebra isomorphism. Admitting this claim, note that
since qv ≡ 1 (mod p), the relation (2.4.32) becomes

Tsαθλ = θsα(λ)Tsα

in H ⊗O k, so that there is an isomorphism k[X∗(T) � W] →H ⊗O k sending eλw �→
θλTw, as required.

It remains to prove the claim. The Weyl group W is generated by s1, s2 with s2
1 =

s2
2 = (s1s2)

4 = 1, so it is enough to show that k[Iw(v)\GSp4(OFv
)/Iw(v)] is generated

by the elements Ts1, Ts2 , subject to the same relations. This follows from the assumption
that qv ≡ 1 (mod p); indeed, we have the usual relations T2

si
= (qv − 1)Tsi

+ qv (i = 1, 2),
and Ts1Ts2Ts1Ts2 = Ts2Ts1Ts2Ts1 , which are easily seen to be equivalent to T2

s1
= T2

s2
=

(Ts1Ts2)
4 = 1, as required. �

Recall that by definition an O[GSp4(Fv)]-module M is smooth if every element of M
is fixed by some open compact subgroup of GSp4(Fv), and it is admissible if it is smooth,
and if for each open compact subgroup U⊂GSp4(Fv), MU is a finite O-module.
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Lemma 2.4.34. — If M is a smooth O[GSp4(Fv)]-module, then the natural inclusion

MGSp4(OFv ) ⊂MIw(v) is canonically split by the Hecke operator

1
[GSp4(OFv

) : Iw(v)] eSph(v).

Proof. — The Hecke operator eSph(v) ∈H induces the natural trace map MIw(v) →
MGSp4(OFv ), so that the composite map MGSp4(OFv ) → MIw(v) → MGSp4(OFv ) is given by
multiplication by [GSp4(OFv

) : Iw(v)]. Since [GSp4(OFv
) : Iw(v)] ≡ |W| = 8 (mod p) is

a unit in O, we are done. �

Corollary 2.4.35. — If M is a smooth k[G]-module, then MIw(v) is naturally a k[W]-
module, and MGSp4(OFv ) = (MIw(v))W.

Proof. — This is immediate from Lemmas 2.4.33 and 2.4.34. �

The centre of H is O[X∗(T)]W, and there is an isomorphism

O[X∗(T)]W ∼=O[GSp4(OFv
)\GSp4(Fv)/ GSp4(OFv

)]
given by x �→ eSph(v)x (where we are regarding x as an element of H); this isomorphism
agrees with the isomorphism given by the usual Satake isomorphism (see [HKP10, §4.6]).
The classical description of O[X∗(T)] is as follows. Let x0, x1, and x2 denote the following
three cocharacters:

x0 : t → diag(t, t, 1, 1),

x1 : t → diag(1/t, 1, 1, t),

x2 : t → diag(1, 1/t, t, 1).

Then x2
0x1x2 is the cocharacter t �→ diag(t, t, t, t) and

O[X∗(T)] =O[x0, x1, x2, (x2
0x1x2)

−1] =O[x0, x1, x2, (x0x1x2)
−1].

The effect of the involutions s1, s2, and s1s2s1 ∈ W on these cocharacters is to send
(x0, x1, x2) to

(x0, x2, x1), (x0x2, x1, x−1
2 ), (x0x1, x−1

1 , x2)

respectively. All of these involutions preserve (x0, x0x1, x0x2, x0x1x2) considered as an un-
ordered quadruple. Define elements ei(x0, x1, x2) ∈O[X∗(T)]W, 0≤ i ≤ 4, by the follow-
ing formulae:

(X− x0)(X− x0x1)(X− x0x2)(X− x0x1x2)=
∑

ei(x0, x1, x2)Xi.
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The relation between the ei and the Hecke operators Tv,i is given by
∑

ei(x0, x1, x2)Xi =X4 − q3/2
v Tv,1X3 + (q2

vTv,2 + (1+ q2
v)Tv,0)X2

− q3/2
v Tv,0Tv,1X+T2

v,0.

Since we are assuming that qv ≡ 1 (mod p), and in our applications of these results in the
global setting there is a twist which makes all of the powers of qv integral (as in (2.4.8)),
we will ignore all powers of q1/2

v from now on.
Given any triple γ := (γ0, γ1, γ2) and w ∈W, let ((wγ )0, (wγ )1, (wγ )2) denote

the triple obtained by substituting in γi for xi in the action of W on O[X∗(T)] described
above.

Lemma 2.4.36. — Let M be an H⊗O k-module which is finite-dimensional over k. Suppose

that eSph(v)M �= 0, and that there is a triple γ0, γ1, γ2 with γ 2
0 γ1γ2 = 1 such that (γ1 − 1)(γ2 −

1)(γ1 − γ2)(γ1γ2 − 1) �= 0; equivalently, writing α1 = γ0, α2 = γ0γ1, suppose that

α1, α2, 1/α2, 1/α1

are pairwise distinct. Suppose also that the following operators act by zero on the module eSph(v)M:

Tv,0 − 1 Tv,1 − e1(γ0, γ1, γ2), Tv,2 + 2Tv,0 − e2(γ0, γ1, γ2).

Then, for each w ∈W, the maximal ideal

mw = (x0 − (wγ )0, x1 − (wγ )1, x2 − (wγ )2)⊂ k[X∗(T)]
is in the support of M.

Proof. — Let n⊂ k[X∗(T)]W be the ideal

n= (e1(x0, x1, x2)− e1(γ0, γ1, γ2), . . . , e4(x0, x1, x2)− e4(γ0, γ1, γ2),

x2
0x1x2 − γ 2

0 γ1γ2).

Then, by assumption, we have eSph(v)M ⊂ M[n], so that in particular Mn �= 0. The
assumptions on γi imply that all the ideals mw are distinct. We may view n as an
ideal in k[X∗(T)]. The support of n in k[X∗(T)] corresponds to triples (γ0, γ1, γ2) (or
equivalently, pairs (α1, α2)) such that α1, α2, α−1

2 , and α−1
1 are roots of the polyno-

mial
∑

ei(γ0, x1, x2)Xi . Hence the support of n⊂ k[X∗(T)] consists exactly of the maxi-
mal ideals mw, and the product of the mw is precisely the radical of n. The ring k[X∗(T)]n
is thus a semi-local ring which is isomorphic to ⊕w∈Wk[X∗(T)]mw

, and correspondingly
we may write Mn =⊕w∈WMmw

. It follows that Mmw
�= 0 for at least one w ∈W. Consid-

ering the action of W on the set of maximal ideals of k[X∗(T)] in the support of M, we
see that in fact Mmw

�= 0 for all w ∈W, as required. �
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Lemma 2.4.37. — Let M be an H⊗O k-module which is finite-dimensional over k. Suppose

that for each maximal ideal n⊂ k[X∗(T)]W in the support of M, the degree four polynomial

∑
ei(x0, x1, x2)Xi ∈ k[X∗(T)]W[X]

has roots (γ0, γ0γ1, γ0γ2, γ0γ1γ2) modulo n satisfying (γ1− 1)(γ2− 1)(γ1− γ2)(γ1γ2− 1) �= 0
and γ 2

0 γ1γ2 = 1. Equivalently, writing γ0 = α1, γ0γ1 = α2, assume that γ 2
0 γ1γ2 = 1 and that

α1, α2, 1/α2, 1/α1

are pairwise distinct. Then eSph(v)M �= 0. If, furthermore, there is a unique maximal ideal n ⊂
k[X∗(T)]W in the support of M, then for each maximal ideal m⊂ k[X∗(T)] in the support of M, the

maps

k[W] ⊗k Mm→M,

w⊗ x �→w · x,
and

Mm→ eSph(v)M,

x �→ eSph(v) · x
are both isomorphisms.

Proof. — After possibly enlarging k, we can and do assume that the γi arising from
the roots of the degree four polynomial above lie in k. As in the proof of Lemma 2.4.36,
there exist |W| = 8 distinct ideals mw such that Mn 	⊕w∈WMmw

, where m= (t0−γ0, t1−
γ1, t2 − γ2) ⊂ k[X∗(T)]. Since Mn �= 0, we may assume that Mmw

�= 0 for some and
hence all mw. The operator eSph(v) acts by averaging over the action of the Weyl group. It
follows (because the mw are distinct) that the map eSph(v) :Mm→⊕w∈WMmw

=Mn is an
injection, and thus eSph(v)M �= 0.

Suppose that n is the only maximal ideal of k[X∗(T)] in the support of M. Then the
maximal ideals of k[X∗(T)] in the support of M are necessarily of the form mw, and we
have M=⊕w∈WMmw

=⊕w∈Ww ·Mm, and the rest of the lemma follows immediately. �

Remark 2.4.38. — Note that (using as usual that qv = 1 in k) we have that Unaive
v,0 =

x2
0x1x2, and if this equals 1, then Unaive

v,1 = x0 and Unaive
v,2 = (s1s2s1)x1. Consequently we see

for example that if the hypotheses of Lemma 2.4.36 hold then (Uv,0−1, Uv,1−α1, Uv,2−
α1α2) is in the support of M.

2.5. Purity. — Let K be a finite extension of Qp for some p, with residue field
of order q. Following [TY07, §1], we say that a Weil–Deligne representation (W, r, N)
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of WK on a vector space W over an algebraically closed field � which is of characteristic 0
and of the same cardinality as C is pure of weight w if there is an exhaustive and separated
ascending filtration Fili of W such that

• each Fili W is invariant under r;
• if σ ∈WK maps to Frobv(σ )

K , then all eigenvalues of r(σ ) on gri W are Weil qiv(σ )-
numbers;

• and for all j we have Nj : grw+j W
∼−→ grw−j W. (Note that necessarily we have

N Fili W⊂ Fili−2 W.)

Recall that for a Weil–Deligne representation (r, N), we defined in Section 2.3
n(r, N) to be the rank of N.

Lemma 2.5.1. — If (V, r) is a semisimple representation of WK, then there is at most one

choice of N for which (V, r, N) is a pure Weil–Deligne representation. If such an N exists, then the

corresponding Weil–Deligne representation is the unique choice which maximizes n(r, N).

Proof. — The uniqueness of N is [TY07, Lem. 1.4(4)]. The maximality follows
easily, using that by definition all of the induced maps Nj : grw+j W→ grw−j W are iso-
morphisms if and only if (V, r, N) is pure. �

2.6. Archimedean L-parameters. — We now recall some notation for archimedean
L-parameters following [Mok14, §3.1] (although our w has the opposite sign to this ref-
erence). Recall that WR = C× ∪ C×j, where jzj−1 = z and j2 = −1. Let w ∈ R. For an
integer n≥ 0, let φw,n :WR →GL2(C) be the L-parameter given by

z �→ |z|w ·
(

(z/z)n/2

(z/z)−n/2

)
= |z|w

(
zn|z|−n

z−n|z|n
)

and

j �→
(

1
(−1)n

)
.

The determinant of φw,n is equal to |z|2w if n is odd and sgn · |z|2w if n is even,
where sgn :WR →C× is the degree two character which is −1 on j (and trivial on C×).
We also write φw,n for the restriction of φw,n to WC. The GL2(R) and GL2(C) repre-
sentations corresponding to the L-parameter φw,n are cohomological if and only if n > 0
and w ∈ Z satisfies w+ n≡ 1 mod 2.

Let m1 > m2 ≥ 0 be integers, and let w ∈ R. Then we write φ(w;m1,m2) : WR →
GSp4(C) for the L-parameter sending

z �→ |z|w ·

⎛

⎜⎜⎝

(z/z)(m1+m2)/2

(z/z)(m1−m2)/2

(z/z)−(m1−m2)/2

(z/z)−(m1+m2)/2

⎞

⎟⎟⎠
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and

j �→

⎛

⎜⎜⎝

1
1

(−1)m1+m2

(−1)m1+m2

⎞

⎟⎟⎠ .

Note that φ(w;m1,m2) is viewed as having image in GSp4(C) with respect to our particular
choice of model for GSp4(C) where J is anti-diagonal. In particular, the image of j under
the composite of φ(w;m1,m2) with the similitude character is (−1)m1+m2 . With respect to the
explicit inclusion of

{(A, B)⊂GL2(C)×GL2(C) | det(A)= det(B)} ⊂GSp4(C)

given in §2.2, we immediately observe that the composite of φ(w;m1,m2) with the in-
clusion GSp4(C) → GL4(C) identifies φ(w;m1,m2) with φw,m1+m2 ⊕ φw,m1−m2 (note that
(−1)m1+m2 = (−1)m1−m2). The L-packet of GSp4(R) corresponding to φ(w;m1,m2) consists of
two elements πH

(w;m1,m2) and πW
(w;m1,m2). When m2 = 0, they are (up to twist) non-degenerate

limits of discrete series, and when m2 > 0, they are (up to twist) discrete series. The repre-
sentations πH

(w;m1,m2) and πW
(w;m1,m2) are respectively holomorphic and generic. Their cen-

tral character is given by a �→ aw, and they are tempered when w = 0. The minimal
K-type of πH

(w;m1,m2) is the representation detm2+2⊗Symm1−m2−1 C2 of U(2). (See for ex-
ample [Sch17] for these facts and their proofs.)

Lemma 2.6.1 (Inductions of real archimedean parameters to GL4(C)).

(1) The induction IndWR
WC

φw,n :WR →GL4(C) is conjugate to φw,n ⊕ φw,n.

(2) The composite map

φ(w;n,0) :WR →GSp4(C)→GL4(C)

is conjugate to φw,n ⊕ φw,n.

(3) If ϕ :WC → GL2(C) is such that IndWR
WC

ϕ is conjugate to φw,n ⊕ φw,n, and n �= 0,

then either ϕ ∼= φw,n, or ϕ is one of the scalar L-parameters sending z to one of

|z|w ·
(

zn|z|−n 0
0 zn|z|−n

)
or |z|w ·

(
z−n|z|n 0

0 z−n|z|n
)

.

(4) If ϕ,ϕ′ :WR →GL2(C) are such that ϕ⊕ ϕ′ is conjugate to φw,n⊕ φw,n, and n �= 0,

then ϕ ∼= ϕ′ ∼= φw,n.

Proof. — Since φw,n is already a representation of WR, the first induction is isomor-
phic to φw,n ⊕ φw,n ⊗ sgn. Yet φw,n is itself induced from C×, and so φw,n ⊗ sgn 	 φw,n.
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The second claim was already noted above. Now suppose that ϕ :WC → GL2(C) is a
complex L-parameter. All such parameters are of the form

za1|z|−a1 |z|w1 ⊕ za2|z|−a2 |z|w2

for integers a1 and a2. The induction of this representation to WR is φw1,a1 ⊕ φw2,a2 . Now
consider the equality of GL4(C)-representations

φw1,a1 ⊕ φw2,a2 = φ(w;n,0) = φw,n ⊕ φw,n.

Restricting to S1 ⊂C× ⊂WR, we deduce that |a1| = |a2| = n, and then restricting to the
action of C× on the eigenspace where S1 ⊂ C× acts by zn (which is distinct from z−n),
we deduce that w1 =w2 =w, and thus φw1,a1 = φw2,a2 = φw,n. If a1 and a2 have opposite
signs, then ϕ = φw,n; otherwise we get the possibilities outlined in the statement of the
lemma. Finally, (4) is immediate from the irreducibility of φw,n. �

We note in passing that the GSp4(C)-parameter cannot be recovered, in general,
from the GL4(C)-parameter. This is true in particular for φ(0;1,0), since one may com-
pute that the GL4(C) representation preserves two symplectic forms whose similitude
characters differ by sgn.

If K is a number field and π is an automorphic representation of GL2(AK), we say
that π has weight 0 if for each place v|∞ of K, πv corresponds to φ0,1. If F is a totally
real field and π is an automorphic representation of GSp4(AF), then we say that π has
weight (kv, lv)v|∞ if for each place v|∞ of F, we have kv ≥ lv ≥ 2 and kv ≡ lv (mod 2), and
πv is in the L-packet corresponding to φ(2;kv−1,lv−2). We say that π has parallel weight 2 if
it has weight (2, 2)v|∞ (we note that the congruence kv ≡ lv (mod 2) is imposed in order
to ensure that π is algebraic.)

2.7. Galois representations associated to automorphic representations. — We now recall
some results from [Mok14] on the existence of Galois representations (adapted to the
particular setting of interest for us), beginning with the existence of Galois representations
for certain cuspidal automorphic representation of GSp4(AF). The following theorem is
essentially due to Sorensen [Sor10], although at the time that [Sor10] was written, some
additional assumptions needed to be made, due to the lack of unconditional results on
the transfer of automorphic representations between GSp4 and GL4.

Theorem 2.7.1. — Suppose that F is a totally real field, and that π is a cuspidal automorphic

representation of GSp4(AF) of weight (kv, lv)v|∞, where kv ≥ lv > 2 and kv ≡ lv (mod 2) for all

v|∞. Suppose also that π has central character | · |2.

Fix a prime p. Then there is a continuous semisimple representation ρπ,p : GF → GSp4(Qp)

satisfying the following properties.

(1) ν ◦ ρπ,p = ε−1.
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(2) For each finite place v, we have

WD(ρπ,p|GFv
)ss ∼= recGT,p(πv ⊗ |ν|−3/2)ss.

If furthermore ρπ,p is irreducible, then

WD(ρπ,p|GFv
)F−ss ∼= recGT,p(πv ⊗ |ν|−3/2).

(3) If v|p, then ρπ,p|GFv
is de Rham with Hodge–Tate weights ((kv + lv)/2 − 1, (kv −

lv)/2+ 1,−(kv − lv)/2, 2− (kv + lv)/2).

(4) If ρπ,p is irreducible, then for each finite place v of F, ρπ,p|GFv
is pure.

Proof. — The existence of a representation ρπ,p valued in GL4(Qp) and satisfy-
ing (2) and (3) is part of [Mok14, Thm. 3.5] (note that the results of [Art04] cited
in [Mok14] hold unconditionally by [GT19]). That the representation actually takes val-
ues in GSp4(Qp) with the claimed multiplier follows from [BC11, Cor. 1.3] (cf. [Mok14,
Rem. 3.3(3)]). Finally, for part (4), note that if ρπ,p is irreducible, then π is of general
type in the sense of [Art04] (see Section 2.9), and thus corresponds to an essentially self-
dual algebraic automorphic representation � of GL4. Purity then follows from the main
results of [Car12, Car14]. �

For representations which are ordinary in the sense of Section 2.4.23, we have the
following variant on Theorem 2.7.1.

Theorem 2.7.2. — Suppose that F is a totally real field, and that π is a cuspidal automorphic

representation of GSp4(AF) of weight (kv, lv)v|∞, where kv ≥ lv > 2 and kv ≡ lv (mod 2) for all

v|∞. Suppose also that π has central character | · |2.

Fix a prime p. Assume that πv is unramified at all places v|p, and that π is ordinary, with

ordinary Hecke parameters (αv,βv)v|p. Then there is a continuous semisimple representation ρπ,p :
GF →GSp4(Qp) satisfying the following properties.

(1) ν ◦ ρπ,p = ε−1.

(2) For each finite place v � p, we have

WD(ρπ,p|GFv
)ss ∼= recGT,p(πv ⊗ |ν|−3/2)ss.

If furthermore ρπ,p is irreducible, then

WD(ρπ,p|GFv
)F−ss ∼= recGT,p(πv ⊗ |ν|−3/2).

(3) If v|p, then

ρπ,p|GFv
∼=

⎛

⎜⎜⎝

λαv ε
(kv+lv)/2−2 ∗ ∗ ∗

0 λβv ε
(kv−lv)/2 ∗ ∗

0 0 λ−1
βv

ε−1−(kv−lv)/2 ∗
0 0 0 λ−1

αv
ε1−(kv+lv)/2

⎞

⎟⎟⎠ .

(4) If ρπ,p is irreducible, then for each finite place v of F, ρπ,p|GFv
is pure.
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Proof. — This follows from Theorem 2.7.1; part (3) is a standard consequence of
p-adic Hodge theory, and is in particular immediate from [Ger19, Lem. 2.32] (and Propo-
sition 2.4.6). �

The following theorem is a variant of the main result of [Mok14], which proves
the existence of Galois representations associated to certain automorphic representations
of GL2(K), K a CM field.

Theorem 2.7.3. — Let F be a totally real field, and let K/F be a quadratic extension.

Write Gal(K/F) = {1, τ }. Suppose that π is a cuspidal automorphic representation of GL2(K)

of weight 0 with trivial central character.

Then there is a continuous irreducible representation ρπ,p :GK →GL2(Qp) such that for each

finite place w � p of K, we have

WD(ρπ,p|GKw
)ss ∼= recp(πw ⊗ | · |−1/2)ss.

If πw is not a twist of a Steinberg representation, then in fact

WD(ρπ,p|GKw
)F−ss ∼= recp(πw ⊗ | · |−1/2).

For each place w|p of K, the representation ρπ,p|GKv
is Hodge–Tate, and for each τ :K ↪→Qp, the

τ -labelled Hodge–Tate weights of ρπ,p are (0, 1).

Proof of Theorem 2.7.3. — In the case that K is CM this is a special case of the main
theorem of [Mok14], and essentially the same proof works in the general case. The ar-
gument of [Mok14, §5.1] goes over unchanged to produce a cuspidal automorphic rep-
resentation π of GSp4(AF) (see Theorem 2.9.3 below); to see that πv is in the L-packet
corresponding to φ(2;1,0) at each place v|∞ of F, one uses Lemma 2.6.1 at the places
which split in K, and [Mok14, Prop. 5.2] at the places for which Kv is complex. One
then easily checks that the arguments of [Mok14, §5.2-5.3] go over without any changes
to the case of general K, as required. �

2.8. Compatible systems of Galois representations, L-functions, and Hasse–Weil zeta functions.

— We now recall some definitions concerning compatible systems from [BLGGT14b,
§5] and [PT15, §1]; in fact, our definition of a “strictly compatible system” differs slightly
from the definitions in those papers, because we find it convenient to include local-global
compatibility at places dividing p. Let F denote a number field. By a rank n weakly compatible

system of l-adic representations R of GF defined over M we mean a 5-tuple

(M, S, {Qv(X)}, {rλ}, {Hτ })
where

(1) M is a number field considered as a subfield of C;



194 GEORGE BOXER, FRANK CALEGARI, TOBY GEE, VINCENT PILLONI

(2) S is a finite set of primes of F;
(3) for each prime v /∈ S of F, Qv(X) is a monic degree n polynomial in M[X];
(4) for each prime λ of M (with residue characteristic l, say)

rλ :GF −→GLn(Mλ)

is a continuous, semi-simple, representation such that

• if v /∈ S and v � |l is a prime of F, then rλ is unramified at v and rλ(Frobv)

has characteristic polynomial Qv(X),
• while if v|l, then rλ|GFv

is de Rham and in the case v /∈ S crystalline;

(5) for τ : F ↪→M, Hτ is a multiset of n integers such that for any M ↪→Mλ over
M we have HTτ (rλ)=Hτ .

If R= (M, S, {Qv(X)}, {rλ}, {Hτ }) and R′ = (M′, S′, {Q′
v(X)}, {r′λ}, {H′

τ }) are two com-
patible systems, then we write R∼=R′ if Qv(X)=Q′

v(X) for a set of places v of Dirichlet
density one. This implies that Qv(X)=Q′

v(X) for all v /∈ S∪S′, and that rλ ∼= r′λ for all λ,
and H′

τ =Hτ for all τ .
We say that R is regular if for each τ : F ↪→M, the elements of Hτ are pairwise

distinct. We will call R strictly compatible if for each finite place v of F there is a Weil–
Deligne representation WDv(R) of WFv

over M such that for each place λ of M and
every M-linear embedding ς :M ↪→Mλ we have ς WDv(R)∼=WD(rλ|GFv

)F-ss.
We will call a strictly compatible system R pure of weight w if for each finite place

v of F the Weil–Deligne representation WDv(R) is pure of weight w.
The following result is well-known (see for example [Fon94, Rem. 2.4.6]), but as

we do not know of a convenient reference for a proof, we briefly explain how it follows
from results in the literature.

Proposition 2.8.1. — If A is an abelian variety over a number field F, then, for each 0≤ i ≤
2 dim X, the l-adic cohomology groups Hi(AF,Ql) form a strictly compatible system which is pure of

weight i and which is defined over Q.

Proof. — Since Hi(A,Ql)=∧iH1(A,Ql), it is enough to check the case i = 1. The
compatible system satisfies strict compatibility at the places not dividing l by [Noo13, Cor.
2.7]. In the case that A has semistable reduction, it is furthermore strictly compatible
by [Noo17, Cor. 2.2]. One can deduce the general case from this by a base change trick
due to Saito [Sai97], which was exploited in [Kis08, Ski09, BLGGT14a]. Indeed, as in
the proof of [BLGGT14a, Thm. 2.1], it suffices for each finite place v of F to check
that whenever g ∈ WFv

maps to a positive power of Frobenius in the absolute Galois
group of the residue field, then the trace of g on WD(H1(A,Ql)) is independent of l.
One can choose an extension E/F (for example, the fixed field of the subgroup of WF

generated by g and the kernel of the restriction to IF of WD(H1(A,Ql)) for some l) and
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a place v|w of E such that AE is semistable and g ∈WEw
, and the claim then follows from

the independence of l for AE.
It remains to check purity. By [Ray94, Thm. 4.2.2], it is enough to check purity for

the Weil–Deligne representations associated to 1-motives with potentially good reduction,
which is [Ray94, Prop. 4.6.1, Prop. 4.7.4].

The above is of course not a historically accurate account of a proof; indeed, the
strict compatibility of the compatible system at places not dividing l is stated in [Del73,
Ex. 8.10], and given Fontaine’s definition of the Weil–Deligne representation associated
to a potentially semistable representation, the entire proposition can be deduced from the
results of [GRR72]. We omit the details, but we would like to thank Brian Conrad for
explaining them to us. �

Definition 2.8.2. — If A/F is an abelian surface, then we write ρA,l for H1(AF,Ql), and

RA for the compatible system {ρA,l}. We can think of ρA,l as a representation ρA,l :GF →GSp4(Ql)

with multiplier ε−1
l , and will frequently do so without comment.

Remark 2.8.3. — It will sometimes be convenient to say that a set of GSp4-valued
representations form a compatible system, by which we simply mean that the correspond-
ing GL4-valued representations form a compatible system. In particular, the representa-
tions ρA,l :GF →GSp4(Ql) considered in Definition 2.8.2 form a compatible system in
this sense. (In general, one might wish to ask for a compatibility between the symplec-
tic structures; such a compatibility always holds in the cases that we consider, and in
particular we will only consider representations whose multiplier character is the inverse
cyclotomic character, so we ignore this point.)

We can define the L-function of R as follows:

L(R, s)=
∏

v � |∞
L(WDv(R), s).

Furthermore, if R comes from an abelian variety (or more generally, arises in a geomet-
ric structure where the Hodge structure is apparent) then (as in [Ser70]) we can define
Gamma factors Lv(R, s) for each place v|∞ of F, and we set

(2.8.4) �(R, s)= L(R, s)
∏

v|∞
Lv(R, s).

In particular, if R arises from an abelian surface over a totally real field F, then the
corresponding Gamma factor is given by Lv(R, s)= �C(s)2 for all v|∞ where �C(s)=
(2π)−s�(s).

We also have a conductor N(R) which is a product of local factors depending
only on the WDv(R). Conjecturally, if R is a strictly compatible system, then �(R, s)
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admits a meromorphic continuation to the entire complex plane and satisfies a functional
equation of the form

(2.8.5) �(R, s)= ε(R)N(R)−s�(R∨, 1− s)

for some factor ε(R). (When R arises geometrically, there are natural definitions of the
epsilon factor ε(R), but it is not immediately apparent how to read off ε(R) directly
from the compatible system.)

In particular, if A/F is an abelian variety, then by Proposition 2.8.1

�i(A, s) :=�(Hi(AF,Ql), s)

is well-defined, and we define the completed Hasse–Weil zeta function of A to be

�(A, s) :=
2 dim A∏

i=0

�i(A, s)(−1)i

.

Note that if v is a finite place of F at which A has good reduction with corresponding
reduction A, then the local L-factor

Lv(A, s) :=
2 dim A∏

i=0

L(WD(Hi(AF,Ql)), s)(−1)s

can be written as

Lv(A, s)= exp

( ∞∑

m=1

#A(k(v)m)

m
#k(v)−ms

)

where k(v) is the residue field of Fv and k(v)m/k(v) is the extension of degree m.
We have the following conjectures for the �i(A, s), which we will prove for abelian

surfaces over totally real fields by showing that they are potentially automorphic.

Conjecture 2.8.6 ([Ser70], Conj. C9). — For each i, �i(A, s) has a meromorphic continuation

to the entire complex plane, and satisfies a functional equation of the form

�i(A, s)=wN
i+1

2 −s�i(A, i+ 1− s)

where w =±1 and N ∈ Z≥1.

Corollary 2.8.7. — If Conjecture 2.8.6 holds, then �(A, s) has a meromorphic continuation

to the entire complex plane, and satisfies a functional equation of the form �(A, s)= εN−s�(A, 1+
dim A− s) where ε ∈R and N ∈Q>0.

Proof. — This follows immediately from Conjecture 2.8.6 by Poincaré duality. �
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2.9. Arthur’s classification. — We now recall some consequences of Arthur’s classifi-
cation [Art04] of discrete automorphic representations of GSp4. The analogous classifi-
cations for Sp4 and SO5 are special cases of the very general results proved in [Art13],
and a proof of the classification announced in [Art04], making use of the results and
techniques of [Art13] is given in [GT19]. This reference establishes the compatibility
of Arthur’s classification with the local Langlands correspondence recGT, which we use
below without further comment.

We say that an automorphic representation π of GSp4(AF) is discrete if it occurs in
the discrete spectrum of the L2-automorphic forms (with fixed central character ω= ωπ ).
Note in particular that all cuspidal automorphic representations are discrete. Arthur’s
classification divides the discrete spectrum into six families of automorphic representa-
tions. We will not need the full details of this classification, but rather just some conse-
quences that we now recall.

If � is a cuspidal automorphic representation of GL4(AF), then we say that � is
of symplectic type with multiplier χ if the partial L-function LS(s,�,

∧2⊗χ−1) has a pole
at s = 1 (where S is any finite set of places of F). Note that this implies in particular that
�∼=�∨ ⊗ χ .

We say that a discrete automorphic representation π of GSp4(AF) is of general type

in the sense of [Art04] if there is a cuspidal automorphic representation � of GL4(AF) of
symplectic type with multiplier ωπ such that for each place v of F, the L-parameter ob-
tained from recGT(πv) by composing with the usual embedding GSp4 ↪→GL4 is rec(�v).
We say that � is the transfer of π .

In practice, all of the automorphic representations π that we consider in our main
arguments will be of general type. We will often use the following lemma to guarantee this.
(For example, the lemma will be used to show that when we localize a cohomology group
at a non-Eisenstein maximal ideal, the only automorphic representations that contribute
are of general type.)

Lemma 2.9.1. — Suppose that F is totally real, and that π is a discrete automorphic rep-

resentation of GSp4(AF), and that at each place v|∞, πv has the same infinitesimal character as the

representations in the L-packet corresponding to ϕ(2;kv−1,lv−2) with kv ≡ lv (mod 2) and kv ≥ lv ≥ 2.

Suppose that π is not of general type.

Then there is a compatible system of reducible Galois representations ρπ,p :GF →GSp4(Qp)

such that for all but finitely many places v of F, we have WD(ρπ,p|GFv
)ss ∼= recGT,p(πv⊗ |ν|−3/2)ss.

Proof. — We follow the proof of [CG20, Thm. 7.11]. Since π is not of general
type, π falls into one of the five classes (b)-(f) listed at the end of [Art04]. In cases (e)
and (f), we see that the Hecke parameters of π agree with those of a direct sum of 4
idele class characters. By the hypothesis on the infinitesimal character, these characters
are algebraic, so we may take the direct sum of the corresponding compatible systems of
Galois representations.
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In case (d), the Hecke parameters of π agree with those of an isobaric direct sum
of the form λ| · |1/2 �λ| · |−1/2 �μ, where λ is an idele class character, and μ is a cuspidal
automorphic representation of GL2(AF), satisfying ωμ = λ2 = ωπ . Considering infinites-
imal characters, we see that λ is algebraic, so that λ| · |1/2 � λ| · |−1/2 is regular algebraic.
This implies that μ is also regular algebraic, and thus has an attached compatible system
of Galois representations.

In case (b), the Hecke parameters of π agree with those of an isobaric direct sum of
the form μ1 � μ2, where μ1 �= μ2 are cuspidal automorphic representations of GL2(AF)

with central character μπ . Since their central characters agree, it follows easily that they
both correspond to holomorphic Hilbert modular eigenforms of paritious weight. Finally
in case (c), the Hecke parameters of π agree with those of an isobaric direct sum of the
form μ| · |1/2 � μ| · |−1/2, where μ is a cuspidal automorphic representation of GL2(AF)

of orthogonal type; that is, it is induced from a quadratic extension of F. Since μ is
certainly algebraic, we again have an attached compatible system of reducible Galois
representations, as required. �

Remark 2.9.2. — Suppose that π is of general type but otherwise satisfies the
conditions of Lemma 2.9.1. Then the corresponding Galois representations constructed
in [Mok14] (see also Theorem 2.7.1) give rise to a compatible system of Galois represen-
tations which — in contrast to those occurring in Lemma 2.9.1 — are expected to always
be irreducible.

The following theorem summarizes the consequences that we need from Arthur’s
multiplicity formula.

Theorem 2.9.3. — Suppose that F is a totally real field, and that � is a cuspidal automorphic

representation of GL4(AF) of symplectic type with multiplier χ . Then there exists at least one discrete

automorphic representation π of GSp4(AF) with central character χ such that � is the transfer of π .

More precisely, for each place v of F, let πv be an element of the L-packet corresponding to

(recp(�v),χv). Then π := ⊗′vπv is automorphic, and occurs with multiplicity one in the discrete

spectrum.

If, furthermore, � is algebraic, then π is cuspidal.

Proof. — The statements of the first two paragraphs are immediate from the mul-
tiplicity formula of [Art04] as proved in [GT19] (note that since π is of general type by
definition, the group Sψ considered in [Art04] is trivial). Suppose then that � is alge-
braic; then �∞ is essentially tempered by [Clo90, Lem. 4.9], so that π∞ is also essentially
tempered (as its L-parameter is essentially bounded), so that π is cuspidal by [Wal84,
Thm. 4.3]. �

2.10. Balanced modules. — Let S be a Noetherian local ring with residue field k, and
let M be a finitely generated S-module. As in [CG18, §2.1], we define the defect dS(M) to
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be

dS(M) := dimk M/mSM− dimk Tor1
S(M, k).

Definition 2.10.1. — We say that M is balanced if dS(M)≥ 0.

Lemma 2.10.2. — If M is balanced, then there is a presentation

Sd → Sd →M→ 0

with d = dimk M/mSM.

Conversely if M admits a presentation

Sr → Sr →M→ 0

for some r ≥ 0, then M is balanced.

Proof. — Assume firstly that M is balanced, and choose a (possibly infinite) minimal
resolution

· · · → Pi → ·· ·→ P1 → P0 →M→ 0

by finite free S-modules Pi of rank ri . (Recall that a minimal resolution is one whose
differentials vanish modulo mS, and that such a resolution always exists.) Tensoring
this resolution with k over S, we see that ri = dimk Tori

S(M, k), so that in particular
by our assumptions we have d = r0 ≥ r1, so that there is a presentation of the form
P1 ⊕ S⊕(d−r1) → P0 →M→ 0, as required.

Conversely, if M admits a presentation Sr → Sr →M→ 0, then let K be the image
of the map Sr → Sr . Then from the exact sequence

0→Tor1
S(M, k)→K/mSK→ kr →M/mSM→ 0

we see that

dS(M)= r − dimk K/mSK;
since K admits a surjection from Sr , it follows that dS(M)≥ 0, as required. �

2.11. Projectors. — Let R be a complete local Noetherian ring with maximal ideal
mR and finite residue field. We let Modcomp(R) be the category of mR-adically complete
and separated R-modules. Let M ∈Ob(Modcomp(R)) and T ∈ EndR(M).

Definition 2.11.1. — We say that T is locally finite on M if for all n ≥ 0, M/mn
R is an

inductive limit of finite type R-modules which are stable under the action of T.
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Lemma 2.11.2. — If T1, T2 commute and are both locally finite on M, then T1T2 is also

locally finite on M.

Proof. — By definition we can assume that M is mn
R-torsion for some n. If v ∈M

then since T1 is locally finite, the R-submodule of M generated by the Ti
1v is finitely

generated. Since T2 is locally finite, it follows that the R-submodule generated by the
Ti

2Tj

1v is also finitely generated, and since T1, T2 commute, this submodule is stable
under the action of T1T2, as required. �

The following results from [Pil20] will be used to construct the ordinary projectors
associated to certain Hecke operators.

Lemma 2.11.3 ([Pil20, Lem. 2.1.2]). — If M is an object of Modcomp(R) and T is an

endomorphism of M, then T is locally finite on M if and only if it is locally finite on M/mR.

Lemma 2.11.4 ([Pil20, Lem. 2.1.3]). — If T is locally finite on M, then limn→∞Tn!

converges pointwise in the mR-adic topology to a projector e(T) on M.

The operators T and e(T) commute, and we have a T-stable decomposition

M= e(T)M⊕ (1− e(T))M,

where T is bijective on e(T)M and topologically nilpotent on (1− e(T))M.

We call e(T) the ordinary projector attached to T. Let D(R) be the derived cate-
gory of R-modules, let Dflat(R) be the full subcategory of D(R) generated by bounded
complexes of flat, mR-adically complete and separated R-modules and let Dperf(R) be
the full subcategory of D(R) generated by bounded complexes of finite free R-modules.
Let M ∈ Ob(Dflat(R)). We say that an operator T ∈ End(M) is locally finite if there is
a bounded complex of flat modules N representing M and an operator T0 ∈ End(N)

representing T which is degree-wise locally finite. By [Pil20, Lem. 2.3.1], T is locally fi-
nite on M if and only if T is locally finite on the cohomology groups Hi(M⊗L

R R/mR)

and there is a bounded complex of flat modules N representing M and an operator
T0 ∈ End(N) representing T. Given a choice of representatives (N, T0 ∈ End(N)) for
a locally finite operator T, we get an associated idempotent e(T0) ∈ End(N). In general,
we do not know whether two choices of representatives (N, T0 ∈ End(N)) give the same
projector in EndD(R)(M). But by [Pil20, Lem. 2.3.2], if we assume that for one choice of
representative e(T0)M is an object of Dperf (R) then, for another choice of locally finite
representative (N′, T1 ∈ End(N′)), e(T1)M is an object of Dperf (R) and there is a canoni-
cal quasi-isomorphism e(T0)M→ e(T1)M. In the sequel, these conditions will always be
satisfied and we will write e(T) by abuse of notation.
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3. Shimura varieties

In this section, we discuss the Hilbert–Siegel Shimura varieties that we work with,
and some properties of their integral models. There are two closely related algebraic
groups here: G1 = ResF/QGSp4 and its subgroup G of elements with similitude factor in
Gm ↪→ResF/QGm.

The group G admits a standard PEL Shimura variety and there is a good moduli
interpretation, integral models, and a good theory of integral compactification. Nonethe-
less, from an automorphic view point we must work with the group G1 which gives rise
to a Shimura variety of abelian type.

Going back to the work of Deligne (see in particular [Del79, §2.7]), there is a
standard strategy for handling abelian type Shimura varieties by relating their connected
components to quotients of connected components of Hodge type Shimura varieties by
finite groups. As a particular instance of this strategy, the Shimura varieties for G and G1

are closely related: the connected components of G1-Shimura varieties are quotients of
the connected components of G-Shimura varieties by finite groups. We therefore study
both of them at the same time.

For convenience, our main references for integral models of PEL Shimura varieties
and their compactifications are the papers [Lan13, Lan16, Lan17], although some of the
results we cite from there were proved in earlier papers, in particular [Kot92]; we refer
the reader to the references in [Lan13] for a more detailed historical account.

3.1. Similitude groups. — Let F be a totally real field. Let V = O4
F be a free OF-

module of rank 4. We equip V with the symplectic OF-linear form <,>1:V×V→OF

given by the matrix J. We let <,>:= (TrF/Q◦<,>1) be the associated Z-linear symplec-
tic form.

Let G1 = ResF/QGSp4 be the algebraic group of symplectic F-linear automor-
phisms of (VQ,<,>1), up to a similitude factor ν in ResF/QGm.

Let G ⊂ G1 be the algebraic group of symplectic F-linear automorphisms of
(VQ,<,>) up to a similitude factor in Gm; that is, G=G1 ×ν,ResF/QGm

Gm.

3.2. Shimura varieties over C. — We firstly briefly discuss some Shimura varieties
over C. We caution the reader that in the bulk of the paper we will work with Shimura
varieties over Z(p) which are not quite integral models of these Shimura varieties, but
whose geometrically connected components are the same as these; see Proposition 3.3.9
below for a precise statement. We begin by recalling the definition of a neat compact
open subgroup from [Lan13, Defn. 1.4.1.8].

Definition 3.2.1. — Write g = (gl)l ∈G1(A∞), and for each l, write �gl
for the subgroup of

Q
×
l generated by the eigenvalues of gl (under any faithful linear representation of G1). Then we say that
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g is neat if

⋂

l

(Q
× ∩ �gl

)tors = 1.

Similarly, if g ∈G1(A∞,p), then we say that g is neat if

⋂

l �=p

(Q
× ∩ �gl

)tors = 1.

We say that a compact open subgroup K ⊂ G1(A∞) (resp. Kp ⊂ G1(A∞,p)) is neat if all of its

elements are neat.

We consider the Shimura variety associated to the group G1 and a neat compact
open subgroup K⊂G1(A∞):

SG1
K (C)=G1(Q)\(G1(R)×G1(A∞)

)
/Z(R)0K0

∞K

where Z(R)0 	 RHom(F,R)

>0 is the connected component of the centre in G1(R) 	
GSp4(R)Hom(F,R) and K0

∞ is the connected component of the maximal compact subgroup
inside G1(R), so that K0

∞ is a product of copies of U(2). This Shimura variety carries a
natural structure of complex quasi-projective variety, as we have G1(R)/Z(R)0K0

∞ =
(H∪−H)Hom(F,R), where H is the Siegel half space of symmetric matrices M= A+ iB ∈
M2×2(C) with B positive definite.

Let G1(Q)+ be the subgroup of G1(Q) equal to ν−1(F×,+), where F×,+ is the sub-
group of totally positive elements in F×. Then by strong approximation,

G1(A∞)=
∐

c

G1(Q)+cK

where c runs through a (finite) set of elements in G1(A∞) such that ν(c) are representatives
of the strict class group F×,+\(A∞ ⊗Q F)×/ν(K).

One can then write

SG1
K (C)=

∐

c

�1(c, K)\HHom(F,R)

where �1(c, K)=G1(Q)+ ∩ cKc−1.
This Shimura variety, although natural from the point of view of automorphic

forms, is not of PEL type. Therefore, it is also necessary to work with another Shimura
variety. We can consider the double quotient

SG
K(C)=G(Q)\(G(R)×G1(A∞)

)
/R>0K0

∞K;
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this is not strictly speaking a Shimura variety, and in particular we emphasise that it is not
the PEL Shimura variety associated to G! By strong approximation we may write

G1(A∞)=
∐

c

G(Q)+cK

where c runs through a set of elements of G1(A∞) such that ν(c) are representatives
of the infinite set Q×,+\(A∞ ⊗Q F)×/ν(K). For all c, we consider the group �(c, K) =
G(Q)+ ∩ cKc−1, so that

SG
K(C)=

∐

c

�(c, K)\HHom(F,R).

The inclusion G(R) ↪→G1(R) induces a natural surjective map SG
K(C)→ SG1

K (C).
On connected components, it induces the natural map

Q×,+\(A∞ ⊗Q F)×/ν(K)→ F×,+\(A∞ ⊗Q F)×/ν(K).

For any c ∈G1(A∞) we have an associated surjective map on the connected com-
ponents corresponding to c, given by

�(c, K)\HHom(F,R) → �1(c, K)\HHom(F,R).

Let Z(�1(c, K))⊂ �1(c, K) be the centre. Then Z(�1(c, K)) is a finite index sub-
group of O×

F that we denote by O×
F (K). Let

�(K)= �1(c, K)/
(
O×

F (K),�(c, K)
)
.

This is a finite group, independent of c and isomorphic to

ν(�1(c, K))/ν(O×
F (K))= (O×,+

F ∩ ν(K))/ν(O×
F (K)),

having noted the following:

Lemma 3.2.2. — There is an equality ν(�1(c, K))=O×,+
F ∩ ν(K).

Proof. — Recall that by definition �1(c, K)=G1(Q)+∩cKc−1, so certainly we have
an inclusion ν(�1(c, K)) ⊆ O×,+

F ∩ ν(K). Conversely, suppose that ν(γ ) = x ∈ O×,+
F ∩

ν(K) for some element γ ∈ cKc−1. Since x ∈ O×,+
F = ν(G1(Q)+), we can choose g ∈

G1(Q)+ with ν(g) = x. Then ν(γ −1g) = 1, so by strong approximation, we may find
an h ∈ G1(Q)+ with trivial similitude character such that h is arbitrarily close to gγ −1,
and in particular close enough that hγ g−1 lies in cKc−1. Then hγ ∈G1(Q)+ ∩ cKc−1 and
has similitude character x, as required. �
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We also have

Lemma 3.2.3. — The map �(c, K)\HHom(F,R) → �1(c, K)\HHom(F,R) is finite étale with

group �(K).

Proof. — The group �1(c, K) acts through its quotient �1(c, K)/O×
F (K) on

HHom(F,R), and since K is neat, this action is free. �

3.3. Integral models of Shimura varieties. — We now introduce the integral models of
Shimura varieties that we will consider in the rest of the paper.

3.3.1. Compact open subgroups at p. — We let p be a prime that is totally split in F.
Let v be a prime ideal in OF above p. Consider the following chain of OFv

-sub modules
of F4

v :

V0 →V1 →V2 →V3 →V4

where V0 = V ⊗OF OFv
= ⊕4

i=1OFv
ei and Vj = 〈p−1e1, . . . , p−1ej, ej+1, . . . , e4〉. We can

identify V0 and V4 through multiplication by p and sometimes think of the indices as
being in Z/4Z.

From the perfect pairing <,> on V0 we obtain perfect pairings on V2 × V2 and
on V1 ×V3.

We now recall the definitions of the parabolic subgroups that we use in terms of
flags; this description is well suited to the definitions of our integral models.

• GSp4(OFv
)= Aut(V0)∩GSp4(Fv) (the hyperspecial subgroup),

• Par(v)= Aut(V1 →V3)∩GSp4(Fv) (the paramodular subgroup),
• Si(v)= Aut(V0 →V2)∩GSp4(Fv) (the Siegel parahoric),
• Kli(v)= Aut(V0 →V1 →V3 →V0)∩GSp4(Fv) (the Klingen parahoric),
• Iw(v)= Aut(V0 →V1 →V2 →V3 →V0)∩GSp4(Fv) (the Iwahori subgroup).

3.3.2. The moduli problem. — Let ALG/Z(p) be the category of Noetherian Z(p)-
algebras and AFF/Z(p) the opposite category. Let K⊂ G1(A∞) be a compact open sub-
group; we will also refer to such a compact open subgroup as a level structure.

Definition 3.3.3. — We say that a level structure K = KpKp is reasonable if Kp ⊂
G(A∞,p) is neat, and if Kp =∏

v|p Kv where for each v|p we have

Kv ∈ {GSp4(OFv
), Par(v), Si(v), Kli(v), Iw(v)}.

Let K be a reasonable level structure. We consider the groupoid YK over AFF/Z(p)

whose fibre over S= Spec R ∈Ob(AFF/Z(p)) is the category with objects (A, ι, λ, η, ηp),
where:
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(1) A→ Spec R is an abelian scheme,
(2) ι :OF → End(G)⊗Z(p) is an action,
(3) Lie(A) is a locally free OF ⊗Z R-module of rank 2,
(4) λ : A→ At is a prime to p, OF-linear quasi-polarization such that for all v|p,

Ker(λ : A[v∞] → At[v∞]) is trivial if Kv �= Par(v) and is an order p2 group
scheme if Kv = Par(v),

(5) η is a Kp-level structure,
(6) ηp is a Kp-level structure.

Here by a prime to p quasi-polarization λ : A→ At we mean a Z×(p)-polarization in
the sense of [Lan13, Defn. 1.3.2.19]. By a Kp-level structure ηp, we mean the following
list of data:

(1) For all v|p such that Kv =Kli(v), Hv ⊂ A[v] is an order p-group scheme,
(2) For all v|p such that Kv = Si(v), Lv ⊂ A[v] is an order p2 group scheme that is

totally isotropic for the Weil pairing.
(3) For all v|p such that Kv = Iw(v), Hv ⊂ Lv ⊂ A[v] are subgroups such that Hv

is of order p, Lv is of order p2 and Lv is totally isotropic for the Weil pairing.

Let us spell out the definition of Kp-level structure. We may assume without loss
of generality that S is connected, and we fix s a geometric point of S. The adelic Tate
module H1(A|s,A∞,p) carries a symplectic Weil pairing

<,>λ:H1(A|s,A∞,p)×H1(A|s,A∞,p)→H1(Gm|s,A∞,p)

or equivalently an F-linear symplectic pairing:

<,>1,λ:H1(A|s,A∞,p)×H1(A|s,A∞,p)→H1(Gm|s,A∞,p)⊗ F.

The level structure η is a Kp-orbit of pairs of isomorphisms (η1, η2), where (with V=O4
F

the standard symplectic space defined above):

(1) An OF ⊗Z A∞,p-linear isomorphism of �1(S, s)-modules η1 : V ⊗Z A∞,p 	
H1(A|s,A∞,p).

(2) An OF⊗Z A∞,p-linear isomorphism of �1(S, s)-modules η2 : F⊗Z A∞,p 	 F⊗Z

H1(Gm|s,A∞,p).

We moreover impose that the following diagram is commutative:

(3.3.4) V⊗Z A∞,p ×V⊗Z A∞,p
η1×η1

<,>1

H1(A|s,A∞,p)×H1(A|s,A∞,p)

<,>1,λ

F⊗Z A∞,p
η2

F⊗Z H1(Gm|s,A∞,p)

The action of an element k ∈Kp takes (η1, η2) to (η1k, ν(k)η2).
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Remark 3.3.5. — The reader will observe that η2 is uniquely determined by η1,
but we find it convenient to record it as part of the data for the sake of comparison to the
PEL setting in Proposition 3.3.9 below.

A map between quintuples (A, ι, λ, η, ηp) and (A′, ι′, λ′, η′, η′p) is an OF-linear
prime to p quasi-isogeny (in the sense of [Lan13, Defn. 1.3.1.17]) f : A→ A′ such that

• f ∗λ= rλ′ for a locally constant function r : S→ Z×,+
(p) ,

• f (ηp)= η′p, and
• H1(f ) ◦ η= η′.

This last condition means that η′ is defined by H1(f ) ◦ η1 = η′1 and η′2 = r−1η2. Also, we
have denoted Z×,+

(p) =Q×
>0 ∩Z×(p).

Remark 3.3.6. — Note that we are allowing the similitude factor in the level struc-
ture to be in A∞,p ⊗Q F(1), but we only allow quasi-isogenies with similitude factor in
A∞,p(1).

We denote by Z×,+
(p) \(A∞,p ⊗ F)×/ν(Kp)(1) the set Z×,+

(p) \(A∞,p ⊗ F)×/ν(Kp)

equipped with the action of Gal(Q/Q) through the cyclotomic character Gal(Q/Q)→∏
��=p Z×� ↪→ (A∞,p)×. This action is unramified at p. It follows easily that Z×,+

(p) \(A∞,p ⊗
F)×/ν(Kp)(1) is represented by an infinite disjoint union of finite étale schemes over
Spec Z(p).

Remark 3.3.7. — The group Z×,+
(p) acts freely on (A∞,p ⊗ F)×/ν(Kp).

Remark 3.3.8. — When ν(Kp)= (OF⊗Z
∏

��=p Z�)
×, then the above Galois action

is trivial and Z×,+
(p) \(A∞,p ⊗ F)×/ν(Kp)(1) is simply an infinite disjoint union of copies of

Spec Z(p).

There is a structural map �0 : YK → Z×,+
(p) \(A∞,p ⊗ F)×/ν(Kp)(1) which asso-

ciates to an object (A, ι, λ, η, ηp) of YK the class of η2(1) (where we are identifying
H1(Gm|s,A∞,p) with A∞,p(1)).

As we mentioned at the beginning of §3.2, the complex points of our integral mod-
els are not precisely the double coset spaces considered in §3.2, because our moduli prob-
lem only allows polarizations of degree prime to p. However, the difference amounts to
throwing away some geometrically connected components, as the following result ex-
plains.

Proposition 3.3.9. — The groupoid YK is representable by a quasi-projective scheme �0 :
YK → Z×,+

(p) \(A∞,p⊗ F)×/ν(Kp)(1). The morphism �0 has geometrically connected fibres. Let c ∈
Z×,+

(p) \(A∞,p⊗F)×/ν(Kp) and let c : Spec C→ Z×,+
(p) \(A∞,p⊗F)×/ν(Kp)(1) be the associated
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morphism (for the usual choice of primitive roots of unity in C). Let YK,c be the fibre of YK over c. Then

there is an isomorphism of analytic spaces (YK,c)
an = �(c, K)\HHom(F,R).

Proof. — This follows from the usual description of integral models of PEL type
Shimura varieties; in the case of hyperspecial level this goes back to Kottwitz [Kot92], but
for convenience we follow the notation of [Lan13]. To this end, we recall the description
of these integral models for the usual Shimura varieties for G. We let K̃= K̃pK̃p denote
a compact open subgroup of G(A∞), where K̃p is a compact open subgroup of G(A∞,p),
and K̃p is of one of the parahoric subgroups considered above.

Then we let YG,Kott be the groupoid over AFF/Z(p) whose fibre over S ∈
Ob(AFF/Z(p)) is the category with objects (A, ι, λ, η̃, ηp), where (A, ι, λ, ηp) is as in the
definition of YK above, but now η̃ is given by a K̃p-orbit of pairs of isomorphisms (η̃1, η̃2),
consisting of:

(1) An OF ⊗ A∞,p-linear isomorphism of �1(S, s)-modules η̃1 : V ⊗Z A∞,p 	
H1(A|s,A∞,p).

(2) An A∞,p-linear isomorphism of �1(S, s)-modules η̃2 : A∞,p 	 A∞,p ⊗Z

H1(Gm|s,A∞,p).

We moreover impose that the following diagram is commutative:

(3.3.10) V⊗Z A∞,p ×V⊗Z A∞,p
η̃1×η̃1

<,>

H1(A|s,A∞,p)×H1(A|s,A∞,p)

<,>λ

A∞,p
η̃2

H1(Gm|s,A∞,p)

A map between quintuples (A, ι, λ, η̃, ηp) and (A′, ι′, λ′, η̃′, η′p) is an OF-linear
prime to p quasi-isogeny f : A→ A′ such that

• f ∗λ= rλ′ for a locally constant function r : S→ Z×,+
(p) ,

• f (ηp)= η′p, and
• H1(f ) ◦ η̃= η̃′.

It follows immediately from the definition that there is a natural isomorphism

YK
∼=

∐

g∈G(A∞,p)\G1(A∞,p)/Kp

YG,Kott
gKpg−1∩G(A∞,p)

,

given by the maps

g : YG,Kott
gKpg−1∩G(A∞,p)

→ YK

which are defined by

(A, ι, λ, (η̃1, η̃2), ηp) �→ (A, ι, λ, (η̃1, η̃2 ⊗Z OF)g, ηp).
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(Indeed, one easily checks that this already gives a bijection of tuples before passing to
isogeny classes, and that this bijection is compatible with isogenies.) The result now fol-
lows from [Kot92, §5, §8]. �

We now define an action of (OF)
×,+
(p) (totally positive elements in F× which are

prime to p) on YK, by scaling the polarization λ. Since this scales the λ-Weil pairing 〈, 〉1,λ,
we see from (3.3.4) that it also scales η2. Explicitly, x ∈ (OF)

×
(p) sends (A, ι, λ, (η1, η2), ηp)

to (A, ι, xλ, (η1, xη2), ηp). By definition, the subgroup Z×,+
(p) acts trivially on YK.

The group (OF)
×,+
(p) acts on the set of connected components �0(YK). Since the

cyclotomic character surjects onto
∏

l �=p Z×l , the stabilizer of each connected component
is

O×,+
F (�0) :=

⎛

⎝(OF)
×,+
(p) ∩Z×,+

(p) ν(Kp)
∏

��=p

Z×�

⎞

⎠/Z×,+
(p) ,

which we can and do naturally identify with

O×,+
F ∩ ν(Kp)

∏

��=p

Z×� .

Remark 3.3.11. — If ν(Kp)= (OF ⊗Z
∏

��=p Z�)
×, then O×,+

F (�0)=O×,+
F .

The subgroup O×,+
F (ν(Kp)) :=O×,+

F ∩ν(Kp) acts trivially on each connected com-
ponent of �0(YK). The quotient stack of connected components is

[((OF)
×,+
(p) /Z×,+

(p) )\(Z×,+
(p) \(A∞,p ⊗ F)×/ν(Kp)(1)

)].
It admits a coarse moduli space (OF)

×,+
(p) \(A∞,p ⊗ F)×/ν(Kp)(1) which is a finite étale

covering of Spec Z(p).
We now take the quotient stack

YG1
K := [YK/((OF)

×,+
(p) /Z×,+

(p) )].
This is the “Shimura stack” associated to G1 and the level K.

Let us define

O×,+
F (Kp)= {x2 | x ∈O×

F ∩Kp},
where O×

F is thought of inside G1(A
(p)

f ) as a subgroup of the scalar matrices. The mul-
tiplier of the scalar matrix given by x is x2, and hence the multiplier of O×,+

F (Kp)

lands inside ν(Kp), and hence O×,+
F (Kp) is a finite index subgroup of O×,+

F (ν(Kp)) and
of O×,+

F (�0).
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Lemma 3.3.12. — The restriction of the action of (OF)
×,+
(p) on YK to O×,+

F (Kp) is trivial.

More precisely, there is a canonical natural transformation going from the action of O×,+
F (Kp) on YK to

the trivial action of O×,+
F (Kp) on YK.

Proof. — Let x2 ∈ O×,+
F (Kp) for a unique x ∈ O×,+

F ∩ Kp. The action of x2 sends
(A, ι, λ, η, ηp) to (A, ι, x2λ,η,ηp) (note that since x ∈ Kp, and η is by definition a Kp-
orbit, the action of x2 on η is trivial). On the other hand multiplication by x−1 : A→ A
provides a map (A, ι, λ, η, ηp)→ (A, ι, x2λ,η,ηp) in the groupoid YK. This provides the
natural transformation from the action of x2 obtained from the action of (OF)

×,+
(p) to the

trivial action. �

Lemma 3.3.13. — For any geometric point x ∈ YK, the stabilizer of x for the action of

(OF)
×,+
(p) is O×,+

F (Kp).

Proof. — By Lemma 3.3.12, O×,+
F (Kp) is contained in the stabilizer of any x =

(A, ι, λ, η). Let ε ∈ (OF)
×,+
(p) and assume that there is a morphism

f : (A, ι, λ, (η1, η2), ηp)→ (A, ι, ελ, (η1, εη2), ηp)

in the groupoid YK. We need to show that f ∈O×
F ∩Kp. Since f respects η1, it follows

from [Lan13, Lem. 1.3.5.2] that f is an automorphism of A (and not just a quasi-isogeny).
The polarization λ induces an involution x �→ x̄ on F(f ), and we consider the auto-

morphism α = f f̄ −1 of A. It stabilizes the polarization: α∗λ= λαᾱ = λ. It also stabilizes
the level structure: f̄ acts like the adjoint of f on H1(A,A∞,p). Since Kp is neat, this
implies that α = 1; indeed, all the eigenvalues of α are roots of unity, because they are
algebraic numbers all of whose conjugates have absolute value 1. It follows that f = f̄ ,
and f 2 = f f̄ = ε. Since f is an automorphism, it follows that ε ∈O×

F . Hence it suffices to
show that f ∈ F, since we then have ε ∈O×,+

F (Kp).
Assume first that A is simple, so that End(A)Q is a division algebra and F(f ) ⊂

End(A)Q is a commutative field on which the Rosati involution x �→ x̄ is complex conju-
gation. Since f = f̄ and f 2 = ε, F(f ) is a totally real extension of F of degree at most 2. If
F(f )= F, we are done. Otherwise F(f ) is a quadratic extension of F. The level structure
η provides a Kp-orbit of isomorphisms H1(A,A∞,p)	 V⊗ A∞,p, and the element f acts
via some conjugate of

⎛

⎜⎜⎝

0 ε 0 0
1 0 0 0
0 0 0 1
0 0 ε 0

⎞

⎟⎟⎠

and has eigenvalues in F̄: {√ε,−√ε} with multiplicity two. By neatness, no conjugate of
this matrix is in Kp, a contradiction.
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We now assume that A is not simple. It is easy to see (using the OF-action) that
the only possibility is that A is isogenous to A1 × A2 where A1 and A2 are two abelian
schemes of dimension [F : Q] with F ⊂ End(Ai)Q. If A1 and A2 are not isogenous,
then End(A)Q = End(A1)Q × End(A2)Q. Moreover, F(f ) is a commutative subalgebra
of End(A1)Q × End(A2)Q and is therefore included in a product of fields F1 × F2 where
Fi is either F or a CM extension of F. Since f = f , we see that f = (f1, f2) ∈ F× F and
that f 2 = (f 2

1 , f 2
2 )= ε. So either f1 = f2, and we are done, or f1 =−f2; but this second case

is again prohibited by neatness.
Lastly, we assume that A is isogenous to A2

1. Then End(A)Q 	 M2(End(A1)Q)

and F(f ) is a commutative subalgebra, therefore included in M2(E) where E is ei-

ther F or a CM extension of F. Writing f =
(

a b

c d

)
∈ GL2(E), we have ε = f 2 =

(
a2 + bc b(a+ d)

c(a+ d) bc+ d2

)
. If a + d = 0, the matrix of f has eigenvalues {√ε,−√ε} and

this is again impossible by neatness. We deduce that a + d �= 0, so that b = c = 0 and
a= d =√ε or a= d =−√ε. Since f = f and the Rosati involution induces the complex
conjugation on E, we deduce that

√
ε ∈ F and that f ∈ F, as required. �

We write

(3.3.14) �= (OF)
×,+
(p) /O×,+

F (Kp),

(3.3.15) �(�0)=O×,+
F (�0)/O×,+

F (Kp),

(3.3.16) �(Kp)=O×,+
F (ν(Kp))/O×,+

F (Kp).

These last two groups are finite groups. Let us set YG1
K =�\YK. This last quotient exists

as a scheme. Indeed, � permutes the connected components of YK and the stabilizer of
any connected component is a finite group �(�0), while the stabilizer of any geomet-
rically connected component if �(Kp). Moreover, the action of � can be lifted to an
action on an ample line bundle on YK (for instance the tensor product of the line bundles
det(�1

(A/C)/YK
) where C runs over all subgroups C=∏

v|p Cv where for each v | p, Cv is
either 1 or whichever of Hv, Lv exist as part of the level structure, see [Lan16, §6]). The
group �(�0) acts without fixed points by Lemma 3.3.13. The following proposition then
follows immediately from Proposition 3.3.9 and Lemma 3.2.3.

Proposition 3.3.17. — There is a canonical map YG1
K → YG1

K , and YG1
K is the coarse moduli

of YG1
K . There is a quasi-projective morphism �0 : YG1

K → (OF)
×,+
(p) \(A∞,p ⊗ F)×/ν(Kp)(1) with

geometrically connected fibres. Moreover, the map YK → YG1
K is étale and surjective.

Let c ∈ Z×,+
(p) \(A∞,p ⊗ F)×/ν(Kp) and let

c : Spec C→ Z×,+
(p) \(A∞,p ⊗ F)×/ν(Kp)(1)
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be the associated morphism (for the usual choice of primitive roots of unity in C). Let YK,c be the fibre

of YK over c and let YG1
K,c be the fibre of YG1

K over c. Then there is a commutative diagram of analytic

spaces where the horizontal maps are isomorphisms and the vertical maps are finite étale with groups

�(Kp)=�(K):

(YK,c)
an �(c, K)\HHom(F,R)

(YG1
K,c)

an �1(c, K)\HHom(F,R)

3.4. Local models. — We now recall some basic results about local models for GSp4;
the cases that we need essentially go back to [dJ93]. Continue to let K be a reasonable
level structure. For each place v|p, we let Mloc

Kv
be the moduli space over OFv

of chains
of lattices corresponding to Kv ; so for example Mloc

Par(v) is the moduli space of totally
isotropic direct factors of V1 ⊗OF OFv

of rank 2. We write Mloc
Kp
:= ×v|pMloc

Kv
. Then by

the results of [RZ96, §6], each geometric point of the special fibre of YG
K has an étale

neighbourhood which is isomorphic to an étale neighbourhood of a geometric point in
Mloc

Kp
. (The description of the local model in [RZ96, §6] is in terms of chains of OF ⊗Zp-

lattices, but this description can be immediately rewritten in terms of products over the
places v|p of chains of OFv

-lattices.)

Proposition 3.4.1. — The scheme YK is flat over Spec Z(p), normal, and a local complete in-

tersection (so in particular Cohen–Macaulay) of pure relative dimension 3[F :Q]. If Kv =GSp4(OFv
)

for all v|p, then it is smooth, while in general it is smooth away from codimension 2.

Proof. — Note that normality follows from being smooth away from codimension 2
and Cohen–Macaulay. The properties of being flat and a local complete intersection
over Spec Z(p), and of being smooth, or smooth away from codimension 2, can all be
checked étale locally ([Sta13, Tag 03E7, Tag 04R3, Tag 06C3]). Furthermore, these
properties are all preserved by taking products. It therefore suffices to show that they
hold for the local models Mloc

Kv
. This has already been carried out in the literature: the

case that Kv = GSp4(OFv
) is trivial, and the cases that Kv =Kli(v), Si(v) or Iw(v) are

covered in [Til06b, §2]. In the case Kv = Par(v) see [Yu11, Prop. 2.5, Thm. 2.11]. �

Corollary 3.4.2. — The scheme YG1
K is normal, flat over Spec Z(p), and a local complete

intersection.

Proof. — Since YK → YG1
K is an étale surjection by Proposition 3.3.17, this is im-

mediate from Proposition 3.4.1. �

http://stacks.math.columbia.edu/tag/03E7
http://stacks.math.columbia.edu/tag/04R3
http://stacks.math.columbia.edu/tag/06C3


212 GEORGE BOXER, FRANK CALEGARI, TOBY GEE, VINCENT PILLONI

3.5. Compactifications. — In this section, we state results on the existence of toroidal
compactifications. Toroidal compactifications depend on some combinatorial data which
we first explain. We will follow closely the presentation of [Pin90] and [HLTT16], see in
particular [HLTT16, §5.2] (that this presentation is equivalent to Lan’s presentation is
explained in [HLTT16, App. B]).

In this section, we write VF for V ⊗OF F. Let C be the set of totally isotropic F-
subspaces W⊂VF. For all W ∈ C, consider the F⊗R-module of Q-bilinear forms

φ :VF/W⊥ ×VF/W⊥ →R

which satisfy φ(λx, y) = φ(x, λy) for all λ ∈ F, x, y ∈ VF/W⊥. Let C(VF/W⊥) be the
cone inside this R-vector space given by those forms which are positive semidefinite and
whose radical is defined over F. Let C be the conical complex which is the quotient of∐

W∈C C(VF/W⊥) by the equivalence relation induced by the inclusions C(VF/W⊥) ⊂
C(VF/Z⊥) for W⊂ Z.

A non-degenerate rational polyhedral cone of C ×G1(A∞) is a subset contained in
C(VF/W⊥) × {γ } for some (W, γ ) which is of the form

∑k

i=1 R>0si for elements si :
VF/W⊥ ×VF/W⊥ →Q.

A rational polyhedral cone decomposition " of C ×G1(A∞) is a partition C ×G1(A∞)=∐
σ∈" σ by non-degenerate rational polyhedral cones σ such that the closure of each

cone is a union of cones.
Let W ∈ C. We let PW be the parabolic subgroup of G1 which is the stabilizer of W.

Let us denote by MW,l the group of F-linear automorphisms of VF/W⊥. We also denote
by MW,h the group of symplectic similitudes of W⊥/W (so that this group is isomorphic
to ResF/QGSp4−2 dim W, and in particular is non-trivial even when dim W= 2). The group
MW =MW,h ×MW,l is the Levi quotient of PW. We have a surjective map PW →MW,l ,
and we denote by PW,h its kernel. There is a surjective map PW,h →MW,h.

The group G1(Q)+ acts on C and also on C. Let W ∈ C, let γ ∈ G1(Q)+ ∩ PW

and φ ∈ C(VF/W⊥). Let γl be the projection of γ in MW,l . Then we set γ φ(x, y) =
ν(γ )φ(γl.x, γl .y).

The set C ×G1(A∞) carries a diagonal left action of G1(Q) and left and right
actions of G1(A∞) (by left and right multiplication on the second factor). For any com-
pact open subgroup K ⊂ G1(A∞), a rational polyhedral cone decomposition " is K-
equivariant if for all h ∈G1(Q), k ∈K and σ ∈", h.σ.k ∈".

For any compact open subgroup K ⊂ G1(A∞) we say that a rational polyhedral
cone decomposition " of C ×G1(A∞) is K-admissible if:

(1) The decomposition is K-equivariant.
(2) For all σ ⊂C(VF/W⊥)× {γ }, and all p ∈ PW,h(A∞), we have p.σ ∈".
(3) For all cones σ , let W ∈ C be such that σ ⊂ C(VF/W⊥) is in the interior of

C(VF/W⊥). Then if there are p ∈ PW,h(A∞), u ∈ K and h ∈ G1(Q) satisfying
σ ∩ hpσ u �= ∅, then in fact h ∈ PW,h(A∞).

(4) G1(Q)\"/K is finite.



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 213

There exist K-admissible rational polyhedral cone decompositions. Any two K-
admissible rational polyhedral cone decompositions can be refined by a third one.

If LW ⊂HomQ(Sym2
FVF/W⊥,Q) is a lattice, then a cone

σ ⊂HomQ(Sym2
OF

VF/W⊥,Q)

is said to be smooth with respect to LW if the si can be taken to be part of a basis of LW.
Assume that for all (W, γ ) ∈ C×G1(A∞) we have lattices

LW,γ ⊂HomQ(Sym2
FVF/W⊥,Q).

We say that a rational polyhedral cone decomposition " is smooth with respect to these
lattices if each cone σ ∈" is smooth.

We now assume that K = KpKp is a reasonable compact open subgroup. We
choose a lattice V′ ⊂ VF with the property that Kp stabilizes V′ ⊗Z A∞,p and that
V′ ⊗ OFv

= V ⊗ OFv
for all places v|p such that Kv �= Par(v) and V′ ⊗ OFv

= V3 for
all places v such that Kv = Par(v).

Then (OF, V′, 〈.〉) defines an integral PEL datum and K⊂G′
1(Ẑ) where G′

1 is the
group scheme over Spec Z of symplectic similitudes of V′.

The theory of toroidal compactification associates a lattice LW,K,γ ⊂ C(VF/W⊥)

to this integral PEL datum, compact open K, W ∈ C and γ ∈ G1(A∞) (see [Lan13,
§5.3] and [Lan16, §3]). The K-admissible rational polyhedral cone decompositions which
satisfy the following extra properties form a cofinal subset of the set of all K-admissible
rational polyhedral cone decompositions:

(1) The decomposition is projective (in the sense of [AMRT10]).
(2) The decomposition is smooth with respect to the lattices LW,K,γ .

In the rest of the paper, we will consider K-admissible rational polyhedral cone
decompositions which satisfy these extra properties unless explicitly stated.

Theorem 3.5.1.

(1) Let " be a K-admissible polyhedral cone decomposition which is projective. There is

a toroidal compactification XK," of YK. It has a stratification indexed by (G(Q)+ ∩
Kp)\"/Kp =G(Q)+\"/K. The boundary is the reduced complement of YK in XK," .

This is a relative Cartier divisor denoted by DK," .

(2) The universal abelian scheme A→ YK extends to a semi-abelian scheme A→XK," .

(3) If "′ is a refinement of ", then there are projective maps π"′," : XK,"′ → XK," , and

(Rπ"′,")∗OXK,"′ =OXK,"
. Let IXK,"

and IXK,"′ be the invertible sheaves of the bound-

ary in XK," and XK,"′ . Then π∗"′,"IXK,"
= IXK,"′ and (Rπ"′,")∗IXK,"′ = IXK,"

.

(4) Suppose that K is reasonable (in the sense of Definition 3.3.3). Then the toroidal compact-

ification XK," is flat over Spec Z(p), normal, and Cohen-Macaulay. If " is smooth, then

XK," → Spec Z(p) is further a local complete intersection. Finally if Kv =GSp4(OFv
)

for all v|p and " is smooth then XK," → Spec Z(p) is smooth.



214 GEORGE BOXER, FRANK CALEGARI, TOBY GEE, VINCENT PILLONI

Proof. — This follows from [Lan17, Thm. 6.1]. We simply need to specify the
choices we made to construct the toroidal compactification by normalization (see [Lan16,
§2]). In the first case that Kp = G1(Zp) (the nice case: no level at p, prime to p po-
larization), the compactification is constructed in [Lan13]. In the second case that
Kp =∏

v|p Kv where Kv ∈ {GSp4(OFv
), Par(v)}, the compactification can be constructed

as a closed subscheme of some toroidal compactification of a Siegel modular variety
with a prime to p polarization (Zarhin’s trick) (and possibly performing again a blow
up or a blow down at the boundary as explained in [Lan17]). In the general case
where we have a parahoric level structure, we consider all possible degeneration maps
YK →∏

K′p YKpK′p where Kp →K′
p and K′

p =
∏

v|p K′
v with K′

v ∈ {GSp4(OFv
), Par(v)} and

obtain the toroidal compactification as a closed subscheme of the product of the toroidal
compactifications of the YKpK′p (and possibly performing again a blow up or a blow down
at the boundary as explained in [Lan17]).

Now, everything apart from (4) is immediate, while (4) follows from Proposi-
tion 3.5.4 together with the explicit description of the formal completions along boundary
strata given in [Lan17, Thm. 6.1 (4)]. �

We also need to consider the action of the group O×,+
F,(p). Recall that we defined a

quotient � of this group in (3.3.15).

Lemma 3.5.2. — The action of O×,+
F,(p) on YK extends to XK," and factors through �.

Proof. — It is possible to prove this directly by looking at the construction of the
toroidal compactification and the boundary charts. We will instead give a simpler indirect
argument. Since XK," is normal, it follows that XK," is the normalization of YK in XK,"×
Spec C. It is therefore sufficient to show that the action extends over C.

We can now use [AMRT10]. Let c ∈G1(Af ). By Proposition 3.3.9, the analytifica-
tion of the component YK,c ⊂ YK× Spec C corresponding to c is �(c, K)\HHom(F,R), and
we need to show that the group �(K) (which is the subgroup of � acting trivially on the
geometrically connected components) acts on the compactification of �(c, K)\HHom(F,R).
By the main results of [AMRT10], our choice of " provides a partial compactification
HHom(F,R)

" which carries an action of �(K, c). The component of (XK," × Spec C)an cor-
responding to c is isomorphic to �(c, K)\HHom(F,R)

" . This space still carries an action of
�1(c, K)/�(c, K), which is what we claimed. �

Lemma 3.5.3. — The action of � on XK," is free.

Proof. — Over YK, this is the content of Lemma 3.3.13. We claim that the action
of � is free on the set of non-trivial strata in XK," . This set is simply G+(Q)\(" \ {0} ×
G(A∞)

)
/K. Let c ∈G1(A∞), �(c, K)=G(Q)+∩ cKc−1 and �1(c, K)=G1(Q)+∩ cKc−1.

Let "c be the restriction of " to C × {c}. We need to show that the stabilizer of �1(c, K)
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acting on "c \ {0} is included in �(c, K). This will imply that the group �(K) acts freely
on �(c, K)\("c \ {0}).

Let W ∈ C \ {0}. We denote by �W(c, K) and �1,W(c, K) the intersections of PW

with �(c, K) and �1(c, K) respectively. Let σ ⊂ C(VF/W⊥)× {c} in the interior. By our
assumption on the cone decomposition, if an element γ ∈ �1,W(c, K) stabilizes σ , then its
linear part γl is trivial. We need to see that ν(γ ) is trivial. It is easy to see that we can find
an element γ ′ ∈ �W(c, K) and n ∈ Z≥0 such that ν(γ )nφ = γ ′.φ for all φ ∈ C(VF/W⊥)

(it follows from the very definition of the action that the image of �W(c, K) in the space
of automorphisms of C(VF/W⊥) contains a finite index subgroup of O×,+

F ). We deduce
that γ ′ stabilizes σ and therefore γ ′l = 1, so that ν(γ )n = 1 and ν(γ )= 1 since O×,+

F is
torsion free. �

We form the quotient of XK," by the action of O×,+
F,(p). This quotient exists because,

on a given connected component of XK," , this is the quotient by a finite group, and the
component is projective because " is a projective cone decomposition. We shall call such
a quotient a toroidal compactification XG1

K," of YG1
K . We summarize our findings in the

following proposition:

Proposition 3.5.4. — The space XG1
K," has a stratification indexed by G1(Q)+\"/K. The

map XK," → XG1
K," is étale and surjective. If K is reasonable, then XG1

K," is a flat local complete

intersection over Spec Z(p), and is normal.

If not necessary, we drop the subscripts K or " and simply write X. We denote the
boundary divisor by D.

3.6. Functorialities. — We now briefly discuss some functorial maps between
Shimura varieties at different levels, which we will make use of when we discuss Hecke
operators in §3.8. All of the functorialities that we consider here extend to the toroidal
compactification for suitable choices of cone decompositions, so we confine our discus-
sions to the interior.

3.6.1. Change of level away from p. — Let K = KpKp and K′ = (Kp)′Kp be two
compact open subgroups of G1(A∞) such that K⊂K′. Then we have finite étale maps
YK → YK′ and YG1

K → YG1
K′ , given by “forgetting the level structure”; that is, by replacing

the Kp-orbit by the corresponding (Kp)′-orbit.

3.6.2. Action of the group G1(A∞,p). — Let g ∈ G1(A∞,p). Then we can define an
isomorphism

[g] : YK → Yg−1Kg

by sending an object (A, ι, λ, η, ηp) of YK to (A, ι, λ, η ◦ g, ηp), which is immediately seen
to be an object of Yg−1Kg .
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We deduce isomorphisms [g] : YG1
K → YG1

g−1Kg
.

3.6.3. Change of level at p: Klingen type correspondences. — We now fix Kp and a place
w above p. We let Kp =∏

v|p Kv ⊂G1(Zp) be a reasonable compact open such that Kw =
GSp4(OFw

). We let K′
p =

∏
v �=w Kv ×Kli(w) be another reasonable level structure at p

and let K′′
p =

∏
v �=w Kv × Par(w). Set K=KpKp, K′ =KpK′

p and K′′ =KpK′′
p .

Lemma 3.6.4. — There are natural proper surjective, generically finite étale forgetful maps

p1 : YK′ → YK and p1 : YG1
K′ → YG1

K .

Proof. — We simply forget the level structure Hw at w. �

We now choose once and for all an element xw ∈ F×,+ which is a uniformizing
element in Fw and a unit in Fv for all v �= w above p. This element is well defined up to
multiplication by an element of (OF)

×,+
(p) .

Lemma 3.6.5. — There is a proper, surjective, generically finite étale map p2 : YK′ → YK′′

depending on xw and sending A to A/H⊥
w . It induces a canonical map p2 : YG1

K′ → YG1
K′′ .

Proof. — This map is defined to take an object (A, ι, λ, η, ηp) of YK′ to the object
(A′, ι′, λ′, η′, η′p) ∈ YK′′ defined as follows:

• A′ = A/H⊥
w , where H⊥

w ⊂ A[w] is an order p3 group scheme, the orthogonal
complement of Hw for the Weil pairing. Write π : A → A′ for the natural
isogeny.

• ι′(x)= π ◦ ι(x) ◦ π−1,
• The quasi-polarization λ′ is obtained by descending the quasi-polarization x2

w.λ

from A to A′.
• η′ = π ◦ η.
• η′p is the data of level structures at places v �=w above p deduced from ηp by the

isomorphisms π : A[v]→ A′[v].
The ambiguity in the choice of xw disappears when we pass to the quotient stacks

by the action of (OF)
×,+
(p) and pass to the associated coarse moduli. �

Remark 3.6.6. — There is another map YK′ → YK′′ obtained by sending an
abelian surface A to A/Hw; however, we will not need to make use of this map.

3.6.7. Change of level at p: Siegel type correspondences. — We now fix Kp and a place w

above p. We let Kp =∏
v|p Kv ⊂ G1(Zp) be a reasonable compact open such that Kw =

GSp4(OFw
) (resp. Kli(w)). We let K′

p =
∏

v �=w Kv × Si(w) be another reasonable level
structure at p (resp. K′

p =
∏

v �=w Kv × Iw(w)). Set K=KpKp, K′ =KpK′
p.
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Remark 3.6.8 (Warning). — Note that the use of K and K′ (and p2) in this section
(§3.6.7) differs from that in the previous section (§3.6.3). Thus the reader should be careful
when these maps are used to note whether we are in the Klingen or Siegel setting (we
indicate in any ambiguous context by giving references to the corresponding section).
We made this choice since otherwise the number of required subscripts would become
excessively cumbersome.

Lemma 3.6.9. — There are natural forgetful maps p1 : YK′ → YK and p1 : YG1
K′ → YG1

K

which are surjective and generically finite.

Proof. — We simply forget the level structure Lw at w. �

Recall that we have chosen an element xw ∈ F×,+ which is a uniformizing element
in Fw and a unit in Fv for all v �=w above p.

Lemma 3.6.10. — There is a map p2 : YK′ → YK depending on xw. It induces a canonical

map p2 : YG1
K′ → YG1

K .

Proof. — We take an object (A, ι, λ, η, ηp) of YK′ . We define (A′, ι′, λ′, η′, η′p) ∈ YK

as follows:

• A′ = A/Lw, call π : A→ A′ the isogeny.
• ι′(x)= π ◦ ι(x) ◦ π−1.
• The quasi-polarization λ′ is obtained by descending the quasi-polarization xwλ

from A to A′.
• η′ = π ◦ η.
• η′p is a data of level structures at places v �= w above p deduced from ηp by the

isomorphisms π : A[v]→ A′[v].
• In the case Kw =Kli(w), we define H′

w =H⊥
w/Lw ⊂ A′[w].

The ambiguity in the choice of xw disappears when we pass to the quotient stacks
by the action of (OF)

×,+
(p) and pass to the associated coarse moduli. �

3.7. Automorphic vector bundles. — We now work over Zp, and assume from now
on that p splits completely in F. We let Sp be the set of places of F above p. We have a
decomposition OF ⊗Z Zp =∏

v|p Zp. We also denote by v : OF → Zp the projection on
the v-component.

3.7.1. The principal bundle. — Over YK we have a prime-to-p isogeny class of
abelian schemes and therefore we have a canonical Barsotti–Tate group scheme G. We
let ωG be its conormal sheaf. The sheaf ωG carries an action of OF. We have a decom-
position OF ⊗Z Zp =∏

v|p Zp and accordingly, the sheaf ωG decomposes as a product:
ωG =∏

v|p ωG,v where each ωG,v is a locally free sheaf of rank 2 over YK.



218 GEORGE BOXER, FRANK CALEGARI, TOBY GEE, VINCENT PILLONI

3.7.2. Weights for G and G1. — By a dominant algebraic weight κ for G we mean a
tuple (kv, lv)v∈Sp

of integers such that kv ≥ lv for all v ∈ Sp. By a classical algebraic weight
we mean a dominant algebraic weight which furthermore satisfies lv ≥ 2 for all v ∈ Sp.
We will frequently write “weight” for “dominant algebraic weight” where no confusion
can result (note though that we will later also consider p-adic weights). We associate a
locally free sheaf ωκ on YK to each weight κ by

ωκ =
∏

v

Symkv−lvωG,v ⊗ detlvωG,v.

By a weight κ for G1 we mean a tuple ((kv, lv)v∈Sp
,w) of integers with the property

that kv ≥ lv and kv− lv ≡w (mod 2) for each v; again, we say that κ is classical algebraic
if lv ≥ 2 for all v ∈ Sp. In fact, we will insist that w is even, and we will shortly fix the
choice w = 2. We claim that given w, there is a canonical descent datum on ωκ for the
map YK → YG1

K .
For clarity, we describe this descent datum on the level of the groupoid YK. For all

x ∈ (OF)
×,+
(p) , we define an isomorphism

ωκ
(A,ι,x−1λ,η,ηp)

= ωκ
(A,ι,λ,η,ηp)

→ ωκ
(A,ι,λ,η,ηp)

by multiplication by
∏

v v(x)(kv+lv−w)/2 (here the first identification is the tautological one,
noting that the definition of ωκ does not depend on the polarization).

To check that this defines a descent datum, we have to show that it respects the
existing identifications from the action of O×,+

F (Kp). If x ∈O×,+
F (Kp), then we may write

x= ε2 for some ε ∈O×
F ∩Kp, and we have an isomorphism ε : A→ A which induces an

isomorphism in the groupoid YK:

ε : (A, ι, λ, η, ηp)→ (A, ι, ε−2λ,η,ηp)

and an isomorphism

ωκ
(A,ι,ε−2λ,η,ηp)

= ωκ
(A,ι,λ,η,ηp)

ε∗→ ω(A,ι,λ,η,ηp)

which is multiplication by κ(ε) (again, the first equality is the tautological one, since ωκ

does not depend on the polarization). Now, κ(ε)=∏
v v(ε)kv+lv =∏

v v(ε2)(kv+lv−w)/2×
NF/Q(ε)w =∏

v v(x)(kv+lv−w)/2 since NF/Q(ε)w = 1 by our assumption that w is even, so
this agrees with our the isomorphism defined above, as required.

This defines a descent datum for the étale map YK → YG1
K . This descent datum is

effective. Indeed, after first identifying the sheaf ωκ on various connected components of
YK we are reduced to a finite étale descent for the group �(�0).

Although the descent datum depends on w, we will regard w as fixed (indeed, in
the main arguments of the paper, we always take w = 2), so we omit it from the notation,
and simply denote the resulting sheaf on YG1

K by ωκ .
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Remark 3.7.3. — We assume in this remark that we work over Fp rather than Zp.
We denote by YK,1 and YG1

K,1 the fibres of YK and YG1
K over Spec Fp. Let κ = (kv, lv)v|p be a

weight for G. We further assume that kv ≡ lv ≡ 0 mod (p−1). In this case, we claim that
we can define a canonical descent datum for the sheaf ωκ , from YK,1 to YG1

K,1. This rests
on the observation that the character O×

F → F×p given by ε �→∏
v|p[v(ε)kv+lv mod p] is

trivial. Therefore we can define a descent datum for the action of x ∈ (OF)
×,+
(p) , via the

tautological isomorphism

ωκ
(A,ι,x−1λ,η,ηp)

= ωκ
(A,ι,λ,η,ηp)

.

This remark will be applied to the various Hasse invariants we will construct later.

Finally we will need to consider the canonical extensions of these sheaves to
toroidal compactifications. The conormal sheaf ωG/YK has a canonical extension to XK,"

given by e∗�1
A/XK,"

, where A is the semi-abelian scheme of Theorem 3.5.1 (2) and e is its
identity section. This gives an extension of the sheaves ωκ to XK," and an extension of
the sheaves ωκG1 to XG1

K," . We will denote these extensions by the same symbol.

3.8. Coherent cohomology and Hecke operators.

3.8.1. Basics. — Let κ = (kv, lv) be a weight. We will study the cohomologies
R�(XK,",ωκ) and R�(XG1

K,",ωκ) as well as their cuspidal variants R�(XK,",ωκ(−D))

and R�(XG1
K,",ωκ(−D)).

Lemma 3.8.2. — The cohomologies R�(XK,",ωκ), R�(XG1
K,",ωκ), R�(XK,",

ωκ(−D)) and R�(XG1
K,",ωκ(−D)) are independent of ".

Proof. — This is immediate from Theorem 3.5.1 (3). �

Because of this lemma, we often drop " from the notation. We now clarify the
relationship between R�(XK,ωκ) and R�(XG1

K ,ωκ).

Proposition 3.8.3. — The pull back maps

R�(XG1
K ,ωκ)→R�(XK,ωκ)

and

R�(XG1
K ,ωκ(−D))→R�(XK,ωκ(−D))

split in the derived category of Zp-modules.
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Remark 3.8.4. — It is often easier to work over XK rather than XG1
K because the

former has a clear moduli interpretation. Proposition 3.8.3 tells us that we can easily
transfer a good property of the cohomology over XK to a property over XG1

K .

Proof of Proposition 3.8.3. — Attached to the weight κ is a descent datum (see §3.7.2)
which takes the form of an action of (OF)

×,+
(p) on the sheaf ωκ over XK. Namely, for all

ε ∈ (OF)
×,+
(p) , there is an isomorphism ε : ε∗ωκ → ωκ satisfying the usual cocycle relation.

This map induces a map on cohomology:

ε :R�(XK,ωκ)→R�(XK, ε∗ωκ)→R�(XK,ωκ)

and defines the group action.
Recall that there is a commutative diagram:

XK

�0

XG1
K

�
G1
0

Z×,+
(p) \(A∞,p ⊗ F)×/ν(Kp)(1)

π

(OF)
×,+
(p) \(A∞,p ⊗ F)×/ν(Kp)(1)

Each Galois orbit c ∈ [Z×,+
(p) \(A∞,p⊗F)×/ν(Kp)(1)]/Gal(Q/Q) determines a con-

nected component of Z×,+
(p) \(A∞,p ⊗ F)×/ν(Kp)(1), and its fibre is a connected compo-

nent XK,c of XK," which is a proper scheme over Spec Zp. Obviously R�(XK,ωκ) =∏
c R�(XK,c,ωκ) and for all ε ∈ (OF)

×,+
(p) , we have an isomorphism ε :R�(XK,ε·c,ωκ)→

R�(XK,c,ωκ).
The subgroup that fixes a component XK,c is denoted by O×,+

F (�0) and the action
of this group on XK,c and R�(XK,c,ωκ) actually factors through the finite group �(�0).
Let π(c) be the image of c in

[(OF)
×,+
(p) \(A∞,p ⊗ F)×/ν(Kp)(1)]/Gal(Q/Q).

This determines a connected component XG1
K,π(c) of XG1

K and the map XK,c →XG1
K,π(c) is a

finite étale cover with group �(�0).
It follows from Lemma 3.8.5 below that R�(XG1

K,π(c),ωκ) is split in R�(XK,c,ωκ),
and therefore the map

R�(XG1
K ,ωκ)=

⊕

π(c)

R�(XG1
K,π(c),ωκ)→

∏

c

R�(XK,c,ωκ)=R�(XK,ωκ)

is split. �

Lemma 3.8.5. — Let G be a finite group. Let IG ⊂ Z[G] be the augmentation ideal. Let

f :T→ S be a finite étale morphism with Galois group G. Then f∗OT =OS ⊕ IG ⊗Z[G] f∗OT.
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Proof. — There is an obvious map of coherent sheaves OS ⊕ IG ⊗Z[G] f∗OT →
f∗OT. The sheaf f∗OT is a locally free sheaf (for the étale topology) of OX[G]-modules.
Therefore, the above map is an isomorphism as this can be checked locally for the étale
topology. �

3.8.6. Abstract Hecke algebras. — Let H= C∞c (G1(A∞)//K,Zp) be the convolution
algebra of locally constant, bi-K invariant, compactly supported functions on G1(A∞)

with coefficients in Zp. (The Haar measure is a product of local Haar measures, normal-
ized by vol(Kt)= 1 for all finite places t of F.) If S is a finite set of places of F, we let HS

be the subalgebra of H of functions whose restriction to GSp4(Fs) is the characteristic
function of Ks for all s ∈ S. For all finite places s, we let Hs be the local Hecke algebra
C∞c (GSp4(Fs)//Ks,Zp), so that H=⊗′sHs.

3.8.7. Cohomological correspondences — motivation. — We begin by giving some brief
motivation for the way in which we define Hecke operators on coherent cohomology
(following [Pil20]).

As usual, the geometric interpretation of Hecke operators is via correspondences

C
p1p2

X Y

(Giving an integral definition of the correspondence associated to a Hecke operator at a
place dividing p is in general difficult. This question will be addressed later in the paper
in some very special cases.)

Let F ,G be coherent sheaves on X, Y. We assume that we have a map of sheaves
p∗2F→ p∗1G. When F and G are automorphic vector bundles (which will typically be the
case for us), this map is provided by the differential of the universal isogeny over C.

One would like to use the correspondence to define a corresponding map on coho-
mology R�(X,F)→R�(Y,G). This map could be defined by first taking the pull back
via p2 :R�(X,F)→R�(C, p∗2F), then using the map p∗2F→ p∗1G to get to R�(C, p∗1G),
and finally applying some trace map to R�(Y,G). In other words, the action of the cor-
respondence on cohomology should take the form of a map T : R(p1)∗p∗2F → G. There
are, however, at least two serious difficulties with making such a definition in our context.

The first obvious difficulty is the existence of the trace map, because in general one
cannot assume that p1 is finite flat. Nevertheless, in our cases the existence of the trace
map will follow from the machinery of duality in coherent cohomology and the existence
of certain fundamental classes, which can be constructed because the schemes C, X, Y
will have reasonable geometric properties over the base.

The second difficulty (which already arises for modular forms for GL2 /Q) is that
the action of the correspondences defining the Hecke operators at places dividing p is
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typically divisible by a positive power of p, so that one has to divide by this power in order
to define the correct operator mod p. It is hard to check this divisibility at the level of the
derived category.

The solution to this introduced in [Pil20] (which we also employ here) is as fol-
lows. By adjunction we can view T as a map T : p∗2F → p!1G, and in favourable circum-
stances p!1G will be a sheaf (and not merely a complex). Furthermore it will be sufficiently
nice that we can check the condition that T is divisible by a power of p after restricting to
the complement of a codimension 2 locus, and define our normalized Hecke operators.

3.8.8. Duality for coherent complexes. — We let S be an affine Noetherian scheme. We
say that a morphism f :X→ Y of S-schemes is embeddable if there is a smooth S-scheme
P such that f can be factored as a composite

X
i→ P×S Y→ Y

where i is finite and the second map is the natural projection. We say that f is projectively

embeddable if p can be taken to be a projective space over S. In our applications of this
material all of our maps will be obviously projectively embeddable (essentially because
our Shimura varieties are quasi-projective), and we will not comment further upon this.

As usual we write Dqcoh(OX) for the derived category of OX-modules with quasi-
coherent cohomology sheaves, and D+

qcoh(OX) for the bounded-below version. Then if
f :X→ Y is an embeddable morphism of S-schemes, there is an exact functor of trian-
gulated categories

f ! :D+
qcoh(OY)→D+

qcoh(OX).

If f is projectively embeddable, the functor f ! is a right adjoint to Rf∗ and there is
a natural transformation Rf∗f !  ⇒ Id of endofunctors of D+

qcoh(OY), which we refer to
as the trace map.

If X→ S is a local complete intersection then we write KX/S for the relative canon-
ical sheaf, which may be defined as the determinant of the corresponding cotangent com-
plex. The following is [Pil20, Cor. 4.1.3.1].

Lemma 3.8.9. — Let f : X→ Y be an embeddable morphism between two embeddable S-

schemes, such that X→ S, Y→ S are both local complete intersections of pure relative dimension n.

Then f !OY =KX/S ⊗OX f ∗K−1
Y/S is an invertible sheaf.

We will make repeated use of the following lemma.

Lemma 3.8.10. — Suppose that f : X→ Y is an embeddable morphism of embeddable S-

schemes, each of which is a local complete intersection of pure relative dimension n over S. Let h be a

section of a line bundle L over Y, and suppose that neither h nor f ∗h is a zero-divisor. Write Yh=0 for

the vanishing locus of h, and Xh=0 for the vanishing locus of f ∗h.
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Then for any locally free sheaf F on Y, we have an equality of invertible sheaves

(f !F)|Xh=0 = f !(F |Yh=0).

Proof. — This follows from [Har66, Prop. III.8.8]. More precisely, note that OYh=0

is represented by the perfect complex of OY-modules L−1 h→ OY (here we use that h

is not a zero-divisor). In addition, by Lemma 3.8.9, f !F is a sheaf, and it follows from
the assumption that neither h nor f ∗h is a zero-divisor that the derived tensor products
in [Har66, Prop. III.8.8] are in our case given by the usual tensor product ⊗. �

3.8.11. Fundamental classes. — In two particular situations, we now construct a
natural map

$ :OX = f ∗OY → f !OY

which we call the fundamental class.
We firstly consider what we call the lci situation, which is the case that:

• X and Y are local complete intersections over S of the same relative dimension,
• X is normal, and
• there is an open V⊂X which is smooth over S, whose complement is of codi-

mension 2 in X, and an open U⊂ Y which is smooth and such that f (V)⊂U.

In this situation, f !OY is an invertible sheaf by Lemma 3.8.9, so by the algebraic Hartogs’
lemma, it is enough to specify the fundamental class over V (note that X is normal by
assumption). Again by Lemma 3.8.9 we have f !OY|V = det �1

V/S ⊗ f ∗(det �1
U/S)

−1, so
over V, we can define the fundamental class to be the determinant of the map

df : f ∗�1
U/S →�1

V/S.

The other case we consider is the finite flat situation, in which f :X→ Y is a finite
flat map, so that f∗ is exact, and

f∗f !OY =HomOY(f∗OX,OY).

We have the usual trace morphism trf : f∗OX →OY, and we define the fundamental class
f∗OX →HomOY(f∗OX,OY) by $(1)= trf .

Note that if X→ Y is a finite flat morphism and X, Y are both smooth over S,
then the morphism X→ Y is automatically a local complete intersection. The following
compatibility between these definitions is [Pil20, Lem. 4.2.3.1].

Lemma 3.8.12. — Suppose that X→ Y is finite flat, and that X, Y are both smooth over S.

Then

LX/Y
∼−→ [�1

Y/S⊗OY OX
df→�1

X/S],
and the determinant det(df ) ∈ ωX/Y = f !OY is the trace map trf .
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3.8.13. Base change for open immersions. — Consider a Cartesian diagram

X′ j

f ′

X

f

Y′
i

Y

If i is an open immersion, and f is in either of the finite flat or lci situations, then so is f ′.
Since i! = i∗ and j ! = j∗, we have j∗f ! = (f ′)!i∗, and if f has fundamental class $, then j∗$
is the fundamental class of f ′.

3.8.14. Fundamental classes and divisors. — We now briefly recall the results of [Pil20,
§4.2.4], which show that the correspondences we define below are suitably well behaved
on the boundaries of our compactified Shimura varieties.

Let DX ↪→X, DY ↪→ Y be two effective reduced Cartier divisors with respect to S,
with the properties that f :X→ Y restricts to a map f |DX : DX →DY, and the induced
map DX → f −1(DY) is an isomorphism of topological spaces. Write Xsm, Ysm for the
smooth loci of X, Y. The following is [Pil20, Lem. 4.2.4.1].

Lemma 3.8.15. — Suppose either that we are in the finite flat situation; or that we are in the

lci situation and that furthermore DX ∩Xsm and DY ∩Ysm are normal crossings divisors.

Then the fundamental class $ : OX → f !OY restricts to a morphism OX(−DX) →
f !OY(−DY).

3.8.16. Traces and restriction. — In this paper we will have to study how Hecke
operators behave with respect to restriction to subschemes of the Shimura variety. This
section contains some preliminary material. Consider the following setup:

• f :X→ Y a finite flat map between smooth varieties over a field k.
• D⊂ Y is a smooth Cartier divisor.
• f −1(D)= nD′ for D′ ⊂X a smooth Cartier divisor.

In this setting we have the following:

• Trace maps on canonical bundles

f∗KX →KY

and

f∗KD′ →KD.

• Adjunction isomorphisms

KD 	KY(D)|D
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and

KD′ 	KX(D′)|D′ .
If L is a line bundle on Y, we can use the projection formula to get a map:

f∗(KX ⊗OX f ∗L)→KY ⊗OY L. We call such a map a twisted trace map. We use a sim-
ilar terminology over D. The goal of this section is to prove the following compatibility
between them.

Proposition 3.8.17. — There is a commutative diagram

f∗(KX(−(n− 1)D′)) KY

f∗(KD′ ⊗OX(−nD′)|D′) KD ⊗OY(−D)|D
Here the vertical maps are restriction followed by adjunction, the top horizontal map comes from the inclu-

sion of KX(−(n− 1)D′) in KX followed by the trace, and the bottom horizontal arrow is the twisted

trace for f :D′ →D and the line bundle OY(−D)|D (note that f ∗OY(−D)|D =OX(−nD)|D′ ).

Proof. — We write I = OY(−D) for the ideal sheaf of D and I ′ = OX(−D′) for
the ideal sheaf of D′. First consider the following commutative diagram:

f∗I ′n−1 HomOY(OX,OY) f∗HomOY(OX,OY) OY

f∗HomOY/I(OX/I ′,OY/I) f∗HomOY/I(OX/IOX,OY/I) OY/I

where HomOY(OX,OY) is sheaf of OY-homomorphisms from f∗OX to OY, which we view
as a coherent sheaf of OX-modules. By definition HomOY(OX,OY)= f !OY.

Consider first the square on the right: the horizontal maps are evaluation at 1,
while the vertical maps are given by reduction modulo I , and it is clear that this square
commutes.

Now we consider the left hand square: the horizontal maps are the obvious
inclusions so we must explain why the dotted arrow exists. But a local section s of
I ′n−1 HomOY(OX,OY) will send I ′ into I (using that I ′n = IOX) and hence the reduction
of s mod I factors through OX/I ′.

Finally we note that the square in the statement of the proposition tensored with
K−1

Y may be identified with the outer rectangle of this diagram because we have KX ⊗
K−1

Y 	 f !OY =HomOY(OX,OY). �
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3.9. Cohomological correspondences — definitions. — Let S be a Noetherian scheme.
Let X, Y be two S-schemes.

Definition 3.9.1. — A correspondence C over X and Y is a diagram of S-morphisms:

C
p1p2

X Y

where X, Y, C have the same pure relative dimension over S and the morphisms p1 and p2 are projectively

embeddable.

Let F be a coherent sheaf over X and G a coherent sheaf over Y.

Definition 3.9.2. — A cohomological correspondence from F to G is the data of a

correspondence C over X and Y and a map T :R(p1)∗p∗2F→ G.

The map T can be seen, by adjunction, as a map p∗2F → p!1G. It gives rise to a
map still denoted by T on cohomology:

R�(X,F)
p∗2→R�(C, p∗2F)=R�(Y, R(p1)∗p∗2F)

T→R�(Y,G).

3.9.3. Hecke action away from p. — Let K = KpKp be a reasonable compact open
subgroup of G1(Af ). Let Hp = C∞c (G1(Ap,∞)//Kp,Zp) be the Hecke algebra away from p.

We claim that there is an action of Hp on R�(XK,",ωκ) and R�(XG1
K,",ωκ). To

this end, let g ∈G1(A∞,p). We will define an endomorphism of R�(XK,ωκ) which corre-
sponds to the action of the double class [KpgKp].

We define (for suitable choices of cone decompositions omitted from the notation)
a correspondence:

XK∩gKg−1

p1p2

XK XK

where p1 is the map induced from the inclusion K ∩ gKg−1 ⊂ K and the functoriality
of §3.6.1.

The map p2 is the composite of the map [g] : XK∩gKg−1 → XK∩g−1Kg (see 3.6.2)
and the natural map XK∩g−1Kg → XK deduced from the inclusion K ∩ gKg−1 ⊂ K and
functoriality of §3.6.1.
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We have a canonical isomorphism p∗2ω
κ ∼−→ p∗1ω

κ , because the construction of the
sheaf ωκ depends only on the p-divisible group. Moreover, because XK and XK∩gKg−1 are
lci and smooth outside codimension 2 (for a cofinal subset of the set of all polyhedral cone
decompositions), there is a fundamental class p∗1OXK → p!1OXK, extending the trace for
the finite étale map p1 on the interior, which we can tensor with p∗1ω

κ to obtain a map
p∗1ω

κ → p!1ω
κ = p!1OXK ⊗ p∗1ω

κ .
Composing the maps p∗2ω

κ → p∗1ω
κ and p∗1ω

κ → p!1ω
κ we obtain a cohomological

correspondence $g : p∗2ωκ → p!1ω
κ which induces the operator [KgK] on cohomology:

R�(XK,ωκ)→R�(XK∩gKg−1, p∗2ω
κ)

$g→R�(XK∩gKg−1, p!1ω
κ)

Tr→R�(XK,ωκ)

where the last map is induced by the adjunction Tr :R(p1)∗p!1ω
κ → ωκ .

We have a similar definition on cuspidal cohomology. Moreover, all these defini-
tions commute with the action of (OF)

×,+
(p) and therefore we also get an action on the

cohomology R�(XG1
K ,ωκ) and R�(XG1

K ,ωκ(−D)).
The characteristic functions of the double classes [KpgKp] generate Hp as a Zp-

module. In Proposition 3.9.15 below we prove that when Kp =∏
v|p GSp4(Zp) is spher-

ical, the actions we just defined of the [KpgKp] are compatible with products in Hp (the
composite action of [Kpg1Kp] and [Kpg2Kp] is equal to the action of [Kpg1Kp][Kpg2Kp]
decomposed into sum of elementary double classes) so that we get an action of the Hecke
algebra Hp.

The difficulties come from the boundary. Away from the boundary, all the corre-
spondences are finite étale and one can follow the discussion of [FC90, Chap. VII, §3],
to show the compatibility. Following that reference, it should be possible to show in a sim-
ilar fashion that the action of the double class is compatible with product in the Hecke
algebra on the compactified Shimura variety, but giving all the details would involve a
delicate study of the composition of the correspondences at the boundary. We instead
give a different ad hoc proof by exhibiting special complexes computing the cohomology.
These complexes are Cousin complexes associated with the Ekhedal–Oort stratification
on the Shimura variety. The action of all double classes [KpgKp] on the cohomology is
given by a canonical action on the complex. Moreover, each term of the complex is the
global sections of a certain sheaf and the restriction of the sections of this sheaf to the
interior of the Shimura variety is an embedding. We are therefore able to prove that the
action of the double classes is compatible with products in the Hecke algebra because we
know this holds on the non-compact Shimura variety.

Remark 3.9.4. — Over Qp, the property that the action of the double class is
compatible with product in the Hecke algebra follows from [Har90b, Prop. 2.6]. The
strategy of that paper is to define an action of the group G1(A

p

f ) after passing to the limit
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over the level Kp and then deduce an action of the Hecke algebra at a finite level, but
this strategy requires more work over Zp because at some points one needs to control
the cohomology of finite groups (which vanishes in characteristic zero). Nevertheless,
this is enough to prove that the Hecke algebra Hp acts on the torsion free part of the
cohomology (which embeds in the cohomology with Qp-coefficients).

3.9.5. Cousin complexes. — Our main reference for this section is [Kem78]. Let X
be a topological space. Let ShX(Ab) be the category of abelian sheaves on X. For a subset
Z⊆X and abelian sheaf F we denote by �Z(F) the subsheaf of F of sections supported
on Z. Let Z : Z0 = X ⊇ Z1 ⊇ · · · ⊇ Zn · · · be a decreasing sequence of closed subsets of
X (called a filtration). For any abelian sheaf F on X, one can build the Cousin complex
of F with respect to the filtration Z, denoted by CousZ(F) [Kem78, p. 357].

The Cousin complex CousZ(F) is a complex of abelian sheaves in positive degree.
The object in degree i is Hi

Zi/Zi+1
(F), where Hk

Zi/Zi+1
(·) is (by [Kem78, Lem. 7.3]) the

k-th derived functor of the functor:

ShX(Ab)→ ShX(Ab)

G �→ [U �→ �Zi\Zi+1(U \ Zi+1,G)]
The differential Hi

Zi/Zi+1
(F)→Hi+1

Zi+1/Zi+2
(F) is induced by a certain boundary map. The

Cousin complex has an augmentation F→Cous(F).
We now specialize the discussion: X is a Noetherian scheme and F is a quasi-

coherent sheaf. Then Cous(F) is a complex of quasi-coherent sheaves.
We have the following theorem:

Theorem 3.9.6. — Let X be a Noetherian scheme with a filtration Z by closed subschemes that

satisfies:

(1) codimX(Zi)≥ i.

(2) The morphism Zi \ Zi+1 →X is affine for all i.

Let F be a maximal Cohen–Macaulay coherent sheaf on X. Then CousZ(F) is quasi-isomorphic

to F .

Proof. — This follows from [Kem78, Thm. 10.9] (by definition a sheaf F is locally
Cohen–Macaulay with respect to a filtration Z if CousZ(F) is a resolution of F , see
[Kem78, p. 358]). �

Remark 3.9.7. — If we further assume that each Zi \Zi+1 is affine, then CousZ(F)

is a complex of acyclic sheaves by [Kem78, Thm. 9.6].

One can sometimes compute the complex CousZ(F) more explicitly. Write Ui+1 =
X \ Zi+1, and write ji+1 : Ui+1 ↪→ X for the inclusion. Under the assumption that Zi \
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Zi+1 → X is affine, we have by [Kem78, Lem. 8.5(e)] (note that the spectral sequence
there degenerates by [Kem78, Thm. 9.6(c)], as in the proof of [Kem78, Thm. 9.5]):

(3.9.8) Hk
Zi/Zi+1

(F)= (ji+1)∗Rk�Zi\Zi+1(F |Ui+1).

In general, for a Noetherian scheme X and a closed subset Z defined by an ideal sheaf I ,
we have

Ri�Z(F)= lim−→
n

Exti(OX/In,F)

and these Ext sheaves can be computed by taking projective resolutions of OX/In. We
also remark that in the previous limit, we can replace the ideals In by any other decreasing
sequence of ideals {Jn} with the property that for all n, there is k and k′ such that Jk′ ⊂
In ⊂ Jk .

Example 3.9.9. — We are going to compute these Ext sheaves in a special case.
Assume that we have effective Cartier divisors OX

st→ Lt for 1 ≤ t ≤ i and assume that
they intersect properly, by which we mean that for all n, the “twisted” Koszul complex:

Kos(sn
1, . . . , sn

i ) : 0→
⊗

t

L−n
t →⊕t′

⊗

t �=t′
L−n

t →·· ·→⊕t L−n
t →OX→0

is a projective resolution of OX/(L−n
1 , . . . ,L−n

t ).
We let Z = V(L−1

1 , . . . ,L−1
i ) and let F be a locally free coherent sheaf. We find

that: Extj(OX/(L−n
1 , . . . ,L−n

i ),F)= 0 unless j = i, and

Exti(OX/(L−n
1 , . . . ,L−n

i ),F)=Coker(⊕t s
n
t :
⊗

t′ �=t

Ln
t′⊗F→(

⊗

t

Ln
t )⊗F).

Taking the direct limit over n gives Ri�Z(F).

3.9.10. The Cousin complex of the Ekedahl–Oort stratification. — We now assume that
Kp = ∏

v GSp4(Zp), and let X = XK," and denote by X∗ the minimal compactifica-
tion. We have a morphism f : X → X∗. We fix an integer n and work over Xn =
X× Spec Z/pnZ and X∗

n = X∗ × Spec Z/pnZ, and let Yn denote the interior of Xn. We
consider the filtration Z∗ on X∗

n given by taking Z∗i to be the closure of all Ekedahl–Oort
strata of codimension i. Here are some known facts (see [Box15, Thm. 6.2.3]):

(1) Z∗ is a filtration.
(2) Z∗i \ Z∗i+1 is affine.
(3) Z∗i \ Z∗i+1 is a set-theoretic local complete intersection in U∗

i+1 =X∗
n \ Z∗i+1.

We now consider the pull-back Z of Z∗ on Xn. We deduce that:
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(1) Z is a filtration.
(2) Zi \ Zi+1 ↪→Xn is affine.
(3) Zi \ Zi+1 is a set-theoretic local complete intersection in Ui+1 =Xn \ Zi+1.

Proposition 3.9.11. — The cohomology R�(Xn,ωκ(−D)) is computed by

�(Xn, CousZ(ωκ(−D))).

Proof. — It follows from Theorem 3.9.6 that ωκ(−D) → CousZ(ωκ(−D)) is a
quasi-isomorphism. It suffices to prove that CousZ(ωκ(−D)) is a complex of acyclic
sheaves. By (3.9.8), the sheaf in degree i is equal to (ji+1)∗Ri�Zi\Zi+1(ω

κ(−D)|Ui+1). This
sheaf is supported on Zi \ Zi+1. We claim that Rf∗(ji+1)∗Ri�Zi\Zi+1(ω

κ(−D)|Ui+1) is con-
centrated in degree 0. Since f∗(ji+1)∗Ri�Zi\Zi+1(ω

κ(−D)|Ui+1) is an acyclic sheaf because
it is supported on Z∗i \ Z∗i+1, the proposition will follow from our claim.

Let us prove the claim. By construction, Zi \ Zi+1 is a finite disjoint union of
Ekedahl–Oort strata and (ji+1)∗Ri�Zi\Zi+1(ω

κ(−D)|Ui+1) is a finite direct sum indexed
by these Ekedahl–Oort strata. Let E be an Ekedahl–Oort stratum appearing in Zi \Zi+1.
It can be written as the intersection of i Cartier divisors in Ui+1, using the theory of gen-
eralized Hasse invariants (one can also assume that these Cartier divisors are pulled back
from X∗

n ; note that a sufficiently large power of each generalized Hasse invariant can be
lifted to X∗

n ). Let us denote these Cartier divisors by OX
st→ It . It follows from Example

3.9.9 that the direct summand of the sheaf Ri�Zi\Zi+1(ω
κ(−D)|Ui+1) corresponding to E

is the inductive limit of the sheaves:

HiHom(Kos(sn
1, . . . , sn

i ),ωκ(−D)).

The complex Hom(Kos(sn
1, . . . , sn

i ),ωκ(−D)) is a complex of sheaves acyclic relatively to
the minimal compactification, and concentrated in degree i. �

Lemma 3.9.12. — There is an injection of complexes

�(Xn, CousZ(ωκ(−D))) ↪→ �(Yn, CousZ(ωκ(−D))).

Proof. — This follows directly from the description of the objects of the complex
CousZ(ωκ(−D)) given in the course of the preceding proof. �

It remains to prove that our Hecke operators act on �(Xn, CousZ(ωκ(−D))) and
�(Yn, CousZ(ωκ(−D))). Let g ∈G(Ap

f ). We consider the correspondence:

XK∩gKg−1

p1p2

XK XK
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and more precisely its reduction modulo pn. We have a cohomological correspondence
p∗2ω

κ(−D)→ p!1ω
κ(−D), as defined in §3.9.3.

Lemma 3.9.13. — This cohomological correspondence induces a cohomological correspondence

of complexes compatible with the augmentation:

p∗2CousZ(ωκ(−D))→ p!1CousZ(ωκ(−D))

Remark 3.9.14. — In the above correspondence, the functors p∗2 and p!1 are ap-
plied to each object of the complex. Moreover, for each object CousZ(ωκ(−D))i of
CousZ(ωκ(−D)), p!1CousZ(ωκ(−D))i is a sheaf (i.e. it is concentrated in degree 0).

Proof of Lemma 3.9.13. — For each index i, we have

CousZ(ωκ(−D))i = (ji+1)∗Ri�Zi\Zi+1(ω
κ(−D)|Ui+1).

We choose (by considering powers of generalized Hasse invariants) an increasing
sequence (Zi \Zi+1)k of subschemes Ui+1 with support Zi \Zi+1, which are local complete
intersections, and are cofinal among all subschemes of Ui+1 with support Zi \ Zi+1.

We have Ri�Zi\Zi+1(ω
κ(−D)|Ui+1)= lim−→k

Exti(O(Zi\Zi+1)k
,ωκ(−D)|Ui+1). Also recall

that Ext(O(Zi\Zi+1)k
,ωκ(−D)|Ui+1)= Exti(O(Zi\Zi+1)k

,ωκ(−D)|Ui+1)[−i].
We have

p!1(Ext(O(Zi\Zi+1)k
,ωκ(−D)|Ui+1)= Ext(p∗1O(Zi\Zi+1)k

, p!1ω
κ(−D)|Ui+1)

by [Har66, Prop. III.8.8]. One checks that p∗1O(Zi\Zi+1)k
= Lp∗1O(Zi\Zi+1)k

because the pull
back of a local regular sequence defining (Zi \ Zi+1)k is again a local regular sequence;
we will not comment on the vanishing of higher pullbacks in the rest of this argument.
We deduce that

p!1(Exti(O(Zi\Zi+1)k
,ωκ(−D)|Ui+1)= Exti(p∗1O(Zi\Zi+1)k

, p!1ω
κ(−D)|Ui+1).

On the other hand there is by adjunction a map:

p∗2Exti(O(Zi\Zi+1)k
,ωκ(−D)|Ui+1)→ Exti(p∗2O(Zi\Zi+1)k

, p∗2ω
κ(−D)|Ui+1).

Since the Ekedahl–Oort stratification is invariant under prime to p isogenies, we deduce
that p−1

2 (Zi \ Zi+1)= p−1
1 (Zi \ Zi+1). Therefore, for each k, for all large enough t, there is

a natural map p∗1O(Zi\Zi+1)t
→ p∗2O(Zi\Zi+1)k

.
We therefore get a map:

p∗2Exti(O(Zi\Zi+1)k
,ωκ(−D)|Ui+1)→ Exti(p∗2O(Zi\Zi+1)k

, p∗2ω
κ(−D)|Ui+1)

→ Exti(p∗1O(Zi\Zi+1)t
, p!1ω

κ(−D)|Ui+1)

= p!1(Exti(O(Zi\Zi+1)t
,ωκ(−D)|Ui+1).
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Passing to the inductive limit over k and t yields the cohomological correspon-
dence:

p∗2Ri�Zi\Zi+1(ω
κ(−D)|Ui+1)→ p!1Ri�Zi\Zi+1(ω

κ(−D)|Ui+1).

Moreover this construction is canonical and is compatible with all differentials in
the Cousin complex and with the augmentation. �

Proposition 3.9.15. — The Hecke algebra Hp acts on R�(XG1,ωκ(−D)) and also on

R�(XG1,ωκ).

Proof. — By Serre duality, it suffices to treat the case of R�(XG1,ωκ(−D)). The
cohomology R�(X,ωκ(−D)) is represented by

lim←−
n

�(Xn, CousZ(ωκ(−D)))

and this complex injects into

lim←−
n

�(Yn, CousZ(ωκ(−D))).

The double class 1KpgKp acts everywhere. We can restrict to the “G1” direct factor (the
Ekedahl–Oort stratification is preserved by the action of (OF)

×,+
(p) ) and the compatibility

with the product in the Hecke algebra is known on

lim←−
n

�(YG1
n , CousZ(ωκ(−D))).

Therefore it holds everywhere. �

Remark 3.9.16. — It follows by an identical argument to the proof of Proposi-
tion 3.9.15 that if Kp

1, Kp

2, Kp

3 are three choices of tame level, and "1, "2, "3 are suitable
choices of polyhedral cone decompositions, then the composite of the Hecke operators

[Kp

1g1Kp

2] :R�(XG1

Kp

2Kp,"2
,ωκ)→R�(XG1

Kp

1Kp,"1
,ωκ)

and

[Kp

2g2Kp

3] :R�(XG1

Kp

3Kp,"3
,ωκ)→R�(XG1

Kp

2Kp,"2
,ωκ)

is the Hecke operator

[Kp

1g1Kp

2][Kp

2g2Kp

3] :R�(XG1

Kp

3Kp,"3
,ωκ)→R�(XG1

Kp

1Kp,"1
,ωκ).
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3.9.17. Hecke operators at p: Siegel type operator. — We assume here that K = KpKp

and Kp = G1(Zp). Let us fix a place w above p. We are going to define an action of a
Hecke operator Tw,1 on R�(XK,",ωκ), R�(XG1

K,",ωκ), and their cuspidal versions. The
action on R�(XK,",ωκ) and R�(XK,",ωκ(−D)) is not canonical, and depends on the
choice of xw made in §3.6.3, but the action on R�(XG1

K,",ωκ) and R�(XG1
K,",ωκ(−D)) is

canonical.
Set K′ =KpK′

p where K′
p =

∏
v �=w GSp4(OFv

)× Si(w). In §3.6.7 we defined maps
p1, p2 :XK′ →XK giving a Hecke correspondence:

XK′
p1p2

XK XK

The key geometric properties of this correspondence are (see Proposition 3.4.1):

(1) XK′ and XK are relative complete intersections over Spec Zp, and are pure of
the same dimension,

(2) XK is smooth over Spec Zp,
(3) XK′ is smooth over Spec Zp up to codimension 2 and normal.

In particular, we are in the lci situation in the sense of §3.8.11, so we have an invert-
ible dualizing sheaf p!1OXK and a fundamental class p∗1OXK → p!1OXK. Moreover, for all
weights κ = (kv, lv) with lv ≥ 0, we have a natural map p∗2ω

κ → p∗1ω
κ provided by the

differential of the isogeny p∗1G→ p∗2G on XK′ .
Composing these maps, we obtain a cohomological correspondence $ : p∗2ω

κ →
p!1ω

κ .

Lemma 3.9.18. — When lw ≥ 2, this map is divisible by p3.

Proof. — We need to prove that $ factors through p3p!1ω
κ . As XK′ is normal and

the source and target are locally free sheaves, it is enough to establish this factorization in
codimension one. As this factorization is furthermore trivial over the generic fibre of XK′ ,
it is enough to prove it over the completed local rings of the generic points of the special
fibre of XK′ .

There are three types of generic points in the special fibre classified by the multi-
plicative rank r = 0, 1 or 2 of the isogeny p∗1G→ p∗2G. In each case one calculates sepa-
rately the p-divisibility of the map p∗2ω

κ → p∗1ω
κ and of the fundamental class as in the

proof of [Pil20, Lem. 7.1.1]. One finds that the fundamental class p∗1OXK → p!1OXK is
divisible by p3 when r = 0, p when r = 1, and p0 when r = 2, and the map p∗2ω

κ → p∗1ω
κ

is divisible by p0 when r = 0, plw when r = 1, and pkw+lw when r = 2. The result follows as
3, lw + 1, kw + lw ≥ 3. �
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We can thus consider the normalized cohomological correspondence Tw,1 : p−3$ :
p∗2ω

κ → p!1ω
κ , and we obtain a Hecke operator:

Tw,1 :R�(XK,ωκ)→R�(XK′, p∗2ω
κ)

p−3$→ R�(XK′, p!1ω
κ)

Tr→R�(XK,ωκ).

A similar definition applies to cuspidal cohomology and works over XG1
K .

Remark 3.9.19. — One readily checks that the Hecke correspondence used to
define Tw,1 corresponds to the double coset [GSp4(OFw

) diag(1, 1, p−1, p−1) GSp4(OFw
)]

(see [FP21, Rem. 5.6] for instance) which differs by an element of the centre from the
spherical Hecke operator considered in §2.4.7. We justify this discrepancy as follows:
when doing geometry and working with the moduli interpretation, we prefer to use this
Hecke operator, while when doing local representation theory and considering Galois
representations, we prefer to use the Hecke operators considered in §2.4. In this paper
we will systematically work on spaces with fixed central character so that the (normalized)
action of these two Hecke operators are the same. The same remark will apply to all the
Hecke operators at p considered in this paper. We hope this will not cause any confusion.

3.9.20. Hecke operators at p: Klingen type operator. — We again assume that K=KpKp

and Kp = G1(Zp). Let us fix a place w above p. We are going to define an action
of a Hecke operator Tw on R�(XK,",ωκ), R�(XG1

K,",ωκ) and their cuspidal versions.
As before, the action on R�(XK,",ωκ) and R�(XK,",ωκ(−D)) is not canonical and
depends on the choice of xw made in §3.6.3, but the action on R�(XG1

K,",ωκ) and
R�(XG1

K,",ωκ(−D)) is canonical.

Remark 3.9.21. — The Hecke operator that we define in this section does not
correspond to the double coset operator [GSp4(OFw

) diag(1, p−1, p−1, p−2) GSp4(OFw
)]

but rather some variant of it that we call Tw. The formula for Tw in terms of double
cosets is

Tw = [GSp4(OFw
) diag(1, p−1, p−1, p−1)Par(w)]

× [Par(w) diag(1, 1, 1, p−1) GSp4(OFw
)]

= p[GSp4(OFw
) diag(1, p−1, p−1, p−2) GSp4(OFw

)]
+ (1+ p+ p2 + p3)p−2

× [GSp4(OFw
) diag(p−1, p−1, p−1, p−1) GSp4(OFw

)].
Set K′ = KpK′

p where K′
p =

∏
v �=w GSp4(OFv

) × Kli(w) and K′′ = KpK′′
p where

K′′
p =

∏
v �=w GSp4(OFv

)× Par(w). In §3.6.3, we defined morphisms p1 :XK′ →XK, p2 :
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XK′ →XK′′ giving a Hecke correspondence:

XK′
p1p2

XK′′ XK

The key geometric properties are again (see Proposition 3.4.1):

(1) XK′ , XK′′ and XK are relative complete intersections over Spec Zp of the same
(pure) dimension,

(2) XK is smooth over Spec Zp,
(3) XK′ and XK′′ are smooth over Spec Zp up to codimension 2 and normal.

We are again in the lci situation, so we have invertible dualizing sheaves p!1OXK and
p!2OXK′′ and fundamental classes p∗1OXK → p!1OXK and p∗2OXK′′ → p!2OXK′′ .

For all weights κ = (kv, lv) with lv ≥ 0, we have natural maps p∗2ω
κ → p∗1ω

κ pro-
vided by the differential of the isogeny p∗1G→ p∗2G on XK′ , and p∗1ω

κ → p∗2ω
κ provided

by the differential of the isogeny p∗2G → p∗1G. We therefore obtain two cohomological
correspondences $1 : p∗2ωκ → p!1ω

κ and $2 : p∗1ωκ → p!2ω
κ .

Lemma 3.9.22. — When lw ≥ 2, the map $1 is divisible by p2+lw and the map $2 is

divisible by p.

Proof. — This can be proved in exactly the same way as Lemma 3.9.18, by an
explicit check over the completed local rings of generic points of the special fibre of XK′ .
The details may be found in the proofs of [Pil20, Lem. 7.1.1, 7.1.2]. �

We can therefore consider the normalized fundamental classes T′
w = p−2−lw$1 :

p∗2ω
κ → p!1ω

κ and T′′
w = p−1$2 : p∗1ωκ → p!2ω

κ , and we obtain Hecke operators:

T′
w :R�(XK′′,ωκ)→R�(XK,ωκ)

and

T′′
w :R�(XK,ωκ)→R�(XK′′,ωκ).

We set Tw := T′
w ◦T′′

w. Similar definitions apply to cuspidal cohomology and work over
XG1

K .

Remark 3.9.23. — Just as the complexes that we are considering are independent
of the choice of compactification by Lemma 3.8.2, so too are the actions of Tw,1 and Tw

on them. See [Pil20, Prop. 7.2.1] for the case of Tw; the argument for Tw,1 is similar, but
easier, and is left to the interested reader.
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3.10. Cohomology and automorphic representations. — Let K=∏
v Kv ⊂GSp4(A

∞
F )=

G1(A∞Q ) be an open compact subgroup, let S⊃ Sp be a finite set of places such that Kv =
GSp4(OFv

) for v /∈ S, and let

T̃=
⊗

v /∈S

O[GSp4(Fv)// GSp4(OFv
)]

be the ring of spherical Hecke operators away from S. We say that a maximal ideal
m ⊂ T̃ is non-Eisenstein if the residue field T̃/m is a finite extension of Fp, and for (any)
inclusion T̃/m→ Fp there exists an irreducible representation ρ :GF →GSp4(Fp) with
the property that, for each v /∈ S, we have det(X− ρ(Frobv))

≡X4 −Tv,1X3 + (qvTv,2 + (q3
v + qv)Tv,0)X2

− q3
vTv,0Tv,1X+ q6

vT2
v,0 (mod m).

(cf. (2.4.8)).
Our main aim in this section is to prove the following result.

Theorem 3.10.1. — Let κ = (kv, lv)v|∞ with kv ≥ lv ≥ 2 and kv ≡ lv (mod 2) be a

weight and let m be non-Eisenstein.

(1) For i = 0, 1, there is an E[GSp4(A
∞
F )//K]-equivariant inclusion

⊕

π

(π∞)K
m
⊗ E⊆Hi(XG1

K ,ωκ(−D))|·|
2

m
⊗ E(3.10.2)

where, on the right hand side, the superscript | · |2 indicates the space on which the diamond

operators at places v /∈ S act via | · |2; and on the left hand side, π runs over the cuspidal

automorphic representations of GSp4(AF) with weight κ and central character | · |2 such

that

• πv is holomorphic for those v|∞ for which lv > 2, and

• #{v|∞ | πv is not holomorphic} = i.

(2) There is an absolute constant R such that if for each v|∞
• kv − lv > R, and

• either lv = 2 or lv > R,

then the inclusion (3.10.2) is an equality.

(3) If i = 0, then (3.10.2) is an equality. In fact, a version of this statement holds without having

to localize at a non-Eisenstein maximal ideal; there is an E[GSp4(A
∞
F )//K]-equivariant

isomorphism

H0(XG1
K ,ωκ(−D))|·|

2 ⊗ E=
⊕

π

(π∞)K(3.10.3)



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 237

where π runs over the cuspidal automorphic representations of GSp4(AF) with weight κ

and central character | · |2 which are holomorphic at all infinite places.

Remark 3.10.4. — Theorem 3.10.1 is by no means optimal; the same results
should hold for any cohomological degree i, and with a much weaker regularity assump-
tion on κ in part (2). However, it seems difficult to deduce results in this generality from
the literature, so we have restricted ourselves to this result, for which we only need to
consider the cohomology of the boundary in degree 0. We explain the proof below, after
proving a corollary and a preparatory lemma.

Theorem 3.10.1 has the following useful corollary.

Corollary 3.10.5. — Suppose that we are in the setting of Theorem 3.10.1 and the hypothesis

on κ in (2) holds. Let l0 denote the number of infinite places v with lv = 2. Then

dimE H1(XG1
K ,ωκ(−D))|·|

2

m
⊗ E= l0 dimE H0(XG1

K ,ωκ(−D))|·|
2

m
⊗ E.

Proof. — Since m is non-Eisenstein, the automorphic representations π which con-
tribute to (3.10.2) are all of general type in the sense of [Art04] by Lemma 2.9.1. There
are l0 ways to choose an infinite place v with lv = 2, and we let πv be generic for this
place and holomorphic at the other infinite places. The result then follows from Theo-
rem 2.9.3. �

Remark 3.10.6. — The following lemma is essentially a special case of the much
more general results proved in [HZ01], and can presumably be proved using the tech-
niques of that paper, but since our Shimura varieties do not satisfy the precise assumptions
needed to cite the results of [HZ01], we have chosen to give a direct proof.

Lemma 3.10.7. — Let κ = (kv, lv)v|∞ be a weight, with kv ≥ lv ≥ 2 and kv ≡ lv
(mod 2), and let m be a non-Eisenstein maximal ideal. Let D denote the boundary of XG1

K . Then

H0(D,ωκ)m⊗ E= 0.

Proof. — In the case that F =Q this follows from [Fre83, IV, Satz 4.4], as in the
proof of [Pil20, Cor. 15.2.3.1], so we can and do assume that F �=Q in what follows. We
let π :XG1

K →X∗,G1
K be the map between toroidal and minimal compactifications. We let

∂X∗ ⊂X∗,G1
K be the (reduced) boundary of the minimal compactification, which we can

write as ∂0X∗∐ ∂1X∗, where ∂1X∗ is a union of Hilbert modular varieties for the group
ResF/QGL2, and the complement ∂0X∗ is a finite union of points.

Suppose firstly that we are in the case that kv = lv = k for some k independent of v.
Then ωκ is pulled back from the minimal compactification, and since π∗(ωκ |D)= ωκ |∂X∗ ,
we have H0(D,ωκ) = H0(∂X∗,ωκ). (To see that we have an identification π∗(ωκ |D) =
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ωκ |∂X∗ , it suffices by the projection formula to show that π∗(OD) = O∂X∗ . This follows
from the facts that π∗OX

G1
K
=OX

∗,G1
K

, π∗ID = I∂X∗ , and R1π∗ID = 0.)
Suppose now that we are not in the case that kv and lv are equal and independent

of v. Then it follows from the results of [Lan13], see [BR16, Prop. 1.5.8], that any element
of H0(D,ωκ) vanishes on π−1(∂0X∗); so the map H0(D,ωκ)→ H0(π−1(∂1X∗),ωκ) is
injective, and it suffices to show that H0(π−1(∂1X∗),ωκ) is Eisenstein. Again by [BR16,
Prop. 1.5.8] it follows that π∗(ωκ |π−1(∂1X∗)) is zero if the lv are not all equal, and otherwise
is equal to the sheaf ω(kv)v|p (where we are using the usual labelling of weights for sheaves
on Hilbert–Blumenthal modular schemes).

In either case, we have seen that the space that we are considering either vanishes,
or injects into H0(∂1X∗,ω(kv)). Now it is convenient to work adelically. Let us fix W ∈ C

with dimF W= 1. Then ∂1X∗ is as follows (where PW and MW are defined in §3.5):

P+W(Q)\H[F:Q]
1 ×G1(A∞)/K

= P+W(Q)\H[F:Q]
1 × PW(A∞)×PW(A∞) G1(A∞)/K

=M+
W(Q)\H[F:Q]

1 ×MW(A∞)×PW(A∞) G1(A∞)/K.

We therefore find that

H0(∂1X∗,π∗ω(kv))= (
IndG1(A∞)

PW(A∞)(M)
)K

where M = limK⊂MW(A∞) H0(M+
W(Q)\H[F:Q]

1 ×MW(A∞)/K,ω(kv)) from which it follows
that the eigensystems arising from H0(∂1X∗,ω(kv)) are Eisenstein. Indeed, since we are
assuming that F �= Q, it follows from Koecher’s principle that the cohomology groups
H0(M+

W(Q)\H[F:Q]
1 ×MW(A∞)/K,ω(kv)) are spaces of Hilbert modular forms, and thus

have associated two-dimensional Galois representations. More precisely, we have Satake
transforms between spherical algebras (say at some unramified place v):

HG1 →HMW →C[X∗(T)]
for which the element [1, 1,�v,�v] is mapped to

[1,�v, 1,�v] + [�v, 1,�v, 1] + [�v,�v, 1, 1] + [1,�v, 1,�v]
= ([1,�v, 1,�v] + [1,�v, 1,�v])
+ [�v, 1, 1,�−1

v ]([1,�v, 1,�v] + [1,�v, 1,�v]).
This expresses the relation between the Hecke operators on G1 and MW, so that if χ ×π

is an automorphic representation contributing to M, it will contribute to the cohomology
of G1 via the compatible system of representations ρπ ⊕ (ρπ ⊗ χ). �
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Before proving Theorem 3.10.1, we introduce some notation. Let

h :ResC/R(Gm)(R)=C× →GSp4(R)

be the homomorphism sending x+ iy to the matrix
(

xI2 yS
−yS xI2

)
.

Let Kh denote the centralizer of h in GSp4(R) (acting by conjugation). Then since
h(i)= J, we see that we may identify Kh =R×U(2), so that U(2) is a maximal compact
subgroup of the identity component of GSp4(R). Let gC = g0,0⊕g−1,1⊕g1,−1 denote the
Hodge structure on g, where g0,0 = kh,C is the complex Lie algebra of Kh. Let p+ = g−1,1,
p− = g1,−1, and Ph = kh,C ⊕ p−. We now define P− to be the parabolic with Lie alge-
bra Ph with P− ∩ GSp4(R) = Kh. We warn the reader that this parabolic is denoted
by Ph in [Har90a], by Q− in [BHR94], and by Q in [CG18]. (Note, however, that the
fundamental object is really the Lie algebra Ph because P− only intervenes below via its
Lie algebra.)

For each place v|∞, we write P−v and Kh
v for the corresponding groups for

GSp4(Fv) ∼= GSp4(R). We write Vκv
for the representation of Kh

v
∼= R×U(2) such that

the automorphic vector bundle corresponding to Vκ := ⊗v|∞Vκv
via Definition 1.3.2

of [BHR94] is identified with ωκ . We set P−∞ :=
∏

v|∞ P−v and Kh
∞ :=

∏
v|∞Kh

v .

Proof of Theorem 3.10.1. — We begin by proving (3.10.2). By Lemma 3.10.7 we can
and do replace Hi(XG1

K ,ωκ(−D)) by the interior cohomology

H
i
(XG1

K ,ωκ) := im
(
Hi(XG1

K ,ωκ(−D))→Hi(XG1
K ,ωκ)

)
.

(This is the only place that we use our assumption that i ≤ 1, or the non-Eisenstein
localization.) Let Acusp(G1)⊂A(2)(G1) be respectively the space of cuspidal automorphic
forms on G1 with central character | · |2, and the space of square integrable forms with
this central character. By [Har90a, Thm. 2.7], we have inclusions

⊕

π∈Acusp(G1)

(
(π∞)

K ⊗Hi(Lie P−∞, Kh
∞;π∞ ⊗Vκ)

)⊕mcusp(π) ⊆H
i
(XG1

K ,ωκ
C)|·|

2

and

H
i
(XG1

K ,ωκ
C)|·|

2 ⊆
⊕

π∈A(2)(G1)

(
(π∞)

K ⊗Hi(Lie P−∞, Kh
∞;π∞ ⊗Vκ)

)⊕m(2)(π)

where m∗(π) denotes the multiplicity of π in A∗(G1). By Arthur’s multiplicity formula
for GSp4 [Art04, GT19], we in fact have mcusp(π)= m(2)(π)= 1 for all π .
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In the proof of [BHR94, Thm. 4.2.3], it is shown that if π ∈ A(2)(G1) with
Hi(Lie P−∞, Kh

∞;π∞ ⊗Vκ) �= 0 and if the infinitesimal character of π∞ is sufficiently far
away from all the root hyperplanes that it does not lie on, then π∞ is essentially tempered.
In view of the relation between the infinitesimal character of π∞ and κ arising from the
Casselman–Osborne theorem (see [BHR94, Prop. 2.4.5]), the regularity condition on
the infinitesimal character is exactly what we have assumed on κ in (2). Then by [Wal84,
Thm. 4.3], we in fact have π ∈Acusp(G1), and so the inclusions above are equalities. In
addition, by [Har90a, Thm. 3.5] (a theorem of Mirković) and [BHR94, Thm. 3.2.1], for
each v|∞ we have that Hj(Lie P−v , Kh

v;πv ⊗Vκv
)= 0 unless either:

• lv > 2, j = 0, and πv is the holomorphic discrete series of weight (kv, lv), or;
• lv = 2, j = 0, and πv is the holomorphic limit of discrete series of weight (kv, lv),

or;
• lv = 2, j = 1, and πv is the generic limit of discrete series of weight (kv, lv).

Moreover, in each of these cases that Hj(Lie P−v , Kh
v;πv ⊗ Vκv

) is nonzero, it is one-
dimensional. The first two parts of the theorem then follow from the Künneth formula.

We now prove (3.10.3). In this case the map from H0(XG1
K ,ωκ(−D)) to the interior

cohomology is an isomorphism by definition. Furthermore, by [Har90a, Prop. 2.7.2],
the only π that contribute are automatically cuspidal (without needing to assume any
regularity conditions). It follows from the theory of lowest weight representations, see for
example [PS09, §2.3], that if H0(Lie P−v , Kh

v;πv ⊗Vκv
) �= 0, then πv is the holomorphic

(limit of) discrete series of weight (kv, lv), as required. �

4. Hida complexes

In this section, we construct (higher) Hida theories for GSp4(AF). The classical
Hida theory is developed in [Hid04] and takes the form of a projective module over
the total weight space (which is 2[F :Q]-dimensional). The construction of higher Hida
theory was carried out when F=Q in [Pil20], and takes the shape of a perfect complex
of amplitude [0, 1] over a one dimensional hyperplane of the weight space.

We assume that p splits completely in F and we construct all possible Hida theories,
allowing the weight space at each place above p to be either 1- or 2-dimensional. Many of
our arguments are simply the “product over the places v|p” of the arguments of [Hid04]
and [Pil20]. To keep this paper at a reasonable length, we will often refer to [Pil20] for
the details of arguments which go over directly to our case.

The bookkeeping needed to deal with having multiple places above p is consider-
able, and in the hope of orienting the reader, we begin this section with an overview of
the arguments we will make. The main theorem of this section (and the only theorem
that we will need later in the paper) is Theorem 4.6.1, which proves the existence of in-
tegral Hida complexes, and gives a control theorem for them in sufficiently high weight.
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Say that a classical weight κ = (kv, lv)v|p with kv ≥ lv ≥ 2 is “singular” at v if lv = 2, and
“regular” at v if lv > 2. Fix any set I of places above p; these will be the places at which we
interpolate automorphic forms of singular weight, while at the places in Ic, we interpolate
forms of regular weight. (Thus traditional Hida theory considers the case I= ∅, while the
higher Hida theory of [Pil20] is the case F=Q and I= {p}.)

There is a Hecke operator UI (an analogue of the Up operator for elliptic mod-
ular forms), which acts locally finitely on a complex of p-adic automorphic forms. The
UI-ordinary part MI of this complex is a perfect complex over a weight space �I, con-
centrated in degrees [0, #I]. Furthermore, there is a constant C such that if kv − lv ≥ C
and lv = 2 for v ∈ I, and lv ≥ C for v /∈ I, then the H0 of the specialization of MI in
weight κ agrees with the ordinary part of the degree 0 cohomology of XG1

K . (We expect
that in fact this specialization should be quasi-isomorphic to the ordinary part of the clas-
sical cohomology, but we do not prove this. We do prove that there is also an injection
of H1s from the classical cohomology into that of MI, which we will make use of in §6.)

The definition of MI is motivated by the traditional case I = ∅ considered in
[Hid04]. In that case one considers the cohomology at infinite Iwahori level over the
ordinary locus, with coefficients in a certain interpolation sheaf which can be thought of
as an interpolation of the highest weight vectors in the finite dimensional representations
of the group GL2/F. Since the ordinary locus is affine in the minimal compactification,
one can prove that there is only cohomology in degree 0. Then one cuts out the ordi-
nary part using a projector attached to UI and proves that this defines a finite projective
module over the Iwasawa algebra.

For general I, we instead consider the cohomology at infinite Klingen level of the
locus which has p-rank at least 1 at places w ∈ I, and infinite Iwahori level over the ordi-
nary (that is, p-rank 2) locus at places w ∈ Ic. This locus is no longer affine and it has coho-
mology in higher degrees. In fact by relating the cohomology of the toroidal and minimal
compactifications, one can show that the cohomology is supported in degrees [0, #I].

One of the major difficulties in the proof of Theorem 4.6.1 is to show that the op-
erator UI acts locally finitely (in order to be able to associate an ordinary projector) and
that the ordinary projection defines a perfect complex. By Nakayama’s lemma for com-
plexes, one reduces to showing that UI has these properties for the cohomology modulo
p, in some fixed weight. In particular, it suffices to consider the case of sufficiently large
weight, i.e. the case that kv − lv ≥ C and lv = 2 for v ∈ I, and lv ≥ C for v /∈ I, for some
constant C. The first part of the argument is to relate this cohomology with the cohomol-
ogy of the automorphic vector bundle of the corresponding weight over the locus XG1,I

K,1

of the special fibre of the Shimura variety which has p-rank at least 1 at the places w ∈ I,
and is ordinary at places w ∈ Ic. This boils down to a computation at the level of the
sheaf ωκ itself, and to a computation in the Hecke algebra to show that the UI-operator
decreases the Klingen and Iwahori level.

In the case of Hida theory for 0-dimensional “Shimura varieties” (e.g. p-adic fam-
ilies of automorphic forms on definite unitary groups, as considered in [Che04, Ger19])
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these arguments at the level of the sheaf and the Hecke algebra are all that is needed.
In the geometric setting, more work is needed to establish the required finiteness of the
ordinary part of the cohomology in characteristic p; recall that we are considering the co-
homology on the locus XG1,I

K,1 , so the cohomology groups are infinite dimensional before
taking the ordinary parts. One has to show that (in sufficiently large weight, in charac-
teristic p) ordinary cohomology classes on this locus extend to the whole Shimura variety
(which is proper and has finite cohomology).

In order to do this, one shows that (again, in sufficiently regular weight, in charac-
teristic p) the Hecke operator UI acts by zero on the complement of XG1,I

K,1 , so that after
passing to ordinary parts, the cohomology agrees with that of the full Shimura variety,
and is in particular finite-dimensional.

The vanishing of the Hecke operators on the part of the Shimura variety which
is either of p-rank 0 (if w ∈ I) or is non-ordinary is accomplished by local calculations,
using the definitions of the Hecke operators as cohomological correspondences. The case
of w ∈ Ic is relatively straightforward, as we are able to use the Hecke operator Tw,1 to
prove this vanishing. (Note though that in this case we need to use the operator Uw,2,
which is the operator at Klingen level corresponding to Tw, in the part of the argument
explained above which takes place at the level of the sheaf.) The case w ∈ I is much more
delicate, as we need to use the operator Tw, which is significantly harder to control. (In
this case, though, we use the same Hecke operators in the argument at the level of the
sheaf as we do for the geometric part of the argument.)

The arguments below are in fact written in roughly the reverse order of the ex-
planation above. We begin in §4.1 by recalling some standard results on Hasse invari-
ants and the p-rank stratification, before proving the vanishing of the Hecke operators in
small p-rank at spherical level in §4.2. In §4.3 and 4.4 we introduce the Igusa tower over
the Shimura variety at Klingen and Iwahori level, and define the interpolation sheaves
whose cohomology we use to define MI. We then define the Hecke operator UI in §4.5,
and in §4.6 we prove Theorem 4.6.1, by relating the ordinary parts of the cohomology at
spherical and Klingen level, and then carrying out the argument sketched above.

4.1. Mod p-geometry: Hasse invariants and stratifications. — In this section, we introduce
the p-rank stratification on our Siegel variety and the definition of several Hasse invariants
attached to this stratification. The discussion follows [Pil20, §6.3, 6.4].

4.1.1. Over X. — We assume that K=KpKp, Kp =∏
v|p Kv with

Kv ∈ {GSp4(OFv
), Par(v)}.

We fix a polyhedral cone decomposition ", and write X = XK," if the context
is clear. We let G = A[p∞] be the p-divisible group corresponding to the semi-abelian
scheme A defined over X (well defined up to prime-to-p quasi-isogeny). This p-divisible
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group decomposes as G =∏
v|p Gv . If Kv =GSp4(OFv

), the p-divisible group Gv defined
over X carries a principal quasi-polarization. If Kv = Par(v) then the p-divisible group
Gv carries a quasi-polarization of degree p2: Gv → GD

v . Let X1 be the reduction of X
modulo p. Then we let

Ha(Gv) ∈H0(X1, det ωp−1
G,v )

be the Hasse invariant corresponding to Gv ; it is compatible with étale isogenies (by con-
struction) and also with duality.

For any place v|p, we let X≥v2
1 = X=v2

1 be the open subscheme defined by
Ha(Gv) �= 0. This is the ordinary locus at v. We let X≤v1

1 be its complement defined by
Ha(Gv)= 0. This is the non-ordinary locus at v. It carries the reduced schematic struc-
ture by the proof of [Pil20, Lem. 6.4.1]. (Whenever we use notation of the form X≥v2

1 ,
X≤v1

1 etc., the superscript is referring to the multiplicative rank of the group scheme Gv .)
As a very special case of the general constructions of [Box15, GK19], there is a

secondary Hasse invariant

Ha′(Gv) ∈H0(X≤v1
1 , det ωp2−1

G,v )

(see also [Pil20, §6.3.2] when K = Par(v)). Its non-vanishing locus is X=v1
1 , the rank 1

locus at v. We define its schematic complement X=v0
1 , the supersingular locus at v, by

the equation Ha′(Gv)= 0. It carries a non-reduced schematic structure, see [Pil20, Rem.
6.4.1].

We can intersect the locally closed subschemes we have defined. Consider dis-
joint subsets I1, . . . , Ir ⊂ {v|p}, symbols ∗(i) ∈ {≤,≥,=} for 1 ≤ i ≤ r and numbers
ai ∈ {0, 1, 2} for 1≤ i ≤ r. Then we define X

∗(i)Ii ai, i=1,...,r

1 as the intersection of the spaces
X∗(i)vai

1 for all 1 ≤ i ≤ r and v ∈ Ii . It will be convenient to denote by X≥2
1 = X

≥{v|p}2
1 the

ordinary locus and by X≥1
1 =X

≥{v|p}1
1 the rank 1 locus.

Note that for any disjoint sets I, J, K, the scheme X
≤I1,≥J1,≥K2
1 is Cohen–Macaulay,

and indeed is a local complete intersection over Spec Fp. To see this, note that X
≤I1,≥J1,≥K2
1

is open in X≤I1
1 , and X≤I1

1 is a complete intersection in X1, because it is given by the van-
ishing of the Hasse invariants Ha(Gv) for v ∈ I. Since X1 itself is local complete intersec-
tion by Proposition 3.5.4, the result follows. We will in particular repeatedly use this fact
in order to apply Lemma 3.8.10.

We will also frequently use some well-known results on the density of the ordinary
locus, and on the density of the p-rank 1 locus in the p-rank less than or equal to 1
locus. We will need these results in slightly greater generality than has been considered
above. To this end, consider disjoint subsets I1, . . . , Ir as above, and let v|p be a place not
contained in I1 ∪ · · · ∪ Ir .

We assume that K=KpKp, Kp =∏
w|p,w �=v Kw ×Kv , and that

Kv ∈ {GSp4(OFv
), Par(v), Kli(v), Si(v), Iw(v)},
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while Kw ∈ {GSp4(OFw
), Par(w)} for w �= v. We can define topological spaces

|X∗(i)Ii ai

K,1 |, |X∗(i)Ii ai,=v2
K,1 |, |X∗(i)Ii ai,≤v1

K,1 |, and |X∗(i)Ii ai,=v1
K,1 |

using the p-rank stratification as before. The point is that the p-rank is invariant under
isogeny so we can consider the p-rank of any of the Barsotti–Tate groups of the chain.
Note that one could give these spaces a schematic structure by using the Hasse invariants,
but this structure will in general depend on which Barsotti–Tate group of the chain we
use to define the Hasse invariants.

Our claims about density are then the following: |X∗(i)Ii ai,=v2
K,1 | is dense in |X∗(i)Ii ai

K,1 |,
while if we further assume that Kv ∈ {GSp4(OFv

), Par(v), Kli(v)}, |X∗(i)Ii ai,=v1
K,1 | is dense in

|X∗(i)Ii ai,≤v1
K,1 |. To see this, it suffices to prove the first statement in the case Kv = Iw(v), and

the second statement in the case Kv =Kli(v). It then suffices to prove the corresponding
statements for the corresponding local models, which follows easily from an explicit cal-
culation. Indeed, the first statement is already proved in [dJ93], while the second follows
from an analysis of the Kottwitz–Rapoport stratification at Iwahori level, and its image
at Klingen level; see [Yu11, Thm. 4.2] for a precise statement.

4.1.2. Over XG1 . — The p-rank stratification is independent of the polarization
and therefore all of the spaces we have defined in this section carry an induced action of
(OF)

×,+
(p) . It follows that the stratification descends to a stratification on XG1

1 . We more-

over observe that the sheaf det ωp−1
G,v can be canonically descended to a sheaf det ωp−1

G,v on
XG1

1 (see Remark 3.7.3). It follows that the Hasse invariants Ha(Gv) and Ha′(Gv) (whose
definition is independent of the polarization) also descend to sections of this sheaf over
XG1

1 and XG1,≤v1
1 respectively.

Therefore, if we consider disjoint subsets I1, . . . , Ir ⊂ {v|p}, symbols ∗(i) ∈ {≤,

≥,=} for 1≤ i ≤ r and numbers ai ∈ {0, 1, 2} for 1≤ i ≤ r, there is a unique locally closed
subscheme (XG1

K,1)
∗(i)Ii ai, i=1,...,r of XG1

K,1 whose inverse image in XK,1 is (XK,1)
∗(i)Ii ai, i=1,...,r .

Remark 4.1.3. — In §4.3.4 below we will define some other locally closed sub-
schemes of the special fibres of the spaces XK,1 at Klingen and Iwahori level, which will
be important in the rest of the paper. We caution the reader that these will not be defined
in terms of the p-ranks of the Gv[p], but will rather depend on subschemes of Gv[p] given
by the Klingen and Iwahori level structures.

4.2. Vanishing theorem for ordinary cohomology. — We assume that Kp = G1(Zp). Let
κ = (kv, lv)v|p be a weight (recall from §3.7.2 that we are assuming that it satisfies the parity
condition kv − lv = 0 mod 2). Let Sp := {v|p} = I

∐
Ic be a partition. We write XI

1 :=
X≥I1,≥Ic 2

1 ↪→X1, an open subscheme, and similarly XG1,I
1 ↪→XG1

1 . The main theorem of
this subsection is:
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Theorem 4.2.1. — Let TI =∏
w∈I Tw

∏
w∈Ic Tw,1. There is a universal constant C depend-

ing only on p and F but not on the tame level Kp such that if lw ≥ 2 for all w, kw − lw ≥ C for all

w ∈ I, and lw ≥ C for all w ∈ Ic, then R�(XG1,I
1 ,ωκ(−D)) carries a locally finite action of TI.

Furthermore, under this assumption on κ ,

(1) e(TI)R�(XG1,I
1 ,ωκ(−D)) is a perfect complex of amplitude [0, #I].

(2) The map e(TI)H0(XG1
1 ,ωκ(−D))→ e(TI)H0(XG1,I

1 ,ωκ(−D)) is an isomorphism.

(3) The map e(TI)H1(XG1
1 ,ωκ(−D))→ e(TI)H1(XG1,I

1 ,ωκ(−D)) is injective.

(4) If furthermore lw ≥ 3 for all w ∈ I, then

e(TI)R�(XG1
1 ,ωκ(−D))→ e(TI)R�(XG1,I

1 ,ωκ(−D))

is a quasi-isomorphism.

Here e(TI) is the ordinary projector associated to the operator TI (see §2.11). We
remark that (2), (3), (4) of the theorem hold true for non-cuspidal cohomology as well.

Remark 4.2.2. — Various improvements on Theorem 4.2.1 should be possible.
For example, the reader will see from the proof below that it is possible to prove that
the Hecke operators at each place act locally finitely (rather than just proving it for their
product), provided they satisfy explicit mild bounds on the weights (rather than depending
on the indeterminate constant C); see Remark 4.2.34 for one approach to this. It may also
be possible to give explicit values of C. For the purposes of this paper the statement of
Theorem 4.2.1 suffices, and is well-adapted to a (somewhat involved) inductive proof
working one place at a time.

We now briefly explain the main idea of the proof. We will often work at the level of
X1 rather than XG1

1 . It is easier to work on X1 because of the moduli interpretation. One
can always deduce results for the cohomology on XG1

1 from results on the cohomology
for X1 by Proposition 3.8.3. We nevertheless warn the reader that X1 has infinitely many
connected components and therefore one cannot expect any finiteness results for the
cohomology over X1; accordingly, we work over XG1

1 when we want to show that a Hecke
operator acts locally finitely.

The basic principle underlying these arguments is that the ordinary projectors
e(Tw,1), e(Tw) can be used to kill many cohomology classes. This idea is already used
in [Pil20, §7, §8] (this is what we call Klingen vanishing below, because the Hecke op-
erator Tw is associated with the Klingen parabolic) and of course also in [Hid04] (this
is what we call Siegel vanishing, because the Hecke operator Tw,1 is associated with the
Siegel parabolic).

We will typically not comment on the commutativity of the actions of Hecke oper-
ators at one place with multiplication by Hasse invariants at other places, which is easily
checked.
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4.2.3. Vanishing theorems: Siegel vanishing. — Let K = KpKp be a reasonable level
at p. We assume that Kp =G1(Zp). We let X=XK," and XG1 =XG1

K," . Let κ = (kv, lv)v|p
be a weight. We begin with the following theorem.

Theorem 4.2.4. — There is a universal constant C depending only on p and F but not on the

tame level Kp such that if J⊆ Sp, and for each w ∈ J, we have lw ≥C, then R�(X
G1,≥J2
1 ,ωκ) has a

locally finite action of TJ :=∏
w∈J Tw,1, and

e(TJ)R�(XG1
1 ,ωκ)→ e(TJ)R�(X

G1,≥J2
1 ,ωκ)

is a quasi-isomorphism. In particular e(TJ)R�(X
G1,≥J2
1 ,ωκ) is a perfect complex. The analogous

statements also hold for cuspidal cohomology.

Remark 4.2.5. — In fact Theorem 4.2.4 is not quite strong enough for our pur-
poses; we will later replace it with Theorem 4.2.13, which is proved in exactly the same
way. Our justification for presenting the material in this way is that the proof of Theo-
rem 4.2.4 is a good warmup for the arguments that we will later make to prove “Klingen
vanishing”, and it seems simplest to make these arguments before considering the Klin-
gen level Hecke operators and the much more complicated statements and arguments
that we make in that context.

We only give the proof in the non-cuspidal case. The arguments go through un-
changed in the cuspidal setting. The proof of Theorem 4.2.4 is by induction on #J (the
case J = ∅ being vacuous), and depends on several lemmas. In our inductive argument
we will feel free to increase the constant C in a manner depending only on J without
comment. Write J= J′ ∪ {w}, and assume that Theorem 4.2.4 holds for J′.

Recall from §3.9.17 that the correspondence underlying the operator Tw,1 is XK′

with K′ = KpK′
p and K′

p =
∏

v �=w Kv × Si(w). We let (XK′)1 denote the special fibre of
this correspondence. Let κ = (kv, lv)v|p be a weight such that lw ≥ 2, so that we have a
cohomological correspondence Tw,1 : p∗2ω

κ → p!1ω
κ . By reduction modulo p, it follows

from Lemma 3.8.10 (and the flatness of XK′ and XK over Zp) that we get a cohomo-
logical correspondence still denoted Tw,1 : p∗2(ω

κ |X1)→ p!1(ω
κ |X1). This cohomological

correspondence is a map of locally free sheaves over (XK′)1. As in §3.8.13, this corre-
spondence pulls back to the open subscheme X

G1,≥J′2
1 .

Adopting the notation of §4.1 we consider the dense open subscheme X
≥J2
K′,1 =

(X
≥J′2
K′,1)

=w2 of X
≥J′2
K′,1, which is by definition the ordinary locus at w (that is, the locus for

which Gw is ordinary). This scheme is the union of several types of connected compo-
nents. Let p∗1Gw → p∗2Gw be the universal map on the p-divisible group. We let (X

≥J′2
K′,1)

=w2,et

be the étale components (that is, those for which the kernel of this isogeny doesn’t
contain a multiplicative group), and we let (X

≥J′2
K′,1)

=w2,net be the other components. We
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can therefore decompose the cohomological correspondence Tw,1 over (X
≥J′2
K′,1)

=w2 into
Tw,1 = Tet

w,1 + Tnet
w,1 where Tet

w,1 is the projection of Tw,1 on the étale components and
Tnet

w,1 is the projection on the other components.

Lemma 4.2.6. — The map Tnet
w,1 is zero as soon as lw ≥ 3. For all lw ≥ 3 we have a

commutative diagram of maps of sheaves over (X
≥J′2
K′,1)

=w2:

p∗2ω
κ

Tet
w,1

p∗2Ha(Gw)

p!1ω
κ

p∗1Ha(Gw)

p∗2(ω
κ ⊗ det ωp−1

Gw
)

Tet
w,1

p!1(ω
κ ⊗ det ωp−1

Gw
)

Proof. — The first point follows from an inspection of the proof of Lemma 3.9.18
(since lw+1, kw+ lw > 3). The second point follows from the fact that the Hasse invariant
commutes with étale isogenies. �

Lemma 4.2.7. — The following diagram of locally free sheaves on X
≥J′2
K′,1 is commutative for

lw ≥ 3:

p∗2ω
κ

Tw,1

p∗2Ha(Gw)

p!1ω
κ

p∗1Ha(Gw)

p∗2(ω
κ ⊗ det ωp−1

Gw
)

Tw,1

p!1(ω
κ ⊗ det ωp−1

Gw
)

Proof. — Since X
≥J′2
K′,1 is Cohen–Macaulay and all of the sheaves are locally free,

it suffices to prove the commutativity over a dense open subscheme. We may therefore
prove it over (X

≥J′2
K′,1)

=w2, so we are done by Lemma 4.2.6. �

Lemma 4.2.8. — Ha(Gw) is not a zero divisor on X
≥J′2
1 , and p∗2Ha(Gw) is not a zero divisor

on X
≥J′2
K′,1.

Proof. — Since X
≥J′2
1 and X

≥J′2
K′,1 are Cohen–Macaulay, this follows from the fact

that the non-ordinary loci have codimension 1. �

In what follows, we warn the reader that while the schemes p−1
i (X

≥J′2,≤w1
1 ) =

X
≥J′2
K′,1 ×pi,X

≥J′ 2
1

X
≥J′2,≤w1
1 for i = 1, 2 have the same underlying topological spaces, they
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have different (non reduced) scheme structures. In particular sheaves like p∗i ω
κ |

X
≥J′ 2,≤w1

for i = 1, 2 have different (scheme theoretic) support.

Lemma 4.2.9. — For all lw ≥ p+ 2 the cohomological correspondence Tw,1 restricts to give a

cohomological correspondence

Tw,1 : p∗2(ωκ |
X
≥J′ 2,≤w1

1

)→ p!1(ω
κ |

X
≥J′ 2,≤w1

1

).

Proof. — Since the cokernel of

p∗2ω
κ

p∗2Ha(Gw)−→ p∗2(ω
κ ⊗ det ωp−1

Gw
)

is p∗2(ω
κ ⊗ det ωp−1

Gw
|
X
≥J′ 2,≤w1

1

), and (by Lemmas 3.8.10 and 4.2.8) the cokernel of

p!1ω
κ

p∗1Ha(Gw)−→ p!1(ω
κ ⊗ det ωp−1

Gw
)

is p!1(ω
κ ⊗ det ωp−1

Gw
|
X
≥J′ 2,≤w1

1

), it follows from Lemma 4.2.7 that provided that lw ≥ 3, Tw,1

restricts to give a cohomological correspondence

p∗2(ω
κ ⊗ det ωp−1

Gw
|
X
≥J′ 2,≤w1

1

)→ p!1(ω
κ ⊗ det ωp−1

Gw
|
X
≥J′ 2,≤w1

1

),

as required. �

Lemma 4.2.10. — There is a universal constant C which depends only on F and p (but not on

the tame level Kp) such that the map of Lemma 4.2.9

Tw,1 : p∗2(ωκ |
X
≥J′ 2,≤w1

1

)→ p!1(ω
κ |

X
≥J′ 2,≤w1

1

)

is zero for all lw ≥C.

Proof. — We may and do assume that J′ = ∅, as the general case follows immedi-
ately from this by restriction to an open. We moreover note that it suffices to find such a
constant C for a single tame level Kp. Indeed, if Kp

1 ⊆Kp

2 are two choices of tame level,
the natural forgetful map XK′pKp

1
→XK′pKp

2
commutes with p1 and p2, and is faithfully flat,

from which it follows that C works for Kp

1 if and only if it works for Kp

2.
Let J be the ideal defining X≤w1

1 in X and let I = p∗1J . We need to prove that
for lw sufficiently large, the cohomological correspondence over XK′ , Tw,1 : p∗2ωκ → p!1ω

κ

factors through Tw,1 : p∗2ωκ → Ip!1ω
κ .

By definition, we have Tw,1 = p−3$(κ), where $(κ) is the composite of a map
$1(κ) : p∗2ωκ → p∗1ω

κ and a fundamental class $2(κ) : p∗1ωκ → p!1ω
κ , so in turn we need
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to show that $(κ) factors through p3Ip!1ω
κ (of course, we have already shown that it

factors through p3p!1ω
κ ).

Let x be a generic point of V(I) ⊂ XK′ . It corresponds to a Barsotti–Tate group
in characteristic p whose p-rank at w is exactly one. The map p∗2 det ωGw

→ p∗1 det ωGw
is

zero over k(x) because the isogeny p∗1Gw → p∗2Gw is not étale at x. Let I(x) be the ideal
defining the Zariski closure x in XK′ . We deduce that the map $1(κ) : p∗2ω

κ → p∗1ω
κ

factors through I(x)lwp∗1ω
κ .

It follows that the map $(κ) factors through p3p∗1ω
κ
⋂∩xI(x)lwp∗1ω

κ . By the Artin–
Rees lemma, it factors through p3Ip∗1ω

κ for lw larger than a constant C, as required. (We
note that strictly speaking V(I) has infinitely many connected components, however there
are only finitely many orbits for the action of (OF)

×,+
(p) , so there is some constant C which

works for all of them.) �

Proof of Theorem 4.2.4. — Take C as in Lemma 4.2.10. Recall that we write J =
J′ ∪ {w}, and we are assuming that the theorem holds for J′. We begin by showing that
the action of TJ on R�(X

G1,≥J′2
1 ,ωκ) is locally finite. By the inductive hypothesis, the

action of TJ′ on this complex is locally finite, and e(TJ′)R�(X
G1,≥J′2
1 ,ωκ) is perfect, so

that in particular the action of TJ on e(TJ′)R�(X
G1,≥J′2
1 ,ωκ) is locally finite. It is therefore

enough to show that TJ acts locally finitely on (1− e(TJ′))R�(X
G1,≥J′2
1 ,ωκ). Since TJ′ acts

locally nilpotently on the complex (1− e(TJ′))R�(X
G1,≥J′2
1 ,ωκ) by definition, so does TJ,

so in particular it acts locally finitely, as required.
Now we consider the exact triangle

R�(X
G1,≥J′2
1 ,ωκ)→R�(X

G1,≥J′2
1 ,ωκ ⊗ det ωp−1

Gw
)

→R�(X
G1,≥J′2,≤w1
1 ,ωκ ⊗ det ωp−1

Gw
)
+1→

The operator TJ acts everywhere and is zero on R�(X
G1,≥J′2,≤w1
1 ,ωκ ⊗ det ωp−1

Gw
) by

Lemma 4.2.10. We therefore deduce that

e(TJ)R�(X
G1,≥J′2
1 ,ωκ)= e(TJ)R�(X

G1,≥J′2
1 ,ωκ ⊗ det ωp−1

Gw
).

Since R�(X
G1,≥J2
1 ,ωκ)= lim−→n

R�(X
G1,≥J′2
1 ,ωκ ⊗ det ωn(p−1)

Gw
), the theorem follows. �

4.2.11. Vanishing theorem: Siegel and Klingen vanishing. — We now turn to the more
general situation, which involves the study of the Hecke operator Tw. Our analysis is
similar to that of §4.2.3, but it is rather more involved because Tw is defined as the
composite of two correspondences and because we need to study the supersingular locus
at w rather than the non-ordinary locus at w. This subsection is devoted to the proof of
the following theorem, which implies most of Theorem 4.2.1.
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Let Ia, Ib, J be pairwise disjoint subsets of Sp. Then we will write

XIa,b,J
1 :=X

≤Ia 1,≥Ib 1,≥J2
1 and XG1,Ia,b,J

1 :=X
G1,≤Ia 1,≥Ib 1,≥J2
1 .

Theorem 4.2.12. — Let Ia, Ib, J be pairwise disjoint subsets of Sp. Set TIb,J =∏
w∈Ib

Tw×∏
w∈J Tw,1. Then there is a universal constant C depending only on p and F but not on the tame

level Kp such that if kw − lw ≥ C and lw ≥ 2 for all w ∈ Ib, and lw ≥ C for all w ∈ J, then

R�(XG1,Ia,b,J
1 ,ωκ) carries a locally finite action of TIb,J. Furthermore:

(1) e(TIb,J)R�(XG1,Ia,b,J
1 ,ωκ) is a perfect complex.

(2) The map

e(TIb,J)H0(XG1,≤Ia 1
1 ,ωκ)→ e(TIb,J)H0(XG1,Ia,b,J

1 ,ωκ)

is an isomorphism.

(3) The map

e(TIb,J)H1(XG1,≤Ia 1
1 ,ωκ)→ e(TIb,J)H1(XG1,Ia,b,J

1 ,ωκ)

is injective.

(4) If furthermore lw ≥ 3 for all w ∈ Ib, then

e(TIb,J)R�(XG1,≤Ia 1
1 ,ωκ)→ e(TIb,J)R�(XG1,Ia,b,J

1 ,ωκ)

is a quasi-isomorphism.

Moreover, the same results hold for cuspidal cohomology.

We only give the proof in the non-cuspidal setting. The same arguments work in
the cuspidal case. The proof of this result again depends on several lemmas. We will firstly
prove the result in the case Ib = ∅, by induction on #J. We will then prove the general
case by induction on #Ib.

Recall from §3.9.17, that if we set K′ =KpK′
p with K′

p =
∏

v �=w Kv × Si(w), there
is a cohomological correspondence of Siegel type:

Tw,1 : p∗2(ωκ |XK)→ p!1(ω
κ |XK).

By reduction modulo p and Lemma 3.8.10, we again get a cohomological correspon-
dence: Tw,1 : p∗2(ωκ |XK,1)→ p!1(ω

κ |XK,1). We let XIa,b,J
K′,1 be the pre-image of XIa,b,J

1 in XK′,1
(via any of the projections, it doesn’t matter). These correspondences may be restricted to
XIa,b,J

K′,1 whenever w /∈ Ia by another application of Lemma 3.8.10, because this correspon-
dence obviously commutes with the Hasse invariants at places in Ia.



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 251

Theorem 4.2.13. — There is a universal constant C depending only on p and F but not on the

tame level Kp such that if Ia, J are disjoint, and if lw ≥ C for all w ∈ J, then R�(X
G1,≤Ia 1,≥J2
1 ,ωκ)

has a locally finite action of T∅,J :=∏
w∈J Tw,1, and

e(T∅,J)R�(XG1,≤Ia 1
1 ,ωκ)→ e(T∅,J)R�(X

G1,≤Ia 1,≥J2
1 ,ωκ)

is a quasi-isomorphism. In particular e(T∅,J)R�(X
G1,≤Ia 1,≥J2
1 ,ωκ) is a perfect complex.

Proof. — The case Ia = ∅ is Theorem 4.2.4, and the theorem at hand may be
proved by an identical inductive argument on #J, once we have proved the base case
J = ∅. But in this case XG1,≤Ia 1

1 is proper, so R�(XG1,≤Ia 1
1 ,ωκ) is a perfect complex, and

we are done. �

We now reintroduce Klingen type correspondences. Let w|p. By §3.9.20 if we
set K′ = KpK′

p with K′
p =

∏
v �=w Kv × Kli(w), and K′′ = KpK′′

p with K′′
p =

∏
v �=w Kv ×

Par(w), there are cohomological correspondences of Klingen type: T′w : p∗2(ω
κ |XK′′ )→

p!1(ω
κ |XK) and T′′

w : p∗1(ωκ |XK)→ p!2(ω
κ |XK′ ) for all weights κ = (kv, lv) with kw ≥ lw ≥ 2.

By reduction modulo p and Lemma 3.8.10, we again get cohomological correspondences:
T′

w : p∗2(ωκ |XK′′,1)→ p!1(ω
κ |XK,1) and T′′

w : p∗1(ωκ |XK,1)→ p!2(ω
κ |XK′′,1). We let XIa,b,J

K′,1 be the

pre-image of XIa,b,J
1 in XK′,1. These correspondences may be restricted to XIa,b,J

K′,1 whenever
w /∈ Ia by another application of Lemma 3.8.10, because they obviously commute with
the Hasse invariants at places in Ia.

In the rest of this section we prove Theorem 4.2.12 by induction on #Ib. To this
end, choose w ∈ Ib, write I = I′

∐{w}, and write I′a = I′ ∩ Ia = Ia, and I′b = I′ ∩ Ib. We
assume that Theorem 4.2.12 holds (for some value of C, which we fix) for all smaller
values of #Ib (as we may, having proved the case Ib = ∅ in Theorem 4.2.4).

We now consider the scheme (X
I′a,b,J
K′,1 )=w2 (which is again by definition the sub-

scheme where Gw is ordinary), which decomposes into several components. Let p∗1G→
p∗2G be the universal isogeny of degree p3. We denote by (X

I′a,b,J
K′,1 )=w2,et the “étale” compo-

nents, namely those where the kernel of the universal isogeny has multiplicative rank 1

(so it is as étale as possible), and by (X
I′a,b,J
K′,1 )=w2,net the other components where the kernel

has multiplicative rank 2.
This provides a decomposition of the correspondence T′

w = T′
w,et + T′

w,net where
T′

w,et stands for the projection on the “étale” components and T′
w,net for the projection on

the “non-étale” components.

We also have an isogeny p∗2G→ p∗1G of degree p and over (X
I′a,b,J
K′,1 )=w2,et this isogeny

has multiplicative kernel, while it is étale over (X
I′a,b,J
K′,1 )=w2,net (observe that the étale and

non-étale components are interchanged when we pass from the isogeny p∗1G → p∗2G
to the isogeny p∗2G → p∗1G). This provides a second decomposition T′′

w = T′′
w,et + T′′

w,net
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where T′′
w,et stands for the projection on (X

I′a,b,J
K′,1 )=w2,net and T′′

w,net for the projection on

(X
I′a,b,J
K′,1 )=w2,et .

Lemma 4.2.14. — If lw ≥ 2, and kw ≥ 3 then over (X
I′a,b,J
K′,1 )=w2 we have T′

w,net =T′′
w,net =

0. Moreover, the following diagrams are commutative:

p∗2ω
κ

T′w,et

p∗2Ha(Gw)

p!1ω
κ

p∗1Ha(Gw)

p∗2(ω
κ ⊗ det ωp−1

Gw
)

T′w,et

p!1(ω
κ ⊗ det ωp−1

Gw
)

p∗1ω
κ

T′′w,et

p∗1Ha(Gw)

p!2ω
κ

p∗2Ha(Gw)

p∗1(ω
κ ⊗ det ωp−1

Gw
)

T′′w,et

p!2(ω
κ ⊗ det ωp−1

Gw
)

Proof. — That T′
w,net =T′′

w,net = 0 follows from an inspection of the proof of Lemma
3.9.22; more precisely, by the proofs of [Pil20, Lem. 7.1.1, 7.1.2], T′

w,net is divisible
by pkw−2, and T′′

w,net is divisible by plw−1. The commutativity of the second diagram follows
immediately from the fact that the Hasse invariant commutes with étale isogenies. The
commutativity of the first diagram is slightly more delicate; see the proof of [Pil20, Prop.
7.4.1.1], which explains how it reduces to [Pil20, Lem. 6.3.4.1]. �

Lemma 4.2.15. — The following diagrams of locally free sheaves on X
I′a,b,J
K′,1 are commutative

for lw ≥ 2 and kw ≥ 3:

p∗2ω
κ

T′w

p∗2Ha(Gw)

p!1ω
κ

p∗1Ha(Gw)

p∗2(ω
κ ⊗ det ωp−1

Gw
)

T′w
p!1(ω

κ ⊗ det ωp−1
Gw

)

p∗1ω
κ

T′′w

p∗1Ha(Gw)

p!2ω
κ

p∗2Ha(Gw)

p∗1(ω
κ ⊗ det ωp−1

Gw
)

T′′w
p!2(ω

κ ⊗ det ωp−1
Gw

)
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Proof. — Since all sheaves are locally free and X
I′a,b,J
K′,1 is Cohen–Macaulay, it is

enough to check the commutativity over the dense open subscheme (X
I′a,b,J
K′,1 )=w2, which

is Lemma 4.2.14. �

Corollary 4.2.16. — Assume that for all v ∈ I′ we have lv ≥ 2 and kv − lv ≥ C, and that

for all v ∈ J we have lv ≥ C. Then the action of TIb,J on R�(X
G1,I′a,b,J,=w2
K,1 ,ωκ) is locally finite if

lw ≥ 2 and kw ≥ 3.

Proof. — We have H∗(X
G1,I′a,b,J,=w2
K,1 ,ωκ)= lim−→n

H∗(X
G1,I′a,b,J
K,1 ,ωκ⊗det ω(p−1)n

Gw
) where

the transition maps (given by multiplication by Ha(Gw)) are TIb,J-equivariant by

Lemma 4.2.15. By the inductive hypothesis, each e(TI′b,J)H∗(X
G1,I′a,b,J
K,1 ,ωκ ⊗ det ω(p−1)n

Gw
) is

finite-dimensional and TIb,J-stable, while TIb,J acts locally nilpotently on (1− e(TI′b,J))×
H∗(X

G1,I′a,b,J
K,1 ,ωκ ⊗ det ω(p−1)n

Gw
) (because TI′b,J does). The result follows. �

Exactly as in Lemma 4.2.9, for all lw ≥ p+1= p−1+2 and kw ≥ p+2= 3+p−1
we obtain cohomological correspondences:

T′
w : p∗2(ωκ |

X
I′
a,b

,J,≤w1

K′′,1
)→ p!1(ω

κ |
X

I′
a,b

,J,≤w1

K,1

)

and

T′′
w : p∗1(ωκ |

X
I′
a,b

,J,≤w1

K,1

)→ p!2(ω
κ |

X
I′
a,b

,J,≤w1

K′′,1
).

We now consider the space (X
I′a,b,J
K′′,1)

=w1 where Gw[p] has p-rank 1. We have a uni-
versal quasi-polarization Gw → GD

w over XK′′ . Over the interior of the moduli space, the
kernel of the quasi-polarization is a self dual rank p2 group scheme which is either con-

nected or an extension of a multiplicative by an étale group scheme. The space (X
I′a,b,J
K′′,1)

=w1

decomposes as the union of connected components (X
I′a,b,J
K′′,1)

=w1,00 and (X
I′a,b,J
K′′,1)

=w1,m-et for
which the kernel of the quasi-polarization doesn’t contain (respectively contains) a multi-
plicative group (see [Pil20, Lem. 7.4.2.3]).

We now consider the space (X
I′a,b,J
K′,1 )=w1, which we view here only as a topological

space (it has multiple natural non-reduced scheme structures defined by the vanishing
of either p∗1Ha(Gw) or p∗2Ha(Gw)). We have the chain of isogenies p∗1G → p∗2G → p∗1G
where the composite is multiplication by p. We have a decomposition of (X

I′a,b,J
K′,1 )=w1 as a

union of connected components: (X
I′a,b,J
K′,1 )=w1,m, (X

I′a,b,J
K′,1 )=w1,et and (X

I′a,b,J
K′,1 )=w1,00. Here the

open and closed subspace (X
I′a,b,J
K′,1 )=w1,m is the locus where the kernel of p∗2G→ p∗1G is an

étale group scheme; the open and closed subspace (X
I′a,b,J
K′,1 )=w1,et is the locus where the
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kernel of p∗2G→ p∗1G is a multiplicative group scheme; and the open and closed subspace

(X
I′a,b,J
K′,1 )=w1,00 is the locus where the kernel of p∗2G→ p∗1G is a bi-connected group scheme.

It follows from the definitions (see [Pil20, Lem. 7.4.2.4]) that

(4.2.17) p2((X
I′a,b,J
K′,1 )=w1,00)⊆ (X

I′a,b,J
K′′,1)

=w1,00

and that at the level of topological spaces,

(4.2.18) p2((X
I′a,b,J
K′,1 )=w1,m ∪ (X

I′a,b,J
K′,1 )=w1,et)⊆ (X

I′a,b,J
K′′,1)

=w1,m-et.

Over (X
I′a,b,J
K,1 )=w1 and (X

I′a,b,J
K′,1 )=w1 we can decompose the cohomological correspon-

dences T′
w and T′′

w by projecting on the various components (in other words, composing
with the various idempotents associated to each of these connected components). This
gives us decompositions T′

w = T′
w,m + T′

w,et + T′
w,00 and T′′

w = T′′
w,m + T′′

w,et + T′′
w,00 ob-

tained by projecting on the multiplicative, étale and bi-connected components respec-
tively.

Lemma 4.2.19. — The following diagrams of sheaves on X
I′a,b,J
K′,1 are commutative for lw ≥

p+ 1 and kw ≥ 2p+ 3:

p∗2ω
κ |

(X
I′
a,b

,J

K′′,1 )=w1

T′w,et

p∗2Ha′(Gw)

p!1ω
κ |

(X
I′
a,b

,J

K,1 )=w1

p∗1Ha′(Gw)

p∗2(ω
κ ⊗ det ωp2−1

Gw
)|

(X
I′
a,b

,J

K′′,1 )=w1

T′w,et

p!1(ω
κ ⊗ det ωp2−1

Gw
)|

(X
I′
a,b

,J

K,1 )=w1

p∗1ω
κ |

(X
I′
a,b

,J

K,1 )=w1

T′′w,et

p∗1Ha′(Gw)

p!2ω
κ |

(X
I′
a,b

,J

K′′,1 )=w1

p∗2Ha′(Gw)

p∗1(ω
κ ⊗ det ωp2−1

Gw
)|

(X
I′
a,b

,J

K,1 )=w1

T′′w,et

p!2(ω
κ ⊗ det ωp2−1

Gw
)|

(X
I′
a,b

,J

K′′,1 )=w1

Moreover, T′
w,m =T′

w,00 = 0 and T′′
w,m = 0. If lw ≥ p+ 2, then T′′

w,00 = 0.

Proof. — See [Pil20, Prop. 7.4.2.1]. �
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We recall that by definition we have Tw =T′
w ◦T′′

w as operators on the cohomology

over X
I′a,b,J
K . It will also be useful to consider the composition T̃w := T′′

w ◦T′
w defining an

operator on the cohomology over X
I′a,b,J
K′′ .

Lemma 4.2.20. — If lw ≥ p+ 1 and kw ≥ 2p+ 3, then we have Tw = T′
w,et ◦ T′′

w,et ∈
End(R�(X

I′a,b,J,=w1
K,1 ,ωκ)), and

TwHa′(Gw)=Ha′(Gw)Tw

∈Hom(R�(X
I′a,b,J,=w1
K,1 ,ωκ), R�(X

I′a,b,J,=w1
K,1 ,ωκ ⊗ det ω(p2−1)

Gw
)).

Similarly, if kw ≥ 2p+ 3, then we have T̃w = T′′
w,et ◦ T′

w,et ∈ End(R�(X
I′a,b,J,=w1

K′′,1 ,ωκ)),

and

T̃wHa′(Gw)=Ha′(Gw)T̃w

∈Hom(R�(X
I′a,b,J,=w1

K′′,1 ,ωκ), R�(X
I′a,b,J,=w1

K′′,1 ,ωκ ⊗ det ω(p2−1)

Gw
)).

Proof. — We give the argument for Tw; the argument for T̃w is essentially the same,
and is left to the reader. From (4.2.17) and (4.2.18) we see that we can write Tw as the
sum of the two operators T′

w,00 ◦T′′
w,00 and (T′

w,et +T′
w,m) ◦ (T′′

w,et +T′′
w,m).

By Lemma 4.2.19, we have T′
w,m = T′

w,00 = 0 and T′′
w,m = 0, so that Tw = T′

w,et ◦
T′′

w,et . The commutativity with Ha′(Gw) then follows from the commutative diagrams in
Lemma 4.2.19. �

Corollary 4.2.21. — Assume that for all places v ∈ I′b, we have lv ≥ 2 and kv ≥ C, and

that for all places v ∈ J, we have lv ≥ C. If lw ≥ p+ 1 and kw ≥ 2p+ 3, then the action of TIb,J

on R�(X
G1,I′a,b,J,=w1
K,1 ,ωκ) is locally finite. Similarly, if kw ≥ 2p+ 3, then the action of TI′b,JT̃w on

R�(X
G1,I′a,b,J,=w1

K′′,1 ,ωκ) is also locally finite.

Proof. — Again, we give the proof for TIb,J, the argument for T̃wTI′,J being essen-

tially identical. We have H∗(X
G1,I′a,b,J,=w1
K,1 ,ωκ) = lim−→n

H∗(X
G1,I′a,b,J,≤w1
K,1 ,ωκ ⊗ det ωn(p2−1)

Gw
).

More precisely, for all n ≥ 0, the map H∗(X
G1,I′a,b,J,≤w1
K,1 ,ωκ ⊗ det ωn(p2−1)

Gw
) →

H∗(X
G1,I′a,b,J,=w1
K,1 ,ωκ) is defined by the composition:

H∗(X
G1,I′a,b,J,≤w1
K,1 ,ωκ ⊗ det ωn(p2−1)

Gw
)→H∗(X

G1,I′a,b,J,=w1
K,1 ,ωκ ⊗ det ωn(p2−1)

Gw
)

Ha′(Gw)−n→ H∗(X
G1,I′a,b,J,=w1
K,1 ,ωκ).
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The vector space H∗(X
G1,I′a,b,J,=w1
K,1 ,ωκ) is therefore an inductive limit of the images

of the spaces

H∗(X
G1,I′a,b,J,≤w1
K,1 ,ωκ ⊗ det ωn(p2−1)

Gw
)

under these maps. The first map is obviously TIb,J-equivariant, and by Lemma 4.2.20,
the second map is also TIb,J-equivariant. The result follows from our inductive hypothesis
that Theorem 4.2.12 holds for all smaller values of #Ib, because by definition we have

X
G1,I′a,b,J,≤w1
K,1 =X

G1,≤Ia∪{w}1,≥I′
b
1,≥J2

K,1 . �

Lemma 4.2.22. — The following diagram of sheaves on X
I′a,b,J
K′,1 is commutative for lw ≥ p+ 1

and kw ≥ 2p+ 3:

p∗2ω
κ |

(X
I′
a,b

,J

K′′,1 )≤w1

T′w

p∗2Ha′(Gw)

p!1ω
κ |

(X
I′
a,b

,J

K,1 )≤w1

p∗1Ha′(Gw)

p∗2(ω
κ ⊗ det ωp2−1

Gw
)|

(X
I′
a,b

,J

K′′,1 )≤w1

T′w
p!1(ω

κ ⊗ det ωp2−1
Gw

)|
(X

I′
a,b

,J

K,1 )≤w1

If lw ≥ p+ 2 and kw ≥ 2p+ 3, the following diagram is commutative:

p∗1ω
κ |

(X
I′
a,b

,J

K′,1 )≤w1

T′′w

p∗1Ha′(Gw)

p!2ω
κ |

(X
I′
a,b

,J

K′′,1 )≤w1

p∗2Ha′(Gw)

p∗1(ω
κ ⊗ det ωp2−1

Gw
)|

(X
I′
a,b

,J

K′,1 )≤w1

T′′w
p!2(ω

κ ⊗ det ωp2−1
Gw

)|
(X

I′
a,b

,J

K′′,1 )≤w1

Proof. — It is enough to check the commutativity over a dense open subscheme of
the support of these Cohen–Macaulay sheaves, and this follows from Lemma 4.2.19. �

Since p∗1Ha′(Gw) is not a zero divisor on XK′,1|
(X

I′
a,b

,J

K,1 )≤w1
, it follows exactly as in the

proof of Lemma 4.2.9 that there is for all lw ≥ p2+p and kw ≥ p2+2p+2 a cohomological
correspondence:

T′
w : p∗2(ωκ |

(X
I′
a,b

,J

K′′,1 )=w0
)→ p!1(ω

κ |
(X

I′
a,b

,J

K,1 )=w0
)
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and similarly for all lw ≥ p2+p+1 and kw ≥ p2+2p+2 a cohomological correspondence:

T′′
w : p∗1(ωκ |

(X
I′
a,b

,J

K,1 )=w0
)→ p!2(ω

κ |
(X

I′
a,b

,J

K′′,1 )=w0
).

Lemma 4.2.23. — There is a universal constant C′ which depends only on F and p but not on

the tame level such that

T′
w : p∗2(ωκ |

(X
I′
a,b

,J

K′′,1 )=w0
)→ p!1(ω

κ |
(X

I′
a,b

,J

K,1 )=w0
)

is zero for all kw − lw ≥C′ and all lw ≥ p2 + p.

Proof. — See [Pil20, Prop. 7.4.2.2]. �

We now increase our constant C if necessary, so that C ≥ C′, where C′ is as in
Lemma 4.2.23.

Lemma 4.2.24. — Assume that for all places v ∈ I′b, we have lv ≥ 2 and kv − lv ≥
C, that lv ≥ C for all v ∈ J, and that lw ≥ p + 2 and kw − lw ≥ C. Then the map

e(TIb,J)R�(X
G1,I′a,b,J,≤w1
K,1 ,ωκ)→ e(TIb,J)R�(X

G1,I′a,b,J,=w1
K,1 ,ωκ) is a quasi-isomorphism. In par-

ticular, e(TIb,J)R�(X
G1,I′a,b,J,=w1
K,1 ,ωκ) is a perfect complex.

Proof. — Consider the following diagram of exact triangles:

R�(X
G1,I′a,b,J,≤w1

K′′,1 ,ωκ)
T′w

Ha′(Gw)

R�(X
G1,I′a,b,J,≤w1
K,1 ,ωκ)

Ha′(Gw)

R�(X
G1,I′a,b,J,≤w1

K′′,1 ,ωκ ⊗ det ωp2−1
Gw

)
T′w

R�(X
G1,I′a,b,J,≤w1
K,1 ,ωκ ⊗ det ωp2−1

Gw
)

R�(X
G1,I′a,b,J,=w0

K′′,1 ,ωκ ⊗ det ωp2−1
Gw

)
T′w

R�(X
G1,I′a,b,J,=w0
K,1 ,ωκ ⊗ det ωp2−1

Gw
)

By Lemma 4.2.23, the rightmost operator T′
w acts by zero. We have the ordinary

projectors e(TIb,J) on R�(X
G1,I′a,b,J,≤w1
K,1 ,ωκ) and R�(X

G1,I′a,b,J,≤w1
K,1 ,ωκ ⊗ det ωp2−1

Gw
), and

the ordinary projectors e(T̃wTI′b,J) on R�(X
G1,I′a,b,J,≤w1

K′′,1 ,ωκ) and R�(X
G1,I′a,b,J,≤w1

K′′,1 ,ωκ ⊗
det ωp2−1

Gw
). It follows from the defining properties of the ordinary projectors that after

applying them, the left two vertical arrows T′
w are quasi-isomorphisms.
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By Lemma 4.2.22 the projectors commute with multiplication by Ha′(Gw). It fol-
lows from a short diagram chase that the map

e(TIb,J)R�(X
G1,I′a,b,J,≤w1
K,1 ,ωκ)

Ha′(Gw)→ e(TIb,J)R�(X
G1,I′a,b,J,≤w1
K,1 ,ωκ ⊗ det ωp2−1

Gw
)

is a quasi-isomorphism. The claimed quasi-isomorphism now follows by taking an
inductive limit as in the proof of Corollary 4.2.21. By our inductive hypothesis,

e(TIb,J)R�(X
G1,I′a,b,J,≤w1
K,1 ,ωκ) is a perfect complex, so we are done. �

Lemma 4.2.25. — Assume that for all places v ∈ I, we have lv ≥ 2 and kv − lv ≥ C, that

lv ≥C for all v ∈ J, and that lw = p+ 1. Then the ordinary cohomology e(TIb,J)R�(X
G1,I′a,b,J,=w1
K,1 ,

ωκ) is a perfect complex, and the map

e(TIb,J)H0(X
G1,I′a,b,J,≤w1
K,1 ,ωκ)→ e(TIb,J)H0(X

G1,I′a,b,J,=w1
K,1 ,ωκ)

is an isomorphism.

Proof. — The map

R�(X
G1,I′a,b,J,=w1
K,1 ,ωκ)

Ha′(Gw)→ R�(X
G1,I′a,b,J,=w1
K,1 ,ωκ ⊗ det ωp2−1

Gw
)

is a quasi-isomorphism, which commutes with the projector e(TIb,J) by Lemma 4.2.20. It

follows from Lemma 4.2.24 that e(TIb,J)R�(X
G1,I′a,b,J,=w1
K,1 ,ωκ) is perfect.

We now prove the claimed isomorphism on degree 0 cohomology. Since

X
G1,I′a,b,J,≤w1
K,1 is Cohen–Macaulay, and X

G1,I′a,b,J,=w1
K,1 is an open dense subscheme, we have

injections

H0(X
G1,I′a,b,J,≤w1
K,1 ,F) ↪→H0(X

G1,I′a,b,J,=w1
K,1 ,F)

for any locally free sheaf F , so it is enough to prove surjectivity. In order to do this, it is
enough to prove that for all n≥ 0, the map

H0(X
G1,I′a,b,J,≤w1
K,1 ,ωκ)

(Ha′(Gw))n→ H0(X
G1,I′a,b,J,≤w1
K,1 ,ωκ ⊗ det ωn(p2−1)

Gw
)

(which commutes with e(Tw) by Lemma 4.2.20 and the injectivity of the restrictions

H0(X
G1,I′a,b,J,≤w1
K,1 ,F) ↪→H0(X

G1,I′a,b,J,=w1
K,1 ,F) discussed above) induces a surjection:

e(TIb,J)H0(X
G1,I′a,b,J,≤w1
K,1 ,ωκ)

(Ha′(Gw))n→ e(TIb,J)H0(X
G1,I′a,b,J,≤w1
K,1 ,ωκ ⊗ det ωn(p2−1)

Gw
).
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In fact, by Lemma 4.2.24, it suffices to prove the surjectivity for n= 1. We consider
the following diagram:

H0(X
G1,I′a,b,J,≤w1

K′′,1 ,ωκ)
T′w

Ha′(Gw)

H0(X
G1,I′a,b,J,≤w1
K,1 ,ωκ)

Ha′(Gw)

H0(X
G1,I′a,b,J,≤w1

K′′,1 ,ωκ ⊗ det ωp2−1
Gw

)
T′w

H0(X
G1,I′a,b,J,≤w1
K,1 ,ωκ ⊗ det ωp2−1

Gw
)

H0(X
G1,I′a,b,J,=w0

K′′,1 ,ωκ ⊗ det ωp2−1
Gw

)
T′w

H0(X
G1,I′a,b,J,=w0
K,1 ,ωκ ⊗ det ωp2−1

Gw
)

Let f ∈ e(TIb,J)H0(X
G1,I′a,b,J,≤w1
K,1 ,ωκ ⊗ det ωp2−1

Gw
). As in the proof of Lemma 4.2.24,

T′
w induces a bijection

e(T̃wTI′b,J)H0(X
G1,I′a,b,J,≤w1

K′′,1 ,ωκ ⊗ det ωp2−1
Gw

)

→ e(TIb,J)H0(X
G1,I′a,b,J,≤w1
K,1 ,ωκ ⊗ det ωp2−1

Gw
).

In particular, f = T′
wg for some g ∈ H0(X

G1,I′a,b,J,≤w1
K,1 ,ωκ ⊗ det ωp2−1

Gw
) and there-

fore, since the rightmost operator T′
w acts by zero by Lemma 4.2.23, f has trivial

image in H0(X
G1,I′a,b,J,=w0
K,1 ,ωκ ⊗ det ωp2−1

Gw
). It follows that f comes from a class f̃ ∈

H0(X
G1,I′a,b,J,≤w1
K,1 ,ωκ). Replacing f̃ by e(TIb,J)f̃ we deduce the required surjectivity. �

Corollary 4.2.26. — Assume that for all places v ∈ Ib, we have lv ≥ 2 and kv− lv ≥C, and

that for all places v ∈ J, we have lv ≥ C. Then TIb,J acts locally finitely on R�(XG1,Ia,b,J
1 ,ωκ) and

e(TIb,J)R�(XG1,Ia,b,J
1 ,ωκ) is a perfect complex.

We have an isomorphism:

e(TIb,J)H0(XG1,≤Ia 1
1 ,ωκ)

∼−→ e(TIb,J)H0(XG1,Ia,b,J
1 ,ωκ)

and an injection:

e(TIb,J)H1(XG1,≤Ia 1
1 ,ωκ) ↪→ e(TIb,J)H1(XG1,Ia,b,J

1 ,ωκ).

If furthermore lw ≥ 3, then the map

e(TIb,J)R�(X
G1,I′a,b,J
1 ,ωκ)→ e(TIb,J)R�(XG1,Ia,b,J

1 ,ωκ)

is a quasi-isomorphism.
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Proof. — We begin by showing that TIb,J acts locally finitely on both

R�(X
G1,I′a,b,J,≥w2
1 ,ωκ) and R�(XG1,Ia,b,J

1 ,ωκ)=R�(X
G1,I′a,b,J,≥w1
1 ,ωκ). For R�(X

G1,I′a,b,J,≥w2
1 ,

ωκ), this is Corollary 4.2.16.

Our argument for R�(X
G1,I′a,b,J,≥w1
1 ,ωκ) is slightly more involved. We have an exact

triangle

R�(X
G1,I′a,b,J,≥w1
1 ,ωκ) � R�(X

G1,I′a,b,J,≥w2
1 ,ωκ)

R�
X

G1,I′
a,b

,J,=w1(X
G1,I′a,b,J,≥w1
1 ,ωκ)[+1],

�

so it is enough to prove that the action of TIb,J on R�
X

G1,I′
a,b

,J,=w1

1

(X
G1,I′a,b,J,≥w1
1 ,ωκ)[+1] is

locally finite. We have

(4.2.27)

R�
X

G1,I′
a,b

,J,=w1

1

(X
G1,I′a,b,J,≥w1
1 ,ωκ)[+1]

R�(X
G1,I′a,b,J,≥w1
1 , lim−→n

ωκ ⊗ det ωn(p−1)

Gw
|V(Ha(Gw)n))

�������

so it is enough to prove that the action of TIb,J on each R�(X
G1,I′a,b,J,≥w1
1 ,ωκ ⊗

det ωn(p−1)

Gw
|V(Ha(Gw)n)) is locally finite. In the case n = 1, this is Corollary 4.2.21, and the

general case follows by induction by taking the cohomology of the short exact sequence
of sheaves

0→ ωκ ⊗ det ω(n−1)(p−1)

Gw
|V(Ha(Gw)n−1)

×Ha(Gw)→ ωκ ⊗ det ωn(p−1)

Gw
|V(Ha(Gw)n)(4.2.28)

→ ωκ ⊗ det ωn(p−1)

Gw
|V(Ha(Gw)) → 0

Consider now the following diagram of exact triangles:

R�(X
G1,I′a,b,J
1 ,ωκ) R�(X

G1,I′a,b,J,≥w1
1 ,ωκ)

R�(X
G1,I′a,b,J,≥w2
1 ,ωκ) R�(X

G1,I′a,b,J,≥w2
1 ,ωκ)

R�
X

G1,I′
a,b

,J,≤w1

1

(X
G1,I′a,b,J
1 ,ωκ)[+1] R�

X
G1,I′

a,b
,J,=w1

1

(X
G1,I′a,b,J,≥w1
1 ,ωκ)[+1]
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We have already seen that TIb,J acts locally finitely on all but the last term of the first
row, so it acts locally finitely on every term in the diagram. The middle vertical arrow is
the identity map. In order to show that the left vertical arrow is a quasi-isomorphism after
applying e(TIb,J), it is therefore enough to prove it for the right vertical arrow. By (4.2.27)
and the similar expression

R�
X

G1,I′
a,b

,J,≤w1

1

(X
G1,I′a,b,J
1 ,ωκ)[+1]

=R�(X
G1,I′a,b,J
1 , lim−→

n

ωκ ⊗ det ωn(p−1)

Gw
|V(Ha(Gw)n)),

it suffices to show that for each n≥ 1, the map

e(TIb,J)R�(XG1
1 ,ωκ ⊗ det ωn(p−1)

Gw
|V(Ha(Gw)n))

e(TIb,J)R�(X
G1,I′a,b,J,≥w1
1 ,ωκ ⊗ det ωn(p−1)

Gw
|V(Ha(Gw)n))

�

is a quasi-isomorphism. To see this, note that the case n = 1 is Lemma 4.2.24, and the
general case follows by induction on n, by taking the cohomology of the exact sequence
of sheaves (4.2.28). The remaining claims follow from the quasi-isomorphism just proved
and the inductive hypothesis. �

Corollary 4.2.29. — Assume that for all places v ∈ I, we have kv − lv ≥C and lv ≥ 2, that

for all places v ∈ J, we have lv ≥C. Then the ordinary cohomology

e(TIb,J)R�(XG1,Ia,b,J
1 ,ωκ)

is represented by a perfect complex. Moreover we have an isomorphism:

e(TIb,J)H0(XG1,≤Ia 1
1 ,ωκ)

∼−→ e(TIb,J)H0(XG1,Ia,b,J
1 ,ωκ)

and an injection:

e(TIb,J)H1(XG1,≤Ia 1
1 ,ωκ) ↪→ e(TIb,J)H1(XG1,Ia,b,J

1 ,ωκ).

Proof. — To see that

e(TIb,J)R�(XG1,Ia,b,J
1 ,ωκ)
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is represented by a perfect complex, we consider the exact triangle:

R�(X
G1,I′a,b,J,≥w1
1 ,ωκ)

Ha(Gw)→ R�(X
G1,I′a,b,J,≥w1
1 ,ωκ ⊗ det ωp−1

Gw
)

→R�(X
G1,I′a,b,J,=w1
1 ,ωκ ⊗ det ωp−1

Gw
)
+1→

Applying the projector e(TIb,J) everywhere (which commutes with the various maps by
Lemma 4.2.15) we deduce this from Corollary 4.2.26 and Lemma 4.2.25. By our induc-
tive hypothesis, in order to prove the claims about the morphisms

e(TIb,J)Hi(XG1,≤Ia 1
1 ,ωκ)

∼−→ e(TIb,J)Hi(XG1,Ia,b,J
1 ,ωκ),

it is enough to prove the corresponding statements for the morphisms

e(TIb,J)Hi(X
G1,I′a,b,J
1 ,ωκ)→ e(TIb,J)Hi(XG1,Ia,b,J

1 ,ωκ).

Firstly, the natural restriction map

H0(X
G1,I′a,b,J
1 ,ωκ)→H0(XG1,Ia,b,J

1 ,ωκ)

is an isomorphism, because X
G1,I′a,b,J
1 is Cohen–Macaulay, and the complement of XG1,Ia,b,J

1

is of codimension at least 2. It remains to prove the injectivity of the map of H1s.
We have a commutative diagram of exact triangles:

R�(X
G1,I′a,b,J
1 ,ωκ) R�(XG1,Ia,b,J

1 ,ωκ)

R�(X
G1,I′a,b,J
1 ,ωκ ⊗ det ω(p−1)

Gw
) R�(XG1,Ia,b,J

1 ,ωκ ⊗ det ω(p−1)

Gw
)

R�(X
G1,I′a,b,J,≤w1
1 ,ωκ ⊗ det ω(p−1)

Gw
) R�(X

G1,I′a,b,J,=w1
1 ,ωκ ⊗ det ω(p−1)

Gw
)

The injectivity of e(TIb,J)H1(X
G1,I′a,b,J
1 ,ωκ)→ e(TIb,J)H1(XG1,Ia,b,J

1 ,ωκ) therefore fol-
lows from a short diagram chase, using the quasi-isomorphisms provided by Corol-
lary 4.2.26 and the isomorphism on H0s of Lemma 4.2.25. �

Proof of Theorem 4.2.12. — This is immediate from Corollaries 4.2.26 and 4.2.29.
�
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4.2.30. A Cousin complex computing R�(XG1,I
1 ,ωκ(−D)). — Our goal in this section

is to provide an explicit Hecke stable complex computing R�(XG1,I
1 ,ωκ(−D)). This com-

plex will be used to complete the proof of Theorem 4.2.1, and will also be used in §4.6
to compare the cohomology at spherical and Klingen levels (by considering the corre-
sponding complex at Klingen level, and the natural map between these complexes). This
complex is the Cousin complex associated to XG1,I

1 and the stratification given by the p-
rank (see §3.9.5). This section is very similar to §3.9.10 where we introduced the Cousin
complex over the full Shimura variety associated with the Ekedahl–Oort stratification.
The case we consider here is, however, much simpler because we have canonical global
equations provided by the partial Hasse invariants for our stratification. We has thus de-
cided, despite redundancy, to give a complete and explicit construction of the Cousin
complex in this case.

Let S be a smooth scheme over a field k and let L be an invertible sheaf on S. We
assume that L=⊗d

i=1Li and that we have non-vanishing sections si ∈H0(S,Li). We let
Di = V(si), an effective Cartier divisor on S. Set s =∏d

i=1 si . Set D = V(s) = ∪iDi . We
assume that D=∪iDi is a strict normal crossing divisor on S.

For all n, consider the following exact complex of coherent sheaves on S:

0→OS
sn→Ln →

d⊕

i=1

Ln/sn
i →

⊕

1≤i<j≤d

Ln/(sn
i , sn

j )

→ ·· ·→Ln/(sn
1, . . . , sn

d)→ 0

This is a complex of length d + 2. For all 0 ≤ k ≤ d , the object placed in de-
gree k + 1 is

⊕
1≤i1<···<ik≤d Ln/(sn

i1
, . . . , sn

ik
) (when we write Ln/(sn

i1
, . . . , sn

ik
), we mean

Ln/Ln(sn
i1
L−n

i1
, . . . , sn

ik
L−n

ik
)). The differential

⊕

1≤i1<···<ik≤d

Ln/(sn
i1
, . . . , sn

ik
)→

⊕

1≤i1<···<ik+1≤d

Ln/(sn
i1
, . . . , sn

ik
)

takes a section (fi1,...,ik)1≤i1<···<ik≤d to the section

(
∑

(−1)ij fi1,...,̂ij ,...,ik+1
)1≤i1<···<ik+1≤d

where fi1,...,̂ij ,...,ik+1
is the class modulo sn

j of fi1,...,̂ij ,...,ik+1
.

The following diagram is commutative:

0 OS
sn+1

Ln+1
⊕d

i=1 Ln+1/sn+1
i · · ·

0 OS

id

sn

Ln

s

⊕d

i=1 Ln/sn
i

s

· · ·
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Passing to the limit over n, we get the following exact complex:

0→OS → lim−→
n

Ln → lim−→
n

d⊕

i=1

Ln/sn
i →

lim−→
n

⊕

1≤i<j≤d

Ln/(sn
i , sn

j )→ ·· ·→ lim−→
n

Ln/(sn
1, . . . , sn

d)→ 0

where in all the direct limits, the transition maps are given by multiplication by powers
of s.

Lemma 4.2.31. — Let 1 ≤ i1 < · · · < ik ≤ d. Set L′ = ⊗k
j=1Lij , s′ =∏k

j=1 sij , D′ =
V(s(s′)−1). There is a canonical isomorphism

lim−→×sn

Ln/(sn
i1
, . . . , sn

ik
)	 lim−→×(s′)n

((L′)n/(sn
i1
, . . . , sn

ik
))|S\D′

Proof. — Easy and left to the reader. �

Remark 4.2.32. — The complex

0→ lim−→
n

Ln → lim−→
n

d⊕

i=1

Ln/sn
i →

lim−→
n

⊕

1≤i<j≤d

Ln/(sn
i , sn

j )→ ·· ·→ lim−→
n

Ln/(sn
1, . . . , sn

d)→ 0

is just the Cousin complex of OS associated with the stratification given by the divisors Di .

We now work over S=XG1,I
1 . We take L=⊗w∈I(detGw)p−1, Lw = (detGw)p−1 and

sw =Ha(Gw), and we consider the complex K0 →K1 · · · →Kd obtained by applying H0

to the complex

lim−→
n

Ln → lim−→
n

d⊕

i=1

Ln/sn
i → lim−→

n

⊕

1≤i<j≤d

Ln/(sn
i , sn

j )

→ ·· ·→ lim−→
n

Ln/(sn
1, . . . , sn

d)

tensored with ωκ(−D). (So in the above notation, the indices i will correspond to the
different places v ∈ I, the si will correspond to Hasse invariants, and the assumption that
the divisor V(s) has strict normal crossings is an easy consequence of the Serre–Tate
theorem and the product structure on the p-divisible group G.)
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It follows from Lemma 4.2.31 that Kk equals

⊕
J⊂I,#J=k lim−→×∏w∈J Ha(Gw)

H0
(
X

G1,I,≥Jc 2
1 ,ωκ(−D)⊗

⊗

w∈J

(detGw)n(p−1)/

(
∑

w∈J

(Ha(Gw)n))
)
.

Proposition 4.2.33. — The complex K• computes R�(XG1,I
1 ,ωκ(−D)).

Proof. — The argument is the same as in the proof of Proposition 3.9.11. It suffices
to show that each of the sheaves

ωκ(−D)⊗
⊗

w∈J

(detGw)n(p−1)/(
∑

w∈J

(Ha(Gw)n))

when restricted to X
G1,I,≥Jc 2
1 and then pushed forward to XG1,I

1 is acyclic on XG1,I
1 . Since

the inclusion X
G1,I,≥Jc 2
1 ↪→ XG1,I

1 is affine, it suffices to show that the restriction of this
sheaf to X

G1,I,≥Jc 2
1 is acyclic. By [Lan17, Thm. 8.6], this sheaf is acyclic relative to the

minimal compactification and its support in the minimal compactification is the locally
closed subscheme given by the set of equations:

• Ha(Gw)n = 0 for w ∈ J,
• Ha′(Gw) �= 0 for w ∈ J,
• Ha(Gw) �= 0 for w ∈ Jc,

which is affine. �

Remark 4.2.34. — Using Proposition 4.2.33, one can show that if we have lw ≥ 2
and kw ≥ 2p+ 3 for w ∈ I, and lw ≥ 3 for w ∈ Ic, then the individual Hecke operators Tw

for w ∈ I and Tw,1 for w ∈ Ic act locally finitely on R�(XG1,I
1 ,ωκ(−D)) (by showing that

they act locally finitely on each term of the complex K•). We leave the details to the
interested reader.

We can finally complete the proof of Theorem 4.2.1.

Proof of Theorem 4.2.1. — Everything is immediate from Theorem 4.2.12 (tak-
ing Ia = ∅ and J= Ic), except for the claim that e(TI)R�(XG1,I

1 ,ωκ(−D)) has amplitude
[0, #I], which follows from Proposition 4.2.33. �

4.2.35. Commutativity over the ordinary locus. — While we do not prove the commu-
tativity of the correspondences Tw,1 and Tw, we do prove it over the ordinary locus at w,
where all of the correspondences are finite flat over the interior. We will need this result
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at the places w ∈ Ic, because we need to make use of both of these Hecke operators in
this case (because the Hecke operator Uw,2 at Klingen level which corresponds to Tw is
needed for those parts of the control theorem which take place at the level of the sheaf,
but we need to use Tw,1 to prove the finiteness of cohomology).

Lemma 4.2.36. — Suppose that w ∈ Ic, and that lw ≥ 2. Then on R�(XG1,I
1 ,ωκ(−D))

we have Tw,1 ◦Tw =Tw ◦Tw,1.

Proof. — We can easily compose cohomological correspondences when the projec-
tions are finite flat. In particular we may form the compositions Tw ◦Tw,1 and Tw,1 ◦Tw

over the interior, and it is easy to see that the compositions give the same cohomological
correspondence.

In order to check that they commute on R�(XG1,I
1 ,ωκ(−D)) we use a similar trick

to the one that we used to prove Proposition 3.9.15: recall the complex K• of Proposition
4.2.33 which computes R�(XG1,I

1 ,ωκ(−D)). We may form another complex K′• by ap-
plying the same construction to the interior YG1,I

1 ⊂ XG1,I
1 . As we have explained above,

the Hecke operators Tw and Tw,1 commute on each term

H0
(
Y

G1,I,≥Jc 2
1 ,ωκ(−D)⊗

⊗

w∈J

(detGw)n(p−1)/(
∑

w∈J

(Ha(Gw)n))
)

in the definition of K′•, and hence on the subcomplex K• of K′• and thus on
R�(XG1,I

1 ,ωκ(−D)). �

We end this section by proving the following technical result, whose formulation
relies on Lemma 4.2.36. We will make use of it in §4.6, in order to compare the complex
of Proposition 4.2.33 to the analogous complex at Klingen level. Fix a subset J ⊂ I; we
now consider the space X

I,=J1,=Jc 2
K,1 =X

=J1,=Jc 2
K,1 .

Lemma 4.2.37. — There is a universal constant C depending only on p and F but not on the

tame level Kp such that if lv ≥ 2, kv− lv ≥C for all v ∈ I, lv ≥C for all v ∈ Ic and lv ≥ p+1 for all

v ∈ J, then R�(X
I,=J1,=Jc 2
K,1 ,ωκ(−D)) carries a locally finite action of T̃I =∏

w|p Tw

∏
w∈Ic Tw,1.

Proof. — Note that by Lemma 4.2.36, all of the Hecke operators in the defini-
tion of T̃I commute. We begin by showing that the action of T̃I on R�(XI

K,1,ωκ(−D))

is locally finite. To this end, note that by Theorem 4.2.12, the action of TI on
R�(XI

K,1,ωκ(−D)) is locally finite, and e(TI)R�(XI
K,1,ωκ(−D)) is a perfect complex

if lv ≥ 2, kv − lv ≥ C for all v ∈ I, and lv ≥ C for all v ∈ Ic. Since T̃I = TI
∏

w∈Ic Tw,
it follows that the action of T̃I is also locally finite (as it acts locally nilpotently on
(1− e(TI))R�(XI

K,1,ωκ(−D))).
Taking the exact triangles induced by

ωκ Ha(Gw)→ ωκ ⊗ det ωp−1
Gw
→ ωκ ⊗ det ωp−1

Gw
/Ha(Gw)
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for all w ∈ J, and using Lemma 4.2.14, we deduce that T̃I is locally finite on
R�(X

I,=J1
K,1 ,ωκ(−D)) for all weights κ = (kv, lv) with lv ≥ 2, kv − lv ≥ C for all v ∈ I,

lv ≥ C for all v ∈ Ic and lv ≥ p + 1 if v ∈ J. Passing to the limit over multiplication by
Ha(Gw) for w ∈ I \ J, we deduce that T̃I is locally finite on R�(X

I,=J1,=Jc 2
K,1 ,ωκ(−D)), as

required. �

4.3. Formal geometry. — In this section we continue to assume that K = KpKp,
Kp =∏

v|p Kv with Kv ∈ {GSp4(OFv
), Par(v)}. Our goal in this section is to define the

Igusa tower at Klingen level, and the p-adic sheaves whose cohomology defines our spaces
of p-adic automorphic forms.

4.3.1. Completion of X. — We adopt the convention that if Z is a scheme
over Spec Z(p), then we write Zn for Z ⊗Z(p)

Z/pnZ, and Z := lim−→n
Zn for the formal p-

adic completion of Z, which is by definition a p-adic formal scheme. In particular, we let
XK be the formal p-adic completion of XK, and we write X≥2

K ↪→X
≥1
K ↪→XK for the open

formal subschemes corresponding to X≥1
K,1 and X≥2

K,1. We write YK for the complement
of the boundary of XK, with special fibre YK,1. We write Y

≥2
K for the ordinary locus on

the interior, and so on.

4.3.2. Deep Klingen level structure. — For all m ≥ 1 we consider the formal scheme
X
≥1
K,Kli(p

m)→ X
≥1
K which parametrizes a subgroup Hm ⊂ G[pm] which is locally for the

étale topology isomorphic to μpm⊗OF; equivalently, Hm =∏
w|p Hm,w where for each w|p,

Hm,w ⊂ Gw[pm] is isomorphic to μpm .

Proposition 4.3.3. — The morphism X
≥1
K,Kli(p

m) → X
≥1
K is affine and étale. Its fibre

X
≥2
K,Kli(p

m) over X
≥2
K is finite étale.

Proof. — This can be proved in exactly the same way as [Pil20, Lem. 9.1.1.1]. �

We denote by X
≥1
K,Kli(p

∞)= lim←−m
X
≥1
K,Kli(p

m) the p-adic formal scheme obtained by
taking the inverse limit (in the category of p-adic formal schemes). It exists because the
transition morphisms are affine (see for example [Far08, Prop. D.4.1], or [Sta13, Tag
01YT] for the corresponding statement for schemes, from which this follows easily). Over
X
≥1
K,Kli(p

∞) we have for all places v|p a Barsotti–Tate group of height one and dimension
one H∞,v ↪→ Gv .

4.3.4. Igusa towers. — We fix a partition {v|p} = I
∐

Ic, and we let X≥I1,Par-m-et,≥Ic 2
K,1

be the open subscheme of X≥I1,≥Ic 2
K,1 where for each place v ∈ I with Kv = Par(OFv

), the
kernel of the quasi-polarization λ : Gv → GD

v contains a multiplicative group (so away
from the boundary, this kernel is an extension of an étale group of rank p by a multiplica-
tive group of rank p). We then let X≥I1,Par-m-et,≥Ic 2

K be the corresponding open of XK, and in

http://stacks.math.columbia.edu/tag/01YT
http://stacks.math.columbia.edu/tag/01YT
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order to save some notation, we will for the moment set XI
K := X

≥I1,Par-m-et,≥Ic 2
K . The fibre

of X≥1
K,Kli(p

m) over XI
K is denoted by XI

K,Kli(p
m). Over XI

K,Kli(p
∞) we have for all places

v ∈ I a Barsotti–Tate group of height one and dimension one H∞,v ↪→ Gv . Observe that
for all v ∈ Ic, we have a rank 2 multiplicative Barsotti–Tate group Gm

v ↪→ Gv and that
H∞,v ↪→ Gm

v is a rank one sub-Barsotti–Tate group.
If Kv = GSp4(OFv

) for all v|p, this gives us a convenient alternative description
of XI

K,Kli(p). Set

Kp(I)=
∏

v∈I

Kli(v)
∏

v∈Ic

Iw(v).

Then we have XI
K,Kli(p) = XI

Kp(I)Kp , where the superscript I refers to the fact that for
each v ∈ I, the Klingen level structure Hv is multiplicative, and at each v ∈ Ic, we have
extended the given multiplicative Klingen level structure to the canonical (ordinary) Iwa-
hori level structure.

We denote by IG
I →XI

K,Kli(p
∞) the profinite-étale torsor of trivializations:

ψv : Zp 	Tp(HD
∞,v), v|p; φv : Zp 	Tp((Gm

v /H∞,v)
D), v ∈ Ic.

The upper script D stands for the dual of these Barsotti–Tate group schemes and Tp

stands for the Tate module which here is a pro-étale sheaf. For all v ∈ I, there is an action
of λ ∈ Z×p on ψv , mapping ψv to ψv ◦λ. For all v ∈ Ic, there is an action of (λ,μ) ∈ (Z×p )2

on (ψv,φv), mapping (ψv,φv) to (ψv ◦ λ,φv ◦μ).
The Galois group of the torsor IGI →XI

K,Kli(p
∞) is

TI :=
∏

v∈I

O×
Fv

∏

v∈Ic

(O×
Fv

)2 	
∏

v∈I

Z×p
∏

v∈Ic

(Z×p )2.

4.3.5. Sheaves of p-adic modular forms. — Let �̃1,v = Zp[[O×
Fv
]] 	 Zp[[Z×p ]] and

�̃2,v = Zp[[(O×
Fv

)2]] 	 Zp[[(Z×p )2]] be the one and two variable Iwasawa algebras. Let

�̃I = ⊗̂v∈I�̃1,v⊗̂v∈Ic�̃2,v = Zp[[TI]]
and let κ̃I :TI → �̃×

I be the universal character.
We define a sheaf �

κ̃I
0 over XI

K,Kli(p
∞) by the formula:

�
κ̃I
0 = ((π∗OIGI)⊗̂Zp

�̃I)
TI

where π : IGI → XI
K,Kli(p

∞) is the affine projection, and the group TI acts diagonally
(via its natural action on π∗OIGI , and via κ̃I on �̃I).

We set �κ̃I = �
κ̃I
0

⊗
v|p det2 ωGv

. The explanation for the twist by this invertible
sheaf is given below in §4.3.6 (see in particular Lemma 4.3.8). This is an invertible sheaf
of OXI

K,Kli(p
∞)⊗̂Zp

�̃I-modules.
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4.3.6. Comparison with classical sheaves. — Over XI
K,Kli(p

∞) we have for all v|p a
surjective map ωGv

→ ωH∞,v
arising from the differential of the inclusion H∞,v ↪→ Gv .

Let κ = ((kv, 2)v∈I, (kv, lv)v∈Ic) ∈ (Z2)Sp , kv ≥ 2 if v ∈ I, kv ≥ lv if v ∈ Ic, be an
algebraic weight. By construction there is a surjective map

(4.3.7) ωκ |XI
Kp,Kli(p

∞) → (⊗v∈Iω
kv−2
H∞,v

)
⊗

(⊗v∈Icω
lv−2
Gv/H∞,v

⊗ω
kv−2
H∞,v

)
⊗

(⊗v|p det ω2
Gv

)

This map should be interpreted as the projection to the highest weight vector.
Moreover over IGI the Hodge–Tate map (see [Mes72, p. 117], as well as Section 6.1.4
below) provides maps:

Zp

ψv→Tp(HD
∞,v)

HT→ ωH∞,v

for all v ∈ Sp, and

Zp

φv→Tp((Gm
v /H∞,v)

D)
HT→ ωGv/H∞,v

for all v ∈ Ic.
These maps induce isomorphisms after tensoring with OIGI on the left. Therefore

the Hodge–Tate map provides a Z×p -reduction of the GL1-torsors ωH∞,v
and ωGv/H∞,v

.
Let κ = ((kv, 2)v∈I, (kv, lv)v∈Ic) be a classical algebraic weight. Then we can natu-

rally identify κ with a p-adic weight (that is, an element of Hom(�̃I,Zp)) via the character:

((xv)v∈I, (xv, yv)v∈Ic) ∈TI �→
∏

v∈I

xkv−2
v

∏

v∈Ic

xkv−2
v ylv−2

v

Let us define �κ =�κ̃I ⊗�̃I,κ Zp.

Lemma 4.3.8. — For all κ = ((kv, 2)v∈I, (kv, lv)v∈Ic) ∈ (Z2)Sp with kv ≥ 2 if v ∈ I,
kv ≥ lv if v ∈ Ic, there is a canonical isomorphism

HT∗ : (⊗v∈Iω
kv−2
H∞,v

)
⊗

(⊗v∈Icω
lv−2
Gv/H∞,v

⊗ω
kv−2
H∞,v

)
⊗

(⊗v|p det ω2
Gv

)	�κ.

Proof. — By definition, it suffices to construct an isomorphism

HT∗ : (⊗v∈Iω
kv−2
H∞,v

)
⊗

(⊗v∈Icω
lv−2
Gv/H∞,v

⊗ω
kv−2
H∞,v

)	�κ
0

where �κ
0 = �

κ̃I
0 ⊗�̃I,κ Zp. Sections of the sheaf �κ

0 are rules f associating to
(x, (φv)v∈Ic, (ψv)v∈Sp

) ∈ IG
I(R), an element

f (x, (φv), (ψv)) ∈R
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such that

f (x, (φv ◦ λ−1
v ), (ψv ◦ β−1

v ))= κ((λv,βv))f (x, (φv), (ψv))

=
∏

v∈Sp

λkv−2
v

∏

v∈Ic

β lv−2
v f (x, (φv), (ψv))

for ((λv)v∈Sp
, (βv)v∈Ic) ∈ TI.

Sections of the sheaf

(⊗v∈Iω
kv−2
H∞,v

)
⊗

(⊗v∈Icω
lv−2
Gv/H∞,v

⊗ω
kv−2
H∞,v

)

are rules g associating to triples

(x, (av)v|p, (bv)v∈Ic)

for R a p-adically complete Zp-algebra, x ∈ XI
K,Kli(p

∞)(R), av : R 	 x∗ωHv,∞ , bv : R 	
x∗ ωGv/Hv,∞ an element

f (x, av, bv) ∈R

such that

f (x, av ◦ λ−1
v , bv ◦ δ−1

v )=
∏

v|p
λkv−2

v

∏

v∈Ic

δlw−2
v f (x, av, bv)

for all (λv) ∈ (R×)Sp, (δv) ∈ (R×)Ic

.
To a rule g as above, we associate a rule

HT∗(g)(x, (φv)v∈Ic, (ψv)v∈Sp
)= g(x, (HT(φv(1)))v∈Ic, (HT(ψv(1)))v∈Sp

).

It is easy to check that the map HT∗ is an isomorphism. �

We can now summarize the interpolation property of the sheaf �κ̃I .

Corollary 4.3.9. — For all κ = ((kv, 2)v∈I, (kv, lv)v∈Ic) ∈ (Z2)Sp with kv ≥ 2 if v ∈ I,
kv ≥ lv if v ∈ Ic, there is a canonical surjective map:

ωκ |XI
K,Kli(p

∞) →�κ =�κ̃I ⊗�̃I,κ
Zp.

Proof. — In view of Lemma 4.3.8, this is just the map (4.3.7). �

4.4. Sheaves of p-adic modular forms for G1. — In this section we explain how we can
descend our construction to the Shimura variety for G1. This section is the analogue for
p-adic sheaves of §3.7.2.
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4.4.1. Weight space for G1. — We now assume that p �= 2. We let T0
I be the pro-p

sub-group of TI, so that TI = Tf

I × T0
I is the product of a finite group Tf

I and T0
I . We

let �I = Zp[[T0
I ]]. There is a canonical projection TI → T0

I and a canonical character
κ1 : TI →�×

I which identifies �I with the deformation space of the trivial character of
TI. This canonical projection makes �I a quotient of �̃I. We let κI = κ1⊗ ((2, 2)v|p). The
pair (κI,�I) is the universal deformation space of the character ((2, 2)v|p) mod p. We let
�κI =�κ̃I ⊗�̃I

�I.
If κ = ((kv, 2)v∈I, (kv, lv)v∈Ic) is a classical algebraic weight such that kv ≡ lv ≡ 2

(mod p− 1), then κ defines a Zp-point of Spf �I in the following way: we associate to κ

the character

((xv)v∈I, (xv, yv)v∈Ic) ∈TI �→
∏

v∈I

xkv−2
v

∏

v∈Ic

xkv−2
v ylv−2

v

which factors through a character of T0
I and therefore defines a morphism fκ :�I → Zp.

The specialization of κI along the map fκ recovers the character κ .

4.4.2. Descent. — The group (OF)
×,+
(p) can be embedded “diagonally” in TI by

sending x ∈ (OF)
×,+
(p) to ((xv)v ∈ I, (xv, xv)v∈Ic) where for all places v|p we denote by xv ∈

O×
Fv
= Z×p the image of x in Fv . For an element x ∈ TI, we denote by x0 the projection of

x to T0
I . For an element x ∈T0

I , we denote by x̃ the corresponding group element in �I.
Since T0

I is a pro-p group, and p > 2, the map x �→ x2 is bijective on T0
I . Accord-

ingly if x ∈ T0
I , then we define

√
x ∈ T0

I by the equation (
√

x)2 = x. We then define a
character d : (OF)

×,+
(p) → (�I)

× (where “d” stands for “descent”) by the formula:

d(x)=√x0.

The group (OF)
×,+
(p) acts on XI

K; in the notation of §3.3, the element x ∈ (OF)
×,+
(p)

sends (A, ι, λ, η= (η1, η2), ηp) to (A, ι, xλ, (η1, xη2), ηp). We can lift this action to �κI by
setting

x : x∗�κ
I →�κ

I

to be the composition of the tautological isomorphism (the construction of �κI doesn’t
depend on the polarization) and multiplication by d(x). The reader can easily check that
this defines an action and is compatible with the construction of §3.7.2; as always, we are
making the choice w = 2.

For all n ∈ Z≥0 ∪ {∞}, we can form the quotient of XI
K,Kli(p

n) by the action of
(OF)

×,+
(p) (which factors through a finite group acting freely) and we denote by X

G1,I
K,Kli(p

n)

the corresponding quotient. The maps XI
K,Kli(p

n) → X
G1,I
K,Kli(p

n) are étale. We can also
descend the sheaf �κI to a sheaf �κI over XG1,I

K,Kli(p
∞) using the descent datum provided

by d .
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We let Mp-ad,κI
I =R�(X

G1,I
K,Kli(p

∞),�κI(−D)) be the cohomology of the p-adic cusp-
idal modular forms of weight κI.

Proposition 4.4.3. — The canonical map Mp-ad,κI
I → R�(XI

K,Kli(p
∞),�κI(−D)) is split

in the derived category of Zp-modules.

Proof. — See the proof of Proposition 3.8.3. �

4.5. Hecke operators at p on the cohomology of p-adic modular forms. — In this section we
define Hecke operators at p acting on the cohomology of p-adic modular forms. Recall
that we have fixed a partition Sp = {v|p} = I

∐
Ic.

4.5.1. Hecke operators of Siegel type. — Let w ∈ Ic be a place above p. Let K=KpKp

be a reasonable compact open subgroup with Kp = G1(Zp). In §3.9.17 we defined a
Hecke operator attached to the correspondence (for suitable choices of polyhedral cone
decompositions omitted from the notation):

XK′
p1p2

XK XK

where K′ = KpK′
p and K′

p =
∏

v|p,v �=w GSp4(OFv
)× Si(w). The map p2 depends on the

choice of an element xw ∈ F×,+. We are now going to pull back this correspondence to
a deep Klingen level structure and isolate the “essential part”. As in Remark 3.9.23, the
resulting Hecke operators are easily seen to be independent of the choice of polyhedral
cone decomposition.

Taking formal p-adic completions, we obtain a correspondence:

(4.5.2) XK′
p1p2

XK XK

We consider the fibre product XK′ ×p1,XK X
I
K,Kli(p

m). Recall that by our assumption
that w ∈ Ic, Gw is an ordinary Barsotti–Tate group. We denote by Cw,1(p

m) the open
and closed formal subscheme of this fibre product where the kernel of the canonical
isogeny p∗1G→ p∗2G has trivial multiplicative part (it is open and closed by the rigidity of
multiplicative groups).

There is an obvious map u1 : Cw,1(p
m)→ XI

K,Kli(p
m), given by projection onto the

second factor of the fibre product. We claim that the projection Cw,1(p
m)→ XK induced



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 273

by p2 can be lifted to a map u2 : Cw,1(p
m)→XI

K,Kli(p
m). Indeed, since Hm is multiplicative,

the isogeny p∗1G→ p∗2G induces an isomorphism from p∗1Hm to its image in p∗2G. We call
this image p∗2Hm. We therefore have a correspondence

Cw,1(p
m)

u1u2

XI
K,Kli(p

m) XI
K,Kli(p

m)

We now associate to this correspondence a Hecke operator Uw,1.

Remark 4.5.3. — The Hecke operator Uw,1 is the standard “Up” operator (at the
place w) that is considered in the usual theory of p-adic modular forms.

Lemma 4.5.4. — There is a normalized trace map “ 1
p3 Tru1” : R(u1)∗OCw,1(pm) →

OXI
K,Kli(p

m).

Proof. — The formal schemes Cw,1(p
m) and XI

K,Kli(p
m) are smooth over Zp. Con-

sider the map induced by u1 on top-differentials:

du1 : det �1
XI

K,Kli(p
m)/Zp

→ det �1
Cw,1(pm)/Zp

.

This map is divisible by p3 by the same arguments as in the proof of Lemma 3.9.18.
Namely, the map u1 is totally inseparable and hence a homeomorphism. For any closed
point x ∈ XI

K,Kli(p
m) in the interior, one sees by Serre–Tate theory that the map of com-

pleted local rings ̂OXI
K,Kli(p

m),x → ̂OCw,1(pm),x is given by ⊗v|pW(k(x))[[T1,v, T2,v, T3,v]] →
⊗v|pW(k(x))[[T1,v, T2,v, T3,v]] where Ti,v �→Ti,v if v �=w, and Ti,w �→ (1+Ti,w)p − 1.

By reduction modulo pn of u1, we get a proper map u1 : Cw,1(p
m)n → XI

K,Kli(p
m)n

of smooth schemes over Spec Z/pnZ. The above map 1
p3 du1 induces a map OCw,1(pm)n

→
u!1OXI

K,Kli(p
m)n

or by adjunction a map “ 1
p3 Tru1” : R(u1)∗(OCw,1(pm)/pn) → (OXI

K,Kli(p
m))/pn

(see §3.8.11). Passing to the limit over n yields the map of the lemma. �

Remark 4.5.5. — We sketch another argument for the proof of the lemma. Write
Cw,1(p

m)Y for the restriction of Cw,1(p
m) to YI

K,Kli(p
m). It is easy to show that the map

u1 : Cw,1(p
m)Y→YI

K,Kli(p
m) is finite flat of degree p3. Therefore, the restriction of the map

of the lemma to YI
K,Kli(p

m) is the usual trace map, normalized by a factor p−3. Let " be
the K-admissible polyhedral cone decomposition such that XK =XK," and XI

K,Kli(p
m)=

XI
K,Kli(p

m)" . We can use the same " to get the (non smooth) toroidal compactification of
XK′," and then of Cw,1(p

m)" . Now we observe that the map Cw,1(p
m)" → XI

K,Kli(p
m)" is

finite flat and therefore has a trace map. It remains to recall that for any refinement "′ of
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", the map π : Cw,1(p
m)"′ → Cw,1(p

m)" induces a quasi-isomorphism: Rπ∗OCw,1(pm)"′ =
OCw,1(pm)"

.

To define the Hecke operator Uw,1 on R�(XI
K,Kli(p

∞),�κI), R�(XI
K,Kli(p

m),ωκ),
and so on, we argue as follows. By the usual formalism, if F is one of �κI or ωκ , it is
enough to define morphisms u∗2F → u∗1F ; we can then compose with the trace map of
Lemma 4.5.4.

To this end, note that over Cw,1(p
m) we have the canonical étale isogeny u∗1G→

u∗2G, which determines an isomorphism on differentials. We thus have a canonically de-
termined isomorphism u∗2ω

κ → u∗1ω
κ (with no need to normalize). Similarly, since the

canonical isogeny induces an isomorphism u∗1Hm → u∗2Hm, we have a canonical isomor-
phism u∗2�

κI → u∗1�
κI (again with no need to normalize).

4.5.6. The operator UKli(w),1. — We now introduce another Hecke operator of
Siegel type for w ∈ I, which we denote UKli(w),1. This operator will not be used until §5
and §7. We decided to introduce it here because its definition is similar to the other op-
erators of Siegel type introduced in §4.5.1, and because it is convenient to discuss the
commutativity of all of our Hecke operators at p in one go (see Lemma 4.5.15 below).
We defer the details of the normalization of this Hecke operator to §5.3, where we will
consider the operator UKli(w),1 in a more general context.

We again consider the correspondence (4.5.2), and the product XK′ ×p1,XK

XI
K,Kli(p

m). We denote by CKli(w),1(p
m) the open and closed formal subscheme of this fibre

product where the kernel of the canonical isogeny p∗1G→ p∗2G has trivial intersection with
the group p∗1Hm. Exactly as above, we obtain a correspondence

CKli(w),1(p
m)

v1v2

XI
K,Kli(p

m) XI
K,Kli(p

m)

We show in Lemma 5.3.2 below that there is a Hecke operator

(4.5.7) UKli(w),1 :R(v1)∗v∗2ω2 → ω2,

defined using a trace map normalized by a factor of 1/p3. On the other hand, we have
natural isomorphisms v∗2�

κ̃I
0 → v∗1�

κ̃I
0 , and tensoring this map with (4.5.7) produces the

desired cohomological correspondence (and associated Hecke operator):

UKli(w),1 :R(v1)∗v∗2�κI →�κI .
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4.5.8. Hecke operators of Klingen type. — Let w|p be a place. Let K = KpKp be a
reasonable compact open subgroup with Kp = G1(Zp). In §3.9.20 we have defined a
Hecke operator attached to the correspondence (again, for suitable choices of polyhedral
cone decompositions omitted from the notation):

XK′
p1p2

XK′′ XK

where K′ =KpK′
p with K′

p =
∏

v|p,v �=w GSp4(OFv
)×Kli(w), and K′′ =KpK′′

p with K′′
p =∏

v|p,v �=w GSp4(OFv
) × Par(w). The map p2 depends on the choice of an element xw ∈

F×,+, and over XK′ we have natural isogenies

p∗1G→ p∗2G→ p∗1G

whose composite is multiplication by xw. As in §4.5.1, we are going to pull back this
correspondence to a deep Klingen level structure and isolate the “essential part” of the
correspondence.

Taking formal p-adic completions, we obtain:

XK′
p1p2

XK′′ XK

We consider the fibre product XK′ ×p1,XK XI
K,Kli(p

m). We denote by Cw,2,1(p
m) the

formal subscheme where the kernel of the isogeny p∗1G→ p∗2G has trivial intersection with
the group p∗1Hm.

Lemma 4.5.9. — The formal subscheme Cw,2,1(p
m) is open and closed in XK′ ×p1,XK

XI
K,Kli(p

m).

Proof. — Let L= p∗1Hm∩Ker(p∗1G→ p∗2G). Since L is a closed subscheme of p∗1Hm,
it is finite over XK′ ×p1,XK XI

K,Kli(p
m) and the condition that L= {0} is therefore open. It

is also closed because if at some point x there is a non-trivial map p∗1Hm|x →Ker(p∗1G→
p∗2G)|x, this map will extend on the completed local ring at x by the rigidity of multiplica-
tive groups. �

There is an obvious map r1 : Cw,2,1(p
m)→XI

K,Kli(p
m) induced by the projection p1.

We claim that the second projection p2, which induces a map Cw,2,1(p
m)→ XK′′ , can be
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lifted to a map r2 : Cw,2,1(p
m)→ XI

K′′,Kli(p
m). Indeed, over Cw,2,1(p

m) the isogeny p∗1G→
p∗2G induces an isomorphism from p∗1Hm to its image in p∗2G (which we call p∗2Hm). We
therefore have a correspondence

Cw,2,1(p
m)

r1r2

XI
K′′,Kli(p

m) XI
K,Kli(p

m)

We now associate to this correspondence a Hecke operator

U′
w ∈Hom(R�(XI

K′′,Kli(p
∞),�κI), R�(XI

K,Kli(p
∞),�κI)).

To do so, we have the following lemma.

Lemma 4.5.10. — There is a normalized trace map “ 1
p2 Trr1”: (r1)∗OCw,2,1(pm) →

OXI
K,Kli(p

m).

Proof. — The formal schemes Cw,2,1(p
m) and XI

K,Kli(p
m) are smooth over Zp. Con-

sider the induced map on top differentials:

dr1 : det �1
XI

K,Kli(p
m)/Zp

→ det �1
Cw,2,1(pm)/Zp

This map is divisible by p2 for the same reason as in the proof of Lemma 3.9.22.
Namely, let us fix a closed point x ∈ XI

K,Kli(p
m) which is in the interior and ordinary

at w. The fibre of r1 at x parametrizes the subgroup L = Ker(p∗1G→ p∗2G) of Gw[p] of
étale rank 2, multiplicative rank 1 and trivial intersection with Hm. The total degree
of r1 is p3. The fibre of r1 over x has p points (corresponding to the choice of the mul-
tiplicative part Lm of L). The inseparability degree is p2 (corresponding to finding sec-
tions of Gw[p]/Lm → Gw[p]et). For any x′ ∈ Cw,2,1(p

m) lying above x, Serre–Tate theory
shows that the map on completed local rings ̂OXI

K,Kli(p
m),x → ̂OCw,2,1(pm),x′ is isomorphic

to ⊗v|pW(k(x))[[T1,v, T2,v, T3,v]] →⊗v|pW(k(x′))[[T1,v, T2,v, T3,v]] where Ti,v �→ Ti,v if
v �=w or i = 1, and Ti,w �→ (1+Ti,w)p − 1 for i = 2, 3.

By reduction modulo pn of r1, we get a proper map r1 : Cw,2,1(p
m)n → XI

K,Kli(p
m)n

of smooth schemes over Spec Z/pnZ. The above map 1
p2 dr1 induces a map OCw,2,1(pm)n

→
r!1OXI

K,Kli(p
m)n

or by adjunction a map “ 1
p2 Trr1” : R(r1)∗(OCw,2,1(pm)/pn) → (OXI

K,Kli(p
m))/pn

(see §3.8.11). Passing to the limit over n yields the map of the lemma. �

Remark 4.5.11. — We could give an alternative proof of Lemma 4.5.10 as in Re-
mark 4.5.5.
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As usual over Cw,2,1(p
m) we have the canonical isogeny r∗1G→ r∗2G, whose differen-

tial determines a morphism r∗2ωκ → r∗1ωκ . We have a commutative diagram

r∗2ωGw
r∗2ωHm,w

0

r∗1ωGw
r∗1ωHm,w

0

which Zariski locally on affine opens Spf R is isomorphic to

(4.5.12) R2
(0 1)

⎛

⎝ p 0
0 1

⎞

⎠

R

1R

0

R2
(0 1)

R 0

It follows that we can and do normalize the morphism r∗2ωκ → r∗1ωκ by dividing by plw .
When m=∞, the isogeny induces an isomorphism r∗1 H∞,w → r∗2 H∞,w, and we therefore
obtain an isomorphism r∗2�κI → r∗1�κI . Combining this with Lemma 4.5.10 gives the
desired operator U′

w.
We now exchange the roles of p1 and p2, and consider the fibre product XK′ ×p2,X′′K

XI
K′′,Kli(p

m). We denote by Cw,2,2(p
m) the open and closed formal subscheme where the

kernel of the isogeny p∗2G → p∗1G has trivial connected component (so that away from
the boundary, the kernel of this isogeny is étale). Note that by definition this kernel is
contained in the kernel of the quasi-polarization p∗2G→ p∗2GD, so the kernel of p∗2G→ p∗1G
has multiplicative rank at least 1.

The projection p2 induces a map s2 : Cw,2,2(p
m)→ XI

K′′,Kli(p
m). We claim that the

first projection p1 : Cw,2,2(p
m)→ XK can be lifted to a map s1 : Cw,1,2(p

m)→ XI
K,Kli(p

m).
Indeed, since Hm is connected, we see that over Cw,2,2(p

m) the isogeny p∗2G → p∗1G in-
duces an isomorphism from p∗2Hm to its image in p∗1G (which we call p∗1Hm); and the map
Cw,2,2(p

m)→XK factors through XI
K. Accordingly, we have a correspondence

Cw,2,2(p
m)

s2s1

XI
K,Kli(p

m) XI
K′′,Kli(p

m)

We can associate to this correspondence a Hecke operator

U′′
w ∈Hom(R�(XI

K,Kli(p
∞),�κI), R�(XI

K′′,Kli(p
∞),�κI)),

which again depends on the construction of a trace map:



278 GEORGE BOXER, FRANK CALEGARI, TOBY GEE, VINCENT PILLONI

Lemma 4.5.13. — There is a normalized trace map p−1 Trs2 : R(s2)∗OCw,2,2(pm) →
OXI

K′′,Kli
(pm).

Proof. — This is a calculation in Serre–Tate theory which is similar to the proof
of Lemma 4.5.10. Namely, let us fix a closed point x ∈ XI

K′′,Kli(p
m) which is in the in-

terior. The fibre of s2 at x parametrizes rank p étale subgroups in the kernel of the
quasi-polarization Gw → GD

w (which is a rank p2 finite flat group scheme, extension
of an étale by a multiplicative subgroup). We deduce that the map s2 is totally in-
separable at x of degree p. Serre–Tate theory shows that the map on completed lo-
cal rings ̂OXI

K′′,Kli
(pm),x → ̂OCw,2,2(pm),x is isomorphic to ⊗v|pW(k(x))[[T1,v, T2,v, T3,v]] →

⊗v|pW(k(x))[[T1,v, T2,v, T3,v]] where Ti,v �→ Ti,v if v �= w or i = 1, 2, and T3,w �→
(1+T3,w)p − 1. �

Over Cw,2,2(p
m) we have the canonical isogeny s∗2G → s∗1G, which is étale, and

therefore determines isomorphisms s∗1ω
κ → s∗2ω

κ and s∗1�
κI → s∗2�

κI . Combining with
Lemma 4.5.13, we get the desired Hecke operator U′′

w.
We set Uw,2 :=U′

w ◦U′′
w.

4.5.14. Commutativity of the Hecke operators. — We remind the reader that whenever
we write Uv,1 below, we mean UIw(v),1.

Lemma 4.5.15. — The operators {UKli(v),1, Uv,2}v∈I and {Uv,1, Uv,2}v∈Ic commute with

each other on R�(X
G1,I
K,Kli(p∞),�κI(−D)).

Proof. — We prove this in the same way as Lemma 4.2.36. We first introduce a
similar complex as in §4.2.30 to compute the cohomology. Namely, there is a complex L•

computing R�(X
G1,I
K,Kli(p∞),�κI(−D)), such that Lk = lim←−t

Lk
t where Lk

t is

⊕
J⊂I,#J=k lim−→×∏w∈J Ha(Gw)

H0
(
X

G1,I,≥Jc 2
K,Kli(p∞),Z/ptZ⊗�κI(−D)⊗

⊗

w∈J

(detGw)n(p−1)/

(
∑

w∈J

(Ha(Gw)n)
)

Note that in that formula we use the fact that Ha(Gw)n has a canonical lift to Z/ptZ for
all n’s which are multiples of pt−1 and these are cofinal among all natural numbers.

Each term

lim−→×∏w∈J Ha(Gw)

H0
(
X

G1,I,≥Jc 2
K,Kli(p∞),Z/ptZ⊗�κI(−D)⊗

⊗

w∈J

(detGw)n(p−1)/(4.5.16)

(
∑

w∈J

(Ha(Gw)n)
)
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appearing in this complex is stable under the Hecke action and it is therefore enough
to prove the commutativity for each of these terms. Each of the terms (4.5.16) can be
embedded into the corresponding direct limit of cohomology groups taken over the inte-
rior of the moduli space. Over the interior of the moduli space all our correspondences
are finite flat and the commutativity follows from standard properties of the Iwahori and
Klingen Hecke algebras. �

Lemma 4.5.17. — If w ∈ I then we have an equality of Hecke operators

UIw(w),1(UKli(w),1 −UIw(w),1)=Uw,2

on R�(X
G1,I,=w2
K,Kli(p∞),�κI(−D)).

Proof. — Using a Cousin complex computing the cohomology as in the proof of
Lemma 4.5.15, we reduce to proving that the underlying (cohomological) correspon-
dences agree away from the boundary. By definition, the correspondence associated to
UIw(w),1 parameterizes triples (G, Hm, L) where L ⊂ Gw[p] is étale, totally isotropic of
degree p2, and has L∩Hm = {0}. Similarly, the correspondence associated to Zw param-
eterizes triples (G, Hm, M) where M⊂ Gw[p] has multiplicative rank 1, is totally isotropic
of degree p2, and has M ∩Hm = {0}. Finally, as in [Pil20, Prop. 10.2.1], the correspon-
dence associated to Uw,2 parameterizes triples (G, Hm, N) where N ⊂ Gw[p2] is totally
isotropic of degree p4, N[p] has degree p3, and N∩Hm = {0}.

Comparing these definitions, we see that on the level of underlying correspon-
dences, we have pUw,2 = UIw(w),1Zw. Since the normalization factors involved in the
Hecke operators Uw,2, UIw(w),1, Zw are respectively p−5, p−3, p−3, and since 5+1= 3+3,
the result follows. �

4.6. Perfect complexes of p-adic modular forms. — Let K=KpKp be a reasonable com-
pact open subgroup with Kp =G1(Zp). Set

UI =
∏

v∈I

Uv,2

∏

v∈Ic

Uv,1Uv,2.

This is an endomorphism of Mp-ad,κI
I = R�(X

G1,I
K,Kli(p∞),�κI(−D)), an object of the

bounded derived category of �I-modules. In this section we prove the following theo-
rem.

Theorem 4.6.1.

(1) The operator UI is locally finite on Mp-ad,κI
I .

(2) Let e(UI) be the ordinary projector attached to UI and let MI := e(UI)Mp-ad,κI
I be the

associated direct summand. Then the complex MI is a perfect complex of �I-modules con-

centrated in the interval [0, #I].
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(3) For all classical algebraic weights κ = ((kv, lv)v|p) with lv = 2 when v ∈ I and kv ≡
lv ≡ 2 (mod p− 1) for all v|p, there is a canonical quasi-isomorphism:

e(UI)R�(X
G1,I
Kp(I)Kp,ωκ(−D))→MI ⊗L

�I,κ
Zp.

(4) There is a universal constant C depending only on p but not on the tame level Kp such that

for all classical algebraic weights κ = ((kv, lv)v|p) with lv = 2 when v ∈ I, kv ≡ lv ≡ 2
(mod p− 1) for all v|p, kv − lv ≥C when v|p, and lv ≥C when v ∈ Ic, the map:

e(
∏

v|p
Tv

∏

v∈Ic

Tv,1)Hi(XG1
K ,ωκ(−D))→Hi(MI ⊗L

�I,κ
Zp)

is an isomorphism for i = 0 and injective for i = 1.

We will deduce the theorem from a number of intermediate results. In particular,
we need to analyze the Hecke operators Uw,1 and Uw,2 and relate them to Tw,1 and Tw

in order to be able to use the results of §4.2.

4.6.2. Reduction of the correspondence modulo p. — Let w ∈ Ic. We begin by considering
the special fibre of the correspondence over XI

K,Kli(p) underlying the operator Uw,1; we
write Cw,1(p)1 for this special fibre. By reduction modulo p, it follows from Lemma 3.8.10
that for each classical algebraic weight κ we obtain a cohomological correspondence
which we continue to denote by Uw,1 : u∗2(ωκ |XI

K,Kli(p)1
)→ u!1(ω

κ |XI
K,Kli(p)1

).

Lemma 4.6.3. — For any place w ∈ Ic, we have a commutative diagram

u∗2ω
κ

Uw,1

u∗2Ha(Gw)

u!1ω
κ

u∗1Ha(Gw)

u∗2(ω
κ ⊗ det ωp−1

Gw
)

Uw,1

u!1(ω
κ ⊗ det ωp−1

Gw
)

Proof. — Since the kernel of u∗1G → u∗2G is étale, and the formation of Ha(Gw)

commutes with étale isogenies, this is immediate. �

We now consider the operator Uw,2 on XI
K,Kli(p)1, where w is any place lying over p.

Taking the special fibres of the correspondences of §4.5.8 with m = 1, we have a corre-
spondence

Cw,2,1(p)1

r1r2

XI
K′′,Kli(p)1 XI

K,Kli(p)1
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and by Lemma 3.8.10, a cohomological correspondence r∗2ωκ |XI
K′′,Kli

(p)1
→ r!1ω

κ |XI
K,Kli(p)1

;
and a correspondence

Cw,2,2(p)1

s2s1

XI
K,Kli(p)1 XI

K′′,Kli(p)1

and again by Lemma 3.8.10, a cohomological correspondence s∗2ω
κ |XI

K,Kli(p)1
→

s!1ω
κ |XI

K′′,Kli
(p)1

.
We can associate to these cohomological correspondences Hecke operators which

we denote as before as

U′
w ∈Hom(R�(XI

K′′,Kli(p)1,ωκ), R�(XI
K,Kli(p)1,ωκ)),

U′′
w ∈Hom(R�(XI

K,Kli(p)1,ωκ), R�(XI
K′′,Kli(p)1,ωκ)).

We continue to write Uw,2 =U′
w ◦U′′

w.

Lemma 4.6.4. — For any w|p, we have commutative diagrams

r∗2ωκ
U′w

r∗2 Ha(Gw)

r!1ω
κ

r∗1 Ha(Gw)

r∗2(ωκ ⊗ det ωp−1
Gw

)
U′w

r!1(ω
κ ⊗ det ωp−1

Gw
)

s∗1ω
κ

U′′w

s∗1Ha(Gw)

s!2ω
κ

s∗2Ha(Gw)

s∗1(ω
κ ⊗ det ωp−1

Gw
)

U′′w
s!2(ω

κ ⊗ det ωp−1
Gw

)

Proof. — See [Pil20, Lem. 10.5.2.1]. �

4.6.5. Reduction of the correspondences to the non-ordinary locus.

Lemma 4.6.6. — For any w|p, the Hasse invariant Ha(Gw) is not a zero divisor on each

of Cw,2,1(p)1 and Cw,2,2(p)1.

Proof. — See [Pil20, Lem. 10.5.2.2]. �
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We now assume w ∈ I (otherwise the schemes we consider would be empty) and
consider the rank one locus at w, XI,=w1

K,Kli (p)1, which by definition is the vanishing locus
of Ha(Gw) in XI

K,Kli(p)1. Taking the zero locus of Ha(Gw) at all entries of the corre-
spondences Cw,1(p)1, Cw,2,2(p)1 and Cw,2,1(p)1 (and taking into account Lemmas 4.6.3
and 4.6.4), we obtain correspondences

C=w1
w,1 (p)1

u1u2

XI,=w1
K,Kli (p)1 XI,=w1

K,Kli (p)1

C=w1
w,2,1(p)1

r1r2

XI,=w1
K′′,Kli(p)1 XI,=w1

K,Kli (p)1

C=w1
w,2,2(p)1

s2s1

XI,=w1
K,Kli (p)1 XI,=w1

K′′,Kli(p)1

By Lemmas 3.8.10 and 4.6.6, we also obtain cohomological correspondences

u∗2ω
κ |XI,=w1

K,Kli,1(p) → u!1ω
κ |XI,=w1

K,Kli (p)1
, r∗2ωκ |XI,=w1

K′′,Kli
(p)1
→ r!1ω

κ |XI,=w1
K,Kli (p)1

,

and

s∗2ω
κ |XI,=w1

K,Kli (p)1
→ s!1ω

κ |XI,=w1
K′′,Kli

(p)1
.

We can associate to these cohomological correspondences Hecke operators which
we again write as

Uw,1 ∈Hom(R�(XI,=w1
K,Kli (p)1,ωκ), R�(XI,=w1

K,Kli (p)1,ωκ)),

U′
w ∈Hom(R�(XI,=w1

K′′,Kli(p)1,ωκ), R�(XI,=w1
K,Kli (p)1,ωκ)),

U′′
w ∈Hom(R�(XI,=w1

K,Kli (p)1,ωκ), R�(XI,=w1
K′′,Kli(p)1,ωκ)).

We of course continue to write Uw,2 =U′
w ◦U′′

w.
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By Lemmas 4.6.3 and 4.6.4, the long exact sequence

H∗(XI
K,Kli(p)1,ωκ)

×Ha(Gw)→ H∗(XI
K,Kli(p)1,ωκ ⊗ det ωp−1

Gw
)

→H∗(XI,=w1
K′′,Kli(p)1,ωκ ⊗ det ωp−1

Gw
)

is Uw,2- and Uw,1-equivariant.

Lemma 4.6.7. — We have commutative diagrams

u∗2ω
κ |XI,=w1

K,Kli (p)1

Uw,1

u∗2Ha′(Gw)

u!1ω
κ |XI,=w1

K,Kli (p)1

u∗1Ha′(Gw)

u∗2(ω
κ ⊗ det ωp2−1

Gw
|XI,=w1

K,Kli (p)1
)

Uw,1

r!1(ω
κ ⊗ det ωp2−1

Gw
|XI,=w1

K,Kli (p)1
)

r∗2ωκ |XI,=w1
K′′,Kli

(p)1

U′w

r∗2 Ha′(Gw)

r!1ω
κ |XI,=w1

K,Kli (p)1

r∗1 Ha′(Gw)

r∗2(ωκ ⊗ det ωp2−1
Gw
|XI,=w1

K′′,Kli
(p)1

)
U′w

r!1(ω
κ ⊗ det ωp2−1

Gw
|XI,=w1

K,Kli (p)1
)

s∗1ω
κ |XI,=w1

K,Kli (p)1

U′′w

s∗1Ha′(Gw)

s!2ω
κ |XI,=w1

K′′,Kli
(p)1

s∗2Ha′(Gw)

s∗1(ω
κ ⊗ det ωp2−1

Gw
|XI,=w1

K,Kli (p)1
)

U′′w
s!2(ω

κ ⊗ det ωp2−1
Gw
|XI,=w1

K′′,Kli
(p)1

)

Proof. — See [Pil20, Lem. 10.5.3.1]. �

4.6.8. Comparison of Uw,2, Uw,1 and Tw, Tw,1 in a special case. — We fix J⊂ I. The
space X

I,=J1,=Jc 2
Kp,Kli (p)1 carries a finite étale map to the space X

I,=J1,=Jc 2
K,1 studied in §4.2.35.

This map is given by forgetting the multiplicative groups Hv of order p at the places
v ∈ Jc. Therefore, it has degree (p+ 1)#Jc

. Let κ = (kv, lv) be a classical algebraic weight.
We have an injective map

H0(X
I,=J1,=Jc 2
K,1 ,ωκ(−D))→H0(X

I,=J1,=Jc 2
K,Kli (p)1,ωκ(−D)).

We assume that lv ≥ 3 if v ∈ Ic, that kv ≥ 3, lv ≥ 2 if v ∈ I, and moreover that
lv ≥ p+ 1 and kv ≥ 2p+ 3 if v ∈ J. On the left hand side, we have an action of Tw for w|p
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and Tw,1 for w ∈ Ic. On the right hand side, we have an action of Uw,2 for w|p and Uw,1

for w ∈ Ic. This follows from the fact that all these Hecke operators have been proved to
commute with the Hasse invariants (by Lemmas 4.2.7, 4.2.15, 4.2.19, 4.6.3, 4.6.4, 4.6.7).

The main result of this subsection is:

Proposition 4.6.9. — There is a universal constant C depending only on p and F but not on

the tame level Kp such that if lw ≥ 2 for all w, kw − lw ≥C for all w|p, and lw ≥C for all w ∈ Ic,

then:

(1) The operator UI =∏
w|p Uw,2

∏
w∈Ic Uw,1 is locally finite on

H0(X
G1,I,=J1,=Jc 2
K,Kli (p)1,ωκ(−D)).

(2) Let T̃I =∏
w|p Tw

∏
w∈Ic Tw,1. The map

e(T̃I)H0(X
G1,I,=J1,=Jc 2
K,1 ,ωκ(−D))→ e(UI)H0(X

G1,I,=J1,=Jc 2
K,Kli (p)1,ωκ(−D))

is an isomorphism.

(3) This isomorphism is equivariant for the action of Tw,1 on the left and Uw,1 on the right for

all w ∈ Ic and of Tw and Uw,2 for all w ∈ J.

This result establishes a first relation between the cohomology at Klingen level and
spherical level and will allow us to reduce a big proportion of the proof of Theorem 4.6.1
to Theorem 4.2.1.

Remark 4.6.10. — One can interpret this result as saying that the ordinarity con-
dition prevents the existence of “newforms” of Klingen level.

We have a finite étale map:

X
I,=J1,=Jc 2
K,Kli (p)1 → (X

I,=J1,=Jc 2
K )1

which parametrizes multiplicative subgroups of order p, Hw ⊂ Gw[p] for all w ∈ Jc. We
introduce various Hecke operators that decrease the level at places w ∈ Jc and compare
them with our existing Hecke operators.

We first define a correspondence for each w ∈ Jc (with Xw defined below),

Xw

x1x2

(X
I,=J1,=Jc 2
K )1 (X

I,=J1,=Jc 2
K )1
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as follows. We let x1 : Xw → (X
I,=J1,=Jc 2
K )1 be the natural forgetful map, where Xw

parametrizes subgroups Lw ⊂ Gw[p2], where Lw is totally isotropic of étale rank p3 and
multiplicative rank p. A standard computation shows that x1 is finite flat. For a suitable
choice of polyhedral decomposition, there is a map x2 :Xw → (X

I,=J1,=Jc 2
K )1, which on the

p-divisible group is given by G �→ G/Lw (since we are only dealing with H0 cohomology
groups, we will for the most part suppress the discussion of the boundary in this section).

We can define an operator, using the usual procedure, associated to Xw, T̃w ∈
End(H0((X

I,=J1,=Jc 2
K )1,ωκ(−D))).

If we denote by X
I,=J1,=Jc 2
K,Kliw (p)1 → (X

I,=J1,=Jc 2
K )1 the finite étale cover that parame-

trizes subgroups Hw ⊂ Gw[p] of order p, then we observe that the projection x2 lifts to
a map Xw →X

I,=J1,=Jc 2
K,Kli (p)1 by sending (G, Lw) to (G/Lw,Gw[p]/Lw) and therefore one

can promote T̃w to maps T̃′
w and T̃′′

w fitting in a commutative diagram (where vertical
maps are the injections given by the obvious pull back maps):

(4.6.11) H0(X
I,=J1,=Jc 2
K,Kliw (p)1,ωκ(−D))

T̃′′w

T̃′w

H0(X
I,=J1,=Jc 2
K,Kliw (p)1,ωκ(−D))

H0((X
I,=J1,=Jc 2
K )1,ωκ(−D))

T̃w

H0((X
I,=J1,=Jc 2
K )1,ωκ(−D))

On the other hand we have already defined a Hecke operator Tw on
H0((X

I,=J1,=Jc 2
K )1,ωκ(−D)). We also have a chain of finite étale maps:

X
I,=J1,=Jc 2
K,Kli (p)1 →X

I,=J1,=Jc 2
K,Kliw (p)1 → (X

I,=J1,=Jc 2
K )1

where the first map forgets the multiplicative subgroup of order p, Hw′ ⊂ Gw′ [p] for w ∈
Jc \ {w}. We have defined an operator Uw,2 on H0(X

I,=J1,=Jc 2
K,Kli (p)1,ωκ(−D)), but clearly it

descends to an operator on H0(X
I,=J1,=Jc 2
K,Kliw (p)1,ωκ(−D)) because only the Klingen level

structure at w matters in the definition of Uw,2.

Lemma 4.6.12. — Assume that kw − lw ≥ 1.

(1) We have T̃w =Tw.

(2) We have Uw,2 ◦ T̃′′
w =Uw,2 ◦Uw,2.

Proof. — See [Pil20, Lem. 11.1.1.1, Lem. 11.1.1.3]. �

Lemma 4.6.13. — Let w ∈ J. The canonical map H0(X
G1,I,=J1,=Jc 2
K,1 ,ωκ(−D)) →

H0(X
G1,I,=J1,=Jc 2
K,Kli (p)1,ωκ(−D)) intertwines the actions of Tw and Uw,2.
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Proof. — By Lemma 4.2.19 we have Tw =T′
w,et ◦T′′

w,et , which corresponds to Uw,2

by definition of the right hand side. �

Lemma 4.6.14. — Let w ∈ Ic. The canonical map H0(X
G1,I,=J1,=Jc 2
K,1 ,ωκ(−D)) →

H0(X
G1,I,=J1,=Jc 2
K,Kli (p)1,ωκ(−D)) intertwines the actions of Tw,1 and Uw,1.

Proof. — By Lemma 4.2.6, we have Tw,1 = Tet
w,1, which corresponds to Uw,1 by

definition on the right hand side. �

Corollary 4.6.15. — Suppose that we have lw ≥ 2 and kw− lw ≥ 1 for all w ∈ Jc. Then the

action of
∏

w∈Jc Uw,2 on H0(X
G1,I,=J1,=Jc 2
K,Kli (p)1,ωκ(−D)) is locally finite, the action of

∏
w∈Jc T̃w is

locally finite on H0(X
G1,I,=J1,=Jc 2
K,1 ,ωκ(−D)), and the map

e(
∏

w∈Jc

T̃w)H0(X
G1,I,=J1,=Jc 2
K,1 ,ωκ(−D))

→ e(
∏

w∈Jc

Uw,2)H0(X
G1,I,=J1,=Jc 2
K,Kli (p)1,ωκ(−D))

is surjective.

Proof. — Combining the diagrams (4.6.11) for all w ∈ Jc, we see that there is a
commutative diagram:

H0(X
G1,I,=J1,=Jc 2
K,Kli (p)1,ωκ(−D))

∏
w∈Jc T̃′′w

∏
w∈Jc T̃′w

H0(X
G1,I,=J1,=Jc 2
K,Kli (p)1,ωκ(−D))

H0(X
G1,I,=J1,=Jc 2
K,1 ,ωκ(−D))

ι

∏
w∈Jc T̃w

H0(X
G1,I,=J1,=Jc 2
K,1 ,ωκ(−D))

ι

where the vertical maps ι are the natural injections. We deduce from Lemma 4.6.12
that

∏
w∈Jc Uw,2 ◦ (

∏
w∈Jc T̃w)′′ = ∏

w∈Jc Uw,2 ◦ ∏w∈Jc Uw,2. The argument now follows
the proofs of [Pil20, Cor. 11.1.1.1, Cor. 11.1.1.2]. We deduce that

∏
w∈Jc T̃w acts

locally finitely on H0(X
G1,I,=J1,=Jc 2
K,1 ,ωκ(−D)) by Lemma 4.2.15. It follows that for

any f ∈H0(X
G1,I,=J1,=Jc 2
K,Kli (p)1,ωκ(−D)), there is a

∏
w∈Jc T̃w-stable finite-dimensional vec-

tor space V containing (
∏

w∈Jc T̃w)′f , and then the subspace of H0(X
G1,I,=J1,=Jc 2
K,Kli (p)1,

ωκ(−D)) spanned by ι(V),
∏

w∈Jc Uw,2ι(V), f , and
∏

w∈Jc Uw,2f is finite-dimensional and∏
w∈Jc Uw,2-stable, so

∏
w∈Jc Uw,2 acts locally finitely, as claimed.
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To prove the claimed surjectivity, if f ∈ e(
∏

w∈Jc Uw,2)H0(X
G1,I,=J1,=Jc 2
K,Kli (p)1,

ωκ(−D)), then one checks from the definitions that we have

f = e(
∏

w∈Jc

Uw,2)ι(e(
∏

w∈Jc

T̃w)(
∏

w∈Jc

T̃′
w)(

∏

w∈Jc

Uw,2)
−1f ). �

It remains to prove the injectivity of the map considered in Proposition 4.6.9 (2).
This will be done by exhibiting an inverse up to a certain power of p. For this reason,
it is necessary to lift the situation to a Zp-flat base. This is done by considering certain
formal schemes. Let us denote by X

G1,I,=J1,=Jc 2
K the formal completion of X

G1,I,=Jc 2
K along

X
G1,I,=J1,=Jc 2
K,1 . We also denote by X

G1,I,=J1,=Jc 2
K,Kli (p) the formal completion of X

G1,I,=Jc 2
K,Kli (p)

along X
G1,I,=J1,=Jc 2
K,Kli (p)1. We denote by I the ideal of definition of these formal schemes.

Observe that p ∈ I and that I/p= (Ha(Gw) detω(1−p)

Gw
, w ∈ J).

We consider the modules

H0(X
G1,I,=J1,=Jc 2
K ,ωκ(−D)) and H0(X

G1,I,=J1,=Jc 2
K,Kli (p),ωκ(−D)),

which are I-adically complete and separated, and also Zp-flat. Moreover, the natural map
H0(X

G1,I,=J1,=Jc 2
K ,ωκ(−D))→H0(X

G1,I,=J1,=Jc 2
K,Kli (p),ωκ(−D)) reduces modulo I to the map

H0((X
G1,I,=J1,=Jc 2
K )1,ωκ(−D))→ H0(X

G1,I,=J1,=Jc 2
K,Kli (p)1,ωκ(−D)) (we are using here that

(X
G1,I,=J1,=Jc 2
K )1 and X

G1,I,=J1,=Jc 2
K,Kli (p)1 have affine image in the minimal compactification

and thus that higher cuspidal cohomology over these spaces vanishes).
We can lift the map

T̃w :H0((X
G1,I,=J1,=Jc 2
K )1,ωκ(−D))→H0((X

G1,I,=J1,=Jc 2
K )1,ωκ(−D))

to a map T̃w : H0(X
G1,I,=J1,=Jc 2
K ,ωκ(−D))→ H0(X

G1,I,=J1,=Jc 2
K ,ωκ(−D)) (the correspon-

dences Xw lift to correspondences on the formal schemes).
There is a trace map

Tr :H0(X
G1,I,=J1,=Jc 2
K,Kli (p),ωκ(−D))→H0(X

G1,I,=J1,=Jc 2
K ,ωκ(−D))

associated to the finite étale map X
G1,I,=J1,=Jc 2
K,Kli (p)→X

G1,I,=J1,=Jc 2
K .

Lemma 4.6.16. — For any n ∈ Z≥1, we have the congruence

Tr ◦ (
∏

w∈Jc

Uw,2)
n ◦ ι(f )≡ p#Jc

(
∏

w∈Jc

T̃w)n(f ) (mod pinfw∈Jc kw−lw)

for any f ∈H0(X
G1,I,=J1,=Jc 2
K ,ωκ(−D)).
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Proof. — We have

Tr◦(
∏

w∈Jc

Uw,2)
n◦ι(f (G,ω))= 1

pn
∑

w∈Jc lw+3

∑

w∈Jc

∑

Lw,n

(
∑

Hw

f (G/(⊕wLw,n),ω′)

where Hw runs over all multiplicative subgroups of rank p of Gw[p] and Lw,n runs over
all totally isotropic subgroups of order p3n of Gw[p2n], with trivial intersection with Hw

(this implies that Lw,n is locally in the étale topology an extension of Z/pnZ⊕ Z/pn2
Z by

μpn ), and where ω is a trivialization of ωG and ω′ is a rational trivialization of ωG/(⊕wLw,n),
defined by the condition that π∗ω′ = ω for the isogeny G→ G/(⊕Lw,n). Given a group
Lw,n, we can find p subgroups Hw of order p and of multiplicative type such that Lw,n ∩
Hw = {0}. This means that the groups Lw,n in the formula defining Tr◦(

∏
w∈Jc Uw,2)◦ ι(f )

occur with multiplicity p#Jc

. On the other hand,

∏

w∈Jc

T̃wf (G,ω)= 1

p
∑

w∈Jc lw+3

∑

w∈Jc

∑

Lw

f (G/(⊕wLw),ω′)

where Lw runs over all totally isotropic subgroups of order p3 of Gw[p2] with multiplicative
rank 1. Now we observe that

(
∏

w∈Jc

T̃w)nf (G,ω)

≡ 1

pn
∑

w∈Jc lw+3

∑

w∈Jc

∑

Lw,n

f (G/(⊕wLw,n),ω′) (mod pinfw∈Jc kw−lw)

where Lw,n runs over all totally isotropic subgroups of order p3n of Gw[p2n], which are
locally in the étale topology an extension of Z/pnZ⊕Z/pn2

Z by μpn . Indeed, if we write

(
∏

w∈Jc

T̃w)nf (G,ω)= 1

pn
∑

w∈Jc lw+3

∑

w∈Jc

∑

L′w,n

f (G/(⊕wL′w,n),ω′)

using the definition of
∏

w∈Jc T̃w, we find that all the groups Lw,n appear exactly one
time among the groups L′w,n, and that all the remaining groups precisely contain the
multiplicative subgroup of Gw[p] (and these give a contribution divisible by p(kw−lw)). �

Lemma 4.6.17. — Assume that for all w ∈ Jc, we have kw − lw > p#Jc

. Then the natural

map

e(
∏

w∈Jc

T̃w)H0(X
G1,I,=J1,=Jc 2
K,1 ,ωκ(−D))

→ e(
∏

w∈Jc

Uw,2)H0(X
G1,I,=J1,=Jc 2
K,Kli (p)1,ωκ(−D))
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is bijective.

Proof. — We will show that the map:

ι : e(
∏

w∈Jc

T̃w)H0(X
G1,I,=J1,=Jc 2
K ,ωκ(−D))

→ e(
∏

w∈Jc

Uw,2)H0(X
G1,I,=J1,=Jc 2
K,Kli (p),ωκ(−D))

is bijective (note that it is legitimate to apply the ordinary projectors on these spaces,
because they can be written as projective limits (modding out by In) of spaces carrying a
locally finite action). The result will then follow by taking reduction modulo I. The map
is surjective by Corollary 4.6.15 (and using I-adic approximation). It remains to prove
injectivity. Let us take

f ∈ e(
∏

w∈Jc

T̃w)H0(X
G1,I,=J1,=Jc 2
K ,ωκ(−D)),

with f �= 0 and ι(f )= 0. Without loss of generality, we can suppose that

f /∈ pe(
∏

w∈Jc

T̃w)H0(X
G1,I,=J1,=Jc 2
K ,ωκ(−D)).

It follows from Lemma 4.6.16 that Tr(ιf ) ≡ p#Jc

f (mod pinfw kw−lw). Therefore, f ∈
p(infw kw−lw)−#Jc

e(
∏

w∈Jc T̃w)H0(X
G1,I,=J1,=Jc 2
K ,ωκ(−D)). This is a contradiction. �

Proof of Proposition 4.6.9. — This is immediate from Corollary 4.6.15, Lemma
4.6.17, and Lemmas 4.6.12, 4.6.13 and 4.6.14. �

4.6.18. Comparison of the cohomology on XI,G1
K,Kli(p)1 and XI,G1

K,1 . — We now deduce the
following proposition.

Proposition 4.6.19. — There is a universal constant C depending only on p and F but not

on the tame level Kp such that if lw ≥ 2 for all w, kw − lw ≥ C for all w|p, and lw ≥ C for all

w ∈ Ic, then the operator UI is locally finite on R�(XI,G1
K,Kli(p)1,ωκ(−D)) and there is a canonical

quasi-isomorphism:

e(T̃I)R�(XI,G1
K,1 ,ωκ(−D))→ e(UI)R�(XI,G1

K,Kli(p)1,ωκ(−D)).
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Proof. — In §4.2.30, we constructed a complex K• computing explicitly the coho-
mology R�(XI,G1

K,1 ,ωκ(−D)). We recall that Kk =

⊕J⊂I,#J=k lim−→×∏w∈J Ha(Gw)

H0
(
X

G1,I,≥Jc 2
K,1 ,ωκ(−D)⊗

⊗

w∈J

(detGw)n(p−1)/

(
∑

w∈J

(Ha(Gw)n))
)
.

In exactly the same way, there is a complex L• computing R�(XI,G1
K,Kli(p)1,ωκ(−D)),

such that Lk =
⊕J⊂I,#J=k lim−→×∏w∈J Ha(Gw)

H0
(
X

G1,I,≥Jc 2
K,Kli (p)1,ωκ(−D)⊗

⊗

w∈J

(detGw)n(p−1)/

(
∑

w∈J

(Ha(Gw)n))
)
.

It therefore suffices to prove that for each J⊂ I and each n≥ 1, UI is locally finite
on

H0
(
X

G1,I,≥Jc 2
K,Kli (p)1,ωκ(−D)⊗

⊗

w∈J

(detGw)n(p−1)/(
∑

w∈J

(Ha(Gw)n))
)
,

and the map

e(T̃I)H0
(
X

G1,I,≥Jc 2
K,Kli (p)1,ωκ(−D)⊗

⊗

w∈J

(detGw)n(p−1)/(
∑

w∈J

(Ha(Gw)n))
)→

e(UI)H0
(
X

G1,I,≥Jc 2
K,Kli (p)1,ωκ(−D)⊗

⊗

w∈J

(detGw)n(p−1)/(
∑

w∈J

(Ha(Gw)n))
)

is an isomorphism. In the case n= 1, this is Proposition 4.6.9, and the general case follows
by induction on n, using the short exact sequence

0→ ωκ(−D)⊗
⊗

w∈J

(detGw)(n−1)(p−1)/(
∑

w∈J

(Ha(Gw)n−1))→

ωκ(−D)⊗
⊗

w∈J

(detGw)n(p−1)/(
∑

w∈J

(Ha(Gw)n))→

ωκ(−D)⊗
⊗

w∈J

(detGw)n(p−1)/(
∑

w∈J

(Ha(Gw)))→ 0

and the acyclicity of these sheaves (for which see the proof of Proposition 4.2.33). �
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4.6.20. The proof of Theorem 4.6.1.

Lemma 4.6.21. — If κ = ((kv, lv)v|p) is a classical algebraic weight with lv = 2 when

v ∈ I and kv ≡ lv ≡ 2 (mod p− 1) for all v|p, then for each n≥ 2 there is a diagonal map making

a commutative diagram:

R�(X
G1,I
Kli (pn),ωκ(−D))

UI

UI

R�(X
G1,I
Kli (pn),ωκ(−D))

R�(X
G1,I
Kli (pn−1),ωκ(−D))

UI

R�(X
G1,I
Kli (pn−1),ωκ(−D))

Proof. — This is an easy computation in the Hecke algebra, see the proof of [Pil20,
Thm. 11.3.1]. �

We now make repeated use of Nakayama’s lemma for complexes, in the form
of [Pil20, Prop. 2.2.1, Prop. 2.2.2]. In fact, we need the following slight strengthening
of [Pil20, Prop. 2.2.1], which is proved in the same way; for ease of reference we explain
how it follows from results in the literature.

Lemma 4.6.22. — Let R be a complete local Noetherian ring with maximal ideal m, and

let M• be a bounded complex of m-adically complete and separated, flat R-modules, with the property

that the cohomology groups of M• ⊗R R/m are finite-dimensional and concentrated in degrees [a, b].
Then M• is a perfect complex, concentrated in degrees [a, b].

Proof. — It follows from [Pil20, Prop. 2.2.1] that M• is a perfect complex, and it
then follows from [KT17, Lem. 2.3, Cor. 2.7] that it is concentrated in degrees [a, b]. �

All the complexes we consider below can be represented by bounded complexes of
flat, complete and separated Zp-modules (resp. �I-modules), as can be seen by consider-
ing a Čech complex for any finite affine cover, so the hypotheses of Lemma 4.6.22 apply
in our situation.

Lemma 4.6.23. — For all classical algebraic weights κ = ((kv, lv)v|p) with lw ≥ 2 for

all w, kw − lw ≥ C for all w|p, and lw ≥ C for all w ∈ Ic, the operator UI is locally finite on

R�(X
G1,I
K,Kli(p

∞),ωκ(−D)) and there is a canonical quasi-isomorphism:

e(T̃I)R�(X
I,G1
K ,ωκ(−D))→ e(UI)R�(X

I,G1
K,Kli(p

∞),ωκ(−D)).

Proof. — By Proposition 4.6.19, together with [Pil20, Prop. 2.2.2, Prop. 2.3.1], the
action of UI is locally finite on R�(X

I,G1
K,Kli(p),ωκ(−D)), and the map

e(T̃I)R�(X
I,G1
K ,ωκ(−D))→ e(UI)R�(X

I,G1
K,Kli(p),ωκ(−D))
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is a quasi-isomorphism. It follows easily from Lemma 4.6.21 that UI is locally fi-
nite on R�(X

I,G1
K,Kli(p

∞),ωκ(−D)) and that the map e(UI)R�(X
I,G1
K,Kli(p),ωκ(−D)) →

e(UI)R�(X
I,G1
K,Kli(p

∞),ωκ(−D)) is a quasi-isomorphism, as required. �

Let κ = (kv, lv) be a classical algebraic weight. Let Kωκ denote the kernel of the
surjection of Corollary 4.3.9, so that over XI

K,Kli(p
∞), so we have a short exact sequence

of sheaves

0→Kωκ → ωκ →�κ → 0.

A key step in the comparison between the ordinary forms of these weights is the following
basic lemma.

Lemma 4.6.24. — For any w|p, we have Uw,2 ∈ pEnd(R�(XI
K,Kli(p

∞), Kωκ)).

Proof. — This follows immediately from an examination of (4.5.12). �

Lemma 4.6.25. — For all classical algebraic weights κ = ((kv, lv)v|p) with lv = 2
when v ∈ I and kv ≡ lv ≡ 2 (mod p − 1) for all v|p, the operator UI is locally finite on

R�(X
G1,I
K,Kli(p

∞),ωκ(−D)) and R�(X
G1,I
K,Kli(p

∞),�κ(−D)), and the map

e(UI)R�(X
G1,I
K,Kli(p),ωκ(−D))→ e(UI)R�(X

G1,I
K,Kli(p

∞),�κ(−D))

is a quasi-isomorphism.

Proof. — We consider the exact triangle

R�(X
G1,I
K,Kli(p

∞), Kωκ(−D))→R�(X
G1,I
K,Kli(p

∞),ωκ(−D))

→R�(X
G1,I
K,Kli(p

∞),�κ(−D)).

By Lemma 4.6.24, the operator UI is topologically nilpotent on

R�(X
G1,I
K,Kli(p

∞), Kωκ(−D)),

so in particular it acts locally finitely with e(UI)= 0.
If we further assume that lw ≥ 2 for all w, kw − lw ≥ C for all w|p, and

lw ≥ C for all w ∈ Ic, then it follows from Lemma 4.6.23 that UI is locally finite on
R�(X

G1,I
K,Kli(p

∞),ωκ(−D)). Therefore in this case, it follows from the above exact triangle
that UI is locally finite on R�(X

G1,I
K,Kli(p

∞),�κ(−D)).
Again using [Pil20, Prop. 2.3.1], we deduce that UI is locally finite on the complex

R�(X
G1,I
K,Kli(p

∞),�κ(−D)) for any weight κ , and therefore (again using the above exact
triangle) it is also locally finite on R�(X

G1,I
K,Kli(p

∞),ωκ(−D)) for any weight κ , as required.
�
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Lemma 4.6.26. — For all classical algebraic weights κ = ((kv, lv)v|p) with lv = 2 when

v ∈ I, kv ≡ lv ≡ 2 (mod p − 1), for all v|p, lw ≥ 2 for all w, kw − lw ≥ C for all w ∈ I,
and lw ≥ C for all w ∈ Ic, the complex e(UI)R�(X

I,G1
K,Kli(p

∞),�κ(−D)) is a perfect complex of

Zp-modules concentrated in degrees [0, #I].

Proof. — This follows from Lemma 4.6.25, Lemma 4.6.23 and Theorem 4.2.1
(noting that TI divides T̃I, so that e(T̃I)R�(XG1,I

1 ,ωκ(−D)) is a direct summand of
e(TI)R�(XG1,I

1 ,ωκ(−D))). �

Lemma 4.6.27. — The operator UI is locally finite on R�(X
I,G1
K,Kli(p

∞),�κI(−D)), and

e(UI)R�(X
I,G1
K,Kli(p

∞),�κI(−D)) is a perfect complex of �I-modules concentrated in degree [0, #I].

Proof. — This follows from Lemma 4.6.26 by Nakayama’s lemma, in the form of
Lemma 4.6.22 and [Pil20, Prop. 2.3.1]. �

Proof of Theorem 4.6.1. — Parts (1) and (2) are Lemma 4.6.27. Part (3) is Lemma
4.6.25, together with Lemma 4.6.21, which shows that the natural map

e(UI)R�(X
I,G1
K,Kli(p),ωκ(−D))→ e(UI)R�(X

I,G1
K,Kli(p

∞),ωκ(−D))

is a quasi-isomorphism. Part (4) follows from Theorem 4.2.1, together with Proposi-
tion 4.6.19 and Lemma 4.6.25. �

5. Doubling

In this section, we prove a doubling result (see Theorems 5.8.6 and 5.8.4) which
is the key ingredient for proving local–global compatibility in §7.9. The general ideal
of doubling is that certain spaces of ordinary low weight modular forms admit (at least)
two degeneracy maps to spaces of ordinary modular forms of either higher weight or
higher level. For example, the space of weight one elliptic modular forms modulo p of
level �1(N), p � N, admits degeneracy maps f �→ Ha · f and f �→ f p (where Ha is the
Hasse invariant) to spaces of forms of weight p and level �1(N). (Alternatively, after di-
viding by Ha, these degeneracy maps can also be thought of as maps from classical forms
of level �1(N) and weight one to ordinary p-adic modular forms of level �1(N) and
weight one.) If one can show that the direct sum of two copies of the original space em-
beds under the direct sum of these degeneracy maps, then, following ideas going back
to Gross [Gro90] and isolated and expanded by [Wie14] (see also [CG18] for further
exploitation of these ideas), one can make deductions about the local properties of the
Galois representations of interest.

Let us explicate this in the example of weight one forms mentioned above (the fol-
lowing is implicit in the first few lines of [Gro90, p. 499] and explicit in [Edi92, Prop. 2.7]).
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If f is a weight one elliptic modular cuspidal eigenform with Nebentypus character χ and
Tp-eigenvalue ap satisfying a2

p �= 4χ(p), one can show that the associated Galois represen-
tation is unramified at p in the following way. Since the polynomial X2− apX+ χ(p) has
distinct roots, one can show using the degeneracy maps above (and having established
doubling) that there are two weight p ordinary forms congruent to f with level �1(N)

and Tp-eigenvalues given by the roots α and β of X2 − apX + χ(p). Using the known
properties of the corresponding Galois representations, one shows that the restriction
to p is an extension of distinct unramified characters, and thus that the extension is split
(because the representations corresponding to the two weight p forms are extensions in
the opposite orders).

The above argument for local–global compatibility at p works equally well in the
ordinary symplectic case once we have established a doubling theorem, and we will use
this in §7.9 below. Before proceeding, we begin by recalling the doubling argument in
more detail in the case of GL2 /Q.

5.1. The case of GL2 /Q. — For the moment, let X denote the special fibre of a
classical modular curve of level �1(N) with N≥ 5 with p � N, and let ω denote the usual
invertible line bundle on X (as in [Gro90, §2]). The doubling strategy of [CG18, Cal18]
may be reduced to ruling out the existence of simultaneous eigenforms f ∈ H0(X,ω)

for the operators Tp and Up. This is easily seen: indeed if f is a simultaneous eigenform
for Tp and Up, then it is also an eigenform for Vp = Tp −Up, which is immediately seen
to be impossible by examining the action on q-expansions. This argument does not di-
rectly generalize to the symplectic case (even over Q), and instead, the paper [CG20]
employs a rather labyrinthian argument involving q-expansions to prove an analogous
result for GSp4 /Q. In this paper, we give a different argument which is based on analyz-
ing the behavior of the Up operator at the non ordinary locus. This argument in this form
appears to be new even for modular forms of weight one (although there are certainly
some echos of this argument in papers such as [Joc82, Ser73, Cai14]), and so we present
it first as a warm up for the general symplectic case.

If f ∈H0(X,ω), we may think of Upf as a section of H0(X \ SS,ω) for the finite
set SS of supersingular points of X. We claim that there is a commutative diagram

(5.1.1) H0(X,ω)
Ha·Up

H0(X,ωp)

H0(SS,ω) H0(SS,ωp)

where the vertical maps are the natural restriction maps, and the lower horizontal map
is an isomorphism. The existence of such a diagram can be proved in several ways; for
example it can be checked in the same way as the corresponding statements for GSp4 /F
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later in this section, by using the Kodaira–Spencer isomorphism to describe the Up op-
erator as a trace map on differentials.

Suppose that f is a Up-eigenform in H0(X,ω) with non-zero eigenvalue. Con-
sidering the commutative diagram (5.1.1), we see that since Ha · Upf maps to zero
in H0(SS,ωp), the restriction of f to SS must vanish. Thus f = Ha · g for some g ∈
H0(X,ω2−p), and this cohomology group vanishes if p > 2, so f = 0 in this case. If p= 2,
the only non-zero sections of H0(X,OX) are constants, and we deduce that f is a multiple
of the Hasse invariant.

In the rest of this section we prove a generalization of this to the Hilbert–Siegel
case. The analogue of the commutative diagram (5.1.1) in the Siegel case (with F=Q) is
the following commutative diagram (where we write Y≥1 for the locus in the interior of
the special fibre of the Shimura variety with Klingen level H which is multiplicative, and
we write Y=1 for the divisor where the abelian variety is non ordinary.)

H0(Y≥1,ω2)
Ha·UIw(p),1

H0(Y≥1,ωp+1)

H0(Y=1,ω2) H0(Y=1,ωp+1)

However, in contrast to the modular curve case, the map on the bottom line of this dia-
gram is probably not injective, so we cannot conclude as before. Instead, we construct a
larger commutative diagram

H0(Y≥1,ω2)
Ha·UIw(p),1

Up,2

H0(Y≥1,ωp+1) H0(Y≥1,ω2)

H0(Y=1,ω2) H0(Y=1,ωp+1) H0(Y=1,ω2).

If we assume that f ∈ H0(Y≥1,ω2) is also a Up,2-eigenform with nonzero eigenvalue
(which suffices for our purposes), we can use this diagram to make a similar argument
to the above, considering the composite morphisms from the top left to the lower right
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hand corner. It may help the reader to note that there is an analogous diagram for GL2:

H0(X,ω)
Ha·Up

〈p〉

H0(X,ωp) H0(X,ω)

H0(SS,ω) H0(SS,ωp) H0(SS,ω)

(again, the existence of this diagram can be checked in the same way as our calculations
below). We see that if Upf has no poles, then the image of f in the bottom right hand
copy of H0(SS,ω) vanishes; since the diamond operator 〈p〉 is an isomorphism, it follows
that the restriction of f to SS vanishes, and we conclude as before.

There is an additional complication in the Hilbert–Siegel case, which is that rather
than considering the entire Shimura variety, we are only working on an open sub-
space X≥v∈I1,≥v∈Ic 2

Kp(I)Kp,1 . This means that the vanishing of the space of (partial) negative weight
modular forms is not obvious. We sketch a proof for this vanishing in §5.9 below, using
Fourier–Jacobi expansions (which ultimately reduces to the vanishing of spaces of Hilbert
modular forms of partial negative weight), but we do not rely on this result. Instead, we
give a complete proof of a slightly weaker result which is nonetheless sufficient for our
purposes; this argument does not use the boundary, but rather considers the behavior of
another Hecke operator UKli(w),1 −UIw(w),1 (called Zw below) along the w-non-ordinary
locus.

5.2. Conventions. — Throughout this section, we fix a set I⊂ Sp and a prime w ∈ I.
Recall that, as in §4.3.4, for each subset I⊂ Sp we set

Kp(I)=
∏

v∈I

Kli(v)
∏

v∈Ic

Iw(v),

and we write XI
1 :=X≥v∈I1,≥v∈Ic 2

Kp(I)Kp,1 . We will use the following simplified notation:

• We write XI
1 for the space X≥v∈I1,≥v∈Ic 2

Kp(I)Kp,1 .

• We write XI,=w2
1 for the open subspace where A[w∞] is ordinary.

• We write XI,=w1
1 for the (reduced) complement of this open subspace, which is a

divisor in XI
1.

We also write YI
1, YI,=w2

1 and YI,=w1
1 for their interiors. We use the analogous notation XI,

YI etc. for the corresponding formal schemes. We denote det ωG by ω and det ωGw
by

ωw. We will finally denote the partial Hasse invariant Ha(Gw) ∈H0(XI
1,ωp−1

w ) by Haw.
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5.3. The operator UKli(w),1. — We now define a Hecke operator UKli(w),1 (see
also § 4.5.6). We again consider the p-adic completion of the correspondence considered
in §3.9.17

XK′
p1p2

XK XK

where we recall that K = KpKp with Kp =∏
v GSp4(OFv

) and K′ = KpK′
p with K′

p =
Si(w)×∏

v �=w GSp4(OFv
).

We can form the fibre product XK′ ×p1,XK XI. As XI → XK is étale by Proposition
4.3.3, this inherits the properties of XK′ deduced from the theories of local models and
toroidal compactifications. In particular it is flat over Zp, normal, Cohen–Macaulay, and
the ordinary locus is dense in the special fibre, see §3.4, Theorem 3.5.1, and §4.1. We
denote by CKli(w),1 the open and closed formal subscheme of this fibre product where the
kernel of the canonical isogeny p∗1G→ p∗2G has trivial intersection with the multiplicative
group p∗1Hw.

We obtain a correspondence

CKli(w),1

v1v2

XI XI

where v1 : CKli(w),1 → XI is induced by the projection XK′ ×p1,XK XI → XI and v2 is de-
fined as follows: the projection XK′ ×p1,XK XI → XK′ composed with p2 : XK′ → XK in-
duces a map CKli(w),1 → XK which we would like to lift to a map v2 : CKli(w),1 → XI. In
other words, given a point of CKli(w),1, we need to give multiplicative subgroups of order
p, H′

w′ ⊆ p∗2Gw′ for all w′ ∈ Sp. But for all w′ ∈ Sp, the kernel of the isogeny p∗1Gw′ → p∗2Gw′

has trivial intersection with p∗1Hw′ , (for w′ �=w it is an isomorphism, and for w′ =w this
was assumed in the definition of CKli(w),1) and we take H′

w′ to be the image of p∗1Hw′ under
this isogeny.

Lemma 5.3.1. — We have R(v1)∗OCKli(w),1 = (v1)∗OCKli(w),1 and there is a trace map

R(v1)∗OCKli(w),1 →OXI .

Proof. — We have XK =XK," for a smooth polyhedral cone decomposition " and
we have XK′ = XK′,"′ . We can now assume that "′ =" because we have Rπ∗OXK′,"′ =
OXK′," for π :XK′,"′ →XK′," the projection (we note that the cone decomposition at level
K′ may not be smooth but we will not need this). Since " ="′, the map v1 is quasi-finite,
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and (since it is proper) is therefore finite. Hence we have R(v1)∗OCKli(w),1 = (v1)∗OCKli(w),1 .
Moreover, as CKli(w),1 is Cohen–Macaulay and XI is regular, we deduce that the map v1

is also flat, and so it has an associated trace map. �

We let C=w2
Kli(w),1 be the open formal subscheme where v∗1Gw (or equivalently v∗2Gw )

is ordinary. It restricts to a correspondence over XI,=w2. Over C
=w2
Kli(w),1, the multiplica-

tive rank of ker(v∗1Gw → v∗2Gw) is either 0 or 1 (it cannot be 2 because Hw has trivial
intersection with ker(v∗1G→ v∗2G)), and hence we have a decomposition

C
=w2
Kli(w),1 = C

=w2,et
Kli(w),1

∐
C
=w2,m-et
Kli(w),1

where C
=w2,et
Kli(w),1 is the locus where the isogeny v∗1G→ v∗2G is étale, while C

=w2,m-et
Kli(w),1 is the

locus where ker(v∗1G→ v∗2G) has multiplicative rank 1.
For any weight κ = (kv, lv), we have a map

v∗2ωκ → v∗1ωκ[1/p]
induced from the universal isogeny (we note that we are not assuming lw ≥ 0.) Tensoring
this map with the trace map of Lemma 5.3.1, we obtain a map of sheaves over XI:

$κ : (Rv1)∗v∗2ωκ → ωκ[1/p].
We now define UKli(w),1 = p−lw−1$κ if lw ≤ 2 and UKli(w),1 = p−3$κ if lw ≥ 2.

Lemma 5.3.2. — We have UKli(w),1 : (Rv1)∗v∗2ωκ → ωκ .

Proof. — We follow the same strategy as the proof of Lemma 3.9.18. Both the
source and target of this map are locally free sheaves over the smooth formal scheme XI.
To prove that the map is indeed p-integral, it is enough to prove it over the ordinary locus,
and we check it separately on each type of component.

On the component of the map corresponding to C
=w2,et
Kli(w),1, the isogeny is étale over

the ordinary locus and therefore the map v∗2ωκ → v∗1ωκ[1/p] is actually an isomorphism
v∗2ωκ → v∗1ωκ , while the trace map is divisible by p3 (see the proof of Lemma 3.9.18).

On the component of the map corresponding to C
=w2,m-et
Kli(w),1 , the isogeny has multi-

plicative rank one over the ordinary locus and therefore the map

v∗2ωκ → v∗1ωκ[1/p]
is actually a map

v∗2ωκ → plwv∗1ωκ,

while the trace map is divisible by p (again see the proof of Lemma 3.9.18).
Therefore, on the étale component, the map is divisible by p3 and on the

multiplicative-étale component it is divisible by plw+1. �
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5.4. The operators UIw(w),1 and Zw. — Now we consider some Hecke operators on
XI,=w2. The restriction of $κ to XI,=w2 decomposes as a sum $κ =$et

κ +$m-et
κ , according

to the decomposition of C=w2
Kli(w),1. We define normalized cohomological correspondences

UIw(w),1 = p−3$et
κ and Zw = p−lw−1$m-et

κ .

Lemma 5.4.1. — The cohomological correspondences UIw(w),1 and Zw are p-integral.

Proof. — This follows from the proof of Lemma 5.3.2. �

We have the following identities of Hecke operators over the ordinary locus at w:

(1) UKli(w),1 =UIw(w),1 + plw−2Zw if lw ≥ 2,
(2) UKli(w),1 = p2−lw UIw(w),1 + Zw if lw ≤ 2.

It follows in particular that:

(1) UKli(w),1 =UIw(w),1 mod p if lw > 2,
(2) UKli(w),1 = Zw mod p if lw < 2.

Another important property is the following:

Proposition 5.4.2. — For any weight κ , we have the following identities of cohomological cor-

respondences over XI,=w2
1 :

(1) ZwHaw =HawZw,

(2) UIw(w),1Haw =HawUIw(w),1.

Proof. — The correspondence Zw is the tensor product of the fundamental class
(deduced from the trace map normalized by p−1) and a map v∗2ωκ → v∗1ωκ which is
obtained by normalizing the natural map by a factor p−lw . It suffices to check that for
ωκ = ωp−1

w this normalized map matches the Hasse invariants v∗2Ha(Gw) and v∗1Ha(Gw).
This is the content of [Pil20, Lem. 6.2.4.1]. The case of UIw(w),1 is clear because the
universal isogeny is étale. �

Finally, we will need the following property:

Proposition 5.4.3. — If lw ≤ 0, the cohomological correspondence over XI
1:

UKli(w),1 : (v1)∗v∗2ωκ → ωκ

factors through

UKli(w),1 : (v1)∗v∗2ωκ → ωκ(−XI,=w1
1 ).

Before giving the proof we need some preparations. Let BT/Fp be the smooth
algebraic stack of quasi-polarized 1-truncated Barsotti–Tate groups of height 2 and di-
mension 1 over Spec Fp. Let Y/Fp be a modular curve of level prime to p. The map
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Y→ BT is a presentation of BT (that is, it is a smooth surjection). We denote by E the

universal object on BT. We have a Cartier divisor ω
1−p

E
Ha(E)→ OBT whose support is the

non-ordinary locus of BT. Let π : BTIw → BT be the representable finite flat map which
parametrizes a subgroup H⊂ E of order p. Let Y0(p) be a modular curve of Iwahori level
at p. The map Y0(p)→ BTIw is a presentation of BTIw. Over BTIw we have a universal
morphism g : E/H→ E with kernel HD (using the polarization to identify E and ED, E/H
and (E/H)D). By differentiating, we get a map of line bundles dg : ωE ⊗ω−1

E/H →OBTIw .

Lemma 5.4.4. — We have a canonical factorization (dg)⊗2 : (ωE⊗ω−1
E/H)⊗2 → π∗ω1−p

E →
OBTIw .

Proof. — It suffices to prove the claim over any presentation of BTIw. We therefore
reduce to proving the statement over the modular curve Y0(p). The vanishing locus of
π∗(Ha(E)) is a product of Artinian local rings of length p+1 (the degree of π ) indexed by
the supersingular points. The vanishing locus of dg is the entire irreducible component
of Y0(p) which is degree p over Y via π (this is the component where H is generically
étale). Therefore, for any supersingular point x ∈ Y, the image of dg in OY0(p) ⊗OY k(x)

defines a closed subscheme of length p, and hence the ideal generated by the image of
dg in OY0(p) ⊗OY k(x) is both nilpotent and length 1. It follows that (dg)2 maps to zero in
OY0(p)⊗OY k(x). �

Proof of Proposition 5.4.3. — Let κ be a weight with lw ≤ 2. Let κ ′ be another
weight with (kv, lv) = (k′v, l ′v) for v �= w, kw − lw = k′w − l ′w and l ′w = 2. Let us denote
by UKli(w),1(2) : (v1)∗v∗1ωκ ′ → ωκ ′ the cohomological correspondence in weight κ ′. Let
UKli(w),1 : (v1)∗v∗1ωκ → ωκ be the cohomological correspondence in weight κ . The proof
of Lemma 5.3.2 shows that the map v∗2 det ωlw−2

w → v∗1 det ωlw−2
w [1/p] induces a regu-

lar map plw−2v∗2 det ωlw−2
w → v∗1 det ωlw−2

w , and that moreover UKli(w),1 is obtained from
UKli(w),1(2) by twisting by this map. It thus suffices to show that on the special fibre,
plw−2v∗2 det ωlw−2

w → v∗1 det ωlw−2
w factors through v∗1 det ωlw−2

w (−XI,=1
1 ) when lw ≤ 0.

This statement is local in a neighbourhood of XI,=1
1 and we can therefore replace

XI by its completion along this closed subscheme. We may also work on the interior of the
moduli space, as the interior of the divisor XI,=1

1 is dense. Therefore, we may suppose that
Gw comes equipped with a multiplicative sub-Barsotti–Tate subgroup Gm

w of rank 1, and
we denote by Goo

w = (Gm
w)⊥/Gm

w, which is a Barsotti–Tate group scheme of height 2 and
dimension 1. The isogeny v∗1Gw → v∗2Gw induces an isomorphism v∗1Gm

w → v∗2Gm
w and a

degree p map v∗1Goo
w → v∗2Goo

w .
The normalized map p−1v∗2ω−1

w → v∗1ω−1
w is the tensor product of the isomorphism

v∗2ω−1
Gm

w
→ v∗1ω−1

Gm
w

and the map: p−1v∗2ω−1
Goo

w
→ v∗1ω−1

Goo
w

which is the transpose of the map
v∗1ωGoo

w
→ v∗2ωGoo

w
obtained by differentiating the dual isogeny: v∗2(Goo

w)→ v∗1Goo
w . The result

follows from Lemma 5.4.4. �
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Corollary 5.4.5. — Let κ be a weight with lw ≤ 0. Let f ∈H0(XI
1,ωκ) be such that Zwf =

βwf for some βw �= 0. Then f = 0.

Proof. — Since lw ≤ 0, we have Zw =UKli(w),1 on H0(XI
1,ωκ). Assume that f �= 0,

and let n be the order of vanishing of f along X=1
1 . By considering Ha(Gw)−nf and using

Proposition 5.4.2 we can suppose that n= 0. This contradicts Proposition 5.4.3. �

5.5. Preliminaries on Kodaira–Spencer. — In this section, we recall the Kodaira–
Spencer map and its compatibility with certain functorialities. A convenient reference
for what we need is [Lan13].

Let S be a Z(p)-scheme and let X be a smooth S-scheme of relative dimension
3[F :Q]. Suppose that we have a tuple (A, ι, λ) with

• A/X an abelian scheme of dimension 2[F :Q].
• ι :OF → End(A)⊗Z(p) making Lie (A) into a locally free OF⊗Z OX-module of

rank 2.
• λ : A→ At a prime to p, OF-linear quasi-polarization such that λ[p∞] : A[p∞]→

At[p∞] is an isomorphism.

Then we have the first de Rham cohomology of A/X together with its Hodge
filtration

0→ ωA →H1
dR(A/X)→ ω∨At → 0

as well as the Gauss–Manin connection

H1
dR(A/X)→H1

dR(A/X)⊗�1
X/S.

Passing to subquotients for the Hodge filtration we obtain the Kodaira–Spencer map for
A

ωA → ω∨At ⊗�1
X/S.

The polarization λ induces an isomorphism λ∗ : ωAt → ωA. Using this we may obtain a
Kodaira–Spencer map for (A, λ)

ωA ⊗ωA →�1
X/S.

Then one checks (see [Lan13, Prop. 6.2.5.18]) that this map factors through the quotient
Sym2

OX⊗OF
ωA of ωA ⊗ωA, so that we obtain a map

Sym2
OX⊗OF

ωA →�1
X/S.

As usual, if Y/S is a smooth scheme of relative dimension d , we write KY/S for the relative
canonical bundle ∧d�1

Y/S. We will be especially interested in the induced map on top
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exterior powers

∧3[F:Q](Sym2
OX⊗OF

ωA)= det(ωA)3 →KX/S.

Proposition 5.5.1. — Suppose that (A, ι, λ) and (A′, ι′, λ′) are tuples as above and that

we have a prime to p quasi-isogeny φ : A → A′ satisfying φι = ι′φ and φ tλ′φ = xλ for some

x ∈OF ⊗Z(p). Then we have a commutative diagram

det(ωA′)
3

φ∗

KX/S

·NF/Q(x)3

det(ωA)3 KX/S

Proof. — It follows from the definitions that under the Kodaira–Spencer maps,
φ∗ : Sym2

OX⊗OF
ωA′ → Sym2

OX⊗OF
ωA induces the endomorphism of �1

X/S given by multi-
plication by x. The result follows on passing to top exterior powers. �

Proposition 5.5.2. — Let f :X→ Y be a finite flat map of smooth S-schemes of relative di-

mension 3[F :Q] and let (A, ι, λ)/Y be a tuple as above. Then the Kodaira–Spencer map is compatible

with base change in the sense that there is a commutative diagram

f ∗ det(ωA)3

&

f ∗KY/S

det(ωAX)3 KX/S

where the horizontal maps are the Kodaira–Spencer maps for A and AX, the right vertical map is pullback

on differentials, and the left vertical map is the natural isomorphism.

Moreover it is compatible with traces in the sense that there is a commutative diagram

f∗ det(ωAX)3 f∗KX/S

det(ωA)3 KY/S

where again the horizontal arrows are the Kodaira–Spencer maps for AX and A while the vertical map

on the left comes from the (unnormalized ) trace map on functions f∗OX → OY and the isomorphism

ωAX 	 f ∗ωA, and the right vertical map is the trace map on dualizing sheaves.
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Proof. — The commutativity of the first diagram follows from the compatibility
of the formation of de Rham cohomology with flat base change, and the compatibility
of the Gauss–Manin connection with flat base change (which in turn follows from the
compatibility of the Hodge to de Rham spectral sequence with flat base change).

To see that the second diagram commutes, it is by adjunction equivalent to show
that the lower square in the following diagram commutes.

f ∗ det(ωA)3

&

f ∗KY/S

det(ωAX)3 KX/S

&

f ! det(ωA)3 f !KY/S

Since we have already seen that the upper square commutes, and since the indicated
vertical arrows are isomorphisms, the commutativity of the lower square is equivalent
to the commutativity of the outer square. This commutativity follows from unwinding
the definitions; indeed, this outer square is the natural one obtained from the Kodaira–
Spencer morphisms and the natural transformation from f ∗ to f ! (which is given by the
trace of the morphism f ). �

Finally, we recall the Kodaira–Spencer isomorphism for our Shimura varieties.

Proposition 5.5.3. — The Kodaira–Spencer map

ω3 →KYI/Zp

is an isomorphism.

Proof. — This follows from the usual Kodaira–Spencer isomorphism [Lan13,
Thm. 6.4.1.1] and the compatibility with étale base change proved in Proposition 5.5.2
(noting that the formation of the canonical sheaf is compatible with étale base change).

�

5.6. The Hecke operator UIw(w),1 and traces for partial Frobenius. — We recall the con-
struction of the Hecke operator UIw(w),1. We have a correspondence (see §5.4, where this
correspondence was denoted C

=w2,et
Kli(w),1 but we adopt here a simplified notation CI

w)

CI
w

p2 p1

YI,=w2 YI,=w2
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where CI
w parameterizes a point (A, ι, λ, {Hv}v∈Sp

, η) of YI,=w2 along with an étale max-
imal isotropic subgroup Lw ⊂ A[w]. The map p1 simply forgets Lw. To describe p2, con-
sider the étale isogeny π : A→ A/Lw. Then p2 sends (A, ι, λ, {Hv}v∈Sp

) to A/Lw with the
induced action of OF ⊗ Z(p), the prime to p quasi-polarization obtained by descending
xwλ, and the level structures π(Hv) and π(η). Since the subgroup A[xw]/Lw of A/Lw is
the canonical multiplicative subgroup of A[xw], we see that p2 is an isomorphism.

For any weight κ for G, pullback by the universal étale isogeny over CI
w induces an

isomorphism of sheaves p∗2ω
κ → p∗1ω

κ , and the Hecke operator UIw(w),1 is obtained from
the composition of maps of sheaves over YI,=w2

p1,∗p∗2ω
κ → p1,∗p∗1ω

κ
“ 1

p3 Trp1”→ ωκ.

Now we turn to the Kodaira–Spencer isomorphism ω3 	KYI,=w2 .

Proposition 5.6.1. — There is a commutative diagram of sheaves on YI,=w2

p1,∗p∗2ω
3 ω3

p1,∗p∗2KYI,=w2/Zp

NF/Q(xw)3

p3 tr

KYI,=w2/Zp

where the vertical arrows are the Kodaira–Spencer isomorphism, and the top horizontal arrow is UIw(w),1.

The bottom horizontal arrow is defined as follows: since p2 is an isomorphism, we may identify

p∗2KYI,=w2/Zp
with KCI

w/Zp
, and the morphism then comes from the trace map for p1 on dualizing

sheaves, multiplied by a factor of
NF/Q(xw)3

p3 ∈ Z×(p).

Proof. — This follows from Propositions 5.5.1 and 5.5.2. �

We note that although we are primarily interested in using Proposition 5.6.1 on the
special fibre, we cannot apply Propositions 5.5.1 and 5.5.2 directly on the special fibre
because some of the maps in the commutative square reduce to 0 modulo p.

We may also describe UIw(w),1 in weights other than parallel weight 3 using traces
on differentials. For any weight κ = (kv, lv)v∈Sp

we let κ − 3 = (kv − 3, lv − 3). Then
tensoring the Kodaira–Spencer isomorphism with ωκ−3 we have an isomorphism ωκ 	
KYI,=w2/Zp

⊗ωκ−3. Then we have a commutative diagram of sheaves on YI,=w2

p1,∗p∗2ωκ ωκ

p1,∗p∗2(KYI,=w2/Zp
⊗ωκ−3) (p1,∗p∗2KYI,=w2/Zp

)⊗ωκ−3 KYI,=w2/Zp
⊗ωκ−3
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where on the bottom row, the first map is an isomorphism coming from the projection
formula and the isomorphism p∗2ω

κ−3 	 p∗1ω
κ−3 and the second map is the tensor product

of the map of Proposition 5.6.1 and the identity.
We would now like to understand the behavior of UIw(w),1 beyond the w-ordinary

locus on the special fibre. In order to do this we make the following definition.

Definition 5.6.2. — We define a “partial Frobenius” map

Fw : YI
1 → YI

1

as follows: given a point (A, ι, λ, {Hv}v∈Sp
, η) of YI

1, we may consider the maximal isotropic subgroup

Lw ⊂ A[w] defined by

Lw = ker(F : A[w∞]→ A[w∞](p))
and form the subgroup of degree p4[F:Q]−2

L̃w = Lw ×
∏

v �=w

A[v] ⊂ A

and the isogeny π : A→ Ã= A/L̃w . L̃w is isotropic for the polarization
p2

xw
λ which thus descends to

a principal polarization λ̃ on A/L̃w . Then the map Fw is defined by

Fw(A, ι, λ, {Hv}v∈Sp
, η)= (Ã, ĩ, λ̃, {H̃v}v∈Sp

, η̃)

where Ã, and λ̃ are as described above, ĩ is the induced action of OF ⊗ Z(p), H̃v = πHv for v �=w,

H̃w =H(p)
w ⊂ A[w∞](p) 	 (A/Lw)[w∞], and η̃= 1

p
πη.

Note that this definition depends on the choice of xw.

To explain why we call the map Fw a partial Frobenius, observe that according to
the product decomposition

A[p∞] =
∏

v|p
A[v∞]

we have Ã[w∞] = Ã[w∞]/Lw 	 A[w∞](p) while Ã[v∞] 	 A[v∞] for all v �=w. In partic-
ular, according to the local product structure of YI

1 coming from the Serre–Tate theorem
and the product decomposition of the p-divisible group A[p∞], Fw looks like Frobenius
on the factor corresponding to w.

As a consequence of this we may record

Proposition 5.6.3. — Fw is finite flat of degree p3. It restricts to a map Fw : YI,=w1
1 → YI,=w1

1

which is finite flat of degree p2.
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Proof. — Using the Serre–Tate theorem and the description of Fw on the p-divisible
group above, this follows from the fact that Frobenius on a smooth variety of dimension
n is finite flat of degree pn. �

The identification Ã[w∞] 	 A[w∞](p) induces a canonical isomorphism F∗wωw 	
ωp

w while the isomorphisms Ã[v∞] 	 A[v∞] for v �= w induce canonical isomorphisms
F∗wωv 	 ωv .

The point of this definition is that if we identify CI
w with YI,=w2 via p2, the map

p1 on the special fibre is simply the partial Frobenius Fw restricted to YI,=w2
1 . Moreover

making these identifications, the isogeny p∗1Gw → p∗2Gw becomes V : G(p)
w → Gw (as its dual

is Frobenius) and so the pullback map p∗2ωw → p∗1ωw becomes Haw : ωw → ωp
w.

As in §3.8.16, we may consider trace maps for Fw on differentials Fw,∗KYI
1
→KYI

1
.

Tensoring with any line bundle L on YI
1 and using the projection formula Fw,∗KYI

1
⊗L	

Fw,∗(KYI
1
⊗ F∗wL), we obtain a twisted trace map

Fw,∗(KYI
1
⊗ F∗wL)→KYI

1
⊗L.

We may similarly consider twisted trace maps for line bundles on the divisor YI,=w1
1 .

Now we restrict to parallel weight 2 and work on the special fibre. With the identi-
fications we have made, our discussion above shows that we have a commutative diagram
of sheaves on YI,=2w

1

Fw,∗ω2
UIw(w),1

ω2

Fw,∗(KYI,=w2
1

⊗ω−1)

NF/Q(xw)3

p3 Ha−1
w

Fw,∗(KYI,=w2
1

⊗ω−1 ⊗ω
1−p
w ) KYI,=w2

1
⊗ω−1

Now we want to extend this description to all of YI
1. Here is the first main result of

this section.

Proposition 5.6.4. — The map Haw ·UIw(w),1 : Fw,∗ω2 → ω2⊗ωp−1
w of sheaves on YI,=w2

1
extends to YI

1 and fits in to a commutative diagram of sheaves on YI
1

Fw,∗ω2
Haw ·UIw(w),1

ω2 ⊗ω
p−1
w

Fw,∗(KYI,=w2
1

⊗ω−1)

NF/Q(xw)3

p3 Hap−1
w

Fw,∗(KYI,=w2
1

⊗ω−1 ⊗ω
(p−1)2

w ) KYI,=w2
1

⊗ω
p−1
w ⊗ω−1

Proof. — To prove the proposition, it suffices to establish the commutativity of the
diagram over YI,=w2

1 , as the vertical maps are isomorphisms, and the maps on the bottom
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are already defined over YI
1. This commutativity follows from the discussion above and

the fact that F∗wHaw =Hap
w. �

Now we are going to restrict to the divisor YI,=w1
1 . The Kodaira–Spencer isomor-

phism KYI
1
	 ω3 of Proposition 5.5.3 induces by the adjunction formula an isomorphism

KYI,=w1
1

	 ω3 ⊗ωp−1
w |YI,=w1

1
.

Proposition 5.6.5. — There is a commutative diagram of sheaves on YI
1

Fw,∗(KYI
1
⊗ω−1)

Hap−1
w

Fw,∗(KYI
1
⊗ω−1 ⊗ω

(p−1)2

w ) KYI
1
⊗ω−1 ⊗ω

p−1
w

Fw,∗(KYI,=w1
1

⊗ω−1 ⊗ω
1−p
w ) KYI,=w1

1
⊗ω−1

where the vertical maps are obtained from restriction and the adjunction formula as recalled above, and

the bottom horizontal map is a twisted trace for Fw on the divisor YI,=w1
1 and the line bundle ω−1.

Proof. — The commutativity of this diagram follows from Proposition 3.8.17,
where in the notation of that proposition we take X= Y= YI

1, D′ =D= YI,=w1
1 , f = Fw

and n= p, and identify OYI
1
(YI,=w1

1 ) with ωp−1
w via Haw (tensor the commutative diagram

of Proposition 3.8.17 with ω−1 ⊗ωp−1
w ). �

We may then define a map γ1 : Fw,∗(ω2|YI,=w1
1

)→ ω2 ⊗ωp−1
w |YI,=w1

1
by the diagram

(5.6.6) Fw,∗(ω2|YI,=w1
1

)
γ1

&

ω2 ⊗ωp−1
w |YI,=w1

1

&

Fw,∗(KYI,=w1
1

⊗ω−1 ⊗ω1−p
w ) KYI,=w1

1
⊗ω−1

where the vertical maps are Kodaira–Spencer and the bottom horizontal map is NF/Q(xw)3

p3

times the twisted trace for ω−1.
Now combining Proposition 5.6.4 with Proposition 5.6.5 with the definition of γ1

by (5.6.6) we have proved the following.
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Proposition 5.6.7. — There is a commutative diagram

H0(YI
1,ω2)

Haw ·UIw(w),1

H0(YI
1,ω2 ⊗ωp−1

w )

H0(YI,=w1
1 ,ω2|YI,=w1

1
)

γ1

H0(YI,=w1
1 ,ω2 ⊗ωp−1

w |YI,=w1
1

)

where the vertical maps are restrictions and the horizontal maps are as explained above.

5.7. The Hecke operator Uw,2 on the w-non ordinary locus. — In this section we consider
the Hecke operator Uw,2 that was first introduced in §4.5.8. We consider the correspon-
dence

CI
w,2

p2 p1

YI YI

which is the composition of the correspondences Cw,2,1(p) and Cw,2,2(p) considered in
§4.5.8 (or more precisely their restrictions to the interior of the moduli space). The
correspondence Cw,2 admits the following direct description: it parametrizes isogenies
p∗1G→ p∗2G whose kernel Kw is a totally isotropic subgroup of Gw[p2] which has trivial
intersection with the group p∗1Hw. To see this, note that Kw fits into an exact sequence
0→Kw[p] →Kw →Kw/Kw[p] → 0 where Kw[p] is a finite flat group scheme of rank
p3 and étale rank p, and Kw/Kw[p] is a finite étale group scheme of rank p.

There is yet another description of CI
w,2 that will be important for us. To any point

(G, ι, λ, {Hv}v∈Sp
, η) ∈YI we can associate a subgroup L̃w ⊂ G[p2] as follows: the finite

flat group scheme x−1
w Hw/H⊥

w ⊂ Gw/H⊥
w of degree p2 contains a canonical multiplicative

subgroup L′w of degree p (as x−1Hw/Gw[p] 	 Hw is multiplicative and Gw[p]/H⊥
w 	 HD

w

is étale, we see that x−1
w Hw/H⊥

w is isomorphic at geometric points to μp × Z/pZ, and
hence over the entire (reduced) special fibre, the kernel of Frobenius on x−1

w Hw/H⊥
w is

a multiplicative group of order p which lifts uniquely over YI). Then we may define
the group Lw to be the preimage of L′w under the isogeny A → A/H⊥

w . Observe that
Lw ⊂ A[w2] is a totally isotropic subgroup of degree p4. Then we take

L̃w = Lw ×
∏

v �=w

A[v2].

We temporarily write YI
w−sph for the formal completion of YKpKp with Kp =

GSp4(OFw
)
∏

v∈I,v �=w Kli(v)
∏

v∈Ic Iw(v), along the open subvariety of the special fibre
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where A[w∞] has p-rank ≥ 1, Hv is multiplicative for v ∈ I, v �=w, and Lv is multiplica-
tive for v ∈ Ic. Then there is a natural map f :YI →YI

w−sph which forgets the Klingen
level structure Hw at w. It is étale and affine (see Proposition 4.3.3).

We define a map ψw : YI → YI
w−sph by sending a point (G, ι, λ, {Hv}v∈Sp

, η) to

G/L̃w with the polarization descended from p4

x2
w
λ, the induced action of OF and the level

structures p−2πη and πHv for v �=w where π : G→ G/L̃w is the isogeny.

Lemma 5.7.1. — The correspondence CI
w,2 fits in the following Cartesian diagram

CI
w,2

p2

p1

YI

f

YI
ψw

YI
w−sph

Proof. — Let p∗1G→ p∗2G be the universal isogeny over CI
w,2. Then the composite

of this isogeny with the isogeny p∗2G → p∗2G/L̃w identifies with multiplication by p2 on
p∗1G. �

Lemma 5.7.2. — The map p1 : CI
w,2 →YI is finite flat of degree p4.

Proof. — The correspondence CI
w,2 is smooth, and the map p1 is generically étale

of degree p4 and finite. It follows from miracle flatness that it is finite flat. �

We can now deduce the following important relation between CI
w,2 and F2

w over
YI,=w1

1 .

Proposition 5.7.3. — The restriction of p2 to the scheme theoretic preimage p−1
2 (YI,=w1

1 ) is an

isomorphism to YI,=w1
1 . Making this identification, p1 becomes F2

w : YI,=w1
1 → YI,=w1

1 .

Proof. — We observe that the restriction of f to YI,=w1
1 is an isomorphism. This

implies that the restriction of p2 is an isomorphism. Now we examine the definition of
L̃w. The key observation is that Lw coincides with the kernel of Frob2 : Gw → G(p2)

w . It
suffices to check this on geometric points. Over a geometric point of YI,=w1

1 , the p-divisible
group Gw has a decomposition into a product of multiplicative, slope 1

2 and étale group p-
divisible groups: Gw = G et

w×Goo
w ×Gm

w. Then the kernel of Frob2 is simply Goo
w [p]×Gm

w[p2],
and this group equals Lw. �

Pullback by the universal isogeny over CI
w,2 induces a morphism δ0 : p∗2ωw → p∗1ωw,

as well as isomorphisms p∗2ωv → p∗1ωv for v �= w. The following proposition is implicitly
contained in Lemma 4.6.4, but we briefly recall the argument.
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Proposition 5.7.4.

(1) The map δ0 is divisible by p and the resulting map δ = 1
p
δ0 : p∗2ωw → p∗1ωw is an iso-

morphism.

(2) Under the isomorphism δp−1 : p∗2ωp−1
w 	 p∗1ω

p−1
w we have p∗1Haw = p∗2Haw.

Proof. — Because CI
w,2 is smooth we are free to check the first claim on the ordinary

locus where it simply follows from the fact that the isogeny p∗1G → p∗2G has kernel of
multiplicative rank one. The second claim follows from [Pil20, Lem. 10.5.2.1]. �

Making the identifications of the Proposition 5.7.3, we may view the restriction of
δ to YI,=w1

1 as an isomorphism

δ|−1
YI,=w1

1
: ωw → (F2

w)∗ωw 	 ωp2

w

or equivalently as a non vanishing section δ|−1
YI,=w1

1
∈H0(YI,=w1

1 ,ωp2−1
w ). We also denote by

δ′ :∏v �=w p∗2ωw 	∏
v �=w p∗1ωw the isomorphism coming from the pullback of differentials.

In weights κ = (kv, lv) with lw ≥ 0, the Hecke operator

Uw,2 : p1,∗p∗2ω
κ → ωκ

is defined by tensoring the unnormalized trace map p1,∗p∗2OYI
1
→ OYI

1
with the unnor-

malized pullback map p∗2ω
κ → p∗1ω

κ , and normalizing by a factor of 1
p3+lw

(see §4.5.8;
equivalently, the normalized map p∗2ω

κ → p∗1ω
κ is constructed with the help of the oper-

ator δ).
First we may use the Kodaira–Spencer isomorphism to describe Uw,2 in weight 3

in terms of traces on differentials.

Proposition 5.7.5. — There is a commutative diagram of sheaves on YI

p1,∗p∗2ω
3

Uw,2

ω3

p1,∗p∗2KYI/Zp

NF/Q(xw)6

p6 tr

KYI/Zp

where the vertical arrows are the Kodaira–Spencer isomorphism, and the bottom horizontal arrow is

defined as follows: since p2 is étale, we may identify p∗2KYI/Zp
with KCI

w,2/Zp
, and the morphism then

comes from the trace map for p1 on dualizing sheaves, multiplied by a factor of
NF/Q(xw)6

p6 ∈ Z×(p).

Proof. — This follows from Propositions 5.5.1 and 5.5.2. �
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In parallel weight 2 we can still express the cohomological correspondence Uw,2

by using a similar commutative diagram of sheaves on YI:

p1,∗p∗2ω
2

Uw,2

ω2

p1,∗p∗2(KYI/Zp
⊗ω−1)

NF/Q(xw)6

p6 tr⊗(δ′δ)−1

KYI/Zp
⊗ω−1

We can restrict to YI,=w1 and obtain the following:

Proposition 5.7.6. — There is a commutative diagram

p1,∗p∗2(KYI
1
⊗ω−1) KYI

1
⊗ω−1

p1,∗p∗2(KYI,=w1
1

⊗OYI
1
(−YI,=w1

1 )|YI,=w1
1

⊗ω−1) KYI,=w1
1

⊗OYI
1
(−YI,=w1

1 )|YI,=w1
1

⊗ω−1

(F2
w)∗(KYI,=w1

1
⊗ω−1 ⊗ω

1−p
w ) KYI,=w1

1
⊗ω−1 ⊗ω

1−p
w

where:

• The upper vertical maps are obtained by restriction to YI,=w1
1 and the adjunction isomorphism

KYI
1
|YI,=w1 	KYI,=w1

1
⊗OYI

1
.

• The lower vertical maps are obtained from making the identification of p2 with id and p1 with

F2
w of Proposition 5.7.3 as well as using the isomorphism Haw :O(YI,=w1

1 )→ ωp−1
w .

• The top horizontal arrow is the composition of (δδ′)−1 and the twisted trace for ω−1 on KI
Y1

,

as on the bottom row of the diagram immediately preceding this proposition.

• The middle horizontal arrow is multiplication by (δδ′)|−1
YI,=w1

1
followed by the twisted trace for

p1 on the sheaf OYI
1
(−YI,=w1

1 )⊗ω−1.

• The bottom horizontal arrow is multiplication by δ|−p

YI,=w1
1

δ′|−1
YI,=w1

1
followed by the twisted

trace for F2
w on the line bundle ω−1 ⊗ω1−p

w (normalized by the p-adic unit
NF/Q(xw)6

p6 ).

Proof. — The commutativity of the top square follows from Proposition 3.8.17
while the commutativity of the bottom square follows from Proposition 5.7.4. The rea-
son we get multiplication by δ|−p

YI,=w1
1

δ′|−1
YI,=w1

1
in the bottom horizontal arrow is because we

multiply the original (δδ′)|−1
YI,=w1

1
with δ|−1−p

YI,=w1
1

which arises when relating the isomorphisms

p∗i (Haw :O(YI,=w1
1 )→ ωp−1

w ) for i = 1, 2. �
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Our goal from now on is to interpret the bottom horizontal line of this diagram in
terms of the map γ1 of (5.6.6). We introduce a map γ2 : Fw,∗(ω2⊗ωp−1

w |YI,=w1
1

)→ ω2|YI,=w1
1

defined by the diagram

(5.7.7) Fw,∗(ω2 ⊗ω
p−1
w |YI,=w1

1
)

γ2

&

ω2|YI,=w1
1

&

Fw,∗(KYI,=w1
1

⊗ω−1)

δ|−1

YI,=w1
1

Fw,∗(KYI,=w1
1

⊗ω−1 ⊗ω
1−p2

w ) KYI,=w1
1

⊗ω−1 ⊗ω
1−p
w

where the vertical maps are induced by Kodaira–Spencer, and on the bottom the first
horizontal map is multiplication by δ|−1

YI,=w1
1

, while the second is the twisted trace for L=
ω−1 ⊗ω1−p

w (normalized by the p-adic unit NF/Q(xw)3

p3 ).
We now consider the composition γ2 ◦ γ1 : (F2

w)∗(ω2|YI,=w1
1

)→ ω2|YI,=w1
1

.

Proposition 5.7.8. — There is a commutative diagram

(F2
w)∗(ω2|YI,=w1

1
)

γ1

&

Fw,∗(ω2 ⊗ω
p−1
w |YI,=w1

1
)

γ2

ω2|YI,=w1
1

&

(F2
w)∗(KYI,=w1

1
⊗ω−1 ⊗ω

1−p
w )

δ−pδ′−1|
YI,=w1

1

(F2
w)∗(KYI,=w1

1
⊗ω−1 ⊗ω

1−p3

w ) KYI,=w1
1

⊗ω−1 ⊗ω
1−p
w

where the vertical arrows are given by the Kodaira–Spencer isomorphism and on the bottom row we first

multiply by δ|−p

YI,=w1
1

and then take a twisted trace for F2
w (normalized by the p-adic unit

NF/Q(xw)6

p6 ) and

the line bundle L= ω−1 ⊗ω1−p
w |YI,=w1

1
.

Proof. — This follows from the fact that F∗wδ|YI,=w1
1

= δ|p
YI,=w1

1
. �

Combining Proposition 5.7.6 with Proposition 5.7.8 we have proved the following:

Proposition 5.7.9. — There is a commutative diagram

H0(YI
1,ω2)

Uw,2

H0(YI
1,ω2)

H0(YI,=w1
1 ,ω2|YI,=w1

1
)

γ2◦γ1

H0(YI,=w1
1 ,ω2|YI,=w1

1
)

where the vertical maps are restrictions and the horizontal maps are as explained above.
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5.8. Main doubling results. — There is an obvious injective restriction map:

H0(XI
1,ω2(−D))→H0(XI,=w2

1 ,ω2(−D))

which is equivariant for the action of the Hecke algebra away from w, and for the actions
of Uw,2 and Uw,0. We now compare the action of UKli(w),1, which acts on both the left
hand and right hand modules, and UIw(w),1, which acts on the right hand module.

We have defined a Hecke operator Zw on H0(XI,=w2
1 ,ω2(−D)) with UKli(w),1 =

UIw(w),1 + Zw (see §5.4).

Lemma 5.8.1. — On H0(XI,=w2
1 ,ω2(−D)) we have the identity of operators UIw(w),1Zw =

Uw,2.

Proof. — This is immediate from Lemma 4.5.17. �

We introduce the doubling map:

H0(XI
1,ω2(−D))⊕H0(XI

1,ω2(−D))→H0(XI,=w2
1 ,ω2(−D))

(f , g) �→ f + Zwg

In this formula f and g on the right hand side are viewed as sections of H0(XI,=w2
1 ,

ω2(−D)) via the above restriction map.
We can define an operator that we formally denote by UIw(w),1 on the left hand

side by the following matrix:

UIw(w),1 =
(

UKli(w),1 Uw,2

−1 0

)

Lemma 5.8.2. — The doubling map is equivariant for the action of UIw(w),1. The operator

UIw(w),1 on H0(XI
1,ω2(−D))⊕H0(XI

1,ω2(−D)) commutes with the action of Uw,2.

Proof. — The equivariance follows from Lemma 5.8.1, and the commutativity fol-
lows from Lemma 4.5.15. �

We now consider the Uw,2-ordinary part:

e(Uw,2)H0(XG1,I
1 ,ω2(−D))⊕ e(Uw,2)H0(XG1,I

1 ,ω2(−D)).

We have restricted to the direct factor H0(XG1,I
1 ,ω2(−D)) of H0(XI

1,ω2(−D)) in order
to be able to use local finiteness and apply ordinary projectors.
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Lemma 5.8.3.

(1) The image of

e(Uw,2)H0(XG1,I
1 ,ω2(−D))⊕ e(Uw,2)H0(XG1,I

1 ,ω2(−D))

via the doubling map lands in e(UIw(w),1Uw,2)H0(XG1,I,=w2
1 ,ω2(−D)).

(2) The operator UIw(w),1 is (left and right) invertible on

e(Uw,2)H0(XG1,I
1 ,ω2(−D))⊕ e(Uw,2)H0(XG1,I

1 ,ω2(−D)).

(3) On e(Uw,2)H0(XG1,I
1 ,ω2(−D))⊕ e(Uw,2)H0(XG1,I

1 ,ω2(−D)) we have the identity

UKli(w),1 =UIw(v),1 +Uw,2U−1
Iw(v),1. In particular UKli(w),1 and UIw(w),1 commute with

each other.

Proof. — The doubling map

H0(XG1,I
1 ,ω2(−D))⊕H0(XG1,I

1 ,ω2(−D))→H0(XG1,I,=w2
1 ,ω2(−D))

can be written as an inductive limit of maps between finite dimensional vector spaces
stable under the UIw(w),1 and Uw,2 operators, so we will freely use the usual prop-
erties of linear endomorphisms on finite dimensional vector spaces. We first observe
that the operator Uw,2 is invertible on e(Uw,2)H0(XG1,I

1 ,ω2(−D)). Concretely, for any
f ∈ e(Uw,2)H0(XG1,I

1 ,ω2(−D)) we have e(Uw,2)f = f = UpN!
w,2f for N large enough, and

U−1
w,2f =UpN!−1

w,2 f . Therefore we may consider the operator

U−1
w,2

(
0 −Uw,2

1 UKli(w),1

)

on e(Uw,2)H0(XG1,I
1 ,ω2(−D))⊕ e(Uw,2)H0(XG1,I

1 ,ω2(−D)), and it is straightforward to
check (using that UKli(w),1 and Uw,2 commute, as we noted in the proof of Lemma 5.8.2)
that this is a 2-sided inverse of UIw(w),1. This proves the first and second points. The third
point is obvious from the formulae defining UIw(w),1 and U−1

Iw(w),1. �

We now prove our doubling theorems, combining ingredients from the previous
sections.

Theorem 5.8.4. — Suppose that w ∈ I and that f ∈ H0(XG1,I
1 ,ω2(−D)) satisfies

UKli(w),1f = (αw + βw)f , UIw(w),1f = αwf , and Uw,2f = αwβwf , where αw,βw �= 0. Then

f = 0.

Proof. — First suppose that the restriction of f to XG1,I,=w1
1 is zero. Then we may

write f = Hawg for some g ∈ H0(XG1,I
1 ,ω2 ⊗ ω1−p

w (−D)). Moreover because we have
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Zwf = βwf by hypothesis, we would then have Zwg = βwg by Proposition 5.4.2. But then
by Corollary 5.4.5, g = 0 and hence f = 0.

Now we may suppose that the restriction of f to XG1,I,=w1
1 is nonzero. Combining

Proposition 5.6.7 with Proposition 5.7.9 there is a commutative diagram

H0(YG1,I
1 ,ω2)

HawUIw(w),1

Uw,2

H0(YG1,I,=w1
1 ,ω2|YG1,I,=w1

1
)

γ1

H0(YG1,I
1 ,ω2 ⊗ωp−1

w ) H0(YG1,I,=w1
1 ,ω2 ⊗ωp−1

w |YG1,I,=w1
1

)

γ2

H0(YG1,I
1 ,ω2) H0(YG1,I,=w1

1 ,ω2|YG1,I,=w1
1

)

where the horizontal maps are the natural restriction maps, and the vertical maps on the
right column are as in diagrams (5.6.6) and (5.7.7).

If we start with f in the top left of the diagram, we obtain something nonzero on
the bottom right because Uw,2f = αwβwf and the restriction of f to YG1,I,=w1

1 is nonzero.
The commutativity of the diagram implies that HawUIw(w),1f has nonzero restriction to
YG1,I,=w1

1 . On the other hand, because UIw(w),1f = αwf , HawUIw(w),1f = αwHawf which
vanishes along YG1,I,=w1

1 . This is a contradiction. �

Remark 5.8.5. — In fact, something stronger than Theorem 5.8.4 is true: if w ∈ I,
and f ∈ H0(XG1,I

1 ,ω2(−D)) satisfies Uw,2f �= 0, then UIw(w),1f /∈ H0(XG1,I
1 ,ω2(−D)).

This can be proved in exactly the same way as Theorem 5.8.4, given the following
strengthening of Corollary 5.4.5: if w ∈ I, then

H0(XG1,I
Kp(I)Kp,1,ω2 ⊗ω1−p

w (−D))= 0.

In the case p > 3, we will sketch a proof of this result in §5.9 using Fourier–Jacobi ex-
pansions, but since a complete argument in the case p = 3 would involve developing
considerably more of the details of toroidal compactifications than we need in the rest of
the paper, we have decided not to give the details.

When p > 3, this vanishing result holds even for non cusp forms, so the same is
true of Theorem 5.8.4.

We can now prove the injectivity of the doubling map.

Theorem 5.8.6 (Doubling). — The doubling map

e(Uw,2)H0(XG1,I
1 ,ω2(−D))⊕ e(Uw,2)H0(XG1,I

1 ,ω2(−D))

→ e(UIw(w),1Uw,2)H0(XG1,I,=w2
1 ,ω2(−D))

is injective.
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Proof. — Assume the map is not injective. By Lemma 5.8.2, the kernel is an in-
ductive limit of finite dimensional vector spaces stable under the commuting operators
Uw,2 and UIw(w),1. We may therefore take a nonzero simultaneous eigenvector (f , g) for
Uw,2 and UIw(w),1 in this kernel, with respective eigenvalues αwβw and βw for some αw,
βw �= 0 (the eigenvalues are nonzero because we are by assumption in the ordinary space
for both UIw(w),1 and Uw,2). It follows from the definition of the action of UIw(w),1 that
f = −βwg and UKli(w),1f = (αw + βw)f . Since we are also assuming that f + Zwg = 0,
we see that the image of f in H0(XG1,I,=w2

1 ,ω2(−D)) satisfies UIw(w),1f = αwf . The result
follows from Theorem 5.8.4 (note that the eigenvalues for UIw(w),1 and Uw,2 are nonzero
because we are in the ordinary space for these operators by hypothesis). �

Remark 5.8.7. — We now put the Theorem 5.8.6 in a form that is used in §7.9.
Assume that M ⊂ e(Uw,2)H0(XG1,I

1 ,ω2(−D))⊗ F̄p is a finite dimensional vector space,
stable under UKli(w),1 and Uw,2. Assume that there are distinct elements αw,βw ∈ F̄×p such
that UKli(w),1 − (αw + βw) and Uw,2 − αwβw are nilpotent on M. The sub-algebra E of
End(M) generated by UKli(w),1 and Uw,2 is therefore a local Artinian algebra and there
are elements α̃w, β̃w ∈ E satisfying α̃w = αw mod mE and β̃w = βw mod mE and such
that on M⊕M we have (UIw(w),1 − α̃w)(UIw(w),1 − β̃w)= 0.

We can define maps ιξw
:M→M⊕M by f �→ (f ,−ξ̃−1

w f ) for ξw ∈ {αw,βw}. Then
one checks easily that the map ιαw

⊕ ιβw
:M⊕M→M⊕M is an isomorphism and that

the composite with the doubling map takes the form (f1, f2) �→ ((1− β̃wU−1
Iw(w),1)f1+ (1−

α̃wU−1
Iw(w),1)f2). The first and second components of this map therefore define injective

maps

M ↪→ e(UIw(w),1Uw,2)H0(XG1,I,=w2
1 ,ω2(−D))UIw,1−ξw

,

for ξw respectively equal to αw and βw.

5.9. Vanishing in partial negative weight: Fourier–Jacobi expansions. — We end this sec-
tion by giving a proof of the following vanishing result in “partial negative weight”,
which partially strengthens Corollary 5.4.5 but is not needed in this paper (see also Re-
mark 5.8.5).

Proposition 5.9.1. — Assume w ∈ I. If p > 3 and [F :Q]> 1, then

H0(XI
Kp(I)Kp,1,ω2 ⊗ω1−p

w )= 0.

Remark 5.9.2. — We have a sketch of an argument to show that if p = 3, then
H0(XI

Kp(I)Kp,1,ω2 ⊗ ω1−p
w (−D)) = 0. We also have a sketch of an argument for F = Q.

But to give complete proofs would require us to justify certain properties of Fourier–
Jacobi expansion for which we could not find references (for example we would need to
have good geometric theory of cuspidal Fourier–Jacobi forms).
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We will prove Proposition 5.9.1 by restriction to a boundary stratum, and ulti-
mately reducing to the vanishing of spaces of Hilbert modular forms of partial negative
weight.

We let Kp =∏
v|p GSp4(OFv

), and by possibly shrinking Kp we may assume that
it is a principal level structure in the sense of [Lan13, §1.3.6]. We let c ∈ Z×,+

(p) \(A∞,p ⊗
F)×/ν(Kp), and we may work with the connected component XK,1,c of XK,1. We now
choose a boundary stratum Z ↪→ XK,1,c corresponding to a one dimensional totally
isotropic factor W ∈ C (see §3.5). It means that the restriction of the semi-abelian scheme
along Z is an extension of an abelian scheme A of dimension [F :Q] with OF-action by a
torus T of dimension [F :Q] with OF-action.

Let H := ker(ResF/Q GL2 → (ResF/Q Gm)/Gm). The abelian scheme of dimension
[F : Q] is parametrized by a (connected) Shimura variety for the group H (this is a
Hilbert–Blumenthal modular variety) that we denote by YH,1 and is a moduli space of
isomorphism classes of triples (A, ι, λ, η):

(1) A→ Spec R is an abelian scheme,
(2) ι :OF → End(G)⊗Z(p) is an action,
(3) Lie(A) is a locally free OF ⊗Z R-module of rank 1,
(4) λ : A→ At is a prime to p, OF-linear quasi-polarization such that for all v|p,

Ker(λ : A[v∞]→ At[v∞]) is trivial,
(5) η is a prime to p level structure.

We denote by XH,1 a toroidal compactification of YH,1. We have partial Hasse
invariants Av for all v|p. Let YI

H,1 ⊂XI
H,1 be the Zariski opens where Av is invertible for

all v ∈ Ic. We have a map Z→ YH,1 and we let ZI = Z×YH,1 YI
H,1.

The étale map XKp(I)Kp,1 →XK,1 has a section along ZI ↪→XK,1 which is provided
by the rank one multiplicative groups T[v] for all v ∈ I. Therefore the map XKp(I)Kp,1 →
XK,1 has a section restricted to the completion of XK,1 along ZI.

Proposition 5.9.3 (Fourier–Jacobi expansion principle). — There is a natural injective Fourier–

Jacobi expansion map

H0(XI
Kp(I)Kp,1,c,ω2 ⊗ω1−p

v )→
∏

ξ∈a+
H0(AI

1,ω2 ⊗ω1−p
v ⊗Lξ )

where a is a fractional ideal of OF and a+ are the positive elements, AI
1 → YI

H,1 is an abelian scheme

isogenous to the universal abelian scheme A and Lξ is an invertible sheaf over AI
1, rigidified along the

identity section.

Proof. — The existence of such a map follows from the description of the toroidal
boundary charts, as in [FC90, §V] or [Lan13, §6.2.3,§7.1]. It is obtained by restricting
sections to the completion along ZI. The sheaves Lξ are obtained by pullback from a
Poincaré bundle which is rigidified along the identity section.
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The injectivity result is clear as long as we can show that XI
Kp(I)Kp,1,c

is connected.
This follows directly from the connectedness of XK,1,c and the irreducibility of the Igusa
tower, for which see [Hid04, Cor. 8.17] or [Hid09, Thm. 0.1]. �

We will now prove the vanishing of the groups H0(AI
1,ω2 ⊗ ω1−p

w ⊗ Lξ ). We first
need the following preliminary lemma.

Lemma 5.9.4. — Let S be a scheme and let A → S be an abelian scheme. Let L be an

invertible sheaf on A, rigidified along the unit section. Then for all n ∈ Z≥1, Ln3|A[n] is trivial.

Proof. — It is well-known ([Mum08, Chap. II, §6 and §8]) that n∗L 	 Ln2 ⊗ L0

where L0 is a sheaf algebraically equivalent to zero. Moreover n∗L0 	 Ln
0. Therefore

Ln3 	 (n∗L)n ⊗ n∗L−1
0 is trivial on A[n]. �

Now we may prove the following sequence of vanishing results for negative weight
forms. (Note that the first part is a very special case of the main theorem of [DK17],
although the argument there is different.)

Proposition 5.9.5. — Assume that [F : Q] > 1. Let κ = (kv)v∈Sp
be a weight for H and

suppose that there is a w ∈ I such that kw < 0. Then:

(1) H0(YH,1,ωκ)= 0.

(2) H0(YI
H,1,ωκ)= 0.

(3) For any ξ ∈ a+, H0(AI
1,ωκ ⊗Lξ )= 0.

Proof. — We derive each claim in turn from the previous one:

(1) Let Cw ⊂ YH,1 be the simultaneous vanishing locus of the Hasse invariants Av

for v �=w; it is a (union of) smooth curves (since p is split completely, this is an
easy local calculation). Furthermore, because [F :Q]> 1, it is also proper (note
that if [F :Q] = 1, then Cw = YH,1 is not proper).

By the existence of the secondary Hasse invariants, ωv|Cw
is a torsion

line bundle for v �= w, while ωw|Cw
has positive degree on each component.

Let I be the ideal sheaf of Cw in YH,1. It follows from the Kodaira–Spencer
isomorphism that we have an isomorphism

I/I2 =
⊕

v �=w

ω2
v.

Thus for all m≥ 0, Im/Im+1 = Symm I/I2 is a direct sum of torsion line bun-
dles. Because kw < 0, it follows that Im/Im+1⊗ωκ is a direct sum of line bundles
of negative degree, and hence has no sections. The result follows from this and
the fact that every irreducible component of XH,1 contains a component of Cw

(by considering the formal expansion of any form along Cw).
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(2) If f ∈H0(YI
H,1,ωκ), then, for cv ' 0 for all v ∈ Ic,

f
∏

v∈Ic

Acv
v ∈H0(YH,1,ωκ ⊗

⊗

v∈Ic

ωcv(p−1)
v )

and hence vanishes by part (1). Thus the same conclusion holds for f .
(3) For all n ∈ Z≥1 with (n, p)= 1 we will show that any section of f ∈H0(AI

1,ωκ⊗
Lξ ) vanishes on the n-torsion subgroup AI

1[n], and hence vanishes identically.
After replacing f by f n3

, we can assume that Lξ is the trivial sheaf (see Lemma
5.9.4). We then consider the norm of f for each irreducible component of the
finite étale map AI

1[n]→ YI
H,1 to reduce to part (2). �

Proof of Prop. 5.9.1. — This is an immediate consequence of Proposition 5.9.3 and
Proposition 5.9.5 (3), because all the terms in the Fourier–Jacobi expansion will be zero.

�

6. Higher Coleman theory

In this section, we construct (higher) Coleman theories for GSp4(AF). As in §4,
we assume that p splits completely in F and we construct all possible Coleman theories,
allowing the weight space at each place above p to be either one or two-dimensional. In
the case that F=Q this was carried out in [AIP15] and [Pil20]. Many of our arguments
are simply the “product over the places v|p” of the arguments of [AIP15] and [Pil20]. To
keep this paper at a reasonable length, we will often refer to these papers for the details
of arguments which go over directly to our case.

The main results of this section are Theorem 6.5.8 (a classicality result for over-
convergent cohomology classes of small slope), and Theorem 6.6.4 (which shows that in
the case that I has size at most one, the cohomology of the Hida complex MI constructed
in §4 is overconvergent, once p is inverted). These results together improve (at the expense
of inverting p) on the classicality results of §4, in that they do not require the weight to be
sufficiently large; this is crucial for our applications to abelian surfaces, which correspond
to modular forms of parallel weight 2.

We begin in §6.1 with the construction at the level of formal schemes of a version
of the analytic sheaves of overconvergent forms that we will use later in this section.
The purpose of these sheaves is to allow us in §6.2 to show that the cohomology of our
analytic complexes is concentrated in degrees [0, #I]; as usual, this involves a comparison
of the toroidal and minimal compactifications, and we do not know how to carry out this
argument purely in the analytic setting. In §6.3 we construct the corresponding structures
in the analytic world, and we show that an appropriate Hecke operator (a product of “Up”
operators at the places dividing p) acts compactly.
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We then recall in §6.4 the analytic BGG resolution comparing the cohomology
with locally analytic coefficients to that with algebraic coefficients, which is one of the
ingredients in our small slope classicality theorem, which is proved in §6.5, the other
ingredient being a version of the analytic continuation argument of [Kas06]. Finally,
in §6.6 we apply our results to the complexes constructed in §4.6. We are only able to
show that the ordinary cohomology is overconvergent if #I≤ 1; fortunately, this suffices
for the arguments that we make in §7.

6.1. Sheaves of overconvergent and locally analytic modular forms: the formal construction. —

In this section the base is Cp, the p-adic completion of an algebraic closure of Qp. We
will construct overconvergent versions of our interpolation sheaves �κI and develop a
finite slope theory. It is necessary to connect the ordinary theory and the slope 0 over-
convergent theory, because we are only able to prove a strong classicality theorem in the
overconvergent setting. In the first part of this section, we begin by working at a formal
level. The reason is that we need to prove a vanishing theorem (Theorem 6.2.6) for the
overconvergent cohomology and we don’t know how to prove it without using formal
models.

6.1.1. Slope decompositions. — We very briefly recall the basics of the theory of slope
decompositions for compact operators, which was introduced in [AS08] and further de-
veloped in [Urb11]. Given a vector space M over Cp with a linear endomorphism U, and
a rational number h, an h-slope decomposition of M with respect to U is a decomposi-
tion M=M≤h ⊕M>h into U-stable subspaces, where

• M≤h is finite-dimensional,
• all of the eigenvalues a of U on M≤h have v(a)≤ h, and
• if Q is a monic polynomial whose roots all have valuation less than h, then Q(U)

acts invertibly on M>h.

If slope decompositions exist, they are unique. If they exist for all h, then we say that the
finite slope part is the union of the M≤h for all h ∈Q.

The notion of a slope decomposition can be generalized to the case of modules
over a Cp-Banach algebra A. In particular, it is known that compact operators on pro-
jective A-Banach modules admit slope decompositions locally on Max A. It is explained
in [Urb11, §2] and [Pil20, §13] how to generalize this notion to perfect complexes of
modules over Banach algebras. In brief, an endomorphism U of a perfect complex is
said to be compact if it admits a representative Ũ as an endomorphism of a bounded
complex M• of projective Banach modules, which is compact in each degree. Then one
may consider the product of characteristic power series of Ũ on the individual Mi , and
the corresponding spectral variety for Ũ as in [Col97]. The complex M• determines a
complex of coherent sheaves M• over this spectral variety, and one defines the spectral
variety of U to be the support of the cohomology sheaves H•(M•). One checks that this
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is independent of the choice of M• and Ũ. The sheaves H•(M•) over the spectral variety
for U admit slope decompositions.

6.1.2. Recollections about formal Banach sheaves. — An admissible OCp
-algebra is a flat

OCp
-algebra which is a quotient of a converging power series ring OCp

〈X1, . . . , Xn〉 by
a finitely generated ideal. In this section we work with quasi-compact and separated
p-adic formal schemes over Spf OCp

which admit an open covering by formal spectra
of admissible algebras. We call these formal schemes admissible. (In some parts of the
literature, an admissible affine formal scheme Spf A is one for which A is admissible, in
the sense that it is a complete and separated topological ring, which is linearly topologized
and has an ideal of definition, i.e. an open ideal I such that every neighbourhood of 0
contains some power of I. Our admissible algebras are a special case of this definition,
and we hope that our terminology will not cause any confusion.)

We recall some definitions taken from [AIP15, Defn. A.1.1.1]. We let S be an
admissible formal scheme. A formal Banach sheaf over S is a family (Fn)n≥0 of quasi-
coherent sheaves such that:

(1) Fn is a sheaf of OS/pn-modules,
(2) Fn is flat over OCp

/pn,
(3) For all 0≤ m≤ n, we have isomorphisms Fn ⊗OCp

OCp
/pm 	 Fm.

We can associate to (Fn)n a sheaf F over S equal to the inverse limit lim←−n
Fn (the

maps in the inverse limit are those provided by (3) above). Since Fn = F⊗OCp
OCp

/pn, the
sheaf F clearly determines the (Fn) and we identify F and the family (Fn) in the sequel.
We say that a Banach sheaf F is flat if Fn is a flat OS/pn-module for all n.

We say that a Banach sheaf F is small if there exists a coherent OS/p-module
F such that F1 is an inductive limit of coherent sheaves lim−→j∈N

F1,j and the quotients
F1,j+1/F1,j are direct summands of F .

We now recall a vanishing result from [AIP15].

Theorem 6.1.3. — Let S be an admissible formal scheme. Assume that S admits a projective

map S→ S′ to an affine admissible formal scheme which induces an isomorphism of the associated

analytic adic spaces over Spa(Cp,OCp
). Let F be a small Banach sheaf over S. Let U be an affine

cover of S. Then the Čech complex

Cech(U,F)⊗OCp
Cp

is acyclic in positive degree.

Proof. — This is a special case of [AIP15, Thm. A.1.2.2]. Indeed, the proof
of [AIP15, Thm. A.1.2.2] is by reducing to this case, which is case (1) of that proof. �
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6.1.4. Recollections about the Hodge–Tate period map. — If H→ Spec S is a finite flat
group scheme, we denote by HD its Cartier dual and by ωHD the conormal sheaf of HD

along its unit section. This is a coherent OS-module. We can view ωHD as an fppf -sheaf of
abelian groups. If q : T→ S is an S-scheme, we let ωHD(T)=H0(T, q∗ωHD). There is a
well-known Hodge–Tate map HTH :H→ ωHD of fppf -sheaves of abelian groups which
associates to any S-scheme T and point x ∈ H(T) the differential x∗ dt

t
, where we are

(thanks to Cartier duality) viewing x as a morphism x :HD
T →Gm|T of T-group schemes.

Let K = KpKp be a neat compact open subgroup with Kp = ∏
v|p GSp4(OFv

).
Consider the non-compactified Shimura variety YK → SpecOCp

. We denote by YK →
Spf OCp

the associated p-adic formal scheme. We fix a toroidal compactification YK ↪→
XK and denote by XK the p-adic formal scheme associated to XK. Let YK ↪→XK be the
associated analytic adic spaces over Spa (Cp,OCp

).

Let n = (nv)v∈Sp
∈ Z

Sp

≥0. We let K(pn) be the compact open subgroup defined by
K(pn)=Kp(p

n)Kp where Kp(p
n)=∏

v Ker
(
GSp4(OFv

)→GSp4(OFv
/pnv )

)
is the princi-

pal congruence subgroup of level n.
We let YK(pn),Cp

→ YK ×SpecOCp
Spec Cp be the Shimura variety with level

K(pn) structure over Spec Cp. This map is finite étale with Galois group equal to∏
v|p GSp4(OFv

/pnv ). Associated to our choice of polyhedral cone decomposition we have
a toroidal compactification YK(pn),Cp

→XK(pn),Cp
. We denote by YK(pn) ↪→XK(pn) the asso-

ciated analytic spaces over Spa(Cp,OCp
). The map XK(pn) →XK is finite flat. We denote

by XK(pn) →XK the normalization of XK in XK(pn) and by YK(pn) the normalization of YK

in YK(pn). These are admissible formal schemes (see [PS16a, §1.1]). There is a universal,
OF-linear map

∏
v|p(OFv

/pnvOF)
4 →∏

v|p Gv[pnv ] over YK(pn), which is symplectic up to a
similitude factor and is an isomorphism on the associated analytic adic spaces.

There is a Hodge–Tate period map HT :∏v|p Gv[pnv ] →∏
v|p ωGv

/pnvωGv
(we are

using the quasi-polarization of Gv to identify Gv and GD
v ) which we can compose with∏

v|p(OFv
/pnvOFv

)4 →∏
v|p Gv[pnv ] to obtain an OF-linear map of sheaves over YK(pn)

HT :
∏

v|p
(OFv

/pnvOFv
)4 →

∏

v|p
ωGv

/pnvωGv
.

We claim that this map admits an extension

HT :
∏

v|p
(OFv

/pnvOFv
)4 →

∏

v|p
ωGv

/pnvωGv

over XK(pn). When F =Q, this is the content of [PS16a, Prop. 1.2]. For a general F we
can use the Koecher principle of [Lan17, Thm. 8.7].

According to a result of Fargues ([Far10, Thm. 7], see also [PS16a, Thm. 1.5]),
the cokernel of the linearization of HT is annihilated by p

1
p−1 . By [PS16a, §1.4] when

F=Q (and an immediate generalization for general F), there exists an admissible formal
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scheme Xmod
K(pn) →XK(pn), which is the normalization of a blow-up (the ideal of the blow-up

is finitely generated and contains a power of p), and a modification ωmod
G ⊂ ωG such that:

(1) ωmod
G is a locally free OF ⊗OXmod

K(pn)
-module of rank 2,

(2) p
1

p−1 ωG ⊂ ωmod
G ⊂ ωG ,

(3) The Hodge–Tate map HT factorizes into a map

HT :
∏

v|p
(OFv

/pnvOFv
)4 →

∏

v|p
ωmod
Gv

/p
nv− 1

p−1 ωmod
Gv

and the linearized map

HT⊗ 1 :
∏

v|p
(OFv

/pnvOFv
)4 ⊗OXmod

K(pn)
→

∏

v|p
ωmod
Gv

/p
nv− 1

p−1 ωmod
Gv

is surjective.

We say a few words about the construction of this formal model. We first intro-
duce the subsheaf ωmod

G of ωG generated over XK(pn) by p
1

p−1 ωG and local lifts of
HT(

∏
v|p(OFv

/pnvOFv
)4) in ωG . The sheaf ωmod

G constructed in this way is not locally
free, but becomes locally free after pulling back to Xmod

K(pn) (and we continue to denote
this pulled back sheaf by ωmod

G ). We now describe the procedure used to construct Xmod
K(pn).

Zariski locally over XK(pn) we can find a map
∏

v|p
(OFv

⊗Zp
OXK(pn)

)4 → ωG

by considering local lifts of the Hodge-Tate classes in ωG , and the image of this map is
ωmod
G . Zariski locally, we can trivialize ωG and we can represent the above map by a 2× 4

matrix at each place v|p. The formal scheme is obtained by taking the normalization of
the blow-up of the ideal which is the product at all places v dividing p of the ideal locally
generated by the 2× 2-minors of the matrix at v.

We denote by ev,1, . . . , ev,4 the canonical basis of O4
Fv

. We let ε = (εv)v|p ∈∏
v|p([0, nv − 1

p−1 ] ∩Q). We define an admissible formal scheme XK(pn)(ε)→ Xmod
K(pn) (an

open subscheme of an admissible blowup of Xmod
K(pn)) by the conditions that:

• HT(ev,1) ∈ pεvωmod
Gv

/p
nv− 1

p−1 ωmod
Gv

for all v|p,

• HT(ev,2) ∈ pεvωmod
Gv

/p
nv− 1

p−1 ωmod
Gv

for all v ∈ Ic.

For all v ∈ Ic, the Hodge–Tate map factorizes into an isomorphism HT ⊗ 1 :
OXK(pn)

(ε)/pεv ev,3 ⊕OXK(pn)
(ε)/pεv ev,4 → ωmod

Gv
/pεvωmod

Gv
.

For all v|p, we let Filcan
v ⊂ ωmod

Gv
/pεv be the sub-module generated by HT(ev,2) and

HT(ev,3).
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Lemma 6.1.5. — Filcan
v is a locally free OXK(pn)

(ε)/pεv - module of rank one, and is locally a

direct factor in ωmod
Gv

/pεvωmod
Gv

.

Proof. — See [Pil20, Lem. 12.2.2.1]. �

We let Grcan
v = ωmod

Gv
/(pεvωmod

Gv
+ Filcan

v ). Then for all v|p, the Hodge–Tate map in-
duces an isomorphism:

HT⊗ 1 : (OXK(pn)
(ε)/pεv )ev,4 →Grcan

v .

If v ∈ Ic, the Hodge–Tate map also induces an isomorphism

HT⊗ 1 : (OXK(pn)
(ε)/pεv )ev,3 → Filcan

v .

6.1.6. Flag varieties. — We denote by FLn →Xmod
K(pn) the flag formal scheme which

parametrizes locally free direct summands of rank one (as OF ⊗OXmod
K(pn)

-modules) Filωmod
G

in ωmod
G . This space decomposes into a product FLn =∏

v|p FLv,n over all places v above
p.

Let w = (wv) ∈∏v|p[0, εv] ∩Q. We let FLn,ε,w → XK(pn)(ε) be the moduli space
of locally free direct summands of rank one Filωmod

Gv
⊂ ωmod

Gv
such that Filωmod

Gv
= Filcan

v

mod pwv .
We let w′ = (w′

v) ∈
∏

v|p[0,wv] ∩Q. We let FL+n,ε,w,w′ → FLn,ε,w be the moduli
space parametrizing:

(1) For all v|p a basis ρv :OFL
+
n,ε,w,w′

→ ωGmod
v

/FilωGmod
v

such that ρv(1) =HT(ev,4)

mod pw′v ,
(2) For all v ∈ Ic, a basis νv : OFL

+
n,ε,w,w′

→ FilωGmod
v

such that νv(1) = HT(ev,3)

mod pw′v .

6.1.7. Some groups. — The group
∏

v|p GSp4(OFv
/pnv ) acts on XK(pn) and Xmod

K(pn).
The parabolic subgroup

∏
v∈Ic B(OFv

/pnv )
∏

v∈I Kli(OFv
/pnv ) acts on XK(pn)(ε).

Let us denote by XK(I,pn)(ε) the quotient of XK(pn)(ε) by the action of this finite
group. This is an admissible formal scheme.

We have maps B(OFv
/pnv )→ ((OFv

/pnv )×)2 provided by the last two diagonal en-
tries and Kli(OFv

/pnv )→ (OFv
/pnv )× provided by the last diagonal entry.

We denote by T0
w′ the formal group defined by

T
0
w′(R)=

∏

v∈I

(1+ pw′v R)
∏

v∈Ic

(1+ pw′v R)2

for any admissible OCp
-algebra R.
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We denote by Tw′ the group

Tw′(R)=
∏

v∈I

O×
Fv

(1+ pw′v R)
∏

v∈Ic

(O×
Fv

(1+ pw′v R))2

for any admissible OCp
-algebra R.

Finally, we denote by Tn,w′ the fibre product

Tw′ ×Tw′/T0
w′

∏

v∈Ic

B(OFv
/pnv )

∏

v∈I

Kli(OFv
/pnv ).

6.1.8. Torsors. — The map FL
+
n,ε,w,w′ → FLn,ε,w is a T0

w′-torsor. The group T0
w′

acts on ρv and νv . This action extends to an action of Tn,w′ on FL
+
n,ε,w,w′ → XK(pn)(ε),

compatible with the action of
∏

v∈Ic B(OFv
/pnv )

∏
v∈I Kli(OFv

/pnv ) on XK(pn)(ε).

6.1.9. Formal Banach sheaves. — Let A be a normal admissible OCp
-algebra. Let

κA :∏v∈I O×
Fv

∏
v∈Ic(O×

Fv
)2 → A× be a character, which we assume is w′-analytic, in the

sense that it extends to a pairing Tw′ × Spf A→Gm.
We denote by π1 : FL+n,ε,w,w′ → FLn,ε,w the projection. We can define an invertible

sheaf of OFLn,ε,w
⊗̂A-modules,

L
κA = ((π1)∗OFL

+
n,ε,w,w′

⊗̂A)T
0
w′

where the invariants are taken for the diagonal action.
We let π2 : FLn,ε,w →XK(pn)(ε). This is an affine map. We define a formal Banach

sheaf GκA,w = (π2)∗LκA over XK(pn)(ε); this is independent of the choice of w′, as is easily
seen from the construction.

Finally, we let π3 :XK(pn)(ε)→XK(I,pn)(ε), and we define FκA,w = ((π3)∗GκA,w)Tn,w .
This is a formal Banach sheaf over XK(I,pn)(ε).

6.1.10. Some properties. — For each v ∈ I we choose an element iv ∈ {2, 3}. Let
XK(pn)(ε, (iv)) be the open subset of XK(pn)(ε) where Filcan

v is generated by HT(eiv ) for all
v ∈ I.

Lemma 6.1.11. — The quasi-coherent sheaf GκA,w/pinfv wv restricted to XK(pn)(ε, (iv)) is an

inductive limit of coherent sheaves which are extensions of the sheaf OXK(pn)(ε,(iv))/pinfv wv .

Proof. — This can be proved in the same way as [AIP15, Lem. 8.1.6.2]. �

Lemma 6.1.12. — The quasi-coherent sheaf GκA,w/p is a flat sheaf of OXK(pn)(ε)/p-modules.

Proof. — See [Pil20, Lem. 12.6.2.1]. �
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6.2. Vanishing theorem.

6.2.1. The minimal compactification. — The main result of this subsection is Theo-
rem 6.2.6. As in the proof of Theorem 4.2.1, we will use the minimal compactification,
and in particular the facts that the pushforward of our sheaves to the minimal compact-
ification are supported on open subsets that admit an explicit affine cover, and that the
higher derived pushforwards from the toroidal to minimal compactifications of the cusp-
idal cohomology vanish.

We denote by X∗K the minimal compactification of YK. There is a natural map
XK → X∗K. The invertible sheaf det ωG over XK descends to an invertible sheaf still de-
noted by det ωG over X∗K. Let n= (nv) ∈ Z

Sp

≥0. In this subsection we consider only the case
that nv is independent of v, and accordingly we will write n for nv . We let X∗K(pn) be the
Stein factorization of the morphism: XK(pn) → X∗K. This is a normal admissible formal
scheme. In [PS16a, Cor. 1.4] it is proved that the determinant of the Hodge–Tate map
on XK(pn):

�2HT :
⊗

v|p
�2(OFv

/pnOFv
)4 →

⊗

v|p
det ωGv

/pn

is the pull back of a map denoted the same way:

�2HT :
⊗

v|p
�2(OFv

/pnOFv
)4 →

⊗

v|p
det ωGv

/pn

which is defined over X∗K(pn).

Remark 6.2.2. — Literally, the determinant of the Hodge–Tate map is a map:

�2[F:Q](OF/pnOF)
4 → det ωG/pn.

But using the action of OF, it is easy to see that it factors through the direct factor⊗
v|p �2(OFv

/pnOFv
)4.

By [PS16a, §1.4] (for F=Q, and the same construction for general F), there is a
normal admissible formal scheme X

∗−mod
K(pn) → X∗K(pn) which is the normalization of a blow

up and carries a locally free modification det ωmod
G ⊂ det ωG such that:

(1) p
2[F:Q]

p−1 det ωG ⊂ det ωmod
G ⊂ det ωG .

(2) The Hodge–Tate map factorizes into a surjective map:
⊗

v|p
�2(OFv

/pnOFv
)4 ⊗OX

∗−mod
K(pn)

→ det ωmod
G /p

n− 2[F:Q]
p−1 .
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The construction X
∗−mod
K(pn) follows a similar procedure as the construction of Xmod

K(pn)

explained in Section 6.1.4: one can lift locally the map �2HT to a map
⊗

v|p �2(O4
Fv

)⊗
OX∗K(pn)

→⊗
v|p det ωGv

and consider the normalization of the blow up of the ideal which
is locally the product at all places v of the ideals generated by the coefficients of the
above map at the place v. By the universal properties of blow-ups and normalizations,
there is a map Xmod

K(pn) → X
∗−mod
K(pn) . Let ε = (εv) ∈∏v|p([0, n− 2[F:Q]

p−1 ] ∩Q). We denote by

X∗K(pn)(ε)→X
∗−mod
K(pn) the formal scheme defined by the condition:

• HT(ev,1)∧HT(ev,i)⊗v′|p,v′ �=v HT(ev′,jv′ )∧HT(ev′,kv′ ) ∈ pεv det ωmod
G /p

n− 2[F:Q]
p−1 for all

v|p and 1≤ i, jv′, kv′ ≤ 4,

• HT(ev,2)∧HT(ev,i)⊗v′|p,v′ �=v HT(ev′,jv′ )∧HT(ev′,kv′ ) ∈ pεv det ωmod
G /p

n− 2[F:Q]
p−1 for all

v ∈ Ic and 1≤ i, jv′, kv′ ≤ 4.

There is a Cartesian diagram (see the proof of [Pil20, Lem. 12.9.1.1]):

XK(pn)(ε) Xmod
K(pn)

X∗K(pn)(ε) X
∗−mod
K(pn)

By the proof of [Sch15, Thm. 4.3.1, pp 1029-30] (see also [PS16a, Thm. 1.16]), there is
an integer N such that for all n≥N, there is a normal admissible formal scheme X

∗−HT
K(pn)

and a projective map X
∗−mod
K(pn) → X

∗−HT
K(pn) which is an isomorphism on the associated ana-

lytic spaces and satisfies:

(1) The invertible sheaf det ωmod
G descends to an ample invertible sheaf on X

∗−HT
K(pn) .

(2) For all rational numbers ε > 0, there is n(ε) ≥ N such that if n ≥ n(ε), then
there are sections s(iv,jv)v|p ∈ H0(X∗−HT

K(pn) , det ωmod
G ) satisfying s(iv,jv) =

⊗v|pHT(ev,iv )∧HT(ev,jv ) in det ωmod
G /pε for all 1≤ iv, jv ≤ 4.

Let ε = (εv) ∈ (Q>0)
Sp . Let n ≥ supv n(εv). We define a formal scheme

X
∗−HT
K(pn) (ε)→X

∗−HT
K(pn) by the condition:

• for all v|p, for all (iv′, jv′)v′|p ∈ ({1, 2, 3, 4} × {1, 2, 3, 4})Sp , such that iv = 1, we
have s(iv′ ,jv′ ) ∈ pεv det ωmod

G ,
• for all v ∈ Ic, for all (iv′, jv′)v′|p ∈ ({1, 2, 3, 4}× {1, 2, 3, 4})Sp , such that iv = 2, we

have s(iv′ ,jv′ ) ∈ pεv det ωmod
G .
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We have a Cartesian diagram

X∗K(pn)(ε) X
∗−mod
K(pn)

X
∗−HT
K(pn) (ε) X

∗−HT
K(pn)

where both vertical maps are projective maps and induce isomorphisms on the associated
analytic generic fibres.

For all v ∈ I, let iv ∈ {2, 3}. We define an open subspace X∗−HT
K(pn) (ε, (iv)) of X∗−HT

K(pn) (ε)

by the condition that s(iv,4)v∈I,(3,4)v∈Ic �= 0.
We similarly define an open subspace X∗K(pn)(ε, (iv)) of X∗K(pn)(ε) by the condition

that ⊗v∈IHT(ev,iv )∧HT(ev,4)⊗v∈Ic HT(ev,3)∧HT(ev,4) �= 0 for all v ∈ I.

Lemma 6.2.3. — We have a projective map X∗K(pn)(ε, (iv))→ X
∗−HT
K(pn) (ε, (iv)) which is an

isomorphism on the associated analytic adic spaces. Moreover, X∗−HT
K(pn) (ε, (iv)) is an affine formal scheme.

Proof. — The first point is clear. The second point follows from the ampleness of
det ωmod

G on X
∗−HT
K(pn) (ε) and the fact that X∗−HT

K(pn) (ε, (iv)) is the open subscheme defined by
the non-vanishing of a section of an ample sheaf. �

6.2.4. Vanishing. — We have a map π :XK(pn)(ε)→X∗K(pn)(ε). We denote as usual
by D the boundary divisor.

Proposition 6.2.5. — We have Riπ∗OXK(pn)(ε)(−D)= 0 for all i > 0.

Proof. — This can be proved in exactly the same way as [Pil20, Prop. 12.9.2.1]
(which is the case F=Q). �

Theorem 6.2.6. — Let ε = (εv) ∈ Q
Sp

>0. Let n = (nv) with infv nv ≥ supv n(εv). The

complex

R�(XK(pn)(ε),GκA,w ⊗ (detωmod
G )2(−D))[1/p]

has cohomology concentrated in degrees [0, #I].

Proof. — Consider the hypercube [2, 3]I. We can associate to it a category denoted
by C. Its objects are the faces σ of the hypercube. By definition, a face is a product

∏
v∈I λv

where for each v ∈ I, λv ∈ {2, 3, [2, 3]} (our convention is that faces are closed). There is
a map σ ′ → σ between faces if σ ′ is included in σ .
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We now define a functor Cop →Op(X∗−mod
K(pn) (ε)), where the target is the category of

open subsets of X∗−mod
K(pn) (ε) (whose morphisms are open immersions). It sends a face σ to

Uσ , the intersection of all the formal schemes X∗−mod
K(pn) (ε, (iv)) for (iv)v∈I ∈ σ (we recall that

iv ∈ {2, 3}).
Write f :XK(pn)(ε)→X

∗−mod
K(pn) (ε) for the map defined above. For all σ ∈ C, consider

the following Cartesian diagram:

XK(pn)(ε)σ

fσ

i

XK(pn)(ε)

f

Uσ

j

X
∗−mod
K(pn) (ε)

where j is the natural open immersion.
Let Sh(XK(pn)(ε)) be the category of sheaves on XK(pn)(ε). We define a functor

C→ Sh(XK(pn)(ε)) which sends σ to the sheaf

Gσ = i∗i∗(GκA,w ⊗ (det ωmod
G )2(−D)[1/p]).

We deduce from Lemmas 6.1.11 and 6.1.12, together with Proposition 6.2.5, that
the sheaf f∗Gσ is a small formal Banach sheaf and that Ri f∗Gσ = 0 for all i > 0. It follows
from Theorem 6.1.3 (which applies because of Lemma 6.2.3) that f∗Gσ is acyclic.

We deduce that the cohomology R�(XK(pn)(ε),GκA,w ⊗ (det ωmod
G )2(−D)[1/p]) is

represented by the complex C• concentrated in degree 0 to #I, whose ith term is
⊕σ,dim σ=iH0(XK(pn)(ε),Gσ ) and whose differentials are alternating sums of the restriction
maps H0(XK(pn)(ε),Gσ ′)→H0(XK(pn)(ε),Gσ ) for σ ′ ⊂ σ , dim σ ′ = dim σ − 1. �

6.3. Sheaves of overconvergent and locally analytic modular forms: the analytic construction. —

We now translate our previous formal constructions to the analytic setting, which is well
adapted for the spectral theory.

6.3.1. Analytic Hilbert–Siegel varieties. — This section is parallel to [Pil20, §12.7].
We let XK(pn) be the generic fibre of XK(pn). We write XK for the generic fibre of XK. We
let XK(pn)(ε) ⊂ XK(pn) be the generic fibre of XK(pn)(ε). We let XK(I,pn)(ε) be the generic
fibre of XK(I,pn)(ε). We now give a modular interpretation of this last space. Let A be the
universal semi-abelian scheme and G be its p-divisible group. Let ωG be the conormal
sheaf of A at the origin and let ω+G ⊂ ωG be the subsheaf of integral differentials (we use
the slight abuse of notation to write ωG instead of ωA). These are sheaves over XK on the
analytic site.

We let ω
mod,+
G be the subsheaf of ω+G generated by the image of the Hodge–Tate

map. This is an étale sheaf over XK.
The fibres of the map XK(I,pn)(ε)→XK parametrize:
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• For all v ∈ I, a subgroup Hv,nv
⊂ Gv[pnv ] which is locally for the étale topology

isomorphic to Z/pnv Z and is locally for the étale topology generated by an ele-
ment ev,1 which satisfies HT(ev,1)= 0 in ω

mod,+
Gv

/pεv .
• For all v ∈ Ic, totally isotropic subgroups Hv,nv

⊂ Lv,nv
⊂ Gv[pnv ] such that Hv,nv

is locally for the étale topology isomorphic to Z/pnv Z, Lv,nv
is locally for the étale

topology isomorphic to (Z/pnvZ)2, and is locally for the étale topology generated
by elements ev,1 and ev,2 which satisfy HT(ev,1)=HT(ev,2)= 0 in ω

mod,+
Gv

/pεv .

We can define for all v|p an étale sheaf Filcan
v = Im(HT : H⊥

v,nv
⊗ O+

XK(I,pn)(ε) →
ω

mod,+
Gv

/pεv ). This is a étale locally free sheaf of O+
XK(I,pn)(ε)/pεv -modules of rank 1. We let

Grcan
v = ω

mod,+
Gv

/(pεv + Filcan
v ).

We have isomorphisms deduced from the Hodge–Tate map:

• HT :HD
v,nv
⊗O+

XK(I,pn)(ε)/pεv →Grcan
v for all v|p,

• HT : (Lv,nv
/Hv,nv

)D⊗O+
XK(I,pn)(ε)/pεv → Filcan

v for all v ∈ Ic.

We let FLK(I,pn),ε,w →XK(I,pn)(ε) be the moduli space of flags FilωG ⊂ ωG satisfying
FilωGv

∩ω
mod,+
Gv

/pwv = Filcan
v /pwv .

We let XK(I,pn)+(ε)→XK(I,pn)(ε) be the étale cover parametrizing trivializations:

• Z/pnv Zev,4
∼→HD

v,nv
for all v|p,

• Z/pnv Zev,3
∼→ (Lv,nv

/Hv,nv
)D for all v ∈ Ic.

We let FL+K(I,pn),ε,w,w′ →FLK(I,pn),ε,w ×XK(I,pn)(ε) XK(I,pn)+(ε) be the moduli space of
trivializations of:

• for all v|p, ρv : OFL+
K(I,pn),ε,w,w′

→ GrωGv
= ωGv

/ Fil ωGv
such that ρv(1) =

HT(ev,4) modulo pw′v .
• for all v ∈ Ic, νv : OFL+

K(I,pn),ε,w,w′
→ FilωGv

such that νv(1) = HT(ev,3) modulo

pw′v .

We can connect these definitions with the constructions of the previous sections.
Let FLn,ε,w →XK(pn)(ε) be the analytic space associated to FLn,ε,w. Let FL+n,ε,w,w′ be the
analytic space associated to FL

+
n,ε,w,w′ .

Lemma 6.3.2. — We have

FLn,ε,w =FLK(I,pn),ε,w ×XK(I,pn)(ε) XK(pn)(ε)

and

FL+n,ε,w,w′ =FL+K(I,pn),ε,w,w′ ×XK(I,pn)+ (ε) XK(pn)(ε).

Proof. — This follows from the definitions. �
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6.3.3. Banach sheaves. — We let LκA be the invertible sheaf over FLn,ε,w ×
Spa(A[1/p], A) associated to LκA . We let GκA,w be the Banach sheaf over XK(pn)(ε) associ-
ated to GκA,w. We let F κA,w be the Banach sheaf over XK(I,pn)(ε) attached to FκA,w. A direct
definition of F κA,w is the following. Let π :FL+K(I,pn),ε,w,w′ →XK(I,pn)(ε) be the affine pro-
jection. Let Tw′ be the generic fibre of Tw′ . This group acts naturally on FL+K(I,pn),ε,w,w′ ,
trivially on XK(I,pn)(ε), and the morphism π is equivariant for the action. It follows from
the definitions that

F κA,w = (π∗OFL+
K(I,pn),ε,w,w′

⊗̂A)Tw′

where the invariants are for the diagonal action (with the action on the second factor
being via κA).

6.3.4. Locally analytic overconvergent cohomology. — We define the n, ε-convergent,
cuspidal w-analytic cohomology of weight parametrized by A to be:

Ccusp(n, ε,w,κA ⊗ (2, 2)v|p) :=R�(XK(I,pn)(ε),F κA,w ⊗ (detωG)2(−D)).

For ε ′ ≥ ε, n′ ≥ n, w′ ≥ w, we have maps: Ccusp(n, ε,w,κA ⊗ (2, 2)v|p)→ Ccusp(n
′, ε ′,w′,

κA ⊗ (2, 2)v|p).
Passing to the limit over n, ε,w, we define the ith cohomology groups of cuspidal,

overconvergent, locally analytic cohomology of weight parametrized by A:

Hi
cusp(†, κA ⊗ (2, 2)v|p)= lim−→Hi(Ccusp(n, ε,w,κA ⊗ (2, 2)v|p)).

6.3.5. Properties of locally analytic overconvergent cohomology. —

Proposition 6.3.6. — The complex Ccusp(n, ε,w,κA⊗ (2, 2)v|p) is represented by a bounded

complex of projective Banach A[1/p]-modules.

Proof. — This follows easily by considering a Čech complex; see [Pil20, Prop.
12.8.2.1]. �

Proposition 6.3.7. — The cohomology Hi
cusp(†, κA ⊗ (2, 2)v|p) vanishes for i /∈ [0, #I].

Proof. — This follows from Theorem 6.2.6. �

6.3.8. Descent. — We now assume that the character

κA :
∏

v∈I

O×
Fv

∏

v∈Ic

(O×
Fv

)2 → A×

is trivial on the torsion subgroup of
∏

v∈I O×
Fv

∏
v∈Ic(O×

Fv
)2 (of order prime to p since p > 2).
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The group (OF)
×,+
(p) acts on XK(I,pn), and the action factors through a finite group.

We let X G1
K(I,pn) be the quotient. The action of (OF)

×,+
(p) can be lifted to the sheaf F κA,w by

setting

x : x∗F κA,w →F κA,w

for all x ∈ (OF)
×,+
(p) , to be the composition of the tautological isomorphism (the polar-

ization is not used in the construction of the sheaf) and multiplication by the character
d : (OF)

×,+
(p) →�×

I → A× of §4.4.2.

We denote by F κ
G1
A ,w the descended sheaf on X G1

K(I,pn). We let

Ccusp(G1, n, ε,w,κA ⊗ (2, 2)v|p)

be the cohomology of the sheaf

F κ
G1
A ,w ⊗ (detωG)2(−D)

over X G1
K(I,pn)(ε). This is a direct factor of Ccusp(n, ε,w,κA ⊗ (2, 2)v|p). We also let

Hi
cusp(G1, †, κA ⊗ (2, 2)v|p)= lim−→Hi(Ccusp(G1, n, ε,w,κA ⊗ (2, 2)v|p)).

6.3.9. Spectral theory: construction of the operator Uv,2. — Firstly let v ∈ I. We define
an analytic adic space s1 : Cv,2 → XK(I,pn)(ε) which parametrizes isogenies A→ A′ with
associated Barsotti–Tate group G→ G ′ whose kernel is a group Mv ⊂ Gv[p2] which:

• is totally isotropic and locally isomorphic to (OFv
/pOFv

)2 ⊕OFv
/p2OFv

,
• has trivial intersection with Hv,nv

.

There is a second projection s2 : Cv,2 →XK(I,pn′ )(ε
′) where:

• n′ = (n′v′)v′|p where n′v = nv + 1, and n′v′ = nv′ if v′ �= v.
• ε ′ = (εv′)v′|p where ε ′v = εv + 1, and ε ′v′ = εv′ if v′ �= v.

This map is provided by sending (A, A′) to A′, equipped with the subgroups:

• H′
v′,nv′ = Im(Hv′,nv′ ) for all v′ �= v,

• L′v′,nv′ = Im(Lv′,nv′ ) for all v′ ∈ Ic,
• H′

v,nv+1 = Im(p−1Hv,nv
) where p−1Hv,nv

is the pre-image in Gv[pnv+1] of Hv,nv
.

One checks as in [Pil20, Lem. 13.2.1.1] (see also Lemma 6.3.13 below) that the
image of s2 lands in XK(I,pn′ )(ε

′). The natural map ωG′ → ωG induces a natural map
s∗2F κA,w′ → s∗1F κA,w, where w′ = (wv′) with w′

v′ = wv′ if v′ �= v, and w′
v = wv + 1.

(See [Pil20, Lem. 13.2.2.1].) We deduce that there is a normalized map s∗2F κA,w′ ⊗
(detωG)2(−D) → s∗1F κA,w ⊗ (det ωG)2(−D) obtained by taking the tensor product of
the above map and the normalized map (by p−2) s∗2(detωG)2(−D)→ s∗1(det ωG)2(−D).
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We can therefore construct a Hecke operator Uv,2 : R�(XK(I,pn)(ε),F κA,w ⊗
(det ωG)2(−D))→R�(XK(I,pn),F κA,w ⊗ (det ωG)2(−D)) by the following composition:

R�(XK(I,pn)(ε),F κA,w ⊗ (det ωG)2(−D))

→R�(XK(I,pn′ )(ε
′),F κA,w′ ⊗ (det ωG)2(−D))

→R�(Cv,2, s∗2F κA,w′ ⊗ (detωG)2(−D))

→R�(Cv, s∗1F κA,w ⊗ (detωG)2(−D))

→R�(XK(I,pn)(ε), (s1)∗s∗1F κA,w ⊗ (det ωG)2(−D))

p−3Tr→ R�(XK(I,pn)(ε),F κA,w ⊗ (det ωG)2(−D)).

Now let v ∈ Ic. We define an analytic adic space s1 : Cv,2 → XK(I,pn)(ε) which
parametrizes isogenies G→ G ′ whose kernel is a group Mv ⊂ Gv[p2] which:

• is totally isotropic and locally isomorphic to (OFv
/pOFv

)2 ⊕OFv
/p2OFv

, and
• locally in the étale topology there is a symplectic isomorphism (Gv)[p∞] 	

(Fv/OFv
)4 such that

– Mv is generated by p−1ev,2, p−1ev,3, p−2ev,4,
– Hv,nv

is generated by p−nv ev,1, and
– Lv,nv

is generated by p−nv ev,1 and p−nv ev,2.

There is a second projection s2 : Cv,2 →XK(I,pn)(ε), sending (G,G ′) to G ′, equipped
with the subgroups:

• H′
v′,nv′ = Im(Hv′,nv′ ) for all v′ �= v.

• L′v′,nv′ = Im(Lv′,nv′ ) for all v′ ∈ Ic, v′ �= v.
• In the notation above, H′

v,nv
is the group generated by the image in G ′ of p−nv ev,1

and L′v,nv
is the group generated by the image of p−nv ev,1 and p−nv−1ev,2. One

checks easily that these groups only depend on Mv , Hv,nv
and Lv,nv

(and not on
the choice of symplectic basis).

Again, there is a natural map s∗2F κA,w → s∗1F κA,w. (See [Pil20, Lem. 13.2.2.1] and
[AIP15, §6.2].) We deduce that there is a normalized map s∗2F κA,w ⊗ (det ωG)2(−D)→
s∗1F κA,w ⊗ (detωG)2(−D) obtained by taking the tensor product of the above map and
the normalized map (by p−2) s∗2(det ωG)2(−D)→ s∗1(det ωG)2(−D).

We can therefore construct a Hecke operator Uv,2 : R�(XK(I,pn)(ε),F κA,w ⊗
(det ωG)2(−D))→R�(XK(I,pn),F κA,w ⊗ (det ωG)2(−D)) by the following composition:

R�(XK(I,pn)(ε),F κA,w ⊗ (det ωG)2(−D))

→R�(Cv,2, s∗2F κA,w ⊗ (det ωG)2(−D))

→R�(Cv,2, s∗1F κA,w ⊗ (det ωG)2(−D))



334 GEORGE BOXER, FRANK CALEGARI, TOBY GEE, VINCENT PILLONI

→R�(XK(I,pn)(ε), (s1)∗s∗1F κA,w ⊗ (det ωG)2(−D))

p−3Tr→ R�(XK(I,pn)(ε),F κA,w ⊗ (det ωG)2(−D)).

Remark 6.3.10. — When v ∈ Ic we observe that Uv,2 itself is not improving ana-
lyticity and convergence in the v direction (while it visibly does so in the case v ∈ I). We
next define an operator Uv,1 when v ∈ Ic. We will then show that the composite operator
Uv,1Uv,2 improves analyticity and convergence. (This is related to our needing to use both
the operators Tv and Tv,1 at places v ∈ Ic in §4.)

6.3.11. Spectral theory: construction of the operator Uv,1. — We let v ∈ Ic. We define
an analytic adic space t1 : Cv,1 → XK(I,pn)(ε) which parametrizes isogenies A→ A′ with
associated Barsotti–Tate groups G→ G ′ whose kernel is a group Mv ⊂ Gv[p] which:

• is totally isotropic and locally isomorphic to (OFv
/pOFv

)2,
• has trivial intersection with Lv,nv

.

There is a second projection t2 : Cv,1 →XK(I,pn)(ε), given by sending (A, A′) to A′,
equipped with the subgroups:

• H′
v′,nv′ = Im(Hv′,nv′ ) for all v′,

• L′v′,nv′ = Im(Lv′,nv′ ) for all v′ ∈ Ic.

There is a natural map t∗2F κA,w → t∗1F κA,w (again see [Pil20, Lem. 13.2.2.1] and
[AIP15, §6.2]). We deduce that there is a map t∗2F κA,w′ ⊗ (detωG)2(−D)→ t∗1F κA,w ⊗
(detωG)2(−D) obtained by taking the tensor product of the above map and the map
t∗2(det ωG)2(−D)→ t∗1(detωG)2(−D).

We can therefore construct a Hecke operator Uv,1 : R�(XK(I,pn)(ε),F κA,w ⊗
(detωG)2(−D))→R�(XK(I,pn),F κA,w ⊗ (det ωG)2(−D)) by the following composition:

R�(XK(I,pn)(ε),F κA,w ⊗ (detωG)2(−D))

→R�(Cv,1, t∗2F κA,w ⊗ (detωG)2(−D))

→R�(Cv,1, t∗1F κA,w ⊗ (detωG)2(−D))

→R�(XK(I,pn)(ε), (t1)∗t∗1F κA,w ⊗ (detωG)2(−D))

p−3Tr→ R�(XK(I,pn)(ε),F κA,w ⊗ (det ωG)2(−D)).

6.3.12. Spectral theory: construction of the operator Uv,1Uv,2. — Let v ∈ Ic. We now
consider the composite operator Uv,1Uv,2. Our main task it to show that this operator
improves convergence and analyticity in the v-direction. We begin by giving the corre-
spondence corresponding to this composite.
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We define an analytic adic space u1 : Cv →XK(I,pn)(ε) which parametrizes isogenies
A → A′ with associated Barsotti–Tate groups G → G ′ whose kernel is a group Mv ⊂
Gv[p3] which:

• is totally isotropic and locally isomorphic to OFv
/pOFv

⊕OFv
/p2OFv

⊕OFv
/p3OFv

,
• locally in the étale topology there is a symplectic isomorphism (Gv)[p∞] 	

(Fv/OFv
)4 such that

– Mv is generated by p−1ev,2, p−2ev,3, p−3ev,4,
– Hv,nv

is generated by p−nv ev,1, and
– Lv,nv

is generated by p−nv ev,1 and p−nv ev,2.

There is a second projection u2 : Cv →XK(I,pn′ )(ε
′), given by sending (A, A′) to A′,

equipped with the subgroups:

• H′
v′,nv′ = Im(Hv′,nv′ ) for all v′ �= v,

• L′v′,nv′ = Im(Lv′,nv′ ) for all v′ ∈ Ic, v′ �= v,
• In the notation above, H′

v,nv+1 is the group generated by the image in G ′ of
p−nv−1ev,1 and L′v,nv+1 is the group generated by the image of p−nv−1ev,1 and
p−nv−2ev,2. One checks easily that these groups only depend on Mv , Hv,nv

and
Lv,nv

.

Lemma 6.3.13. — The image of u2 lands in XK(I,pn′ )(ε
′).

Proof. — We argue in the same way as in the proof of [Pil20, Lem. 13.2.1.1]. We fix
symplectic bases (ev,i)1≤i≤4 of Tp(G), (e′v,i)1≤i≤4 of Tp(G ′), (fi)1≤i≤2 of ωmod

Gv
, and (f ′i )1≤i≤2 of

ωmod
G′v (compatible with the canonical filtration) such that there is a commutative diagram:

Tp(Gv)
diag(1,p,p2,p3)

HT

Tp(G ′v)

HT

ωmod
Gv

diag(p2,p3)

ωmod
G′

By definition we have that HT(ev,1), HT(ev,2) ∈ pεvωmod
Gv

. On the other hand,
HT(ev,3), HT(ev,4) generate ωmod

Gv
and HT(e′v,3), HT(e′v,4) generate ωmod

G′v . The group
Lv,nv+1 is generated by diag(1, p, p2, p3) · ev,1 = e′v,1 and diag(1, p, p2, p3) · p−1ev,2 = e′v,2.
Therefore we deduce that HT(e′v,1), HT(e′v,2) ∈ pεv+1ωmod

G . �

There is again a natural map u∗2F κA,w′ → u∗1F κA,w where w′ = (wv′) with w′
v′ =wv′

is v′ �= v and w′
v = wv + 1; see [Pil20, Lem. 13.2.2.1] and [AIP15, §6.2]. We deduce

that there is a normalized map u∗2F κA,w′ ⊗ (detωG)2(−D)→ u∗1F κA,w ⊗ (detωG)2(−D)

obtained by taking the tensor product of the above map and the normalized map (by p−2)
u∗2(detωG)2(−D)→ u∗1(detωG)2(−D).
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We can therefore construct a Hecke operator Uv,2Uv,1 : R�(XK(I,pn)(ε),F κA,w ⊗
(detωG)2(−D))→R�(XK(I,pn),F κA,w ⊗ (det ωG)2(−D)) by the following composition:

R�(XK(I,pn)(ε),F κA,w ⊗ (detωG)2(−D))

res→R�(XK(I,pn′ )(ε
′),F κA,w′ ⊗ (detωG)2(−D))

→R�(Cv, u∗2F κA,w′ ⊗ (det ωG)2(−D))

→R�(Cv, u∗1F κA,w ⊗ (det ωG)2(−D))

→R�(XK(I,pn)(ε), (u1)∗u∗1F κA,w ⊗ (det ωG)2(−D))

p−6Tr→ R�(XK(I,pn)(ε),F κA,w ⊗ (det ωG)2(−D))

We now set UI =∏
v∈I Uv,2

∏
v∈Ic Uv,1Uv,2.

Lemma 6.3.14. — The operator UI acting on Ccusp(G1, n, ε,w,κA⊗ (2, 2)v|p) is compact.

Moreover, for n+1= (nv+1)v|p, ε+1= (εv+1)v and w+1= (wv+1)v we have a factorization

(where the vertical maps are the natural restriction maps):

Ccusp(G1, n, ε,w,κA ⊗ (2, 2)v|p)
UI

Ccusp(G1, n, ε,w,κA ⊗ (2, 2)v|p)

Ccusp(G1, n+ 1, ε + 1,w+ 1, κA ⊗ (2, 2)v|p)
UI

Ccusp(G1, n+ 1, ε + 1,w+ 1, κA ⊗ (2, 2)v|p)

Proof. — By construction, the action of UI can be factored into

R�(X G1
K(I,pn)(ε),F κ

G1
A ,w ⊗ (det ωG)2(−D))

→R�(X G1
K(I,pn+1)

(ε + 1),F κ
G1
A ,w+1 ⊗ (det ωG)2(−D))

ŨI→R�(X G1
K(I,pn)(ε),F κ

G1
A ,w ⊗ (det ωG)2(−D))

where n + 1 = (nv + 1)v|p and ε + 1 = (εv + 1)v , w + 1 = (wv + 1)v . It is enough

to show that the map R�(X G1
K(I,pn)(ε),F κ

G1
A ,w ⊗ (detωG)2(−D)) → R�(X G1

K(I,pn+1)
(ε +

1),F κ
G1
A ,w+1 ⊗ (det ωG)2(−D)) is compact. This follows by consideration of an appro-

priate Čech complex, as in [Pil20, Lem. 13.2.4.1]. �

6.3.15. Spectral theory: local constancy of the Euler characteristics. — Let Wcl be the set
of weights κ = ((kv, lv))v|p ∈ ZSp , with lv = 2 if v ∈ I, kv ≡ lv ≡ 2 mod(p− 1) for all v|p. It
is equipped with the p-adic topology.
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For all κ ∈ Wcl , we let Ccusp(G1, n, ε,w,κ) be n, ε-convergent, w-analytic coho-
mology of weight κ and we set Hi

cusp(G1, †, κ) = lim−→Hi(Ccusp(G1, n, ε,w,κ)). In other
words, following the notation of §6.3.8, we have A = Cp and κA = κ ⊗ (−2,−2)v|p. It
follows from Lemma 6.3.14 that the cohomology groups e(UI)Hi

cusp(G1, †, κ) are finite-
dimensional. The following standard consequence of our constructions will be crucial
in our comparison in §6.6 of the complexes constructed in §4 and the overconvergent
cohomology we are considering in this section.

Theorem 6.3.16. — The map

Wcl → Z

κ �→
∑

i

(−1)i dim e(UI)Hi
cusp(G1, †, κ)

is locally constant.

Proof. — This follows from Coleman’s theory [Col97, §A5], as in [Pil20, §13.4].
Indeed, there is a perfect complex C• interpolating Ccusp(G1, n, ε,w,κ) over the spectral
variety, and the dimensions of the slope zero parts of the Ci are locally constant. �

Remark 6.3.17. — In particular if #I= 1, we deduce that

κ �→ dim e(UI)H0
cusp(G1, †, κ)− dim e(UI)H1

cusp(G1, †, κ)

is locally constant. We will use this in §6.6 to reduce the comparison of ordinary and over-
convergent cohomology to the case of high weight, where the control theorems proved
in §4 apply.

6.4. Locally analytic overconvergent classes and algebraic overconvergent classes. — Let κ =
((kv, lv))v|p with lv = 2 if v ∈ I, kv ≡ lv ≡ 2 mod (p− 1) be a dominant algebraic weight.

Proposition 6.4.1. — On Hi
cusp(G1, †, κ), the slopes of (Uv,1)v∈Ic and (Uv,2)v|p are ≥−3.

On H0
cusp(G1, †, κ) they are ≥ 0.

Proof. — The proof of [Pil20, Prop. 13.3.1.1] goes through essentially without
change. �

Below, we denote by F κ,w− = lim−→w′<w
F κ,w′ .
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Proposition 6.4.2. — Let κ = ((kv, lv))v|p with lv = 2 if v ∈ I, kv = lv = 2 mod (p− 1)

be a dominant algebraic weight. There is a relative analytic BGG resolution:

0→ ωκ(−D)→F κ,w− ⊗ (det ωG)2(−D)

→
⊕

s∈W(1)

F s•κ,w− ⊗ (detωG)2(−D)→ ·· ·

→
⊕

s∈W(d)

F s•κ,w− ⊗ (det ωG)2(−D)→ 0

where W is the Weyl group of GL2(F⊗Q Qp), W(i) stands for the elements of length i in W, and • is

the twisted Weyl action.

Proof. — This is a relative version of the main result of [Jon11], and is proved
in [AIP15, §7.2]. (Note though that there is a minor error there; one needs to replace F κ,w

with F κ,w− as defined above, but having made this change, the arguments go through
unchanged.) �

The actions of Uv,1 and Uv,2 by cohomological correspondences on the sheaf
F κ,w− ⊗ (detωG)2(−D) restrict to actions on the subsheaf ωκ(−D) (and the action of
UI is compact on the cohomology).

Corollary 6.4.3. — Let κ = ((kv, lv))v|p with lv = 2 if v ∈ I, kv ≡ lv ≡ 2 mod (p− 1)

be a dominant algebraic weight. Then the map

e(UI)Hi(XK(I,pn)(ε),ωκ(−D))

→ e(UI)Hi(XK(I,pn)(ε),F κ,w ⊗ (detωG)2(−D))

is an isomorphism for i = 0 and injective if i = 1. It is an isomorphism for i = 1 if we further assume

that kv − lv ≥ 3 for all v|p.

Proof. — Proposition 6.4.2 gives a spectral sequence Ep,q

1 = ⊕s∈W(p)Hq(XK(I,pn)(ε),

F s•κ,w ⊗ (detωG)2(−D)) converging to Hp+q(XK(I,pn)(ε),ωκ(−D)). We shall see that
the ordinary projector kills the terms Ep,q

1 of the spectral sequence for p > 1 under a
suitable normalization of the action of the Hecke operators and suitable assumptions
on the weight κ . We analyze the differentials of proposition 6.4.2:

⊕
s∈W(i) F s•κ,w− ⊗

(detωG)2(−D) →⊕
s∈W(i+1) F s•κ,w− ⊗ (det ωG)2(−D). We let W = ∏

v|p{1v,wv} with
�(wv) = 1. For any subset J of places diving p, we let wJ = ∏

v∈J wv . The above
map is given by the product of the maps θs,s′ : F s•κ,w− ⊗ (detωG)2(−D)→ F s′•κ,w− ⊗
(detωG)2(−D) for s = wJ (for a subset J of cardinality i) and s′ = wJ∪{v} for v /∈ J. By
[AIP15, §7.3], this map induces on cohomology an equivariant map for the operators
Uw,i for w �= v and Uv,1; and on the other hand, we have Uv,2 ◦ θs,s′ = p(kv−lv)+1θs,s′ ◦Uv,2.
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A way to interpret this relation is to say that the spectral sequence is equivariant for
the action of Hecke operators, if the standard action of Uv,2 on Hi(XK(I,pn)(ε),FwJ•κ,w ⊗
(det ωG)2(−D)) is twisted by multiplication by pkv−lv+1 if v ∈ J. The corollary therefore
follows from the slope bounds of Propositions 6.4.1. �

6.5. Small slope forms are classical.

6.5.1. Fargues’ degree function. — We now recall some results on the degree of quasi-
finite flat group schemes, following the papers [Far10, Far11]. Let K be a complete valued
extension of Qp with corresponding valuation v :K→R∪ {∞}, which we assume to be
normalized so that v(p) = 1. We also write v :OK/pOK → [0, 1] for the induced map.
If M is a finitely presented torsion OK-module, then we can write M ∼= ⊕r

i=1OK/xi for
some xi ∈OK, and we set deg M :=∑r

i=1 v(xi mod p).
If H is a group scheme over OK, we let ωH denote the conormal sheaf to the

identity section. If H is finite flat, then ωH is finitely presented and torsion over OK, and
following Fargues we define the degree of H to be

deg H := deg ωH.

More generally, let A→ A′ be an isogeny of semi-abelian schemes with associated
p-divisible groups G→ G ′ over some analytic adic space S. We denote by ωG and ωG′ the
conormal sheaves of A and A′ along their unit sections and by ω+G and ω+G′ the subsheaf
of integral differentials (which means that locally on S they arise from differentials on a
formal model of A or A′). Let H be the kernel of G→ G ′. This is a quasi-finite group
scheme. To this isogeny we may attach a section δH of the locally free sheaf of rank one
det ωG′ ⊗ det ω−1

G . Moreover, this section lies in the subsheaf (det ωG′)
+ ⊗ (detω−1

G )+ of
integral differential forms. For each point x ∈ S, we may compute the associated norm
|δH|x, by choosing a trivialization of (detωG′)

+ ⊗ (det ω−1
G )+ in a neighbourhood of x and

viewing δH as a function (the norm |δH|x is independent of the trivialization). If x ∈ S
is a rank one point with associated valuation normalized by vx(p) = 1, and if Hx ⊂ Gx

extends to a finite flat group scheme on a formal model Gx of Gx over Spec k(x)+, then
vx(δH)= deg Hx.

6.5.2. Neighbourhoods of the ordinary locus. — Recall from §4.3 that we define

Kp(I)=
∏

v∈I

Kli(v)
∏

v∈Ic

Iw(v).

We can consider XKp(I)Kp . Let XKpKp(I) be the associated analytic space. For each
v|p, we have an isogeny G→ G ′ whose kernel is a quasi-finite group scheme Hv which is
of order p away from the boundary. For each v ∈ Ic, we have an isogeny G→ G ′ whose
kernel is a quasi-finite group scheme Lv which is of order p2 away from the boundary.
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Let X rk1
KpKp(I)

be the subset of rank one points. To each rank one point x is associated
a rank one valuation vx :OXKp(I)Kp,x

→R∪{∞} which we normalize by vx(p)= 1. If v ∈ I,

we define degv :X rk1
KpKp(I)

→[0, 1] by degv(x)= vx(δHv
). Similarly, for all v ∈ Ic, we define

degv :X rk1
KpKp(I)

→[0, 2] by degv(x)= vx(δLv
).

We can put all these degree functions together into a function

deg :X rk1
KpKp(I) →[0, 1]I × [0, 2]Ic

.

For each rational interval J ⊂ [0, 1]I × [0, 2]Ic

, there is a unique quasi-compact
open subset XKpKp(I)(J)⊂XKpKp(I) such that XKpKp(I)(J)

rk1 = deg−1(J).
Of particular interest is the multiplicative locus:

Xmult
KpKp(I) =XKpKp(I)({1}I× {2}Ic

).

Let (εv) ∈ ([0, 1]I × [0, 2]Ic

)∩QSp and set

XKpKp(I)((εv)v∈Sp
)=XKpKp(I)(

∏

v∈I

[1− εv, 1]I ×
∏

v∈Ic

[2− εv, 2]Ic

).

Observe that Xmult
KpKp(I)

= XKpKp(I)((0)v∈Sp
) while {XKpKp(I)((εv)v∈Sp

)}εv→0+,∀v∈Sp
is a

fundamental system of strict neighbourhoods of Xmult
KpKp(I)

.
All these spaces are stable under the action of OF

×,+
(p) on the polarization, and

descend to open subspaces of X G1
KpKp(I)

. We can therefore add a superscript G1 to any of
these spaces with the obvious meaning.

6.5.3. Comparison between spaces of overconvergent cohomology. — In this section we
make the connection between the spaces XKpKp(I)((εv)v∈Sp

) (with εv ∈ ([0, 1]I× [0, 2]Ic

)∩
QSp ) that we just introduced and the spaces XK(I,pn)((εv)v∈Sp

) (say for parallel n ∈ Z≥1 and
with εv ∈ ([0, n− 1

p−1 ] ∩Q)Sp ) introduced in §6.1.4. Both types of spaces are neighbour-
hoods of the multiplicative locus in an appropriate sense. The previous spaces are well
adapted to the construction of interpolation sheaves and eigenvarieties while these new
spaces appear naturally when one wants to prove classicity theorems.

There is a natural forgetful map XK(I,pn)((εv)v∈Sp
) → XKpKp(I). By [Pil20, Lem.

14.1.1] (for the places v ∈ I, and a trivial extension for the places v ∈ Ic), this map fac-
tors into a map XK(I,pn)((εv)v∈Sp

)→ XKp(I)Kp((1− 2
n
(n− εv + 1

p−1))v∈I × (2− 2
n
(n− εv +

1
p−1))v∈Ic). Observe that when εv = n− 1

p−1 and n→∞, 1− 2
n
(n − εv + 1

p−1)→ 1 and
2− 2

n
(n− εv+ 1

p−1)→ 2. Conversely, by [Pil20, Lem. 14.1.2], there is a natural inclusion:
XKp(I)Kp((εv)v∈Sp

) ↪→ XK(I,p)((1 − 1
p−1)v∈Sp

) for all εv ≥ 1 − 1
p

if v ∈ I and εv ≥ 2 − 1
p

if
v ∈ Ic.

Lemma 6.5.4. — Let (εv) ∈ ([1 − 1
p
, 1)I × [2 − 1

p
, 2)Ic

) ∩ QSp . Let κ be a classical

algebraic weight.
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(1) The cohomology R�(XKpKp(I)((εv)v∈Sp
),ωκ) carries an action of the operators Uv,1 and

Uv,2.

(2) The operator
∏

v∈I Uv,2
∏

v∈Ic Uv,1 is compact R�(X G1
KpKp(I)

((εv)v∈Sp
),ωκ).

(3) The canonical map R�(X G1
KpKp(I)

((εv)v∈Sp
),ωκ)→ R�(X G1

K(I,p)((1− 1
p−1)v∈Sp

),ωκ)

induces a quasi-isomorphism on the finite slope part for
∏

v∈I Uv,2
∏

v∈Ic Uv,1.

(4) The same holds for cuspidal cohomology.

Proof. — The definition of the operators is a routine computation. To prove com-
pactness, we need to show that the operators improve convergence. This is entirely par-
allel to Lemma 6.3.14. For the degree functions considered here this follows from of
[Pil11, Prop. 2.3.6]. The quasi-isomorphism follows from an easy analytic continuation
argument (see Lemma 6.5.18 below, for example). �

It is sometimes convenient to consider the dagger space

(6.5.5) Xmult,†
KpKp(I)

:= lim
εv→0+

XKpKp(I)((εv)v∈Sp
)

and its G1-variant. In view of the previous lemma we can define the complex
e(UI)R�(X G1,mult,†

Kp(I)Kp ,ωκ(−D)) as being equal to e(UI)R�(X G1
KpKp(I)

((εv)v∈Sp
),ωκ).

Lemma 6.5.6. — The complex e(UI)R�(X G1,mult,†
Kp(I)Kp ,ωκ(−D)) is a perfect complex sup-

ported in degrees [0, #I].
Proof. — That the cohomology vanishes outside of degrees [0, #I] follows as usual

by pushing forward to the minimal compactification. The finiteness of the cohomology
follows from the compactness of UI. �

6.5.7. Main classicity theorem. — We now state our main classicity result for over-
convergent cohomology, which we will prove using a generalization of the analytic con-
tinuation method of [Kas06] to higher degree cohomology, which was proved in [Pil20,
§3]. Let κ = (kv, lv)v|p be a dominant algebraic weight. There is a canonical restriction
map

R�(XKp(I)Kp,ωκ(−D))→R�(Xmult,†
Kp(I)Kp,ωκ(−D))

which is equivariant for the Hecke operators Uv,1 and Uv,2.

Theorem 6.5.8. — The canonical map

R�(X G1
Kp(I)Kp,ωκ(−D))[Uv,2 < kv + lv − 3 v ∈ I, Uv,1 < lv − 3 v ∈ Ic]

→R�(X G1,mult,†
Kp(I)Kp ,ωκ(−D))[Uv,2 < kv + lv − 3 v ∈ I, Uv,1 < lv − 3 v ∈ Ic]

is a quasi-isomorphism.
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Remark 6.5.9. — The meaning of [Uv,2 < kv + lv − 3 v ∈ I, Uv,1 < lv − 3 v ∈ Ic]
in Theorem 6.5.8 is the obvious one: it means the part of slope less than kv + lv − 3
for Uv,2 at v ∈ I and less than lv − 3 for Uv,1 at v ∈ Ic. (Note that while the individual
operators Uv,1, Uv,2 do not act compactly on the complex on the right hand side, their
product U does by Lemma 6.5.4 It follows the individual operators Uv,1, Uv,2 act com-
pactly on the part of the complex with bounded slope for U, and so this small slope part
is well-defined by the procedure explained at the start of this section.)

Remark 6.5.10. — When I= ∅, Theorem 6.5.8 (for H0) is proved in [BPS16]. It
may be possible to improve on the bound lv − 3 at the places v ∈ Ic, but this does not
matter for our purposes.

6.5.11. Hecke correspondences again. — Let w ∈ I. We consider the following cor-
respondence, whose corresponding Hecke operator is Un

w,2 (the nth iterate of Uw,2):
tw,n,1, tw,n,2 : C(n)

w → XKp(I)Kp , which parametrizes (G, {Hv}v∈I, {Hv ⊂ Lv}v∈Ic,G → Gn)

where the isogeny G→ Gn has kernel Mn,w ⊂ Gw[p2n] which is totally isotropic and locally
isomorphic to (OFw

/pn)2⊕OFw
/p2n, and satisfies Mn,w ∩Hw = {0}. The first projection is

tw,n,1

(
(G, {Hv}v∈I, {Hw ⊂ Lv}v∈Ic,G→ Gn)

)= (G, {Hv}v∈I, {Hv ⊂ Lv}v∈Ic)

and the second projection is

tw,n,2

(
(G, {Hv}v∈I, {Hv ⊂ Lv}v∈Ic,G→ Gn)

)= (Gn, {H′
v}v∈I, {H′

v ⊂ L′v}v∈Ic)

where {H′
v}v∈I and {H′

v ⊂ L′v}v∈Ic are the images of {Hv}v∈I and {Hv ⊂ Lv}v∈Ic in Gn.
There are cohomological correspondences

(tw,n,1)∗t∗w,n,2ω
κ → ωκ, (tw,n,1)∗t∗w,n,2ω

κ(−D)→ ωκ(−D),

which give Un
w,2. Moreover, these cohomological correspondences restrict to

(tw,n,1)∗t∗w,n,2(ω
κ)++ → p−3n(ωκ)++, (tw,n,1)∗t∗w,n,2(ω

κ(−D))++

→ p−3n(ωκ(−D))++,

and they induce maps on cohomology in the usual way.
Let w ∈ Ic. We consider the correspondence: tw,n,1, tw,n,2 : C(n)

w → XKp(I)Kp which
parametrizes (G, {Hv}v∈I, {Hv ⊂ Lv}v∈Ic,G→ Gn) where the isogeny G→ Gn has kernel
Mn,w ⊂ Gw[pn] which is totally isotropic, locally isomorphic to (OFw

/pn)2, and satisfies
Mn,w ∩ Lw = {0}. The first projection is

tw,n,1

(
(G, {Hv}v∈I, {Hw ⊂ Lv}v∈Ic,G→ Gn)

)= (G, {Hv}v∈I, {Hv ⊂ Lv}v∈Ic)

and the second projection is

tw,n,2

(
(G, {Hv}v∈I, {Hv ⊂ Lv}v∈Ic,G→ Gn)

)= (Gn, {H′
v}v∈I, {H′

v ⊂ L′v}v∈Ic)

where H′
v and H′

v ⊂ L′v are the images of Hv and Hv ⊂ Lv in Gn.
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The Hecke operator attached to this correspondence is Un
w,1 (the nth iterate of

Uw,1). More precisely, there are cohomological correspondences

(tw,n,1)∗t∗w,n,2ω
κ → ωκ, (tw,n,1)∗t∗w,n,2ω

κ(−D)→ ωκ(−D).

Moreover, these cohomological correspondences restrict to

(tw,n,1)∗t∗w,n,2(ω
κ)++ → p−3n(ωκ)++, (tw,n,1)∗t∗w,n,2(ω

κ(−D))++

→ p−3n(ωκ(−D))++,

and they induce maps on cohomology.

Lemma 6.5.12. — Let w ∈ I. Let x = (G, {Hv}v∈I, {Hv ⊂ Lv}v∈Ic,G → G1) ∈
C(1)

w (Spa(K,OK)).

(1) If v ∈ I and v �=w, we have deg Hv = deg H′
v .

(2) If v ∈ Ic, we have deg Lv = deg L′v .

(3) We have deg H′
w ≥ deg Hw, and in case of equality, deg Hw ∈ {0, 1}.

(4) deg H′
w = 1− deg M1,w/M1,w[p].

(5) deg M1,w[p]/pM1,w = 1, and deg pM1,w ≥ deg M1,w/M1,w[p].
(6) Let ε ≥ 0. If deg Mw ≤ 3− 2ε, then deg H′

w ≥ ε.

Proof. — Parts (1) and (2) follow because the maps Hv →H′
v , Lv → L′v are isomor-

phisms. The remaining parts are [Pil20, Lem. 14.3.1, Cor. 14.3.1]. �

Lemma 6.5.13. — Let w ∈ Ic. Let x = (G, {Hv}v∈I, {Hv ⊂ Lv}v∈Ic,G → G1) ∈
C(1)

w (Spa(K,OK)).

(1) If v ∈ I, we have deg Hv = deg H′
v .

(2) If v ∈ Ic and v �=w, we have deg Lv = deg L′v ,

(3) We have deg L′w ≥ deg Lw, and in case of equality, deg Lw ∈ {0, 1, 2}.
(4) deg L′w = 2− deg M1,w .

Proof. — Parts (1) and (2) follow as in Lemma 6.5.12. Parts (3) and (4) follow
from [Pil11, Prop. 2.3.1, 2.3.2, Lem. 2.3.4] (and their proofs). �

Corollary 6.5.14. — Let w ∈ Ic. Let 1 > ε ′ ≥ ε > 0. There exists n ∈ Z≥0 such that for

all intervals
∏

v �=w Jv ⊂ [0, 1]I× [0, 2]Ic\{w},

Un
w,1(XKp(I)Kp(

∏

v �=w

Jv × [1+ ε, 2]))⊂XKp(I)Kp(
∏

v �=w

Jv × [1+ ε ′, 2])

Proof. — This follows from Lemma 6.5.13 (3) and the maximum principle; see
[Pil11, Prop. 2.3.6]. �
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Corollary 6.5.15. — Let w ∈ I. Let 1 > ε ′ ≥ ε > 0. There exists n ∈ Z≥0 such that for all

intervals
∏

v �=w Jv ⊂ [0, 1]I\{w} × [0, 2]Ic

,

Un
w,1(XKp(I)Kp(

∏

v �=w

Jv × [ε, 1]))⊂XKp(I)Kp(
∏

v �=w

Jv × [ε ′, 1])

Proof. — This follows in the same way as Corollary 6.5.14, using Lemma 6.5.12 (3).
�

6.5.16. First analytic continuation result. — Let J =∏
v|p Jv ⊂ [0, 1]I × [0, 2]Ic

be a
product of intervals.

Lemma 6.5.17. — Let w ∈ Ic. Assume that Jw = [2 − ε, 2]. The operator Uw,1 acts on

Hi(XKpKp(I)(J),ωκ).

Proof. — In view of Lemma 6.5.13 (3), the correspondence C(1)
w restricts to

tw,1,2 :C(1)
w ×tw,1,1,XKpKp(I)

XKpKp(I)(J)→XKpKp(I)(J). �

We denote by Hi(XKp(I)Kp(J),ωκ)fs−Uw,1 the finite slope subspace for Uw,1. This is
the subspace generated by classes which are annihilated by a polynomial in Uw,1 with
non-zero constant term.

Lemma 6.5.18. — For all 1 > ε ′ ≥ ε > 0, the restriction map

Hi(XKpKp(I)(
∏

v �=w

Jv × [2− ε ′, 2]),ωκ)fs−Uw,1

→Hi(XKpKp(I)(
∏

v �=w

Jv × [2− ε, 2]),ωκ)fs−Uw,1

is an isomorphism.

Proof. — Take n as in Corollary 6.5.14. Let f ∈ Hi(XKpKp(I)(
∏

v �=w Jv × [2 −
ε, 2]),ωκ)fs−Uw,1 be a cohomology class. Let P(X)=Xm+ am−1Xm−1+ · · ·+ a0 be a poly-
nomial with a0 �= 0 such that P(Uw,1)f = 0. Therefore, if we set Q(X) = −a−1

0 (P(X)−
a0), we obtain that Q(Uw,1)f = f . By iteration we get that Q(Uw,1)

nf = f . The operator

Q(Uw,1)
n :Hi(XKpKp(I)(

∏

v �=w

Jv × [2− ε, 2]),ωκ)

→Hi(XKpKp(I)(
∏

v �=w

Jv × [2− ε, 2]),ωκ)
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can be factored into:

Hi(XKpKp(I)(
∏

v �=w

Jv × [2− ε, 2]),ωκ)

˜Q(Uw,1)n→ Hi(XKpKp(I)(
∏

v �=w

Jv × [2− ε ′, 2]),ωκ)

res→Hi(XKpKp(I)(
∏

v �=w

Jv × [2− ε, 2]),ωκ),

where the map ˜Q(Uw,1)n is the one coming from Corollary 6.5.14. We therefore get an
extension f̃ of f to

Hi(XKpKp(I)(
∏

v �=w

Jv × [2− ε ′, 2]),ωκ)

by setting f̃ = ˜Q(Uw,1)nf . This proves the surjectivity of the map of the corollary.
We now prove injectivity. Let f , g ∈ Hi(XKpKp(I)(

∏
v �=w Jv × [2 − ε ′, 2]),ωκ)fs−Uw,1

be two classes having the same restriction to Hi(XKpKp(I)(
∏

v �=w Jv×[2− ε, 2]),ωκ)fs−Uw,1 .
We can find a polynomial P as before such that P(Uw,1)f = P(Uw,1)g = 0. Therefore,
using the same notation as before, we get that Q(Uw,1)f = f and Q(Uw,1)g = g. We can
factor the operator Q(Uw,1)

n into:

Hi(XKpKp(I)(
∏

v �=w

Jv × [2− ε ′, 2]),ωκ)

res→Hi(XKpKp(I)(
∏

v �=w

Jv × [2− ε, 2]),ωκ)

˜Q(Uw,1)n→ Hi(XKpKp(I)(
∏

v �=w

Jv × [2− ε ′, 2]),ωκ)

Since res(f )= res(g), we deduce that f = g. �

The following two lemmas are the analogue of Lemma 6.5.18 for a place w ∈ I.
The proofs are identical and left to the reader.

Lemma 6.5.19. — Let w ∈ I. Assume that Jw = [1 − ε, 1]. The operator Uw,2 acts on

Hi(XKpKp(I)(J),ωκ).

We denote by Hi(XKp(I)Kp(J),ωκ)fs−Uw,2 the finite slope subspace. This is the sub-
space generated by classes which are annihilated by a polynomial in Uw,2 with non-zero
constant term.
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Lemma 6.5.20. — For all 1 > ε ≥ ε ′ > 0, the restriction map

Hi(XKpKp(I)(
∏

v �=w

Jv × [1− ε, 1]),ωκ)fs−Uw,2

→Hi(XKpKp(I)(
∏

v �=w

Jv × [1− ε ′, 1]),ωκ)fs−Uw,2

is an isomorphism.

6.5.21. More analytic continuation results. — Let w ∈ Ic. Let 0 < ε ≤ 1. The cohomo-
logical correspondences:

(tw,n,1)∗(tw,n,2)
∗((ωκ)|XKp(I)Kp (

∏
v �=w Jv×[1+ε,2]))→ ωκ |XKp(I)Kp (

∏
v �=w Jv×[1+ε,2])

and

(tw,n,1)∗(tw,n,2)
∗((ωκ)|XKp(I)Kp (

∏
v �=w Jv×[0,2]))→ ωκ |XKp(I)Kp (

∏
v �=w Jv×[0,2])

can be related if we work with torsion coefficients.

Proposition 6.5.22. — Let 0 < ε < ε ′. There is a factorization of the Hecke correspon-

dence Un
w,1:

(ωκ/pn(lw(1−ε′)−3)(ωκ)++)|XKp(I)Kp (
∏

v �=w Jv×[1+ε,2])

(tw,n,1)∗(tw,n,2)
∗((ωκ)++|XKp(I)Kp (

∏
v �=w Jv×[1+ε,2]))

(tw,n,1)∗(tw,n,2)
∗((ωκ)++|XKp(I)Kp (

∏
v �=w Jv×[0,2]))

(ωκ/pn(lw(1−ε′)−3)(ωκ)++)|XKp(I)Kp (
∏

v �=w Jv×[0,2])

Proof. — Let x ∈ XKp(I)Kp(
∏

v �=w Jv × [0, 2])). We have to find a neighbourhood U
of x and to construct a canonical map

(tw,n,2)
∗((ωκ)++|XKp(I)Kp (

∏
v �=w Jv×[1+ε,2]))(t−1

w,n,1(U))

→ (ωκ/pn(lw(1−ε′)−3)(ωκ)++)|XKp(I)Kp (
∏

v �=w Jv×[0,2])(U).
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Pick ε ′′ ∈ (ε, ε ′) such that for all y ∈ t−1
w,n,1(x) corresponding to a subgroup Mw,n ⊂

G, we have |δMw,n
|y �= |pn(1−ε′′)|y. It follows that there exists an open neighbourhood U

of x and a disjoint decomposition t−1
w,n,1(U) = V

∐
W, such that for all y ∈W, we have

|δMw,n
|y > |pn(1−ε′′)|y, and for all y ∈V, we have |δMw,n

|y < |pn(1−ε′′)|y.
The cohomological correspondence is a map:

t∗w,n,2(ω
κ)++(V)⊕ t∗w,n,2(ω

κ)++(W)→ ωκ(U).

The image of t∗w,n,2(ω
κ)++(V) lands in pn(lv(1−ε′′)−3)(ωκ)++(U) (see [Pil20, Lem.

14.6.1]). Therefore, we have a factorization:

t∗w,n,2(ω
κ)++(t−1

w,n,1(U))→ t∗w,n,2(ω
κ)++(W)→ ωκ/pn(lv(1−ε′′)−3)(ωκ)++(U).

On the other hand, we claim that tw,n,2(W)⊂XKp(I)Kp(
∏

v �=w Jv × [1+ ε, 2])).
Indeed, let x′ ∈U and let y′ ∈ t−1

w,n,1({x}). Without loss of generality, we may assume
that x′ and y′ are rank one points. Let us define Mw,i =Mw,n|y′ [pi] for all 1≤ i ≤ n. Then
we have a sequence of isogenies:

Gw|x′ → Gw|x′/Mw,1 → ·· ·→ Gw|x′/Mw,n

We let Lw,i be the image of Lw|x′ in Gw/Mw,i (so that Lw,n = Lw|tw,n,2(y′)). Then, by Lemma
6.5.13 (4), we have that deg Lw,n = 2− deg Mw,n/Mw,n−1. On the other hand, for all 1≤
i ≤ n− 1, the map p :Mw,i+1/Mw,i →Mw,i/Mw,i−1 is a generic isomorphism. It follows
that deg Mw,i+1/Mw,i ≤ deg Mw,i/Mw,i−1. Since deg Mw,n =∑n

i=1 deg Mw,i/Mw,i−1 and
deg Mw,n ≤ n(1−ε ′′), we deduce that deg Mw,n/Mw,n−1 ≤ 1−ε ′′ and therefore deg Lw,n ≥
1+ ε ′′ > 1+ ε, as required.

We can therefore produce the expected map as the composition:

(tw,n,2)
∗((ωκ)++|XKp(I)Kp (

∏
v �=w Jv×[1+ε,2]))(t−1

w,n,1(U))

→ (tw,n,2)
∗((ωκ)++|XKp(I)Kp (

∏
v �=w Jv×[1+ε,2]))(W)= t∗w,n,2(ω

κ)++(W)

→ ωκ/pn(lv(1−ε′)−3)(ωκ)++(U). �

Corollary 6.5.23. — Let P=Xm+am−1Xm−1+· · ·+a0 be a polynomial, with the property

that all the roots a of P satisfy v(a) < lw − 3. Then there is a map

ext :Hi(XKp(I)Kp(
∏

v �=w

Jv × [1+ ε, 2]),ωκ)[P(Uw,1)= 0]→
(

lim
n

Hi(XKp(I)Kp(
∏

v �=w

Jv × [0, 2]),ωκ/pn(ωκ)++)

)
[P(Uw,1)= 0]
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such that the composite of ext followed by restriction to XKp(I)Kp(
∏

v �=w Jv × [1+ ε, 2]) is the natural

map induced by ωκ → ωκ/pn(ωκ)++.

Furthermore, the composite of the restriction map

Hi(XKp(I)Kp(
∏

v �=w

Jv × [0, 2]),ωκ)[P(Uw,1)= 0]→

Hi(XKp(I)Kp(
∏

v �=w

Jv × [1+ ε, 2]),ωκ)[P(Uw,1)= 0]

followed by ext is the natural map induced by ωκ → ωκ/pn(ωκ)++.

Proof. — Let ε ′ > 0 be such that for all roots a of P, we have lw(1− ε ′)− 3 > v(a).
Let α = infa{lw(1−ε ′)−3−v(a)} (so that in particular α > 0). By Lemma 6.5.18, we can
assume that 0 < ε < ε ′. Suppose that f ∈Hi(XKp(I)Kp(

∏
v �=w Jv × [1+ ε, 2]),ωκ) satisfies

P(Uw,1)f = 0. By rescaling f , we can and do also assume that f ∈Hi(XKp(I)Kp(
∏

v �=w Jv ×
[1+ ε, 2]), (ωκ)++). Let Q(X)=−a−1

0 (P(X)− a0) so that Q(Uw,1)f = f .
Since Q(Uw,1) can be written as a sum of products of the 1

a
Uw,1, where a runs over

the roots of P, it follows from Proposition 6.5.22 that the map

Q(Uw,1)
n :Hi(XKp(I)Kp(

∏

v �=w

Jv × [1+ ε, 2]), (ωκ)++)

→Hi(XKp(I)Kp(
∏

v �=w

Jv × [1+ ε, 2]),ωκ)

→Hi(XKp(I)Kp(
∏

v �=w

Jv × [1+ ε, 2]), (ωκ)/pnα(ωκ)++)

can actually be factored into:

Hi(XKp(I)Kp(
∏

v �=w Jv × [1+ ε, 2]), (ωκ)++)

Hi(XKp(I)Kp(
∏

v �=w Jv × [0, 2]), (ωκ)/pnα(ωκ)++)

Hi(XKp(I)Kp(
∏

v �=w Jv × [1+ ε, 2]), (ωκ)/pnα(ωκ)++)

˜Q(Uw,1)n
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We define sections fn ∈Hi(XKp(I)Kp(
∏

v �=w Jv×[0, 2]),ωκ/pnα(ωκ)++) by fn = ˜Q(Uw,1)n(f ).
It follows from the definitions that fn = fn−1 in

Hi(XKp(I)Kp(
∏

v �=w

Jv × [0, 2]),ωκ/p(n−1)α−m(lw(1−ε′)−α)(ωκ)++)

and that Q(Uw,1)fn = fn in

Hi(XKp(I)Kp(
∏

v �=w

Jv × [0, 2]),ωκ/p(nα−m(lw(1−ε′)−α)(ωκ)++)

(see the proof of [Pil20, Cor. 14.6.1] for a similar verification). We let ext(f ) be the pro-
jective system given by the fn.

It remains to check that if f is the restriction of a class in

Hi(XKp(I)Kp(
∏

v �=w

Jv × [0, 2]),ωκ),

then the fn are obtained from the natural map ωκ → ωκ/pn(ωκ)++. This follows easily
from the factorization

Hi(XKp(I)Kp(
∏

v �=w Jv × [0, 2]), (ωκ)++)

Hi(XKp(I)Kp(
∏

v �=w Jv × [0, 2]), (ωκ)/pnα(ωκ)++)

Hi(XKp(I)Kp(
∏

v �=w Jv × [1+ ε, 2]), (ωκ)/pnα(ωκ)++)

Q(Uw,1)
n

˜Q(Uw,1)n

�

The next proposition and corollary are the analogue of the above results for a place
w ∈ I. The proofs are virtually identical to the above, and are left to the reader (or look
at [Pil20, Prop. 14.6.1, Cor. 14.6.1]).
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Proposition 6.5.24. — Let w ∈ I, and let 0 < ε < ε ′. There is a factorization of the Hecke

correspondence Un
w,2:

(ωκ/pn(lw+kw−3−2ε′kv)(ωκ)++)|XKp(I)Kp (
∏

v �=w Jv×[ε,1])

(tw,n,1)∗(tw,n,2)
∗((ωκ)++|XKp(I)Kp (

∏
v �=w Jv×[ε,1]))

(tw,n,1)∗(tw,n,2)
∗((ωκ)++|XKp(I)Kp (

∏
v �=w Jv×[1,0]))

(ωκ/pn(lw+kw−3−2ε′kw)(ωκ)++)|XKp(I)Kp (
∏

v �=w Jv×[0,1])

Corollary 6.5.25. — Let w ∈ I, and let 1 > ε ≥ 0. Let P=Xm + am−1Xm−1 + · · · + a0

be a polynomial, with the property that all the roots a of P satisfy v(a) < kw + lw − 3. Then there is a

map

ext :Hi(XKp(I)Kp(
∏

v �=w

Jv × [ε, 1]),ωκ)[P(Uw,2)= 0]→
(

lim
n

Hi(XKp(I)Kp(
∏

v �=w

Jv × [0, 1]),ωκ/pn(ωκ)++)

)
[P(Uw,2)= 0]

such that the composite of ext followed by restriction to XKp(I)Kp(
∏

v �=w Jv × [ε, 1]) is the natural map

induced by ωκ → ωκ/pn(ωκ)++.

Furthermore, the composite of the restriction map

Hi(XKp(I)Kp(
∏

v �=w

Jv × [0, 1]),ωκ)[P(Uw,2)= 0]→

Hi(XKp(I)Kp(
∏

v �=w

Jv × [ε, 1]),ωκ)[P(Uw,2)= 0]

followed by ext is the natural map induced by ωκ → ωκ/pn(ωκ)++.

6.5.26. Proof of the main classicality theorem. — Let S⊂ Sp be a subset. Let J(S, ε)=∏
v∈S∩I[0, 1] ×∏

v∈S∩Ic[0, 2] ×∏
Sc∩I[ε, 1] ×∏

Sc∩Ic[1+ ε, 2]. We say that a cohomology
class f ∈Hi(XKp(I)Kp(J(S, ε),ωκ) is of finite slope if for all v|p, there is a polynomial Pv all
of whose roots are nonzero, such that:
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• if v ∈ Ic, Pv(Uv,1)f = 0,
• if v ∈ I, Pv(Uv,2)f = 0.

Lemma 6.5.27. — The canonical map

Hi(X G1
Kp(I)Kp(J(S, ε)),ωκ)→ lim Hi(X G1

Kp(I)Kp(J(S, ε)),ωκ/pn(ωκ)++)

is surjective and induces an isomorphism on the finite slope part.

Proof. — The surjectivity follows from [Pil20, Prop. 3.2.1]. The injectivity can be
proved in exactly the same way as [Pil20, Lem. 14.7.1]. We have put the superscript G1

because we need some finiteness property to deduce the injectivity. �

Lemma 6.5.28. — Choose polynomials Pv such that

• if v ∈ Ic, all the roots a of Pv satisfy v(a) < lv − 3, and

• if v ∈ I, all the roots a of Pv satisfy v(a) < kv + lv − 3.

Write Uv =Uv,1 if v ∈ Ic, and Uv =Uv,2 if v ∈ I. If S⊂T, then the natural restriction map

Hi(X G1
Kp(I)Kp(J(T, ε)),ωκ)[Pv(Uv)= 0]v∈Sp

Hi(X G1
Kp(I)Kp(J(S, ε)),ωκ)[Pv(Uv)= 0]v∈Sp

�

is an isomorphism.

Proof. — By induction, it is enough to treat the case T = S ∪ {w} for some w.
The result then follows from Lemma 6.5.27 (applied to both S and T), together with
Corollary 6.5.23 and Corollary 6.5.25. �

Proof of Theorem 6.5.8. — This follows immediately from Lemma 6.5.28, applied
with the choices S= ∅ and T= Sp. �

6.6. Application to ordinary cohomology. — In this section we study the case #I = 1,
where we are able to relate the Hida complexes constructed in §4 to the overconvergent
cohomology considered in this section. Our first result is the following, which shows in
particular that in this case the ordinary classes in H1 are overconvergent. The proof can
be viewed as a generalization of the familiar argument for GL2 which shows that ordinary
p-adic modular forms are overconvergent (see [BT99, Lem. 1]), by using the continuity
of the ordinary projector to the finite-dimensional space of ordinary forms.
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Recall that we defined the complex MI in Theorem 4.6.1. By Theorem 4.6.1 (3),
for all classical algebraic weights κ with lv = 2 for v ∈ I and kv ≡ lv ≡ 2 (mod p− 1) for
all v|p we have

MI ⊗L
�I,κ

Cp = e(UI)R�(X G1,mult
Kp(I)Kp ,ωκ(−D)).

Proposition 6.6.1. — Suppose that #I= 1. For all classical algebraic weights κ with lv = 2
for v ∈ I and kv ≡ lv ≡ 2 (mod p− 1) for all v|p, the restriction map

e(UI)R�(X G1,mult,†
Kp(I)Kp ,ωκ(−D))→MI ⊗L

�I,κ
Cp

induces an injective map on H0 and a surjective map on H1.

Proof. — The injectivity of the map on H0s is clear. In the case F=Q, the surjec-
tivity of the map on H1s is proved in [Pil20, Lem. 14.8.2]; we now recall this argument
in our setting. Let π :XKp(I)Kp →X ∗

Kp(I)Kp be the projection to the minimal compactifica-

tion; as usual, we have Riπ∗ωκ(−D)= 0 for i > 0. Let X ∗,mult
Kp(I)Kp be the image of Xmult

Kp(I)Kp

(the rigid analytic generic fibre of XI
Kp(I)Kp ) in the minimal compactification; it admits an

affinoid cover X ∗,mult
Kp(I)Kp =U1 ∪U2.

Then the complex R�(Xmult
Kp(I)Kp,ωκ(−D)) is represented by the complex

H0(U1,ωκ(−D))⊕H0(U2,ωκ(−D))→H0(U1 ∩U2,ωκ(−D)).

The terms of this complex are Banach spaces; a norm giving their topology is provided
by taking an appropriate formal model. The topology on H1(Xmult

Kp(I)Kp,ωκ(−D)) is the
induced quotient topology, which coincides with the topology obtained by declaring that
H1(XI

Kp(I)Kp,ωκ(−D)) is open and bounded.

The complex R�(Xmult,†
Kp(I)Kp,ωκ(−D)) is represented by the subcomplex of overcon-

vergent sections

H0(U1,ωκ,†(−D))⊕H0(U2,ωκ,†(−D))→H0(U1 ∩U2,ωκ,†(−D)),

where by definition for an open U,

ωκ,†(U) := lim−→
V⊃U

ωκ(V)

where V runs over the strict neighbourhoods of U.
It follows in particular that the map

H1(Xmult,†
Kp(I)Kp,ωκ(−D))→H1(Xmult

Kp(I)Kp,ωκ(−D))
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has dense image. The operator UI is continuous on H1(Xmult
Kp(I)Kp,ωκ(−D)) (consider the

action of UI on H1(XI
Kp(I)Kp,ωκ(−D))), so the projection

H1(X G1,mult
Kp(I)Kp ,ωκ(−D))→ e(UI)H1(X G1,mult

Kp(I)Kp ,ωκ(−D))

is also continuous (we have introduced the superscript G1 to make sure that the projector
e(UI) is well defined, the passage from the cohomology of Xmult

Kp(I)Kp to the cohomology of

X G1,mult
Kp(I)Kp is given by a projector so all density statements are preserved). It follows that the

induced map

e(UI)H1(X G1,mult,†
Kp(I)Kp ,ωκ(−D))→ e(UI)H1(X G1,mult

Kp(I)Kp ,ωκ(−D))

has dense image. But the target is a finite-dimensional Banach space over Cp, so its topol-
ogy is the unique one extending that on Cp, and in particular it contains no proper dense
subspaces, so we are done. �

Proposition 6.6.2. — Suppose that #I≤ 1. For all classical algebraic weights κ with lv = 2
for v ∈ I, we have the equality of Euler characteristics:

EC(e(UI)R�(X G1,mult,†
Kp(I)Kp ,ωκ(−D)))= EC(MI⊗L

�I,κ
Cp).

Proof. — By Theorem 4.6.1 and Lemma 6.5.6, both complexes are perfect com-
plexes in degrees [0, 1]. By Corollary 6.4.3 and Proposition 6.3.7, we have that

EC(e(UI)Hi
cusp(G1, †, κ))≤ EC(e(UI)R�(X G1,mult,†

Kp(I)Kp ,ωκ(−D)))

and the inequality is an equality if kv − lv ≥ 3 for all v|p. By Proposition 6.6.1, we have
that

EC(e(UI)R�(X G1,mult,†
Kp(I)Kp ,ωκ(−D)))≤ EC(MI⊗L

�I,κ
Cp).

Consequently, it suffices to prove that

EC(e(UI)Hi
cusp(G1, †, κ))≥ EC(MI⊗L

�I,κ
Cp).

By Theorem 6.3.16, and Theorem 4.6.1, both Euler characteristics under consideration
are locally constant functions of κ . It therefore suffices to prove the statement when lv ≥C
for all v ∈ Ic, and kv − lv ≥ C for all v|p. In this range of weights we can compare these
cohomology to classical cohomology.

It follows from Theorem 6.5.8 that

e(UI)R�(X G1,mult,†
Kp(I)Kp ,ωκ(−D)))= e(UI)R�(X G1

Kp(I)Kp,ωκ(−D))).
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We claim that the natural map

R�(X G1
KpKp

,ωκ(−D)))→R�(X G1
Kp(I)Kp,ωκ(−D)))

induces a quasi-isomorphism

e(TI)R�(X G1
KpKp

,ωκ(−D)))→ e(UI)R�(X G1
Kp(I)Kp,ωκ(−D))).

Indeed, by Theorem 3.10.1 (2), the cohomology groups on each side can be computed
in terms of automorphic representations, and the claim follows from Proposition 2.4.26
as explained in Remark 6.6.3 below.

Now, it follows from Theorem 4.6.1 that the map e(TI)R�(X G1
KpKp

,ωκ(−D)) →
MI⊗L

�I,κ
Cp is an isomorphism on H0 and is injective on H1. Putting this all together, the

proposition follows. �

Remark 6.6.3. — Let us point out a subtle point in the proof of Proposi-
tion 6.6.2. In order to use Proposition 2.4.26 one needs to check that for any v|p, any
representation πv of GSp4(OFv

) contributing to either e(TI)R�(X G1
KpKp

,ωκ(−D))) or

e(UI)R�(X G1
Kp(I)Kp,ωκ(−D))) is ordinary. For all places v ∈ Ic, this is true essentially by

definition since the two Hecke operators at v|p occur in the projector. For places v ∈ I,
this is a bit more subtle since only one operator Tv or Uv,2 is involved in the definition of
the projector. The Uv,2-ordinarity of a local representation πv with Hecke parameters

[αvp1−kv/2, βvp1−kv/2, β−1
v pkv/2, α−1

v pkv/2]
implies that αvβv is a p-adic unit. Ordinarity means that αv and βv are both p-adic units.
This is implied by Uv,2-ordinarity if we assume the Katz–Mazur inequality which says the
Newton polygon is above the Hodge polygon with the same initial and terminal point.
Indeed, in our case, the Katz–Mazur inequality translates into the condition that αv and
βv are p-adic integers.

However, this inequality is subtle at non-cohomological weights. For F = Q the
Katz–Mazur inequality for H0 and H1 classes is proved in [Pil20, Prop. 14.9.1], and the
argument generalizes without difficulty to our case. We also remark that for classes in the
H0, we can use eigenvarieties to deduce that the Katz–Mazur inequality holds in non-
cohomological weights because it holds at cohomological weights. A similar argument
will apply for classes in the H1 once eigenvarieties are constructed for H1 cohomology
classes. Note that alternatively we could force the Katz–Mazur inequality by localizing
further at certain p-adically integral eigenvalues of the operators Tv,1 and UKli(v),1, and
in fact such a localization will be in force in the rest of the paper. We could also directly
deduce the Katz–Mazur inequality for classes in the H1 from the corresponding inequal-
ity for classes in the H0 after making a non-Eisenstein localization (because after making
such a localization, the Euler characteristic vanishes). Such a localization will also be
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in force in the rest of the paper. In view of this, we do not spell out the details of the
generalization of [Pil20, Prop. 14.9.1] to our setting.

Theorem 6.6.4. — Suppose that #I ≤ 1. For all classical algebraic weights κ with lv = 2
for v ∈ I, we have a canonical isomorphism:

e(UI)R�(X G1,mult,†
Kp(I)Kp ,ωκ(−D))=MI ⊗L

�I,κ
Cp

Proof. — For all classical algebraic weights, let us denote by di(κ) the dimension
of Hi(MI ⊗L

�I,κ
Cp) and by d

†
i (κ) the dimension of e(UI)Hi

cusp(G1, †, κ). We deduce from
Proposition 6.6.2 that d1(κ)− d0(κ)= d

†
1 (κ)− d

†
0 (κ) for all κ . Therefore d1(κ)− d

†
1(κ)=

d0(κ)− d
†
0 (κ) for all κ . By Proposition 6.6.1, the first difference is non-positive and the

second difference is non-negative, so both are equal to zero. We deduce in particular that
the map e(UI)Hi

cusp(G1, †, κ)→Hi(MI ⊗L
�I,κ

Cp) is an isomorphism.
We now consider the composite

e(UI)Hi(X G1,mult,†
Kp(I)Kp ,ωκ(−D))→ e(UI)Hi

cusp(G1, †, κ)→Hi(MI ⊗L
�I,κ

Cp).

By Proposition 6.6.1 this composite map is an isomorphism for i = 0, and is surjective
for i = 1. On the other hand, the first map is injective for i = 1 by Corollary 6.4.3, and
we have just seen that the second map is an isomorphism. It follows that the composite is
injective for i = 1, and is thus an isomorphism, as required. �

Finally, we deduce the following classicity theorem.

Theorem 6.6.5. — Suppose that #I≤ 1, and that κ is a classical algebraic weight with lv = 2
if v ∈ I, and lv ≥ 4 if v /∈ I. Then the canonical map

e(UI)R�(XG1
Kp(I)Kp,ωκ(−D))[1/p]→MI ⊗L

�I,κ
Qp

is a quasi-isomorphism.

Proof. — This follows from Theorem 6.6.4 and Theorem 6.5.8. �

7. The Taylor–Wiles/Calegari–Geraghty method

In this section, we implement the Taylor–Wiles patching method to patch the com-
plexes MI constructed in §4. More precisely, we carry out the analogue of the patching
argument using “balanced modules” which was introduced in [CG18], and used there to
study weight one modular forms for GL2 /Q. This argument works in situations where
the cohomology appears in at most two degrees, which for us means that #I ≤ 1; we
are restricted to working in this case due to the limitations of our understanding of the
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cohomology of our complexes in higher degree, as was the case in §4 and §6. For our
modularity result, it is crucial to be able to work with I= Sp; we will do this in §8 by con-
sidering the spaces of modular forms coming from the various complexes with #I≤ 1.

The papers [GT05, Pil12, CG20] apply the Taylor–Wiles method to GSp4 over Q,
but a number of changes are needed in order to apply it over general totally real fields. We
do not attempt to prove results in maximal generality, but instead develop the minimal
amount of material that we need. The reader familiar with the literature on modularity
lifting theorems will not find many surprises, but we highlight a few things that may be
less standard:

• In §7.3, we study the ordinary deformation rings at places dividing p. We show
that their generic fibres are irreducible under a rather mild p-distinguishedness
assumption; in particular, this assumption is not sufficient to guarantee that the
deformation rings are formally smooth, and it takes us some effort to prove
the irreducibility. Working in this generality is important for our applications
to modularity of abelian surfaces in §10. For the potential modularity results
of §9, however, it would be enough to work with a stronger p-distinguishedness
assumption which would guarantee the formal smoothness.

• In §7.4, we prove the statements about local deformation rings needed for Tay-
lor’s “Ihara avoidance argument”; the proofs are similar to those for GLn, al-
though there are some complications which arise because the relationship be-
tween conjugacy classes and characteristic polynomials is more complicated.
We also need to do some additional work to handle the case p= 3; again, this is
crucial for §10, although it is not needed for §9.

• In §7.5, we study the “big image” conditions needed in the Taylor–Wiles
method. Here our approach is slightly different from that of [CHT08] and the
papers that followed it; again, this is with the applications of §10 in mind, where
it is important to be able to consider representations with image GSp4(F3). For
the same reason, when we impose a condition at an auxiliary prime which will
allow us to assume that our Shimura varieties are at neat level, we make the
weakest hypothesis that we can, at the expense of slightly complicating the cor-
responding local representation theory.

• We make repeated use of the doubling results of §5; they are needed in order to
prove local-global compatibility for the Galois representations we consider, and
also to compare the spaces of p-adic modular forms for different I.

• Our implementation of the “Ihara avoidance” argument of [Tay08] uses the
framework of [EG14, Sho18], and compares the underlying cycles of various
patched modules. In particular, we use the patched modules with I= ∅ to prove
a local result, which we then apply to the patched modules with #I= 1. In order
to apply Ihara avoidance, we repeatedly use the fact that the Galois representa-
tion associated to our abelian surface is pure, to deduce that the corresponding
points on the generic fibres of the local deformation rings are smooth; we use
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this smoothness to be able to compute the dimensions of various spaces of p-adic
automorphic forms, using a characteristic 0 version of the freeness arguments of
Diamond and Fujiwara [Dia97]. While we do not use the full strength of purity,
since we make arguments with base change we would otherwise need to impose
a hypothesis of being “stably generic” on our local Galois representations, and
we do not know of any natural examples where this condition is known, but
purity is not.

Having carried out the patching argument, we know from the results of §6 that for each I
with #I≤ 1 there is a nonzero space of ordinary p-adic modular forms corresponding to
our given Galois representation, which are “overconvergent in the direction of I”. We will
combine these spaces in §8, using as an input that by a version of Diamond’s multiplicity
one argument [Dia97], we know the dimensions of these spaces when #I ≤ 1 (they are
given by the expected product of local terms). (Here we are again using our assumption
that the local Galois representations are pure, in order to know that the corresponding
points of the generic fibres of the local deformation rings are smooth. A similar charac-
teristic zero version of Diamond’s argument first appeared in [All16].)

7.1. Galois deformation rings. — We let E be a finite extension of Qp with ring of
integers O, uniformizer λ and residue field k. We will always assume that E is chosen
to be large enough such that all irreducible components of all deformation rings that we
consider, and all irreducible components of their special fibres, are geometrically irre-
ducible. (We are always free to enlarge E in all of the arguments that we make, so this is
not a serious assumption.) Given a complete Noetherian local O-algebra � with residue
field k, we let CNL� denote the category of complete Noetherian local �-algebras with
residue field k. We refer to an object in CNL� as a CNL�-algebra.

We fix a totally real field F, and let Sp be the set of places of F above p. We assume
that E contains all embeddings of F into an algebraic closure of E. We also fix a contin-
uous absolutely irreducible homomorphism ρ : GF → GSp4(k). We assume throughout
that p > 2.

Let S be a finite set of finite places of F containing Sp and all places at which ρ is
ramified. We write FS for the maximal subextension of F/F which is unramified outside S,
and write GF,S for Gal(FS/F). For each v ∈ S, we fix �v ∈CNLO, and set �= ⊗̂v∈S�v ,
where the completed tensor product is taken over O. Then CNL� is a subcategory of
CNL�v

for each v ∈ S, via the canonical map �v →�.

Remark 7.1.1. — In our applications, we will take �v =O if v � p. If v|p, then we
will take �v to be an Iwasawa algebra.

Fix a character ψ :GF,S →�× lifting ν ◦ ρ.
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Definition 7.1.2. — A lift, also called a lifting, of ρ|GFv
is a continuous homomorphism

ρ :GFv
→GSp4(A) to a CNL�v

-algebra A, such that ρ mod mA = ρ|GFv
and ν ◦ ρ =ψ |GFv

.

We let D�
v denote the set-valued functor on CNL�v

that sends A to the set of lifts
of ρ|GFv

to A. This functor is representable (see for example [Bal12, Thm. 1.2.2]), and
we denote the representing object by R�

v .
Let x ∈ Spec R�

v [1/p] be a closed point. By [Tay08, Lem. 1.6] the residue field of x

is a finite extension E′/E. Let ρx :GFv
→GLn(E′) be the corresponding specialization of

the universal lifting. By an argument of Kisin, (R�
v [1/p])∧x is the universal lifting ring for

ρx, i.e. if A is an Artinian local E′-algebra with residue field E′ and if ρ : � →GSp4(A)

is a continuous representation lifting ρx, then there is a unique continuous map of E′-
algebras (R�

v [1/p])∧x → A so that the universal lift pushes forward to ρ. (See [All16,
Thm. 1.2.1] for the analogous result for GLn; the result for GSp4 can be proved by an
identical argument.) We say that x is smooth if (R�

v [1/p])∧x is regular. Let ad0 ρx denote
the Lie algebra g0(E′) with the adjoint action of GF via ρx; then we have the following
convenient criterion for x to be smooth.

Lemma 7.1.3. — Suppose that v � p. Then the point x is smooth if and only if

(ad0 ρx)(1)GFv = 0. In particular, if ρx is pure, then x is smooth.

Proof. — The first claim is a special case of [BG19, Cor. 3.3.4, Rem. 3.3.6]. If ρx

is pure, then HomE′[GFv ](ρx, ρx(1))= 0 (because the definition of purity is easily seen to
preclude the existence of a morphism between the corresponding Weil–Deligne repre-
sentations), as required. �

Definition 7.1.4. — A local deformation problem for ρ|GFv
is a subfunctor Dv of D�

v

satisfying the following:

• Dv is represented by a quotient Rv of R�
v .

• For all A ∈ CNL�v
, ρ ∈ Dv(A), and a ∈ ker(GSp4(A) → GSp4(k)), we have

aρa−1 ∈Dv(A).

Definition 7.1.5. — A global deformation problem is a tuple

S = (ρ, S, {�v}v∈S,ψ, {Dv}v∈S),

where:

• ρ, S, {�v}v∈S and ψ are as above.

• For each v ∈ S, Dv is a local deformation problem for ρ|GFv
.

As in the local case, a lift (or lifting) of ρ is a continuous homomorphism ρ :GF,S →
GSp4(A) to a CNL�-algebra A, such that ρ mod mA = ρ and ρ ◦ ν = ψ . We say that
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two lifts ρ1, ρ2 : GF,S → GSp4(A) are strictly equivalent if there is an a ∈ ker(GSp4(A)→
GSp4(k)) such that ρ2 = aρ1a−1. A deformation of ρ is a strict equivalence class of lifts of ρ.

For a global deformation problem

S = (ρ, S, {�v}v∈S,ψ, {Dv}v∈S),

we say that a lift ρ :GF →GSp4(A) is of type S if ρ|GFv
∈Dv(A) for each v ∈ S. Note that

if ρ1 and ρ2 are strictly equivalent lifts of ρ, and ρ1 is of type S , then so is ρ2. A deformation

of type S is a strict equivalence class of lifts of type S , and we denote by DS the set-valued
functor that takes a CNL�-algebra A to the set of lifts ρ :GF →GSp4(A) of type S .

Given a subset T⊆ S, a T-framed lift of type S is a tuple (ρ, {γv}v∈T), where ρ is a lift
of type S , and γv ∈ ker(GSp4(A)→GSp4(k)) for each v ∈T. We say that two T-framed
lifts (ρ1, {γv}v∈T) and (ρ2, {γ ′v}v∈T) to a CNL�-algebra A are strictly equivalent if there
is an a ∈ ker(GSp4(A)→GSp4(k)) such that ρ2 = aρ1a−1, and γ ′v = aγv for each v ∈ T.
A strict equivalence class of T-framed lifts of type S is called a T-framed deformation of type

S . We denote by DT
S the set valued functor that sends a CNL�-algebra A to the set of

T-framed deformations to A of type S .
The functors DS and DT

S are representable (as we are assuming that ρ is absolutely
irreducible), and we denote their representing objects by RS and RT

S respectively. If T is
empty, then RS = RT

S , and otherwise the natural map RS → RT
S is formally smooth

of relative dimension 11#T− 1. Indeed DT
S →DS is a torsor under (

∏
v∈T ĜSp4)/Ĝm.

Define T to be the coordinate ring of (
∏

v∈T ĜSp4)/Ĝm over �. This is a power series
algebra over � in 11#T− 1 variables.

Lemma 7.1.6. — The choice of a representative ρS : GF → GSp4(RS) for the universal

type S deformation determines a splitting of the torsor DT
S →DS and a canonical isomorphism RT

S
∼=

RS⊗̂�T .

Proof. — This is obvious. �

7.2. Galois cohomology and presentations. — Fix a global deformation problem

S = (ρ, S, {�v}v∈S,ψ, {Dv}v∈S),

and for each v ∈ S, let Rv denote the object representing Dv . Let T be a subset of S
containing Sp, with the property that �v = O and Dv = D�

v for all v ∈ S � T. Define
RT,loc

S = ⊗̂v∈TRv , with the completed tensor product being taken over O. It is canonically
a �-algebra, via the canonical isomorphism ⊗̂v∈T�v

∼= ⊗̂v∈S�v . For each v ∈ T, the
morphism DT

S → Dv given by (ρ, {γv}v∈T) �→ γ −1
v ρ|GFv

γv induces a local �v-algebra
morphism Rv →RT

S . We thus have a local �-algebra morphism RT,loc
S →RT

S .
The relative tangent space of this map is computed by a standard calculation in

Galois cohomology, which we now recall. We let ad ρ (resp. ad0 ρ) denote g(k) (resp.
g0(k)), with the adjoint GF-action via ρ.
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The trace pairing (X, Y) �→ tr(XY) on ad0 ρ is perfect and GF-equivariant, so
ad0 ρ(1) is isomorphic to the Tate dual of ad0 ρ. We define

H1
S,T(ad0 ρ) := ker

(
H1(FS/F, ad0 ρ)→

∏

v∈T

H1(Fv, ad0 ρ)

)
,

H1
S⊥,T(ad0 ρ(1)) := ker

(
H1(FS/F, ad0 ρ(1))→

∏

v∈S�T

H1(Fv, ad0 ρ(1))

)
.

Proposition 7.2.1. — Continue to assume that T contains Sp, and that for all v ∈ S � T we

have �v =O and Dv =D�
v . Then there is a local �-algebra surjection RT,loc

S [[X1, . . . , Xg]] →
RT

S , with

g = h1
S⊥,T(ad0 ρ(1))− h0(FS/F, ad0 ρ(1))−

∑

v|∞
h0(Fv, ad0 ρ)

+
∑

v∈S\T
h0(Fv, ad0 ρ(1))+#T− 1.

Proof. — We follow [Kis09, §3.2]. By [Kis09, Lem. 3.2.2] (or rather the same state-
ment for GSp4, which has an identical proof), the claim of the proposition holds with

g = h1
S,T(ad0 ρ)− h0(FS/F, ad ρ)+

∑

v∈T

h0(Fv, ad ρ).

By [DDT97, Thm. 2.19] (and the assumption that ρ is absolutely irreducible, which
implies that h0(FS/F, ad ρ0)= 0), we have

h1
S,T(ad0 ρ)= h1

S⊥,T(ad0 ρ(1))− h0(FS/F, ad0 ρ(1))−
∑

v|∞
h0(Fv, ad0 ρ)

+
∑

v∈S\T
h1(Fv, ad0 ρ)−

∑

v∈S

h0(Fv, ad0 ρ).

The result follows from the local Euler characteristic formula and Tate local duality. �

7.3. Local deformation problems, l = p. — Assume from now on that p splits com-
pletely in F. Let v be a place of F lying over p. If x ∈ k×, then we write λx :GFv

→ k× for
the unramified character with λx(Frobv)= x.
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Definition 7.3.1. — We say that ρ|GFv
is p-distinguished weight 2 ordinary if it is

conjugate to a representation of the form

⎛

⎜⎜⎝

λαv
0 ∗ ∗

0 λβv
∗ ∗

0 0 ε−1λ−1
βv

0
0 0 0 ε−1λ−1

αv

⎞

⎟⎟⎠ ,

where αv �= βv .

If ρ|GFv
is p-distinguished weight 2 ordinary, then we say that a lift ρ : GFv

→ GSp4(O)

of ρ|GFv
is p-distinguished weight 2 ordinary if ρ itself is conjugate to a representation of the form

⎛

⎜⎜⎝

λαv
0 ∗ ∗

0 λβv
∗ ∗

0 0 ε−1λ−1
βv

0
0 0 0 ε−1λ−1

αv

⎞

⎟⎟⎠

where αv , βv lift αv , βv respectively. Note that ρ is then automatically semistable, although not neces-

sarily crystalline.

Remark 7.3.2. — The terminology “weight 2 ordinary” is not ideal, but we were
unable to find a better alternative. Possibilities include “P-ordinary” (referring to the
Siegel parabolic subgroup), which clashes with “p-distinguished”, or “semistable ordi-
nary”. We could of course restrict to the crystalline case and use “flat ordinary” repre-
sentations, but as it costs us little to allow semistable representations, and it may prove to
be useful in future applications, we have not done this.

Remark 7.3.3. — For the purposes of proving the potential modularity of abelian
surfaces, it would suffice to work with a stronger p-distinguishedness hypothesis, as
in [CG20]. In particular, by assuming that none of α2

v, β
2
v, αvβv are equal to 1, we could

arrange that the various deformation rings considered in this section are formally smooth.
However, such a hypothesis is very restrictive in the case p= 3, and in particular would
seriously restrict the applicability of our modularity lifting theorems to proving the mod-
ularity (as opposed to potential modularity) of particular abelian surfaces.

We assume from now on that ρ|GFv
is p-distinguished weight 2 ordinary for all v|p;

the roles of αv,βv in the definition of p-distinguished weight 2 ordinary are symmetric,
and we fix a labelling of αv,βv for each v|p.

Set �v,1 =O[[O×
Fv

(p)]], �v,2 =O[[(O×
Fv

(p))2]], where O×
Fv

(p)= 1+ pOFv
denotes

the pro-p completion of O×
Fv

. Both �v,1 and �v,2 are formally smooth over O (because
we are assuming that Fv = Qp). Let �v be either �v,1 or �v,2. There is a canonical
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character IFv
→O×

Fv
(p) given by Art−1

Fv
, and we define a pair of characters θv,i : IFv

→�v ,
i = 1, 2 as follows: if �v =�v,1, then we let θv,1 = θv,2 = θv be the natural character and
if �v =�v,2, then we let θv,i correspond to the embedding O×

Fv
(p) to (O×

Fv
(p))2 given by

the ith copy.
Let �v denote a choice of either αv or βv , and write �

′
v := αvβv/�v for the other

choice. Recall that we have the Borel subgroup B of GSp4 consisting of matrices of the
form

⎛

⎜⎜⎝

∗ ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ ∗
0 0 0 ∗

⎞

⎟⎟⎠ .

We let P denote the subgroup of B consisting of matrices of the form
⎛

⎜⎜⎝

∗ 0 ∗ ∗
0 ∗ ∗ ∗
0 0 ∗ 0
0 0 0 ∗

⎞

⎟⎟⎠ .

If A ∈ CNL�v
, then we say that a lift ρA : GFv

→ GSp4(A) of ρ|GFv
is (B, �v)-

ordinary if there is an increasing filtration of free A-submodules

0= Fil0 ⊂ Fil1 ⊂ · · · ⊂ Fil4 = A4

of A4 by A[GFv
]-submodules such that the action of GFv

on Fili / Fili−1 is via a character χi

with χ 1 = λ�v , χ 2 = λ�′v , χ1|IFv
= θv,1, χ2|IFv

= θv,2, and χ3 = ε−1χ−1
2 , χ4 = ε−1χ−1

1 .
By [CHT08, Lem. 2.4.6] such a filtration is unique; since {(Fil4−i)⊥} gives an-

other filtration satisfying the same conditions, we see that ρA is ker(GSp4(A)→GSp(k))-
conjugate to a representation of the form

⎛

⎜⎜⎝

χ1 ∗ ∗ ∗
0 χ2 ∗ ∗
0 0 ε−1χ−1

2 ∗
0 0 0 ε−1χ−1

1

⎞

⎟⎟⎠

where χ1, χ2 are as above.
If �v = �v,1 (so that θv,1 = θ2,v ), then we say that ρA is P-ordinary if it is both

(B, αv)-ordinary and (B, βv)-ordinary; equivalently, if ρA is ker(GSp4(A)→ GSp(k))-
conjugate to a representation of the form

⎛

⎜⎜⎝

χ1 0 ∗ ∗
0 χ2 ∗ ∗
0 0 ε−1χ−1

2 0
0 0 0 ε−1χ−1

1

⎞

⎟⎟⎠ .
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If �v =�v,2 (resp. �v =�v,1) then we let DB,�v
v (resp. DP

v ) be the subfunctor of (B, �v)-
ordinary lifts (resp. of P-ordinary lifts). By [CHT08, Lem. 2.4.6], we see that DB,�v

v and DP
v

are local deformation problems in the sense of Definition 7.1.4, so they are represented
by CNL�v

-algebras RB,�v
v , RP

v respectively.
Most of the rest of this section is devoted to the proof of the following result.

Proposition 7.3.4. — The generic fibres RB,�v
v [1/p], RP

v[1/p] are irreducible, and are of rela-

tive dimensions 16 and 14 respectively over Qp.

Our arguments are rather ad hoc, and will require a number of preliminary lem-
mas.

7.3.5. Ordinary deformation rings for GL2. — We begin by studying some ordinary
deformation rings for GL2. As well as being a warmup for our main arguments, we will
often be able to show that our deformation rings for GSp4 are formally smooth over a
completed tensor product of deformation rings for GL2, thus reducing to this case.

Let r :GQp
→GL2(k) be of the form

(
λα ∗
0 ε−1λ−1

α

)
.

Set �=O[[1+ pZp]], and write θ : IQp
→� for the canonical character defined above.

If A ∈ CNL�, then we say that a lift of r to r : GQp
→ GL2(A) is ordinary if it is

ker(GL2(A)→GL2(k))-conjugate to a representation of the form
(

χ ∗
0 ε−1χ−1

)

where χ = λα and χ |IQp
= θ . As above, this is a local deformation problem, and is repre-

sented by a CNL�-algebra RB2,�, where B2 denotes the Borel subgroup of GL2 of upper
triangular matrices.

We write

r =
(

λα ε−1λ−1
α ηα2

0 ε−1λ−1
α

)
,

where ηα2 is a cocycle in Z1(Qp, ελ
α2). Rescaling our basis vectors has the effect of chang-

ing ηα2 by a coboundary, so we can and do think of ηα2 as a class in H1(Qp, ελ
α2).

Let b2 be the Lie algebra of B2, given by the matrices

b2 =
(

ν + xα xα2

0 ν − xα

)
,
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where ad0
B2

corresponds to ν = 0. With respect to the basis given by the matrices cor-

responding to the variables {xα2, xα} — that is, the basis
{(

0 1
0 0

)
,

(
1 0
0 −1

)}
— the

Galois representation ad0
B2

r is given explicitly as follows:
(

ελα2 −2ηα2

0 1

)
.

Note that if M is annihilated by p, then H2(Qp, M) is given by H0(Qp, M∗)∨ 	
HomGQp

(M, ε)∨. It follows that h2(Qp, ad0
B2

r) = 0 unless α2 = 1 and ηα2 = 0, in which
case we have h2(Qp, ad0

B2
r) = 1. We write RB2 for RB2,� unless we particularly want to

emphasize the GL2-framing variables.

Lemma 7.3.6. — The generic fibre RB2[1/p] is irreducible, and has relative dimension 5
over Qp.

Proof. — By a standard argument (see [Maz89, Prop. 2]), RB2 has a presentation
of the form O[[x1, . . . , xr]]/(y1, . . . , ys), where

r = 4− h0(Qp, adB2 r)+ h1(Qp, ad0
B2

r)

= 3− h0(Qp, ad0
B2

r)+ h1(Qp, ad0
B2

r),

s= h2(Qp, ad0
B2

r).

Note that, a priori, even when s > 0, some of the yi may vanish, although one does not
expect this to happen. By the local Euler characteristic formula, r − s= 3+ dim ad0

B2
r =

5. In particular, if H2(Qp, ad0
B2

r) = 0, then RB2 is formally smooth over O of relative
dimension 5, and we are done.

If H2(Qp, ad0
B2

r) �= 0, then the above discussion shows that α = ±1, r is split,
and s = h2(Qp, ad0

B2
r) = 1. Since any quotient of a formal power series ring by a single

relation is a local complete intersection, it follows from the presentation of the previous
paragraph that RB2 is a local complete intersection, and in particular S2. Note that, at
this point, we don’t know if the relation y1 is non-zero or not, so we do not as yet know
the dimension of RB2 .

Twisting by a quadratic character, we can and do suppose that α = 1, so that r =
1⊕ ε−1. We begin by showing that Spec RB2[1/p] is connected, following [Ger19, Lem.
3.13]. Note that the map Spec RB2[1/p] → Spec �[1/p] admits a section, because we
can always find a lift of the form χ ⊕ χ−1ε−1. Since Spec �[1/p] is connected, it there-
fore suffices to show that the fibres of this map over closed points x of Spec �[1/p] are
connected.

By (for example) the proof of [BLGGT14b, Lem. 1.2.2] (see also [BG19, Lem.
3.4.1]), the irreducible components of Spec RB2[1/p] are fixed by conjugation by elements
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of GL2(RB2) whose image in GL2(k) is diagonal. It is therefore obviously the case that all
the closed points which are conjugate to representations of the form χ ⊕ χ−1ε−1 lie in
the same connected component of the fibre over x, so it suffices to show that each closed
point of the form

r =
(

χ ∗
0 ε−1χ−1

)

lies in the same connected component as the corresponding point with ∗ = 0. To this
end, we consider the representation

rt : diag(t, t−1)r diag(t, t−1)−1 →GL2(O〈t〉).
Note that the specializations of this representation at t = 0 and t = 1 correspond to the
two closed points that we are considering.

Letting A⊂O〈t〉 be the closed subalgebra generated by the matrix entries of the
elements of the image rt , one checks exactly as in the proof of [BLGGT14b, Lem. 1.2.2]
that A is a complete local Noetherian O-algebra with residue field k. Since r is split, it
follows that the representation rt arises from a map RB2 → A. Since A is a domain (being
a subring of O〈t〉), we see that the points corresponding to t = 0 and t = 1 lie on the same
irreducible component, as required.

To see that RB2[1/p] is moreover irreducible, it is enough to check that it is normal,
or equivalently that it is R1 and S2. We have already seen that it is S2, and to show
that it is R1, it suffices to show that there is an open regular subscheme U of RB2[1/p]
whose complement has codimension at least 2. We will in fact show that there is such
a subscheme with the property that the tangent space at any closed point u ∈ U has
dimension 5, thus also proving the statement about the dimension of RB2[1/p] (if the one
relation in our presentation of RB2 was trivial, then RB2 would be formally smooth of
relative dimension 6, and there would be no such points).

Over RB2 , we have a universal lifting runiv : GQp
→ GL2(RB2), and we let H2

ord :=
H2(GQp

, ad0
B2

runiv), a finite RB2-module. Since the cohomology of GQp
vanishes in degree

greater than 2, the formation of H2 is compatible with specialization, so that in particular
if x is a closed point of RB2[1/p] with corresponding representation rx :GQp

→GL2(Ex)

(with Ex a finite extension of Qp), then H2(GQp
, ad0

B2
rx)=H2

ord ⊗RB2 Ex.
We let U be the complement of the support of H2

ord in Spec RB2[1/p]. (It is not
obvious a priori that U is not empty, but we will prove this below.) Then at any closed
point x ∈U, we have H2(GQp

, ad0
B2

rx)= 0, so by a standard Galois cohomology calcula-
tion (essentially identical to the one used in the first paragraph of this proof), U is formally
smooth over Qp at x, with relative tangent space of dimension 5. It follows that U is reg-
ular.

The complement of U is the support of H2, so just as above, its closed points are
those x for which ρx is a direct sum of two characters whose ratio is the cyclotomic char-
acter. But in any Zariski open neighbourhood of such a point there are points of U (for
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example, points which are a direct sum of two characters whose ratio is not the cyclotomic
character, given by twisting the characters occurring in ρx by unramified characters), so U
is dense in Spec RB2[1/p], and Spec RB2[1/p] is equidimensional of relative dimension 5
over Qp.

It remains to show that the complement of U (that is, the support of H2) has codi-
mension at least 2, or equivalently that it has relative dimension at most 3 over Qp. In
fact, it has relative dimension at most 2 over Qp: the only freedom we have is to make
twists of the two characters in ρx (and the determinant is fixed), so the corresponding

dimension is the dimension of GL2 minus the dimension of the centralizer of
(

1 0
0 ε−1

)
,

which equals 4− 2= 2, so we are done. �

Let RB2, denote the B2-valued framed deformation ring of r with fixed determi-
nant. It follows from the assumption that r is p-distinguished that RB2,� is formally smooth
over RB2, of relative dimension

dim ad0
GL2
−dim ad0

B2
= 3− 2= 1

(see Lemma 7.3.12 for the details of an analogous argument in the symplectic case).
It will prove useful to give (somewhat) explicit descriptions of RB2, (and thus RB2 )

in a number of explicit cases. Lemma 7.3.7 below will also give another proof of
Lemma 7.3.6, although not one we shall generalize to the symplectic context.

Let γ ∈ k, and let

r =
(

λγ ε−1λ−1
γ η

0 ε−1λ−1
γ

)
.

Via restriction to the character in the upper left hand corner, the ring RB2, is naturally
an algebra over the universal deformation ring RGL1 for GL1. This gives a map

RGL1 →RB2, .

The ring RGL1 is formally smooth of relative dimension 2 over O, and also formally
smooth over the Iwasawa algebra � corresponding to restricting the character to inertia.
Let us choose isomorphisms � = O[[y2]] and RGL1 = O[[y1, y2]]. In the lemma below,
we shall use yi for the variables of RB2, corresponding to the algebra structure over RGL1 ,
we use xi for framing variables, and zi for variables related to extensions (informally cor-
responding to the upper right corner). More precisely, by “framing variables” we mean
the following: the map c �→ (1+ εc)r gives an isomorphism

Z1(Qp, ad0
B2

)
∼−→HomO(RB2, , k[ε]/(ε2))=Homk(m/m2, k),

where m is the maximal ideal of RB2, and on the level of reduced tangent spaces, the
framing variables are by definition the coboundaries B1(Qp, ad0

B2
)⊂ Z1(Qp, ad0

B2
).
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Lemma 7.3.7. — Let m denote the maximal ideal of RB2, . The ring RB2, is a complete

intersection, is flat over �, and is irreducible of relative dimension 4 over O. The rings RB2, as RGL1-

algebras have the following explicit presentations.

(1) If γ 2 �= 1 and η �= 0, then RB2, 	O[[x1, x2, y1, y2]].
(2) If γ 2 �= 1 and η= 0, then RB2, 	O[[x1, z1, y1, y2]].
(3) If γ 2 = 1 but η �= 0, then:

(a) RB2, is formally smooth over O,

(b) RB2, is formally smooth over � unless η is peu ramifiée,

(c) RB2, 	O[[x1, x2, z1, y1, y2]]/gη, where gη = cηy1+ dηy2 mod (λ,m2) for [cη :
dη] ∈ P1(k), and where [cη : dη] depends only on η ∈H1(ε).

(4) If γ 2 = 1 and η= 0, then:

(a) RB2, 	O[[x1, z1, z2, y1, y2]]/g, where

g = z1y1 + z2y2 mod (λ,m3).

(b) The special fibre RB2, /λ is not formally smooth.

Remark 7.3.8. — Explicit descriptions of ordinary deformation rings (even over
general extensions K/Qp) for GL2 have been given by Böckle in [B0̈0, §7]. However, we
require some precise information about these rings as algebras over RGL1 and � which
is not explicitly given in the required form in [B0̈0], and thus we have found it easier to
give the argument below. However, all the methods below already appear (in a more
complicated setting) in previous work of Böckle and others.

Proof. — We first note that ad0
B2

is simply the 2-dimensional representation given
by

0→ k(λ2
γ ε)→ ad0

B2
→ k→ 0,

and where the extension class is given by η (so this is just a twist of r). The framed tangent
space has dimension

dim Z1(Qp, ad0
B2

)= dim H1(Qp, ad0
B2

)+ dim B1(Qp, ad0
B2

),

with precisely

dim ad0
B2
−dim H0(Qp, ad0

B2
)

framing variables. The maps from RGL1 and from � correspond on tangent spaces to the
maps Z1(Qp, ad0

B2
)→H1(Qp, k) and Z1(Qp, ad0

B2
)→H1(IQp

, k) given by the composites
of the maps

Z1(Qp, ad0
B2

)→H1(Qp, ad0
B2

)→H1(Qp, k)→H1(IQp
, k).

We now consider the four possible cases in turn.
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If γ 2 �= 1 and η �= 0, then H0(Qp, ad0
B2

) is trivial, and there are two framing vari-
ables x1 and x2. The map from H1(Qp, ad0

B2
) to H1(Qp, k) is an isomorphism. Note

that H2(Qp, ad0
B2

) = 0, and so RB2, is formally smooth over O and all statements are
clear in this case.

If γ 2 �= 1 and η = 0, then H0(Qp, ad0
B2

) = k and there is only one framing vari-
able x1. However, the map from H1(Qp, ad0

B2
) to H1(Qp, k) is now surjective with ker-

nel H1(Qp, k(ελγ 2)), which is of dimension one. Note that H2(Qp, ad0
B2

)= 0, and so RB2,

is formally smooth formally smooth over O and once again all statements are clear.
If γ 2 = 1 but η �= 0, then H2(Qp, ad0

B2
) = 0 and the tangent space has di-

mension four, exactly two dimensions coming from framing, one dimension from the
image of H1(Qp, ε) in H1(Qp, ad0

B2
), and one dimension coming from the image

of H1(Qp, ad0
B2

) in H1(Qp, k). To compute the image, it suffices to consider the (surjective)
map from H1(Qp, k) to H2(Qp, ε) and determine the kernel, or, taking duals, considering
the map H0(Qp, k)→ H1(Qp, ε) and taking the image. The image of the latter map is
precisely given by η.

The corresponding ring will fail to be flat over the space of weights � precisely
when the image of

H1(Qp, ad0
B2

)→H1(Qp, k)

maps to zero in H1(IQp
, k), or equivalently when the image is unramified. Under Tate lo-

cal duality for H1(Qp, k)×H1(Qp, ε)→ k, the unramified classes are exactly annihilated
by the peu ramifiée classes. Hence the failure of formal smoothness over � occurs pre-
cisely when η is peu ramifiée. All the claims follow except possibly the claim that RB2,

is flat over �, which is also transparent except in the peu ramifée case, where RB2,

is formally smooth over O and is the quotient of a formally smooth �-algebra by the
relation gη = y2 mod (m2, λ). This will be flat over � as long as y2 /∈ λRB2, , which
can be easily ruled out by looking at points in characteristic zero. For example, we see
from [GHLS17, Theorem 2.1.8] that the fibre over every point in �[1/p] is non-trivial.
In particular, there are points where the restriction to inertia of the character lifting λγ is
finite of arbitrarily large order, so that v(y2) becomes arbitrarily close to 0, which would
not be possible if y2 ∈ λRB2, .

It remains to consider the case when r = 1 ⊕ ε−1. The representation underly-
ing r decomposes as a direct sum which induces corresponding decompositions of ad0

B2

and ad0
GL2

respectively. In particular, the adjoint ad0
B2
= k ⊕ ε of r thought of as inside

the Borel is naturally a direct summand of ad0
GL2
= k⊕ ε⊕ ε−1. Let Z1(Qp, ad0

B2
) denote

the 1-cocycles with values in ad0
B2

. There is a natural surjection

Z1(Qp, ad0
B2

)→H1(Qp, ad0
B2

)=H1(Qp, k)⊕H1(Qp, ε).

We now chose a basis for Z1(Qp, ad0
B2

) as follows:
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(1) r1 generates the kernel B1(Qp, ad0
B2

) of Z1(Qp, ad0
B2

)→H1(Qp, ad0
B2

).
(2) s1 and s2 generate H1(Qp, k), where s1 is unramified and s2 is ramified.
(3) t1 and t2 generate H1(Qp, ε), where t1 is très ramifiée and t2 is peu ramifiée.
(4) Under the alternating cup product pairing

H1(Qp, k)×H1(Qp, ε)→H2(Qp, ε)	 k,

we have si ∪ tj = δij .

We now define the dual basis of

m/(m2, λ)=Homk(Homk(m/m2, k), k)

to be given by xi , yi , and zi for i = 1 for xi and i = 1, 2 for yi and zi, where

xi(rj)= yi(sj)= zi(tj)= δij,

and all other combinations vanish. The representation ad0
B2

(ρ) has a Lie algebra structure
via the map

ad0
B2

(ρ)× ad0
B2

(ρ)→ ad0
B2

(ρ), (A, B) �→ AB− BA.

The corresponding cup product on cohomology groups composed with this Lie algebra
structure induces a symmetric bilinear pairing (the bracket cup product)

M : Z1(Qp, ad0
B2

)2 →H1(Qp, ad0
B2

)2 →H2(Qp, ad0
B2

),

Writing H1(Qp, ad0
B2

) =H1(Qp, k)⊕H1(Qp, ε), this map can be given explicitly in our
case as follows:

M(a, b)=M((a1, a2), (b1, b2))= 2(a1 ∪ b2 − a2 ∪ b1).

(Note that ∪ is alternating so this map is indeed symmetric.) As noted by in [Maz89, §1.6],
the image of the corresponding map gives the quadratic relations in the deformation ring,
which produces the desired quadratic relation g.

More precisely, note that H2(Qp, ad0
B2

) = H2(Qp, ε) is 1-dimensional. By [BJ15,
Lem. 5.2], the relation g can be determined (up to the required order) by the relation
given by the image of the natural map

H2(Qp, ad0
B2

)∨ → (Z1(Qp, ad0
B2

)∨)2

induced by the bracket cup product. But now the non-zero terms can be read off from
the explicit form of M(a, b) above and the description of our basis of m/(m2, λ) as a dual
basis to the explicit basis of Z1(Qp, ad0

B2
). It follows that, after rescaling, the leading term

of g is given by y1z1 + y2z2, as required.
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Part (4b) is a straightforward consequences of the presentation just determined
above. Note that the structure over RGL1 and � is one again determined by the corre-
sponding map from H1(Qp, ad0

B2
) to H1(Qp, k), and from our explicit description above

this corresponds to our choice of the parameters y1 and y2. �

We also have:

Lemma 7.3.9. — The points of RB2[1/p] which are non-smooth over � are — up to unram-

ified twist — crystalline extensions of ε−1 by 1.

Proof. — This is the characteristic zero version of the computation done in the
proof of Lemma 7.3.7(3b), and amounts to noting that in the Tate duality pairing

H1(Qp,Qp)×H1(Qp,Qp(1))→Qp,

the unramified classes in the first group are annihilated exactly by the crystalline exten-
sions in the second. �

We next introduce a class of partially framed deformation rings, which will allow
us to relate framed deformation rings for different groups.

7.3.10. Partially framed deformation rings. — Since we are assuming that Fv = Qp,
for the rest of this section we write Qp instead of Fv and ρ instead of ρ|GFv

. We shall
also henceforth (in this section) write RB for RB,�v

v and RP for RP
v . These are framed

deformation rings with respect to GSp4, and as such, could also be denoted by RP,�

and RP,� to emphasize the framing. However, the images of the corresponding Galois
representations may always be conjugated to land in B or P respectively. In particular,
we may consider deformation rings in which the image is required to actually land inside
these subgroups rather than land there up to conjugation.

Definition 7.3.11. — Let DB, and DP, denote the subfunctors consisting of deformations

which land inside B or P respectively. Let RB, and RP, denote the corresponding deformation rings.

(Here the adornment represents that the framing is all taking place inside the
“upper right corner” corresponding to B or P respectively.) The ring RB, may be identi-
fied with the universal framed deformation of ρ with fixed similitude character thought
of as a representation to B. The ring RP, is not quite the universal deformation ring of ρ

to P (framed in P) with fixed similitude character, because we are imposing an extra con-
dition on the restriction of the first two diagonal entries to inertia. On the other hand,
if RP,univ =RP,univ,� denotes the deformations to GSp4 of fixed similitude character which
may be conjugated to P (without imposing this condition on inertia), then there is also a
corresponding ring RP,univ, which is the universal P-framed deformation of ρ with fixed
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similitude character. Note that there are tautological maps RB →RB, and RP →RP, re-
spectively. Let us write adGSp4

, adB, and adP for the groups adGSp4
(ρ), adB(ρ), and adP(ρ)

respectively. Since p is odd, there exist corresponding direct factors ad0
GSp4

, ad0
B, and ad0

P
corresponding to deformations with fixed similitude character.

Lemma 7.3.12. — Suppose that ρ is p-distinguished weight 2 ordinary.

(1) There exists a splitting

RB, →RB,� →RB,

which realizes RB =RB,� as formally smooth over RB, of relative dimension

dim ad0
GSp4

−dim ad0
B = 10− 6= 4.

(2) There exists splittings

RP,univ, →RP,univ,� →RP,univ, ,

RP, →RP,� →RP,

which realize RP and RP,univ as formally smooth over RP, and RP,univ, respectively, of

relative dimension

dim ad0
GSp4

−dim ad0
P = 10− 5= 5.

Proof. — As previously noted, the p-distinguished hypothesis implies the existence
(by [CHT08, Lem. 2.4.6]) of a unique Galois stable filtration Fili on (RB,�)4. In particular,
we may choose a splitting of this filtration by a symplectic matrix M ∈GSp4(R

B,�) with
the property that M≡ I mod m. Conjugation by M induces the desired map from GSp4-
framed deformations to B-framed deformations, and thus induces a splitting from RB,

to RB. In the P case, one can additionally choose the splitting such that the choice of new
vector in Fil2 is Galois stable, and then the corresponding conjugate is valued in P.

The p-distinguished hypothesis implies that the maps

H0(Qp, ad0
P)→H0(Qp, ad0

B)→H0(Qp, ad0
GSp4

)

are all isomorphisms (see for example the explicit descriptions of ad0
P and ad0

B following
the proof of this lemma). By construction, the reduced tangent spaces of RB,� and RB,

are given by extensions of H1(Qp, ad0
B) (in both cases) by B1(Qp, ad0

GSp4
) and B1(Qp, ad0

B)

respectively (and analogously with P). On the other hand, the map on B1 groups is pre-
cisely dual to the map

ad0
B /H0(Qp, ad0

B)→ ad0
GSp4

/H0(Qp, ad0
GSp4

)
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(and once more similarly with P). Hence, from the identification of H0 groups above,
it follows that the map on reduced tangent spaces corresponding to RB,� → RB, is an
injection whose cokernel has dimension

(dim ad0
GSp4

−dim H0(Qp, ad0
GSp4

))− (dim ad0
B−dim H0(Qp, ad0

B))

= dim ad0
GSp4

−dim ad0
B

(And similarly in the P case with B replaced by P.)
We now prove the maps are formally smooth, which will be a direct consequence of

the fact that the obstruction group is given (for RB,� and RB, or for RP,univ,� and RP,univ,

and RP,� and RP, ) by the groups H2(Qp, ad0
B) and H2(Qp, ad0

P) respectively. We con-
sider first the case of B; for simplicity of notation, we drop B from the superscripts
from now on. Consider a surjection R̃ := R [[x1, x2, x3, x4]] → R� which induces an
isomorphism on reduced tangent spaces, and let J denote the kernel (so it suffices to
show that J = 0). Let m̃ be the radical of R̃. Recall that we have a unique symplec-
tic filtration Fili on (R�)4 = (R̃/J)4 and a choice of splitting corresponding to the ma-
trix M. Lift this to a filtration F̃il

i
for R̃/m̃J, and consider a corresponding set theo-

retic deformation ρ̃ : GQp
→ GSp4(R̃/m̃J) which preserves this filtration. (There are

no issues lifting filtrations because the symplectic group is formally smooth.) The cor-
responding 2-cocycle [c] ∈ H2(Qp, ad0

GSp4
) ⊗ J/m̃J then lands in H2(Qp, ad0

B) ⊗ J/m̃J.
Now choose a symplectic splitting of this filtration lifting the one for Fili . Conjugat-
ing ρ̃ by the corresponding matrix M̃ (lifting M above) gives a set theoretic map M̃ρ̃M̃−1

from GQp
to B(R̃/m̃J). But this map lifts ρ ,univ :GQp

→ B(R ). By universality of ρ ,univ,
since R̃/m̃J is an R -algebra, there is no obstruction to lifting this to a B-representation
of GQp

, and hence the class [c] becomes trivial in the corresponding obstruction group for
the B-deformation problem. Since the obstruction group in this case is H2(Qp, ad0

B) for
both the B-deformation problem and the ordinary GSp4-deformation problem, it follows
that [c] is trivial and hence that J= 0.

The same argument applies to P, except now the splitting of F̃il
i

has to be chosen
so that it is preserved by GQp

— equivalently, an identification of the first two eigenspaces
to R̃/J to ensure that the deformation is of P-type. In the case of RP, one additionally
requires the set theoretic lift to act diagonally after restriction to inertia on F̃il

2
. �

7.3.13. The GSp4-deformation rings. — We are assuming that ρ|GFv
has image of

the form
⎛

⎜⎜⎜⎝

λα 0 ε−1λ−1
β

ηαβ ε−1λ−1
α ηα2

0 λβ ε−1λ−1
β

ηβ2 ε−1λ−1
α ηαβ

0 0 ε−1λ−1
β

0
0 0 0 ε−1λ−1

α

⎞

⎟⎟⎟⎠
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where α �= β , and where we write ηδ to denote a (possibly zero) class in H1(Qp, ελδ). Our
analysis of the deformation rings (particularly in the B case) will depend on which of these
classes are equal to zero or not.

The dimensions of B and P are 7 and 6 respectively. Recall that we are consid-
ering deformations of ρ to B or P with fixed similitude character. For p > 2, the adjoint
representations p and b admit a splitting with a canonical one dimensional summand cor-
responding to varying the similitude character. Let ad0

B(ρ) ⊂ b and ad0
P(ρ) ⊂ p denote

the complementary 6 and 5 dimensional subspaces. Explicitly, b is given as follows:

b=

⎛

⎜⎜⎝

ν + xα −xα/β xαβ xα2

0 ν + xβ xβ2 xαβ

0 0 ν − xβ xα/β

0 0 0 ν − xα

⎞

⎟⎟⎠ ,

where the subspace with xα/β = 0 corresponds to p, and the subspace ν = 0 cor-
responds to ad0

B. With respect to the basis given by the matrices corresponding
to {xα2, xβ2, xαβ, xα/β, xα, xβ}, the Galois representation ad0

B(ρ) is given explicitly as fol-
lows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

ελα2 0 0 2λαλ−1
β
· ηαβ −2ηα2 0

0 ελ
β

2 0 0 0 −2ηβ2

0 0 ελαβ λαλ−1
β
· ηβ2 −ηαβ −ηαβ

0 0 0 λαλ−1
β

0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

and, on the space ad0
P(ρ) ⊂ ad0

B(ρ) with respect to the basis {xα2, xβ2, xαβ, xα, xβ} (not a
direct summand!), we have

⎛

⎜⎜⎜⎜⎝

ελα2 0 0 −2ηα2 0
0 ελ

β
2 0 0 −2ηβ2

0 0 ελαβ −ηαβ −ηαβ

0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠
.

As in the case of GL2 above, we may compute H2(Qp, ad0(ρ)) for P and B by
counting whether the subspaces generated by {xα2, xβ2, xαβ} generate ε subspaces and
whether these subspaces split. The following lemma is immediate from the explicit de-
scription above.

Lemma 7.3.14. — The dimension of H2(Qp, ad0
B(ρ)) is zero unless one of the following

holds:
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(1) The classes ηαβ and ηα2 are both zero, and α2 = 1.

(2) The class ηβ2 is zero, and β
2 = 1. In this case, either:

(a) The conditions of part (1) also hold, or:

(b) The dimension of H2(Qp, ad0
B(ρ)) is 1, and there is a Qp-equivariant map from the

representation V underlying ρ to the Borel of GL(2) corresponding to the representation

W=
(

λβ 0
0 ε−1λ−1

β

)
= λβ ⊗

(
1 0
0 ε−1

)
,

and the corresponding map relating H2(Qp, ad0
B(ρ)) = H2(Qp, ad0

B(V)) to

H2(Qp, ad0
B2

(W)) is an isomorphism.

(3) The classes ηαβ and ηβ2 are both zero, and αβ = 1.

Moreover, the dimension of H2(Qp, ad0
B(ρ)) is ≥ 2 only in case (2a), in which it has dimension 2.

We could give a similar (but easier) computation of H2(Qp, ad0
P(ρ)), but it is not

needed in the sequel so it is omitted.
Recall that RP,univ denotes the universal deformation ring for P. The quotient RP

is given by imposing the condition that the action of inertia on Fil2 (given by the upper
left 2× 2 matrix after changing basis) is through a scalar. Recall that we also have cor-
responding rings RP,univ, and RP, where the image lands in P directly (rather than up
to conjugation). Any deformation of type RP,univ, determines deformations of the three
2-dimensional subquotients of ρ, given respectively by the extension rA of ε−1λ−1

α by λα ,
by the extension rB of ε−1λ−1

β
by λβ , and the extension rAB of ε−1λ−1

β
by λα . Similarly,

any triple of such deformations with the appropriate coincidences of the correspond-
ing characters defines a representation of type P. (These identifications require that we
work with framings rather than � framings, since otherwise there would be superfluous
framing variables in this identification.)

Let RA = RB2, for rA and RB = RB2, for rB. Let RAB = RB2, , det for rAB,
where RB2, , det is the framed B2 deformation ring in which one does not fix the de-
terminant, so (since p > 2) one has that RB2, , det = RB2, ⊗̂ORGL1 is formally smooth
over RB2, of relative dimension 2. There are natural maps from RA, RB, and RAB

to RP,univ, and RP, respectively. Write RGL1×GL1 = RGL1⊗̂ORGL1 for the deformation
ring corresponding to the pair of characters (λαv

, λβv
). We have the following:

Lemma 7.3.15. — The ring RP,univ is formally smooth over

RP,univ, 	 (RA⊗̂ORB)⊗̂RGL1×GL1 RAB

of relative dimension 5. The ring RP is formally smooth over

RP, 	 (RA⊗̂�RB)⊗̂RGL1×GL1 RAB

of relative dimension 5.
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Proof. — The isomorphisms follow directly from the discussion above, and the
statement about formal smoothness is Lemma 7.3.12. �

We now prove the P-part of Proposition 7.3.4.

Proposition 7.3.16. — Suppose that ρ is p-distinguished. Then RP,univ and RP are both com-

plete intersections. Moreover, they are connected in characteristic zero, and the non-smooth locus in char-

acteristic zero has codimension at least two. In particular, the generic fibres RP,univ[1/p] and RP[1/p]
are irreducible of dimensions 15 and 14 over Qp respectively.

Proof. — The strategy is as follows. By Lemma 7.3.15, we can immediately re-
duce to the rings RP,univ, and RP, respectively and prove that they satisfy the same
properties above (with 15 and 14 replaced by 10 and 9 respectively). Given the explicit
form of the presentations for the 2-dimensional B2-deformation rings, in order to show
that RP,univ, and RP, are complete intersections, one can simply write down enough
about the equations for the tensor products in Lemma 7.3.15 and observe (for the appro-
priate value d = 10 or 9 in either case) that they are either:

(1) Formally smooth of the relative dimension d over O,
(2) Given as a quotient of a power series ring in d + 1 variables by one relation,
(3) Given as a quotient of a power series ring in d + 2 variables by a 2-generator

prime ideal which is not contained in (λ).

(The last example occurs only in a single case.) We say more about this computation
below.

For the remaining claims, it suffices to prove that the generic fibre is connected
and that our tensor products are R1 and S2 (and thus normal); since they are complete
intersections, it is enough to show that the non-smooth points have codimension at least 2.
It is convenient to consider two separate cases.

Suppose that αβ = 1. In this case, it follows from the p-distinguishedness hypothesis
that α2 �= 1 and β2 �= 1. In this case, the rings above have a particularly simple form
even over O. Namely, RA and RB are formally smooth over O and over �, and the
resulting tensor product is formally smooth over RAB, and thus the result follows from
Lemma 7.3.7, since the rings RB2, satisfy all the required geometric properties above.

Now suppose that αβ �= 1. In this case, RAB is formally smooth over RGL1×GL1 , and
by Lemma 7.3.15, RP,univ and RP, are formally smooth over RA⊗̂ORB or RA⊗̂�RB re-
spectively. Let us now consider the case of RP, , which corresponds to RA⊗̂�RB, the case
of RA⊗̂ORB being easier and also following immediately from Lemma 7.3.7. Since RA

and RB are either smooth or have a non-smooth locus of codimension 4 (correspond-
ing to twists of 1⊕ ε−1 by a (possibly trivial) unramified quadratic character), it is cer-
tainly the case that the points on the generic fibre of RA⊗̂�RB which are non-smooth
on RA⊗̂ORB have codimension at least 2. Hence it suffices to consider the non-smooth
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points of RA⊗̂�RB which are smooth on RA⊗̂ORB. In particular, such a point must have
a tangent space of dimension 8, and will be smooth if and only if it has an infinitesimal
deformation which does not lie on RA⊗̂�RB. Equivalently, given a point x = (xA, xB) on
the generic fibre of RA⊗̂�RB[1/p], it will be smooth if it has a deformation in which the
weight over � varies for one xA or xB but remains fixed for the other point. Equivalently,
we can look for a deformation of x = (xA, xB) such that one point is fixed but the other
point varies over �[1/p]. For xA or xB, such a deformation exists as long as xA (or xB) is a
smooth point over �. But the non-smooth points in characteristic zero over the space of
weights � are (up to unramified twist) exactly the crystalline extensions of ε−1 by 1 (see
Lemma 7.3.9), and hence these non-smooth points certainly have codimension at least 2.
To show it is connected, it suffices to note that, for each fibre of RA above �, any xA is
connected over this fibre to a point which is smooth over �. This reduces to showing
that any extension of ε−1 by 1 which is crystalline has a deformation to a non-crystalline
extension. But this is trivially achieved by a perturbation of the extension class, noting
that H1(Qp, ε) is free of rank 2 and the crystalline subspace is a line of rank 1.

It remains to prove the claim that these rings are complete intersections in all the
possible cases. Almost all the time, the tensor product is either immediately seen to be
formally smooth of the right dimension, or given by a single non-zero equation and of
the right dimension. In fact, the only way in which there can be two equations is when
two of the rings RA, RB, and RAB are not formally smooth. This implies that at least
two of α2, β

2
, and αβ are equal to one, and this trivially only happens when α2 = 1

and β
2 = 1, and hence αβ �= 1. Thus the only possible case when there exist at least two

equations is when α2 = β
2 = 1 and ηα2 = η

β
2 = 0. The corresponding tensor product is

then

O[[xA,1, zA,1, zA,2, yA,1, yA,2, xB,1, zB,1, zB,2, yB,1]]
modulo the ideal (noting tensoring over � forces yA,2 = yB,2):

(zA,1yA,1 + zA,2yA,2 + · · · , zB,1yB,1 + zB,2yA,2 + · · · ).
This pair of elements is easily seen to generate a height 2 prime ideal.

The cases when there are no equations and the rings are formally smooth are
trivial. In the cases when there is an extra generator one has to show that the resulting
equation is non-zero. Essentially the most subtle case of this form occurs when α2 = β

2 =
1 and ηα2 and η

β
2 are both non-zero and peu ramifiée. In that case, there are naïvely two

equations which have the following form:

yA,2 = h(xA,1, zA,1, zA,2, yA,1),

yA,2 = h(xB,1, zB,1, zB,2, yB,1),
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which immediately reduces to one equation. (Here h is the same h because both extensions
generate the same line — the other cases are trivial). We then need to show that the
resulting equation obtained by taking the difference of the RHS is non-zero. But this is
obviously the case unless the RHS is zero. If this is true, then yA,2 is zero in RB2, /λ, which
is impossible since RB2, is flat over �. �

Proof of Proposition 7.3.4. — By Proposition 7.3.16, we only need to prove the re-
sults for RB. As in the proof of Lemma 7.3.6, we have a presentation of RB of the
form O[[x1, . . . , xr]]/(y1, . . . , ys), where

r = 11− h0(Qp, adB ρ)+ h1(Qp, ad0
B ρ), s= h2(Qp, ad0

B ρ),

so that by the local Euler characteristic formula, r−s= 10+dim ad0
B r = 16. In particular,

if H2(Qp, ad0
B(ρ))= 0, then RB is formally smooth over O of relative dimension 16, and

there is nothing to prove.
It is therefore enough to consider each of the cases of Lemma 7.3.14. In case (2b),

we see that RB is formally smooth of relative dimension 11 over the deformation
ring RB2, for r = λβ ⊕ λ−1

β
ε−1, so the result follows from Lemma 7.3.6. From the pre-

sentation in the previous paragraph, we see that in cases (1) and (3), RB is a complete
intersection, while in case (2a), we see that every irreducible component of RB has rel-
ative dimension at least 16 over O. By Lemma 7.3.12, we may (and we do) pass freely
between RB and RB, when convenient.

Suppose that we are in case (3), and suppose that ηα2 �= 0. Let � be the representa-
tion with the same α,β as ρ, but with ηα2 = ηβ2 = ηαβ = 0. Let RB,

� be the corresponding
deformation ring. We claim that in fact RB,

� and RB, are isomorphic. To see this, note
firstly that since αβ = 1, and α �= β , we have α2 �= 1. Let

r =
(

λα ηα2

0 λ−1
α ε−1

)
.

We have already shown that, in this case, RB2, is formally smooth over �. In fact, we
can be more explicit. Write �̃ for what we called RGL1 above, so that �̃ is the formally
smooth �-algebra of relative dimension 1 which carries the additional information of
the actual lift of λα (rather than just its restriction to inertia), so that RB, and RB2, are
naturally �̃-algebras. Let λ̃α :GQp

→ �̃× be the universal lift of λα . Then since α2 �= 1,

H1(GQp
, λ̃α

2
ε) is a free �̃-module of rank 1, and the universal lift of r is represented by

(
λ̃α λ̃α

−1
ε−1η̃α2

0 λ̃α

−1
ε−1

)
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where η̃α2 lifts ηα2 . It is then easy to verify that if �univ is the universal upper-triangular
lift of � to RB,

� , then

�univ +

⎛

⎜⎜⎝

0 0 0 λ̃α

−1
ε−1η̃α2

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠

is a lift of ρ. This gives a map RB,
� → RB, , and we can obtain a map RB, → RB,

� in
the same way. It is clear that the composites of these maps are the identities, so that RB,

�

and RB, are isomorphic, as claimed.
Accordingly, whenever we are in case (3), we will assume from now on that ηα2 = 0.

It is now easy to see that in each of the cases (1), (2a), and (3), Spec RB, [1/p] is connected.
Indeed, in each case we have ηα2 = ηαβ = 0, so by arguing as in the proof of Lemma 7.3.6
(using conjugation by diag(t, 1, 1, t−1)), we see that every closed point of Spec RB, [1/p]
may be path connected to one which lands in P(Qp). Now we may immediately conclude
by knowing the corresponding result for Spec RP,univ, [1/p] proved in Proposition 7.3.16.

To obtain irreducibility we now argue as in the proof of Lemma 7.3.6, by studying
the singular locus of Spec RB[1/p]. More precisely, we let ρuniv :GQp

→GSp4(R
B) be the

universal lifting, and let H2 :=H2(GQp
, ad0

B ρuniv), a finite RB-module, which is compati-
ble with specialization. Let U be the complement of the support of H2 in Spec RB[1/p].
At any closed point x ∈ U with corresponding representation ρx : GQp

→ GSp4(Ex), we
have H2(GQp

, ad0
B ρx)= 0, so it follows that U is formally smooth over Ex at x of relative

dimension 16. In particular, U is regular.
The points in the complement of U are those for which H2(GQp

, ad0
B ρx) �= 0.

We claim that this has codimension at least 2. We may explicitly describe this locus
as follows (this description follows easily from the explicit description of ad0

B preceding
Lemma 7.3.14). In case (1), we may suppose without loss of generality (by twisting with a
quadratic character if necessary) that α = 1, and then the points in the complement of U
are those conjugate to representations of the form

⎛

⎜⎜⎝

1 0 0 0
0 χ ∗ 0
0 0 ε−1χ−1 0
0 0 0 ε−1

⎞

⎟⎟⎠

where χ lifts λβ . The locus of such points has dimension at most 13; indeed, the action of
PGSp4 by conjugation contributes at most 10 to the dimension, and the choice of χ and ∗
at most 3 (there is a two-dimensional family of choices of χ , and if χ 2 is non-trivial then
the choice of ∗ gives one more dimension, while if χ 2 is trivial then it gives 2 dimensions).
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In case (2a), we have in addition the points of the form
⎛

⎜⎜⎝

χ ′ ∗ 0 0
0 λ−1 0 0
0 0 ε−1λ−1 ∗
0 0 0 ε−1(χ ′)−1

⎞

⎟⎟⎠

where χ ′ lifts λα = 1. The locus of such points again has dimension at most 13.
In case (3), we have the points of the form

⎛

⎜⎜⎝

χ ∗ 0 ∗
0 χ−1 0 0
0 0 ε−1χ ∗
0 0 0 ε−1χ−1

⎞

⎟⎟⎠ ,

where χ lifts λα . The locus of such points has dimension at most 14 (with 2 dimensions for
the choice of χ , and then generically one dimension each for the choices of the extension
class of χ−1 by χ and of ε−1χ−1 by χ , or two dimensions each if χ 2 = 1).

Thus in cases (1) and (3), since we know that RB is a complete intersection, we
see that it is normal (being R1 and S2), so we are done. The case (2b) having already
been dealt with, we are left with case (2a), where we have seen that every irreducible
component of Spec RB[1/p] has dimension at least 16, while the complement of U has
dimension at most 12. It now suffices to show that RB is a complete intersection, and thus
also normal as above, and to check that Spec RB[1/p] has dimension exactly 16.

We have a presentation of R = RB of the form O[[x1, . . . , x18]]/(y1, y2). This is
a complete intersection as long as dim(R) ≤ 19 − 2 = 17, which also implies that the
relative dimension of R over O is 16, and so the dimension of the generic fibre is 16.
Assume otherwise, so that dim(R)≥ 18. Then the support of R in SpecO[[x1, . . . , x18]]
contains a height one prime p of O[[x1, . . . , x18]]. Suppose firstly that p has residue char-
acteristic zero, and let T denote the corresponding closed subscheme of Spec R[1/p],
which will have dimension 17. For any closed point x ∈ T with corresponding rep-
resentation ρx : GQp

→ GSp4(Ex), the tangent space at x certainly has dimension at
least dim(T)= 17. Hence there is an inequality

11− h0(Qp, adB ρx)+ h1(Qp, ad0
B ρx)≥ 17,

and so, by the Euler characteristic formula, h2(GQp
, ad0

B ρx)≥ 17− 16≥ 1. In particular,
it follows that x lies in the support of H2, and hence that T ⊂ U. But we have already
seen that U has dimension at most 12, and this is a contradiction.

Hence R can only fail to be a complete intersection if the support of R contains (λ).
It follows that dim(R/λ)= dim(k[[x1, . . . , x18]]), and hence that R/λ= k[[x1, . . . , x18]].
Twisting, we may without loss of generality assume that β = 1. Let r = 1 ⊕ ε−1, and
let RB2, denote the corresponding fixed determinant deformation ring to the Borel
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of GL(2). By realizing r as the subquotient of the representation ρ given by the span
of the second and third standard basis vectors, there is an induced map

ψ :RB2, →R →R→R/λ= k[[x1, . . . , x18]].
Let W denote the representation underlying r, and (as previously) V the representation
underlying ρ. Let us now consider the induced map on reduced tangent spaces. To com-
pute this, we may look at the corresponding deformation rings, and consider the in-
duced map on tangent spaces. For RB2, , the tangent space is given by Z1(Qp, ad0

B2
(W)).

For R , it is given by Z1(Qp, ad0
B(V)). Note that we are assuming that ηαβ = ηα2 =

ηβ2 = 0, and so ρ is completely split, and so ad0
B2

is a direct summand of ad0
B. Thus

Z1(Qp, ad0
B2

(W))→ Z1(Qp, ad0
B(V)) is injective. On the other hand, Lemma 7.3.7 (4b)

shows that (for this r) the ring RB2, /λ is not formally smooth. But this is a contradiction; a
minimal set of generators of the maximal ideal of RB2, /λ satisfy at least one polynomial
relation, but their images under ψ do not satisfy any such relation under our assumptions
because the map on tangent spaces is injective and (as we are currently assuming) R /λ

and R/λ is formally smooth. Hence λ also cannot be in the support of R, and thus R is
a complete intersection. �

Remark 7.3.17. — The last argument shows that, in case (2a), the ring R = RB

is a complete intersection. But we certainly expect (in this and in all other cases) the
stronger properties that R is flat over O and R/λ is also a complete intersection, whereas
the argument only shows that dim(R/λ) ≤ 17, rather than dim(R) − 1 = 16, which
would be necessary in order for λ to be a regular element. In general, we have often only
attempted to prove exactly enough about the deformation rings that we require for the
argument, rather than giving a fuller account of their geometric properties. We apologize
to readers who examine this argument in closer detail who were hoping for something
more comprehensive.

As in §7.1, we say that a closed point x of RB,�v
v [1/p] (resp. RP

v[1/p]) is smooth
if (RB,�v

v [1/p])x is regular (resp. (RB,�v
v [1/p])x is regular). We say that the corresponding

Galois representation ρx is pure if it is de Rham, and if WD(ρx) is pure (that is, it arises
as the base extension of a pure Weil–Deligne representation over a number field).

Lemma 7.3.18. — If x is a closed point of the generic fibre of RB,�v
v [1/p] or RP

v[1/p], and x

is pure, then it is smooth.

Proof. — We first consider the case of B. From the proof of Proposition 7.3.4, we
see that it is enough to check that H2(GQp

, ad0
B ρx)= 0. By Tate local duality, this means

that it is enough to check that HomGQp
(ρx, ρx(1)) = 0, and therefore it is enough to

check that HomWDQp
(WD(ρx), WD(ρx(1))) = 0. This follows easily from the definition
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of purity. The same argument also applies to RP,univ
v [1/p]. We now consider RP

v[1/p].
The non-smooth points x of RP

v[1/p] are either non-smooth in RP,univ
v [1/p] (for which

the previous argument applies) or, via the isomorphism of Lemma 7.3.15 and the proof
of Proposition 7.3.16, arise in the following way: the representation ρx admits a 2-
dimensional reducible subquotient rx such that the corresponding point on the defor-
mation ring RB2[1/p] is not smooth over �v . By Lemma 7.3.9, such representations are
(up to unramified twist) a crystalline extension of ε−1 by 1. Since these are not pure (and
purity is preserved by taking subquotients), the representation ρx is also not pure, and we
are also done in this case. �

7.4. Local deformation problems, l �= p.

7.4.1. Unobstructed deformations. — Assume that v � p.

Proposition 7.4.2. — If H0(Fv, ad0 ρ(1))= 0, then R�
v is isomorphic to a power series ring

over O in 10 variables. If furthermore ρ|GFv
is unramified, then so are all of its lifts.

Proof. — By Tate duality, the condition is equivalent to H2(Fv, ad0 ρ)= 0, and the
result follows from a standard calculation in obstruction theory (see e.g. [Til96, §5.2]). �

7.4.3. Taylor–Wiles deformations. — Assume that qv ≡ 1 mod p, and that both ψ |GFv

and ρ|GFv
are unramified. We take �v = O. We assume that ρ(Frobv) has 4 dis-

tinct eigenvalues in k, and we fix an ordering of them as α1, α2, α3 = ψ(Frobv)/α2,
α4 = ψ(Frobv)/α1. For each i = 1, 2, let γ i :GFv

→ k× be the unramified character that
sends Frobv to αi .

Lemma 7.4.4. — Let ρ : GFv
→ GSp4(A) be any lift of ρ. There are unique continuous

characters γi : GFv
→ A× for i = 1, 2, such that ρ is GSp4(A)-conjugate to a lift of the form

γ1 ⊕ γ2 ⊕ψγ −1
2 ⊕ψγ −1

1 , where γi mod mA = γ i for each i = 1, 2.

Proof. — This can be proved in exactly the same way as [GT05, Lem. 5.1.1]. �

Let �v = k(v)×(p)2, where k(v)×(p) is the maximal p-power quotient of k(v)×, and
let ρ : GFv

→ GSp4(R
�
v ) denote the universal lift. Then ρ is GSp4(R

�
v )-conjugate to a

lift of the form γ1 ⊕ γ2 ⊕ ψγ −1
2 ⊕ ψγ −1

1 as in Lemma 7.4.4. For i = 1, 2, the character
γi ◦ ArtFv

|O×
Fv

factors through k(v)×(p), so we obtain a canonical local O-algebra mor-
phism O[�v] → R�

v . Note that this depends on the choice of ordering α1, . . . , α4. It is
straightforward to check that this morphism is formally smooth of relative dimension 10.

7.4.5. Ihara avoidance deformations. — Let v be a finite place of F with qv ≡ 1 mod p.
Assume further that ρ|GFv

is trivial, and that ψ |GFv
is unramified and has trivial reduction

modulo λ. We take �v =O.
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Let χ = (χ1, χ2) be a pair of continuous characters χi :O×
Fv
→O× that are trivial

modulo λ. We let Dχ
v be the functor of lifts ρ :GFv

→GSp4(A) such that for all σ ∈ IFv
,

the characteristic polynomial of ρ(σ) is

(X− χ1(Art−1
Fv

(σ )))(X− χ2(Art−1
Fv

(σ )))

× (X− χ2(Art−1
Fv

(σ ))−1)(X− χ1(Art−1
Fv

(σ ))−1).

Then Dχ
v is a local deformation problem, and we denote its representing object

by Rχ
v .

Lemma 7.4.6. — If χ1, χ2 �= 1 and χ1 �= χ±1
2 , then every closed point of Spec Rχ

v [1/p] is

smooth.

Proof. — We can choose σ ∈ IFv
with χ1(Art−1

Fv
(σ )), χ2(Art−1

Fv
(σ )), χ1(Art−1

Fv
(σ ))−1,

χ2(Art−1
Fv

(σ ))−1 pairwise distinct. As in Lemma 7.1.3, we need to check that for every
point x, we have HomE′[GFv ](ρx, ρx(1)) = 0. Any such homomorphism would have to
respect the eigenspaces for ρx(σ ), and must therefore be zero. �

The proof of the following two results occupies the rest of this subsection.

Proposition 7.4.7. — Assume that χ1 = χ2 = 1. Then R1
v satisfies the following properties:

(1) Spec R1
v is equidimensional of dimension 11 and every generic point has characteristic zero.

(2) Every generic point of Spec R1
v/(λ) is the specialization of a unique generic point of

Spec R1
v .

Proposition 7.4.8. — Assume that χ1, χ2 �= 1 and χ1 �= χ±1
2 . Then Spec Rχ

v is irreducible

of dimension 11, and its generic point has characteristic zero.

We follow the strategy of [Tay08] (which proves the corresponding results for GLn)
closely. A source of minor complications in the case of GSp4 is that nilpotent centralizers
need not be connected. Even though we are interested only in deformation rings with
fixed multiplier, we have found it more convenient to carry out the analysis without fixing
multipliers until the end. We also take advantage of the fact that we only care about GSp4
(rather than, say, GSp2g ) to be a bit more ad hoc in our arguments.

Throughout the rest of this section, q will denote an integer which is not a multiple
of p.

7.4.9. Preliminaries on nilpotent matrices. — Let U ⊂ GSp4 /O be the closed sub-
scheme of matrices with characteristic polynomial (X − 1)4, and let N ⊂ Lie (GSp4)

be the closed subscheme of matrices with characteristic polynomial X4.
In [Tay08], under the assumption that p ≥ n, Taylor uses truncations to de-

gree Xn−1 of the usual exponential and logarithm maps in order to relate unipotent
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and nilpotent matrices (see in particular [Tay08, Lem. 2.4]). For p > 3, we could in
the same way use the truncations to order X3 of the usual exponential and logarith-
mic maps. However, both exp and log to third order involve terms of the form X3/3!
and (X− 1)3/3, which we need to avoid when working in residue characteristic three.
In the proof of [Tho12, Lem. 3.15] an alternative approach is given (again in the case
of GLn), using the maps exp1 = 1+N and log1 = (U− 1) in order to avoid assumptions
on the characteristic. However, neither the matrices I + N for nilpotent N nor U − 1
for unipotent U will in general be symplectic, and thus our truncated exponential and
logarithm maps must be at least quadratic. This motivates the following definitions.

For p ≥ 3, we have the following modified versions of the exponential and loga-
rithm map, which are the same as the usual definitions up to and including order X2:

exp2 :N → U

N �→ I+N+ N2

2
+ N3

2

and

log2 : U→N

U �→ (U− I)− (U− I)2

2
.

It is easily verified that these maps do indeed have image U , respectively N , and that
they are in fact inverses to each other, and in particular are bijective. Additionally, they
commute with the conjugation action of GSp4, and for m ∈ Z satisfy

exp2

(
mN+ m∗N3

)= exp2(N)m, log2(U
m)= m log2(U)+ m∗ log2(U)3,

where m∗ = (m− m3)/3 ∈ Z.
We define the following elements of N (O):

N0 = 0, N1 =

⎛

⎜⎜⎝

0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠, N2 =

⎛

⎜⎜⎝

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

⎞

⎟⎟⎠,

N3 =

⎛

⎜⎜⎝

0 1 0 0
0 0 1 0
0 0 0 −1
0 0 0 0

⎞

⎟⎟⎠.

We also let Ni ⊂N be the reduced, locally closed subscheme consisting of nilpo-
tent matrices of rank i, so that Ni ∈Ni .

The following is an analogue of [Tay08, Lem. 2.5].
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Proposition 7.4.10.

(1) ZGSp4
(Ni) is a smooth group scheme over SpecO with fibres of dimensions 11, 7, 5, 3

for i = 0, 1, 2, 3. Each connected component of ZGSp4
(Ni) is irreducible with irreducible

special fibre. Moreover, ZGSp4
(Ni) is irreducible except when i = 2, in which case it has

two components.

(2) Locally in the étale topology, the universal nilpotent matrix over Ni is conjugate to Ni by a

section of GSp4.

(3) Ni is smooth over SpecO with irreducible fibres of dimensions 0, 4, 6, 8 for i = 0, 1, 2, 3.

In particular, Ni is irreducible.

Proof. — Part (1) can be checked by brute force calculation. For instance in the
most interesting case when i = 2 a direct computation (using that p > 2) shows that

ZGSp4
(N2)	O[x, y, z,w,α,β, γ, δ, (wx− yz)−1]/

(xy,wz, yγ −wα − xδ − zβ)

where the matrix is given by
⎛

⎜⎜⎝

x y α β

z w γ δ

0 0 x y

0 0 z w

⎞

⎟⎟⎠

and from this all the properties are clear (for instance, the two components are given by
x=w = 0 and y= z= 0).

For part (2), we explain the case when i = 2. The others are similar but easier.
We may view the universal nilpotent N over N2 as an endomorphism of O4

N2
with the

“standard” symplectic form ψ . Then, by the definition of N2, ker(N) is a local direct
summand of rank 2. Then one checks that

ψ ′ :O4
N2

/ ker N×O4
N2

/ ker N→ON2

(v,w) �→ψ(Nv,w)

is a well defined non-degenerate symmetric pairing.
Étale locally, one may trivialize ψ ′: For any point x ∈ N2 we may pick a

Zariski open neighbourhood x ∈ U = Spec A ⊂ N2 over which O4
N2

/ ker N has a ba-
sis f1, f2 with ψ ′(f1, f2) = 0 and ψ ′(f1, f1),ψ ′(f2, f2) ∈ A×. Let A′ be the étale A-algebra
A[√ψ ′(f1, f1),

√
ψ ′(f2, f2)], so that over U′ = Spec A′, (O4

N2
/ ker N)U′ has a basis f ′1 =

f1/
√

ψ ′(f1, f1), f ′2 = f2/
√

ψ ′(f2, f2) with ψ ′(f ′1 , f ′1 )=ψ ′(f ′2 , f ′2 )= 1 and ψ ′(f ′1 , f ′2 )= 0. Now
lift f ′1 and f ′2 to sections e1 and e2 of O4

U′ . We may further arrange that ψ(e1, e2) = 0 by
replacing e2 by e2 − ψ(e1, e2)Ne1. Then Ne2, Ne1, e1, e2 forms a symplectic basis for O4

U′ ,
and if we let g ∈GSp4 have these elements as columns, then NU′ = gN2g−1.
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Finally we turn to part (3). For each i, there is a map

GSp4 →Ni

g �→ gNig
−1.

By the first two parts of the proposition, this map is smooth and surjective. Indeed, it
suffices to check this after base change to a suitable étale cover U→Ni , over which it
becomes isomorphic to ZGSp4

(Ni)U →U. It follows that Ni is smooth over O. The fibres
of Ni are irreducible because those of GSp4 are, and the statement about dimensions
follows from the computation of the dimensions of the fibres of GSp4 →Ni in part (1).

�

Remark 7.4.11. — By contrast to the situation for GLn considered in [Tay08], it
is no longer the case that ZGSp4

(Ni) is connected, nor is it true that the universal matrix
over Ni is Zariski locally conjugate to Ni (both fail when i = 2).

7.4.12. Some spaces of polynomials. — Let P̃ = G3
m be the diagonal torus in GSp4;

we somewhat abusively write

P̃ = {(X− α)(X− β)(X− γβ−1)(X− γ α−1)}
where the order of the linear factors matters, and we let

P = P̃/W= {X4 + a3X3 + a2X2 + a1X+ a0 | a0 ∈Gm, a2
3a0 = a2

1},
so that there is a finite map π : P̃→ P , given by multiplying out the linear factors. We
consider some reduced closed subspaces of P :

P0 =P
P1 = π({(X− α)(X− β)(X− γβ−1)(X− γ α−1) | γ α−1 = qα})
P2 = π({(X− α)(X− qα)(X− γ q−1α−1)(X− γ α−1)})
P3 = π({(X− α)(X− qα)(X− q2α)(X− q3α)})

We will find it useful to consider some explicit elements of GSp4(R), for an O-
algebra R. For α,β, γ ∈R× we let

&0(α,β, γ )= diag(α,β, γβ−1, γ α−1)

&1(α,β)= diag(qα,β, qα2/β,α)

&2,a(α, γ )= diag(qα,γ α−1, α, γ q−1α−1)
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&2,b(α,β)=

⎛

⎜⎜⎝

0 qα 0 0
qβ 0 0 0
0 0 0 α

0 0 β 0

⎞

⎟⎟⎠

&3(α)=

⎛

⎜⎜⎝

q3α 0 q(1−q2)

6 α 0
0 q2α 0 (1−q2)

6 α

0 0 qα 0
0 0 0 α

⎞

⎟⎟⎠

7.4.13. Spaces of matrices. — We define N (q) to be the closed subscheme of
GSp4×N consisting of pairs (&, N) satisfying

&N&−1 = log2(exp2(N)q)= qN+ q∗N3,

where as above we write q∗ = (q − q3)/3. This definition is motivated by the following.
The actual equation we wish to study has the form

&U&−1 =Uq

for a unipotent matrix U. If we let N = log2(U), we have U = exp2(N), and so, apply-
ing log2 to the equation above, one finds precisely that

&N&−1 = log2(U
q)= log2(exp2(N)q).

Noting that

N= 1
q
(qN+ q∗N3)− q∗

q4
(qN+ q∗N3)3,

we see that the centralizers of N and qN + q∗N3 coincide. It follows that if (&, N) is a
point of N (q), then (', N) is another point if and only if '&−1 centralizes N if and
only if '−1& centralizes N. Note also that if N3 = 0, then the condition on & is simply
that &N&−1 = qN, while, if q= 1, then the equation is simply that &N&−1 =N.

Consider the projection

N (q)→N
(&, N) �→N

and let N (q)i denote the locally closed preimage of Ni. We let Zi/Ni be the centralizer
of the universal element over Ni . Then there is an action of Zi on N (q)i by z · (&, N)=
(z&, N).

Proposition 7.4.14. — The above action makes N (q)i into a Zi -torsor over Ni .
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Proof. — By Proposition 7.4.10, we may check the proposition after base change
to a suitable étale cover U→Ni, over which the universal nilpotent over U is of the form
gNig

−1 for some g ∈ GSp4(U). Let &i be any of the explicit choices of & given above
for Ni (for i = 2, take any specialization of either &2,a or &2,b). Then one readily checks
that (&i, Ni) is a point on N (q)i, and that

(Zi)U → (N (q)i)U

z �→ (zg&ig
−1, gNig

−1)

is an isomorphism compatible with the Zi-action. �

Corollary 7.4.15. — For i = 0, 1, 2, 3, N (q)i is smooth over O with fibres equidimensional

of dimension 11. For i �= 2, N (q)i is irreducible with nonempty irreducible special fibre, while N (q)2

has two connected components, each of which is irreducible with nonempty irreducible special fibre.

Proof. — The smoothness and dimension are an immediate consequence of Propo-
sitions 7.4.10 and 7.4.14. Moreover, for i �= 2, N (q)i →Ni is flat with irreducible fibres,
and Ni is irreducible, and hence N (q)i is irreducible. The same argument applies to the
special fibre.

Now we explain why N (q)2 has two connected components. As we explained in the
proof of Proposition 7.4.10, over N2 we have the rank 2 non-degenerate quadratic space
O4

N2
/ ker(N) with quadratic form given by v �→ ψ(v, Nv). Over N2 we have N3 = 0, so

the relation &N= qN& holds on N (q)2, which implies that & preserves ker(N) and the
computation

ψ(&v, N&v)= q−1ψ(&v,&Nv)= q−1ν(&)ψ(v, Nv)

shows that & is an element of the general orthogonal group of this quadratic space.
This general orthogonal group has two components (corresponding to whether the

determinant and multiplier agree or differ by a sign). As a result we may write N (q)2 =
N (q)2,a

∐
N (q)2,b where N (q)2,a is the locus where & lies in the identity component and

N (q)2,b is the locus where & lies in the nonidentity component. Each of these loci is
in fact nonempty; for example, we can consider points of the form (&2,a(α, γ ), N2) and
(&2,b(α,β), N2). As N (q)2,a and N (q)2,b are unions of connected components, the action
of Z2 restricts to an action of the identity component Z◦

2 on each of them, and one easily
checks that they must each be torsors for Z◦

2 , and so the same argument as above shows
that N (q)2,a and N (q)2,b are irreducible with nonempty irreducible special fibre. �

For the rest of this section, we will continue to use the notation N (q)2,a and
N (q)2,b for the two connected components of N (q)2 as introduced in the proof of Corol-
lary 7.4.15. We also write N (q)i for the Zariski closure of N (q)i, (N (q)i,F) for the Zariski
closure of its special fibre, and so on.
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Proposition 7.4.16. — The irreducible components of N (q) are N (q)2,a, N (q)2,b, and

N (q)i for i = 0, 1, 3. The irreducible components of the special fibre N (q)F are (N (q)2,a,F),

(N (q)2,b,F), and (N (q)i,F) for i = 0, 1, 3. Each irreducible component of N (q) has irreducible

and generically reduced special fibre.

Proof. — N (q) is set theoretically the disjoint union of the five locally closed sub-
schemes N (q)2,a, N (q)2,b, and N (q)i for i = 0, 1, 3, which are each irreducible and of
the same dimension by Corollary 7.4.15. Hence their closures are the irreducible com-
ponents of N (q). The same argument applies to the special fibre.

To prove the last statement it will suffice to prove that for i = 0, 1, 2, 3, N (q)i

does not contain the generic points of N (q)j,F for j �= i. Indeed it already follows from
Corollary 7.4.15 that (N (q)2,a)F does not contain the generic point of N (q)2,b,F and vice
versa; and we also see that the special fibre of each irreducible component of N (q) is
reduced at the generic point of the corresponding component of N (q)F.

In order to do this for i = 0, 1, 2, 3, let Ñ (q)i ⊂N (q) be the reduced closed sub-
scheme consisting of pairs (&, N) such that rank(N) ≤ i and the characteristic poly-
nomial char&(X) is in Pi. An easy calculation shows that N (q)i ⊂ Ñ (q)i , and hence
N (q)i ⊂ Ñ (q)i . (One can either follow the proof of [Tho12, Lem. 3.15], or observe
that we have seen above that it is enough to check that this holds for the points of the
form (zi&i, Ni) for our explicit choices of &i and for zi ∈Zi .) Thus to conclude the proof,
all we have to do is exhibit a point on each irreducible component of N (q)F which is only
contained in one of the Ñ (q)i ’s. For instance, we may take the following five points:

• (&0(α,β, γ ), 0) for general values of α,β, γ ∈ F
×

.
• (&1(α,β), N1) for general values of α,β ∈ F

×
.

• (&2,a(α, γ ), N2) for general values of α,γ ∈ F
×

.
• (&2,b(α,β), N2) for general values of α,β ∈ F

×
.

• (&3(1), N3). �

For x, y ∈O× and q a positive integer which is not a multiple of p, we let M(x, y; q)
be the closed subscheme of GSp2

4 /O consisting of pairs (&,") satisfying:

• The characteristic polynomial of " is (X− x)(X− y)(X− y−1)(X− x−1).
• &"&−1 ="q.

We note that the order of x and y doesn’t matter.
There is evidently an isomorphism

M(1, 1; q)→N (q)

(&,") �→ (&, log2(")).

We now have the following analogue of [Tay08, Lem. 3.2].
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Proposition 7.4.17. — Let q be a positive integer with q≡ 1 (mod p).

(1) Let Mi be the irreducible components of M(1, 1; q) with their reduced subscheme struc-

ture. Then the special fibres Mi,F are distinct, generically reduced and irreducible, and their

reductions are precisely the irreducible components of M(1, 1; q)F.

(2) Suppose that either q �= 1 and x, y are non trivial (q − 1)st roots of 1 in 1+ λO with

x �= y±1; or that q= 1 and x, y are arbitrary elements of 1+ λO. Then M(x, y; q)red is

flat over O.

Proof.

(1) This is an immediate consequence of Proposition 7.4.16 and the isomorphism
M(1, 1; q)	N (q) above.

(2) When q �= 1, we observe that, as x, y, y−1, x−1 are distinct (q−1)st roots of unity,

char"(X)= (X− x)(X− y)(X− x−1)(X− y−1)|(Xq−1 − 1).

Hence, by the Cayley–Hamilton theorem, "q = ". This implies that there is
an isomorphism M(x, y; q)=M(x, y;1). We are therefore reduced to the case
that q= 1.

To show that M(x, y;1)red is flat over O, it suffices to show that each
generic point of its special fibre is the specialization of a point of the generic
fibre. It suffices in turn to show that a Zariski dense set of points of the spe-
cial fibre lift to the generic fibre. Then as x and y reduce to 1, we have
M(x, y;1)F =M(1, 1;1)F 	 N (1)F. This isomorphism, combined with the
proof of Proposition 7.4.16, shows that the following five kinds of F-points are
Zariski dense in M(x, y;1)F (because the corresponding points are dense in
each Ñ (q)i ):

• (g&0(α,β, γ )g−1, 1)

• (g&1(α,β)g−1, g exp2(N1)g
−1)

• (g&2,a(α, γ )g−1, g exp2(N2)g
−1)

• (g&2,b(α,β)g−1, g exp2(N2)g
−1)

• (g&3(α)g−1, g exp2(N3)g
−1)

where α,β, γ ∈ F
×

and g ∈ GSp4(F). Then letting α̃, β̃, γ̃ ∈ W(F) and g̃ ∈
GSp4(W(F)) be lifts, we can lift these to W(F) points of M(x, y;1) of the
following form (recall that we are in the case q= 1):

• (g̃&0(α̃, β̃, γ̃ )g̃−1, g̃diag(x, y, y−1, x−1)g̃−1)

• (g̃&1(α̃, β̃)g̃−1, g̃diag(x, y, y−1, x−1) exp2(N1)g̃
−1)

• (g̃&2,a(α̃, γ̃ )g̃−1, g̃diag(x, y, y−1, x−1) exp2(N2)g̃
−1)

• (g̃&2,b(α̃, β̃)g̃−1, g̃diag(A, X(Aτ )−1X) exp2(N2)g̃
−1), where

X =
(

0 1
1 0

)
, and A is a 2 by 2 matrix with coefficients in W(F)
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which has trivial reduction, commutes with
(

0 α̃

β̃ 0

)
and has eigen-

values x, y (for the existence of such a matrix, use that
(

0 α̃

β̃ 0

)
has

distinct eigenvalues mod p, and is therefore diagonalizable).
• (g̃&3(α̃)g̃−1, g̃diag(x, y, y−1, x−1) exp2(N3)g̃

−1). �

Next we have an analogue of [Tay08, Lem. 3.4].

Proposition 7.4.18. — Let q > 1 with q≡ 1 (mod p) and let x, y be non trivial (q− 1)st

roots of 1 in 1+ λO with x �= y±1. Let R= ÔM(x,y;q),(1,1) be the complete local ring of M(x, y; q)
at the point (1, 1) of the special fibre. Then Spec R[1/p] is connected.

Proof. — The proof of [Tay08, Lem. 3.4] carries over with minor modifications.
Let ℘0 denote the maximal ideal of R[1/p] corresponding to (&0,"0) with &0 triv-
ial and "0 the diagonal matrix diag(x, y, x−1, y−1), and let ℘ be another maximal
ideal, corresponding to a pair (&,"). We need to show that ℘ is in the same con-
nected component as ℘0. One deduces as in [Tay08] that ℘ is in the same connected
component of Spec(R[1/p]) as the maximal ideal corresponding to (E−1&E, E−1"E)

where E ∈GSp4(O) is arbitrary. In order to pass to an upper triangular form, we require
the existence of a filtration Fili of k(℘)4 such that:

(1) Each Fili is preserved by & and ".
(2) The graded pieces gri are one dimensional and their eigenvalues (in order) are

α, β , γβ−1, γ α−1, which are the generalized eigenvalues of &.
(3) The orthogonal complement of Fili is Fil4−i .

As in the proof of Proposition 7.4.17, & and " commute, so we may choose Fil1 to be a
common eigenvector of & and ". We define Fil3 to be the orthogonal complement of Fil1,
and then choose Fil2 to be any lift of a common eigenvector of & and " in Fil3 / Fil1.

The constructions of paths in [Tay08] from upper triangular to diagonal and be-
tween diagonal matrices (eventually to (&0,"0) and thus connecting ℘ to ℘0) have obvi-
ous symplectic modifications. �

7.4.19. Application to deformation rings. — Now let χ = (χ1, χ2) be a pair of contin-
uous characters χi :O×

Fv
→O× that are trivial mod λ, let D̃χ

v be the functor on CNLO
of continuous homomorphisms ρ :GFv

→GSp4(A) which are trivial mod mA and such
that for σ ∈ IFv

, the characteristic polynomial of ρ(σ) is

(X− χ1(Art−1
Fv

(σ )))(X− χ2(Art−1
Fv

(σ )))

× (X− χ2(Art−1
Fv

(σ ))−1)(X− χ1(Art−1
Fv

(σ ))−1).
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As in §7.4, we let Dχ
v ⊂ D̃χ

v be the subfunctor of ρ with ν ◦ ρ = ε−1. The functors D̃χ
v

and Dχ
v are representable by rings R̃χ

v and Rχ
v . We also let D1 be the functor with D1(A)

parameterizing continuous unramified characters ψ : GFv
→ A× which are trivial mod

mA. It is representable by O[[T]] with universal object χuniv : GFv
→O[[T]]× given by

χuniv(Frobv)= 1+T.
For any A ∈CNLO, then as A is complete and p > 2,

1+mA → 1+mA

t �→ t2

is a bijection and we denote its inverse by x �→√
x. Then we have

Proposition 7.4.20. — There is an isomorphism of functors

Dχ
v ×D1 → D̃χ

v

(ρ,ψ) �→ ρ ⊗ψ

Consequently there is an isomorphism Rχ
v [[T]] 	 R̃χ

v .

Proof. — For the inverse we may take the natural transformation

D̃χ
v →Dχ

v ×D1

ρ �→ (ρ ⊗√
ε · (ν ◦ ρ)

−1
,
√

ε · (ν ◦ ρ))

The only thing that we need to check is that if ρ ∈ D̃χ
v (A) then ν ◦ ρ is trivial on IFv

. For
σ ∈ IFv

, (ν ◦ρ(σ))2 is the constant term of the characteristic polynomial of ρ(σ) which is
1 by definition. But also ν ◦ ρ(σ)≡ 1 (mod mA), and hence ν ◦ ρ(σ)= 1 as p > 2. �

We may now relate these deformation rings to the spaces of matrices considered in
this section.

Proposition 7.4.21. — Let σ be a chosen topological generator of the tame inertia subgroup of

GFv
. Let x= χ1(Art−1

Fv
(σ )) and y= χ2(Art−1

Fv
(σ )). Then

R̃χ
v 	 ÔM(x,y;qv),(1,1).

Proof. — Since ρ|GFv
is trivial, any lifting of it factors through the quotient Tv =

GFv
/PFv

, where PFv
denotes the maximal pro-prime-to-p subgroup of IFv

(that is, the ker-
nel of any non-trivial homomorphism IFv

→ Zp). If ϕ is an arithmetic Frobenius element
in GFv

, then the group Tv is topologically generated by ϕ and the image of σ , subject to
the constraints that σ generates a pro-p group, and that ϕσϕ−1 = σ qv . The result then
follows from the definitions. �
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We can now conclude the proofs of Propositions 7.4.7 and 7.4.8 exactly as
in [Tay08].

Proof of Proposition 7.4.7. — Combining Propositions 7.4.17 (1) and 7.4.21 with
[Tay08, Lem. 2.7] proves the corresponding result for R̃1

v . The result for R1
v follows from

this and Proposition 7.4.20. �

Proof of Proposition 7.4.8. — Proposition 7.4.17 implies that (R̃χ
v )red is flat over O.

Proposition 7.4.18 implies that Spec(R̃χ
v [1/p]) is connected. On the other hand, by

Lemma 7.4.6, for any closed point x ∈ Spec(R̃χ
v [1/p]), the localization (R̃χ

v [1/p])x is reg-
ular and hence a domain. Then the result follows from Propositions 7.4.17 (2) and 7.4.21,
as in the proof of [Tay08, Prop. 3.1]. �

7.5. Big image conditions and vast representations.

7.5.1. Enormous subgroups. — Following [CG18, KT17] (which give the analogous
definition for GLn) we now define the notion of “enormous image,” with some minor
modifications.

Definition 7.5.2. — We say that a subgroup H ⊂ GSp4(k) is enormous if it satisfies the

following conditions:

(E1) H1(H, ad0)= 0 for the 10-dimensional representation ad0.

(E2) H acts absolutely irreducibly in its natural representation, in particular, H0(H, ad0)= 0.

(E3) For all simple k[H]-submodules W⊂ k⊗ ad0, there is an element h ∈H such that

• h ∈GSp4(k) has 4 distinct eigenvalues, and

• 1 is an eigenvalue for the action of h on W.

If H only satisfies (E2) and (E3), then we say that H is weakly enormous.

Lemma 7.5.3. — If H and H′ are subgroups of GSp4(k) with the same image in PGSp4(k),

then H is enormous (resp. weakly enormous) if and only if H′ is enormous (resp. weakly enormous).

Proof. — Suppose that P is the projective image of H in PGSp4(k) and Z is the
kernel. Then the action of H on ad0 factors through P. In particular, H0(P, ad0) =
H0(H, ad0), and there is an inflation–restriction sequence

0→H1(P, ad0)→H1(H, ad0)→H1(Z, ad0)P = 0.

Hence all the conditions in the definitions of enormousness and weakly enormousness
depend only on the projective representation. �

Note that if H′ ⊂H is weakly enormous, then so is H, but if H′ is enormous, then H
is not necessarily enormous.
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Remark 7.5.4. — Some “big image” conditions in the literature have the addi-
tional assumption that H has no p-power quotient. In practice, however, that hypothesis
is often only used in a very weak way, namely, to ensure that the image of ρ restricted
to GF(ζp) coincides with the restriction to GF(ζ

pN ) for all N ≥ 1. The stronger hypoth-
esis has the unfortunate side effect of ruling out some perfectly fine Galois represen-
tations to which the Taylor–Wiles method applies, most notably, surjective representa-
tions ρ : GQ → GL2(F3) with cyclotomic determinant (exactly the case which arises in
the original work of Wiles!). In order not to rule out some interesting subgroups which
occur for p= 3, we therefore do not assume this hypothesis.

Let p≥ 3. The cyclotomic character induces a homomorphism:

GF → Z×p 	 (Z/pZ)× ⊕ (1+ pZp)→ (1+ pZp).

If p is unramified in F, then this composite map is surjective. In general, the image con-
tains 1+ pδ for some integer δ. In order to address the passage from F(ζp) to F(ζpN) in the
Taylor–Wiles argument, we have the following lemma:

Lemma 7.5.5. — Suppose that p≥ 3. Let

ρ :GF →GSp4(k)

be a continuous homomorphism. Then there exists an integer δ depending only on F such that the image

of ρ restricted to GF(ζ
pN ) is independent of N for N≥ 1+ δ if p≥ 5 or N≥ 2+ δ for p= 3. If p is

unramified in F, then one may take δ = 1.

Proof. — There is a canonical injective homomorphism

Gal(F(ζpN)/F)→ (Z/pNZ)×

for all N, and we will identify Gal(F(ζpN)/F) with its image in (Z/pNZ)× in the below. We
choose δ such that for all N, the image contains 1+ pδ . In particular, if p is unramified
in F, we can take δ = 1.

Let M denote the fixed field of ρ. There are natural maps as follows:

Gal(M(ζpN+1)/F) ⊂� Gal(M/F)×Gal(F(ζpN+1)/F)

Gal(M(ζpN)/F)
�

⊂ � Gal(M/F)×Gal(F(ζpN)/F)
�

where the composites of the horizontal maps with the projections to each factor are sur-
jective. The images of ρ restricted to F(ζpN) and F(ζpN+1) coincide precisely when the left
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hand vertical map has non-trivial kernel (necessarily of order p). We prove this is so under
our assumptions on N.

It suffices to show that the horizontal image of the upper map contains an element
of the form (idM, 1+mpN) for some m with (m, p)= 1. By the surjectivity onto the second
factor, it contains an element of the form (g, 1+ pδ). Let m be the prime to p order of g,
so that h := gm has p-power order. Since p > 2, we have (g, 1+ pδ)mpN−δ = (hpN−δ

, 1+mpN),
and hence we are done providing the order of h divides pN−δ . Yet all p-power elements
of GSp4(k) have order dividing p if p ≥ 5 or order dividing p2 if p = 3. (The p-Sylow
subgroup of GSp4(k) consists of unipotent matrices which satisfy (σ −1)4 = 0, so σ pk = 1
when pk ≥ 4.) �

In anticipation of Lemma 7.5.9 below, we make the following definition:

Definition 7.5.6. — A representation ρ :GF →GSp4(k) is vast if one of the following two

conditions holds:

(1) The image of ρ restricted to GF(ζ
pN ) is enormous for all sufficiently large N.

(2) The image of ρ restricted to GF(ζ
pN ) is weakly enormous for all sufficiently large N, and the

fixed field L of ad0 ρ does not contain ζp.

Remark 7.5.7. — If p is unramified in F, then, in Definition 7.5.6, one may replace
sufficiently large N by N= 3, since, by Lemma 7.5.5, the image in this case does not depend
on N for N≥ 3.

Remark 7.5.8. — By Lemma 7.5.3, ρ is vast if and only if any twist of ρ by a
character is vast.

The following lemma will prove useful for constructing Taylor–Wiles primes:

Lemma 7.5.9. — Suppose that p≥ 3. Let ρ :GF →GSp4(k) be a continuous representation.

Fix an integer N≥ 1. Suppose either that:

(1) The fixed field L of ad0 ρ does not contain ζp, or

(2) The restriction of ρ to GF(ζ
pN ) has enormous image.

Then

H1(L(ζpN)/F, ad0 ρ(1))= 0.

In particular, if ρ is vast, then the conclusion above holds for all sufficiently large N.

Proof. — We first consider the case when ζp /∈ L. By inflation–restriction, it suffices
to prove that the groups

H1(L(ζp)/F, ad0 ρ(1)), H1(L(ζpN)/L(ζp), ad0 ρ(1))Gal(L(ζp)/F)
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both vanish. The group Gal(L(ζp)/L) ⊂ Gal(L(ζp)/F) acts trivially (by conjugation) on
both the group Gal(L(ζpN)/L(ζp)) and the module ad0. However, it acts by non-trivial
scalars on the twist ad0(1) since we are assuming ζp /∈ L. Hence the second group vanishes
after taking invariants. Applying inflation–restriction now to the first group, it suffices to
prove that the groups

H1(L/F, (ad0 ρ(1))Gal(L(ζp)/L)), H1(L(ζp)/L, ad0 ρ(1))Gal(L/F)

both vanish. The second group vanishes because p � [L(ζp) : L]. The first group van-
ishes because ad0 ρ is fixed by Gal(L(ζp)/L) and thus has no invariants after being
twisted by the mod-p cyclotomic character (which by assumption is a non-trivial char-
acter of Gal(L(ζp)/L)).

Now we consider the second case. Let M denote the splitting field of ρ, so that M/L
is a (possibly trivial) cyclic extension of degree prime to p. Inflation–restriction shows that
we have an injection

H1(L(ζpN)/F, ad0 ρ(1)) ↪→H1(M(ζpN)/F, ad0 ρ(1)),

so it suffices to show that the latter group vanishes. By inflation–restriction, it is enough
to show that the cohomology groups

H1(F(ζpN)/F, H0(M(ζpN/F(ζpN), ad0 ρ(1))),

H1(M(ζpN)/F(ζpN), ad0 ρ(1))

both vanish. We are assuming that

H=Gal(M(ζpN)/F(ζpN))

is enormous. Thus to show that both groups above vanish, it suffices to note that

H0(H, ad0)=H1(H, ad0)= 0

because H is enormous. �

Remark 7.5.10. — The two parts of this proof are essentially standard — in par-
ticular the first part is exactly the same as the proof of Lemma 5.3 of [Pil11].

We will require a weakly enormous (or in practice vast) image assumption in order
to use the Cebotarev density theorem to guarantee the existence of Taylor–Wiles primes.
Similarly, the following condition will allow us to use Cebotarev to arrange for our level
structures to be neat by increasing the level at an auxiliary prime.

Definition 7.5.11. — We say that a subgroup H ⊂ GSp4(k) is tidy if there is an h ∈ H
with ν(h) �= 1, and such that no two eigenvalues of h have ratio ν(h) (but the eigenvalues need not be

distinct). We say that a representation ρ :GF →GSp4(k) is tidy if it has tidy image.
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Note that the property of tidiness is inherited from subgroups.

Lemma 7.5.12. — Suppose that H ⊂ GSp4(k) is absolutely irreducible, and the centre Z
of H has order at least 3. Then H is tidy.

Proof. — By Schur’s lemma, the centre is cyclic and any element in the centre
is scalar with eigenvalues (ζ, ζ, ζ, ζ ) for some ζ . If |Z| ≥ 3, there thus exists such an
element h in the centre with ζ 2 �= 1. Since ν(h)= ζ 2 �= 1, and since the ratio of every pair
of eigenvalues is 1 �= ν(h), it follows that H is tidy. �

Lemma 7.5.13. — Let � ⊂ GL2(Fp) × GL2(Fp) be the subgroup of pairs (A, B)

with det(A) = det(B), and consider � as a subgroup of GSp4(Fp) via the map of §2.2. If p ≥ 5
and �⊂H, then H is tidy.

Proof. — The argument is very similar to the proof Lemma 7.5.12. The group �

contains a cyclic subgroup of scalar matrices of order p− 1 > 2. �

Lemma 7.5.14. — If p ≥ 11 and H ⊂ GSp4(k) is absolutely irreducible, then condi-

tions (E1) and (E2) are satisfied.

Proof. — This is immediate from [Tho12, Thm. A.9]. �

Lemma 7.5.15. — If p ≥ 3, then H = Sp4(Fp) is enormous and G = GSp4(Fp) is tidy.

If ρ :GF →GSp4(Fp) is a surjective representation with similitude character ε−1, then ρ is vast and

tidy.

Proof. — For all such p, the representation ad0 is absolutely irreducible. Hence for
weak enormity it suffices to note that H contains elements with distinct eigenvalues, and
every such element has at least one eigenvalue 1 on ad0. Thus for enormity it suffices to
check that H1(Sp4(Fp), ad0)= 0. For p≥ 11, this follows from Lemma 7.5.14. For p= 3,
5, and 7, it can be checked directly using magma [BCP97]. (All of the magma code and
output for this paper can be found at the github respository here [BCGP21].)

For tidiness, the centre of G has order p−1 so the result follows from Lemma 7.5.12
when p > 3. (It also follows from Lemma 7.5.13.) When p = 3, the group GSp4(F3)

contains an element g of order 20 with ν(g)=−1; more precisely, its eigenvalues are of
the form ζ, ζ 3, ζ 9, ζ 27 for a 20th root of unity ζ , and ν(g)= ζ 10 = ζ 30 =−1. The ratios
of the pairs of eigenvalues are of the form ζ 3−1, ζ 9−1, and ζ 27−1, and since none of these
quantities is equal to ζ 10 =−1, we are done.

For vastness, note that the image of ρ restricted to GF(ζp) will be H= Sp4(Fp). Since
this group has no quotients of p-power order (indeed PSp4(Fp) is simple), the image of
the restriction of ρ to GF(ζ

pN ) will also be H for all N. Hence the image of ρ restricted
to GF(ζ

pN ) is always H and hence enormous; thus ρ is vast. �
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7.5.16. Representations induced from index two subgroups. — Suppose that G⊂ Sp4(k)

is an absolutely irreducible subgroup such that the underlying representation W be-
comes reducible on an index two subgroup H. Write χ for the quadratic charac-
ter χ : G → G/H → k× (we assume the characteristic of k is different from 2). Write
G/H = {1, σ }. Then one may write W|H = V ⊕ Vσ , and one has the following G-
equivariant decompositions (not necessarily into irreducibles):

W⊗W=W⊗W∨ = k⊕ k(χ)⊕ IndG
H(ad0(V))⊕As(V)⊕As(V)⊗ χ,

ad0(W)= Sym2(W)= IndG
H(ad0(V))⊕As(V),

∧2 (W)= k⊕ k(χ)⊕As(V)⊗ χ.

Here As(V) is the Asai representation, which satisfies As(V)|H = V⊗Vσ . These identi-
fications follow from computing what happens over H and noting that W	W⊗ χ .

Lemma 7.5.17. — Suppose that As(V) and IndG
H(ad0(V)) are absolutely irreducible rep-

resentations of G. Suppose that G \H has an element g of order neither dividing 4 nor divisible by p.

Then G satisfies condition (E3) of enormousness.

Proof. — Let g be an element of G \H. Since W is induced, the eigenvalues of g

are invariant under multiplication by −1. Since G⊂ Sp4(k), the eigenvalues are invari-
ant under inversion. It follows that the eigenvalues are of the form (α,α−1,−α,−α−1)

for some α. If g has order neither dividing 4 nor divisible by p, then α4 �= 1 and these
eigenvalues are all distinct. To show (E3), it is enough to show that any such element g

has an eigenvalue 1 on both As(V) and IndG
H(ad0(V)). Let � = 〈g〉, and work in the

Grothendieck group of representations of �. The representation Sym2 differs from ∧2 by
containing the squares of all the eigenvalues. Hence

[Sym2] = [∧2] + [α2, α−2, α2, α−2].
Moreover, since χ(g)=−1,

[∧2] = [1] + [−1] + [−As(V)].
It follows by counting eigenvalues in W⊗W that

[∧2] = [1] + [−1] + [1,−1,−α2,−α−2],
[Sym2] = [−1, 1, α2, α−2] + [1,−1, α2,−α2, α−2,−α−2],

from which it follows that

[As(V)] = [−1, 1, α2, α−2],
IndG

H(ad0(V))= [1,−1, α2,−α2, α−2,−α−2],
both of which have 1 as an eigenvalue. �
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Lemma 7.5.18. — Assume k has characteristic p≥ 3. Let G be the group SL2(k) &Z/2Z=
(SL2(k)×SL2(k))�Z/2Z, where the semi-direct product swaps the two copies of SL2(k), considered

as a subgroup of Sp4(k) as in §2.2. Then G is weakly enormous, and is furthermore enormous if

#k �= 5.

Proof. — We begin by checking that property (E1) holds. Let H = SL2(k) ×
SL2(k) = A × B, say, and let VA and VB denote the tautological 2-dimensional rep-
resentations of A and B, so that W|H = VA ⊕ VB, and Sym2(W)|H = ad0(W)|H =
ad0(VA)⊕ ad0(VB)⊕ VA ⊗ VB. Since H1(G, ad0(W)) = H1(H, ad0(W))G/H, it suffices
to prove that

H1(H, ad0(W))=H1(A× B, ad0(W))= 0.

By inflation–restriction, we see that there are exact sequences:

H1(A, ad0(VA))→H1(A× B, ad0(VA))→ (H1(B, k)⊗ ad0(VA))A = 0,

0=H1(A, (VA ⊗VB)B)→H1(A× B, VA ⊗VB)

→ (H1(B, VB)⊗VA)A = 0.

Thus it remains to show that H1(A, ad0(VA))= 0. But this is the same as showing that

H1(SL2(k), Sym2(k2))= 0.

This holds for #k �= 5 (which we are assuming) by [DDT97, Lem. 2.48].
Property (E2) is obvious. For property (E3), it suffices by Lemma 7.5.17 to show

that G\H contains an element g of order not dividing 4 and not divisible by p. Since p2−1
is always divisible by 8, there exists a matrix a ∈ A of order exactly 8. The automor-
phism σ : A× B→ B×A of order 2 identifies A with B, and with respect to this identi-
fication let g = σ(a, a)= (a, a)σ . Then g2 = (a2, a2) has order 4, so g has order 8 which
does not divide 4 and is not divisible by p, as required. �

For p= 5 one has the following substitute:

Lemma 7.5.19. — Let H/F be a quadratic extension, and let r : GH → GL2(F5) be a

surjective representation with determinant ε−1. Let ρ : GF → GSp4(F5) be the induction of r to F,

and assume that the image of ρ|GF(ζ5)
is equal to G= SL2(F5) &Z/2Z. Assume furthermore that 5 is

unramified in F. Then G := ρ(GF(ζ5N )) is weakly enormous for all N≥ 1 and ζ5 does not lie in the

fixed field of ad0 ρ; in particular, ρ is vast.

Proof. — Since the abelianization of G has order prime to 5, the image of ρ

over F(ζ5) is the same as the image over F(ζ5N) for any N, and is weakly enormous by
Lemma 7.5.18. Let � denote the image of ρ. Since 5 is unramified in F and the similitude
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character of � is inverse cyclotomic, it follows that the similitude character is surjective
and [� :G] = 4. In particular, the group � is the full pre-image of G in GSp4(Fp), and is
generated by pairs (A, B) in GL2(Fp) with det(A)= det(B) together with an involution
sending (A, B) to (B, A). The fixed field L of ad0 ρ is the fixed field of the projective
representation. But one can now observe directly that the image of � in PGSp4(F5)

has abelianization (Z/2Z⊕ Z/2Z), which does not surject onto Gal(F(ζ5)/F)= Z/4Z.
So ζp /∈ L, and ρ is vast, as required. �

7.5.20. The enormous subgroups of Sp4(F3). — By an exhaustive search, one can
determine precisely which of the subgroups of Sp4(F3) are enormous. There are 162
conjugacy classes of subgroups, and it turns out that precisely 11 of them are enormous,
of orders 40, 128, 160, 192, 240, 320, 384, 384, 1152, 1920, and 51840 respectively.
Our main interest will be in representations ρ to GSp4(F3) which are vast and tidy. In
particular, it is of interest to consider subgroups G of GSp4(F3) which are tidy and such
that H = Sp4(F3) ∩ G is enormous. Sometimes the tautological 4-dimensional repre-
sentation V of one of these groups G fails to be absolutely irreducible on an index two
subgroup — necessarily this subgroup is not H=G ∩ Sp4(F3) because we are assuming
that H is enormous and hence acts absolutely irreducibly on V. The representation V
underlying G restricted to this index two subgroup either becomes reducible over F3 or
over a non-trivial extension of F3. In the former case, we say that G is split induced. In
this case, the index two subgroup is necessarily a subgroup of

�= {(A, B)⊂GL2(Fp)×GL2(Fp) where det(A)= det(B)}
and G is a subgroup of � :=� � Z/2Z where Z/2Z swaps the factors. Hence we may
write the index two subgroup in this case as G∩�.

We collect a number of interesting examples in the following lemma.

Lemma 7.5.21. — The following groups G ⊂ GSp4(F3) are tidy, and such that the index

two subgroup H=G∩ Sp4(F3) is enormous.

(1) The group G=GSp4(F3).
(2) A group G of order 3840. The projective image has index 27 in PGSp4(F3). It

may be identified as the stabilizer of the natural action of PGSp4(F3) on the 27
lines of a cubic surface.

(3) Split Inductions. The following subgroups of � =� � Z/2Z:
(a) The group G= � of order 2304.
(b) The two groups G of index 3 in �. They are the two groups of order 768

inside GSp4(F3) up to conjugacy, and they are distinguished by their in-
tersections H = G ∩ Sp4(F3) ⊂ SL2(F3) & Z/2Z and H ∩ � ⊂ SL2(F3)

2.
Note there is a homomorphism χ : SL2(F3) → A4 → Z/3Z. One inter-
section H ∩ � is given by pairs (A, B) with χ(A) = χ(B), and the other
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by pairs with χ(A)=−χ(B). Note that these groups are abstractly isomor-
phic (the outer automorphism of SL2(F3) sends χ to−χ ) but not conjugate
inside GSp4(F3).

(4) Other Inductions. A group G of order 480 with projective image S5×Z/2Z.
There is an isomorphism PSL2(F9)= A6, and hence a projective F9 represen-
tation of the subgroup A5 ⊂ A6. This is not unique — there are two natural
conjugacy classes of A5 permuted by the exotic automorphism of A6. But that
automorphism is induced by Frob3 acting on the field of coefficients F9, so the
choice does not matter. There is a corresponding lift:

Ã5 →GL2(F9)

by a group Ã5 which is a central extension of A5 by Z/4Z. The outer au-
tomorphism group of Ã5 is (Z/2Z)2, and there is a unique such outer auto-
morphism which acts by −1 on the centre and by an outer automorphism
on A5. Moreover, this lifts to a genuine automorphism σ of Ã5 of order 2.
Then G := Ã5 � 〈σ 〉 ⊂ GSp4(F3) has order 480. This is the only enormous
subgroup which both has induced image and is not solvable. Warning: The
group G is not determined up to conjugacy by its order. Indeed, there exists a
second conjugacy class of subgroups G′ of order 480 with H′ = G′ ∩ Sp4(F3)

of order 240 such that G′ contains Ã5 with index two and such that the corre-
sponding outer automorphism is given by the class of σ . The group G′, how-
ever, is not a semi-direct product. The groups G and G′ can be distinguished
as follows: the group PGSp4(F3) has a natural action on 40 points correspond-
ing to the action on P3(F3). The orbits of G are of size 20 and 20 respectively
whereas G′ acts transitively.

Proof. — This can be proved using the computer algebra package magma
[BCGP21]. We omit the details. Note, however, that case (3a) was proved in Lemma
7.5.18. �

Lemma 7.5.22. — Suppose that p ≥ 3, that K/F is a quadratic extension such that K is

unramified at p, and that r : GK → GL2(k) restricted to GK(ζp) has image SL2(k). Choose σ ∈
GF \ GK, and assume that Proj rσ � Proj r, but that det rσ = det r is equal to ε−1. Let ρ :=
IndGF

GK
r :GF →GSp4(k). If p= 3, assume that the fixed fields corresponding to the kernels of Proj r

and Proj rσ are disjoint. Then ρ is vast and tidy.

Proof. — Note that F is necessarily unramified at p (since K is). By Lemmas 7.5.18
and 7.5.19, in order to show that ρ is vast, it suffices to show that for all N≥ 1, the image
of ρ restricted to F(ζpN) is G= SL2(k) & Z/2Z. First assume that #k > 3. Then PSL2(k)

is simple. If the image of rσ is disjoint from the image of r, it would follow by Goursat’s
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Lemma that the image of ρ|GK(ζp)
is the group SL2(k)

2, and hence the image of ρ|GK(ζ
pN )

is also SL2(k)
2, and thus the image of ρ|GF(ζ

pN )
is SL2(k) &Z/2Z. Since the automorphism

group of PSL2(k) is PGL2(k), it follows that the projective representations associated to r

and rσ have the same image if and only if they are the same. Since we are assuming
otherwise, we are done unless k = F3.

Now assume that k = F3, and so the images of r and rσ restricted to K(ζ3) are both
isomorphic to SL2(F3), which is a degree two central extension of A4. The non-trivial
quotients of SL2(F3) are given by PSL2(F3) = A4 and Z/3Z. By assumption, the fixed
fields corresponding to the kernels of Proj r and Proj rσ are disjoint and both have Galois
group A4. Thus by Goursat’s lemma, the image of ρ restricted to F(ζ3) is SL2(F3) &Z/2Z.
This is enormous, by Lemma 7.5.21. The abelianization of this group has order prime
to 3, so the image of ρ restricted to F(ζ3N) is also of this form.

Tidiness follows for p≥ 5 by Lemma 7.5.13. For p= 3, the image contains an ele-
ment g of order 8 with ν(g)=−1 and eigenvalues (ζ,−ζ−1, ζ,−ζ−1) for a primitive 8th
root of unity ζ . The ratio of any two eigenvalues is either trivial or is a primitive fourth
root of unity. �

Remark 7.5.23. — When p = 3, we may weaken the hypotheses of this lemma
slightly. By Lemma 7.5.21 and Lemma 7.5.5, it suffices that the image of ρ restricted
to F(ζ27) is either SL2(F3) & Z/2Z or one of the subgroups of SL2(F3) & Z/2Z of in-
dex three and order 384 considered in Lemma 7.5.21. Unfortunately, the hypothesis
that Proj r is distinct from Proj rσ is not quite enough to force this. For example, it is pos-
sible that the image of ρ restricted to F(ζ3) might be the (unique) subgroup of order 384
in SL2(F3) &Z/2Z with abelianization Z/6Z, and this means it is possible that the image
of ρ restricted to F(ζ9) is the 2-Sylow subgroup of SL2(F3) &Z/2Z of order 128. However,
this latter subgroup is not enormous.

7.5.24. Crossing with dihedral extensions. — The goal of this section is to construct
certain representations induced from quadratic fields K/F which will allow us to prove
modularity results for elliptic curves over K even when K is neither totally real nor CM
(see Theorem 10.1.4). Suppose that F is a totally real field in which p splits completely,
and let K/F be an arbitrary quadratic extension of F in which p is unramified.

Lemma 7.5.25. — There exists a Galois extension H/F containing K such that:

(1) D=Gal(H/F) is the dihedral group of order 8, and Gal(H/K)= (Z/2Z)2.

(2) H/F is the Galois closure over F of a quadratic extension M/K.

(3) H/F is unramified at each v|p, and 〈Frobv〉 ∈D is not central.

Furthermore, H/F may be chosen to be linearly disjoint from any given fixed finite extension of F linearly

disjoint from K/F.
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Proof. — Let L/F be a second quadratic extension to be chosen later. The obstruc-
tion to constructing a dihedral extension H/F containing K and L as quadratic subfields
with Gal(H/K) 	 Gal(H/L) 	 (Z/2Z)2 is the vanishing of the cup product χK ∪ χL,
where χK, χL ∈ H1(F,F2) are the quadratic characters corresponding to the fields K
and L. Equivalently, if L = F(

√
β) and K = F(

√
α), it is the condition of requiring

that β ∈NK/F(K×); if β =N(x+ y
√

α), then one may take

H= F(
√

α,
√

β,

√
x+ y

√
α).

The extension M=K(
√

x+ y
√

α) will have Galois closure H over F. Suppose β can be
chosen so that every v|p is inert in L, and moreover such that β is prime to p. Then H/M
will be unramified at each v|p, and Frobv will be non-central, since the fixed field of the
non-trivial central element is the compositum K.L.

We now construct many such β . Note that Fv 	Qp by assumption, and we may
assume that α is a v-adic unit for all v|p. Let us consider NK/F(K×), which consists of the
non-zero elements of F of the form x2 − αy2 where x, y ∈ F. The quadratic form

x2 − αy2 − γ z2 = 0 mod v

for any γ �= 0 always has a non-trivial solution with z �= 0. Hence, by taking γ to be
any quadratic non-residue in F×p , we may choose x and y modulo v so that x2 − αy2 is
a non-zero quadratic non-residue. Making such a choice for all v|p, we find that β =
x2 − αy2 is a v-adic unit and a quadratic non-residue modulo v for all v|p. Since p > 2,
the resulting extension L= F(

√
β) is thus inert at all primes v|p, giving rise to the desired

extension H/F.
Finally, by taking x and y sufficiently close to 1 and 0 respectively in OF,w for

any finite set of auxiliary primes w, can ensure that H/K splits completely at any such
collection of primes, and hence we may ensure H/F is linearly disjoint from any fixed
finite extension of F which is linearly disjoint from K, as required. �

We may write D as D = 〈a, b|a2 = b2 = (ab)4 = 1〉, where [a, b] is the order two
element of the centre of D.

Lemma 7.5.26. — Let r :GF →GL2(Fp) be an absolutely irreducible Galois representation

with determinant ε−1. Suppose that, for each v|p, the restriction r|GFv
takes the shape

(
χv ∗
0 ε−1χ−1

v

)

for some unramified character χv . Let K/F be an arbitrary quadratic extension linearly disjoint from

the fixed field F(r) of the kernel of r, let H/F be any corresponding D-extension as guaranteed by
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Lemma 7.5.25, chosen to be linearly disjoint from F(r), and let M/K be a quadratic extension with

Galois closure H/F. Let ρ be the following symplectic induction

ρ := IndGF
GK

(r|GK ⊗ δM/K),

where δM/K is the quadratic character corresponding to the extension M/K, and the induction is con-

structed as in §2.2. Let � denote the image of r, and let G denote the image of ρ. Then:

(1) ρ is weight 2 ordinary and p-distinguished with similitude character ε−1.

(2) If V denotes the underlying representation of G given by r, and U the 2-dimensional faithful

representation of Gal(H/F)=D, then ρ is given by V⊗U. In particular, ρ is absolutely

irreducible.

(3) If � has a central element of order 2, then the image of ρ is

G= (�×D)/(−1= [a, b]).
Otherwise, the image is G= �×D.

Proof. — The restriction of r to GK has determinant ε−1, which is preserved by the
quadratic twist, and hence the induction also has ε−1 as the similitude character. The
induction of δM/K from GK to GF is precisely the representation U of D=Gal(H/F).

By the construction of Lemma 7.5.25, for each place v|p, Frobv ∈D is not central.
It follows that the restriction of Gal(H/F) acting on U to the decomposition group at v

is of the form ψ ⊕ χ for distinct unramified characters ψ and χ . Then the representa-
tion ρ|GFv

naturally takes the form r|GFv
⊗ψ ⊕ r|GFv

⊗ χ . This is automatically weight 2
ordinary and p-distinguished.

Finally, the image of ρ is the image of the map � × D→ GL(V ⊗ U), and the
kernel of this map is given by the elements of the form (z, z−1) with z central. �

We now show that many of the groups G occurring as the image of representa-
tions ρ as constructed in Lemma 7.5.26 have big image.

Lemma 7.5.27. — Let p≥ 5, and suppose that we are in the setting of Lemma 7.5.26. Suppose

either that � =GL2(Fp) or that p= 5 and � is the pre-image in GL2(F5) of S4 ⊂ S5
∼= PGL2(F5).

Then G ∩ Sp4(Fp) is enormous unless � = GL2(Fp) and p = 5, in which case G ∩ Sp4(Fp) is

weakly enormous. In any case, ρ is vast and tidy.

Proof. — By Lemma 7.5.26, G acts faithfully on W=V⊗U, where V is the tauto-
logical representation of �, and U is the faithful 2-dimensional representation of D, with
image G= (�×D)/(−1= [a, b]). We begin by checking condition (E3). Clearly

W⊗W∗ = (V⊗V∗)⊗ (U⊗U∗).
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The latter factor is the regular representation of the abelianization of D, and is a di-
rect sum of characters of order dividing 2. The first factor is the direct sum of ad0(V)

with the trivial character. Both the trivial representation and the adjoint representation
of GL2(Fp) have the property that 1 is always an eigenvalue of any element. Hence, for
any irreducible summand of W⊗W∗, 1 will always be an eigenvalue on an index two sub-
group " ⊂G which is the kernel of one of the degree 2 characters of D. Yet given g ∈ �,
there is an element in " with eigenvalues the roots of g together with the negatives of
the roots of g. Hence it suffices to note that � ∩ SL2(Fp) has an element with eigenval-
ues {α,α−1} with α �= ±α−1. (In particular, in the case that p = 5 and � is the central
cover of S4, one could take g to have order 3.)

For � = GL2(Fp), p > 5, since D has order prime to p, (E1) reduces to the fact
that H1(SL2(Fp), Sym2(F2

p)) = 0, which is [DDT97, Lem. 2.48]. If p = 5, the group G
is of order 384 = 42|S4|, and therefore satisfies (E1) automatically because the order is
prime to p.

For the final claim, note firstly that for each N ≥ 1, we have ρ(GF(ζ
pN )) = G ∩

Sp4(Fp). Indeed this is clear for N= 1 (as the similitude factor of ρ is ε−1), and since G has
no quotients of order p, the same is true for all N > 1. That ρ is vast is then an immediate
consequence of the previous claims except in the case when � = GL2(F5), where G ∩
Sp4(F5) is not enormous. But in this case, exactly as in the proof of Lemma 7.5.19, the
image of the projective representation factors through PGL2(F5)× (Z/2Z)2 which does
not surject onto Z/4Z, and hence the fixed field of the adjoint representation cannot
contain ζ5 when E is unramified at p= 5. Finally, for tidiness, we note that � and hence G
contains a centre of order at least p− 1, and we are done by Lemma 7.5.12. �

7.6. Taylor–Wiles primes. — We again fix a global deformation problem

S = (ρ, S, {�v}v∈S,ψ, {Dv}v∈S).

Then we define a Taylor–Wiles datum to be a tuple (Q, (αv,1, . . . , αv,4)v∈Q) consisting of:

• A finite set of finite places Q of F, disjoint from S, such that qv ≡ 1 mod p for
each v ∈Q.

• For each v ∈Q, an ordering αv,1, αv,2, αv,3 =ψ(Frobv)α
−1
v,2, αv,4 =ψ(Frobv)α

−1
v,1

of the eigenvalues of ρ(Frobv), which are assumed to be k-rational and pairwise
distinct.

Given a Taylor–Wiles datum (Q, (αv,1, . . . , αv,4)v∈Q), we define the augmented global
deformation problem

SQ = (ρ, S∪Q, {�v}v∈S ∪ {O}v∈Q,ψ, {Dv}v∈S ∪ {D�
v }v∈Q).

Set �Q = ∏
v∈Q �v . For each v ∈ Q, the fixed ordering αv,1, . . . , αv,4, determines

a �[�Q]-algebra structure on RT
SQ

for any subset T of S (via the homomorphisms
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O[�v] → R�
v defined in §7.4.3). Letting aQ = ker(�[�Q] → �) be the augmentation

ideal, the natural surjection RT
SQ
→RT

S has kernel aQRT
SQ

.

Lemma 7.6.1. — Assume that ρ is vast, that p ≥ 3 is unramified in F, that ψ = ε−1, and

that k contains all of the eigenvalues of all elements of ρ(GF(ζp)). Let q ≥ h1(FS/F, ad0 ρ(1)). Then

for every N ≥ 1, there is a choice of Taylor–Wiles datum (QN, (αv,1, . . . , αv,4)v∈QN) satisfying the

following:

(1) #QN = q.

(2) For each v ∈QN, qv ≡ 1 mod pN.

(3) h1
S⊥QN

,S
(ad0 ρ(1))= 0.

Proof. — Without loss of generality, we may assume that N≥ 3, and hence (by the
definition of vastness and Remark 7.5.7) that ρ(GF(ζ

pN )) is weakly enormous. By defini-
tion, we have

H1
S⊥QN

,S(ad0 ρ(1))= ker

⎛

⎝H1(FS/F, ad0 ρ(1))→
∏

v∈QN

H1(Fv, ad0 ρ(1))

⎞

⎠ .

By induction, it suffices to show that given any cocycle κ representing a nonzero element
of H1

S⊥QN
,S

(ad0 ρ(1)), there are infinitely many finite places v of F such that

• v splits in F(ζpN);
• ρ(Frobv) has 4-distinct eigenvalues αv,1, . . . , αv,4 in k;
• the image of κ in H1(Fv, ad0 ρ(1)) is nonzero.

By Cebotarev, we are reduced to showing that given any cocycle κ representing a nonzero
element of H1(FS/F, ad0 ρ(1)), there is some σ ∈GF(ζ

pN ) such that

• ρ(σ) has distinct (k-rational) eigenvalues;
• pσ κ(σ ) �= 0, where pσ : ad0 ρ→ (ad0 ρ)σ is the σ -equivariant projection.

(The latter condition guarantees that the image of κ in H1(Fv, ad0 ρ(1)) is not a cobound-
ary.) Let L/F be the fixed field of ad0 ρ. The kernel of the restriction map

H1(FS/F, ad0 ρ(1))→H1(FS/L(ζpN), ad0 ρ(1))GF

is, by inflation–restriction, isomorphic to

H1(Gal(L(ζpN)/F), ad0 ρ(1)).

The assumption that ρ is vast implies by Lemma 7.5.9 that this group vanishes. In
particular, the restriction of κ defines a nonzero GF(ζ

pN )-equivariant homomorphism

Gal(FS/L(ζpN))→ ad0 ρ. Let W be a nonzero irreducible sub-GF(ζ
pN )-representation of
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the k-span of κ(Gal(FS/L(ζpN)). Since ρ(GF(ζ
pN )) is weakly enormous and k is sufficiently

large, there exists σ0 ∈GF(ζ
pN ) such that ρ(σ0) has distinct k-rational eigenvalues and such

that Wσ0 �= 0 (this follows from the vastness assumption, in particular, by condition (E3)
of 7.5.2). This implies that κ(Gal(FS/L(ζpN)) is not contained in the kernel of the σ0-
equivariant projection pσ0 : ad0 ρ → (ad0 ρ)σ0 . If pσ0κ(σ0) �= 0, then we take σ = σ0.
Otherwise, we choose τ ∈ GL(ζ

pN ) such that pσ0κ(τ) �= 0, and we take σ = τσ0; since
ρ(σ)= ρ(σ0) and κ(σ )= κ(σ0)+ κ(τ), we are done. �

Definition 7.6.2. — We say that ρ :GF →GSp4(Fp) is odd if the similitude character ψ

is odd, i.e. if for each place v|∞ of F with corresponding complex conjugation cv , we have ψ(cv)=−1.

Corollary 7.6.3. — Assume that ρ is odd, that ρ is vast, and that k contains all of the

eigenvalues of all elements of ρ(GF(ζp)). Let q≥ h1(FS/F, ad0 ρ(1)). Then for every N≥ 1, there is

a choice of Taylor–Wiles datum (QN, (αv,1, . . . , αv,4)v∈QN) satisfying the following:

(1) #QN = q.

(2) For each v ∈QN, qv ≡ 1 mod pN.

(3) There is a local �-algebra surjection RS,loc
S [[X1, . . . , Xg]] → RS

SQN
with g = 2q −

4[F :Q] +#S− 1.

Proof. — By Proposition 7.2.1 and Theorem 7.6.1, the claim holds with g instead
equal to

#S− 1−
∑

v|∞
h0(Fv, ad0 ρ)+

∑

v∈QN

h0(Fv, ad0 ρ(1)).

(Note that the assumption that ρ is vast implies that h0(FS/F, ad0 ρ(1))= 0.) For v ∈QN,
by the assumptions that qv ≡ 1 mod p and that ρ|GFv

has distinct eigenvalues we have

h0(Fv, ad0 ρ(1))= h0(Fv, ad0 ρ)= 2.

For v|∞ we have h0(Fv, ad0 ρ) = 4 by the assumption that ρ is odd. It follows that g =
2q− 4[F :Q] +#S− 1, as claimed. �

7.7. Global Galois deformation problems. — We now begin to introduce the framework
that we need to carry out our Taylor–Wiles patching argument. As always, F is a totally
real field in which the prime p≥ 3 splits completely, and we write Sp for the set of primes
of F dividing p. Let ρ :=GF →GSp4(k) be an absolutely irreducible representation. We
assume the following hypotheses.

Hypothesis 7.7.1.

(1) The representation ρ is vast and tidy.
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(2) If v ∈ Sp, then ρ|GFv
is p-distinguished weight 2 ordinary.

(3) There is a set of finite places R of F which is disjoint from Sp, such that
(a) If v ∈R, then ρ|GFv

is trivial, and qv ≡ 1 (mod p). If p= 3 then we further
insist that qv ≡ 1 (mod 9).

(b) If v /∈ Sp ∪R, then ρ|GFv
is unramified.

Set ψ = ε−1, and drop ψ from our notation for global deformation problems from
now on. Let I⊂ Sp be a set of places of cardinality #I. We will eventually need to assume
that #I≤ 1, although the more formal parts of the patching construction can be carried
out without this assumption, so we do not impose it yet. We write Ic for Sp \ I.

By the Cebotarev density theorem and our assumption that ρ(GF) is tidy, we can
find an unramified place v0 /∈R∪ Sp of F with the properties that

• qv0 �≡ 1 (mod p),
• no two eigenvalues of ρ(Frobv0) have ratio qv0 , and
• v0 has residue characteristic greater than 5.

Then H2(Fv0, ad ρ)=H0(Fv0, ad ρ(1))∨ = 0. We set S=R∪ Sp ∪ {v0}.
The reason for choosing v0 is that all liftings of ρ|GFv0

are automatically unramified
by Proposition 7.4.2, and our choice of level structure at v0 will guarantee that our level
structures will be neat, by Lemma 7.8.3.

For each v ∈ R we choose a pair of characters χv = (χv,1, χv,2), where χv,i :
O×

Fv
→ O× are trivial modulo λ. (Note that at this stage the characters χv,i are al-

lowed to be trivial.) We write χ for the tuple (χv)v∈R as well as for the induced character
χ =∏

v∈R χv :∏v∈R Iw(v)→O×.
For each place v|p, we fix �v , (and thus θv ) as in §7.3, in the following way: if v ∈ I,

then we take �v = O[[O×
Fv

(p)]], while if v /∈ I, then we take �v = O[[(O×
Fv

(p))2]]. We
write �= {�v}v∈Sp

for a choice of αv or βv at each v ∈ Sp.
We have the corresponding global deformation problem

S I,�
χ = (ρ, S, {�v,1}v∈I ∪ {�v,2}v∈Ic ∪ {O}v∈S\Sp

,

{DP
v }v∈I ∪ {DB,�v

v }v∈Ic ∪ {Dχ
v }v∈R ∪ {D�

v0
}).

Let (Q, (αv,1, . . . , αv,n)v∈Q) be a choice of Taylor–Wiles datum. We set SQ = S ∪Q and
define the associated global deformation problem

S I,�
χ,Q = (ρ, SQ, {�v,1}v∈I ∪ {�v,2}v∈Ic ∪ {O}v∈S\Sp

,

{DP
v }v∈I ∪ {DB,�v

v }v∈Ic ∪ {Dχ
v }v∈R ∪ {D�

v }v∈SQ\(R∪Sp)).

Note that by definition S I,�
χ,Q does not depend on the choice of �v for v ∈ I.
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7.8. Taylor–Wiles systems: initial construction. — In the next two sections, we will con-
struct the Taylor–Wiles systems that we will patch in §7.11, using an abstract patching
criterion explained in §7.10.1. (§7.8 is mainly concerned with the construction of the
Taylor–Wiles systems, whereas §7.9 is mainly concerned with proving the required local–
global compatibility statements for the corresponding Galois representations.)

Since we are only dealing with the cases that #I ≤ 1, we do not need to make
use of the full machinery of patching complexes developed in [CG18, KT17, GN20];
rather, we can and do use the notion of “balanced” modules introduced in [CG18, §2],
which we recalled in §2.10. This has the advantage that we do not need to consider
local global compatibility at places dividing p for Galois representations associated to
classes in higher degrees of cohomology, but rather just have to prove the vanishing of the
Euler characteristic of a certain perfect complex, which follows from a calculation of the
cohomology in terms of automorphic forms.

We now make the following hypotheses on a representation ρ : GF → GSp4(k),
which include those made in Hypothesis 7.7.1.

Hypothesis 7.8.1.

(1) F is a totally real field in which the prime p ≥ 3 splits completely; we write Sp

for the set of primes of F dividing p.
(2) The representation ρ is vast and tidy.
(3) For each v ∈ Sp, ρ|GFv

is p-distinguished weight 2 ordinary.
(4) There is a set of finite places R of F which is disjoint from Sp, such that

(a) If v ∈ R, then ρ|GFv
is trivial, and qv ≡ 1 (mod p). If p = 3, then qv ≡ 1

(mod 9).
(b) If v /∈ Sp ∪R, then moreover ρ|GFv

is unramified.
(5) There is an ordinary cuspidal automorphic representation π of GSp4(AF) of

parallel weight 2 with central character | · |2 such that:
(a) ρπ,p

∼= ρ.
(b) If v ∈R∪ Sp, then π Iw(v)

v �= 0.
(c) If v /∈R∪ Sp, then π

GSp4(OFv )
v �= 0.

As in §7.7, by the assumption that ρ(GF) is tidy we can and do choose an unrami-
fied place v0 /∈R∪ Sp with the properties that

• qv0 �≡ 1 (mod p),
• no two eigenvalues of ρ(Frobv0) have ratio qv0 , and
• the residue characteristic of v0 is greater than 5.

Definition 7.8.2. — We define an open compact subgroup Kp =∏
v Kv of GSp4(A

∞,p

F ) as

follows:

• If v /∈ Sp ∪R∪ {v0}, then Kv =GSp4(OFv
).
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• If v ∈R∪ {v0}, then Kv = Iw1(v).

For any Taylor–Wiles datum (Q, (αv,1, . . . , αv,4)v∈Q), we have open compact subgroups Kp

0(Q),

Kp

1(Q) of Kp given by

• If v /∈Q, then Kp

0(Q)v =Kp

1(Q)v =Kp
v .

• If v ∈Q, then Kp

0(Q)v = Iw(v), Kp

1(Q)v = Iw1(v).

We define the open compact subgroup group Kp

0(Q, R) as follows:

• If v /∈Q∪R, then Kp

0(Q, R)v =Kp
v .

• If v ∈Q∪R, then Kp

0(Q, R)v = Iw(v).

Finally, we let Kp

1(Q, R)=Kp

1(Q). (Note that we already have Kp

1(Q)v = Iw1(v) for v ∈R.)

The following lemma (applied with v = v0) guarantees that for any compact open
subgroup Kp ⊂GSp4(Fp), KpK

p

0(Q) and KpK
p

1(Q) are neat.

Lemma 7.8.3. — Suppose that K=∏
v Kv ⊂GSp4(A

∞
F ) is an open compact subgroup and

that there exists a place v of F such that v is absolutely unramified of residue characteristic greater than 5,

and Kv = Iw1(v). Then K is neat.

Proof. — Suppose that there is an element gv ∈Kv which has an eigenvalue ζ ∈ Fv

which is a root of unity; by the definition of “neat” (see Definition 3.2.1), it is enough
to check that we must have ζ = 1. Since the reduction modulo v of the characteristic
polynomial of g is (X− 1)4, the v-adic valuation of (1− ζ ) is at least 1/4. On the other
hand, if v has residue characteristic l and ζ �= 1 is a root of unity, then the v-adic valuation
of (1− ζ ) is either 0, or is at most 1/(l− 1), so we are done, as l > 5 by assumption. �

We let

T̃=
⊗

v /∈Sp∪R∪{v0}
O[GSp4(Fv)// GSp4(OFv

)]

be the ring of spherical Hecke operators away from the bad places, and similarly we set

T̃Q =
⊗

v /∈Sp∪R∪{v0}∪Q

O[GSp4(Fv)// GSp4(OFv
)].

We let m̃an ⊂ T̃ be the maximal ideal corresponding to ρ (the “an” stands for “anaemic”);
so by definition m containins λ, and the polynomials det(X− ρ(Frobv)) and Qv(X) are
congruent modulo m for each v /∈ Sp ∪ R ∪ {v0}, where in a slight abuse of notation,
if v /∈ Sp ∪R∪ {v0} we write Qv(X) ∈ T̃[X] for the polynomial

X4 −Tv,1X3 + (qvTv,2 + (q3
v + qv)Tv,0)X2 − q3

vTv,0Tv,1X+ q6
vT2

v,0
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(cf. (2.4.8)). Similarly we write m̃an,Q ⊂ T̃Q for the maximal ideal corresponding to ρ. For
any choice of I we let

T̃I = T̃[{Uv,0, UKli(v),1, Uv,2}v∈I, {Uv,0, Uv,1, Uv,2}v∈Ic]
and

T̃I,Q = T̃Q[{Uv,0, UKli(v),1, Uv,2}v∈I, {Uv,0, Uv,1, Uv,2}v∈Ic]
and additionally for any choice of � we let m̃I,� ⊂ T̃I be the maximal ideal

m̃
I,� = (m̃an, {Uv,0 − 1, Uv,2 − αvβv}v∈Sp

, {UKli(v),1 − αv − βv}v∈I,(7.8.4)

{Uv,1 − �v}v∈Ic)

and we let m̃I,�,Q ⊂ T̃I,Q be the maximal ideal

m̃
I,�,Q = (m̃an,Q, {Uv,0 − 1, Uv,2 − αvβv}v∈Sp

, {UKli(v),1 − αv − βv}v∈I,

{Uv,1 − �v}v∈Ic).

Let χ = (χv,1, χv,2)v∈R be any choice of p-power order characters of IFv
for v ∈

R, and also write χv for the corresponding characters of T(k(v)) given by χv,1 ◦ ArtFv
,

χv,2 ◦ArtFv
.

Then we consider the �I-module

Mχ,I,� =RHom0
�I

(M•,I
Kp,�I)m̃I,�,χ,|·|2,

and the �I[�Q]-module

Mχ,I,�,Q =RHom0
�I

(M•,I
Kp

1(Q)
,�I)m̃I,�,Q,m̃Q,χ,|·|2,

where:

• M•,I
Kp denotes the complex M•

I defined in Theorem 4.6.1, at tame level Kp.
• The localizations m̃I,�, m̃I,�,Q are defined above.
• The localization m̃Q is with respect to the maximal ideals m̃v of the subalgebras
O[T(Fv)/T(OFv

)1] of the pro-v Iwahori Hecke algebras H1(v) for v ∈ Q as
considered in §2.4.29, so that λ ∈ m̃v , Uv,0 − 1 ∈ m̃v , and Uv,1 and Uv,2 are
respectively congruent to αv,1, αv,1αv,2 modulo m̃v .

• The subscript χ denotes that we take the χ -coinvariants for the action
of
∏

v∈R T(k(v)).
• The subscript | · |2 denotes that we are fixing the central character, by taking

coinvariants under Tv,0 − q−2
v for all v /∈ Sp ∪R∪ {v0}.

The following lemma motivates our definition using RHom0
�(M•,�), and will be

useful for proving various properties of Mχ,I,�,W below (see also Remark 7.8.7).
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Lemma 7.8.5. — Let � ∈ CNLO, and let M• be a perfect complex of �-modules bounded

below by 0. Set M := RHom0
�(M•,�). Then, writing ∗ for the usual duality of finite-dimensional

vector spaces and ∨ for Pontryagin duals, we have

(1) M⊗� k = (H0(M• ⊗L
� k))∗.

(2) For any homomorphism of O-algebras �→ E, M⊗� E= (H0(M• ⊗L
� E))∗.

(3) For any homomorphism of O-algebras �→O,

M⊗� O =Hom(H0(M• ⊗L
� E/O), E/O)=H0(M• ⊗L

� E/O)∨.

Proof. — Let P• = P0 → P1 → ·· · → Pl0 be a bounded complex of finite projec-
tive �-modules which is bounded below by 0 and is quasi-isomorphic to M•. Then, by
definition, we have an exact sequence

Hom�(P1,�)→Hom�(P0,�)→M→ 0.

In particular it follows that for any �-algebra R, we have an exact sequence of R-modules

HomR(P1 ⊗� R, R)→HomR(P0 ⊗� R, R)→M⊗� R→ 0.

On the other hand, by definition, we have an exact sequence of R-modules

0→H0(M• ⊗L
� R)→ P0 ⊗� R→ P1 ⊗� R,

and therefore, for a field R= F, an exact sequence

HomF(P1 ⊗� F, F)→HomF(P0 ⊗� F, F)→HomF(H0(M• ⊗L
� F), F)

→ 0.

Parts (1) and (2) follow immediately with F = E or F = k. Part (3) follows from
Lemma 7.8.6 below, applied to the morphism P0 ⊗� O→ P1 ⊗� O. �

Lemma 7.8.6. — If φ : M → N is a morphism of finite free O-modules, and φE/O =
φ ⊗ E/O is the map M⊗ E/O→N⊗ E/O, then the Pontryagin dual φ∨E/O of φE/O is the map

φ∨E/O :Hom(N,O)→Hom(M,O).

In particular, the Pontryagin dual of ker(φE/O) is coker(φ∨E/O).

Proof. — Because M and N are free, the Pontryagin duals of M⊗ E/O and N⊗
E/O are Hom(M,O) and Hom(N,O) respectively, and the result follows immediately.

�
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Remark 7.8.7. — In [CG18] and [CG20], the patched modules are constructed
by first taking cohomology with coefficients in E/O and then taking Pontryagin duals.
Lemma 7.8.5 (3) explains how our construction coincides with this in the special case
when �=O.

Definition 7.8.8. — For any I⊂ Sp, a weight is a homomorphism κ :�I →O; by definition,

κ corresponds to a tuple (θv,1, θv,2)v∈Sp
where θv,i : IFv

→O× is a character with trivial reduction,

and moreover θv,1 = θv,2 for v ∈ I. We let pκ ⊂�I denote the kernel of this homomorphism.

We say that κ is classical if there are integers kv ≥ lv ≥ 2 such that θv,1 = ε(kv+lv)/2−2,

θv,2 = ε(kv−lv)/2 (so that kv ≡ lv ≡ 2 or p+1 (mod 2(p−1)), and if v ∈ I, we must have lv = 2).

If κ is classical, then we write ωκ for the automorphic vector bundle corresponding to (kv, lv)v∈Sp
, as

in §3.7.

For any I we denote by κ2 the classical algebraic weight where kv = lv = 2 for all v. For I= ∅
we pick some sufficiently regular classical algebraic weight, κreg; for example, we could choose the one

given by the characters θv,1 = ε2N(p−1) and θv,2 = εN(p−1) for all v ∈ Sp, where N is sufficiently large.

Remark 7.8.9. — In practice we choose κreg so that we can apply Theorems 3.10.1
and 6.6.5 in weight κreg. We will do this without comment from now on.

We will now prove some very important properties of the action of �Q on the
modules that we patch. It will also be important for us to understand the action of the
diamond operators at the places in R (that is, at the places involved in the “Ihara avoid-
ance” argument). We can and do treat the places in Q and in R simultaneously; recall,
by Definition 7.8.2, we have the groups Kp

1(Q) and Kp

0(Q, R) such that

• If v /∈Q∪R, then Kp

0(Q, R)v =Kp
v which equals Kp

1(Q)v .
• If v ∈Q∪R, then Kp

0(Q, R)v = Iw(v) which contains Kp

1(Q)v = Iw1(v).

In particular, there is an inclusion Kp

1(Q) ⊂ Kp

0(Q, R). In contexts in which we
particularly want to emphasize the fact that Kp

1(Q) has level structure Iw1(v) at v ∈ R,
we write Kp

1(Q, R)=Kp

1(Q).
Let Kp be any reasonable level structure at p (for example Kp(I)). Let XKpKp

0(Q,R),"

be the Shimura variety of the corresponding level KpK
p

0(Q, R) for a choice " of good
polyhedral cone decomposition. Over the interior YKpKp

0(Q,R) we have for all v ∈Q ∪ R
a flag of subgroups 0⊂Hv ⊂ Lv ⊂H⊥

v ⊂ A[v] and all the graded pieces are étale k(v)-
group schemes of rank 1. We now consider the Shimura variety XKpKp

1(Q,R)," for the same
choice of cone decomposition.

Proposition 7.8.10.

(1) For all v ∈Q∪R, the groups Hv , Lv/Hv , H⊥
v /Lv and A[v]/(H⊥

v ) extend to finite étale

k(v)-group schemes of rank 1 over XKpKp

0(Q,R)," .
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(2) The map XKpKp

1(Q,R)," →XKpKp

0(Q,R)," is finite étale with group
∏

v∈Q∪R T(k(v)), and

XKpKp

1(Q,R)," identifies with the torsor of trivializations of the groups Hv , Lv/Hv , H⊥
v /Lv

and A[v]/(H⊥
v ), compatible with duality.

Proof. — We observe that when F=Q, this is the content of [Str15, §2.4.5]. The
argument can be adapted to our setting. The extension problem is local so let us pick
σ ∈ " and consider the completion (XKpKp

0(Q,R),")∧σ 	 Spf R of XKpKp

0(Q,R)," along the
σ -stratum. The semi-abelian scheme A over Spf R is obtained by Mumford’s construc-
tion as the quotient of a semi-abelian scheme B of constant toric rank by a finite free
OF-module Xσ . Let Uσ ↪→ Spec R be the Zariski open complement of the boundary and
let us consider any of the groups Hv , Lv/Hv , H⊥

v /Lv or A[v]/(H⊥
v ). If this group is a

subquotient of B[v], then since B exists over all Spec R and B[v] is a finite étale group
scheme, the group extends as a subquotient of B[v]. Otherwise, the group maps isomor-
phically to its image in A[v]/B[v] =Xσ ⊗OF k(v) and is constant over Uσ . Therefore it
extends to the constant group scheme. This proves (1).

We may now define a scheme X′
KpKp

1(Q,R),"
→ XKpKp

0(Q,R)," as the torsor of trivi-

alizations of the (extended) groups Hv , Lv/Hv , H⊥
v /Lv and A[v]/(H⊥

v ), compatible with
duality for all v|p. This scheme is canonically isomorphic to XKpKp

1(Q,R)," because the two
schemes are generically equal, and both are normal, and finite flat over XKpKp

0(Q,R)," . �

Proposition 7.8.11.

(1) Mχ,∅,�,Q is a finite free �∅[�Q]-module.

(2) If #I= 1, then Mχ,I,�,Q is a balanced �I[�Q]-module.

Proof. — The complex M•,I
Kp

1(Q)
(which is the complex M•

I defined in Theorem 4.6.1

for the tame level Kp

1(Q)) is a perfect complex of �I-modules of amplitude [0, #I]. We
claim that it is actually a perfect complex of �I[∏v∈Q∪R T(k(v))]-modules of amplitude
[0, #I].

The complex M•,I
Kp

1(Q)
is obtained by considering the cohomology over

XKpKp

1(Q),Kli(p∞) of the sheaf of �I-modules �κI(−D) and applying the ordinary idem-
potent. Equivalently, it is obtained by considering the cohomology over XKpKp

0(Q),Kli(p∞) of
the sheaf of �I-modules

�κI(−D)⊗OX
KpK

p
0(Q,R),Kli(p∞)

OX
KpK

p
1(Q,R),Kli(p∞)

and applying the ordinary idempotent. Using the independence of the cohomology with
respect to choices of toroidal compactifications, we may assume that we are in the setting
of Proposition 7.8.10, so that the morphism XKpKp

1(Q,R),Kli(p∞) →XKpKp

0(Q,R),Kli(p∞) is finite
étale with group

∏
v∈Q∪R T(k(v)). Therefore, it follows (by considering a suitable étale
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covering to compute the cohomology) that M•,I
Kp

1(Q)
is represented by a bounded complex

of flat complete �I[∏v∈Q∪R T(k(v))]-modules. We can apply Lemma 4.6.22 (or rather
its straightforward extension to the semi-local situation; see also [Nak84, Prop. 2]) to
conclude that M•,I

Kp

1(Q)
is a perfect complex of �I[∏v∈Q∪R T(k(v))]-modules of amplitude

[0, #I]. It follows that the corresponding complex M•,I,χ
Kp

1(Q)
is a perfect complex of �I[�Q]-

modules, also of amplitude [0, #I].
Given an ideal m̃I,�, we can f localize the complex with respect to the action of a

lift of a suitable idempotent for this ideal in the Hecke algebra, and this localization also
preserves the property of being perfect of the correct amplitude. (The endomorphism
ring at the level of derived categories of a perfect complex of �I modules is a finite �I

module. So, if one has a commutative subalgebra, it is a semi-local ring. See the discussion
following [KT17, Lem. 2.12] for a lengthier treatment of such localizations.)

It remains to consider the passage to coinvariants under the centre. To this end,
consider the spaces

M̃χ,I,� =RHom0
�I

(M•,I
Kp,�I)m̃I,�,χ ,

M̃χ,I,�,Q =RHom0
�I

(M•,I
Kp

1(Q)
,�I)m̃I,�,Q,m̃Q,χ ,

obtained before taking coinvariants under the centre. The component groups of our
Shimura varieties are indexed by a finite abelian (ray) class group C = F×\A×F /U for
some U. The action of γ ∈ A×F on components is via the class [γ ]2, and the action of
the central character on our cohomology groups is via | · |2 times a character of C.
Let C = Cp ⊕ Cp, where Cp is the p-Sylow subgroup of C. There are always natural
isomorphisms of O[�Q] modules

M̃χ,I,� 	Mχ,I,�⊗O O[Cp],
M̃χ,I,�,Q 	Mχ,I,�,Q ⊗O O[Cp],

with �Q acting trivially on the second factor. The reason for such an isomorphism is that,
after localization at a maximal ideal m of the Hecke algebra, the elements of the centre
which act through an element of order prime to p are already determined, because they
are fixed modulo m and the polynomial Tm − 1 is separable modulo p if (m, p) = 1.
On the other hand, if we consider only the connected components corresponding to the
subgroup Cp, the entire space is canonically isomorphic to |Cp| copies of this space, and
moreover, the action of C/Cp = Cp on these components is transitive and fixed point
free (this crucially uses that p �= 2). Hence working with the | · |2 part of the cohomology
is simply equivalent to working with the components indexed by Cp instead of C, and
the passage between the cohomology (or complexes) for either of these two spaces (even
before localization) is simply to tensor with O[Cp].
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Part (1) follows immediately from these considerations, because M•,I,χ
Kp

1(Q)
is perfect

of amplitude [0, 0]. By Lemma 2.10.2, to prove part (2), it is enough to prove that the
corresponding perfect complex (of amplitude [0, 1]) has Euler characteristic 0 after lo-
calization at m̃I,�. We can check this modulo any prime ideal of �I, so the result follows
from Theorem 6.6.5 and Corollary 3.10.5. �

7.9. Taylor–Wiles systems: local-global compatibility. — We write Tχ,I,� for the �I-
subalgebra of End�I(M

χ,I,�) generated by the image of T̃I. Similarly, we write Tχ,I,�,Q

for the �I-subalgebra of End�I(M
χ,I,�,Q) generated by the image of T̃I,Q. We remind the

reader that none of these objects depend on the choice of �v for v ∈ I (but they do depend
on the choice of �v for v /∈ I). If v ∈ I, then by Hensel’s lemma and our assumption that
αv �= βv , we can write

X2 −UKli(v),1X+Uv,2 = (X− α̃v)(X− β̃v)

where α̃v, β̃v ∈Tχ,I,�,Q are respectively lifts of αv,βv .
If I ⊂ I′, then there is a natural surjective map �I → �I′ , corresponding to the

closed immersion Spec�I′ → Spec �I given by θv,1 = θv,2 for all v ∈ I′. Then we have
the following key doubling statement:

Proposition 7.9.1 (Doubling). — For each choice of �, and each I⊂ I′, there are natural sur-

jections

Mχ,I,�⊗�I �I′ →Mχ,I′,�

and

Mχ,I,�,Q ⊗�I �I′ →Mχ,I′,�,Q

which commute with all the Hecke operators away from I′ \ I. Furthermore, if v ∈ I′ \ I, then these

surjections are equivariant with respect to Uv,0 and Uv,2, and intertwine the actions of Uv,1 on the source

and �̃v on the target.

Proof of Proposition 7.9.1. — We give the proof for Mχ,I,�, as the argument for
Mχ,I,�,Q is identical. By induction, it suffices to consider the case that I′ = I ∪ {v} for
some v /∈ I. We have a map of complexes

M•,I′
Kp
→M•,I

Kp
,

induced by the restriction map coming from the inclusion

X
G1,I
K,Kli(p∞) ↪→X

G1,I′
K,Kli(p∞),
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together with the natural map �I →�I′ . This induces a map

Mχ,I,�⊗�I �I′
τ→Mχ,I′,�,

and the map that we are seeking is the map τ ◦Uv,1− �̃′v ◦ τ . It is clear that this satisfies all
of the claimed properties except possibly for the surjectivity and the claimed intertwining
of Uv,1 and �̃v .

To see the intertwining, it is convenient to introduce the module Mχ,I′,�,=v2, whose
definition is

Mχ,I′,�,=v2 =RHom0
�I′ (M

•,I
Kp ⊗�I �I′,�I′)m̃I′,�,χ,|·|2;

that is, it is defined in the same way as Mχ,I,�, but we are now over the weight space �I′ ,
rather than �I, and we localize with respect to the Hecke operator (UKli(v),1− (αv+βv)),
rather than (UIw(v),1 − �v). By Lemma 4.5.17, on Mχ,I′,�,=v2 we have the identity

Uv,1(UKli(v),1 −Uv,1)=Uv,2,

or equivalently (writing {αv,βv} = {�v, �′v}) the identity

(7.9.2) (Uv,1 − �̃′v)(Uv,1 − �̃v)= 0.

We need to show that Uv,1 = �̃′v on Mχ,I,� ⊗�I �I′ . Now, noting that Mχ,I,� ⊗�I �I′ is
a subspace of Mχ,I′,�,=v2 (because it is obtained from it by localizing with respect to
(UIw(v),1 − �v), and because (7.9.2) holds on Mχ,I′,�,=v2), we see that (7.9.2) also holds
on Mχ,I,� ⊗�I �I′ ; since UIw(v),1 acts via �v modulo the maximal ideal of Tχ,I,�, it follows
from Hensel’s lemma that Uv,1 = �v on Mχ,I,� ⊗�I �I′ , as required.

It only remains to check the surjectivity. By Nakamaya’s lemma, it is enough to
check surjectivity modulo m�I′ , or equivalently (by Lemma 7.8.5) the injectivity of the
map

(7.9.3)

e(UI′)H0(XI′,G1
KpKp(I′),1,ω2(−D))m̃I′,�,χ,|·|2

e(UI)H0(XI,G1
Kp(I)Kp,1,ω2(−D))m̃I,�,χ,|·|2

(Uv,1−�′v)

�

on the special fibre. This follows from Theorem 5.8.6, as in Remark 5.8.7. �

Recall from §7.3 that if v ∈ I, we defined a character θv : IFv
→�×

v , and if v /∈ I we
defined a pair of characters θv,1, θv,2 : IFv

→�×
v . We extend all of these characters to GFv

by sending ArtFv
(p) �→ 1. In the following theorem, we allow the Taylor–Wiles datum

(Q, (αv,1, . . . , αv,4)v∈Q) to be empty.
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Theorem 7.9.4. — There is a unique continuous representation

ρχ,I,�,Q :GF →GSp4(T
χ,I,�,Q)

which is a deformation of ρ of type S I,�
χ,Q such that the induced homomorphism RSI,�

χ,Q
→Tχ,I,�,Q is a

homomorphism of �I[�Q]-algebras, and moreover such that

(1) If v /∈ Sp ∪R∪ {v0} ∪Q, then det(X− ρχ,I,�,Q(Frobv))=Qv(X).

(2) If v ∈ I, then

ρχ,I,�,Q|GFv
	

⎛

⎜⎜⎝

λα̃v
θv 0 ∗ ∗

0 λβ̃v
θv ∗ ∗

0 0 λ−1
β̃v

θ−1
v ε−1 0

0 0 0 λ−1
α̃v

θ−1
v ε−1

⎞

⎟⎟⎠ .

(3) If v ∈ Ic, then

ρχ,I,�,Q|GFv
	

⎛

⎜⎜⎝

λUv,1θv,1 ∗ ∗ ∗
0 λUv,2/Uv,1θv,2 ∗ ∗
0 0 λ−1

Uv,2/Uv,1
θ−1

v,2ε−1 ∗
0 0 0 λ−1

Uv,1
θ−1

v,1ε
−1

⎞

⎟⎟⎠ .

Proof. — First we treat the case I = ∅. By Proposition 7.8.11, Mχ,∅,�,Q is a finite
free �∅-module, so there is an injection of T̃∅,Q-modules

Mχ,∅,�,Q →
∏

κ

Mχ,∅,�,Q ⊗�∅,κ E

where the product is over all weights κ = (kv, lv)v|∞ with kv ≥ lv ≥ 4, kv ≡ lv ≡ 2 or p+ 1
(mod 2(p− 1)). (Note that these points are scheme-theoretically dense in Spec�∅.)

From the definition of Mχ,∅,�,Q, Lemma 7.8.5, and Theorem 6.6.5, we have

(Mχ,∅,�,Q ⊗�,κ E)∨ = e(∅)H0(XG1

Kp

1(Q)Kp(∅),ωκ)
{T(k(v))=χv}v∈R,|·|2
m̃I,�,Q ,

and by Theorem 3.10.1, we have

H0(XG1

Kp

1(Q)Kp(∅),ωκ)⊗ E	
⊕

π

(π
K1

p (Q)Kp(∅)
f )⊗ E,

where in the sum, π runs over all the cuspidal automorphic representations of weight
(kv, lv), with πv holomorphic for each v|∞, and πf is the finite part of π .

Next we observe that for such a π , if the T̃∅,Q-module

e(∅)(πKp

1(Q)Kp(∅)
f ⊗ E)

{T(k(v))=χv}v∈R,|·|2
m̃I,�,Q
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is nonzero, then π has central character | · |2 and by Proposition 2.4.26, π is ordinary, and
moreover T̃∅,Q acts on it through a character $π : T̃∅,Q → E, and the ordinary Hecke
parameters are ($π(Uv,1),$π(Uv,2/Uv,1)).

We now argue as in the proof of [CHT08, Prop. 3.4.4]. By Theorem 2.7.2, Propo-
sition 2.4.13, Proposition 2.4.28, Proposition 2.4.30, and Remark 2.4.31, there is a Galois
representation ρπ,p :GF →GSp4(E) such that

• If v /∈ Sp ∪R∪ {v0} ∪Q, then ρπ,p|GFv
is unramified and det(X−ρπ,I(Frobv))=

$π(Qv(X)).
• If v ∈ Sp, then

ρπ,p|GFv
	

⎛

⎜⎜⎝

λ$π (Uv,1)θv,1 ∗ ∗ ∗
0 λ$π (Uv,2/Uv,1)θv,2 ∗ ∗
0 0 λ−1

$π (Uv,2/Uv,1)θ
−1
v,2ε−1 ∗

0 0 0 λ−1
$π (Uv,1)θ

−1
v,1ε−1

⎞

⎟⎟⎠

• If v ∈R, then for all σ ∈ IFv
, det(X− ρ(σ)) is equal to

(X− χv,1(Art−1
Fv

(σ )))(X− χv,1(Art−1
Fv

(σ ))−1

× (X− χv,2(σ ))(X− χv,2(Art−1
Fv

(σ ))−1).

• If v ∈Q, then

ρ|GFv
	 γv,1 ⊕ γv,2 ⊕ ε−1γ −1

v,2 ⊕ ε−1γ −1
v,1

for characters γv,i : GFv
→ E

×
satisfying γ i = λαv,i

. Furthermore T(Fv) acts on
(π Iw1(v))mα1,α2

via the characters γv,i ◦ArtFv
.

After conjugation, we may assume that ρπ,p is valued in OEπ
for some finite exten-

sion Eπ/E, and since ρπ,p
∼= ρ, we may assume after further conjugation that ρπ,p = ρ.

Let A be the subring of k⊕⊕π OEπ
consisting of those elements (a, (aπ)π) ∈ k⊕⊕π OEπ

such that for all π the reduction of aπ modulo the maximal ideal of OEπ
is equal

to a (where the direct sum is over the infinitely many π corresponding to the infinitely
many κ ). Then A is a local �-algebra with residue field k (with the �-algebra structure
coming from that on OEπ

given by κ ). Set

ρA := ρ ⊕
⊕

π

ρπ,p :GF →GSp4(A).

There is a natural injection Tχ,∅,�,Q → A (this map is injective because Tχ,∅,�,Q is re-
duced, by a standard argument using Proposition 2.4.26). We can choose (for example,
by ordering the κ ) a decreasing sequence of ideals In of A with ∩nIn = (0) such that each
A/In is an object of CNL�, and it follows from [GG12, Lem. 7.1.1] that for each n the
representation ρA⊗A A/In is ker(GSp4(A/In)→GSp4(k))-conjugate to a representation

ρχ,∅,�,Q
n :GF →GSp4(T

χ,∅,�,Q/(In ∩Tχ,∅,�,Q)).
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After possibly conjugating again, we can assume that ρ
χ,∅,�,Q
n+1 (mod In) = ρχ,∅,�,Q

n , and
we set ρχ,∅,�,Q := lim←−n

ρχ,∅,�,Q
n . By construction this satisfies the required properties at

places v /∈ Sp ∪Q (in particular, at the places v ∈ R, the deformation is of the required
type by the definition of Rχ

v ).
It remains to verify the claimed properties of ρχ,∅,�,Q|GFv

for v ∈ Sp ∪Q. Suppose
that v ∈ Sp. We claim firstly that it is enough to show that there are elements νv,1, νv,2 ∈
(Tχ,∅,�,Q)× such that

(7.9.5) ρχ,∅,�,Q|GFv

∼=

⎛

⎜⎜⎝

λνv,1θv,1 ∗ ∗ ∗
0 λνv,2θv,2 ∗ ∗
0 0 λ−1

νv,2
θ−1

v,2ε−1 ∗
0 0 0 λ−1

νv,1
θ−1

v,1ε−1

⎞

⎟⎟⎠

Indeed, if this holds, then the equalities νv,1 =Uv,1 and νv,2 =Uv,2/Uv,1 can be checked
after composing with the injection Tχ,∅,�,Q ↪→ A, where they follow from local-global
compatibility for the ρπ,p|GFv

. Now, (7.9.5) is equivalent to asking that the homomor-
phism R�

v → Tχ,∅,�,Q corresponding to ρχ,∅,�,Q|GFv
factors through the quotient RB,�v

v ,
and this can again be checked after composing with the injection Tχ,∅,�,Q ↪→ A, as re-
quired.

Suppose now that v ∈ Q, so that we need to check that the morphism RSI,�
χ,Q
→

Tχ,I,�,Q is �v-equivariant. By Lemma 7.4.4, there are unique characters γv,1, γv,2 :GFv
→

(Tχ,∅,�,Q)× lifting λαv,1 , λαv,2 respectively such that ρχ,∅,�,Q|GFv

∼= γv,1 ⊕ γv,2 ⊕ γv,2ε
−1 ⊕

γv,1ε
−1. We claim that the action of T(Fv) on Mχ,I,�,Q is given by γv,1 ◦ArtFv

, γv,2 ◦ArtFv
;

this can be checked after composing with the injection Tχ,∅,�,Q ↪→ A, so it follows from
the analogous result for ρπ,p|GFv

recalled above. Restricting this claim to T(OFv
) gives the

result.
We are done in the case that I = ∅. We now prove the result for general I by

induction on #I. Accordingly, assume that the result holds for some I �= Sp, choose w ∈ Ic,
and set I′ = I∪ {w}. By Proposition 7.9.1 we have a natural surjection of �I′ -algebras

T̃χ,I,�,Q ⊗�I �I′ � T̃χ,I′,�,Q,

and we let ρχ,I′,�,Q be the pushforward of ρχ,I,�,Q. It follows from the result for I that we
need only check that property (2) holds for v = w. However, we could equally well have
performed the same construction with �w replaced with �′w (the two candidates for ρχ,I′,�,Q

are conjugate by property (1), the Cebotarev density theorem, and [GG12, Lem. 7.1.1]),
so from (3) and the equivariance properties for Hecke operators at w in Proposition 7.9.1,
we see that ρχ,I′,�,Q|GFw

admits both λα̃w
θw and λβ̃w

θw as subcharacters. Since αw �= βw,
the result follows. �

As a corollary, we have the following result about Galois representations associated
to automorphic representations of parallel weight 2. As ever, some of the hypotheses in
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this result could be relaxed (in particular, the assumption that ρπ,p is vast and tidy can
presumably easily be relaxed to irreducibility), but in the interests of brevity we have
contented ourselves with this result, as it is sufficient for our purposes.

Corollary 7.9.6. — Let π be a cuspidal automorphic representation of GSp4(AF) of parallel

weight 2 with central character | · |2. Fix a prime p > 2, and assume that π is ordinary. Then there is

a continuous semisimple representation ρπ,p :GF →GL4(Qp) such that

(1) For each finite place v � p, at which πv is unramified, ρπ,p|GFv
is unramified and

det(X− ρπ,p(Frobv))=Qv(X).

Suppose further that ρπ,p is vast and tidy, and that for each v|p, the ordinary Hecke parameters αv,βv

of πv satisfy αv �= βv . Then ρπ,p can be conjugated to be valued in GSp4(Qp), and

(2) ν ◦ ρπ,p = ε−1.

(3) For each finite place v � p, we have

WD(ρπ,p|GFv
)ss ∼= recGT,p(πv ⊗ |ν|−3/2)ss.

(4) For each place v|p, then

ρπ,p|GFv

∼=

⎛

⎜⎜⎝

λαv
0 ∗ ∗

0 λβv
∗ ∗

0 0 λ−1
βv

ε−1 0
0 0 0 λ−1

αv
ε−1

⎞

⎟⎟⎠ .

Proof. — This could be proved by repeating the arguments of [Mok14, §4], using
Theorem 7.9.4 instead of the results of [MT15]. For brevity, we instead explain how to
deduce the result from [Mok14, Thm. 4.14] and Theorem 7.9.4.

Firstly, if π is not of general type in the sense of [Art04], then the existence
of a (unique) semisimple reducible representation ρπ,p satisfying (1) is an easy conse-
quence of standard results on Galois representations for GL1 and GL2 (see the proof
of Lemma 2.9.1), and parts (2)-(4) are then vacuous.

Accordingly, for the remainder of the proof we assume that π is of general
type, in which case the existence of a representation ρπ,p satisfying (1) and (3) follows
from [Mok14, Thm. 4.14], except that this representation is only given to be valued
in GL4(Qp) rather than GSp4(Qp).

Choose a solvable extension of totally real fields F′/F, linearly disjoint from F
ker ρπ,p

over F, with the properties that p splits completely in F′, and that there is an automorphic
representation � of GSp4(AF′) of parallel weight 2 and central character | · |2, which is
a base change of π (that is, for each finite place w of F′, lying over a place v of F, we
have recGT,p(�)= recGT,p(π)|WF′w

), which is holomorphic at all infinite places, and which
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satisfies �Iw(w)
w �= 0 for all finite places w of F′ (the existence of such an F′ and � follows

from [Mok14, Prop. 4.13]).
We claim that if ρ�,p admits a symplectic pairing with multiplier ε−1, then so

does ρπ,p. Indeed, since ρ�,p = ρπ,p|GF′ is irreducible, it admits at most one perfect pairing
with multiplier ε−1; while by (1), ρπ,p admits a perfect pairing with multiplier ε−1, which
must therefore also be symplectic. In addition (4) holds for ρ�,p if and only if it holds
for ρπ,p. Replacing F by F′ and π by �, we can and do assume that π Iw(v)

v �= 0 for all
finite places v of F.

Taking ρ := ρπ,p, we see that Hypothesis 7.8.1 holds, so the required properties
of ρπ,p follow immediately from Theorem 7.9.4, taking I= Sp, χ = 1 and Q= ∅. (Note
that as in the proof of Theorem 7.9.4, it follows from Theorem 3.10.1 that π contributes
to M1,Sp,�,∅.) �

We now turn to the final lemmas that we need to prove in order to construct our
Taylor–Wiles systems.

Lemma 7.9.7. — Let � ∈ CNLO, and let f • : C• →D• be a morphism of bounded com-

plexes of m�-adically complete and separated flat �-modules. Supposed that the induced morphism

C• ⊗L
� �/mλ →D• ⊗L

� �/mλ is a quasi-isomorphism. Then f • is a quasi-isomorphism.

Proof. — See [Pil20, Prop. 2.2]. �

Proposition 7.9.8. — The natural map Mχ,I,�,Q → Mχ,I,� induces an isomorphism

(Mχ,I,�,Q)�Q →Mχ,I,�.

Proof. — We follow the proof of [KT17, Lem. 6.25]. We claim that we have natural
isomorphisms

(7.9.9) (Mχ,I,�,Q)�Q

∼−→Mχ,I,�,Q

Kp

0(Q)

and

(7.9.10) Mχ,I,�,Q

Kp

0(Q)

∼−→Mχ,I,�

whose composite is the claimed isomorphism. We begin with (7.9.9). It suffices to show
that we have a natural isomorphism in the derived category

(M•,I
Kp

1(Q)
)
∏

v∈Q T(k(v)) ∼−→M•,I
Kp

0(Q)
.

As in the proof of Proposition 7.8.11, the complex on the left (before taking invariants)
is a perfect complex of �I[∏v∈Q T(k(v))]-modules. But now the result is immediate
from Proposition 7.8.10, as the map XKpKp

1(Q)," → XKpKp

0(Q)," is finite étale with group∏
v∈Q T(k(v)).
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We now turn to proving (7.9.10). Again, we mostly work on the level of complexes.
We begin by considering the composite

(M•,I
Kp

0(Q)
)m̃an,Q,m̃Q → (M•,I

Kp

0(Q)
)m̃an,Q → (M•,I

Kp)m̃an,Q .

By Lemma 7.9.7, these maps induce quasi-isomorphism of complexes if the following
maps are isomorphisms

H∗(M•,I
Kp

0(Q)
⊗ k)m̃an,Q,m̃Q →H∗(M•,I

Kp

0(Q)
⊗ k)m̃an,Q →H∗(M•,I

Kp ⊗ k)m̃an,Q .

This follows formally from Lemmas 2.4.36 and 2.4.37, applied at each place in Q, be-
cause, for K=GSp4(OFv

) and K′ = Iw(v), we have the identities of Hecke operators

[K1K′][K′1K] = [K :K′]
[K′1K][K1K′] = eK = eGSp4(OFv ),

and we note that [K1K′] is the trace from level K′ to GSp4(OFv
) and [K′1K] is the

inclusion from level K to level K′ (recall that since p > 2, [K :K′] = [GSp4(OFv
) : Iw(v)]

is not divisible by p).
Finally, consider the natural map

(M•,I
Kp)m̃an,Q → (M•,I

Kp)m̃an .

For our purposes, it suffices to prove that this map becomes an isomorphism after ap-
plying RHom0(−,�). Since this map is a localisation, it suffices to check that it is an
isomorphism modulo the maximal ideal of �; so by Lemma 7.8.5 (1), it is in turn enough
to prove that

H0(M•,I
Kp ⊗ k)m̃an,Q →H0(M•,I

Kp ⊗ k)m̃an

is an isomorphism, or in other words, that m̃an is the unique maximal ideal n of T̃ lying
over m̃an,Q and in the support of H0(M•,I

Kp ⊗ k). Equivalently, we need to show that the
Hecke eigenvalues away from the primes in Q (which are prime to the level) determine
the Hecke eigenvalues at Q. This follows from the fact that the Hecke eigenvalues at
primes of good reduction and residue characteristic different from p are determined by
the Galois representation (exactly as in the proof of Theorem 7.9.4, this local-global com-
patibility statement for H0 is a consequence of the corresponding local-global compatibil-
ity statement for the Galois representations in Theorem 2.7.2). But the Galois represen-
tation itself is determined from m̃an,Q by the Cebotarev density theorem. Hence n= m̃an,
as required. �

7.10. An abstract patching criterion. — We have the following slight variant on [CG18,
Prop. 2.3, Prop. 6.6] (although our formulation is also informed by [KT17, Prop. 3.1]);
we leave the details of the proof as an exercise for the interested reader.
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Proposition 7.10.1. — Let l0 be equal to either 0 or 1, let � ∈ CNLO, let S∞ :=
�[[x1, . . . , xq]] for some q ≥ 1, and set a := ker(S∞ → �). Let S∞ ⊃ I1 ⊃ I2 ⊃ . . . be a

decreasing sequence of open ideals of S∞ with ∩NIN = 0. For each N≥ 1 we set SN = S∞/IN.

Suppose that we are given the following data.

• Objects R1
∞, Rχ

∞ of CNL�.

• Objects R1, Rχ of CNL�, an R1-module M1, and an Rχ -module Mχ , each of which is

finite as a �-module. Furthermore if l0 = 0, then they are both free as �-modules, and if

l0 = 1, then they are balanced �-modules.

• For each integer N≥ 1, finite SN-modules M1
N, Mχ

N, which are free if l0 = 0 and balanced

if l0 = 1, together with isomorphisms of SN-modules M1
N/a

∼−→M1⊗S∞ SN, Mχ

N/a
∼−→

Mχ ⊗S∞ SN (where the action of S∞ on M1, Mχ is via the augmentation S∞→�).
• For each N ≥ 1, objects R1

N, Rχ

N of CNLSN , and maps of SN-algebras R1
N → R1/IN,

Rχ

N →Rχ/IN and R1
N → EndSN(M1

N), Rχ

N → EndSN(Mχ

N), such that the two follow-

ing diagrams commute.

R1
N EndSN(M1

N)

R1/IN End�/IN(M1 ⊗S∞ SN)

Rχ

N EndSN(Mχ

N)

Rχ/IN End�/IN(Mχ ⊗S∞ SN)

• For each N≥ 1, surjections of �-algebras R1
∞ � R1

N, Rχ
∞ � Rχ

N.

We suppose also that we are given the following compatibilities between the data indexed by 1 and the

data indexed by χ .

• isomorphisms of �/λ-algebras R1
∞/λ ∼= Rχ

∞/λ, R1/λ ∼= Rχ/λ, and R1
N/λ ∼= Rχ

N/λ,

compatible with the surjections R1
∞ � R1

N and Rχ
∞ � Rχ

N.

• An isomorphism of R1/λ∼=Rχ/λ-modules M1/λ∼=Mχ/λ.

• For each N ≥ 1, isomorphisms of SN/λ-modules M1
N/λ ∼= Mχ

N/λ, compatible with all

actions, and such that the following diagram commutes, where we write JN for the kernel of the
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composite �→ S∞→ S∞/IN.

M1
N/(λ,a) Mχ

N/(λ,a)

M1/(λ, JN) Mχ/(λ, JN)

Then we can find the following data.

• Homomorphisms of �-algebras S∞→R1
∞, S∞→Rχ

∞.

• Finite S∞-modules M1
∞, Mχ

∞, which are free if l0 = 0 and balanced if l0 = 1, together with

isomorphisms M1
∞ ⊗S∞ �

∼−→M1, and Mχ
∞ ⊗S∞ �

∼−→Mχ .

• Commutative diagrams of S∞-algebras

R1
∞ EndS∞(M1

∞)

−⊗S∞�

R1 End�(M1)

Rχ
∞ EndS∞(Mχ

∞)

−⊗S∞�

Rχ End�(Mχ)

• An isomorphism M1
∞/λ

∼−→Mχ
∞/λ, compatible with the actions of R1

∞/λ
∼−→ Rχ

∞/λ,

such that the following diagram commutes.

M1
∞/(λ,a) Mχ

∞/(λ,a)

M1/λ Mχ/λ

7.11. The patching construction. — We now apply Proposition 7.10.1 to our spaces
of p-adic automorphic forms. We continue to assume that Hypothesis 7.8.1 holds.

Enlarging E if necessary, we can and do assume that E contains a primitive pth
root of unity, and a primitive 9th root of unity if p = 3. By Hypothesis 7.8.1 (4a), for
each v ∈ R we can and do choose a pair of non-trivial characters χv = (χv,1, χv,2), with
χv,i :O×

Fv
→O× which are trivial modulo λ, and such that χv,1 �= χ±1

v,2 . We will now apply
the constructions of the previous sections, simultaneously using both this choice of χ , and
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also the choice χ = 1. In the former case we will label our objects as we did before, and
in the latter we will replace χ by 1.

Let

q= h1(FS/F, ad0 ρ(1)), g = 2q− 4[F :Q] +#S− 1,

and set �∞ = Z2q
p . Let S∞ = T [[�∞]], where T is as in §7.1. Viewing S∞ as an aug-

mented �-algebra, we let a denote the augmentation ideal.
For each N≥ 1, we fix a choice of Taylor–Wiles datum (QN, (αv,1, . . . , αv,4)v∈QN)

as in Corollary 7.6.3. For N = 0, we set Q0 = ∅. For each N ≥ 1, we let �N = �QN =∏
v∈QN

k(v)×(p)2 and fix a surjection �∞ � �N. The kernel of this surjection is contained
in (pNZp)

2q, since each v ∈ QN satisfies qv ≡ 1 mod pN. We let �0 be the trivial group,
viewed as a quotient of �∞. We write SN = T [�N].

For each N≥ 0, we set R1,I,�
N = RSI,�

1,QN
and Rχ,I,�

N = RSI,�
χ,QN

. Note that R1,I,�
0 = RI,�

S1

and Rχ,I,�
0 = RI,�

Sχ
. Let R1,I,�,loc = RS,loc

SI,�
1

and Rχ,I,�,loc = RS,loc
SI,�

χ

denote the corresponding
completed tensor product of local deformation rings, as in §7.2. By definition we have

R1,I,�,loc = (⊗̂v∈IRP
v)⊗̂(⊗̂v∈IcRB,�v

v )⊗̂(⊗̂v∈RR1
v)⊗̂R�

v0
,

Rχ,I,�,loc = (⊗̂v∈IRP
v)⊗̂(⊗̂v∈IcRB,�v

v )⊗̂(⊗̂v∈RRχv

v )⊗̂R�
v0

,

with all completed tensor products being taken over O.
For any N≥ 1, we have RS,loc

SI,�
1,QN

=R1,I,�,loc and RS,loc
SI,�

χ,QN

=Rχ,I,�,loc. There are canon-

ical isomorphisms R1,I,�,loc/(λ) ∼= Rχ,I,�,loc/(λ) and R1,I,�
N /(λ) ∼= Rχ,I,�

N /(λ) for all N ≥ 0.
For each N≥ 1, R1,I,�

N and Rχ,I,�
N are canonically �[�N]-algebras and there are canonical

isomorphisms R1,I,�
N ⊗�[�N]�∼=R1,I,�

0 and Rχ,I,�
N ⊗�[�N]�∼=Rχ,I,�

0 , which are compatible
with the isomorphisms modulo λ.

Fix representatives ρSI,�
χ

, ρSI,�
1

of the universal deformations which are identified
modulo λ (via the identifications RSI,�

χ
/(λ) ∼= RSI,�

1
/(λ)). By Lemma 7.1.6, these give

rise to an R1,I,�,loc-algebra structure on R1,I,�
N ⊗̂�T and an Rχ,I,�,loc-algebra structure on

Rχ,I,�
N ⊗̂�T ; the canonical isomorphism R1,I,�,loc/(λ) ∼= Rχ,I,�,loc/(λ) is compatible with

these algebra structures and with the canonical isomorphisms R1,I,�
N /(λ)∼=Rχ,I,�

N /(λ). We
let R1,I,�

∞ and Rχ,I,�
∞ be formal power series rings in g variables over R1,I,�,loc and Rχ,I,�,loc,

respectively. By Proposition 7.2.1 and Corollary 7.6.3, we can choose local �-algebra
surjections R1,I,�

∞ →R1,I,�
N ⊗̂�T and Rχ,I,�

∞ →Rχ,I,�
N ⊗̂�T for every N≥ 0. We can and do

assume that these are compatible with our fixed identifications modulo λ, and with the
natural isomorphisms R1,I,�

N ⊗�[�N] �∼=R1,I,�
0 and Rχ,I,�

N ⊗�[�N] �∼=Rχ,I,�
0 .

Fix a subset I⊂ Sp of cardinality #I≤ 1, and a choice of �. We now apply Propo-
sition 7.10.1, taking (in the notation established in §7.7):

• � to be �I.



426 GEORGE BOXER, FRANK CALEGARI, TOBY GEE, VINCENT PILLONI

• S∞, SN to be as above.
• R1

∞ :=R1,I,�
∞ , Rχ

∞ :=Rχ,I,�
∞ , R1 :=R1,I,�

0 , Rχ :=Rχ,I,�
0 , R1

N :=R1,∞,�
N ⊗̂�T , Rχ

N :=
Rχ,∞,�

N ⊗̂�T .
• M1 :=M1,I,�, Mχ :=Mχ,I,�, M1

N :=M1,I,�,QN⊗̂�T , Mχ

N :=Mχ,I,�,QN⊗̂�T .

By Theorem 7.9.4, Proposition 7.9.8 and Proposition 7.8.11, this data satisfies the as-
sumptions of Proposition 7.10.1. Consequently, we have:

• �I-algebra homomorphisms S∞→R1,I,�
∞ and S∞→Rχ,I,�

∞ .
• Finite S∞-modules M1,I,�

∞ , Mχ,I,�
∞ which are free if #I= 0 and balanced if #I= 1,

together with isomorphisms M1,I,�
∞ /a∼=M1,I,�, Mχ,I,�/a∼=Mχ,I,�.

• Morphisms of S∞-algebras R1,I,�
∞ → EndS∞(M1,I,�), Rχ,I,�

∞ → EndS∞(Mχ,I,�),
which are compatible with the actions of R1, Rχ on M1,I,�, Mχ,I,� respectively.

• Isomorphisms

M1,I,�
∞ /λM1,I,�

∞ 	Mχ,I,�
∞ /λMχ,I,�

∞ , M1,I,�/λM1,I,� 	Mχ,I,�/λMχ,I,�

compatible with the actions of R1,I,�
∞ /(λ)	Rχ,I,�

∞ /(λ) and R1,I,�/(λ)	Rχ,I,�/(λ)

and the above isomorphisms.

We now briefly pause to introduce some notation that will be in force throughout
the rest of §7. We will need to work with O-flat modules M over complete local Noethe-
rian O-algebras R which are not necessarily O-flat, but for which we have good control
of R[1/p]. There are various ways that we could do this, but we have found it conve-
nient to reduce to the O-flat case in the following way. For a Noetherian complete local
O-algebra R we denote by R′ the maximal O-flat quotient of R (i.e. the image of R in
R[1/p], or equivalently the quotient of R by its ideal of p-power torsion). Note that if M
is an R-module that is O-flat then it is naturally an R′-module.

Returning to the situation at hand, by definition, S∞ is formally smooth over �I

of relative dimension 2q + 11#S − 1, and �I is formally smooth over O. By Proposi-
tions 7.3.4, 7.4.7, 7.4.8, and 7.4.2, and [BLGHT11, Lem. 3.3], (R1,I,�

∞ )′ and (Rχ,I,�
∞ )′ are

equidimensional of relative dimension g+10#S+4[F :Q]−#I over �I. By the definition
of g, we conclude that

(7.11.1) dim(R1,I,�
∞ )′ = dim(Rχ,I,�

∞ )′ = dim S∞ −#I.

Proposition 7.11.2. — M1,I,�
∞ is a maximal Cohen–Macaulay (R1,I,�

∞ )′-module, and Mχ,I,�
∞

is a maximal Cohen–Macaulay (Rχ,I,�
∞ )′-module.

Proof. — These statements have identical proofs, so we give the argument for the
first of them. From (7.11.1), we see that the support of M1,I,�

∞ in Spec S∞ has codimension
at least #I. By [CG18, Lem. 6.2] (applied to a resolution Sr

∞ → Sr
∞ of M1,I,�

∞ if #I = 1
— such a resolution exists, by Lemma 2.10.2 — and to M1,I,�

∞ itself if #I = 0), we see
that the codimension is precisely #I, and that M1

∞ has depth dim S∞ −#I= dim(R1,I,�
∞ )′
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over S∞. It follows that the depth of M1,I,�
∞ over (R1,I,�

∞ )′ is at least dim(R1,I,�
∞ )′, so that

M1,I,�
∞ is maximal Cohen–Macaulay over (R1,I,�

∞ )′, as required. �

7.12. Cycles and modules over products of local deformation rings. — In preparation for
our study of the dimensions of certain spaces of p-adic modular forms in the next sec-
tion, we formalize some arguments which are at the heart of our version of the “Ihara
avoidance” argument of [Tay08]. Following [EG14], we use the language of cycles on the
special fibres of (completed tensor products of) local deformation rings; our perspective is
also informed by [Sho18].

We recall some notation for cycles and multiplicities from [EG14, §2]. In particu-
lar, if R is an equidimensional Noetherian local ring of dimension d then by a cycle (or a
d-cycle) on Spec R we mean simply a formal Z-linear combination of the generic points
of Spec R. We denote the group of cycles on R by Z d(R) (or just Z(R), with the un-
derstanding that we will only consider top-dimensional cycles). If M is a finite R-module
then the cycle of M is defined by

Z(M, R)=
∑

η

lenRη
(Mη) · η

where the sum is over the generic points η of Spec R and lenRη
(Mη) denotes the length

of Mη as a Rη-module.
If R is an equidimensional, flat, Noetherian O-algebra of dimension d + 1 and η

is a generic point of Spec R then we write Rη for the quotient of R by the minimal prime
corresponding to η, and we let η= Z(Rη/(λ), R/(λ)). Then [EG14, Prop. 2.2.13] states
that if M is a finite R-module which is O-flat, then

Z(M/λM, R/(λ))=
∑

η

lenRη
(Mη) · η

where the sum is over the generic points η of R.
Next we recall several facts about completed tensor products. As in §7.11, if

R ∈ CNLO, we let R′ denote the maximal p-torsion free quotient of R. Let R1, R2 ∈
CNLO. First we note that the natural map R1⊗̂R2 → R′

1⊗̂R′
2 induces an isomorphism

(R1⊗̂R2)
′ 	R′

1⊗̂R′
2. (Indeed this follows from the fact that the kernel is p-power torsion

and that R′
1⊗̂R′

2 is O-flat, see [Tho15, Lem. 1.3].)
Now suppose that R1 and R2 are O-flat and equidimensional of dimensions d1+ 1

and d2+1 respectively, and further assume that all the irreducible components of Spec Ri

and Spec Ri/(λ) for i = 1, 2 are geometrically irreducible (for instance by enlarging O
if necessary). Write R = R1⊗̂R2; then R is O-flat and equidimensional of dimension
d1 + d2 + 1. (This, and the other facts recalled in this paragraph, can be read off from
[Tho15, Lem 1.4].) Moreover if ηi is a generic point of Spec Ri for i = 1, 2 then the kernel
of the natural map

R→Rη1
1 ⊗̂Rη2

2
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is a minimal prime of R which corresponds to a generic point of Spec R which we denote
by η = (η1, η2), and the generic points of Spec R are precisely the (η1, η2) as ηi ranges
over the generic points of Spec Ri for i = 1, 2. Similarly if pi ⊂Ri/(λ) is a minimal prime
for i = 1, 2 then

(p1,p2)= ker
(
R/(λ)→R1/(λ,p1)⊗̂R2/(λ,p2)

)

is a minimal prime of R/(λ), and every minimal prime of R/(λ) has this form. It follows
that there is an isomorphism

Z d1(R1/(λ))⊗Z d2(R2/(λ))→Z d1+d2(R/(λ)),

η1 ⊗ η2 �→ (η1, η2).

According to [EG14, Lem. 2.2.14], if Mi is a finite Ri-module for i = 1, 2, so that
we may form the R-module M=M1⊗̂OM2, then under the above isomorphism we have

(7.12.1) Z(M1/λM1, R1/(λ))⊗ Z(M2/λM2, R2/(λ))= Z(M/λM, R/(λ)).

In particular for a generic point η = (η1, η2) of R we have an isomorphism Rη 	
Rη1⊗̂Rη2 of R-modules and hence, in the notation introduced above, under this isomor-
phism we have η= η1 ⊗ η2.

We wish to apply this discussion to the rings

R1 = ⊗̂v∈RR1
v, Rχ = ⊗̂v∈RRχ

v

as well as to R̃1 = R1⊗̂R̃ and R̃χ = Rχ⊗̂R̃, for some auxiliary R̃ ∈ CNLO with the
property that R̃′ is irreducible. (In applications R̃1 and R̃χ will be R1,I,�

∞ and Rχ,I,�
∞ for

some choice of I and �; so R̃ is formally smooth over a completed tensor product of the
deformation rings considered in Proposition 7.3.4, and R̃′ is indeed irreducible.)

We recall that for each v ∈ R we have R1
v/(λ)= Rχ

v /(λ). Passing to p-torsion free
quotients, it is not the case that (R1

v)
′/(λ) is identified with (Rχ

v )′/(λ), but Propositions
7.4.7 and 7.4.8 imply that at least the underlying topological spaces of Spec(R1

v)
′/(λ)

and Spec(Rχ
v )′/(λ) coincide with that of Spec R1

v/(λ) = Spec Rχ
v /(λ), and so in par-

ticular Z((R1
v)
′/(λ)) = Z((Rχ

v )′/(λ)). Passing to products we obtain identifications
Z((R1)′/(λ))=Z((Rχ)′/(λ)) and Z((R̃1)′/(λ))=Z((R̃χ)′/(λ)).

Lemma 7.12.2. — Let M1 be a finite O-flat R̃1-module, and let Mχ be a finite O-flat

R̃χ -module, such that M1/λM1 	Mχ/λMχ as R̃1/(λ)= R̃χ/(λ)-modules. Then

Z(M1/λM1, (R̃1)′/(λ))= Z(Mχ/λMχ , (R̃χ)′/(λ))

under the identification of Z((R̃1)′/(λ)) with Z((R̃χ)′/(λ)) from above.
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Proof. — As we explained above we have two quotients (R̃1)′/(λ) and (R̃χ)′/(λ)

of R̃1/(λ) = R̃χ/(λ) whose spectra have the same underlying topological space. Each
generic point of this space corresponds to minimal primes p1 and pχ of (R̃1)′/(λ) and
(R̃χ)′/(λ) as well as to a (not necessarily minimal) prime p of R̃1/(λ)= R̃χ/(λ) which is
the preimage of both p1 and pχ . Then we claim that we have equalities

len((R̃1)′/(λ))
p1 ((M

1/λM1)p1)= len(R̃1/(λ))p((M
1/λM1)p)

= len((R̃χ )′/(λ))pχ ((Mχ/λMχ)pχ )

which exactly gives the statement of the lemma. Both equalities follow from the fact that
if A→ B is a surjective map of rings and M is a finite length B-module then lenA(M)=
lenB(M). �

For the next lemma we need to introduce some more notation. From a tuple
η = (ηv)v∈R of generic points ηv of Spec(R1

v)
′ for v ∈ R we obtain a generic point η

of Spec(R1)′ (resp. a generic point also denoted η of Spec(R̃1)′) and moreover these are
all of the generic points of Spec(R1)′ (resp. of Spec(R̃1)′). By Proposition 7.4.7, if ηv,1 and
ηv,2 are two distinct generic points of Spec(R1

v)
′ for some v ∈R, then the cycles ηv,1 and

ηv,2 have disjoint support.
It follows from this and (7.12.1) that if η1 and η2 are two distinct generic points of

Spec(R1)′ (resp. of Spec(R̃1)′) then the supports of η1 and η2 are disjoint. Finally recall
that by Proposition 7.4.8, for each v ∈ R, Spec(Rχ

v )′ is irreducible. Passing to products,
Spec(Rχ)′ and Spec(R̃χ)′ are irreducible as well. We denote the unique generic point of
either by ηχ .

As already indicated, in the statement and proof of the following lemma, we freely
identify the generic points of Spec(R1)′ and Spec(R̃1)′ (and we also identify the generic
points of Spec(R1)′/(λ) and Spec(R̃1)′/(λ)).

Lemma 7.12.3. — Suppose there exists a finite, O-flat R̃1-module M1, and a finite, O-flat

R̃χ -module Mχ , along with an isomorphism M1/λM1 	Mχ/λMχ of R̃1/(λ)= R̃χ/(λ)-modules.

Suppose furthermore that M1 is supported on at least one generic point η of Spec(R̃1)′. Then there exist

unique positive integers d ′η labelled by generic points η= (ηv)v∈R of Spec(R1)′ such that

(1) As elements of Z((R1)′/(λ))=Z((Rχ)′/(λ)) we have

ηχ =
∑

η

d ′ηη(7.12.4)

where the sum is over the generic points η of Spec(R1)′.
(2) For each generic point η of Spec(R̃1)′ we have

len(R̃1)′η(M
1
η)= d ′η len(R̃χ )′

ηχ
(Mχ

η ).(7.12.5)

In particular M1 is supported on every generic point of Spec(R̃1)′.
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Proof. — As explained above, the cycles η as η ranges over the generic points of
Spec(R1)′ have disjoint support. Thus the formula (7.12.4) uniquely determines the inte-
gers d ′η. Moreover, as the cycle ηχ is supported on every generic point of Spec(Rχ)′/(λ),
(7.12.4) also implies that the integers dη must be positive, if they exist.

Now using [EG14, Prop. 2.2.13] as recalled above, we have

Z(M1/λM1, (R̃1)′/(λ))=
∑

η

len(R̃1)′η M1
η · η

and

Z(Mχ/λMχ , (R̃χ)′/(λ))= len(R̃χ )′
ηχ

Mχ
ηχ · ηχ

and moreover these two cycles coincide by Lemma 7.12.2.
Our hypothesis that M1 is supported on some generic point η of (R̃1)′ implies that

len(R̃1)′η M1
η > 0. Hence by the above equality of cycles, len(R̃χ )′

ηχ
Mχ

ηχ > 0. Because the
cycles η have disjoint support, we must have that

d ′η =
len(R̃1)′η (M

1
η)

len(R̃χ )′
ηχ

(Mχ

ηχ )

is an integer for each generic point η of Spec(R1)′, and for this choice of d ′η, the formu-
las (7.12.4) and (7.12.5) hold. �

Remark 7.12.6. — We note that the “multiplicities” d ′η in Lemma 7.12.3 are inde-
pendent of the modules M1 and Mχ and even of the auxiliary ring R̃. In the next section
they will be given a local representation-theoretic interpretation (see Proposition 7.13.5
and Remark 7.13.12).

Remark 7.12.7. — In §7.13 we will use Lemma 7.12.3 to compute the dimen-
sions of spaces of p-adic modular forms at Iwahori level. The idea of comparing patched
modules over R1,I,�

∞ and Rχ,I,�
∞ goes back to [Tay08]; the key point is that Rχ,I,�

∞ [1/p] is
a domain, which guarantees that the support of an appropriate patched module is all
of Spec Rχ,I,�

∞ , and the isomorphism R1,I,�
∞ /(λ) = Rχ,I,�

∞ /(λ) which allows us to transfer
this information to R1,I,�

∞ .

7.13. Multiplicities of patched spaces of p-adic automorphic forms. — We now make use
of our patching constructions to determine the multiplicities of systems of eigenvalues
corresponding to ρ in spaces of p-adic automorphic forms with #I≤ 1.

We begin by introducing some notation and assumptions. We suppose that we have
fixed a representation ρ :GF →GSp4(O), which satisfies the following properties. (While
this list of properties may appear to be too restrictive to be useful, we will later use base
change to reduce to this situation.)



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 431

Hypothesis 7.13.1.

(1) F is a totally real field in which the prime p ≥ 3 splits completely; we write Sp

for the set of primes of F dividing p.
(2) ν ◦ ρ = ε−1.
(3) For each finite place v of F, ρ|GFv

is pure.
(4) For each v ∈ Sp, ρ|GFv

is p-distinguished weight 2 ordinary, with unit eigenval-
ues αv,βv ∈ E.

(5) There is a finite set R of primes of F not dividing p such that if v /∈R∪Sp, then
ρ|GFv

is unramified, while if v ∈R, then:

• qv ≡ 1 (mod p), and if p= 3 then further qv ≡ 1 (mod 9).
• ρ|GFv

is trivial.
• ρ|GFv

has only unipotent ramification.

(6) There exists π = ⊗vπv an ordinary cuspidal automorphic representation for
GSp4 /F of parallel weight 2 and central character | · |2, such that ρπ,p = ρ,
and such that:

• For all v /∈R∪ Sp, πv is unramified.
• For all v ∈R∪ Sp, π Iw(v)

v �= 0.
• For each finite place v of F, ρπ,p|GFv

is pure.

(7) The representation ρ is vast and tidy.

Remark 7.13.2. — Note in particular that Hypothesis 7.13.1 implies that Hypoth-
esis 7.8.1 holds for ρ.

As in §7.7, it follows from Hypothesis 7.13.1, and in particular from the hypothesis
that ρ(GF) is tidy, that:

(8) There exists an absolutely unramified prime v0 /∈ Sp ∪R with qv0 �≡ 1 (mod p)

and residue characteristic greater than 5, such that ρ|GFv0
is unramified, and

ρ(Frobv0) has (not necessarily distinct) eigenvalues with the property that no
ratio of these eigenvalues is congruent to qv0 modulo λ.

Given a closed point x ∈ Spec R1,I,�[1/p] or x ∈ Spec Rχ,I,�[1/p], we will always
assume that E is large enough to contain the residue field of x, so that in particular x

parameterizes a Galois representation ρx :GF →GSp4(O). We denote by px the height
one prime ideal which is the kernel of the corresponding homomorphism R1,I,� → E
or Rχ,I,� → E, and we also use the same symbol px for the ideals obtained by pulling
back under the homomorphisms R1,I,�,loc →R1,I,�

∞ →R1,I,� or under the homomorphisms
Rχ,I,�,loc →Rχ,I,�

∞ →Rχ,I,�. As in §7.4, we say that x (or ρx or px) is smooth if R1,I,�,loc
px

(resp.
Rχ,I,�,loc

px
) is a regular local ring (note that this is equivalent to their completions being

regular).
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For a Galois representation ρ ′ :GF →GSp4(O) giving rise to a point x′ on one of
the deformation rings R1,I,� or Rχ,I,�, we let p̃an

x′ ⊂ T̃ be the corresponding prime ideal.
Explicitly, this is the prime ideal generated by the coefficients of the polynomials Qv(X)−
det(X− ρ ′(Frobv)) for v /∈R∪ Sp ∪ {v0}. (As before, the “an” stands for “anaemic”.)

For any choice of I and �, we let p̃I,�
x′ ⊂ T̃I denote the prime ideal

p̃
I,�
x′ = (p̃an

x′ , {Uv,0 − 1, Uv,2 − α′vβ
′
v}v∈Sp

, {UKli(v),1 − α′v − β ′v}v∈I,(7.13.3)

{Uv,1 − �′v}v∈Ic),

where, for v ∈ Sp, α′v ≡ αv (mod λ), β ′v ≡ βv (mod λ) and �′v ∈ {α′v, β ′v} are determined
by the local representations ρ ′|GFv

as in §7.3.

Definition 7.13.4. — Let Kp,Iw =∏
v�p,∞Kv and Kp,Iw1 =∏

v�p,∞K′
v , where

• Kv = Iw(v) and K′
v = Iw1(v) for v ∈R.

• Kv0 =K′
v0
= Iw1(v0).

• Kv =K′
v =GSp4(OFv

) for v /∈R∪ {v0}.
We now define some spaces of p-adic modular forms. For any I ⊂ Sp, �, classical

algebraic weight κ , and choice of Kp,Iw as in Definition 7.13.4, we let

SI,�
κ,Kp,IwKp(I)

= (e(UI)H0(X
I,G1
Kp(I)Kp,ωκ(−D))m̃I,�)⊗O E[{Uv,0 − 1}v∈Sp

,

{Uv,0 − q−2
v }v∈R, {Tv,0 − q−2

v }v /∈Sp∪R∪{v0}]
We also let

SI,�
κ,Kp,Iw1 Kp(I),χ

:= (SI,�
κ,Kp,Iw1 Kp(I)

)
∏

v∈R Iw(v)/Iw1(v)=χ

be the subspace with “nebentypus” corresponding to χ . By Lemma 7.8.5 (2), we have
isomorphisms

(M1,I,�/pκM1,I,�)[1/p] 	 (SI,�
κ,Kp,IwKp(I)

)∨,

(Mχ,I,�/pκMχ,I,�)[1/p] 	 (SI,�
κ,Kp,Iw1 Kp(I),χ

)∨.

In particular, with this notation in place, for a Galois representation ρ ′ : GF →
GSp4(O) giving rise to a point on one of the deformation rings R1,I,� or Rχ,I,� and of
weight κ (i.e. such that the composition �I → R1,I,�→ E or �I → Rχ,I,�→ E is κ ) we
have

(M1,I,�
∞ /px′M1,I,�

∞ )[1/p] 	 (M1,I,�/px′M1,I,�)[1/p] 	 (SI,�
κ,Kp,IwKp(I)

[p̃I,�
x′ ])∨,

(Mχ,I,�
∞ /px′Mχ,I,�

∞ )[1/p] 	 (M1,I,�/px′M1,I,�)[1/p] 	 (SI,�
κ,Kp,Iw1 Kp(I),χ

[p̃I,�
x′ ])∨.
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In order to state our results on the dimensions of eigenspaces of p-adic automorphic
forms, we need to make a further study of the local deformation rings at places v ∈R.

Proposition 7.13.5. — Let ηv be a generic point of Spec R1
v for some v ∈ R. The set of

y ∈ (Spec R1,ηv
v )(E) such that the L-packet L(ρy) contains a generic representation is nonempty, and

the number

dηv
=

∑

π∈L(ρy)

dim π Iw(v)

is independent of such a y. More explicitly, the rank n(ηv) of the monodromy operator N is generically

constant on Spec R1,ηv
v , and

• if n(ηv)= 0, then dη = 8;

• if n(ηv)= 1, then dη = 4;

• if n(ηv)= 2, then dη = 4;

• if n(ηv)= 3, then dη = 1.

Proof. — This can be read off from [RS07b, Tables A.7, A.15] (note that the rank
of the monodromy operator is given in the column of [RS07b, Table A.15] headed “a”;
note also that the unipotent L-packets which contain supercuspidal representations also
contain generic non-supercuspidal representations, namely those of type Va and XIa,
see [RS07c, §1], and [RS07b, Table A.1]). We see that:

• On the unramified components (those with n(ηv)= 0), the L-packets containing
a generic representation are singletons {π} of type I (unramified principal series),
so dηv

= 8.
• If n(ηv) = 1, the L-packets containing a generic representation are single-

tons {π} of type IIa, so dηv
= 4.

• If n(ηv)= 2, the L-packets containing a generic representation are either single-
tons {π} of type IIIa, or pairs {πa,πb} of respective types VIa and VIb, and in
either case dηv

= 4. (Note that the representations of type Va do not contribute,
as they never correspond to residually trivial Galois representations.)

• Finally, if n(ηv)= 3, then the L-packets containing a generic representation are
singletons of type IVa (unramified twists of Steinberg) and dηv

= 1. �

We write η = (ηv)v∈R for a tuple of generic points ηv of Spec R1
v for v ∈ R, which

as explained in §7.12 gives rise to a generic point, also denoted η, of R1,I,�,loc or of R1,I,�
∞ .

We let

dη =
∏

v∈R

dηv
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where dηv
is as in Proposition 7.13.5. We also let dρ = dη for the generic point η of R1,I,�,loc

that the local representations of ρ lie on (this point is unique, as the representations ρ|GFv

are pure by assumption). Concretely, by Proposition 7.13.5, we have

dρ = 8|R0|4|R1|+|R2|

where for i = 0, 1, 2, 3, Ri ⊂R is the set of primes v ∈R for which n(ρ|GFv
)= i.

We can now state our main result about p-adic modularity at Iwahori level.

Theorem 7.13.6. — Assume Hypothesis 7.13.1 for ρ = ρx. For any I with #I≤ 1, and any

choice of �, we have

dimE SI,�
κ2,Kp,IwKp(I)

[p̃I,�
x ] = 8dρ.

Remark 7.13.7. — The reason for the factor of 8 = |W| on the right hand side
is that we are working at Iwahori level at the auxiliary place v0, and not imposing any
conditions on the Hecke operators at this place. It would be possible to impose such
conditions and remove this factor, but we have found it more convenient not to do so
(and it makes no difference for our main automorphy lifting theorems).

Before proving the theorem we recall a standard lemma, essentially due indepen-
dently to Diamond and Fujiwara (see e.g. [Dia97]) which is the key to proving “multiplic-
ity one” (or “multiplicity 8dρ”) results in characteristic 0 using the Taylor–Wiles method.

Lemma 7.13.8. — Let R be either (R1,I,�
∞ )′ or (Rχ,I,�

∞ )′ for some choice of I and � and let M
be a maximal Cohen–Macaulay R-module. Let x ∈ Spec R[1/p] be a smooth closed point with residue

field E, and let px ⊂R be the corresponding prime ideal. Then Mpx
is a free Rpx

-module, and hence if

η is the unique generic point of R specializing to x, then

dimRη
Mη = dimE(M/pxM)[1/p].

Proof. — The first statement follows from the fact that a maximal Cohen–
Macaulay module over a regular local ring is free, and the second statement is an im-
mediate consequence of this freeness. �

We also record the following proposition on “doubling”:

Proposition 7.13.9. — Let ρ = ρx. For any choice of I ⊂ Sp, w ∈ Ic, Kp as in Defini-

tion 7.13.4, and �, there is an injection

(Uw,1 − �′w) : SI∪{w},�
κ2,KpKp(I∪{w})[p̃I∪{w},�

x ]→ SI,�
κ2,KpKp(I)

[p̃I,�
x ].

Proof. — This immediately reduces to the corresponding statement with O-
coefficients, and hence to the injectivity of the map (7.9.3) (with w = v), which we proved
in the course of the proof of Proposition 7.9.1. �
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We are now ready to prove Theorem 7.13.6.

Proof of Theorem 7.13.6. — We first consider the case that I= ∅. As M1,∅,� is a max-
imal Cohen–Macaulay (R1,∅,�)′-module, it is supported on some irreducible component
of Spec(R1,∅,�)′ and hence we may apply Lemma 7.12.3 to the R1,∅,�

∞ -module M1,∅,�
∞ and

the Rχ,∅,�
∞ -module Mχ,∅,�

∞ . In particular we conclude that M1,∅,�
∞ is supported on every

irreducible component of Spec(R1,∅,�)′.
As M1,∅,�

∞ is a finite free S∞-module, and (R1,∅,�
∞ )red acts faithfully on M1,∅,�

∞ (and
is therefore finite and torsion free over S∞), the map Spec(R1,∅,�

∞ ) → Spec S∞ is sur-
jective and generalizing by [Sta13, Tag 080T]. It follows that we may pick some ρreg :
GF → GSp4(O) whose corresponding point is in the support of M1,∅,�/pκregM

1,∅,� and
such that ρ and ρreg (or their corresponding points x and xreg) lie on the same component
of R1,∅,�

∞ ; we write η for the generic point corresponding to this component. Similarly, we
may pick some ρχ

reg :GF →GSp4(O) whose corresponding point xχ
reg is in the support of

Mχ,∅,�/pκregM
χ,∅,�.

By Proposition 7.13.11 below, we have

dimE(M1,∅,�
∞ /pxregM

1,∅,�
∞ )[1/p] = dimE S∅,�

κreg,Kp,IwKp(∅)[p̃∅,�xreg
] = 8dρ,

and

dimE(Mχ,∅,�
∞ /px

χ
regM

χ,∅,�
∞ )[1/p] = dimE S∅,�

κreg,Kp,Iw1 Kp(∅),χ [p̃
∅,�
x
χ
reg
] = 8.

In addition, there are automorphic representations πreg, πχ
reg of GSp4(AF) of weight κreg

and central character | · |2 such that ρπreg,p
∼= ρreg and ρπ

χ
reg,p
∼= ρχ

reg.
Applying Lemma 7.13.8 to px and pxreg (which we may, by our assumptions on ρ,

and by Theorem 2.7.2 for ρπreg,p, together with Lemmas 7.1.3 and 7.3.18), we obtain

dimE(M1,∅,�
∞ /pxM1,∅,�

∞ )[1/p]
= dim

(R1,∅,�∞,η )′ M
1,∅,�
∞,η = dimE(M1,∅,�

∞ /pxregM
1,∅,�
∞ )[1/p] = 8dρ.

As

S∅,�
κ2,Kp,Iw,Kp(∅)[p̃∅,�x ] = (M1,∅,�

∞ /pxM1,∅,�
∞ )[1/p]∨,

the theorem is proved for I= ∅.
Before we go on to the case that #I= 1, we note that we may also apply Proposi-

tion 7.13.11 and Lemma 7.13.8 to px
χ
reg and conclude that

dim
(Rχ,∅,�
∞,ηχ )′ M

χ,∅,�
∞,ηχ = dimE(Mχ,∅,�

∞ /px
χ
regM

χ,∅,�
∞ )[1/p] = 8.

By another application of Lemma 7.12.3 this implies that d ′η = dρ (where d ′η is as in
Lemma 7.12.3). Following Remark 7.12.6, we will apply this in the case #I= 1 below.

http://stacks.math.columbia.edu/tag/080T
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Now consider the case that #I= 1. We consider the automorphic representation π

of Hypothesis 7.13.1. By assumption, for all finite places v of F the representation ρπ,p|GFv

is pure, and therefore determines a unique component of R1,∅,�
∞ , which we denote by ηπ .

Arguing as above, we find that d ′ηπ
= dρπ,p

(where d ′η is as in Lemma 7.12.3). Write p̃I,�
π for

the height one prime ideal determined by ρπ,p. Then by Proposition 7.13.11 we find that

(7.13.10) dimE SI,�
κ2,Kp,IwKp(I)

[p̃I,�
π ] ≥ 8dρπ,p

.

Again M1,I,�
∞ is a maximal Cohen–Macaulay (R1,I,�

∞ )′-module and so we may apply Lem-
mas 7.12.3 and 7.13.8 to the R1,I,�

∞ -module M1,I,�
∞ and the Rχ,I,�

∞ -module Mχ,I,�
∞ . We find

that

1
dρ

dimE SI,�
κ2,Kp,IwKp(I)

[p̃I,�
x ] =

1
dρ

dimE(M1,I,�
∞ /p̃I,�

x M1,I,�
∞ )[1/p]

= 1
dρ

dim(R1,I,�∞,η)′ M
1,I,�
∞,η

= dim
(Rχ,I,�
∞,ηχ )′ M

χ,I,�
∞,ηχ

= 1
dρπ,p

dim(R1,I,�∞,ηπ )′ M
1,I,�
∞,ηπ

= 1
dρπ,p

dimE(M1,I,�
∞ /p̃I,�

π M1,I,�
∞ )[1/p]

= 1
dρπ,p

dimE SI,�
κ2,Kp,IwKp(I)

[p̃I,�
π ].

It follows from (7.13.10) that

dimE SI,�
κ2,Kp,IwKp(I)

[p̃I,�
x ] ≥ 8dρ.

On the other hand by Proposition 7.13.9, we have that

dimE SI,�
κ2,Kp,IwKp(I)

[p̃I,�
x ] ≤ dimE S∅,�

κ2,Kp,IwKp(∅)[p̃∅,�x ] = 8dρ,

and so the theorem is proved. �

Proposition 7.13.11. — In the notation of the proof of Theorem 7.13.6, we have

dimE S∅,�
κreg,Kp,IwKp(∅)[p̃∅,�xreg

] = 8dρ,

dimE S∅,�
κreg,Kp,Iw1 Kp(∅),χ [p̃

∅,�
x
χ
reg
] = 8,

dimE SI,�
κ2,Kp,IwKp(I)

[p̃I,�
π ] ≥ 8dρπ,p

.
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In addition, there are automorphic representations πreg, πχ
reg of GSp4(AF) of weight κreg and

central character | · |2 such that ρπreg,p
∼= ρreg and ρπ

χ
reg,p
∼= ρχ

reg.

Proof. — By Theorem 6.6.5 and Theorem 3.10.1, dimE S∅,�
κreg,Kp,IwKp(∅)[p̃∅,�xreg

] is equal
to

∑

π

dimE(π∞)Kp,IwKp(∅),{Uv,1=�reg
v ,Uv,2=α

reg
v β

reg
v }v∈Sp

where the sum is over all the cuspidal automorphic representations π of weight κreg such
that π has central character | · |2, πv is holomorphic for all places v|∞, and ρπ,p

∼= ρreg;
and we write αreg

v , βreg
v for the lifts of αv,βv determined by ρreg|GFv

. In particular, note
that we can take πreg to be any of the automorphic representations π contributing to the
sum.

Since ρreg is irreducible, such a π is of general type in the sense of [Art04]
by Lemma 2.9.1, and therefore corresponds to an essentially self-dual regular alge-
braic cuspidal automorphic representation � of GL4(AF). By strong multiplicity one
for GL4 [JS81], � is uniquely determined by the condition that ρ�,p

∼= ρreg, so by Theo-
rem 2.9.3 we see that we can rewrite the above sum as

⎛

⎜⎝
∑

πv0∈L(ρreg|GFv0
)

dim π Iw1(v0)
v0

⎞

⎟⎠
∏

v∈R

⎛

⎝
∑

πv∈L(ρreg|GFv
)

dim π Iw(v)
v

⎞

⎠

(note that at all places v /∈R∪Sp∪{v0}, we are taking the space of hyperspecial invariants
in an unramified representation, which is 1-dimensional; and at the places v ∈ Sp, the
contribution is 1-dimensional by Propositions 2.4.24 and 2.4.26).

By Proposition 2.4.6, πv0 is an irreducible unramified principal series represen-
tation; indeed, by the choice of v0, ρπ,p|GFv0

is unramified, and no two eigenvalues
of ρπ,p|GFv0

(Frobv0) can have ratio qv0 . It follows from Propositions 2.4.3 and 2.4.4 that
we have dim π Iw1(v0)

v0
= 8. The claim then follows from Proposition 7.13.5 (which we can

apply, because for each place v ∈R, ρreg|GFv
is pure by Theorem 2.7.2 (4), and therefore

the corresponding Weil–Deligne representation is generic by Lemma 7.1.3, so that the
corresponding L-packet contains a generic representation by Proposition 2.4.22).

The statement for ρχ
reg reduces in the same way to the claim that for each place v ∈

R, we have
∑

πv∈L(ρ
χ
reg|GFv

)

dim π Iw1(v),χ
v = 1,

which follows from Proposition 2.4.28. Finally, in the case of SI,�
κ2,Kp,IwKp(I)

[p̃I,�
π ], the result

follows as above, by computing the contribution of the automorphic representation π of
Hypothesis 7.13.1 (note that it contributes by Theorem 3.10.1). �
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Remark 7.13.12. — In the course of the proof of Theorem 7.13.6, we showed that
for the generic point η corresponding to ρ, the quantity d ′ρ of Lemma 7.12.3 is equal
to dρ . It is presumably possible to go further following [Sho18], and to use our patched
modules to show that for each v ∈R and each generic point ηv of Spec R1

v , if we write

Z(Spec R1,ηv

v /(λ))= ηv

then

Z(Spec(Rχ
v )red/(λ))=

∑

ηv

dηv
ηv,

where dηv
is as in Proposition 7.13.5.

8. Étale descent and the main modularity lifting theorem

8.1. Introduction. — Our main goal is to remove the assumption #I ≤ 1 of Theo-
rem 7.13.6 in order to eventually apply Theorem 6.5.8 with I = Sp, and from this con-
clude that we have constructed classical automorphic representations. The starting point
is to consider the spaces of p-adic automorphic forms considered in Theorem 7.13.6 for
both #I= 1 and #I= 0. By studying the way in which these spaces are related, we will be
able to (inductively) determine precise linear combinations of such forms which belong
to spaces of p-adic automorphic forms for larger #I. Our argument uses the doubling
results of §5, the analytic continuation results of §6, and étale descent. Finally, we apply
solvable base change to prove our main modularity lifting theorem.

We briefly indicate some of the main features of our argument. As we mentioned
in the introduction, the analytic continuation arguments that we are using here are anal-
ogous to those used for Hilbert modular forms of weight at least two, rather than those
of weight one – in particular, there is no “gluing” of the kind used in [BT99], and we are
simply analytically continuing a single form at a time (using the method of Kassaei se-
ries [Kas06]). This part of the argument is quite standard, although we have to take some
care to show that the regions that we have analytically continued to are large enough. For
this reason, we ignore the issues of analytic continuation in this introduction.

We show that the conclusion of Theorem 7.13.6 holds for all I by induction on #I.
The key step is to go from #I≤ 1 to #I≤ 2; indeed, the general inductive step considers
two places v1, v2 dividing p, and essentially ignores the other places above p, so for the
purpose of exposition we assume that Sp = {v1, v2}. Write αi, βi for αvi

, βvi
, i = 1, 2. We

denote the various spaces of forms considered in Theorem 7.13.6 with I = ∅ by Vα1,α2 ,
Vβ1,α2 , Vα1,β2 , Vβ1,β2 (so that for example on Vα1,α2 the eigenvalue of Uv1,1 is α1 and the
eigenvalue of Uv2,1 is α2). Each of these spaces has dimension d := 8dρ , and considering
the action of Uv1,1 and Uv2,1, we see that these spaces together span a 4d-dimensional
space of p-adic modular forms of Iwahori level.
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We expect that this space contains a d-dimensional subspace of p-adic modular
forms which descend to Klingen level (and are suitably overconvergent in both the v1

and v2 directions). The difficulty (even if d = 1) is in identifying this subspace; recall that
there is no obvious relationship between the Hecke eigenvalues and Fourier coefficients.
However, we also have the spaces of forms for I = {v1} and I = {v2}, which we denote
by Vα1,α2+β2 , Vβ1,α2+β2 , Vα1+β1,α2 , Vα1+β1,β2 , where for example the forms in Vα1,α2+β2 have
Klingen level at v2 (and are highly overconvergent in the v2 direction), and are UKli(v2),1-
eigenforms with eigenvalue α2+ β2. Again, all of these spaces has dimension d by Theo-
rem 7.13.6.

Now, the relations between the Hecke operators at Klingen and Iwahori levels
(more precisely, Lemma 4.5.17) imply that we have a map

(Uv1,1 − β1) :Vα1+β1,α2 →Vα1,α2 .

Furthermore, this map is injective by Proposition 7.13.9 (that is, by our main doubling
results), and since the source and target both have dimension d , this map is in fact an
isomorphism. Similarly, we have an isomorphism

(Uv1,1 − β1) :Vα1+β1,β2

∼−→Vα1,β2

and thus an isomorphism of 2d-dimensional spaces

(8.1.1) (Uv1,1 − β1) :Vα1+β1,α2 ⊕Vα1+β1,β2

∼−→Vα1,α2 ⊕Vα1,β2 .

By pulling back from Iwahori to Klingen level, we can think of Vα1,α2+β2 as a d-
dimensional subspace of the target of (8.1.1). The inverse image of this space in the source
of (8.1.1) is the d-dimensional space of forms that we are seeking; considered as living on
the right hand side of (8.1.1), it comes from Klingen level at v2, and on the left hand side
of (8.1.1), it comes from Klingen level at v1. We make this precise using an argument with
étale descent.

8.2. Étale descent. — In this section we carry out the argument explained above,
showing that the conclusion of Theorem 7.13.6 holds for all I by induction on #I (in
fact, we show slightly more, keeping track of the overconvergence of our p-adic modular
forms). Recall that by definition for each choice of I, � we have

SI,�
κ2,Kp,IwKp(I)

= (H0(X
I,G1
Kp,IwKp(I)

,ω2(−D))m̃I,�)⊗O E[{Uv,0 − 1}v∈Sp
,

{Uv,0 − q−2
v }v∈R, {Tv,0 − q−2

v }v /∈Sp∪R∪{v0}]
The maximal ideal m̃I,� of the Hecke algebra is defined in equation (7.8.4). It con-

tains an ordinary projector. We have given ourselves (see the beginning of §7.13) a Galois
representation ρ satisfying Hypothesis 7.13.1. We want to prove that it is modular. Asso-
ciated to this representation is a point x on the deformation space of ρ̄ and an ideal p̃I,�

x
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(see equation (7.13.3)) of the Hecke algebra contained in m̃I,� whose definition we recall
here for convenience. It is the ideal of the Hecke algebra T̃I given by

⎛

⎝
⊗

v /∈Sp∪R∪{v0}
O[GSp4(Fv)// GSp4(OFv

)]
⎞

⎠

× [{Uv,0, UKli(v),1, Uv,2}v∈I, {Uv,0, Uv,1, Uv,2}v∈Ic]
which is generated by:

• the coefficients of det(X− ρ(Frobv))−Qv(X) for each v /∈ Sp ∪R∪ {v0}, and
• {Uv,0 − 1, Uv,2 − αvβv}v∈Sp

, {UKli(v),1 − αv − βv}v∈I, {Uv,1 − �v}v∈Ic , where, for
v ∈ Sp, αv , βv are determined by ρ|GFv

as in Definition 7.3.1.

Recall that X I,G1
Kp,IwKp(I)

is the analytic adic space over Cp associated to X
I,G1
Kp,IwKp(I)

. By
definition, we have:

SI,�
κ2,Kp,IwKp(I)

[p̃I,�
x ] ⊗E Cp = e(UI)H0(X I,G1

Kp,IwKp(I)
,ω2(−D))[p̃I,�

x ].
We may also introduce overconvergent versions of these spaces. Recall that we

defined the dagger space X G1,mult,†
Kp,IwKp(I)

in (6.5.5) (whose associated rigid analytic space is

X G1,I
Kp,IwKp(I)

).
There is a natural injective restriction map:

e(UI)H0(X G1,mult,†
Kp,IwKp(I)

,ω2(−D))→ e(UI)H0(X G1,I
Kp,IwKp(I)

,ω2(−D)).

Let

SI,�,†
κ2,Kp,IwKp(I)

= e(UI)H0(X G1,mult,†
Kp,IwKp(I)

,ω2(−D))∩ SI,�
κ2,Kp,IwKp(I)

⊗Cp

where the intersection is taken inside e(UI)H0(X G1,I
Kp,IwKp(I)

,ω2(−D)).

Theorem 8.2.1. — Assume that ρ satisfies Hypothesis 7.13.1. Then for any I⊂ Sp and choice

of �, we have

dimE SI,�
κ2,Kp,IwKp(I)

[p̃I,�
x ] = dimCp

SI,�,†
κ2,Kp,IwKp(I)

[p̃I,�
x ] = 8dρ.

Before proving this theorem, we record the following important corollary.

Corollary 8.2.2. — Suppose that ρ satisfies Hypothesis 7.13.1. Then ρ is modular. More

precisely, there is an ordinary automorphic representation π ′ of GSp4(AF) of parallel weight 2 and

central character | · |2, with ρπ ′,p ∼= ρ, and for every finite place v of F we have

WD(ρ|GFv
)F−ss ∼= recGT,p(π

′
v ⊗ |ν|−3/2).
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Proof. — The existence of π ′ with ρπ ′,p ∼= ρ is immediate from Theorem 8.2.1,
taking I= Sp, together with Theorem 6.5.8 and Theorem 3.10.1. By Corollary 7.9.6 we
have

WD(ρ|GFv
)ss ∼= recGT,p(π

′
v ⊗ |ν|−3/2)ss

at all finite places v of F, so we need only prove that the monodromy operators agree at
the places v ∈ R. Since ρ|GFv

is pure by assumption, it follows from Lemma 2.5.1 that it
suffices to prove, in the notation of Section 2.3, that n(ρ|GFv

)≤ n(π ′v).
Now, if πv is any irreducible admissible representation of GSp4(Fv), then an exam-

ination of [RS07b, Table A.15] (noting that the column there headed “a” records n(πv))
shows that:

• n(πv)≥ 1 if and only if (πv)
GSp4(OFv ) = 0.

• n(πv)≥ 2 if and only if (πv)
GSp4(OFv ) = (πv)

Par(v) = 0.
• n(πv)= 3 if and only if (πv)

Kli(v) = (πv)
Si(v) = 0.

Suppose that n(ρ|GFv
)= 1, so that we need to show that (π ′v)

GSp4(OFv ) = 0. Suppose
for the sake of contradiction that (π ′v)

GSp4(OFv ) �= 0; then by Hida theory (more precisely,
by Theorem 7.9.4 and its proof), the Galois representation ρπ ′,p is a p-adic limit of Ga-
lois representations ρπ ′′,p, where π ′′ has regular weight and satisfies (π ′′v )GSp4(OFv ) �= 0. In
particular, by Theorem 2.7.2, n(ρπ ′′,p|GFv

)= n(π ′′v )= 0. By the semicontinuity of the rank
of the nilpotent operator N in such a family, it follows that n(ρ|GFv

)= 0, a contradiction.
We leave the (very similar) arguments in the cases n(ρ|GFv

)= 2, 3 to the reader. �

Proof of Theorem 8.2.1. — We prove this by induction on #I. The result is true
for I = ∅ and #I = 1 by Theorem 7.13.6 and Theorem 6.6.4 (ordinary implies over-
convergent if #I≤ 1). For any I, the restriction map

SI,�,†
κ2,Kp,IwKp(I)

[p̃I,�
x ]→ SI,�

κ2,Kp,IwKp(I)
[p̃I,�

x ] ⊗E Cp

is injective, while by Proposition 7.13.9 (and a simple induction) we see that for any I,
the dimension of SI,�

κ2,Kp,IwKp(I)
[p̃I,�

x ] is at most 8dρ . It therefore suffices to show that

SI,�,†
κ2,Kp,IwKp(I)

[p̃I,�
x ] has dimension at least 8dρ . We may assume that #I ≥ 2, and hence we

may write I as a disjoint union J ∪ {v1, v2} for two primes vi|p. We fix the choice of � at
all primes in J∪ Ic.

By the inductive hypothesis applied to J, for each choice of � at v1 and v2

the corresponding eigenspace SJ,�,†
κ2,Kp,IwKp(J)

[p̃J,�
x ] is 8dρ-dimensional, and we denote these

eigenspaces by Vα1,α2 , Vβ1,α2 , Vα1,β2 , Vβ1,β2 (so that for example on Vα1,α2 the eigen-
value of Uv1,1 is α1 and the eigenvalue of Uv2,1 is α2). Considering the action of Uv1,1

and Uv2,1, we see that these spaces span a 4 × 8dρ = 32dρ-dimensional subspace V of
H0(X J,G1

Kp,IwKp(J)
,ω2(−D)).
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By the inductive hypothesis applied to J ∪ {v1} and the two possible choices of �
at v2 (the choice at v1 is irrelevant), we see that the eigenspaces SJ∪{v1},�,†

κ2,Kp,IwKp(J∪{v1})[p̃J∪{v1},�
x ]

are both 8dρ-dimensional, and we denote the corresponding spaces by Vα1+β1,α2

and Vα1+β1,β2 . Similarly, the inductive hypothesis applied to J∪{v2} yields 8dρ-dimensional
spaces Vα1,α2+β2 and Vβ1,α2+β2 .

Recall that our goal is to construct an 8dρ-dimensional space of eigenforms
Vα1+β1,α2+β2 which are eigenforms for the operators UKli(v1),1 and UKli(v2),1 (and for the
Hecke operators at all the other places), and which lie in

H0(X G1,mult,†
Kp,IwKp(I)

,ω2(−D)).

We will combine the analytic continuation results of §6 with a descent argument to prove
the existence of the sought-after eigenforms.

We need to introduce some notation in order to be able to describe the adic spaces
we are working with. Recall that XKp,IwKp(I) is the analytic space associated to XKp,IwKp(I).
For each v ∈ I, Hv refers to the quasi-finite subgroup (of order p over the interior of the
moduli space) related to the Klingen level structure, and for each v ∈ Ic, Lv ⊃Hv refers
to the quasi-finite (maximally isotropic rank p2 over the interior of the moduli space)
subgroup corresponding to the Iwahori level structure.

For any tuple (εv) ∈ [0, 1]I × [0, 2]Ic

we defined an analytic adic space
XKp,IwKp(I)((εv)v∈Sp

) which is the open subspace of XKp,IwKp(I) where:

(1) If v ∈ I, the degree of the subgroup Hv , which takes values in [0, 1], is greater
or equal than 1− εv .

(2) If v ∈ Ic, the degree of the subgroup Lv of rank p2, which takes values in [0, 2],
is greater or equal than 2 − εv . Note that we have deg(Lv) = deg(Hv) +
deg(Lv/Hv).

It will be convenient to adopt the following notation in this proof (note that I is
fixed). We write (cf. (6.5.5))

Xmult =XKp,IwKp(I)((0)v∈Sp
),

Xmult,† =Xmult,†
Kp,IwKp(I)

= lim
εv→0+

XKp,IwKp(I)((εv)v∈Sp
),

and Xmult,‡ for the dagger space

Xmult,‡ := lim
εv→0+

XKp,IwKp(I)((εv)v∈Sp\{v1,v2}),

where we take the limit over all primes except v1 and v2. It follows that:

Xmult,† = lim
εv1 ,εv2→0+

Xmult,‡(εv1, εv2),
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and there are maps of locally ringed spaces Xmult → Xmult,† → Xmult,‡. By adding the
subscript Iw(v1) (or Iw(v2), or Iw(v1, v2)) to Xmult, Xmult,‡, Xmult,† we mean the space
where one has now added an Iwahori level structure at v1 (or v2, or v1 and v2) to the
relevant space. For i = 1, 2 we write dH

i = deg Hvi
, dL

i = deg Lvi
, whenever these quanti-

ties are defined. We will adorn Xmult and Xmult,‡ with superscripts indicating the regions
(which will typically strictly contain Xmult and Xmult,‡) where various inequalities hold.

Returning to the spaces we defined above, we have

V�1,�2 ⊂ H0(Xmult,†
Kp,IwKp(J)

,ω2(−D)),

V�1+�′1,�2 ⊂ H0(Xmult,†
Kp,IwKp(J∪{v1}),ω2(−D)),

V�1,�2+�′2 ⊂ H0(Xmult,†
Kp,IwKp(J∪{v2}),ω2(−D)).

Lemma 8.2.3. — The elements of V�1,�2 extend to Xmult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε,dL
1 >1,dL

2 >1
Iw(v1,v2)

for some ε > 0. Similarly, the elements of V�1+�′1,�2 and V�1,�2+�′2 extend to the spaces

Xmult,‡,dH
1 ≥1−ε,dH

2 >1−ε,dL
2 >1

Iw(v2) and Xmult,‡,dH
1 >1−ε,dL

1 >1,dH
2 ≥1−ε

Iw(v1) respectively for some ε > 0.

Proof. — This follows from Lemma 6.5.18 (taking I there to be J, J ∪ {v2} and
J ∪ {v1} respectively). Note that our forms are ordinary for Uw,1 for the appropriate w,
and therefore of finite slope for these operators. �

By Koecher’s principle, all of our cohomology groups may be replaced by the co-
homology of the corresponding open spaces of “good reduction” Ymult ⊂Xmult, Ymult,‡ ⊂
Xmult,‡, and Ymult,† ⊂Xmult,† respectively. (Since the sheaf ω2 is pulled back from the min-
imal compactification, the form of Koecher’s principle we are using is just the following
statement: if X is a normal formal scheme, Y⊆ X is an open formal subscheme whose
complement is codimension ≥ 2, and L/X is a line bundle, then H0(X,L)=H0(Y,L).
That the boundary in the minimal compactification does indeed have codimension ≥ 2
follows from an analysis of the blowup in the boundary charts.) We now restrict to these
spaces to avoid minor technical issues related to the boundary. In particular we will want
to use that forgetting the level structure induces finite étale maps between our spaces. The
reader will check easily that the forms we construct are indeed cuspidal because they are
obtained by “descent” of cuspidal forms.

For any ε > 0 and for i = 1, 2 there is a finite étale map:

qvi
: Ymult,‡,dH

1 ≥1−ε,dH
2 ≥1−ε

Iw(vi)
→ Ymult,‡,dH

1 ≥1−ε,dH
2 ≥1−ε.

There is a corresponding fibre product map (still finite étale):

qv1 : Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1,v2) → Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v2)

(and similarly for qv2 ).
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We now somewhat abusively also write Vα1+β1,α2 instead of q∗v1
Vα1+β1,α2 . We claim

that the action of (Uv1,1 − β1) induces an isomorphism

(8.2.4) (Uv1,1 − β1) :Vα1+β1,α2

∼−→Vα1,α2 .

To see this, note that (Uv1,1−β1) is injective by Proposition 7.13.9, and both spaces have
the same dimension.

In the same way, we have an isomorphism (Uv1,1−α1) :Vα1+β1,α2

∼−→Vβ1,α2 , so we
see that in fact the span of Vα1+β1,α2 and Uv1,1Vα1+β1,α2 is exactly Vα1,α2⊕Vβ1,α2 . It follows

from Lemma 8.2.3 that the forms in Vα1,α2⊕Vβ1,α2 extend to Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε,dL
2 >1

Iw(v1,v2) for
some ε > 0.

Set

Uε := Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε,dL
2 >1

Iw(v1,v2) .

The map qv2 restricts to an étale map:

qv2 :Uε → Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1) .

We claim that for ε sufficiently small, the restriction of qv2 to Uε is surjective. Note that a

pre-image of a point in Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1,v2) (without any condition on dL
2 ) corresponds to

a choice of L= Lv2 , which is determined by a line in H⊥/H⊂ A[v2]/H for H=Hv2 . We
need to show that deg(L) > 1 for at least one such L.

Let us first assume that deg(H) = 1. Then we can choose any line C ⊂ H⊥/H
with deg(C) > 0 (such a C exists as H⊥/H is not étale) and the corresponding L has
deg(L)= deg(H)+ deg(C) > 1.

We pass from deg(H)= 1 to deg(H) > 1− ε by a continuity argument. The func-

tion which sends a rank one point x ∈ Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1) to the maximum of deg(L)

is continuous. It follows that for ε sufficiently small, we can ensure the existence of a
subgroup L such that deg(L) > 1.

Consider the corresponding descent diagram:

Uε ×
Y

mult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1)

Uε

qv2,1 �
qv2,2

� Uε

qv2 � Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1) .

Lemma 8.2.5. — After possibly further shrinking ε > 0, any element of Vα1,α2+β2 descends to

Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1) .

Proof. — Any element of Vα1,α2+β2 tautologically satisfies descent over the (smaller)

space Ymult,‡,dH
1 ≥1−ε,dL

1 >1,dH
2 ≥1−ε,dL

2 >1
Iw(v1,v2) ⊂Uε to

qv2(Y
mult,‡,dH

1 ≥1−ε,dL
1 >1,dH

2 ≥1−ε,dL
2 >1

Iw(v1,v2) )= Ymult,‡,dH
1 ≥1−ε,dL

1 >1,dH
2 ≥1−ε

Iw(v1)
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since it is (by Lemma 8.2.3) obtained simply by pulling back a form on this space
under qv2 . Therefore, we deduce that for any element G ∈ Vα1,α2+β2 , we have that
q∗v2,1G= q∗v2,2G on

Ymult,‡,dH
1 ≥1−ε,dL

1 >1,dH
2 ≥1−ε,dL

2 >1
Iw(v1,v2)

×
Y

mult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1)

Ymult,‡,dH
1 ≥1−ε,dL

1 >1,dH
2 ≥1−ε,dL

2 >1
Iw(v1,v2) .

The point is now to show that each connected component of

Uε ×
Y

mult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1)

Uε

intersects

Ymult,‡,dH
1 ≥1−ε,dL

1 >1,dH
2 ≥1−ε,dL

2 >1
Iw(v1,v2)

×
Y

mult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1)

Ymult,‡,dH
1 ≥1−ε,dL

1 >1,dH
2 ≥1−ε,dL

2 >1
Iw(v1,v2)

so that we have that q∗v2,1G = q∗v2,2G on Uε ×
Y

mult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1)

Uε and can perform the

descent of G.
It follows from [Poi08, Thm. 2] that after possibly further shrinking ε, there is a

surjective map

(8.2.6) π0(U0 ×
Y

mult,‡dH
1 =dH

2 =1
Iw(v1)

U0)→ π0(Uε ×
Y

mult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1)

Uε).

We need to see that q∗v2,1G= q∗v2,2G on

Uε ×
Y

mult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1)

Uε.

By (8.2.6), it is enough to show q∗v2,1G= q∗v2,2G on the subspace

U0 ×
Y

mult,‡,dH
1 =dH

2 =1
Iw(v1)

U0.

As discussed above, this identity holds over the region

Ymult,‡,dH
1 =dH

2 =1,dL
1 >1,dL

2 >1
Iw(v1,v2) ×

Y
mult,‡,dH

1 =dH
2 =1

Iw(v1)

Ymult,‡,dH
1 =dH

2 =1,dL
1 >1,dL

2 >1
Iw(v1,v2)

by definition. It therefore suffices to show that this region intersects all connected com-
ponents of U0 ×

Y
mult,‡,dH

1 =dH
2 =1

Iw(v1)

U0.
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Accordingly, it is enough to show that every connected component of
U0 ×

Y
mult,‡,dH

1 =dH
2 =1

Iw(v1)

U0 contains a point which is non-ordinary at v1. Indeed, if such

a point had dL
1 = 1, then we would have deg(Hv1) = deg(Lv1) = 1, which implies

that deg(Lv1/Hv1) = 0, so Lv1/Hv1 is étale, and the point is ordinary at v1, a contra-
diction.

We will prove in Corollary 8.2.9 below that any connected component of either of
the spaces

Ymult,‡,dH
1 =dH

2 =1,=v2 1
Iw(v1) , Ymult,‡,dH

1 =dH
2 =1,=v2 2

Iw(v1)

contains a point which is non-ordinary at v1. Recall that the superscripts =v2 1 and =v2 2
respectively mean the rank 1 and the ordinary locus at v2.

Now we observe that the maps U
=v2 1
0 → Ymult,‡,dH

1 =dH
2 =1,=v2 1

Iw(v1) and U
=v2 2
0 →

Ymult,‡,dH
1 =dH

2 =1,=v2 2
Iw(v1) are both finite étale. It follows from Lemma 8.2.7 below that any

connected component of any of the spaces U
=v2 1
0 , U

=v2 2
0 , U

=v2 1
0 ×

Y
mult,‡,dH

1 =dH
2 =1

Iw(v1)

U
=v2 1
0 or

U
=v2 2
0 ×

Y
mult,‡,dH

1 =dH
2 =1

Iw(v1)

U
=v2 2
0 contains a point which is non-ordinary at v1. It finally follows

that any component of U0×
Y

mult,‡,dH
1 =dH

2 =1
Iw(v1)

U0 contains a point which is non-ordinary at v1,

as required. �

We can now complete the proof of Theorem 8.2.1. Consider the diagram:

Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1,v2)

qv1 � Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v2)

Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1)

qv2

�
qv1 � Ymult,‡,dH

1 ≥1−ε,dH
2 ≥1−ε

qv2

�

By Lemma 8.2.5, we have proved that all elements of our spaces Vα1+β1,α2 and

Vα1+β1,β2 are sections on the whole Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v2) and that all elements of our spaces

Vα1,α2+β2 and Vβ1,α2+β2 are sections on the whole Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1) . We can pull back

these sections to Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1,v2) .

The isomorphism (8.2.4) and the similar isomorphism (Uv1,1− β1) :Vα1+β1,β2

∼−→
Vα1,β2 induce an isomorphism

(Uv1,1 − β1) :Vα1+β1,α2 ⊕Vα1+β1,β2

∼−→Vα1,α2 ⊕Vα1,β2,
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and we define Vα1+β1,α2+β2 to be the preimage of Vα1,α2+β2 ⊂ Vα1,α2 ⊕ Vα1,β2 under
this isomorphism. This is an 8dρ-dimensional space of eigenforms with the appropri-
ate eigenvalues, so we only need to check that all of the elements of Vα1+β1,α2+β2 descend
to Ymult,‡,dH

1 ≥1−ε,dH
2 ≥1−ε .

Consider an element F of this space. By definition, F has the property that (Uv1,1−
β1)F on Ymult,‡,dH

1 ≥1−ε,dH
2 ≥1−ε

Iw(v1,v2) is pulled back from Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε

Iw(v1) via q∗v2
. Let G =

deg(qv2)
−1qv2,∗F be the trace of F to Ymult,‡,dH

1 ≥1−ε,dH
2 ≥1−ε . The form F comes via pullback

from Ymult,‡,dH
1 ≥1−ε,dH

2 ≥1−ε if and only if F = q∗v2
G. Since the trace map at v2 commutes

with Uv1,1 (for the usual reasons, ultimately coming down to Serre–Tate theory and the
product structure on the p-divisible group), we deduce (since qv1 is surjective) that (Uv1,1−
β1)(q

∗
v2

G− F)= 0, so that F= q∗v2
G (because (Uv1,1 − β1) is injective) as required. �

We conclude this section with some lemmas that were used above. We first record
the following easy lemma:

Lemma 8.2.7. — If S→ T is a finite étale map of adic spaces of finite type over a field, then

the image of any connected component of S is a connected component of T.

Proof. — Since S and T are of finite type, they have only finitely many connected
components. In particular the connected components of S and T are precisely the con-
nected subsets of S and T which are both open and closed. Since finite étale morphisms
are both open and closed [Hub96, Lem. 1.4.5, Prop. 1.7.8], the result is immediate. �

Next we have the following lemma and its corollary:

Lemma 8.2.8. — Any connected component of Y
I,=v2 1

Kp,IwKp(I),1
contains a point in Y

I,={v1,v2}1
Kp,IwKp(I),1

,

and any connected component of Y
I,=v2 2

Kp,IwKp(I),1
contains a point in Y

I,=v1 1,=v2 2
Kp(I)Kp,1 .

Corollary 8.2.9. — Any connected component of either of the spaces

Ymult,‡,dH
1 =dH

2 =1,=v2 1
Iw(v1) , Ymult,‡,dH

1 =dH
2 =1,=v2 2

Iw(v1)

contains a point which is non-ordinary at v1.

Proof. — The map Ymult,‡,dH
1 =dH

2 =1,=v2 1
Iw(v1) → Ymult,‡,dH

1 =dH
2 =1,=v2 1 is finite étale, so it suf-

fices to prove the claims for Ymult,‡,dH
1 =dH

2 =1,=v2 1 and Ymult,‡,dH
1 =dH

2 =1,=v2 2. Also, the map
Ymult,‡,dH

1 =dH
2 =1 → Ymult induces an isomorphism of π0’s, because both spaces have the

same rank one points and any higher rank point admits a generalization to a rank one
point. Thus Ymult,=v2 1 is the tube of Y

I,=v2 1

Kp,IwKp(I),1
and Ymult,=v2 2 is the tube of Y

I,=v2 2

Kp,IwKp(I),1
.

Since all these spaces are smooth, the tube of a connected component in Y
I,=v2 i

Kp,IwKp(I),1
is
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connected for i = 1, 2. But now by Lemma 8.2.8 these components contain points which
have rank one at v1 and hence are not ordinary at v1. �

The rest of this section is devoted to proving Lemma 8.2.8. This statement is a very
special case of a general expectation that “all possible specializations between EKOR
strata are realized.” Unfortunately, as far as we are aware, this exact statement does not
yet appear in the literature, but we will explain how it can be deduced from what is avail-
able using standard techniques. This will necessitate a small digression into the theory of
stratifications of special fibres of Shimura varieties.

To aid the reader’s understanding, we first recall a general strategy for producing
specializations between strata: first one produces a specialization to a point of a very spe-
cial stratum, and then one uses deformation theory at that special point to “go back up”
to the desired stratum. For achieving the first step, there is also a standard strategy: if one
can show that open strata are (quasi)-affine, while the closures of strata are proper, then
it follows that any component of any stratum must specialize to a point of a zero dimen-
sional stratum. This argument becomes a bit more complicated for non compact Shimura
varieties, where one must study the extension of the stratification to the boundary of the
minimal compactification. In order to use results readily available in the literature, we
will carry out the first step at spherical level, then carry out the second step at Iwahori
level, and finally explain how this implies the result that we want at level Kp(I).

First we consider the Ekedahl–Oort stratification at spherical level, see for instance
[VW13]. Let Kp =∏

v|p GSp4(OFv
). Then YKp,IwKp,1 has an Ekedahl–Oort stratification

into 4[F:Q] strata, according to the four possibilities for each of the finite flat group schemes
Gw[p] at geometric points. Let G1,1 = E[p] for E a supersingular elliptic curve. Then these
four possibilities are:

• Ordinary: Gw[p] 	 μ2
p × (Zp/pZp)

2

• p-rank 1: Gw[p] 	 μp ×Zp/pZp ×G1,1

• Supergeneral: Gw[p] is connected-connected, but not isomorphic to G2
1,1.

• Superspecial: Gw[p] 	G2
1,1.

This stratification refines the p-rank stratification, with the last two cases corresponding
to Gw having p-rank 0. We call a point of YKp,IwKp,1 superspecial if Gw[p] is superspecial
for all w|p. This is the unique zero dimensional stratum.

Lemma 8.2.10. — Let J ⊆ Sp. Each irreducible component of Y
=Jc 2,=J1

Kp,IwKp,1
contains a point of

Y
=Sp 0

Kp,IwKp,1
in its closure.

Proof. — It is shown in [Box15, GK19] that the Ekedahl–Oort stratification ex-
tends to a stratification of the minimal compactification of YKp,IwKp,1, and that each (open)
stratum is affine. Moreover the superspecial locus does not intersect the boundary. It fol-
lows that any component of any Ekedahl–Oort stratum contains a superspecial point in
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its closure. By the explicit description of the Ekedahl–Oort stratification recalled above,
the p-rank strata in the statement of the lemma are also Ekedahl–Oort strata. �

Now we will switch to Iwahori level and consider the Kottwitz–Rapoport strat-
ification, see for instance [NG02]. Let KIw

p =
∏

v|p Iw(v). Then YKp,IwKIw
p ,1 and its local

model Mloc
KIw

p ,1
=∏

v|p Mloc
Iw(v),1 carry a Kottwitz–Rapoport stratification. In fact, there is a

Kottwitz–Rapoport stratification of Mloc
Iw(v),1 and the stratification of Mloc

KIw
p ,1

is simply the

product stratification. The strata of Mloc
Iw(v) are indexed by a set Adm(μ) of cardinality 13.

This set, as well as the partial ordering given by closure, is pictured in [Yu08, p. 1273].
We will use below the following argument, which is a consequence of the theory of

local models. If C is an irreducible component of the Kottwitz–Rapoport stratum labeled
by w ∈ Adm(μ)Sp , then the closure C has a decomposition into strata:

C=
∐

w′≤w

Cw′ .

A priori the strata Cw′ might be empty, although it is expected that they are always
nonempty. However, the theory of local models implies that if Cw′ is nonempty, then
so is Cw′′ for any w′′ satisfying w′ ≤w′′ ≤w.

We will not need to recall in detail the definition of the Kottwitz–Rapoport strat-
ification. We do recall that, as explained in [Yu08], the Kottwitz–Rapoport invariant
determines whether the groups of order p, Hw and Lw/Hw, are étale, multiplicative, or
connected-connected (and so in particular the Kottwitz–Rapoport invariant determines
the p-rank of Gw, a theorem of Genestier–Ngô). Conversely these invariants determine
the Kottwitz–Rapoport invariant when the p-rank of Gw is not 0. All of this is recorded
in the table in [Yu08, p. 1276].

We will use the following points:

• There is a Kottwitz–Rapoport condition, s2s1s2τ in [Yu08], which corresponds
to the condition that Gw is ordinary and Lw = G[F] (equivalently Lw is multi-
plicative).

• There is a Kottwitz–Rapoport condition, s1s2τ in [Yu08], which corresponds to
the condition that Gw has p-rank 1, Hw is multiplicative, and Lw = G[F] (equiv-
alently Hw is multiplicative and Lw/Hw is connected-connected).

• There are three Kottwitz–Rapoport conditions, τ, s1τ , and s2τ in [Yu08], which
have p-rank 0 and are in the closure of the first stratum recalled above. We
observe crucially that they are also all in the closure of the second stratum re-
called above. We refer to these three strata as the canonical p-rank 0 Kottwitz–
Rapoport strata (here “canonical” refers to the fact that Lw = Gw[F] is the
canonical subgroup of Gw).
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For J ⊆ Sp we write Y
=Jc 2,=J1,m−can

Kp,IwKIw
p ,1

for the locus in YKp,IwKIw
p ,1 where for w ∈ Jc, Gw

is ordinary and Lw = Gw[F], while for w ∈ J, Gw has p-rank 1, Hw is multiplicative, and
Lw = Gw[F]. By what we have just recalled, this is a Kottwitz–Rapoport stratum.

Lemma 8.2.11. — For J⊆ J′ ⊆ Sp, any irreducible component of Y
=Jc 2,=J1,m−can

Kp,IwKIw
p ,1

contains a

point of Y
=(J′)c 2,=J′1,m−can

Kp,IwKIw
p ,1

in its closure.

Proof. — Let π : YKp,IwKIw
p ,1 → YKp,IwKp,1 be the projection from Iwahori to spherical

level. It is proper, and the Kottwitz–Rapoport stratum Y
=Jc 2,=J1,m−can

Kp,IwKIw
p ,1

maps finitely onto

the p-rank stratum Y
=Jc 2,=J1

Kp,IwKp,1
(the fibres correspond to the p+ 1 choices of Hw for w ∈ Jc).

If C is an irreducible component of Y
=Jc 2,=J1,m−can

Kp,IwKIw
p ,1

, then π(C) is an irreducible component

of Y
=Jc 2,=J1

Kp,IwKp,1
. By Lemma 8.2.10, the closure π(C) contains a point which is p-rank 0 for

all w ∈ Sp. By the properness of π it follows that the closure C contains a point which is
p-rank 0 for all w ∈ Sp.

By what we have shown, in the closure C, at least one of the canonical p-rank 0
Kottwitz–Rapoport strata is nonempty. Now we apply the argument with local models
and the explicit description of the closure relations between the strata recalled above to
conclude. �

Remark 8.2.12. — One could give a more direct proof of Lemma 8.2.11, avoiding
the consideration of the Ekedahl–Oort stratification and the superspecial locus at spheri-
cal level, if one knew that the Kottwitz–Rapoport stratification of YKp,IwKIw

p
extended to a

stratification of the minimal compactification, for which the (open) strata are quasi-affine.
However we lack a reference for these facts.

Proof of Lemma 8.2.8. — Let π : YKp,IwKIw
p ,1 → YKp,IwKp(I),1 be the projection from

Iwahori to Kp(I) level. On YKp,IwKp(I),1, π has a “canonical section” s : YKp,IwKp(I),1 →
YKp,IwKIw

p ,1, defined by taking Lw = Gw[F] for w ∈ I (recall that on YKp,IwKp(I),1, Hw is mul-
tiplicative by definition, and hence Hw ⊆ Gw[F]). It follows that for J⊆ I, s and π define
mutually inverse isomorphisms between Y

=Jc 2,=J1,m−can

Kp,IwKIw
p ,1

and Y
I,=Jc 2,=J1

Kp,IwKp(I),1
. We deduce the

following statement from Lemma 8.2.11: for J⊆ J′ ⊆ I, every irreducible component of
Y

I,=Jc 2,=J1

Kp,IwKp(I),1
contains a point of Y

I,=(J′)c 2,=J′1
Kp,IwKp(I),1

in its closure.
Applying this with J= {v2}, J′ = {v1, v2} and J= ∅, J′ = {v1} we conclude that any

irreducible component of Y
=Sp\{v2}2,=v2 1

Kp,IwKp(I),1
contains a point of Y

I,=v1,v2 1

Kp,IwKp(I),1
in its closure, and

any irreducible component of Y
=Sp 2

Kp,IwKp(I),1
contains a point of Y

I,=v1 1,=v2 2

Kp,IwKp(I),1
in its closure.
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Finally as recalled at the start of Section 4.1, Y
=Sp\{v2}2,=v2 1

Kp,IwKp(I),1
is dense in Y

=v2 1

Kp,IwKp(I),1
and

Y
=Sp 2

Kp,IwKp(I),1
is dense in Y

=v2 2

Kp,IwKp(I),1
, and the lemma follows. �

8.3. Solvable base change. — We will use solvable base change to deduce our main
modularity lifting theorem from Corollary 8.2.2. We firstly prove a couple of preparatory
lemmas, beginning with the following well-known result.

Lemma 8.3.1. — Let K be a number field, and let ρ : GK → GL4(Qp) be an irreducible

representation which preserves a generalized symplectic form with similitude character ν. Then either ν is

uniquely determined by ρ, or, if ρ also admits a similitude character νψ with ψ �= 1, then ψ has finite

order and ρ is reducible over a quadratic subfield of the fixed field of ψ and hence also over the fixed field

of ψ .

Proof. — Let V denote the underlying representation of ρ, and let ν and νψ denote
two possible similitude characters. Then there is an inclusion ν ⊕ νψ ⊂Hom(V∗, V), or
equivalently, 1⊕ψ ⊂Hom(V∗(ν), V). It follows that V	V∗(ν) and V	V∗(νψ), and
thus V 	 V(ψ), and also V 	 V(ψ) 	 V(ψ2). By comparing determinants, it follows
that ψ4 is trivial, and hence either ψ or ψ2 is a quadratic character η such that V	V(η)

and hence 1⊕ η⊂Hom(V, V). By Schur’s Lemma, V becomes reducible over the fixed
field of η, which by construction is a quadratic subfield of the fixed field of ψ . �

We now prove a slightly technical lemma on solvable base change; it is an analogue
of [BLGHT11, Lem. 1.3] for GSp4, but the proof is slightly more involved.

Lemma 8.3.2. — Suppose that p > 2 splits completely in the totally real field F/Q. Let F′/F
be a solvable extension of totally real fields. Suppose that ρ :GF →GSp4(Qp) satisfies:

(1) ν ◦ ρ = ε−1.

(2) For all v|p, ρ|GFv
is p-distinguished weight 2 ordinary.

(3) The representation ρ is vast and tidy.

(4) ρ|GF′ is irreducible. Furthermore, there is an ordinary automorphic representation π ′ of

GSp4(AF′) of parallel weight 2 and central character | · |2, such for every finite place w

of F′ we have

WD(ρ|GF′w
)F−ss ∼= recGT,p(π

′
w ⊗ |ν|−3/2).

(So in particular, ρπ ′,p ∼= ρ|GF′ .)

Then ρ is modular. More precisely, there is an ordinary automorphic representation π of GSp4(AF) of

parallel weight 2 and central character | · |2, with ρπ,p
∼= ρ. Furthermore, for every finite place v of F

we have

WD(ρ|GFv
)F−ss ∼= recGT,p(πv ⊗ |ν|−3/2).
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Proof. — Since ρπ ′,p is irreducible, π ′ must be of general type in the sense
of [Art04], so that it corresponds to a cuspidal automorphic representation �′ of
GL4(AF′). By induction we may reduce to the case that F′/F is cyclic of prime degree,
in which case it follows from [AC89, Thm. 4.2 of §3] that there is an automorphic repre-
sentation � of GL4(AF) with BCF′/F(�)=�′.

We can write

LS(s,�′,
2∧
⊗| · |−2)=

∏

ψ

LS(s,�,

2∧
⊗| · |−2ψ−1)

where the product is over the characters ψ of A×F /F×NF′/FA×F′ . The left hand side has a
simple pole at s = 1 (by the assumption that �′ is the transfer of π ′), while by the main
result of [Sha97], all but at most one factor on the right hand side is holomorphic and
non-vanishing at s= 1. Thus some factor on the right hand side must also have a simple
pole at s= 1, say LS(s,�,

∧2⊗| · |−2ψ−1).
It follows from Theorem 2.9.3 that � is the transfer of a cuspidal automorphic

representation π of GSp4(AF) with central character | · |2ψ . Since BCF′/F(�)=�′, we
see that π is of parallel weight 2. Letting ρπ,p :GF →GSp4(Qp) be the Galois represen-
tation corresponding to π (whose existence follows from [Mok14, Thm. 3.5] exactly as in
the proof of Theorem 2.7.2), we have ρπ,p|GF′

∼= ρ|GF′ , so that (since F′/F is cyclic of prime
degree, and ρ|GF′ is irreducible) ρπ,p differs from ρ by a twist by a character of Gal(F′/F).

Replacing π by the corresponding twist, we may assume that ρπ,p and ρ are iso-
morphic when considered as representations valued in GL4(Qp). We claim that we nec-
essarily have ν ◦ ρ = ν ◦ ρπ,p = ε−1, so that π has central character | · |2. Indeed, this
follows from Lemma 8.3.1, since it holds after restriction to GF′ , and ρ|GF′ is irreducible
by assumption. So ρπ,p

∼= ρ, as required.
Since we have assumed that ρ is vast and tidy, it follows from Corollary 7.9.6 that

for every finite place v of F we have

WD(ρ|GFv
)ss ∼= recGT,p(πv ⊗ |ν|−3/2)ss.

It remains to check that the monodromy operators agree; but this may be checked after
base change, and since π ′ is the base change of π , it follows from the assumption that
WD(ρ|GF′w

)F−ss ∼= recGT,p(π
′
w ⊗ |ν|−3/2). �

8.4. The main modularity lifting theorem. — We now prove our main modularity lifting
theorem.

Theorem 8.4.1. — Suppose that p≥ 3 splits completely in the totally real field F/Q. Suppose

that ρ :GF →GSp4(Qp) satisfies:

(1) ν ◦ ρ = ε−1.
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(2) The representation ρ is vast and tidy in the sense of Definitions 7.5.6 and 7.5.11.

(3) For all v|p, ρ|GFv
is p-distinguished weight 2 ordinary in the sense of Definition 7.3.1.

(4) There exists π of parallel weight 2 and central character | · |2, which is ordinary at all v|p,

such that ρπ,p
∼= ρ.

(5) For all finite places v of F, ρ|GFv
and ρπ,p|GFv

are pure.

Then ρ is modular. More precisely, there is an ordinary automorphic representation π ′ of GSp4(AF)

of parallel weight 2 and central character | · |2 which satisfies ρπ ′,p ∼= ρ. Furthermore, for every finite

place v of F we have

WD(ρ|GFv
)F−ss ∼= recGT,p(π

′
v ⊗ |ν|−3/2).

Proof. — Choose a solvable extension of totally real fields F′/F, linearly disjoint
from Fker ρ over F, with the following properties:

• p splits completely in F′.
• At every place w of F′ lying over a place v � p of F for which πv or ρ|GFv

is
ramified, ρ|GF′w

is trivial, ρ|GF′w
has only unipotent ramification, and qw ≡ 1

(mod p2).
• There is an automorphic representation π ′ of GSp4(AF′) of parallel weight 2

which is a base change of π (in the sense that for each finite place w of F′, lying
over a place v of F, we have recGT,p(π

′)= recGT,p(π)|WF′w
). Furthermore, for all

finite places w of F′ we have (π ′w)Iw(w) �= 0.

(The last property can be arranged by [Mok14, Prop. 4.13].) Then ρ|GF′ satisfies
Hypothesis 7.13.1, so the result follows from Corollary 8.2.2 (applied to ρ|GF′ ) and
Lemma 8.3.2. �

8.5. Base change and automorphy lifting. — Throughout the paper, we have fixed the
similitude factor of our Galois representations to be ε−1, in order to streamline both the
notation and some arguments. We now explain how to use base change to relax this
condition in our main automorphy lifting theorem. We do not use this result elsewhere
in the paper, so we have contented ourselves with a slightly ugly statement, and with a
sketch of the proof.

Definition 8.5.1. — We say that a representation ρ : GQp
→ GSp4(Qp) is twisted p-

distinguished weight 2 ordinary if it is an unramified twist of a representation which is p-

distinguished weight 2 ordinary in the sense of Definition 7.3.1. Similarly, we say that an admissible

representation πp of GSp4(Qp) is twisted ordinary if it is an unramified twist of an ordinary repre-

sentation.

Theorem 8.5.2. — Suppose that p≥ 3 splits completely in the totally real field F/Q. Suppose

that ρ :GF →GSp4(Qp) satisfies:



454 GEORGE BOXER, FRANK CALEGARI, TOBY GEE, VINCENT PILLONI

(1) ν ◦ ρ = χε−1, where χ is a totally even finite order character, which is unramified at all

places dividing p.

(2) The representation ρ is vast and tidy in the sense of Definitions 7.5.6 and 7.5.11.

(3) For all v|p, ρ|GFv
is twisted p-distinguished weight 2 ordinary.

(4) There exists π of parallel weight 2, which is twisted ordinary at all v|p, such that ρπ,p
∼= ρ.

(5) For all finite places v of F, ρ|GFv
and ρπ,p|GFv

are pure.

Then ρ is modular. More precisely, there is a twisted ordinary automorphic representation π ′ of

GSp4(AF) of parallel weight 2 which satisfies ρπ ′,p ∼= ρ. Furthermore, for every finite place v of F
we have

WD(ρ|GFv
)F−ss ∼= recGT,p(π

′
v ⊗ |ν|−3/2).

Proof. — Let χ ′ be the finite order character GF →Q
×
p such that ν ◦ ρπ = χ ′ε−1.

Note that χ ′ is totally even (since we have χ ′ = χ by assumption). We can choose a
quadratic extension of totally real fields F′/F, linearly disjoint from Fker ρ over F, such
that:

• p splits completely in F′, and
• there are finite order characters ψ,ψ ′ : GF′ → Q

×
p such that χ |GF′ = ψ2,

χ ′|GF′ = (ψ ′)2.

Indeed, the obstruction to taking the square root of a character is in the 2-torsion of the
Brauer group, and there are no obstructions to taking a square root of either χ or χ ′ at
the places dividing p (because both characters are unramified at such places) or at the
infinite places (because χ,χ ′ are totally even).

Let πF′ be the base change of π to F′. Since ρ|GF′ ⊗ψ−1, πF′ ⊗ (ψ ′)−1 ◦ArtF′ satisfy
the hypotheses of Theorem 8.4.1, it follows that ρ|GF′ ⊗ ψ is modular, so ρ|G′F itself is
modular. The result follows from Lemma 8.3.2 (or rather, from an obvious generalization
of this lemma to the case of more general central characters, which may be proved in the
same way). �

9. Potential modularity of abelian surfaces

We now use the potential automorphy methods introduced in [Tay02] to prove
the potential modularity of abelian surfaces. It is presumably possible to follow [Tay02,
§1] quite closely, but we instead make use of potential modularity results for GL2 and the
local to global principle of [Cal12, §3] (see also [MB90, Thm. 1.2]).

9.1. Compatible systems and potential automorphy. — Recall that the notion of a C-
algebraic automorphic representation is defined in [BG14], and in the case of auto-
morphic representations of GLn, this definition agrees with the notion of an algebraic
automorphic representation defined in [Clo90].
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Definition 9.1.1. — Let K be a number field and let R be a strictly compatible system of

representations of GK. We say that R is automorphic if there is an automorphic representation �

of GLn(AK), with the properties that:

(1) � is an isobaric direct sum of cuspidal automorphic representations �r
i=1�i where each �i

is a C-algebraic cuspidal automorphic representation of some GLni
(AK).

(2) The fixed field M� of the subgroup of Aut(C) consisting of those σ ∈ Aut(C) with
σ �∞ ∼=�∞ is a number field.

(3) For each finite place v of K, WDv(R)=⊕irec(�i,v|det |(1−ni)/2
v ).

Remark 9.1.2. — There are many (conjecturally equivalent) variants of Defini-
tion 9.1.1 that could be made. The definition is in some sense redundant, because con-
dition (2) is implied by condition (3); indeed, by the definition of a compatible system, it
follows that for all but finitely many v, �v is an unramified principal series representation,
defined over a number field which may be chosen independently of v. Condition (2) then
follows from strong multiplicity one for isobaric representations [JS81]. The reason that
we have chosen to include the condition separately is that conjecturally (see [Clo90]) con-
dition (1) implies condition (2), and also implies the existence of a compatible system R
satisfying condition (3).

In fact, the only cases of Definition 9.1.1 that we will need to consider are those
where either:

(1) Each �i is regular algebraic, or
(2) K is totally real, � is cuspidal, and � is the transfer to GL4 of a cuspidal auto-

morphic representation of GSp4 of parallel weight 2 and central character | · |2.

In either case, condition (2) is satisfied by [Clo90, Thm. 3.13] and [BHR94, Thm. 3.2.2])
respectively.

Remark 9.1.3. — The reader may wonder why we did not demand an analogue of
condition (3) of Definition 9.1.1 at the infinite places. One reason is that we do not need
to do so, as condition (3) already determined � uniquely (indeed, as in Remark 9.1.2,
this is already true if one only considers condition (3) at all but finitely many places). The
main reason that we do not make a requirement at the infinite places is that (in keeping
with the literature) our definition of a compatible system does not include a requirement
that the l-adic representations are compatible on complex conjugations, which makes it
harder to formulate a precise compatibility. One could certainly ask (as in [BG14]) that
the Hodge–Tate weights of R correspond to the infinitesimal character of �, but to save
introducing additional notation and terminology we have not done so.

Remark 9.1.4. — As explained in Remark 9.1.2, condition (3) of Definition 9.1.1
at all but finitely many places v determines � uniquely. One might ask whether if this
condition holds for all but finitely many v, it necessarily holds for all v. In general this is
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a hard problem; indeed even if (3) is known up to semisimplification, it is often difficult
to show that the monodromy operators agree. If however R is pure and � is generic
then the agreement of monodromy operators is automatic; we will use this fact in our
arguments below.

If R and � are as in Definition 9.1.1, we as usual have Gamma factors Lv(�, s)

for each place v|∞ of K, and we set

��(R, s)= L(R, s)
∏

v|∞
Lv(�, s).

This is of course just the usual completed L-function of �, but we have included R
in the notation to emphasize that the L-functions of � and R agree – note that here
it is important that we know Definition 9.1.1 (3) at all finite places, and not just at al-
most all places, or up to semisimplification. As noted above, since we do not a priori

demand any local-global compatibility at ∞ for our compatible system R, we use the
automorphic representation � in this definition mostly as a convenient way to write
down the correct Gamma factors at infinity. For those who find this notation unpleasant,
note that — in the restrictive context of abelian surfaces over totally real fields — we
defined a function �(R, s) in (2.8.4) by explicitly writing down the Gamma factors in
question, and then (for all the A and � that arise in this paper) we indeed have equali-
ties �(�, s)=��(RA, s)=�(RA, s).

We also have an epsilon factor ε(�), and a conductor N(�), and by [GJ72, Cor.
13.8], ��(R, s) admits a meromorphic continuation to the entire complex plane, and
satisfies the functional equation

(9.1.5) ��(R, s)= ε(�)N(�)−s��(R∨, 1− s).

Definition 9.1.6. — Let A/K be an abelian variety. We say that A is automorphic if RA

is automorphic in the sense of Definition 9.1.1. We say that it is potentially automorphic if there is

a finite extension of number fields L/K such that RA|GL is automorphic.

Remark 9.1.7. — If A/K is an abelian variety, and A is automorphic with the
corresponding � being of the form considered in Remark 9.1.2, then the Gamma fac-
tors Lv(�, s) and the conductor N(�) agree with those defined for the compatible sys-
tem RA in §2.8. Indeed, for the Gamma factors this is a direct consequence of the def-
initions, and the conductor respects the local Langlands correspondence. In particular,
we have ��(RA, s) = �(RA, s), and the functional equations (2.8.5) and (9.1.5) agree;
so �(RA, s) satisfies the expected meromorphic continuation and functional equation.

Definition 9.1.8. — Let F be a totally real. We say that a representation ρ : GF →
GSp4(Qp) is modular if there is a cuspidal automorphic representation of GSp4(AF) of paral-
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lel weight 2 and central character | · |2 for each finite place v of F we have WD(ρπ,p|GFv
)F−ss ∼=

recGT,p(πv ⊗ |ν|−3/2); in particular, ρ ∼= ρπ,p.

We say that r is potentially modular if there is a finite Galois extension F′/F of totally real

fields such that r|GF′ is modular.

If A/F is an abelian surface, we say that A is modular (resp. potentially modular) if ρA,p is

modular (resp. potentially modular) for some (equivalently, for any) prime p.

Remark 9.1.9. — The relationship between the definitions of what it means for
an abelian surface A/F to be (potentially) automorphic or modular is somewhat compli-
cated, because of the various possibilities in Arthur’s classification of the discrete spectrum
of GSp4(AF). In this paper we will only show that A is (potentially) modular if the corre-
sponding automorphic representation of GSp4 is of general type, in which case A is also
(potentially) automorphic, essentially by the definition of “general type”; note that this is
the case considered in Remark 9.1.2 (2).

We now prove some technical lemmas that we will use in proving our main po-
tential automorphy/modularity results. A weakly compatible system R is defined to be
irreducible if there is a set L of rational primes of Dirichlet density 1 such that for λ|l ∈ L
the representation rλ is irreducible. We say that it is strongly irreducible if for all finite exten-
sions F′/F the compatible system R|GF′ is irreducible. If n = 2, then we say that R has
weight 0 if Hτ (R)= {0, 1} for each τ , and we say that R is odd if detR(cv)=−1 for all
v|∞. If π is a cuspidal automorphic representation of GL2(AF) of weight 0, then R(π)

is odd and has weight 0.
We have the following standard lemma.

Lemma 9.1.10. — Let R be a rank two weakly compatible system.

(1) The following are equivalent:

(a) R is irreducible.

(b) For all λ the representation rλ is irreducible.

(c) For some λ the representation rλ is irreducible.

(2) If R is irreducible and regular, then the following are equivalent:

(a) R is strongly irreducible.

(b) Sym2 R is irreducible.

(c) For all λ, Sym2 rλ is irreducible.

(d) For some λ, Sym2 rλ is irreducible.

If these equivalent conditions do not hold, then there is a quadratic extension F′/F and a

weakly (equivalently, strongly) compatible system X of characters of GF′ such that

R∼= IndGF
GF′ X .

(3) If R is strongly irreducible and regular, then for a density one set of primes l of Q, if λ|l is

a place of M, then the image of rλ contains SL2(OM/λ).
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Proof. — This is well known. Part (1) is [ACC+18, Lem. 7.1.1], and part (3)
is [ACC+18, Lem. 7.1.3]. For part (2), note that by [ACC+18, Lem. 7.1.2], either R
is strongly irreducible, or we can write R∼= IndGF

GF′ X . It follows that if R is not strongly
irreducible, then Sym2 rλ is reducible for every λ.

Conversely, if Sym2 rλ is reducible for some λ, then there is a nontrivial character ψ

such that rλ ∼= rλ⊗ψ . Considering determinants, ψ is a quadratic character. Letting F′/F
be the quadratic extension corresponding to ψ , it follows from Schur’s lemma that rλ|GF′
is reducible, so by part (1), R is not strongly irreducible. �

We now use a standard trick with restriction of scalars to give some slight improve-
ments to some applications of the theorem of Moret-Bailly.

Proposition 9.1.11. — Let F1/F be a finite extension of totally real fields, and let p, q > 2
be distinct primes which split completely in F1. Let r : GF1 → GL2(Fq) be a representation with

determinant ε−1.

Suppose that for each place v|q of F1, r|GF1,v
is of the form

(
λαv

0
0 ε−1λ−1

αv

)
. Suppose also

that r is unramified at all places above p.

Let F(avoid)/F be a finite extension. Then there is a finite Galois extension F′/F of totally real

fields in which p and q split completely and which is linearly disjoint from F1F(avoid)/F, and a q-ordinary

cuspidal automorphic representation π of GL2(AF1F′) of weight 0 and trivial central character which is

unramified at all places dividing pq and which satisfies ρπ,q
∼= r|GF1F′ .

Proof. — In the case F1 = F, this is a straightforward consequence of [Sno09, Thm.
8.2.1]. Indeed, in Snowden’s notation, we take ρ = r∨, ψ = 1, we let S consist of the
places dividing pq and we let t assign the type A at places lying over q and type AB at
places lying over p. To prove the general case, one simply replaces the scheme X to which
Snowden applies the theorem of Moret-Bailly with the restriction of scalars ResF1/F XF1 .

�

Proposition 9.1.12. — Let G be a finite group, let E/Q be a finite extension, and let S be a

finite set of places of E. Let E′/E be a finite extension, and let F(avoid)/E be a finite extension, linearly

disjoint from E′/E.

Let S′/S be the set of places of E′ lying over places of S. For each finite place v ∈ S′, let H′
v/E′v

be a finite Galois extension together with a fixed inclusion φv :Gal(H′
v/E′v) ↪→G with image Dv . For

each real infinite place v ∈ S′, let cv ∈G be an element of order dividing 2.

Then there exists a number field K/E and a finite Galois extension of number fields L/K such

that if we set K′ =KE′, L′ = LE′, then

(1) There is an isomorphism Gal(L′/K′)=G.

(2) L′/E is linearly disjoint from E′F(avoid)/E.

(3) All places in S′ split completely in K′.
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(4) For all finite places w of K′ above v ∈ S′, the local extension L′w/K′
w is equal to H′

v/E′v .

Moreover, there is a commutative diagram:

Gal(L′w/K′
v) Dw ⊂G

Gal(H′
v/E′v) Dv ⊂G

φv

(5) For all real places w|∞ of K′ above v ∈ S′, complex conjugation cw ∈G is conjugate to cv .

Proof. — The case E′ = E is [Cal12, Prop. 3.2] (see also [MB90, Thm. 1.2]).
The general case may be proved in exactly the same way, by replacing the applica-
tion of [Cal12, Thm. 3.1] to (an open subscheme of) XG/E with an application of it
to ResE′/E XG. �

9.2. Abelian surfaces. — We begin by recalling some results from [FKRS12]
and [Joh17], which allow us to deal with various cases where the abelian surfaces have
extra endomorphisms, and can be handled with the potential automorphy theorems
of [BLGGT14b]. Let A/F be an abelian surface over a totally real field F, and let L/F
be the minimal extension over which all its endomorphisms are defined. This is a Galois
extension, and following [FKRS12] we say that the Galois type of A/F is the Gal(L/F)-
module EndL(A)⊗Z R. These possible Galois types are classified in [FKRS12], and they
are divided up into 6 families A-F.

The precise classification of monodromy groups in these references is not actually
strictly necessary for our purposes. Write {ρA,l} for the compatible system of Galois repre-
sentations {H1(AF,Ql)}. In practice, it suffices to know that the l-adic representations ρA,l

fall into precisely one of the following categories independently of l:

(1) strongly irreducible (type A),
(2) reducible (type B[C1], C, E[Cn], some D, some F),
(3) potentially abelian but not reducible (of type the remaining D and F cases),
(4) induced from a quadratic extension K/F but not potentially abelian, in which

case either:
(a) the two 2-dimensional representations over K are equivalent up to twist

(type E[Dn]), or
(b) the two 2-dimensional representations over K are not equivalent up to twist

(type B[C2]).
Proposition 9.2.1. — Suppose that A/F is not of type A or B[C2]. Then A is potentially

automorphic.
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Proof. — We freely use the discussion of [Joh17, §4]. In cases D, F, AL is of CM
type, so the compatible system RA is potentially abelian, and in particular potentially
automorphic.

In cases B[C1], C, and the cases of type E other than those of type E[Dn], it follows
from the discussions at the beginnings of [Joh17, §4.2, 4.4, 4.5] that we can write RA =
R1

A ⊕R2
A where each Ri

A is an irreducible, odd, weight 0 weakly compatible system of
rank 2 l-adic representations of GF. The potential automorphy of RA therefore follows
from [BLGGT14b, Thm. 5.4.1].

It remains to treat the case that A is of type E[Dn]. In this case, as explained
in [Joh17, §4.5-4.6], there is a quadratic extension F′/F and a strongly irreducible
weakly compatible system S = {sl} of weight 0 representations of GF′ which is defined
over Q such that RA

∼= IndGF
GF′ S . Furthermore, there is a finite order character δ of GF′

such that if we write Gal(F′/F)= {1, σ }, then sσ
l
∼= sl ⊗ δl .

It follows from Lemma 9.1.10 (2) and [BLGGT14b, Prop. 5.3.2] that for a density
one set of primes l, Sym2 sl|GF′(ζl )

is irreducible, l is unramified in F′, and both sl and εl

are crystalline at all primes above l. Fix one such l > 7.
Since Proj sσ

l
∼= Proj sl , it follows from Schur’s lemma that Proj sl extends to a rep-

resentation GF → PGL2(Ql). By [Pat19, Lem. 2.3.17, 2.7.4], we may lift this to a rep-
resentation r̃ :GF →GL2(Ql) which is unramified at all but finitely many places, and is
Hodge–Tate at all places dividing l, with Hodge–Tate weights (0, 1). By construction,
there is a character ψ : GF′ →Q

×
l such that r̃|GF′ = sl ⊗ ψ . Since ψ is Hodge–Tate of

weight 0, it has finite order.
Since l is unramified in F′ and sl is crystalline at all primes above l, after possibly

replacing r̃ by a twist by a finite order character, we may assume that it is crystalline at
all places dividing l. By [CG13, Prop. 2.5], r̃ is odd, so by [BLGGT14b, Thm. 4.5.1], r̃

is potentially automorphic. Since

ρA,l
∼= IndGF

GF′ sl
∼= IndGF

GF′
(
r̃|GF′ ⊗ψ−1

)
,

it follows that RA is potentially automorphic, as required. �

We say that A/F is challenging if it has type A (which is the case that EndC A = Z)
or B[C2]. In the latter case, as explained in [Joh17, §4.3], there is a quadratic ex-
tension K/F, and a strongly irreducible weakly compatible system S = {sl} of rank 2,
weight 0 representations of GK with determinant ε−1

l such that RA
∼= IndGF

GK
S . Further-

more, writing Gal(K/F) = {1, σ }, sσ
l and sl do not become isomorphic after restriction

to any finite extension of K. (The case when K/F is totally real can be handled using
potential automorphy theorems for GL2, but our argument (at this point at least) does
not need to distinguish between the various infinity types of K.)

Lemma 9.2.2. — If A/F is a challenging abelian surface, then for a density one set of primes l,

ρA,l is vast and tidy.
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Proof. — If EndC A = Z, then, for all sufficiently large l, ρA,l(GF) = GSp4(Fl)

by [Ser00], so the claim follows from Lemma 7.5.15.
If A is of type B[C2], then writing ρA,l

∼= IndGF
GK

sl , we see from Lemma 7.5.22
and Lemma 9.1.10 (3) that we need only check that for a density one set of primes l,
we have Proj sσ

l �≡ Proj sl . (Note that the inverse of the mod l cyclotomic character is
surjective for all l which are unramified in F.) To see this, note that since Proj sσ

l �≡ Proj sl ,
we have Sym2 sσ

l �≡ Sym2 sl by [DK00, Appendix, Thm. B]. There is therefore some
finite place v of F at which the compatible systems {Sym2 sσ

l }, {Sym2 sl} are unramified,
for which the eigenvalues of Frobv differ for the two compatible systems. Then the same
applies for Sym2 sσ

l , Sym2 sl for all sufficiently large l, so that in particular Proj sσ
l �≡ Proj sl ,

as required. �

Definition 9.2.3. — Let A/F be an abelian surface over a totally real field. We say that a

rational prime p≥ 3 is a good prime for A if:

• A admits a polarization of degree prime to p.

• p splits completely in F.

• The representation ρA,p is vast and tidy.

• For each place v|p, ρA,p|GFv
is p-distinguished weight 2 ordinary.

Remark 9.2.4. — The point of Definition 9.2.3 is that the good primes p are the
ones for which we can apply our modularity lifting theorem (Theorem 8.4.1) to ρA,p.

Lemma 9.2.5. — Let A/F be a challenging abelian surface. Then the set of rational primes

which are good primes for A has relative density one in the set of primes which split completely in F.

Proof. — By Lemma 9.2.2, it suffices to show that ρA,p|GFv
is p-distinguished

weight 2 ordinary for a density one set of finite places v of F (with residue characteris-
tic p). To do this, we follow the approaches of [Saw16] and [CG20, Lem. A.7]. Consider
the places v of F that are split over a prime p of Q, for which A has good reduction;
the set of such primes has density one. Fix a prime l �= p. The characteristic polynomial
of ρA,l(Frobv) is of the form

x4 − a1x3 + a2x2 − pa1x+ p2

where a1, a2 are integers.
Then A has good ordinary reduction at v if and only if p � a2. If this holds, then

we see that ρA,p|GFv
will be p-distinguished weight 2 ordinary if and only if a2

1− 4a2 is not
divisible by p. By the Weil bounds, we have |a1| ≤ 4

√
p, |a2 − 2p| ≤ 4p, so if a2

1 − 4a2 is
divisible by p, then it is equal to pc for c in some finite list of integers, independent of p.

Let G be the Zariski closure of ρA,l(GF) in GSp4, and write V for the standard
representation of GSp4, and χ for the similitude character. Arguing exactly as in the proof
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of [Saw16, Thm. 1], it follows from the Cebotarev density theorem that it is enough to
show that the virtual representation (V⊗2 − 4∧2 V)⊗ χ−1 does not have constant trace
on any connected component of G.

By the proof of [Saw16, Thm. 3], we can replace G by the Sato–Tate group of A,
which is either the connected group USp4 (if A has type A), or the normalizer of SU2 ×
SU2 in USp4 (if A has type B[C2])) (which has two connected components). The result
now follows easily from an explicit check. �

Lemma 9.2.6. — Let A/F be a challenging abelian surface. Then there are distinct rational

primes p, q such that p and q are both good primes for A, and for all places v|p of F, ρA,q(Frobv) has

distinct eigenvalues.

Proof. — By Lemma 9.2.5, a density one subset of the set of rational primes which
split completely in F are good primes. Let p be any good prime for A; then, for each
place v|p of F, ρA,p|GFv

has p-distinguished weight 2 ordinary reduction, and in particular
the eigenvalues of the crystalline Frobenius Frobv on TpA are distinct. Consequently, for
all but finitely many rational primes q of good reduction for A, ρA,q(Frobv) has distinct
eigenvalues for all places v|p. �

If q is a good prime for an abelian surface A/F, then for each place w|q of F we
may write

ρA,q|GFw

∼=

⎛

⎜⎜⎝

λαw
0 ∗ ∗

0 λβw
∗ ∗

0 0 ε−1λ−1
βw

0
0 0 0 ε−1λ−1

αw

⎞

⎟⎟⎠

Then we write

(ρA,q|GFw
)ss :=

⎛

⎜⎜⎝

λαw
0 0 0

0 λβw
0 0

0 0 ε−1λ−1
βw

0
0 0 0 ε−1λ−1

αw

⎞

⎟⎟⎠

When reading the proofs of the following two results, it may be helpful to recall that our
convention is that the representation ρA,p is the dual of A[p]; this accounts for the various
duals occurring in the proofs.

Lemma 9.2.7. — Let A/F be an abelian surface over a totally real field, and let p, q be primes

as in Lemma 9.2.6. Fix a totally real quadratic extension F1/F in which p and q split completely, and

which is linearly disjoint from the kernels of the actions of GF on A[p] and A[q].
Then there is a finite Galois extension of totally real fields F′/F, and a representation rq :

GF′F1 →GL2(Fq), with the following properties:



ABELIAN SURFACES OVER TOTALLY REAL FIELDS ARE POTENTIALLY MODULAR 463

(1) p and q both split completely in F′.
(2) F′/F is linearly disjoint from F1/F and from the kernels of the actions of GF on A[p]

and A[q].
(3) det rq = ε−1.

(4) rq(GF′F1) = GL2(Fq), and the projective image of rq is not equal to its conjugate un-

der Gal(F′F1/F′).
(5) Set ρq := IndGF′

GF′F1
rq :GF′ →GSp4(Fq) with similitude factor ε−1. Then

• for any place w|q of F and any place w′|w of F′, ρq|GF′
w′
∼= (ρA,q|GFw

)ss, and

• for any place v|p of F and any place v′|v of F′, ρq|GF′
v′
∼= ρA,q|GFv

.

(6) The representation ρq is vast and tidy.

Proof. — Fix a finite place r of F not dividing pq and splitting in F1. We apply
Proposition 9.1.12, taking E= F, E′ = F1, G=GL2(Fq), S to be the set of places divid-
ing pqr∞, and F(avoid) to be the extension cut out by the intersection of the kernels of ρA,p

and ρA,q. For each infinite place v ∈ S′ we choose cv to have eigenvalues {1,−1}. For each
place w ∈ S dividing pqr we write w =w1w2 for its decomposition in F1. If w|p, then the
eigenvalues of (A[q]∨|GFw

)(Frobw) can be written as αw, βw, pβ−1
w , pα−1

w , while if w|q we
use the notation above. In either case, we choose φw1

to correspond to the representa-

tion
(

λαw
0

0 ε−1λ−1
αw

)
, and φw2

to correspond to
(

λβw
0

0 ε−1λ−1
βw

)
. Finally, if w = r, then

we choose φw1
, φw2

to have determinant ε−1, in such a way that φw1
is unramified, while

Proj φw2
is ramified.

We obtain an extension F′/F (the extension K/E from Proposition 9.1.12, with
the φv there being our φv ) and a representation rq :GF1F′ →GL2(Fq) which satisfies (1),
and (2). It need not satisfy (3), but by construction ε det rq is an even character which is
trivial at all places dividing pqr. The obstruction to the existence of a square root of ε det rq

is therefore a class in the 2-torsion of BrF1F′ which is trivial at all places dividing pqr∞.
We can therefore replace F′ by a quadratic totally real extension in which p, q,

r split completely, and assume that ε det rq has a square root. By [AT09, Ch. X, Thm.
5] we can (by replacing this square root by a twist by a quadratic character) arrange
that the square root is trivial at all places dividing pqr. Replacing rq by its twist by this
square root, we ensure (3), at which point (5) follows (note that for each place v|p of F,
ρA,q|GFv

is unramified with distinct eigenvalues of Frobv , and is therefore semisimple).
Considering the places lying over r, we see that (4) is satisfied. Finally, (6) then follows
from Lemma 7.5.22. �

Theorem 9.2.8. — Let A/F be a challenging abelian surface over a totally real field. Then A
is potentially modular. More precisely, there is a finite Galois extension of totally real fields F′/F and a

prime p splitting completely in F′ such that ρA,p|GF′ is modular and irreducible.
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Proof. — Let p, q, F1, F′, rq and ρq be as in Lemma 9.2.7. Let Y/F′ denote the
moduli space of triples (B, ıp, ıq) consisting of abelian surfaces B and symplectic isomor-
phisms

ıp : B[p] ∼−→ A[p]|GF′ ,

ıq : B[q] ∼−→ ρ∨q .

This is smooth and geometrically connected. (Over either C or Q, we may identify Y with
the moduli space of principally polarized abelian surfaces with full level pq structure.)

We claim that for each place v|pq∞ of F′, the subspace �v := Yord(F′v) ⊂ Y(F′v)
consisting of points corresponding to abelian surfaces with good ordinary reduction
(when v is finite) is nonempty. If v|∞, this follows from det r∨q = ε, while if v|p, then A
itself gives a point of Y(F′v) (by point (5) of Lemma 9.2.7). Finally, if v|q, the canonical
lift of A modulo v gives a point of Y(F′v). (Since A has good ordinary reduction at v|p
and v|q, the corresponding point on Y does indeed land in �v .)

By [BLGGT14b, Prop. 3.1.1] (a theorem of Moret-Bailly), we may find a finite
Galois totally real extension F′′/F′ in which p and q split completely, and which is linearly
disjoint from the compositum of F1F′ and the kernels of the actions of GF′ on A[p], A[q]
and ρq, with the property that Y(F′′)∩⋂v|pq �v �= 0. Let B/F′′ be a corresponding abelian
surface, which by construction will have good ordinary reduction for all v|p and v|q.

By Proposition 9.1.11, after replacing F′′/F′ with a further totally real extension,
we can maintain all of the above assumptions, and we can further suppose that there is
a q-ordinary automorphic representation π of GL2(AF1F′′) of weight 0 and trivial central
character, which is unramified at all places dividing pq and which satisfies ρπ,q

∼= rq|GF1F′′ .
It follows from [Rob01, Thm. 8.6] that there is an automorphic representation π

of GSp4(AF′′) of parallel weight 2 and trivial central character whose transfer to GL4(AF′′)

is the automorphic induction of π⊗ | · |, so that in particular ρπ,q
∼= IndGF′′

GF1F′′ ρπ,q, so that
ρπ,q

∼= ρq|GF′′ . In addition, π is ordinary, by construction. The representation ρπ,p is pure
at all finite places because ρπ,q is (for the places away from q, this is proved in [Bla06],
and for the places dividing q it is for example a very special case of the main theorem
of [Car14]).

We can therefore apply Theorem 8.4.1 to ρB,q, and conclude that it is modular.
Thus ρB,p is modular, and applying Theorem 8.4.1 a second time, we deduce that ρA,p|GF′′
is modular, as required. (The purity of ρB,q, ρB,p and ρA,p at all finite places is part of
Proposition 2.8.1.) �

9.3. Potential modularity and meromorphic continuation. — We now deduce the mero-
morphic continuation and functional equation of the L-functions associated to abelian
surfaces over totally real fields from our potential modularity (and automorphy) results.
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Theorem 9.3.1. — Let F be a totally real field, and let A/F be an abelian surface. Then RA

is potentially automorphic, and Conjecture 2.8.6 holds for A, for each 0≤ i ≤ 4.

Proof. — Since Hi(A,Ql) = ∧iH1(A,Ql), it is enough to treat the cases i = 1, 2.
Note that since for any R we have ε(R)ε(R∨) = N(R) (see [Tat79, (3.4.7)]), and we
have Hi(A,Ql)

∨ =Hi(A,Ql)(i), the claimed functional equation will follow from (2.8.5)
in the case R=Hi(A,Ql).

To see that the meromorphic continuation and the functional equation (2.8.5)
hold, note firstly that if A has type D or F, then the compatible system RA is poten-
tially abelian, and the result follows from a standard argument with Brauer’s theorem;
more precisely, it is immediate from [Joh17, Prop. 11, Lem. 14]. In the general case, the
same argument (see e.g. the proof of [Tay02, Cor. 2.2]) shows that it is enough to show
that there is a Galois extension of totally real fields F′/F such that for each Galois exten-
sion F′/F′′ with Gal(F′/F′′) solvable, the compatible systems RA|GF′′ and ∧2RA|GF′′ are
both automorphic. (Note that the meromorphic continuation and functional equations
for the compatible systems follow from the functional equations (9.1.5) for the corre-
sponding automorphic representations.)

Suppose now that A has type B[C1], C, or is of type E but not of type E[Dn].
Then as we saw in the proof of 9.2.1, we can write RA =R1

A ⊕R2
A where R1

A, R2
A are

irreducible, odd, weight 0 weakly compatible systems of rank 2 l-adic representations
of GF. It follows from [BLGGT14b, Thm. 5.4.1] that there is a Galois extension of to-
tally real fields F′/F such that R1

A|GF′ , R2
A|GF′ are automorphic and irreducible. It follows

from [BLGHT11, Lem. 1.3] that for each Galois extension F′/F′′ with Gal(F′/F′′) solv-
able, R1

A|GF′′ , R2
A|GF′′ are automorphic. Thus RA|GF′′ is automorphic, and since we have

∧2RA|GF′′ = detR1
A|GF′′ ⊕ detR2

A|GF′′ ⊕
(
R1

A|GF′′ ⊗R2
A|GF′′

)
,

it follows from [Ram00, Thm. M] that ∧2RA|GF′′ is also automorphic, as required.
In the remaining cases, namely those of types A, B[C2], or E[Dn], it follows from

Theorem 9.2.8, (the proof of) Proposition 9.2.1, Lemma 2.9.1 and Theorem 2.9.3, to-
gether with Lemma 8.3.2, that there is a Galois extension of totally real fields F′/F such
that for some p, and all Galois extension F′/F′′ with Gal(F′/F′′) solvable, ρA,p|GF′′ is ir-
reducible and modular (and also automorphic). By the main result of [Hen09] (which
is a refinement of the main result of [Kim03]), together with Theorem 2.9.3, we see
that ∧2ρA,p|GF′′ is automorphic, as required. �

Remark 9.3.2. — Our use of the results of [Kim03] and [Hen09] in the proof of
Theorem 9.3.1 is almost certainly overkill, and can be avoided by working with automor-
phic forms on GSp4 rather than GL4 as we now explain. Since the four 4-dimensional
Galois representations H1(A,Ql) are generalized symplectic with respect to the Weil
pairing, the exterior square ∧2H1(A,Ql) = H2(A,Ql) decomposes as the direct sum
of a 5-dimensional Galois representation and the one dimensional summand Ql(−1).
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(The corresponding Galois invariant classes in H2(A,Ql(1)) are generated by the image
of a hyperplane section under the cycle map.) Once one knows that the 4-dimensional
representation H1(A,Ql) corresponds (potentially) to an automorphic representation π

for GSp4, then the L-function associated to the 5-dimensional summand of H2(A,Ql) is
none other than the degree 5 standard L-function, whose analytic properties have been
known for some time (see §6.3 of [GPSR87]). On the other hand, many of our arguments
in this paper do crucially require passing between GSp4 and GL4 using Theorem 2.9.3
and Lemma 2.9.1. In particular, the proof of Theorem 9.3.1 uses base change in the
form of Lemma 8.3.2, and therefore depends directly on Theorem 2.9.3; and of course
our main modularity lifting theorems also depend on these results, in particular to prove
that the modules that we patch are balanced.

If C/F is a curve over a number field, then we can define the completed L-functions
�i(C, s) and the completed Hasse–Weil L-function �(C, s) exactly as for abelian vari-
eties. By definition we have �1(C, s)=�1(Jac(C), s), where Jac(C) is the Jacobian of C.

Corollary 9.3.3. — Let C/F be a genus two curve over a totally real field. Then the com-

pleted Hasse–Weil L-function �(C, s) has a meromorphic continuation to the entire complex plane, and

satisfies a functional equation of the form �(C, s)= εN−s�(C, 3− s) where ε ∈R and N ∈Q>0.

Proof. — This follows from Theorem 9.3.1 with A= Jac(C). �

Finally, we treat the case of genus one curves over quadratic extensions of totally
real fields.

Theorem 9.3.4. — Let K/F be a quadratic extension of a totally real field F, and let E/K
be either a genus one curve or an elliptic curve. Then E is potentially modular. More precisely, there is

a Galois extension of totally real fields F′/F and a weight 0 cuspidal automorphic representation π of

GL2(AKF′) with trivial central character such that for each prime l, we have ρE,l|GKF′
∼= ρπ,l , and in

fact for each finite place v of KF′ we have WDv(ρE,l|GKF′v
)F−ss ∼= rec(πv|det |−1/2

v ).

Furthermore, Conjecture 2.8.6 holds for E.

Proof. — We may immediately replace E by its Jacobian and hence assume that E
is an elliptic curve. If E is CM, then it is modular, while if E is isogenous to a twist of
its Galois conjugate over F, then the result follows as in the proof of Proposition 9.2.1.
We therefore assume that neither of these applies, and set A = ResK/F E. Then A is an
abelian surface of type B[C2], and RA = IndGF

GK
RE. By Theorem 9.2.8, there is a Ga-

lois extension of totally real fields F′/F, linearly disjoint from K/F, and an automorphic
representation π of GSp4(AF′) such that ρA,p|GF′

∼= ρπ,p.
Let � be the transfer of π to GL4(AF′). If κ is the quadratic character of GF′

corresponding to K′ := KF′/F′, it follows that �⊗ (κ ◦ ArtF′ ◦ det) ∼=�, so by [AC89,
Thm. 4.2, 5.1 of §3] there is a cuspidal automorphic representation π of GL2(K′) such
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that � is the automorphic induction of π ⊗ |det |. Write Gal(K′/F′)= {1, τ }. We claim
that π is of weight 0 and has trivial central character. Admitting this claim, it follows from
Theorem 2.7.3 that we can write

ρE,p|GK′ ⊕ (ρE,p|GK′ )
τ ∼= ρπ,p ⊕ ρτ

π,p

where all four 2-dimensional representations are irreducible. After possibly replacing π
by πτ , we conclude that ρE,p|GKF′

∼= ρπ,p, so that by Theorem 2.7.3, for each place v � p

of K′ we have WDv(ρE,l|GKF′v
)ss ∼= rec(πv|det |−1/2

v )ss. It follows that in fact

WDv(ρE,l|GK′v
)F−ss ∼= rec(πv|det |−1/2

v )

(because we know the corresponding statement for A). Repeating the argument for a
second prime p, we see that this holds for all finite places v.

It remains to prove the claim. By Lemma 2.6.1, for each place v|∞ of K′, either πv

corresponds to φ0,1, or v is complex, and the L-parameter of πv is scalar, given by (z/z)±1;
in particular, in either case it is algebraic, and so the central character χπ of π is algebraic.
Moreover, if χπ is trivial, then the second case cannot occur, so that π automatically has
weight 0. We therefore assume from now on that χπ �= 1, and derive a contradiction.

Since �∨ ∼=�⊗ | · |−2, we have

π � πτ ∼= π∨ � (πτ )∨,

so that either π∨ ∼= π, or π∨ ∼= πτ . In the former case, we would have π ∼= π∨ ∼=
π � χ−1

π , from which it follows (if χπ �= 1) that χπ is the character of a quadratic exten-
sion L′/K′ and π is induced from GL(1)/L′. This implies that ρA,p is potentially abelian,
and thus that E is CM, a contradiction.

We can therefore assume that π∨ ∼= πτ , so that χπτ = χ−1
π , and we shall derive a

contradiction from these assumptions. Write χ for the p-adic character GK′ →Q
×
p corre-

sponding to the algebraic character χπ . Let v � p be a place of K′ for which ρA,p|GK′ is un-
ramified, and let the eigenvalues of ρE,p(Frobv) be {αv, qv/αv} and those of (ρE,p)

τ (Frobv)

be {βv, qv/βv}. Now, αvq−1/2
v is either a Satake parameter of π or πτ , so (using

that χπτ = χ−1
π ) it follows that one of βv, qv/αv, qv/βv is equal to either qvχ(Frobv)/αv or

qvχ
−1(Frobv)/αv .

Since χ is non-trivial, there is a set of places S of K′ of positive density such
that χ(Frobv) �= 1. Shrinking S if necessary, we deduce that there exists a set S of positive
density so that one of the following equalities holds for all v ∈ S:

qvχ(Frobv)/αv = βv,

qvχ(Frobv)/αv = qv/βv,

qvχ
−1(Frobv)/αv = βv,

qvχ
−1(Frobv)/αv = qv/βv.
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By symmetry (replacing χ by χ−1 if necessary and βv by qv/βv if necessary), we may
assume that αvβv = qvχ(Frobv) for all v ∈ S.

Now, the representations ρE,p|GK′ and (ρE,p|GK′ )
τ have monodromy groups GL(2)

by [Ser68, Thm. IV.2.2] and are not twist equivalent (by our running assumptions). It
follows that the monodromy group of their tensor product is the identity component
of GO(4). Since this is connected, we deduce by considering the formal character of the
corresponding Lie algebra sl2× gl2 that for any fixed character ξ , the generic element of
the tensor product ξ−1 ⊗ ρ ⊗ ρτ does not have 1 has an eigenvalue.

However, for each place v ∈ S, we have (since χ(Frobv)= αvβv/qv for v ∈ S):

ε−1(v)χ−1(v)⊗ {αv, qv/αv} ⊗ {βv, qv/βv} = {1, q2
v/α2

vβ
2
v , qv/β2

v , qvα
2
v}.

Since S has positive density, this is a contradiction, as required. �

9.4. K3 surfaces of large rank. — If A is an abelian surface over a totally real field F,
then one may define the Kummer surface Km(A) to be the resolution of the quotient
of A under the map x �→ −x. The variety Km(A) is a smooth projective algebraic K3
surface with (geometric) Picard number ≥ 17. (All Picard numbers in this section will be
geometric Picard numbers.)

Proposition 9.4.1. — Let A be an abelian surface over a totally real field F, and let X =
Km(A). Then Conjecture 1.1.1 holds for X.

Proof. — The cohomology groups H∗(X,Qp) are trivial in odd degree. In even
degree, they are generated by H∗(A,Qp) plus the 16 dimensional space of Tate cycles
in H2(X,Qp) spanned by the 16 exceptional divisors in the resolution X → A/(±1).
The latter classes are all defined over a finite extension of Q, and hence the Galois rep-
resentation (up to twist) they generate is an Artin representation. Hence the result fol-
lows from Theorem 9.3.1 applied to A, together with the meromorphic continuation of
Artin L-functions. �

More generally, if a K3 surface X/F admits a Shioda–Inose structure [Mor84, §6]
over F, then H∗(X,Qp)	H∗(Km(A),Qp) for some abelian surface A/F, and Prop 9.4.1
implies Conjecture 1.1.1 for X. It might also happen that X/F admits a Shioda–Inose
structure over some finite extension E. Recall Ribet’s notion of a Q-curve ([Rib04]) as an
elliptic curve over Q all of whose conjugates by GQ are isogenous:

Definition 9.4.2. — An F-abelian variety is an abelian variety A over a Galois extension E/F
all of whose Gal(E/F)-conjugates are isogenous to A over E.

Suppose that the conjugates Aσ over A are isogenous to (at most) quadratic twists
of A (as necessarily happens if {±1} are the only automorphisms in EndC(A)). Then the
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Galois representations associated to ∧2H1(A) and thus to Km(A) extend (even as com-
patible systems with Q-coefficients) to GF. Moreover, the (absolutely irreducible) projec-
tive Galois representations associated to H1(A) also extend to GF, and thus, from the
vanishing of H2(GF,Q/Z) due to Tate, also give rise to GF representations (now with
coefficients). If F is totally real and A is an F-abelian surface, one expects that the meth-
ods of this paper will have implications for the potential modularity of A. (Note that for
primes p splitting completely in E, the mod p representations over F locally arise from
abelian surfaces over Qp — namely A itself.) We have not endeavored to undertake the
task of proving results along these lines, however, since verifying that the Galois repre-
sentations extend in the appropriate manner (especially when all the different possibili-
ties for EndC(A) are taken into account) would necessitate a somewhat involved analysis
which we avoid due to issues of time and space.

9.4.3. General K3 surfaces of Picard rank ≥ 17. — An algebraic K3 surface of Picard
number 17 or 18 need not admit a Shioda–Inose structure even over C ([Mor84]). There
need not even be a correspondence between X and an abelian surface A inducing a
Hodge isometry of transcendental lattices (TX⊗Q)	 (TA⊗Q). The problem, as noted
in [Mor84], is the following. Let U denote the hyperbolic plane — the lattice of rank two
generated by two isotropic vectors which pair to 1. Then there are obstructions on the
lattices TX of signature (2, 20− ρ(X)) = (2, 3) or (2, 2) which arise from K3 surfaces
to admit an injection of the form (TA ⊗Q) ↪→ (U⊗Q)3. One might still hope to con-
struct abelian varieties from K3 surfaces of large Picard rank by directly lifting the weight
two polarized Hodge structure on TX to a weight one Hodge structure of the smallest
possible dimension. This amounts to considering the GSpin cover of the corresponding
orthogonal group and relating that (in an ad hoc manner) to weight one Hodge structures
via the identification of the associated Shimura variety as one of Hodge type. This dif-
fers slightly from the Kuga–Satake construction in which one has a functorial map from
weight two Hodge structures to weight one Hodge structures via the Clifford algebra con-
struction — the latter gives rise to abelian varieties in a uniform way, but introduces (in
general) auxiliary dimensions, and, for a transcendental lattice TX of rank 5, would pro-
duce an abelian variety of dimension 23 = 8. In the case of interest to us, the correspond-
ing GSpin Shimura variety will now (over C) be precisely the moduli of abelian four-
folds with quaternionic multiplication (as considered in [KR99]), where the degenerate
case D=M2(Q) corresponds to the usual moduli space of abelian surfaces. In particular,
we arrive at the conclusion that a K3 surface with ρ(X)= 17 or 18 should either admit a
correspondence with an abelian surface A inducing an isometry (TX ⊗Q)	 (TA ⊗Q),
or there will exist an abelian fourfold A with quaternionic multiplication (a fake abelian
surface, see the discussion after the statement of Lemma 10.3.2) and a correspondence
inducing an injection (TX ⊗Q)4 ↪→ (TA ⊗Q). This can also be predicted more arith-
metically by using the Yoga of motives. For convenience, suppose that ρ(X/F) = 17.
Let R be the compatible system associated to the transcendental motive (that is, the
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motive associated to the transcendental lattice), and assume that the Galois representa-
tions rp are strongly irreducible for a density one set of primes p. One can try to lift R (up
to quadratic twist) to a 4-dimensional compatible system S via the isogeny GSp4 →GO5,
and then realize S as the motive associated to an abelian surface. This happens, for ex-
ample, when X = Km(A) for some A over F. In general, however, one encounters two
obstructions. The first is that one should expect to have to extend coefficients of the mo-
tive by a compositum of quadratic fields. This is because a characteristic polynomial of an
element in GO5 with coefficients in Q lifts to a characteristic polynomial for GSp4 whose
coefficients lie either in Q or

√
D ·Q for some D. (This is an elementary computation

with symmetric polynomials.) Let σS denote the compatible system obtained by applying
an automorphism σ ∈ GQ to the coefficients of S . Since ∧2S =R = ∧2(σS), the irre-
ducibility assumptions imply that S is a quadratic twist of σS for all σ ∈GQ acting on the
coefficients. The restriction of S will thus have rational coefficients over some field E/F
with Gal(E/F)= (Z/2Z)n where all the quadratic twists become trivial. If this restriction
corresponds to an abelian surface A, this would predict (and even imply, see the remarks
at end of [Mor84]) that there existed an algebraic cycle on X×Km(A) which identified
the corresponding transcendental lattices over Q. Moreover, the abelian surface A would
be an F-abelian surface in the sense of Definition 9.4.2. On the other hand, even suppos-
ing S has Q-coefficients over E, it need not be the case that S comes from an abelian
surface, even though (for weight reasons) it must be an abelian motive. One also has to
allow the possibility that it comes from a fake abelian surface, that is, a fourfold A with
quaternionic multiplication (see the proof of Lemma 10.3.2). In summary, given a K3
surface X of Picard rank at least 17 over a number field F, one should be able to associate
to X a canonical isogeny class of F-abelian surfaces or F-fake abelian surfaces. Under
sufficiently big image hypotheses, it should be possible to rigorously justify the arguments
of this paragraph using the methods and language of [Pat19, §4].

9.4.4. Fake Kummer surfaces. — This raises the natural question as to whether, given
an abelian fourfold with an inclusion D ↪→ End0(A) (a fake abelian surface), there are
any natural geometrical constructions which produce a K3 surface (or, conversely, a con-
struction in the other direction). For that matter, one might ask for an explicit geometric
construction of either of these objects. Given six lines in general position in P2, the desin-
gularization X of the double cover branched over those lines is, in general, a K3 surface
of Picard rank 16. If the 6 lines are all tangent to a smooth conic, however, then the K3
surface generically has Picard rank 17, and moreover X is the Kummer surface associ-
ated to the Jacobian of the hyperelliptic curve obtained as the double cover of the conic
branched at the six tangent points [Mor85]. This suggests looking for other degenera-
tions of the six lines which could give rise to transcendental lattices with different integral
structures.

The following construction, suggested to the authors by Madhav Nori, gives
a 3= 20− 17 dimensional rational family of such degenerations corresponding to D=
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(−1, 3)Q. Given a generic point in this family of Picard number 17, the correspond-
ing K3 cannot be isogenous to a Kummer surface, and so indeed defines a genuine
false Kummer surface. It is an interesting question to determine whether one can also
see the corresponding abelian fourfold from this construction — possibly associated to
a generalized Prym variety of some natural cover of curves under the map π :X→ P2.
Consider five lines Li for i = 1, . . . 5 in P2. These determine a conic C which passes
through the intersections L1 ∩ L2, L2 ∩ L3, L3 ∩ L4, L4 ∩ L5, and L5 ∩ L1, which we
denote by Pi for i = 1, . . . 5. Let L6 denote a sixth line which is tangent to C at P6.

Note that C ·∑6
i=1 Li = 2

(∑6
i=1 Pi

)
is divisible by 2. Let Y denote the degree 2 cover

of P2 and X its desingularization. The lifts of Pi in Y for i = 1, . . . , 5 are ordinary dou-
ble points, and so the exceptional divisors Ei in X satisfy Ei.Ei =−2. Let M=∑5

i=1 Ei .
If π : X→ P2 denotes the projection, then π−1(C) = M + D, where D is now an ev-
erywhere unramified double cover of C. But C 	 P1, so D must decompose into two
components A+ B meeting transversally at π−1(P6). Note that M.M = 5(−2) = −10,
that A.B = 1 (meeting transversally at π−1(P6)), and π−1(C).π−1(C) = 2(C.C) = 8.
Moreover, A.M = B.M = 5, intersecting in Ei for i = 1, . . . 5. It follows that, if we
let E= A− B, then E.E is equal to

(A+ B+M).(A+ B+M)− 2(A+ B).M−M.M− 4.A.B

= 8− 20+ 10− 4=−6.

The class E is transverse to all exceptional classes as well as the pre-image of the hyper-
plane class, so gives a new class in NS(X). Note that U ⊗ Q 	 (〈2k〉 ⊕ 〈−2k〉) ⊗ Q
for any integer k. The transcendental lattice of the generic X is (U2 ⊕ 〈−2〉2)Q 	
(〈6〉 ⊕ 〈−6〉 ⊕U⊕ 〈−2〉2)Q, hence the corresponding transcendental lattice of this re-
stricted family is rationally contained in (U⊕ 〈−6〉 ⊕ 〈−2〉2)Q. Since this rational family
has dimension 20− 17= 3, the generic member will have Picard rank 17. As the form of
the corresponding orthogonal group does not split, the lattice does not admit an injection
into (U⊗Q)3, and so X is not isogenous to any Kummer surface. Indeed, from the ra-
tional structure of the resulting lattice, the corresponding fake abelian surface A will have
endomorphisms by D= (−1, 3)Q. (A related example was also considered in [LPS13] —
in particular the divisor denoted in [LPS13] by X6.)

9.4.5. An example. — Take the conic to be y= x2, and the points Pi for i = 1, . . . 5
to be (n, n2) for n=−2, . . . , 2. Now choose the point of tangency P6 to be at (3, 9), so Y
can be given by:

w2 = (−x+ y)(x+ y)(y− 4z)(−3x+ y+ 2z)(3x+ y+ 2z)

× (−6x+ y+ 9z).
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The classes considered above are all defined over Q, and so Pic(X/Q) ≥ 17. Let R =
(Q, S, {rp}) denote the corresponding 5-dimensional compatible system of GO5(Qp)-
representations. One checks that the set S of places of bad reduction is contained in
the set of primes {p ≤ 11, 23, 37,∞}. Using both the determination of S and the fact
that R(1) is self-dual, one computes that the determinant of R(1) is ψ , the quadratic
character associated to K=Q(

√−2 · 3 · 7 · 23 · 37). The compatible system R(1)⊗ ψ

is valued in SO5(Qp). The corresponding symplectic compatible system S of rank 4 need
not have coefficients in Q, since it may come from a Q-abelian variety in the sense of
Definition 9.4.2. Indeed, it has coefficients in Q(

√
3), and σS 	 S ⊗ ψ , where σ is the

non-trivial element of Gal(Q(
√

3)/Q), and ψ is the character as above of conductor �K.
In particular, although A is a Q-fourfold, the field of definition will be K.

Over C, one expects that Nori’s construction gives a rational parameteriza-
tion of a component of the GSpin Shimura variety associated to the quaternion al-
gebra D = (−1, 3)Q with some small (possibly trivial) level structure. Over Q, the Q-
structure appears (by examining examples) to be associated to a twisted form associated
to Q-fourfolds A over a quadratic extension whose associated rank four motive over Q
has coefficients in Q(

√
3).

10. Applications to modularity

In this section, we apply our main modularity lifting theorem (Theorem 8.4.1) to
prove modularity theorems for abelian surfaces. The methods generalize those of [Wil95,
SBT97] for elliptic curves. In §10.3 and §10.4, we show that our results confirm the
paramodular conjecture of [BK14] in many cases, but that there are counterexamples to
the original formulation of the conjecture (arising from “fake abelian surfaces”).

10.1. First modularity results. — We begin this section with a proof of Theorem 1.1.7
of the introduction.

Proposition 10.1.1. — Let F be a totally real field in which p > 2 splits completely. Let A/F
be an abelian surface with good ordinary reduction at all places v|p, and suppose that at each v|p, the

unit root crystalline eigenvalues are distinct modulo p. Assume that A admits a polarization of degree

prime to p. Let

ρA,p :GF →GSp4(Fp)

denote the dual of the mod p Galois representation associated to A[p], and assume that ρA,p is vast and

tidy. Assume that ρA,p is ordinarily modular, in the sense that there exists π of parallel weight 2 and

central character | · |2 which is unramified and ordinary at all v|p, such that ρπ,p
∼= ρA,p, and ρπ,p|GFv

is pure for all finite places v of F. Then A is modular. More precisely, there is an ordinary automorphic

representation π ′ of GSp4(AF) of parallel weight 2 and central character | · |2 which satisfies ρπ ′,p ∼=
ρA,p.
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Proof. — As before, we write ρA,p :GF →GSp4(Qp) for the Galois representation
associated to the dual of the p-adic Tate module of A. The assumption that A admits
a polarization of degree prime to p implies that the image of ρA,p lands in GSp4(Zp)

and ρA,p lands in GSp4(Fp). By Proposition 2.8.1, the representation ρA,p is pure for
all places v of F. The assumption that A has good ordinary reduction for all v|p and
distinct unit root crystalline eigenvalues for all v|p implies that the representations ρA,p

restricted to GFv
are p-distinguished weight 2 ordinary. Prop 10.1.1 is then an immediate

consequence of Theorem 8.4.1. �

Remark 10.1.2. — If A does not have a polarization of order prime to p, then,
by considering the kernel A[λ] of any polarization λ : A → At , we deduce that the
representation ρA,p : GQ → Aut(A[p]) = GL4(Fp) is reducible. Hence one could re-
place the assumption of the existence of a polarization on A of order prime to p in
Prop. 10.1.1 by the assumption that the Galois representation associated to A[p] is ir-
reducible. On the other hand, we do not phrase our theorem in this way for the fol-
lowing reason: if A does not have a polarization of order prime to p, then it need not
even be the case that the (necessarily reducible) representation ρA,p : GQ → GL4(Fp)

associated to A[p] lands in any conjugate of GSp4(Fp). Indeed, let E/Q be any ellip-
tic curve such that rE,3 : GQ → GL2(F3) has surjective image, let K/Q be an auxil-
iary degree 3 cyclic extension, let B = ResK/Q(E), and let A denote the kernel of the
map B → E induced from the trace map Z[Gal(K/Q)] → Z. Then A is an abelian
surface, and ρA,3 	 rE,3 ⊗ W, where W ∈ Ext1

GQ
(F3,F3) is the unique non-trivial ex-

tension which splits over Gal(K/Q). The group theoretic image of rA,3 is isomorphic
to GL2(F3)× Z/3Z, but this is not isomorphic to any subgroup of GSp4(F3). These ex-
amples are also related to the failure of the Shafarevich–Tate group X to have square
order — William Stein [Ste04] found abelian surfaces A exactly of the form considered
above with 3‖X(A)[3∞].

We now give some examples where one can directly establish the modularity of
certain residual representations.

Proposition 10.1.3. — Let F be a totally real field in which p > 2 splits completely. Let ρp :
GF → GSp4(Fp) be an absolutely irreducible representation with similitude factor ε−1 which is vast

and tidy and p-distinguished weight 2 ordinary. Suppose furthermore that either:

(1) p= 3, and ρ3 is induced from a 2-dimensional representation with inverse cyclotomic deter-

minant over a totally real quadratic extension E/F in which 3 is unramified.

(2) p = 5, and ρ5 is induced from a 2-dimensional representation valued in GL2(F5) with

inverse cyclotomic determinant over a totally real quadratic extension E/F in which 5 is

unramified.

(3) ρp is induced from a character of a quartic CM extension H/F in which p splits completely.
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Then ρp is ordinarily modular, that is, there exists π of parallel weight 2 and central character | · |2
which is unramified and ordinary at all v|p, such that ρπ,p

∼= ρ, and ρπ,p|GFv
is pure for all finite

places v of F.

Proof. — Suppose that we are in one of the first two settings, so that p = 3 or 5,
and ρ = IndGF

GE
� for some representation � :GE →GL2(Fp) with determinant ε−1. The

assumptions on ρ imply that �|GE(ζp)
is absolutely irreducible, and the restriction of � to

the inertia group at any prime w|p is an extension of ε−1 by 1. If p = 5, the condition
on the determinant and the fact that E is unramified at p additionally ensures that the
projective image of � is not A5. The representation � locally has the structure of a rep-
resentation associated to an ordinary Hilbert modular form of parallel weight two and
trivial nebentypus. Suppose that � is modular. It follows from [BLGG13, Thm. A] that �

does indeed arise from a Hilbert modular form of this kind, and we may take π to be
the automorphic induction of this form from E to F. Since E/F is unramified, this will
preserve the property of being ordinary. As in the proof of Theorem 9.2.8, purity follows
from the main results of [Bla06, Car14]. Hence it suffices to establish the modularity of �.

If � has solvable image, then, from a classification of the finite subgroups of GL2(k)

for a finite field k (see for example [SD73]), we deduce that the projective image of � is
either A4, S4, or dihedral, and is in particular a subgroup of PGL2(C). By a theorem
of Tate (see [Ser77, Theorem 4]), this implies that there exists a characteristic zero lift
of � which is totally odd with finite solvable image, and the result follows from an appli-
cation of the theorems of Langlands and Tunnell ([Lan80, Tun81]) as in §5 of [Wil95].
It remains to consider the representations with vast non-solvable image. For p = 3, the
only non-solvable induced representations which are vast come from representations
(Lemma 7.5.21 (4)) �3 : GF → GL2(F9) with projective image A5. The modularity of
such a representation follows as in the solvable case, except now invoking the odd Artin
conjecture for totally real fields ([PS16b, Thm. 0.3]) rather than Langlands–Tunnell. Al-
ternatively, the arguments of [Ell05] over Q may be adapted to this setting.

Thus we are left with the case of non-solvable representations � :GE →GL2(F5)

with determinant ε−1, which necessarily are surjective. The method of Khare–
Wintenberger implies the existence of characteristic zero lifts of the required form (for
example by [Sno09, Thm. 7.2.1] — the assumption that 5 is unramified in E guarantees
that [E(ζ5) : E] = 4). To show that such a lift is modular, it suffices (by, for example, the
main theorem of [Kis09]) to show that � is modular. However, this follows from a stan-
dard argument going back to [SBT97, Tay03] by realizing � as the 5-torsion of a modular
elliptic curve over a solvable extension. In our situation, we may explicitly invoke [PS16b,
Prop. 2.1.3].

Suppose finally that ρp = IndGF
GH

χ , where H/F is a quartic CM extension in
which p splits completely. Let v|p be a prime in F. The assumption that ρp is ordinary
implies that for two of the primes w|v of H the restriction of χ to inertia at w is ε−1, and
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it is trivial at the other two primes above v. Let ψ denote an algebraic Grossencharac-
ter of GH with conductor prime to p and CM type corresponding to the mod-p weights
of χ . If ψp is the p-adic avatar of ψ , then, by construction, the character ψp/χ mod p is
unramified at p, and hence, after twisting ψ by the Teichmuller lift of this character, we
may assume that ψp ≡ χ mod p. Let E/F denote the intermediate real quadratic field
inside H. Then the automorphic induction of ψ to GL2(AE) is a Hilbert modular form of
parallel weight two which is ordinary at all v|p and has trivial central character. Inducing
once more to F, we obtain the required form π . �

For explicit examples of abelian surfaces A/Q with EndC(A) = Z whose mod-3
or mod-5 representations ρA,p satisfy Prop. 10.1.3 — and hence, by Prop. 10.1.1, are
modular — see [CCG20]. In contrast to the examples found in [BPP+19] and [BK20] of
large prime conductor, the examples found in [CCG20] have good reduction outside 2,
3, 5, and 7.

We also have the following application to modularity over number fields which
need not be totally real (or even CM).

Theorem 10.1.4. — Let F be a totally real field in which 5 splits completely, and let K/F be

a quadratic extension in which 5 is unramified. Let E/K be an elliptic curve which has good ordinary

reduction or semistable ordinary reduction for all places w|5 of K. Finally, assume that the representa-

tion �E,5 :GK →GL2(F5) has the following properties:

(1) The projective image of �E,5 is either S5 = PGL2(F5) or S4.

(2) There exists a representation r5 :GF →GL2(F5) with determinant ε−1 such that r5|GK
∼=

�E,5.

Then E is modular. In particular, there exist infinitely many modular elliptic curves over K up to twist

which are not CM and do not come from any subfield of K.

For example, one could take F to be Q(
√

d) for any d ≡ 1, 4 mod 5, and then
take K=Q(

4
√

d), which is a field of mixed signature.

Proof. — It suffices to prove that the twist of E by some quadratic character is
modular. We now apply Lemma 7.5.26 to the representation r5 of GF to obtain a repre-
sentation

ρ = IndGF
GK

(r5|GK ⊗ δM/K)= IndGF
GK

(�E,5 ⊗ δM/K),

where δM/K is the character of an auxiliary quadratic extension. By Lemma 7.5.27, this
representation is vast and tidy and p-distinguished weight 2 ordinary.

As in the proof of Proposition 10.1.3, it follows from our hypotheses that r5 comes
from an ordinary Hilbert modular form π for F. By taking the base change of this form
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to K/F, twisting by the quadratic character δM/K, and then inducing back to F, we con-
struct a π of parallel weight 2 and central character | · |2 which is unramified and ordi-
nary at all v|p such that ρπ,p

∼= ρ. Again, the purity of ρπ,p follows from the main results
of [Bla06, Car14]. It follows from Theorem 8.4.1 that

ρ = IndGF
GK

(�E,5 ⊗ δM/K)

is modular, and hence (exactly as in the proof of Theorem 9.3.4) that �E,5 ⊗ δM/K and
hence E is modular.

It is easy to produce examples of E satisfying the hypotheses of the theorem (start-
ing with an elliptic curve over Q, for example). Using the fact that the genus zero
curve X(�E,5) is isomorphic to P1 over K (there being at least one rational point coming
from E), we deduce that there will be infinitely many such points. On the other hand,
by choosing such points with appropriate local properties (for example, ramified at one
prime w above v but not at the other) we may find infinitely many examples which do
not arise via base change. Since the mod 5-representations associated to these curves are
not projectively dihedral or cyclic, they also cannot have CM. �

10.2. Abelian varieties with fixed 3-torsion. — We have produced a number of residual
representations mod p for small p which are automorphic. It is natural to ask whether
any such representation (satisfying necessary local conditions) arises from infinitely many
abelian surfaces over F. The corresponding question for 2-dimensional representations
has a positive answer precisely when p= 2, 3, or 5, where the corresponding moduli space
is a smooth curve of genus zero. We show that for abelian surfaces there is a positive
answer for p = 2 and p = 3. When p ≥ 5, the moduli space in question is of general
type [HS02], and so one would not expect (in general) that they admit infinitely many
rational points not lying on a special Shimura subvariety, although we do not attempt to
address this question.

When p= 2, the problem is pretty much obvious. The fact that the corresponding
moduli space for the trivial representation ρ is rational goes back to Igusa (see [HS02,
Theorem IV.1.4] and [Igu64]). The fact that the corresponding moduli space for non-
trivial ρ is unirational is also surely well-known (we shall now give a sketch of this re-
sult although we shall never use this fact). Fix a representation ρ : GF → GSp4(F2).
Since GSp4(F2) 	 S6, one may write any G-extension L of F for G ⊆ S6 as the split-
ting field of a degree 6 separable polynomial f (x) over F. If one then takes A to be the
Jacobian of the curve y2 = g(x) for any g(x) with Q[x]/g(x) 	Q[x]/f (x), then ρ is the
representation associated to the 2-torsion of A. An elementary computation shows that
this gives a 3= 6− dim PGL2 dimensional family of abelian surfaces up to isomorphism
with fixed ρ for any such ρ. Explicitly, one may let ei for i = 1 to 6 be any basis over Q
of the étale Q-algebra Q[x]/f (x), and then let g(x) be the minimal polynomial of

∑
tiei.

(The Jacobian A depends only on g(x) up to the action of PGL2 on P1.)
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This leaves the case p = 3. The answer in this case can be extracted from the
very extensive literature on the subject, essentially following the main idea of [SBT97].
Fix ρ :GF →GSp4(F3) with inverse cyclotomic similitude character, and let V denote the
underling symplectic space over F3. Let B(ρ)/F denote the moduli space of pairs (A, ı3)

consisting of abelian surfaces A and symplectic isomorphisms

ı3 : A[3] ∼−→V∨.

(The dual is here because our Galois representations have been normalized cohomologi-
cally, so it is the dual representations which actually occur inside the p-adic Tate modules.)
The variety B(ρ) is smooth and geometrically connected. Over C, we may identify B
with the moduli space of principally polarized abelian surfaces with full level 3 structure.
This space is well-known to be a (geometrically) rational threefold, and is isomorphic
to an open subvariety of the Burkhardt quartic [Bur91, Cob06, Bak46, Hun96, BN18],
specifically, the complement in the Burkhardt quartic of the Hessian hypersurface.

The Burkhardt quartic is exceptional for a number of different reasons, not least of
which is that it admits an action of the group PSp4(F3) (tautologically from the descrip-
tion above). If V = (μ3)

2 ⊕ (Z/3Z)2, we write B for B(ρ). One knows ([BN18]) that B
is rational over Q. Suppose we knew that ρ actually came from an abelian surface A,
so that B(ρ) admitted a smooth rational point over F. One might ask whether this is
enough to force the twist B(ρ) to be rational over F; this question is resolved in the nega-
tive in [CC20]. The difficulty in a naïve attempt to replicate the argument of Taylor and
Shepherd-Barron ([SBT97]) in this case is that the birational map B→ P3 is not equiv-
ariant with respect to PSp4(F3) and any embedding PSp4(F3)→ PGL4(Q) = Aut(P3).
This means that a PSp4(F3)-twist of B does not naturally inherit the structure of a Severi–
Brauer variety.

It turns out, however, that we are lucky. There exists a cover P(ρ)→ B(ρ) of de-
gree 6 corresponding to an additional choice of level 2 structure of A, namely an odd
theta characteristic, (or, for A= Jac(C), a Weierstrass point on the corresponding genus
two curve C). The cover P(ρ) now does have the property that it is not only rational,
but PSp4(F3)-equivariantly rational, which allows us to deduce the rationality of P(ρ)

in favourable circumstances, and hence the unirationality of B(ρ). In particular, this al-
lows us to construct infinitely many rational points on B(ρ) which correspond to abelian
surfaces A with EndC(A)= Z, as in the following theorem.

Theorem 10.2.1. — Fix ρ : GF → GSp4(F3) with similitude character ε−1. Then B(ρ)

is unirational over F, and there exist infinitely many principally polarized abelian surfaces A/F up to

twist with EndC(A)= Z and such that ı3 : A[3] 	 V(ρ)∨. Moreover, we may additionally assume

that these A are Jacobians of curves which have a rational Weierstrass point, and may thus be written

in the form y2 = f (x) where f (x) is a quintic polynomial. Suppose, in addition, that for all v|3, the

representation ρ|GFv
arises as the 3-torsion of an abelian surface over Fv with good ordinary reduction.

Then we may additionally assume that these A also all have good ordinary reduction for all v|3.
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Note that, as with of [SBT97, Thm. 1.2], we do not need to impose any further
local hypotheses at any primes after we impose the global condition on the similitude
character. (In particular, if K is a local field of characteristic zero, then by using a glob-
alization argument as in [Cal12, Thm. 3.1], this implies that the only requirement on a
mod 3-representation ρ : GK → GSp4(F3) to arise from a principally polarized abelian
surface over K is that the similitude character is ε−1.)

The remainder of this section is devoted to the proof of Theorem 10.2.1. We start
by defining the non-Galois degree 6 cover P of B and recalling its basic properties.

Definition 10.2.2. — Let B(2) :=A2(6)→A2(3)= B denote the cover of B corresponding

to a choice of full level-2 structure. It is a Galois cover with Galois group S6 	 PSp4(F2), where we fix

this identification up to conjugacy by identifying S6 generically with the Galois group of the Weierstrass

points on C with Jac(C) = A. (This identification can be made explicit using the map τ below.)

Then P denotes the intermediate cover over B corresponding to the conjugacy class of subgroups S5 ⊂
S6 = PSp4(F2) which fix a point.

A more natural definition of P is given in terms of theta characteristics. Namely, P
may be identified with the moduli space A2(3)− of principally polarized abelian surfaces
with a symmetric odd theta structure of level 3 (see [DL08, §2.3]). Recall that there is
a natural Torelli map τ :M2(3)→A2(3) which is a bijection away from the Humbert
surface consisting of principally polarized abelian surfaces which split as the product of
two elliptic curves. A rational point on P in the image of τ corresponds to A = Jac(C),
together with a symplectic isomorphism from A[3] to (μ3)

2⊕ (Z/3Z)2 and the data of a
rational Weierstrass point on C, which (after moving this point to infinity) means that C
can be written in the form y2 = f (x) for a quintic polynomial f (x).

The level 3-structure on B pulled back to P gives an action over Q(
√−3) of the

group PSp4(F3). If one gives PSp4(F3) the structure of an étale group scheme over Q
by viewing it as the group G of symplectic automorphisms of μ2

3 × (Z/3Z)2 mod-
ulo (−1,−1), then this action descends to Q. Equivalently, the twisting of any auto-
morphism in PSp4(F3) by the action of σ ∈ GQ is accounted for by the Galois action
on μ2

3 × (Z/3Z)2 (as in the formula for σθ below).

Proposition 10.2.3. — The variety P is rational over Q. Moreover, there exists a birational

map P→ P3 over Q which is equivariant with respect to the action of G for some action of G on P3.

Proof. — The G-equivariant map P → P3
Q is the odd theta map denoted Th−

in §2.4 of [DL08]. The fact that Th− is a birational isomorphism is [Bol07, Theo-
rem 0.0.1]. �

We now turn to the proof of Theorem 10.2.1. From Proposition 10.2.3, it fol-
lows that the rationality of P(ρ) over F is equivalent to the rationality of P3(ρ) over F,
where P3(ρ) is the twist of P3 arising from the projective representation associated
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to ρ. The action of Sp4(F3) on μ2
3 × (Z/3Z)2 over Q(ζ3) induces a homomorphism θ

from Sp4(F3) to Aut(P) and hence to Aut(P3). This map satisfies

σθ(α)= θ

⎛

⎜⎜⎝

⎛

⎜⎜⎝

ε(σ ) 0 0 0
0 ε(σ ) 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠α

⎛

⎜⎜⎝

ε−1(σ ) 0 0 0
0 ε−1(σ ) 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠

⎞

⎟⎟⎠ .

Since ρ has similitude factor ε−1, we can associate to ρ a cocycle

σ �→ θ

⎛

⎜⎜⎝ρ∨(σ )

⎛

⎜⎜⎝

ε−1(σ ) 0 0 0
0 ε−1(σ ) 0 0
0 0 1 0
0 0 0 1

⎞

⎟⎟⎠

⎞

⎟⎟⎠ ,

in H1(F, PGL4(Q)), and P3(ρ) is the twist of P3 by this cocycle.

Lemma 10.2.4. — If ρ :GF →GSp4(F3) has similitude factor ε−1, then P(ρ) is rational.

Proof. — The proof is very similar to the proof of [SBT97, Lem. 1.1]. We need to
show that the cocycle in H1(F, PGL4(Q)) corresponding to ρ vanishes, so it is enough
to show that it comes from H1(F, GL4(Q)). It is therefore enough (following the argu-
ment in [SBT97]) to show that we can lift the induced homomorphism θ : PSp4(F3)→
PGL4(Q) to a unique homomorphism θ̃ : Sp4(F3)→GL4(Q). Since PSp4(F3) is perfect
(indeed simple) it has a unique Schur cover (Darstellungsgruppe). Since the Schur multi-
plier of PSp4(F3) has order 2 ([CCN+85]), the Darstellungsgruppe of PSp4(F3) may be
identified with Sp4(F3), and in particular the projective representation θ lifts to a genuine
homomorphism θ̃ : Sp4(F3)→GL4(Q). It remains to show this lift is unique.

We claim this follows from the fact that Sp4(F3) is perfect. Indeed, because the
group is perfect, every element of Sp4(F3) can be written as a product of commuta-
tors [g, h]. Hence it suffices to show that θ̃ ([g, h]) is uniquely defined. But θ̃ ([g, h]) =
[θ̃ (g), θ̃ (h)], and the commutator of any two elements of GLn(Q) depends only on their
images in PGLn(Q), as required. We note (although we do not use this fact) that PSp4(F3)

has no faithful 4-dimensional representations (again by [CCN+85]) and so the represen-
tation θ̃ of Sp4(F3) is faithful. �

Remark 10.2.5. — Note that the corresponding facts (that PSL2(F5) is simple with
Darstellungsgruppe SL2(F5)) lead to a proof of [SBT97, Lem. 1.1]. This differs slightly
from the original proof in [SBT97] as follows: Instead of using the fact that PSL2(F5)

has Schur multiplier Z/2Z and deducing that any irreducible projective representation θ

lifts to a representation θ̃ : SL2(F5)→ GL2(Q), the authors use the fact that the kernel
of SL2(Q) → PSL2(Q) has order 2, and so θ automatically lifts to a representation of
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a degree 2 central extension of PSL2(F5) to SL2(Q), and then argue that the image
(and hence source) is SL2(F5) (because the split central extension would give a faithful 2-
dimensional representation of PSL2(F5)).

We have now proved under the given hypothesis on ρ that P(ρ) is rational, and
hence B(ρ) is unirational. Moreover, twisting P by ρ leaves the level structure at the
odd theta characteristic unchanged, so that all the corresponding abelian varieties in the
image of the Torelli map are Jacobians of curves C of the form y2 = f (x) where f (x) is a
quintic (after moving the rational Weierstrass point to infinity).

Proof of Theorem 10.2.1. We need to show that infinitely many of the corresponding
points of P(ρ) do not admit any extra endomorphisms over C. We show that we may
find infinitely many A such that the Galois representation associated to A[5] has image
containing Sp4(F5). If A/F did admit extra endomorphisms over F, then, from the clas-
sification of the possible Galois types of endomorphism structures on A recalled at the
beginning of §9.2, the Galois representation associated to the 5-adic Tate module of A
would become reducible after making an extension of degree at most 2. But the action
of Sp4(F5) on F4

5 remains absolutely irreducible after restriction to any index two sub-
group, which forces EndQ(A)= Z. (In this argument, 5 could have been replaced by any
prime p independent of the level structure.)

We will now arrange this condition by an application of Hilbert irreducibility as
in the proof of [SBT97, Theorem 1.2]. Let R(ρ)→ P(ρ) be the fibre product of P(ρ)

with A2(5)→A2. This is a Galois cover with Galois group PSp4(F5). Recall that P(ρ)

is rational. By Hilbert irreducibility ([Ser89, §9.2, 9.6]), we may find infinitely many
points x ∈ P(ρ)(F) so that the Galois group of the splitting field of any preimage y ∈R(ρ)

of x contains PSp4(F5), and moreover, we may restrict x to any non-trivial open sub-
set of P(ρ)(Fv) for all v in some finite set of primes S. If A denotes the corresponding
abelian surface, it follows that the projective Galois representation associated to ρA,5 con-
tains PSp4(F5), and thus the image of ρA,5 itself contains Sp4(F5). If we now use the
assumption that P(ρ)(Fv) has points corresponding to abelian surfaces with good or-
dinary reduction at all v|3, then (since the ordinary condition is open) we can choose
our x ∈ P(ρ)(F) so that A/F has good ordinary reduction for all v|3. �

We obtain the following corollary:

Theorem 10.2.6. — Let F be a totally real field in which 3 splits completely. Then there exist

infinitely many abelian surfaces A/F up to twist with EndC(A)= Z which are modular, and which do

not come from any proper subfield of F (in the sense that, for each p, there is no twist of the corresponding

Galois representation ρA,p which extends to the absolute Galois group of a proper subfield of F).

Proof. — Let H/F be a quadratic extension in which every prime v|3 is inert, and
let σ be the non-trivial element of Gal(H/F). Let E/H be an elliptic curve with good
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ordinary reduction for all v|3, such that ρE,3 :GH →GL2(F3) is surjective, and such that
the projective images of ρE,3 and ρσ

E,3 are totally disjoint. Since X(1) has genus zero, this
can be achieved by choosing a global point which lies over a suitable choice of smooth
point in X(1)(kw) (with kw =OH/w) for suitably chosen primes w which split over F, for
example ensuring that ρE,3(Frobw) and ρE,3(Frobwσ ) give distinct elements of PGL2(F3).
Similarly, by making choices above primes of Q which split completely in H, we may
ensure that ρ = IndGF

GH
ρE,3 does not descend after twisting to any proper subfield of F.

By Lemma 7.5.22, ρ is vast and tidy. The fact that each prime v|3 in H/F is in-
ert implies that ρ is 3-distinguished and finite flat, and hence 3-distinguished weight 2
ordinary. It follows from Proposition 10.1.3 that ρ is ordinarily modular. The represen-
tation ρ at each v|3 arises locally from an abelian variety over Fv with good ordinary
reduction, because it does so globally — namely, the restriction of scalars of E from Hv

to Fv . It follows from Theorem 10.2.1 that there are infinitely many abelian surfaces A
with up to twist with good ordinary reduction at each place v|3 and satisfying A[3] ∼= ρ.
The choice of ρ ensures that any such A does not descend (even after twist) to any subfield
of F. Finally, every such A is modular by Proposition 10.1.1. �

10.3. The Paramodular conjecture. — We end this section with a discussion of the re-
lationship between our results and the “paramodular conjecture” of [BK14] (cf. also the
remarks in [Yos80, §8, p. 243]). Recall that this conjecture states that there should be a
bijection (determined by the compatibility of Frobenius eigenvalues and Hecke eigenval-
ues at unramified places) between isogeny classes of abelian surfaces A/Q of conductor N
with EndQ A= Z, and holomorphic cuspidal Siegel newforms of weight 2 and paramod-
ular level N which are “non-lifts” and have rational Hecke eigenvalues, considered up
to scalar multiplication. Here “non-lifts” means that they are orthogonal to the space
of Gritsenko lifts. We explain in this section why the paramodular conjecture as origi-
nally formulated in [BK14] is not true. The issue is that Siegel newforms of weight 2
and paramodular level N with rational eigenvalues will not always correspond to abelian
surfaces. In light of the observations of this paper, Brumer and Kramer have modified
their conjecture in [BK19] along the lines suggested by the analysis presented here — we
reproduce their updated conjecture in this paper as Conjecture 10.4.3 below. In order to
distinguish between the two versions of this conjecture, we refer to the original formula-
tion (given above) as the original paramodular conjecture, and the modified version (Con-
jecture 10.4.3) as the paramodular conjecture. Both of these conjectures posit an injective
map from isogeny classes of abelian surfaces A/Q of conductor N with EndQ A = Z to
Siegel newforms of weight 2 and paramodular level N, which are “non-lifts” and have ra-
tional Hecke eigenvalues, and hence, when talking about the implication in this direction,
we do not distinguish between different versions of the conjecture.

We firstly show that all of our examples of modular abelian varieties verify the
paramodular conjecture, before giving a more general explanation of the relationship
between the paramodular conjecture and the Langlands program, and then explaining
some counterexamples to the original paramodular conjecture.
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Lemma 10.3.1. — Any abelian variety A/Q satisfying the hypotheses of Proposition 10.1.1

satisfies the paramodular conjecture; that is, there is a corresponding holomorphic cuspidal Siegel newform

of weight (2, 2) and paramodular level equal to the conductor of A, which is a non-lift, has rational

Hecke eigenvalues, and is unique up to scalars.

Proof. — By Proposition 10.1.1 (or more precisely by Theorem 8.4.1, as applied in
the proof of Proposition 10.1.1) there is an L-packet of cuspidal automorphic representa-
tions π of weight 2 and general type corresponding to A, whose L-parameters coincide
with those determined by A. The claim that there is a unique corresponding newform of
level equal to the conductor of A is now a consequence of the theory of newforms due to
Roberts and Schmidt [RS07b] (which assumes that we are working with representations
of trivial central character, but this is harmless, as we can reduce to this case by twisting π

by | · |). This newform is certainly a non-lift, as π is of general type (see the discussion
following this lemma for a more precise description of the non-lifts), and it has rational
Hecke eigenvalues by local-global compatibility.

More precisely, by [Sch18, Thm. 1.1], for each prime v of Q, there is a unique
paramodular representation in the L-packet at v, namely the unique generic represen-
tation. Since representations of general type are stable, this gives rise to a unique π of
weight 2 which has a paramodular vector at each finite place. Furthermore, for each v

the space of paramodular vectors at minimal paramodular level is one-dimensional
by [RS07b, Thm. 7.5.1], and this minimal paramodular level coincides with the con-
ductor of the corresponding L-parameter (and thus with that of A) by [RS07b, Thm.
7.5.4(iii)] and the main theorem of [GT11a]. �

We now discuss the paramodular conjecture more broadly. Firstly, we discuss the
automorphic side of the conjecture. As explained in [Sch18], the space of Siegel modular
forms of weight 2 and fixed level can be written as an orthogonal sum of spaces spanned
by eigenforms in automorphic representations of the various types in Arthur’s classifi-
cation. The Gritsenko lifts are precisely those of Saito–Kurokawa type, while those of
one-dimensional type do not contribute to the cuspidal spectrum. Since abelian surfaces
with EndQ A= Z should correspond to automorphic representations of general type (as
their corresponding Galois representations are irreducible), we see that it is implicit in
the statement of the conjecture that there are no paramodular eigenforms (at least with
rational Hecke eigenvalues) of Yoshida, Soudry, or Howe–Piatetski-Shapiro type.

This is indeed the case, as is proved in [Sch18, Sch20]. The case of Yoshida type
is [Sch18, Lem. 2.5]; in this case, the parameters are unstable, and the corresponding
packet of representations does not satisfy the required sign condition. Indeed, at each
finite place, the condition that the representation admits a paramodular vector forces the
sign to be trivial, whereas the condition of being the holomorphic limit of discrete series
at infinity gives a non-trivial sign. Note that the analogous argument would fail for totally
real fields of even degree.
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The cases of Soudry and Howe–Piatetski-Shapiro type are [Sch20, Prop. 5.1]. In
these cases the obstructions to the existence of paramodular vectors are at finite places;
it turns out that at the places where these representations are ramified, there are no
paramodular vectors. In these cases the representations are parameterized by certain
Hecke characters, and the fact that the representations are ramified at some finite place
comes from the fact that any Hecke character must be ramified. Accordingly, the analo-
gous argument could fail for totally real fields of class number greater than 1.

It follows from this discussion that the original paramodular conjecture is equiva-
lent to the claim that there is a bijection between isogeny classes of abelian surfaces A/Q
with EndQ A = Z, and cuspidal automorphic representations � of GL4(AQ) of sym-
plectic type with multiplier | · |2, whose infinity type is the one corresponding to the L-
parameter φ2;1,0, and whose Hecke eigenvalues are all rational. In one direction, given A,
the existence of � is certainly predicted by the Fontaine–Mazur–Langlands conjecture,
the rationality of its Hecke eigenvalues following from strong multiplicity one. We now
explore the converse direction.

Lemma 10.3.2. — Let F be a totally real field. Assume the Fontaine–Mazur Conjecture, the

Standard Conjectures, the Hodge Conjecture, and that the Galois representations associated to any cuspidal

automorphic representation � for GL4(AF) whose infinity type for each v|∞ corresponds to the L-

parameter φ2;1,0 form an irreducible weakly compatible system. Let � be such a representation with the

properties that its Hecke eigenvalues are rational, and that � is of symplectic type with multiplier | · |2.

Then, associated to �, there exists a corresponding motive A/F such that either:

(1) A/F is an abelian surface.

(2) A/F is an abelian fourfold with endomorphisms over F by an order in a quaternion alge-

bra D/Q.

Moreover, if A/F is an abelian fourfold with EndF(A)⊗Q= EndC(A)⊗Q an indefinite quaternion

algebra D/Q, and one assumes only standard automorphy conjectures, then there exists a corresponding �

of symplectic type with rational eigenvalues and multiplier | · |2.

One might reasonably (following Serre [DR73, §0.7, p. DeRa-13]) call an abelian
fourfold A with endomorphisms by an order in a quaternion algebra D/Q a fake (or false)
abelian surface (fausse surface abélienne).

Sketch of proof. — (For a more detailed proof of a closely related result, see [PVZ16,
Thm. 3.1].) One first obtains from � a rank 4 symplectic weakly compatible irreducible
family of p-adic Galois representations

R= (Q, S, {Qv(X)}, {rp}, {Hτ })
with Hτ = (0, 0, 1, 1) for all τ |∞, and such that

rp :GF →GSp4(Qp)
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has inverse cyclotomic similitude character. The Fontaine–Mazur conjecture implies
that R arises from a pure irreducible motive M over F with coefficients in Q (we also
now assume the standard conjectures [Kle94]). Concretely, this means that M is irre-
ducible and that for each prime p, the p-adic étale realization of M, Hi

et(M,Qp)⊗Qp
Qp

contains rp. By the Brauer–Nesbitt theorem, all the twists of rp by automorphisms of the
coefficient field Qp are isomorphic to rp. Therefore, if we assume the Tate conjecture, we
deduce that Hi

et(M,Qp)⊗Qp
Qp is a sum of copies of rp. The rank of M is therefore 4d for

some d . Let EndQ(M)⊗Q=D. Since M is simple, D is a division algebra. The centre
of D is a number field E. We claim that E=Q. It suffices to show that, for all p, the centre
of D⊗Q Qp is Qp. By the Tate conjecture, however, we can determine D⊗Qp from the
endomorphisms of the p-adic étale realization of M, which is isomorphic to a direct sum
of d copies of rp. It follows that EndQp[GF](r

d
p ) is a matrix algebra over Qp, and thus has

centre Qp. Hence E=Q.
Let us fix an embedding F→C. The Hodge realization of M is a polarized Hodge

structure of weight one, which gives a polarized torus, and thus (by Riemann) an abelian
variety B over C. Since M is defined over F, we deduce that, for any automorphism σ

of C over F, Bσ is isogenous to B. Let 2d be the dimension of B and r be the degree of
its polarization. Let A2d,r be the coarse moduli space of abelian varieties of dimension 2d

with a degree r polarization. This is a scheme of finite type over Q. We base change it to
F. Let [B] be the point on A2d,r associated to B. The set of points on A2d,r isogenous to [B]
is countable. On the other hand, if the residue field of [B] in A2d,r is transcendental over
F, we deduce that its orbit under Aut(C/F) is uncountable because there are uncountably
many ways to embed a transcendental field of finite type over F into C. It follows that
[B] is defined over a finite algebraic extension L of F and that B is defined over a finite
algebraic extension L′ of L. Moreover, M|L′ = h1(B). We now consider C=ResL′/FB, an
abelian scheme over F. Looking at the p-adic étale realization Cp of C for a prime p, we
find that Cp =Mp ⊗ IndL′/F1 where Mp stands for the p-adic realization of M. We now
let A be the simple factor of C whose p-adic étale realization contains rp. Then R arises
from h1(A). It follows from the Tate conjecture that h1(A) and the motive M we started
with are in fact isomorphic.

Now taking into account that the centre of D is Q, we deduce from the Albert
classification (see [Mum08, Thm. 2, p. 201]) that A is one of the following three types:

(1) Type I: A/F is an abelian surface with EndQ(A)= Z.
(2) Type II: A/F is an abelian fourfold with EndQ(A) ⊗ Q = D, an indefinite

quaternion algebra over Q.
(3) Type III: A/F is an abelian fourfold with EndQ(A)⊗Q=D, a definite quater-

nion algebra over Q.

(Note that Type IV of the Albert classification cannot occur, because the centre F =Q
of D is not a totally imaginary CM field.)
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Suppose that A/Q is an abelian fourfold with EndQ(A)⊗Q= EndC(A)⊗Q=D
for some indefinite quaternion algebra D/Q (and thus of Type II above). We now con-
struct a suitable compatible system R, which (by standard automorphy conjectures) will
give rise to a suitable �. The Mumford–Tate conjecture is known for the varieties of type
II [Chi92, Chi90], and the semisimple part h of the Lie algebra of the Mumford–Tate
group of A is (for almost all p) sp4. Let p be any prime which splits D. Then H1(A,Qp) has
an action of D⊗Qp =M2(Qp). In particular, it decomposes as Vp⊕Vp for an irreducible
4-dimensional representation Vp whose monodromy group is contained in GSp4(Qp).

If Qv(T) denotes the degree 8 polynomial in Z[T] coming from the character-
istic polynomial of Frobenius at v, then every root of Qv(T) has even multiplicity, and
thus Qv(T)= Pv(T)2 for a degree 4 polynomial Pv(T) ∈ Z[T], which will be the charac-
teristic polynomial of Frobenius at v on Vp. By the Weil conjectures, the roots of Qv(T)

obey the usual symmetry associated to a weight one motive, and so the same is true
for Pv(T). This implies that V∨

p 	 Vp ⊗ ε−1. Since the Galois representation has big
image in Vp, any isomorphism Vp 	 Vp ⊗ χ forces χ to be trivial, and thus from the
identification V∨

p 	 Vp ⊗ ε−1 above we deduce that the similitude character is inverse
cyclotomic. In particular, by standard automorphy conjectures, V will be associated with
a � as in the theorem. By strong multiplicity one [JS81], the rationality of Hecke eigen-
values at almost all primes (in particular primes of good reduction) forces rationality at
all primes. �

10.4. Examples and counterexamples. — In this section, we give some examples of
abelian fourfolds A/F with EndF(A) ⊗ Q = D for a quaternion algebra D/Q. In
Lemma 10.4.4, we prove the existence of such A which also satisfy EndC(A)⊗Q=D for
some indefinite D/Q. But first, we construct abelian fourfolds A/Q with EndF(A)⊗Q=
D, and such that (under standard conjectures, and even unconditionally in some cases),
they correspond to a � as above which comes from a paramodular eigenform with ratio-
nal Hecke eigenvalues, and thus contradict the original paramodular conjecture.

10.4.1. Abelian fourfolds of type III. — We expect that case (3) considered in the
proof of Lemma 10.3.2 cannot occur. While we do not show that here, we instead discuss
a minor subtlety which occurs when trying to construct examples of this kind.

Let E/Q be an elliptic curve (say without complex multiplication). Let F/Q be (say)
a totally real field with Gal(F/Q) =Q, the quaternion group of order 8. The group Q
has an irreducible representation W/Q of dimension 4, which contains a stable integral
lattice �⊂W. Note that, for any prime p, there is a decomposition W⊗Qp =V⊕V for
an irreducible 2-dimensional faithful representation V of Q. Now let us define:

A= E4 = E⊗Z �.

We find that A is simple over Q, and EndQ(A) ⊗Q = EndQ(W) = D, where D/Q is
the Hamilton quaternions. The corresponding compatible system R arises from Galois
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representations

ρp := rE,p ⊗V :GQ →GL4(Qp).

For p �= 2, the image of this Galois representation lies in GL4(Qp). On the other hand,
the possible symplectic forms associated to ρp are the one dimensional summands of

∧2ρ = (Sym2 ρE,p ⊗ det(V))⊕ (det(ρE,p)⊗ Sym2(V)).

Since det ρE,p = ε−1, we obtain symplectic representations with inverse cyclotomic simili-
tude character if and only if Sym2(V) contains the trivial representation. But det(V)= 1
for the faithful complex 2-dimensional representation of Q, so Sym2(V) is the direct sum
of the three non-trivial quadratic characters of Q, and these compatible families do not
have the required form.

More generally, suppose that A/Q is an abelian fourfold with EndQ(A) ⊗ Q =
D for some definite quaternion algebra D. The corresponding Shimura curves XD

parametrizing such objects lie in the exceptional class of Shimura varieties with the prop-
erty that there is a strict containment D 	 EndC(A) for all complex points A of XD

(see [BL04, §9.9]). Since D/Q is definite, the semisimple part h of the Lie algebra of
the Mumford–Tate group should (for almost all p) be contained in so4 = sl2 × sl2 rather
than sp4 (by [MZ95, §6.1]). This forces the representations Vp to decompose (as Qp-
representations) as the tensor product of a representation coming from a modular form
with an Artin representation. We expect it should be possible to make a careful case by
case analysis to rule out this case occurring, but we have not attempted to do this.

10.4.2. Abelian fourfolds of type II. — One can produce examples of abelian four-
folds with endomorphisms by an order in an indefinite quaternion algebra D/Q by tak-
ing the tensor product of a 2-dimensional representation with an Artin representation.
Let B/Q be an abelian surface of GL(2)-type with endomorphisms by an order in a
quaternion algebra D which are defined over a quadratic extension K/Q, and then
take L ⊂ V to be a lattice in a 2-dimensional dihedral representation V over Q which
is induced from a quadratic character χ of K which does not extend to Q (so the action
of GQ on V is through a dihedral group of order 8). Then one can take A = B ⊗Z L,
which may be identified with the restriction of scalars of the quadratic twist B⊗ χ of B
from K to Q.

The action of an order of D on B and B⊗ χ over K extends to an action of this
order of D on A. We obtain a compatible system R of Galois representations

ρp := rB,p ⊗V :GQ →GL4(Qp).

Because V is induced from GK, it follows that the characteristic polynomials of Frobenius
of this representation all have coefficients in Q. It now suffices to show that ρp preserves
a symplectic form with inverse cyclotomic similitude character. The argument proceeds
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exactly as in §10.4.1, except now we have the isomorphism ∧2V 	 χK/Q. In particular,
the trivial character is a summand of Sym2 V, and thus ρp preserves a symplectic form
with similitude character ε−1. The representations ρp do not arise from abelian surfaces
over Q, since that would contradict the Tate conjecture for abelian varieties [Fal83].
Moreover, they are easily seen to be modular. Hence these give counterexamples to the
original paramodular conjecture.

For an explicit example, one could take B to be the modular abelian surface which
is a quotient of J0(243) with coefficient field Q(

√
6) (see [Cre92, Table 3]), which is

geometrically simple and obtains quaternionic multiplication over Q(
√−3). Then take

any non-Galois invariant quadratic character χ of Q(
√−3), and let A=ResK/Q(B⊗χ).

In light of Lemma 10.3.2, Brumer and Kramer have formulated the following
natural modification of the original paramodular conjecture (see [BK19]):

Conjecture 10.4.3 (Paramodular Conjecture of Brumer–Kramer). — Let AN denote the set of

isogeny classes of abelian surfaces A/Q with EndQ A= Z and conductor N, and BN the set of isogeny

classes of fake abelian surfaces (QM abelian fourfolds) B/Q of conductor N2 with EndQ B an order

in a non-split quaternion algebra D/Q. Let PN denote the set of holomorphic weight 2 paramodular

forms f of level N up to nonzero scaling which have rational Hecke eigenvalues and lie in the orthogonal

complement to the space of Gritsenko lifts. Then there is a bijection between the set AN ∪ BN and PN

such that

L(C, s)= L(f , s, spin) if C ∈AN and L(C, s)= L(f , s, spin)2 if C ∈ BN.

We conclude with some remarks on the possible existence of abelian fourfolds
which satisfy case (2) of Lemma 10.3.2 and additionally have no further endomorphisms
over C (such varieties will necessarily be geometrically simple).

Expected Lemma 10.4.4. — There exists a totally real field F, an indefinite quaternion alge-

bra D, and an abelian fourfold A/F with EndF(A)⊗Q= EndC(A)⊗Q=D.

Sketch. — Let D =
(−1, 3

Q

)
be the unique quaternion algebra over Q ramified

at (exactly) 2 and 3. Let OD denote the maximal order in D. In the standard way, one
may also write down an involution † obtained by conjugating the standard involution so
that trD/Q(xx†) is positive definite, and write down a non-degenerate alternating form ψ

on (O2
D)⊗Q which satisfies various compatibilities with †. Associated to OD in the usual

way is a Shimura stack (of level one) X parametrizing tuples (A, λ, ι) where A is an S-
abelian fourfold over S, λ is a principal polarization over S, and ι :OD → End(A) is an
injective homomorphism such that the Rosati involution induced by λ restricts to † and
such that ψ is compatible with the polarization on homology as an OD-module. X is a
smooth Deligne–Mumford stack over Q with a single geometric component (cf. [KR99]).
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The complex points X(C) are uniformized by the Siegel upper half space of dimen-
sion 3, and the generic point of X over C has endomorphisms precisely by OD (see §9.9
of [BL04]).

By [Mil79], there exists an abelian surface B/C with EndC(B) ⊗ Q = D, that
the Rosati involution on End B is x �→ x†, and such that the restriction of scalars of B
from C to R gives a point in X(R). (Another way to view this is to consider X as a GSpin
Shimura variety associated to a 5 dimensional quadratic space as in [KR99], and then
signature (1, 2) subspaces will give Shimura curve subvarieties.)

This is not quite sufficient, however, to guarantee a point over X(F) for a totally
real field F with the correct endomorphisms, nor even a point over X(Q), since one
has to remove from X(C) a countable union of proper Shimura subvarieties, which
might a priori exhaust the Q-points of X. Moreover, due to the stackiness of X, there
are issues comparing fields of definition versus fields of moduli. We therefore employ a
trick already used in the proof of Theorem 10.2.1. Namely, impose level structure by
choosing a large prime p > 3 and fixing a surjective representation ρ :GQ →GSp4(Fp)

with inverse cyclotomic similitude character. (Such representations are abundant — one
source are the duals of the p-torsion of abelian surfaces over Q.) Then X admits a
geometrically connected cover X(ρ) defined over Q with level structure correspond-
ing to A[p]∨ = ρ ⊕ ρ, with a suitable choice of polarization and compatible action
of (OD ⊗Zp)/p= (M2(Zp))/p=M2(Fp).

The variety X(ρ) is a fine moduli space which is now a smooth variety over Q
with real points, since the point ResC/R(B) considered above has the appropriate level
structure over R. Employing the theorem of Moret-Bailly [MB89], we may deduce the
existence of a totally real field F and a corresponding abelian variety A/F such that F is
disjoint from the splitting field of ρ. Because X(ρ) is a fine moduli space, the variety A
has endomorphisms by OD over F. It now suffices to show that it has no further endomor-
phisms over C. The dual of the Tate module of A decomposes as a Galois representation
as ρ ⊕ ρ where ρ :GF →GSp4(Zp) is a lift of ρ. Since p≥ 5, the assumption that ρ has
surjective image implies that ρ also has surjective image. However, if A admitted extra
endomorphisms over any extension of F, then the image of ρ restricted to some open
subgroup would lie inside a proper algebraic subgroup of GSp4(Qp), contradicting the
fact that image contains an open subgroup of GSp4(Zp). �

It would be interesting to know whether (for suitable choices) these varieties have
points over Q which correspond to A/Q with EndC(A) ⊗ Q = D, but this is not so
easy to determine by pure thought. However, the specific X chosen above (ramified at
only 2 and 3) is possibly the most likely choice to be rational, since it corresponds to the
indefinite quaternion algebra D/Q of smallest discriminant. The construction of Nori
in §9.4.4 suggests that, for this D, the moduli space is at least geometrically rational.
Note, however, that there will be field of moduli issues when one works at level one, so
even the rationality of this space over Q does not imply the existence of such A.
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10.4.5. Cremona’s question. — We finally consider two 2-dimensional irreducible
compatible systems S of representations of GK for some quadratic extension K/Q, with
inverse cyclotomic determinant, Hodge–Tate weights (0, 1), and coefficients in Q. Note
that, for such a family S , there is a corresponding family R= Ind

GQ

GK
S of 4-dimensional

symplectic representations with inverse cyclotomic similitude character. An argument
very similar to (but easier than) Lemma 10.3.2 shows that (assuming all conjectures) ei-
ther S comes from an elliptic curve, or it arises from a so-called fake elliptic curve, namely,
an abelian surface B/K with EndK(B) ⊗ Q = D for some indefinite quaternion alge-
bra D. The latter can exist only when K is an imaginary quadratic field. Conjecturally,
such compatible systems are in bijection with cuspidal cohomological π for GL(2)/K
with trivial central character and Hecke eigenvalues in Q.

One source of such B/K is to take abelian surfaces over Q of GL(2)-type which
acquire quaternionic multiplication over K/Q. Assuming the Hodge conjecture and the
standard conjectures, it follows that [Cre92, Question 1′] (cf. [Cre84, Conjecture, p. 278])
is equivalent to asking that all fake elliptic curves B over K descend to Q after twisting
by some quadratic character (equivalently, B is isogenous to a twist of Bσ for the non-
trivial element σ ∈ Gal(K/Q)). We call such B non-autochthonous because it implies that
the corresponding conjectural π arises via functoriality from a smaller rank group (cf.
footnote 2 of [AGM20]). In this section, we show that the answer to this question is false,
namely, we construct autochthonous fake elliptic curves B/K. If one takes the restric-
tion of scalars A = ResK/Q(B) of such surfaces, then the fourfolds A give rise to further
examples in opposition to the original paramodular conjecture.

We continue to let D be the quaternion algebra ramified at precisely 2 and 3.
The Shimura curve giving rise to fake elliptic curves with endomorphisms by a maximal
order in OD has genus zero, and is well-known (see for example [BG08, Thm. 11]) to be
isomorphic over Q to:

X2 +Y2 + 3Z2 = 0.

Moreover, more usefully for our purposes, Baba and Granath in [BG08] give ex-
plicit models for genus two curves with endomorphisms by OD. For a certain pa-
rameter j, they write down a model ([BG08, Thm. 15]) of a genus two curve C
over Q(

√−6j) such that its endomorphisms are all defined (by [BG08, Prop. 19])
over K :=Q(

√−6j,
√

j,
√−27(j + 16)). With a view to choosing K=Q(

√−6), we let

Z= 3
√

j, X=√−(27j + 16), Y= 4,

and look for solutions to the equation above with X, Z ∈ Q(
√−6). One such solution

is given by j = −32/27, but the corresponding surface is not autochthonous. Thus, we
parametrize the conic and choose a random such point. Without making too much effort
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to optimize the height of j, one finds that

(10.4.5) j = 4(1+ 2
√−6)

27

is a suitable point.

Lemma 10.4.6. — Let C be the following genus two curve:

y2 = a0 + a1x+ a2x2 + a3x3 + a4x4 + a5x5 + a6x6,

where ai are given by the following table, where η= 1−√−6:

i ai

0 210 · η6 · (√−6− 4)

1 210 · η6 · 3
2 27 · η4 · (9√−6+ 24)

3 −28 · η4

4 24 · η2 · (−9
√−6+ 60)

5 24 · η · 3
6 −2 · √−6

The sextic has discriminant 290 ·36 · (1−√−6)30 · (2−√−6)6. Let B= Jac(C)/Q(
√−6), and

let A=ResQ(
√−6)/Q(B). Then EndQ(A)⊗Q=D and EndC(A)⊗Q=M2(D), where D/Q

is the quaternion algebra ramified at precisely 2 and 3. Then B is autochthonous, and B gives rise

to an irreducible 2-dimensional compatible system of Galois representations S of GQ with Hodge–

Tate weights (0, 1) and inverse cyclotomic determinant, and A gives rise to a 4-dimensional compatible

system R of 4-dimensional p-adic Galois representations of GQ with coefficients in Q unramified outside

of {2, 3, 5, 7, p}, each of which is absolutely irreducible and symplectic with inverse cyclotomic multiplier.

Proof. — Let K = Q(
√−6). The curve C is the specialization of the curve

in [BG08, Thm. 15] to the parameter j as in equation 10.4.5, and

s=√−6j = −2
√−6+ 4

3
, t =−2(27j + 16)=−16

√−6− 40.

By [BG08, Prop. 19], we deduce that the endomorphisms of C are defined over the
field K(

√
j,
√−(27j + 16)) = K. We now show that B is autochthonous. Let p =

(11,
√−6 − 4) and q = (11,

√−6 + 4). Then the curves X1 = C(OK/p) and X2 =
C(OK/q) over F11 are given explicitly as follows:

X1 : y2 = 3x6 + 3x5 + 2x4 + 10x3 + 8x2 + 9x,

X2 : y2 = 8x6 + x5 + 10x4 + 6x3 + 3x2 + 4x+ 4.

We compute the zeta functions using magma (see [BCGP21]) to be as follows:

Z(X1, s)= (1− 2p−s + p1−2s)2

(1− p−s)(1− p1−s)
, Z(X2, s)= (1− p−s + p1−2s)2

(1− p−s)(1− p1−s)
.
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If B were autochthonous, then in particular the zeta functions of X1, X2 would differ by
a twist by a finite order character, but this is impossible since 2 �= ±1.

If p > 3, then p splits in D, so there are Galois representations

rp :GK →GL2(Qp)

with Vp(B)∨ ∼= rp ⊕ rp. For all p, there also exist corresponding representations r̃p :GK →
GL2(Qp) such that, for p > 3, the representation r̃p is the representation obtained from rp

by extending scalars. We now prove that EndC(B)⊗Q=D. If this were not true, then B
would geometrically have to be isogenous to E× E for some elliptic curve E with com-
plex multiplication. This implies that B itself has complex multiplication over C, which
implies that the representations rp are potentially reducible. But as the representations rp

have distinct Hodge–Tate weights, if they become reducible they do so over a quadratic
extension. This quadratic extension L/K must be ramified only at primes of bad reduc-
tion of B, and for p which are inert in L/K, one must have ap = 0. But this can be ruled
out by computation (the only prime p of norm less than 1000 with ap = 0 has norm 97).

Hence EndC(B)⊗Q=D and EndQ(A)⊗Q=D, where A= ResK/Q(B). It also
follows that the representations rp and r̃p have inverse cyclotomic determinant (as oth-
erwise they would be isomorphic to their twists by a finite order character, and thus
potentially reducible). Moreover, with ρp := IndQ

K r̃p, one has

∧2ρp = As(̃rp)⊕ ε−1 ⊕ ε−1 · ηK/Q, Sym2 Ind
GQ

GK
ρp = Ind

GQ

GK
Sym2 r̃p,

and thus ρp is absolutely irreducible and can be chosen to have image in GSp4(Qp) with
inverse cyclotomic similitude character. Finally, the characteristic polynomials of Frobe-
nius will, by construction, be degree 4 polynomials with coefficients in Q. �

Since one expects the compatible system S to be modular (it is certainly po-
tentially modular, by [ACC+18]), it follows that Cremona’s question [Cre92, Ques-
tion 1′]) is incompatible with standard modularity conjectures. (Similarly, the modularity
of R= Ind

GQ

GK
S is incompatible with the original paramodular conjecture, although we

have already shown the latter to be false.) Of course, from the discussion above, there
are natural modifications that one could make to Cremona’s question (along the lines of
Conjecture 10.4.3) — namely, to include all fake elliptic curves over K, autochthonous
or otherwise.

One can presumably show that the 2-dimensional GK-representations r̃p over the
field K=Q(

√−6) arising from B= Jac(C) are modular for GL(2)/K. As in the proof
of Lemma 10.3.1, we would then obtain a cuspidal cohomological automorphic repre-
sentation π for GL(2)/K with trivial central character and rational eigenvalues. Since π

does not arise (up to twist) from base change, this would answer in the negative [Cre92,
Question 1′], because the existence of a corresponding elliptic curve E/K would be in-
compatible with the existence of B by Faltings’ isogeny theorem [Fal83].
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The modularity of the representations r̃p can in principle be established using the
Faltings–Serre method (cf. [BDPcS15]). Possibly some computational advantage would
be gained by replacing C with a curve obtained from a more careful choice of generic
point on the Shimura curve (in order to work at a manageable level). As it turns out, Cia-
ran Schembri [Sch19] has independently found examples of autochthonous fake elliptic
curves which he has verified are modular.
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