
Aeroelastic Simulation of High-Aspect Ratio Wings with Intermittent
Leading-Edge Separation∗

Yinan Wang†, Xiaowei Zhao‡

University of Warwick, Coventry CV4 7AL, United Kingdom
Rafael Palacios§

Imperial College, London SW7 2AZ, United Kingdom,
Keisuke Otsuka¶

Department of Aerospace Engineering, Tohoku University, Sendai 980-8579, Japan

We present a medium-fidelity aeroelastic framework for computing intermittently separat-

ing 3D flows around high-aspect ratio wings with a significantly reduced computational cost

than CFD-based method. To achieve that, we propose a modified 3D vortex panel method with

leading-edge separation controlled by leading-edge suction parameter theory, and its incorpo-

ration in a coupled aeroelastic solver for the dynamic response of these systems. Numerical

verifications and simulations are presented on both attached and separated aeroelastic test

cases, demonstrating the method on post-flutter limit-cycle oscillation of a cantilever wing, and

leading-edge separation on a deploying wing a complex kinematic response. In both cases we

were able to capture 3D interactions on intermittently separating dynamic flow fields using a

low computational cost.

Nomenclature

Symbols

A panel influence coefficient matrix

A structural A-matrix

A Eldredge function parameter

A0 leading-edge suction parameter

A0,crit critical leading-edge suction parameter

a distance between e.a. and a.c.

B structural B-matrix
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b panel binormal vector

C(k) Theodorsen’s lift deficiency function

c chord

E structural E-matrix

fA structural external forces

G structural G-matrix

GA,GC,GS operators in coupled aeroelastic system

h heave

K Eldredge function parameter

k panel tangential vector

k reduced frequency

M,P coefficient matrix

n normal vector

p pressure

r inertial position of structural nodes

T inertial orientation of structural nodes

t time

U∞ freestream flow speed

u,v velocity vector

v∞ freestream velocity

α angle of attack

β displacement body thickness

Γ circulation

γ vorticity

δ panel size parameter

θ chordwise location on aerofoil using 1 − cos mapping

λ distance between c.m. and e.a.
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ρ density

ξ global coordinate

Φ velocity potential

ω angular velocity

ω angular frequency

Subscripts

i, j index

L on the lower surface

m,n, p panel indices

U on the upper surface

u panel u-direction

v panel v-direction

w wake

∞ freestream

+ panel in the positive tangential direction

− panel in the negative tangential direction

Superscripts

LE at leading-edge

TE at trailing-edge

Symbols

Û• temporal derivative

•̃ cross-product operator

| |•| | norm

bold a vector of quantities (in a matrix-vector equation)

I. Introduction
The simulation of unsteady aeroelastic response is very important in the design and control of very flexible, morphing,

or deployable wings and other lifting surfaces. Despite the continuous growth of processing power, the computational
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requirement for CFD simulations of unsteady aerodynamic response for full-size aero-structures is still high by today’s

standards, especially for high-Reynolds flows with significant separation. As a result, potential flow methods, such as the

unsteady vortex-lattice method and vortex panel method, remain a powerful category of low-order methods in analysing

the low-speed dynamic aeroelasticity of slender lifting surfaces, including HALE aircraft[1, 2], horizontal-axis wind

turbines[3, 4] and helicopter rotor blades[5].

Pure potential flow models lack the ability to account for the nonlinearity in the lift curve for attached flows, and

stall for separated flows. Both are the result of boundary layer physics and are key to simulating limit-cycle oscillations

and other unsteady aeroelastic responses. However, simulating these phenomena requires flow information that is not

directly available from inviscid solutions.

A common approach to address this issue is to partially replace aerofoil data in potential flow solutions with

steady or unsteady reduced-order models built using data from either high-fidelity CFD simulations or experimental

measurements. Meanwhile the three-dimensional interactions between them is still retained using lifting-line type

corrections [6–8]. Leishmann-Beddoes[9, 10] or ONERA[11, 12] are two most widely used dynamic stall models found

in these applications. However these approaches lose the predictive capability that made panel methods attractive.

Within the framework of potential flow models, approaches to combine boundary layer theory with 2D or 3D

inviscid formulation had great success before advances in computational power permitted the widespread adoption of

CFD simulation. XFoil[13, 14] is perhaps the most well-known example in this area. These formulations typically use

transpiration velocity[15] or displacement thickness[14] theories to couple classical one-dimensional boundary layer

theory with a potential flow model. On the other hand, it is well-established that dynamic loads from fully separated

flows can be modelled with vortex shedding[16] in an inviscid solution. For streamlined bodies, this is complicated by

the need to predict the onset of separation, which, again, requires tuning by high-order simulations or experimental data,

or for the boundary layer to be modelled in detail. It is worth noting that incorporating even the most basic boundary

layer equations necessitates elaborate numerical schemes featuring strong coupling between the inviscid solution and

the boundary layer equations, in order to avoid numerical instability near stagnation points including trailing edge or any

separation point[15].

Efforts to incorporate separation criterion using the boundary layer theory in 3D unsteady vortex-lattice method

(UVLM) or panel methods have been made previously[17]. A recent work by Ramos-Garcia[3] has presented a coupled

aeroelasticity framework for horizontal-axis wind turbines. It uses a fully coupled 2D boundary-layer / unsteady panel

solver with additional correction for the effect of radial flow on the boundary layer in cylindrical coordinates. The

model is able to predict the onset of quasi-static separation bubbles, with the separation point predicted by parameters in

the boundary layer, and has obtained very good agreement with experimental data. Meanwhile, Prasad et al[18] have

proposed a similar method that models separation with dynamic vortex shedding in a panel solver.

Ramesh et al[19] has proposed the critical leading-edge suction parameter (LESP) to predict the occurrence of
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Fig. 1 Definition of a vortex panel used in this work. The normal vector points outwards from the page.

dynamic separation and the strength of the separated vortex at the leading edge (LE). The parameter is based on the

behaviour of the boundary layer near the leading edge, but can be used without the need to apply a full boundary-layer

model. It is tuned using high-order simulations and is particular to an aerofoil at a given Reynolds number. It has been

demonstrated that the LESP theory is able to capture the lift, drag and moment responses in 2D dynamic stall cases for a

thin aerofoil to a high accuracy, when used together with a discrete-vortex method .

In this work, we present a coupled aeroelastic solver for intermittently separating flows. By using a 3D vortex

panel formulation, we extend the LESP theory to three dimensions and incorporate the formulation in an unsteady

aeroelasticity solver. Attention is paid to the treatment of reattachment in the extension to 3D. Numerical cases will

then be used to demonstrate this method, including a folding wing deployment, as well as stall flutter and limit-cycle

oscillation on slender wing.

II. Aerodynamic Formulation
In this section, we discuss the inviscid aerodynamic formulation (more precisely, the unsteady vortex panel method)

used in this work, as well as separated flow modelling using the LESP parameter. Most part of the formulation follows

the standard panel method and is included here for completeness. Only minor modifications are made to the numerical

scheme in order to achieve better convergence at relatively low discretisations.

A. Lattice Discretisation

Consider a lifting surface in a freestream flow u∞(t) and subject to external turbulent velocity field vturb(ξ, t). In

the unsteady vortex-lattice method, the bound vortex sheet around a lifting surface is discretised into a mesh consisting

of M quadrilateral vortex rings, or constant strength doublet panels, of strength Γm(t), where m ∈ [1,M]. The corners

of the m-th panel are located at coordinates ξm,1(t), ξm,2(t), ξm,3(t), and ξm,4(t) respectively. The corner nodes move
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Fig. 2 Illustration of discretised vortex panels, wingtips, and the trailing edge

in the inertial frame with velocities Ûξm,1 to Ûξm,4, here noted as vn
m,1 to vn

m,4.

A collocation point, at which boundary conditions are enforced, is defined on each bound panel, with an associated

unit normal vector for the panel nm. The in-plane tangential vectors are defined as km,u and km,v , perpendicular to

vectors connecting the midpoints between opposing edges, bm,u and bm,v . The panel size in the two tangential directions

are defined as (| |km,u | |, | |km,v | |). Figure 1 is an illustration of the panel definition presented here.

In addition, there are also 2N newly shed trailing-edge panels where N is the number of segments in which the

trailing edge is divided into, and P(t) wake panels in the wake vortex sheet. These have vorticities of ΓTE
n (t) and Γwp (t)

respectively, where n ∈ [1,2N] and p ∈ [1,P]. The trailing-edge (TE) panels and wake panels are defined in the same

way as the lifting surface panels, only that they lack an associated collocation point and that the nodes of the wake

panels are not rigidly bound to the structure and move with the local flow velocity.

The placement of the collocation point is dependent on the sizes of the adjacent panels in order to achieve faster

convergence with non-uniform panel sizes. The location of the collocation point ξm,c on the m-th panel is expressed as

a linear combination of its corners as

ξm,c =

(
δm,u 1 − δm,u

) ©­­­«
ξm,1 ξm,2

ξm,4 ξm,3

ª®®®¬
©­­­«

δm,v

1 − δm,v

ª®®®¬ , (1)

where δm,u and δm,v are size parameters in the in-plane u and v directions, written as

δm,u =
| |km,u | | + | |km,u− | |

| |km,u+ | | + 2| |km,u | | + | |km,u− | |
, (2)

δm,v =
| |km,v | | + | |km,v− | |

| |km,v+ | | + 2| |km,v | | + | |km,v− | |
. (3)

Here the subscripts + and − indicate adjacent panels in the positive and negative tangential directions respectively.

The instantaneous flow field is given as the superposition of the freestream flow, incoming turbulence, and the
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Fig. 3 Illustration of the shedding from trailing edge.

induced velocity fields from singularity elements (including lifting surface, trailing edge, and wake panels) and the

wake. The induced velocity field generated by the m-th vortex ring (with corners located at ξm,1(t), ξm,2(t), ξm,3(t),

and ξm,4(t)) at position ξ is specified by the aerodynamic influence coefficient based on Biot–Savart law[20] and takes

the form of Am(ξ)Γm. The velocity field is thus written as

vind(ξ, t) =
∑
m

Am(ξ, t)Γm(t) +
∑
n

ATE
n (ξ, t)Γ

TE
n (t) +

∑
p

Aw
p (ξ, t)Γ

w
p (t) + u∞(t) + vturb(ξ, t). (4)

B. Boundary Conditions and Time Marching

Anumber of boundary conditions compatiblewith potential flowmethods have been detailed in the literature[3, 14, 20].

For this work, the zero normal flow condition will be enforced at every collocation point. Thus at each collocation point,

(vm − vcm) · nm = 0, (5)

where vcm is the inertial velocity at the m-th collocation point, given by the weighted mean of the inertial velocity of the

associated panel corner points vnm.

We consider aerofoils with a finite but small trailing-edge thickness. As shown in figure 3, no vortex panels or

collocation points are placed across the trailing edge, rather the trailing edge gap is bridged by two trailing vortex panels

forming the newly shed vortex sheet. The Kutta condition[20] requires all vorticity to be shed at the TE, thus the total

vorticity along the trailing edge is zero everywhere and for every pair of trailing edge panels, eq. (6), is enforced. In

addition, another equation, eq. (7) is enforced to remove the ambiguity associated with the strengths of upper and lower
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trailing edge panel. Therefore for each pair of trailing edge panels, the trailing edge boundary conditions are written as

(ΓU − Γ
TE
U ) − (ΓL − Γ

TE
L ) = 0, (6)

Γ
TE
U + ΓTE

L = 0. (7)

In this work, we use the method suggested by Ramesh[19] to place the newly created panel nodes that was shed from

the trailing edge. At each timestep, the node for the newly created vortex panel is placed at one-third of the distance

from the shedding edge to the end of the most recently shed wake panel. Note that for a flat plate at low angles of attack,

this is equivalent to placing the new panel edge at a distance of |u∞ |dt/2 from the trailing edge in a central-difference

implicit scheme. If no vortex was shed at the previous timestep, then this panel is placed at |u∞ |dt/2 in the tangential

direction from the trailing edge. This scheme is numerically stable and removes the explicit dependence on the global

quantity u∞.

At each timestep, the flow field is obtained by solving the matrix-vector equation for the unknown surface panel

strengths Γ and trailing edge panel strengths ΓTE using influence coefficients, non-peneration and trailing edge boundary

conditions. The matrix-vector equation assumes the form of

©­­­«
Min f

Mkutta

ª®®®¬
©­­­«
Γ

ΓTE

ª®®®¬ =
©­­­«

vrhs

0

ª®®®¬ , (8)

of which Min f ∈ R
M×(M+2N ) contains the non-penetration conditions (5) and Mkutta ∈ R

2N×(M+2N ) enforces the Kutta

conditions (eqs. (6) and (7)).

Upon resolving the flow field at each timestep, the wake panels corner nodes are advected with a first-order explicit

scheme,

ξ(ti+1) = ξ(ti) + vinddt, (9)

by computing vind at each corner node’s locations using equation (4). During the advection process, each pair of upper

and lower trailing edge panels are also merged into one new wake panel with strength ΓTE
U − ΓTE

L . The sign is due to the

definition of the panel normal direction.

Finally, due to the non-penetration boundary condition, any singularity that strictly follows its local induced velocity

will remain outside of any solid body in a Lagrangian formulation. However, in a vortex ring panel formulation, the

condition is only enforced at collocation points themselves. A number of treatments have been proposed to treat vortex

particles (or in the case of UVLM, panel corner points) that cross into solid bodies[21]. In this work, a displacement

body around solid bodies is defined by displacing the body mesh by β|B|n̂ where n̂ is the local normal direction, B is
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the local panel size and β is a thickness parameter specifying the size of the displacement body. Any panel corner that

crosses the displacement body during advection will be reflected at the point of crossing.

C. Computation of Aerodynamic Load

The local pressure p(ξ, t) at a position ξ on the aerodynamic surface is given by the unsteady Bernoulli’s equation

as a function of the local relative velocity vrm and the potential function Φ as

p(ξ, t) − p∞ = −ρ
(
vr (ξ, t)2

2
+

dΦ(ξ, t)
dt

)
. (10)

The constant-strength doublet panel used in this work is a low-order element. As a result, the flow field may be

inaccurate when evaluated at a point within one panel width from the aerodynamic surface. To address this in this work,

the flow velocity is computed at collocation points as[20]

vext ,m =
1
2

(
Γm,u+ − Γm,u−

| |km,u | |

bm,v

| |bm,v | |
+
Γm,v+ − Γm,v−

| |km,v | |

bm,u

| |bm,u | |

)
+ vind,m, (11)

and the relative velocity to the local aerodynamic surface is given by vrm = vext ,m − vcm.

The surface potential Φ is cast as a pseudoinverse problem where the potential at adjacent collocation points are

related by their local surface velocities vext by

Φm,u+ − Φm,u = (vext ,m,u+ + vext ,m)/2 · (ξm,u+,c − ξm,c). (12)

Accounting for the connectivities between panels, the above relation results in a set of equations relating the vector

array with the velocity potential at every collocation point Φ to the flow field vext as

P1Φ = P2vext . (13)

This equation is solved at every timstep by taking the pseudoinverse of P1. The time derivative of Φ is then computed

as a first-order finite difference.

D. Separation and the Critical Leading-Edge Suction Parameter

In this section, we shall discuss the augmentation of the standard vortex panel method with leading-edge separation,

whose separation criterion is modelled using the critical leading-edge suction parameter first introduced by Ramesh[19].

First, a brief description of the original 2D theory will be provided, which will be followed by its extension to 3D lifting

surfaces.
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1. The LESP Model in 2D

In thin-aerofoil theory, if the flow around an aerofoil is regarded as being caused by a vorticity distribution γ(θ)

along its chordline, then the distribution can be written in an expansion as

γ(θ) = 2U∞

[
A0

1 + cos θ
sin θ

+

imax∑
i=1

Ai sin(iθ)

]
, (14)

where θ is related to the distance along chord from the leading edge x by x = c(1 − cos θ)/2.

Ramesh[19] defined the leading-edge suction parameter of the aerofoil at a particular instant in time as the value

of A0. The LESP model states that leading-edge separation will take place whenever A0 exceeds a critical value,

the ’critical LESP’, or A0,crit . The separation will shed an amount of vorticity from the leading edge such that the

instantaneous A0 is reduced to the value of A0,crit . The value of A0,crit itself is a function of the aerofoil shape and

Reynolds number, but which is independent of the kinematics at which the aerofoil is moving. As flow separation can

occur in both positive and negative angles of attack, there exist A0+,crit and A0−,crit for the two directions, which will

be of the same magnitude if the aerofoil is symmetric.

The original work by Ramesh[19] describes how the value of A0,crit can be identified for a given flow condition

by resolving the flow field, more precisely, the skin friction coefficient, at the leading edge of heaving and pitching

aerofoils in detail using high fidelity CFD simulations. One may also match the value of A0,crit so that the dynamic

separation response matches known experimental data for given flow conditions and kinematics.

It was also pointed out that, for an aerofoil with finite leading-edge radius of curvature, the value A0 is proportional

to the tangential velocity at the leading edge. The critical LESP can thus be defined using this tangential velocity

instead. The Fourier expansion was used in the original work as it can be computed from an integration of induced

normal velocities on a thin aerofoil. For the current work, the leading-edge tangential velocity, vtanLE is computed

explicitly and will be used in the LESP theory instead. That is, we compare vtanLE against given values of vtanLE+,crit

and vtanLE−,crit . Note that under the LESP theory, the Kutta condition can not be enforced at the leading edge as the

shedding process is simplified. In reality the flow around a leading edge with finite curvature does not separate precisely

from the leading edge but the LESP still serves to predict the correct amount of vorticity shed into the flow.

2. 3D Implementation of the LESP Model

In the extension of the theory to three dimensions, we make the assumption here that separation at the leading

edge depends only on the local behaviour of the boundary layer there, and that the separation condition will remain

equally valid in 3D if one considers a 2D section of the lifting surface around the leading edge. In the current 3D

implementation, leading-edge separation is modelled as an additional vortex sheet shed from the leading edge. Rather

than enforcing the Kutta condition, the strength of the shed vortex sheet at the leading edge is determined instead by
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Fig. 4 Implementation of the separated vortex sheet, as well as its vortex ring representation, marking
individual spanwise sections. This figure shows the treatment of the spanwise component, and how it relates to
spanwise TE vortex lines.

the critical LESP criterion. Thus, the strength of the shedding at every spanwise location is given by Γt at time t that

minimises the value of | |Γt − Γt−1 | | while satisfying vtanLE−,crit < vtanLE < vtanLE+,crit .

A significant point in the application of separation to 3D is treating the chordwise boundary of the separation region.

Here, we have modelled the separated vortex sheet as a horseshoe-shaped vortex sheet that always extends from the

trailing edge (illustrated in Figure 4). Thus it is assumed that the separation region always initiates from the trailing

edge and extends towards the leading edge. This assumption automatically satisfies the continuity of vorticity condition.

Furthermore, this scheme also fulfils the requirement that when the separation stops, the model eventually reverts back

to an attached-flow model, and does so without an added re-attachment formulation. It is easy to see that continuity

condition dictates that the strength of the newly shed chordwise vortex sheet between the n-th and n + 1-th section

should be given as Γn − Γn+1, where Γn and Γn+1 are the strengths of the newly shed LE vortex sheet of the two sections

respectively.

One should note here that the strength of the separation in the chordwise direction is based on the continuity of

vorticity argument. Near the wingtip, significant spanwise flow could significantly modify the behaviour of the boundary

layer and affect the applicability of the 2D LESP model itself. However, such modification to the LESP theory is outside

of the scope of this work.

3. Numerical Acceleration

Inviscid method based on singularity solutions form N-body problems and are of complexity O(N2). Both the

fast multipole method (FMM) and the particle-particle, particle-mesh method (PPPM or P3M) are established ways

to reduce the complexity of the N-body problem to O(N log N). In this work we utilise the STFMM fast multipole

library[22] to accelerate the computation of wake-panel influence coefficients in every timestep.
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Fig. 5 Illustration of the variables in the structural model. The inertial frame is shown as the ’a’-frame.

III. Aeroelastic Integration
To complete the aeroelastic solver, we couple the aerodynamic solver to a structural model. A geometrically-exact

beam model is used as it is a natural choice for the class of problems where the proposed aerodynamic model is

applicable.

A. Structural Model

The structural model uses the intrinsic formulation for geometrically nonlinear beam dynamics developed in a

previous work[23], where the method and numerical implementation is detailed. A summary of the formulation will be

provided here for completeness.

The structure is defined as a collection of beams with linear elastic properties. At position s along the beam reference

line, the structural properties are defined using beam-equivalent sectional mass and compliance matrices Ms(s) and

Cs(s). The intrinsic states are sectional force and moment vectors fs(s, t) and ms(s, t) together with local velocity and

angular velocity vectors vs(s, t) and ωs(s, t), expressed in the local frame of reference. The structure is subject to

distributed external force fA(s, t).

The closed-form intrinsic beam formulation takes the form of

A(s)Ûx = B(s)x +G(s,x)x + E(s)fA, (15)

where the intrinsic state vector at location s is x = [ v>s ω>s f>s m>s ]
>, and the matrices A,B,E, and linear function

G are functions of the local beam properties M, C as well as connectivities. The nodal position r(s, t), and orientation

relative to inertial frame as rotation matrix T(s, t), are expressed as an integration of the intrinsic states as

Ûr = Tvs (16a)

ÛT = Tω̃s (16b)
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A modification from previous works on this formulation is the use of a backwards-Euler implicit time-marching

scheme in the integration of equations (15) and (16) in time, providing a stable numerical scheme for any timestep size.

B. Aeroelastic Coupling

In the aeroelastic coupling scheme, weak coupling is used in the current framework, thus the aerodynamic and

structural simulations are advanced alternately. We define a rigid-body connection on each aerodynamic node, connecting

to a corresponding structural node. At each timestep, the nodal ξ and vn on the aerodynamic panel mesh is evaluated

from the structural degrees of freedom vs, ωs, r and T at the associated structural reference node by the rigid-body

kinematic transformation. This takes the form of

(ξ |t,vn |t ) = GC(vs |t,ωs |t,r|t,T|t ), (17)

where GC is a kinematic transformation. The aerodynamic model described in II.A is first advanced as

fA |t+1 = GA(ξ |t, ξ |t−1,vn |t ), (18)

where GA an the aerodynamic operator. The surface potential history at the previous timestep,ξ |t−1, is required to

compute the derivative of ξ with time. Here the aerodynamic loads on the collocation points from the pressure

computation are distributed to the panel corner nodes, and transferred back to the structure as an externally applied

forces and moments fA. Finally the structural model from III.A is advanced as

(vs |t+1,ωs |t+1,γs |t+1,κs |t+1,r|t+1,T|t+1) = GS(vs |t,ωs |t,γs |t,κs |t,r|t,T|t, fA |t+1), (19)

where GS is a structural operator. The use of weak coupling greatly simplifies the numerical scheme and avoids

computing the Hessian for the aerodynamic model. This is justified as long as the timestep used is significantly smaller

than the frequency of vortex shedding and any structural response that such shedding excites.

IV. Numerical Results and Verification
In this section, we present numerical verifications of the attached and separated aerodynamic models and aeroelastic

coupling, followed by a simulation demonstrating the fully coupled aeroelastic solver using a folding wing deployment

example. All results presented here are computed on a 16-core workstation.

A. Leading-Edge Separation on 2D Aerofoils with Prescribed Motion

In the first part, we demonstrate the use of LESP with the use of a 2D discrete-vortex simulation. In order to

correspond with the 3D formulation presented in the previous sections, the aerofoil is discretised using point vortices,
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Fig. 6 Lift coefficient of an SD7003 aerofoil at Re = 30000 undergoing pitching motion about the leading edge.

which is the 2D equivalent to a vortex ring discretisation in 3D.

1. Pitching SD7003 aerofoil

As a first example, we demonstrate a model verification using a pitching SD7003 aerofoil. This case considers

the aerofoil pitching about the leading edge, with the pitch angle α following the Eldredge function[24], α(t) =

αmaxG(t)/max(G(t)). The Eldredge function G(t) is written as

G(t) = ln
(
cosh(aU∞(t − t1)/c) cosh(aU∞(t − t4)/c)
cosh(aU∞(t − t2)/c) cosh(aU∞(t − t3)/c)

)
, (20)

in which for a disturbance starting at t1, the other variables are written as t2 = A/2K + t1, t3 = πA/4K + t1, and

t4 = πA/4K + A/2K + t1. In this work we have selected the parameters A = 11, αmax = 25◦, and K = 0.11. Ramesh[19]

identified the value of LESPc (A0) under the conditions given to be 0.18 using CFD simulations. This case has been

studied extensively by Ramesh and was used as an experimental validation for the LESP theory.

The aerofoil surface is discretised into 121 point vortices following the 1 − cos distribution. Figure 6 shows the

resultant lift experienced on the aerofoil. In this test case, leading-edge separation takes place after τ = 2. It can

be seen that the LESP implementation is able to capture the dynamic lift response when compared to experimental

measurements and CFD simulations[19].
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Fig. 7 Snapshot of vortices behind a heaving NACA0015 aerofoil at Re = 1100 and k = 1.0, and maximum
amplitude of 0.6 u∞. Axis in number of chords.

2. Heaving NACA0015 aerofoil

Here we illustrate the relation between vLE and A0 during leading-edge separation using a heaving NACA0015

aerofoil. At Re = 1100, the aerofoil experience stall by leading-edge separation and the the critical LESP value A0

at this Reynolds number is quoted as 0.2, according to previous matching with high-order simulations[19]. Here the

aerofoil undergoes heave motion at a reduced frequency of k = 1.0, with a maximum heave speed of 60% of the forward

velocity. Again a discretisation of 121 point vortex elements is used for the aerofoil. Figure 7 illustrates the resulting

wake vortices shed after the first cycle of the heaving motion.

Figure 8 plots the non-dimensional normal and tangential load exerted on the aerofoil, the value of the LESP A0

through the heaving motion. Cases with and without leading-edge separation modelling are shown for comparison,

and the effect of the leading-edge shedding on the aerodynamic loads is clearly seen. For the case with leading-edge

separation, the normal component of the aerodynamic force remains close to the attached flow case due to the vortex lift

generation mechanism from the nascent leading-edge vortex. However notable differences can be seen on the tangential

component that indicates a change in the lift direction resulting a reduction of the propulsive effect, i.e. drag, in heaving

motion due to the separation.

Figure 9 is a comparison of the computed value of A0 against vLE . It can be seen here that even for a thick aerofoil,

the two measures exhibit a nearly linear relationship, and thus either value can be employed in the computation of LESP.
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B. Flow around Slender Rectangular Wing

Next we use a high aspect ratio rectangular wing to verify both the attached and separated aerodynamics solutions

against known results. The wing used in this test case has chord c = 1 m and area A = 20 m2, and having the NACA0004

aerofoil. The wing is divided into a total of 120 panels chordwise around the aerofoil with cosine spacing, and 10 panels

spanwise. One additional row of panels is used to close the wing tips on both upper and lower sides. The simulations

use a non-dimensional timestep of 0.02/k for different values of the reduced frequency.

The fine chordwise discretisation in this example is due to the high reduced frequency (k = 4) attained in the linear

simulation. As will be shown in the verification against both attached and separated flow cases, this discretisation leads

to converged results.

1. Attached Flow under Heave

In this simulation, the wing is subject to small-amplitude sinusoidal heaving motion. The resulting aerodynamic

forces will be compared against 2D theoretical solution from Theodorsen’s function.

For a (high aspect ratio) wing of chord c and area A subject to uniform freestream velocity v∞ (i.e. with a flow

speed of | |v∞ | | in the chordwise direction), and undergoing heaving motion of the form h = h0eiωt , 2D thin aerofoil

theory gives the form of the resultant lift on the wing as

L = −πρA| |v∞ | |(C(k) + ik/2) Ûh (21)

where C(k) is the Theodorsen’s lift deficiency function and the reduced frequency k is defined as ω = 2k | |v∞ | |/c
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Figure 10 shows the magnitude and phase of the resulting non-dimensional lift response for the sinusoidal heaving

motion describe here, compared with the theoretical value of C(k) + ik/2, where the latter term arises from the added

mass. This test case demonstrated the validity of the attached flow solver.

2. Flow with Leading-Edge Separation

In the second part of the test case, we demonstrate the separated flow solution on the rigid version of the wing. Here

the wing suddenly experiences an impulsively started flow with 45 degrees angle of attack (the setup can be understood

to be the flow that is impulsively started). This test case stipulates that the flow separates completely from the leading

edge, making the value of LESPc (critical LESP) zero and reducing the leading edge to a Kutta condition.

Figure 11 shows the nondimentional normal force coefficient experienced at the central section of the wing, with 2D

inviscid CFD (Euler) results by Li[25] as comparison. The 45 degree starting flow case is very well validated in the

literature as a test case for both vortex and CFD methods. A good overall agreement is seen, but small oscillations are

also present in some parts of the response, due to a combination of low-order discretisation of the solid body as vortex

rings, and a lack of a finite vortex core in the current formulation. When singularity elements are advected close to

lifting surfaces, the rapidly changing induced velocities will lead to such oscillations. Cored vortices are not currently

used in this work as the STFMM fast multipole acceleration package does not support a finite vortex core.

Note here that flow in a truly inviscid fluid does not separate at all. However, due to finite discretisation in numerical

simulations, a small amount of numerical viscosity is always present in the inviscid CFD result used for comparison,

leading to full separation at the leading edge but without forming a viscous boundary layer of finite thickness.

Figure 12 is a convergence test for separated flow using the 45 degree case, over the same non-dimensional time

period. The figure shows relative error against the number of chordwise panel discretisation and timestep, using a fine

discretisation (non-dimensional timestep of 0.005, 240 panels) as baseline value. It can be seen that the discretisation

error is not sensitive to chordwise panel count, and that reducing timestep correlates with a lower error up to a value of

0.25, at which point the above-mentioned fluctuations account for the remainder of the error. Here we can conclude that

for the dynamic response of leading-edge separation on relatively thin aerofoils, a non-dimensional timestep of below

0.1 and a chordwise discretisation of more than 60 panels (total around the aerofoil) can be considered sufficiently

converged under the current numerical scheme. This discretisation will be used in the subsequent simulations.

Finally, figure 13 shows the chordwise pressure coefficient distribution at various times. The steady (ρ v2/2) and

unsteady (ρ dΦ/dt) contributions are also shown. It should be noted that in vortex-based formulations, the unsteady

pressure term is computed from the time derivative velocity potential, which appears as an integral of the surface

tangential velocities, as shown in (10). Thus, the addition of any constant term to the velocity potential will introduce a

change in the unsteady component of the surface pressure in the form of a spurious hydrostatic pressure. However, this

does not affect the load on closed bodies and can be safely ignored unless the exact values of surface pressure is sought,
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Fig. 11 Normal force coefficient for the suddenly started wing in 45◦ flow, compared with inviscid CFD
result[25].

in which case a line integral to a point on the body from a far enough location upstream will be required to establish a

relation against the reference pressure value. The test cases verify the validity of the 3D separated flow implementation

as well as numerical convergence of the discretisation used.

C. Aeroelastic Response of Cantilever Wing

In this section, the aeroelastic solution will now be demonstrated on the Patil wing. The Patil wing is a high aspect

ratio cantilever wing that is part of an aeroelastic test case, first proposed by Patil[26] and later used by Murua[27], that

describes a 32-m wingspan HALE UAV flying at at an altitude of 20km. In this work we will use its parameters in a

cantilever wing setup only. The parameters for the wing are presented in Table 2. It should be noted that a flat-plate

aerofoil was assumed in the original work, but here a NACA0012 aerofoil is used as the current implementation requires

a finite aerofoil thickness. As the case is static attached flow, 40 chordwise panels are used.

A 3D attached, quasi-static aeroelastic simulation is conducted. The test case[27] specifies the wing to be flying at

25 m/s in air with density of 0.0889 kg/m, and with angles of attack of 2◦ and 4◦. Due to the change of aerofoil from a

flat plate to NACA0012, the air density is scaled in this test case in order to compensate for the change in lift coefficient
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Semispan 16 m
Chord 1 m

Elastic Axis 50% chord
C.G. 50% chord
Mass 0.75 kg/m

Sectional inertia 0.1 kg·m
Out-of-plane bending stiffness EI2 1×104 Nm2

In-plane bending stiffness EI3 2×105 Nm2

Torsional stiffness GJ 5×106 Nm2

Table 2 Structural parameters of the Patil wing
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Werter[28].

(inviscid CLα = 6.88 for NACA0012 compared to 6.28 for a flat plate).

Figure 14 is a plot of the resulting bending deformation for the cases described above. These have been simulated as

a damped steady-state dynamic response. Due to the location of the elastic axis, the Murua wing is extremely sensitive to

torsional deformation and the 3D tip effect. It is well known that 2D strip theory fails to capture the correct deformation

in this verification test case despite the high aspect ratio of this particular wing. It can be seen from the simulation that

the deformations have been captured very well when compared to previous results by Werter[28] with thin aerofoil

UVLM, verifying the validity of the 3D attached aeroelastic solution.

D. Flutter and Limit-Cycle Oscillation on Goland Wing

The Goland wing [29] is a low aspect ratio rectangular cantilever wing whose flutter response serves as a standard

test case for linear aeroelastic simulation. This example will be used here to both verify the code and demonstrate the

simulation of limit-cycle oscillation.

The structural and aerodynamic parameters of the Goland wing are listed in Table 3. Here, λ is the distance between

the sectional centre of mass axis and the elastic axis (forward of the c.m.), whereas a is the distance between the elastic

axis and the aerodynamic centre (forward of the e.a.).

The Goland wing is defined as a flat plate aerofoil with the a.c. located at 25% chord. As the current model requires

non-zero thickness, a NACA0006 aerofoil is used to minimise the difference in CLα with the flat plate. The fluid is

assumed to be incompressible as in referenced works on this test case. In this test case, a separate simulation based on

geometrically-exact beam solver and a 2D panel method employing the critical LESP separation model is also used as a

comparison. For both models, the lifting surface is discretised into 60 chordwise panels and 8 spanwise segments. A
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Span 6.096m
Chord 1.8488m

Air density 1.02 kg/m3

Bending stiffness EI3 9.77×106 Nm2

Torsional stiffness GJ 0.99×106 Nm2

Mass density ρA 35.71 kg/m
Sectional inertia ρI1 8.64 kgm

Distance of e.a. to a.c., a 0.1463 m
Distance of c.m. to e.a., λ 0.18288 m

Aerofoil Ideal flat plate
Table 3 Properties of the Goland wing.

Model Vf , m/s ω f , rad/s
Present 2D, Intrinsic + vortex panel methods 150 70.0

Present 3D, Intrinsic + UVLM 165 69.7
Palacios et al.[31], Intrinsic + Inflow 141 69.8

Murua et al.[30], Displacement + UVLM 165 69.7
Table 4 Flutter velocities and frequencies of the Goland wing.

timestep of 0.001s is used, corresponding to a non-dimensional timestep of 0.08 at 150 m/s. The reduced frequency for

flutter is around 0.4.

1. Flutter

First, we present linear flutter result for 2D and 3D simulations which serves as a model verification against existing

results. The simulated flutter velocity and resulting flutter frequencies are shown in Table 4.

A number of effects can be seen in the comparison. The 2D strip theory formulations used in the referenced works

did not include the effect of added mass, and therefore resulted in a lower flutter velocity than the 2D vortex panel

method used here. Also, due to the absence of tip loss, the flutter velocity in all 2D simulation is significantly lower than

that in the 3D simulation, as a result of much higher aerodynamic loads at the wingtip. The 3D flutter velocity recovers

the results from previous simulations using UVLM[30].

2. Limit-Cycle Oscillation

If the flutter on the Goland wing is allowed to grow, a limit-cycle oscillation (LCO) will eventually establish itself.

A freestream velocity of 180m/s, beyond the flutter velocity of both 2D and 3D models, is used here to illustrate the

LCO. As the Goland wing did not originally specify an aerofoil or a Reynolds number, a critical LESP (A0) value of

0.15 is selected to demonstrate the effect of leading-edge separation.

In figure 15, the aerodynamic loads experienced at mid-chord are plotted for a location at half span along the
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Fig. 15 2D strip-theory aerodynamic load in inertial frame at half span about mid-chord. Black: linear small
disturbance. Red: fully attached flow. Blue: with separation. Also shown is the rotation of the wing section
during a period (dotted black line).

the beam, using data from the 2D strip theory simulation. The horizontal direction is defined as the direction of the

freestream flow. Here 2D data is used so that a fair comparison can be made using 2D fully attached flow, as well as

linear unsteady aerofoil theory (i.e. Theodorsen’s response), for the same kinematics in the LCO. Even when only the

attached flow is simulated, the shift in the direction of lift away from the aerofoil normal direction at large angles of

attack will introduce such an LCO, as can be seen between the difference of attached and linear results in horizontal

and vertical loads. In general this LCO is much higher in amplitude than what can be observed experimentally or if a

separated flow model is used, as nonlinear aerodynamic effects will set in long before this theoretical LCO (attached

aerodynamic force) is reached. In contrast, if leading-edge separation is modelled, its effect on the formation of LCO on

an aerofoil section can be briefly understood as follows. First, flow separation results in a much lower lift in general

after the initial separation transient than the attached flow value, reducing the energy extracted from the flow in each

oscillation cycle. A second effect is a shift in the (average) centre of lift towards the downstream direction when

separation takes place, as can be seen in the dramatic reduction in pitching moment. This serves to pitch the local

aerofoil back into the flow direction, also reducing the amplitude in the flutter mode. Whenever large instantaneous

angles of attack is present, both these effects counters the otherwise exponential growth of the unstable linear flutter

mode. This results in an LCO that reflects the onset of flow separation on each aerofoil section. An additional effect can

also be observed, that is, a very significant lag in the lift response (around 15% of the cycle period) arising from the
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Fig. 17 Strength of the leading-edge vortex shed at each timestep during a limit cycle.

formation and shedding of leading-edge vortices along the aerofoil surface.

As can be expected from the large difference between 2D and 3D flutter velocities, the results demonstrate that

the simulated LCO behaviour is also strongly affected by the 3D (spanwise) interactions. Figure 16 is a comparison

of the resulting limit-cycle oscillation by plotting the wingtip pitch angle. Although the results are simulated under

identical leading-edge separation criteria, one can immediately see that the 2D limit cycle exhibit a significantly larger

oscillation, up to 95 degrees as opposed to 40 degrees for the 3D simulation. The ability to capture the effect of the

spanwise interaction on the resulting behaviour is one of the key features of the proposed method. Despite the presence

of such interactions and visible rollup of the wingtip wake in the spanwise direction, only a small spanwise flow velocity

of less than 20m/s (for a freestream velocity of 180m/s) is observed on the leading edge itself, indicating that the 3D

interactions in this test case still consists mostly of wake-induced velocity in the normal or chordwise direction, in a way

similar to that in an attached UVLM simulation.

Figure 17 shows the strength of the newly shed leading-edge vorticity at each timestep. One can see that leading-edge

separation is present to some extent over most part of the limit cycle, indicated by a non-zero shed vorticity, which
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Fig. 18 Flow field visualisation of the limit-cycle oscillation on the Goland wing in 3D. Vorticity contours are
of 100, 10000 and 40000 s−1 from light to dark respectively.

agrees with the observation that the oscillation in sectional angle-of-attack is very high. Attached flow condition can be

observed for a very short period each time the shed vorticity crosses over. Figure 18 shows the vorticity distribution

isosurface at a typical instance in the limit cycle. It is created by converting the wake vortex ring elements into a

volumetric vorticity distribution. One should note that the figure is simply another way to render the wake in a panel

method. This is so that the actual vorticity distribution is shown rather than simply showing the structure of the vortex

elements themselves (as is normally done in panel formulations). The figure illustrates a number of flow features in the

limit cycle. One can see a sheet of newly formed leading-edge vortex envelopes most of the upper surface of the wing

but has yet to detach into the wake. Also visible is the wingtip vortex rolling up behind the upper wing surface at the tip

and interacting strongly with the wake further downstream. The low vorticity regions in the wake are shed at instances

where the local aerofoil is at small angles of attack.

E. Deployment of Folding Wing

In this final example, we consider the in-flight deployment of a low-aspect ratio folding wing system, described

first by Otsuka et al[32]. This case is selected to demonstrate the ability of the solver to simulate cases when there is
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Span per section 150 mm
Width 50 mm

Thickness 2 mm
Density 1420 kg/m3

Young’s modulus E 2.83 GPa
Torsional stiffness GJ 0.18 Nm2

Hinge stiffness 0.026 Nm/rad
Hinge torque at full extension 0.043 Nm

Initial fold angle 170◦

Table 5 Properties of the folding wing.

Fig. 19 Illustration of the folding wing system.

proximity between lifting surfaces.

The folding wing, shown in figure 19, consists of a cantilever wing section with a spring-loaded hinge in the middle.

The outboard section can be deployed from a initially folded state, rotating under the spring torque and eventually

forming a straight cantilever wing. Once straight, a lock then holds the outboard wing in place. The structural properties

of the setup are shown in Table 5. Here ’full extension’ refers to the state in which the outboard section is aligned with

the inboard section and which the tip is at maximum distance from the base of the cantilever. Note the non-zero hinge

holding torque at full extension.

In this simulation we selected the case where the freestream velocity is 5m/s, under which condition the speed

of the deploying section meant that significant separation will be taking place. A critical LESP value of 0.2 is used,

corresponding to a thin aerofoil approaching that of a flat plate.

Figure 20 and 21 plots the value of LESP and the pressure difference between upper and lower surfaces on the outer

section of the wing respectively. The tip reaches an angle of attack of more than 50 degrees. It can be seen clearly

from the LESP value that different sections of the outboard wing separate and reattach at different points in time, with

associated changes in the pressure distribution. Capturing the 3D effects associated with intermittent separation of

different sections of the wing is a key point in the current method.
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Fig. 20 Variation in the value of LESP with time on the outer section.

Fig. 21 Distribution of pressure difference between upper and lower surfaces at selected instants in time,
plotted against chordwise and spanwise directions.

Figure 22 is an illustration of the flow field using the vorticity distribution, at various instants in time. The rollup of

the wingtip separation sheet can be seen clearly. In Figure 23, the displacement of the inboard section at 50% chord and

at a location of 10cm from the base, for simulations with and without the inclusion of leading-edge separation is shown.

It can be seen that the reduction in lift due to separation reduces the deployment time compared to a fully attached flow,

however due to the low freestream velocity and the vortex-generated lift after initial separation, the effect is not very

significant. Also shown is a set of experimental data of the setup[32]. Note that the experimental setup locks the hinge

once full extension is reached, this detail is not present in the current model and results in the difference in the response

after full deployment at 0.11s. Also, the outboard section is initially held at the tip in the experimental setup, whereas

the current model holds the hinge angle instead, giving rise to a different initial transient response.

V. Conclusions
In this work, we have proposed a coupled dynamic aeroelastic solver incorporating a modified unsteady panel method

suitable for computing intermittently separating 3D flows around slender aero-structures. This is achieved by modelling

leading-edge separation using the critical LESP parameter. Numerical verifications are made against a number of 2D
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Fig. 22 Vorticity contours at selected instants in time. From top: 0.03 s, 0.07 s and 0.11 s since initial release.
Axis unit in m. For clarity the figures is presented from different viewing angles.
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Fig. 23 Displacement of the inboard segment at 10 cm from the root, compared to attached flow computation
and experimental data by Otsuka[32]. Positive displacement is upwards (for an upwards deploying outer
section).

and 3D test cases for both attached and separated flows. We further show that the method is capable of simulating 3D

dynamic limit-cycle responses on complex geometries. The results highlighted the importance of including 3D flow

effects in simulating dynamic flow separation in the aeroelastic responses of slender lifting surfaces. All simulations are

completed on a 16-core workstation in under 12 hours, demonstrating the low computational requirement for the method.

The method could greatly reduce the time to simulate limit-cycle oscillation on high-aspect ratio wings, as well as

opening up new ways to study the aeroelasticity of moderate aspect-ratio flapping wings. It should be noted here that

the LESP model is but one of many models on the prediction of dynamic stall onset, which was chosen based on its

simplicity and compatibility with UVLM. Ultimately one should expect a dynamic boundary layer model to be used, in

order to provide more accurate predictions of separation location and onset without the need for additional information

such as the critical LESP value.
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