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Abstract—We study federated edge learning (FEEL), where
wireless edge devices, each with its own dataset, learn a global
model collaboratively with the help of a wireless access point
acting as the parameter server (PS). At each iteration, wireless
devices perform local updates using their local data and the most
recent global model received from the PS, and send their local
updates to the PS over a wireless fading multiple access channel
(MAC). The PS then updates the global model according to the
signal received over the wireless MAC, and shares it with the
devices. Motivated by the additive nature of the wireless MAC,
we propose an analog ‘over-the-air’ aggregation scheme, in which
the devices transmit their local updates in an uncoded fashion.
However, unlike recent literature on over-the-air FEEL, here we
assume that the devices do not have channel state information
(CSI), while the PS has imperfect CSI. On the other hand, the
PS is equipped with multiple antennas to alleviate the destructive
effect of the channel, exacerbated due to the lack of perfect CSI.
We design a receive beamforming scheme at the PS, and show
that it can compensate for the lack of perfect CSI when the PS has
a sufficient number of antennas. We also derive the convergence
rate of the proposed algorithm highlighting the impact of the
lack of perfect CSI, as well as the number of PS antennas. Both
the experimental results and the convergence analysis illustrate
the performance improvement of the proposed algorithm with the
number of PS antennas, where the wireless fading MAC becomes
deterministic despite the lack of perfect CSI when the PS has a
sufficiently large number of antennas.

Index Terms—Federated edge learning, fading multiple access
channel, blind transmitters, multi-antenna parameter server.

I. INTRODUCTION

With the growing prevalence of Internet of things (IoT)
devices [2], constantly collecting information about various
physical phenomena, and the growth in the number and
processing capabilities of mobile edge devices (phones, tablets,
smart watches and activity monitors), there is a growing
interest in enabling machine learning (ML) to learn from data
distributed across edge devices. Centralized ML techniques are
often developed, assuming that the datasets are offloaded to a
central processor. In the case of wireless devices, centralized
ML techniques are not desirable, since offloading such massive
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amounts of data to a central cloud may be too costly in terms
of energy and bandwidth, and may compromise data privacy.
Federated learning (FL) has been developed to enable ML at
the wireless edge by pushing the network intelligence to the
edge by utilizing the processing capabilities of devices.

With FL, wireless devices train a global model collab-
oratively using their local datasets, which remain localized
enhancing data privacy, with the help of a parameter server
(PS) that keeps track of the model [3]. At each iteration of FL,
the PS shares the current global model with the devices, and
collects the local model updates from the devices to update the
global model. This procedure continues until the global model
converges, or the devices stop participating in the training
because of hitting their limited power budget, or moving out
of the coverage of the PS.

FL involves communications over unreliable wireless net-
works with limited resources, particularly in the device-to-
PS direction where a large number of devices, each with
limited bandwidth and power, communicate with the PS over
a shared wireless medium. Therefore, it is vital to design
communication-efficient protocols for the realization of an
FL framework. Several approaches have been proposed in
recent years to limit the communication requirements in the
FL setting [3]–[9]. However, these works ignore the physical
characteristics of the underlying communication channels for
wireless edge learning and consider interference-and-error-free
rate-limited communication links.

Recently there have been significant efforts to incorporate
physical layer characteristics of wireless networks into FL
system design [1], [10]–[37], referred to as federated edge
learning (FEEL). Several studies have incorporated over-the-
air computation into FEEL utilizing the superposition property
of the wireless multiple access channel (MAC) for reliable
transmission from the devices to the PS, where the MAC
naturally provides the sum of the updates from the devices
to the PS [1], [10]–[14], [17]–[19], [35]–[37]. Various de-
vice scheduling techniques for FEEL have been introduced
in order to select a subset of devices sharing the limited
wireless resources in each communication round [21]–[25].
Also, allocating resources to optimize a performance measure
is another active research direction in FEEL [15], [27]–[30],
[33]. Several studies have provided convergence guarantees
of FEEL under different practical constraints and types of
heterogeneity in a federated setting [8], [9], [30]–[32], [35].
Furthermore, beamforming techniques at the PS with multiple
antennas have been designed to improve the quality of the
estimated signal used for updating the global model [1], [12],
[16]. In [12], a beamforming technique is used at the PS
to maximize the number of devices participating in each
communication round of training, while [16] introduces a
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nonlinear estimation method to recover the sum of updates
sent from the devices using their sparsity.

In this paper, we study FEEL over a wireless fading MAC
from the devices to the PS. In order to benefit from the
over-the-air computation, we consider uncoded transmission of
local model updates from the devices to the PS, whose advan-
tages over digital transmission have been shown in [10]–[14].
Over-the-air computation over a wireless fading MAC requires
each transmitting device to scale its transmission depending
on the instantaneous channel state so that they arrive at the
same power level at the PS. This, in turn, necessitates perfect
channel state information (CSI) at the devices, acquisition
of which would introduce additional delays and reduce the
spectral efficiency. Alternatively, in this work, we consider
FEEL with no CSI at the devices (i.e., the devices are blind
about the CSI) and extend our previous work in [1] by studying
imperfect CSI at the PS. To the best of our knowledge, this
is the first paper in the FEEL literature to consider no CSI at
the transmitters (CSIT) and imperfect CSI at the receiver for
the device-to-PS transmission. We employ multiple antennas
at the PS and design a receive beamformer to overcome the
exacerbated negative impact of the underlying wireless fading
MAC due to the lack of CSIT and perfect CSI at the PS. We
analytically show that the proposed beamforming technique
alleviates the destructive effects of the interference and noise
terms at the PS thanks to the utilization of multiple antennas;
and, in the limit, the fading MAC boils down to a deterministic
channel with identical gains from all the devices, which is
due to channel hardening [38]. Furthermore, extending our
initial work in [1], we provide a convergence analysis of
the proposed algorithm, and study the impact of the lack of
CSIT and perfect CSI at the PS on the convergence rate.
The convergence analysis shows how the increasing number
of antennas at the PS remedies the lack of perfect CSI in
the system. Numerical experiments on MNIST and CIFAR-10
datasets, corroborated by the analytical convergence results,
illustrate the success of the proposed algorithm in combating
the unavailability of perfect CSI in the system. It is shown
that, despite the lack of CSI at the devices and perfect CSI
at the PS, with sufficiently large number of PS antennas, the
proposed algorithm can perform as well as having error-free
communication links from the devices to the PS.

Notations: R and C represent the sets of real and complex
values, respectively. We denote entry-wise complex conjugate
of vector x by (x)

∗, and Re{x} and Im{x} return entry-
wise real and imaginary components of x, respectively. For x
and y with the same dimension, x ◦ y returns their element-
wise product. We denote a zero-mean normal distribution with
variance σ2 by N

(
0, σ2

)
, and CN

(
0, σ2

)
represents a cir-

cularly symmetric complex normal distribution with real and
imaginary terms each distributed according to N

(
0, σ2/2

)
.

We let [i] , {1, . . . , i}. Notation |·| returns the cardinality of
a set or the absolute value of a real number, and the l2 norm
of vector x is denoted by ‖x‖2.

II. SYSTEM MODEL

In FL the goal is to minimize a loss function, F (θ), where
θ ∈ Rd represents the model parameters to be optimized,

collaboratively across M devices. We denote device m’s local
dataset by Bm with Bm , |Bm|, for m ∈ [M ], and B ,∑M
m=1Bm. We have

F (θ) =

M∑
m=1

Bm
B
Fm (θ) , (1)

where Fm (θ) represents the average empirical loss at device
m with respect to model parameters θ; that is,

Fm (θ) =
1

Bm

∑
u∈Bm

f (θ,u) , m ∈ [M ], (2)

where f (θ,u) denotes the empirical loss function at data
sample u with respect to the model parameters θ and is defined
by the learning task. Devices perform stochastic gradient
descent (SGD) to minimize the loss function Fm (θ). During
global iteration t, having received the model parameters θ(t)
from the PS, device m performs τ local iterations of SGD,
with the following update during the i-th local iteration:

θi+1
m (t) = θim(t)− ηim(t)∇Fm

(
θim(t), ξim(t)

)
, i ∈ [τ ], (3)

where θ1m(t) = θ(t), ηim(t) represents the learning rate, and
∇Fm

(
θim(t), ξim(t)

)
denotes the stochastic gradient estimate

with respect to θim(t) and the local mini-batch sample ξim(t),
chosen uniformly at random from the local dataset Bm, for
m ∈ [M ]. We highlight that ∇Fm

(
θim(t), ξim(t)

)
provides an

unbiased estimate of the actual gradient ∇Fm
(
θim(t)

)
with

respect to the randomness of the stochastic gradient function;
that is, ∀i ∈ [τ ],∀m ∈ [M ],∀t,

Eξ
[
∇Fm

(
θim(t), ξim(t)

)]
= ∇Fm

(
θim(t)

)
. (4)

After performing τ local updates, device m aims to send its
local model update ∆θm(t) = θτ+1

m (t)−θ(t) to the PS, m ∈
[M ]. Ideally, having received the accurate local model updates
from the devices, the PS updates the global model as

θ(t+ 1) = θ(t) + ∆θ(t), (5)

where we have defined

∆θ(t) ,
1

M

M∑
m=1

∆θm(t). (6)

However, in our model, the devices transmit their local model
updates over a wireless shared medium, which provides the PS
with a noisy estimate of ∆θ(t). In the following, we describe
the wireless channels from the devices to the PS, which is
equipped with K antennas.

We model the shared wireless channel from the devices to
the PS with K antennas as a wireless fading MAC, where
OFDM is used to divide the available bandwidth into s
subchannels, s ≤ d (in practice, we typically have s � d).
We assume that N OFDM symbols can be transmitted over
each subchannel at each global iteration. The received vec-
tor corresponding to the n-th OFDM symbol during global
iteration t at the k-th antenna of the PS is given by

ynk (t) =

M∑
m=1

hnm,k(t) ◦ xnm(t) + znk (t), k ∈ [K], (7)
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where xnm(t) is the n-th symbol of dimension s transmitted by
device m, hnm,k(t) ∈ Cs denotes the vector of channel gains
from device m to the k-th PS antenna, m ∈ [M ], and znk (t) ∈
Cs represents the additive noise at the k-th antenna of the PS,
n ∈ [N ]. The i-th entry of channel vector hnm,k(t), denoted by
hnm,k,i(t), is distributed according to CN

(
0, σ2

h

)
, i ∈ [s], and

different entries of
[
h1
m,k(t), ...,hNm,k(t)

]
can be correlated,

while the channel gains are assumed to be independent and
identically distributed (iid) across PS antennas and wireless
devices, k ∈ [K], n ∈ [N ], m ∈ [M ]. Similarly, different
entries of

[
z1k(t), ...,zNk (t)

]
can be correlated, and znk,i(t)

denotes the i-th entry of znk (t) and is distributed according
to CN

(
0, σ2

z

)
, i ∈ [s], k ∈ [K], n ∈ [N ]. Noise vectors are

also assumed to be iid across PS antennas. We consider the
following average power constraint at each device assuming a
total of T global iterations:

1

NT

T∑
t=1

N∑
n=1

E
[
||xnm(t)||22

]
≤ P̄ , ∀m ∈ [M ], (8)

where the expectation is taken with respect to the randomness
of the communication channel.

We assume that the devices do not have CSI, and the PS
has imperfect/noisy CSI about the wireless fading MAC. To be
precise, we assume that the PS has only imperfect CSI about
the sum of the channel gains from the devices to each PS
antenna, i.e.,

∑M
m=1 h

n
m,k(t), ∀k ∈ [K], for n ∈ [N ] (please

refer to [39] for details on channel estimation). We denote the
CSI of

∑M
m=1 h

n
m,k(t) at the PS by ĥnk (t), where [40]

ĥnk (t) =

M∑
m=1

hnm,k(t) + h̃
n

k (t), ∀n, k, t, (9)

where h̃
n

k (t) represents the independent CSI estimation error
vector with each entry an iid random variable with zero-mean
and variance σ̃2

h. At each global iteration, the goal at the PS
is to estimate ∆θ(t), denoted by ∆̂θ (t), based on its received
symbols ynk (t), and the CSI ĥnk (t), ∀n, k. The PS then updates
the global model as

θ(t+ 1) = θ(t) + ∆̂θ (t) , (10)

and shares the new global model with the devices accurately.

Remark 1. The CSI of
∑M
m=1 h

n
m,k(t), ∀n, k, dictates that

the PS only needs to estimate the sum of the channel gains
from all the devices to each antenna rather than each indi-
vidual channel gain hnm,k(t). This significantly reduces the
overhead of channel estimation, particularly for a relatively
large number of devices M or number of PS antennas K, and
this overhead does not increase with M .

We note that the PS is interested in the average of the
local model updates computed by the devices rather than each
individual model update. Motivated by the additive nature of
the wireless MAC, we consider an analog approach similarly
to [10]–[12], [14], where the devices transmit their gradient
estimates in an analog fashion without employing any channel
coding.

III. ANALOG FEEL WITHOUT CSIT
Next, we present the proposed analog FEEL scheme in the

absence of CSIT at the devices. For the global model update
at the PS, we first assume perfect CSI at the PS, in which case
σ̃2
h = 0, and study the impact of the imperfect CSI at the PS

in the next subsection.
At the global iteration t, device m aims to transmit its local

update ∆θm (t) ∈ Rd over N = dd/2se OFDM symbols
across s subchannels in an uncoded manner, m ∈ [M ]. We
denote the i-th entry of ∆θm (t) by ∆θm,i (t), i ∈ [d], and
define, for n ∈ [N ], m ∈ [M ],

∆θn,rem (t) , [∆θm,2(n−1)s+1 (t) , . . . ,∆θm,(2n−1)s (t)]T ,
(11a)

∆θn,imm (t) , [∆θm,(2n−1)s+1 (t) , . . . ,∆θm,2ns (t)]T , (11b)

∆θnm (t) , ∆θn,rem (t) + j∆θn,imm (t) , (11c)

where j ,
√
−1, and we zero-pad ∆θm (t) to have length

2sN . The i-th entry of ∆θnm (t) is then given by, for i ∈ [s],
n ∈ [N ], m ∈ [M ],

∆θnm,i (t) = ∆θm,2(n−1)s+i (t) + j∆θm,(2n−1)s+i (t) . (12)

According to (11), we have

∆θm (t) =
[
∆θ1,rem (t) ,∆θ1,imm (t) , . . . ,

∆θN,rem (t) ,∆θN,imm (t)
]T
, (13)

with N = dd/2se. At the n-th OFDM symbol of iteration t,
device m sends

xnm(t) = αt∆θ
n
m(t), n ∈ [N ],m ∈ [M ], (14)

where αt is the scaling factor that will be chosen according to
the power constraint. Accordingly, the average transmit power
depends on αt, and is evaluated as follows:

1

NT

T∑
t=1

α2
t

N∑
n=1

||∆θnm(t)||22 ≤ P̄ . (15)

The PS observes the following signal at its k-th antenna,
for k ∈ [K], n ∈ [N ]:

ynk (t) = αt

M∑
m=1

hnm,k(t) ◦∆θnm(t) + znk (t). (16)

A. Perfect CSI at the PS
In this subsection, we assume that the PS has access to

perfect CSI, i.e., it has access to the sum of the channel gains
from all the devices to each of its antennas, i.e., σ̃2

h = 0 and
ĥnk (t) =

∑M
m=1 h

n
m,k(t), ∀n, k, t. Having access to perfect

CSI, the PS combines the signals at different antennas in the
following form:

yn(t) ,
1

K

K∑
k=1

( M∑
m=1

hnm,k(t)
)∗
◦ ynk (t), (17)

whose i-th entry is given by

yni (t) =
1

K

K∑
k=1

M∑
m=1

(
hnm,k,i(t)

)∗
ynk,i(t), (18)
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where ynk,i(t) denotes the i-th entry of ynk (t), i ∈ [s], n ∈ [N ].
We employed the maximal-ratio combining (MRC) detector in
(17), which is a linear detector with a relatively small com-
putational complexity and achieves the optimal performance
when K → ∞. We note that the computational complexity
of the detector used in (17) is equivalent to a matrix-vector
multiplication of dimensions d ×K and K, respectively. By
substituting ynk,i(t), given in (16), it follows that

yni (t) = αt

M∑
m=1

( 1

K

K∑
k=1

∣∣hnm,k,i(t)∣∣2 )∆θnm,i(t)︸ ︷︷ ︸
signal term

+
αt
K

M∑
m=1

M∑
m′=1,m′ 6=m

K∑
k=1

(
hnm,k,i(t)

)∗
hnm′,k,i(t)∆θ

n
m′,i(t)︸ ︷︷ ︸

interference term

+
1

K

M∑
m=1

K∑
k=1

(
hnm,k,i(t)

)∗
znk,i(t)︸ ︷︷ ︸

noise term

. (19)

As we can see in (19), yni (t) consists of three terms, specified
as the signal, interference, and noise terms, respectively.
Following the law of large numbers, as the number of antennas
at the PS K →∞, the signal term approaches

yni,sig(t) , αtσ
2
h

M∑
m=1

∆θnm,i(t), i ∈ [s], n ∈ [N ], (20)

from which the PS can recover

1

M

M∑
m=1

∆θm,2(n−1)s+i (t) =
Re
{
yni,sig(t)

}
αtMσ2

h

, (21a)

1

M

M∑
m=1

∆θm,(2n−1)s+i (t) =
Im
{
yni,sig(t)

}
αtMσ2

h

. (21b)

However, the interference term in (19) does not al-
low the exact recovery of 1

M

∑M
m=1 ∆θm,2(n−1)s+i (t) and

1
M

∑M
m=1 ∆θm,(2n−1)s+i (t) from yni (t), which is observed at

the PS. To analyze the interference term, defined as yni,itf(t),
we rewrite it as follows, for i ∈ [s], n ∈ [N ]:

yni,itf(t) = αt

M∑
m=1

( 1

K

K∑
k=1

hnm,k,i(t)

M∑
m′=1,m′ 6=m

(
hnm′,k,i(t)

)∗ )
∆θnm,i(t). (22)

We then define, for m ∈ [M ], i ∈ [s], n ∈ [N ],

hnm,i(t) ,
1

K

K∑
k=1

hnm,k,i(t)

M∑
m′=1,m′ 6=m

(
hnm′,k,i(t)

)∗
, (23)

and is easy to verify that the mean and the variance of hnm,i(t)
are given by

E
[
hnm,i(t)

]
= 0, E

[∣∣hnm,i(t)∣∣2] =
(M − 1)σ4

h

K
, (24)

respectively. We note that the local updates computed at
each iteration are independent of the channel realizations
experienced during the same iteration. From the analysis in
(24), we conclude that the interference term in (19) has zero-
mean and M terms, each with a variance that scales with
(M − 1)/K. Thus, for a fixed number of wireless devices
M , the variance of the interference term in (19) approaches
zero as K → ∞. In practice, it is feasible to employ a
sufficiently large number of antennas at the PS exploiting
massive multiple-input multiple-output (MIMO) systems [41].
Numerical results with a finite number of antennas will be
presented in Section V.

According to the above analysis, the PS generates the
estimates, for i ∈ [s], n ∈ [N ],

∆θ̂2(n−1)s+i (t) =
Re {yni (t)}
αtMσ2

h

, (25a)

∆θ̂(2n−1)s+i (t) =
Im {yni (t)}
αtMσ2

h

. (25b)

It then utilizes the estimated vector ∆̂θ(t) ,[
∆θ̂1 (t) , . . . ,∆θ̂d (t)

]T
, which is an unbiased estimate

of the average of the local model updates, to update the
global model as

θ(t+ 1) = θ(t) + ∆̂θ(t). (26)

B. Imperfect CSI at the PS
We now generalize the above beamforming technique

by considering imperfect CSI at the PS. Let ĥnk (t) =

[ĥnk,1(t), . . . , ĥnk,s(t)]
T and h̃

n

k (t) = [h̃nk,1(t), . . . , h̃nk,s(t)]
T . In

the case of imperfect CSI at the PS, the received signals at
different PS antennas are combined as follows:

yn(t) =
1

K

K∑
k=1

(̂
hnk (t)

)∗
◦ ynk (t)

=
1

K

K∑
k=1

( M∑
m=1

hnm,k(t)
)∗
◦ ynk (t)

+
1

K

K∑
k=1

(
h̃
n

k (t)
)∗
◦ ynk (t), (27)

which generalizes the expression for the perfect CSI case given
in (17). Accordingly, we have

yni (t) = αt

M∑
m=1

( 1

K

K∑
k=1

∣∣hnm,k,i(t)∣∣2 )∆θnm,i(t)

+
αt
K

M∑
m=1

M∑
m′=1,m′ 6=m

K∑
k=1

(
hnm,k,i(t)

)∗
hnm′,k,i(t)∆θ

n
m′,i(t)

+
1

K

M∑
m=1

K∑
k=1

(
hnm,k,i(t)

)∗
znk,i(t)

+
αt
K

M∑
m=1

K∑
k=1

(
h̃nk,i(t)

)∗
hnm,k,i(t)∆θ

n
m,i(t)

+
1

K

K∑
k=1

(
h̃nk,i(t)

)∗
znk,i(t), (28)
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where the last two terms on the right hand side (RHS) are
due to having imperfect CSI at the PS, and for σ̃2

h = 0 the
above expression is equivalent to (19). We denote the extra
interference term introduced because of the lack of perfect
CSI at the PS by ỹni,itf(t) given by, for i ∈ [s], n ∈ [N ],

ỹni,itf(t) = αt

M∑
m=1

( 1

K

K∑
k=1

(
h̃nk,i(t)

)∗
hnm,k,i(t)

)
∆θnm,i(t).

(29)

We define, for m ∈ [M ], i ∈ [s], n ∈ [N ],

h̃nm,i(t) ,
1

K

K∑
k=1

(
h̃nk,i(t)

)∗
hnm,k,i(t), (30)

where we have

E
[
h̃nm,i(t)

]
=0, E

[∣∣h̃nm,i(t)∣∣2] =
σ̃2
hσ

2
h

K
. (31)

Therefore, lack of perfect CSI at the PS introduces an extra
interference term with zero-mean which includes M terms,
each with a variance scaled with 1/K. Similarly to the perfect
CSI scenario, the PS estimates 1

M

∑M
m=1 ∆θm,2(n−1)s+i (t)

and 1
M

∑M
m=1 ∆θm,(2n−1)s+i (t), for i ∈ [s], n ∈ [N ], through

∆θ̂2(n−1)s+i (t) =
Re {yni (t)}
αtMσ2

h

, (32a)

∆θ̂(2n−1)s+i (t) =
Im {yni (t)}
αtMσ2

h

, (32b)

and uses ∆̂θ(t) to update the global model as in (26).

Remark 2. We note that with SGD the empirical variances of
the local model updates decay over time and approach zero
asymptotically [10], [42]–[45]. Thus, for robust communica-
tion of the local model updates against noise at each global
iteration, it is reasonable to increase the power allocation
factor αt over time.

Remark 3. We remark that the main focus in this paper is
to develop techniques for FEEL with no CSIT, as well as
imperfect CSI at the PS. Our approach to tackle this problem
is to employ multiple antennas at the PS, which can help
to mitigate the effect of fading, and, in the limit, align the
received signals at the PS. We can further employ some of
the existing schemes in the literature providing more efficient
communication over the limited bandwidth wireless MAC, such
as the idea of linear projection proposed in [10]. We leave the
analysis of such combined techniques as future work.

IV. CONVERGENCE ANALYSIS

In this section, we provide a convergence analysis of the
proposed analog FEEL scheme with no CSIT and imperfect
CSI at the PS. For ease of presentation, we consider N = 1,
i.e., s = d/2, and drop the dependency of all the variables on
n. Accordingly, the received signal at the PS, given in (28),
can be rewritten as follows:

yi(t) =

5∑
l=1

yi,l(t), for i ∈ [d/2], (33a)

where

yi,1(t) ,αt

M∑
m=1

( 1

K

K∑
k=1

|hm,k,i(t)|2
)

(
∆θm,i(t) + j∆θm,d/2+i(t)

)
, (33b)

yi,2(t) ,
αt
K

M∑
m=1

M∑
m′=1,m′ 6=m

K∑
k=1

(hm,k,i(t))
∗
hm′,k,i(t)(

∆θm′,i(t) + j∆θm′,d/2+i(t)
)
, (33c)

yi,3(t) ,
1

K

M∑
m=1

K∑
k=1

(hm,k,i(t))
∗
zk,i(t), (33d)

yi,4(t) ,
αt
K

M∑
m=1

K∑
k=1

(
h̃k,i(t)

)∗
hm,k,i(t)(

∆θm,i(t) + j∆θm,d/2+i(t)
)
, (33e)

yi,5(t) ,
1

K

K∑
k=1

(
h̃k,i(t)

)∗
zk,i(t). (33f)

We further define, for l ∈ [5],

∆θ̂i,l (t) ,


Re{yi,l(t)}
αtMσ2

h
, if 1 ≤ i ≤ d/2,

Im{yi−d/2,l(t)}
αtMσ2

h
, otherwise,

(34)

according to which the estimate of the average local updates at
the PS can be rewritten as ∆θ̂i (t) =

∑5
l=1 ∆θ̂i,l (t), i ∈ [d].

A. Preliminaries

Let the optimal solution minimizing F (θ) be defined as
θ∗ , arg min

θ
F (θ), and we denote the minimum value of the

loss function by F ∗ = F (θ∗). We also denote the minimum
value of the local loss function Fm by F ∗m, for m ∈ [M ]. We
further define Γ , F ∗ −

∑M
m=1

Bm

B F ∗m, where we note that
Γ ≥ 0 captures the amount of bias in the data distribution. Γ
increases with the heterogeneity of data across the devices.

We use the same learning rate across different devices
and local iterations, but allow it to change over different
global iterations; that is, we assume ηim(t) = η(t), ∀m, i.
Accordingly, we have, for i ∈ [τ ], m ∈ [M ],

θi+1
m (t) = θim(t)− η(t)∇Fm

(
θim(t), ξim(t)

)
, (35)

and

θi+1
m (t)− θ1m(t) = −η(t)

i∑
l=1

∇Fm
(
θlm(t), ξlm(t)

)
. (36)

Assumption 1. The loss functions F1, . . . , FM are all L-
smooth; that is, ∀v,w ∈ Rd, m ∈ [M ],

Fm(v)− Fm(w) ≤ 〈v −w,∇Fm(w)〉+
L

2
‖v −w‖22 .

(37)

Assumption 2. The loss functions F1, . . . , FM are all µ-
strongly convex; that is, ∀v,w ∈ Rd, m ∈ [M ],

Fm(v)− Fm(w) ≥ 〈v −w,∇Fm(w)〉+
µ

2
‖v −w‖22 .

(38)
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Assumption 3. The expected squared l2-norm of the stochas-
tic gradients are bounded; that is, ∀i ∈ [τ ],∀m ∈ [M ],∀t,

Eξ
[∥∥∇Fm (θim(t), ξim(t)

)∥∥2
2

]
≤ G2. (39)

B. Convergence Rate

Here we provide the convergence rate of the proposed
analog FEEL scheme. The proof is provided in Appendix A.

Theorem 1. Let 0 < η(t) ≤ min
{

1, 1
µτ

}
, ∀t. We have

E
[
‖θ(t)− θ∗‖22

]
≤
( t−1∏
i=0

A(i)
)
‖θ(0)− θ∗‖22

+

t−1∑
j=0

B(j)

t−1∏
i=j+1

A(i), (40a)

where

A(i) ,1− µη(i) (τ − η(i)(τ − 1)) , (40b)

B(i) ,

(
1 +

σ̃2
h

Mσ2
h

)
η2(i)τ2G2

K
+

(
1 +

σ̃2
h

Mσ2
h

)
σ2
zd

2α2
tKMσ2

h

+ (1 + µ(1− η(i))) η2(i)G2 τ(τ − 1)(2τ − 1)

6
+ (τ2 + τ − 1)η2(i)G2 + 2η(i)(τ − 1)Γ, (40c)

and the expectation is with respect to the stochastic gradient
function and the randomness of the wireless channel.

Proof. See Appendix A.

We highlight that the term
∏t−1
i=0 A(i) in the upper bound

(40a) indicates the decay rate of the distance to the optimum
solution θ∗ at time t with respect to the initial model. On
the other hand, the term

∑t−1
j=0B(j)

∏t−1
i=j+1A(i) measures

the residual distance of the current model to the optimal
solution with respect to that of the initial model to the optimal
solution. One expects that reducing A(i) would result in a
faster convergence; however, it is important to investigate
how a reduction in A(i) impacts B(i) and, consequently, the
residual term. To be specific, it is easy to verify that A(i)
decreases with τ , while B(i) increases. This confirms the
intuition that increasing τ may lead to faster convergence,
while it may also lead to results far from the optimal solution,
particularly for non-iid data.

Corollary 1. Let 0 < η(t) ≤ min
{

1, 1
µτ

}
, ∀t. Given a

total number of T global iterations, the L-smoothness of loss
function F (·) results in

E [F (θ(T ))]− F ∗ ≤ L

2
E
[
‖θ(T )− θ∗‖22

]
≤ L

2

( T−1∏
i=0

A(i)
)
‖θ(0)− θ∗‖22 +

L

2

T−1∑
j=0

B(j)

T−1∏
i=j+1

A(i),

(41)

where the last inequality follows from (40a).

Remark 4. The second term in B(i), (1+σ̃2
h/(Mσ2

h))σ
2
zd

2α2
tKMσ2

h
, which

is the result of the additive noise over the MAC, is not scaled

with η(i). Therefore, even for a decreasing learning rate η(t),

i.e., lim
t→∞

η(t) = 0, we have lim
t→∞

B(t) =
(1+σ̃2

h/(Mσ2
h))σ

2
zd

2α2
tKMσ2

h
6=

0, which shows that lim
t→∞

E [F (θ(t))]−F ∗ 6= 0. However, we
note that the destructive effect of this term in the convergence
rate reduces with the number of PS antennas, K. We further
remark that σ̃2

hη
2(i)τ2G2

σ2
hKM

+
σ̃2
hσ

2
zd

2α2
tKM

2σ4
h

captures the impact of
the imperfect CSI at the PS, which also reduces with K.

Corollary 2. Consider a simplified setting η(t) = η, ∀t, and
τ = 1. Accordingly, Corollary 1 can be simplified as

E [F (θ(T ))]− F ∗ ≤ L

2
(1− µη)T ‖θ(0)− θ∗‖22

+
L

2µη

((
1 +

σ̃2
h

Mσ2
h

)(η2G2

K
+

σ2
zd

2α2
tMKσ2

h

)
+ η2G2

)
(
1− (1− µη)T

)
. (42)

Remark 5. The proposed approach can be readily extended
to accommodate partial device participation at each iteration.
During iteration t, the PS shares the model parameter θ(t)
with a subset of devices participating in the training, denoted
by M(t) with M(t) , |M(t)|, and beamforming at the PS
is employed with respect to the signals received from M(t)
devices in M(t) instead of all M devices. The convergence
analysis can also be adapted depending on the device schedul-
ing policy, i.e., random or other device scheduling policies,
through techniques introduced in the relevant papers [8], [31].

V. NUMERICAL EXPERIMENTS

Here we evaluate the performance of the proposed analog
FEEL algorithm with no CSI available at the wireless devices.
We are particularly interested in investigating the impact of the
number of PS antennas on the performance. We perform image
classification on MNIST [46] and CIFAR-10 datasets [47]
using ADAM optimizer [48]. We train different convolutional
neural networks (CNNs) whose architectures are described in
Table I. The performance is measured as the accuracy with
respect to the test dataset, known as the test accuracy, versus
the global iteration count, t.

We consider two data distribution scenarios across the
devices. In the non-iid data distribution scenario, we split
the training data samples with the same label/class to M/10
disjoint groups (assuming that M is divisible by 10). Thus,
having 10 labels/classes for both MNIST and CIFAR-10
datasets, this results in M disjoint training datasets, each
consisting of samples with the same label/class, and we assign
each group to a distinct device. On the other hand, in the
iid data distribution scenario, we randomly split the training
dataset into M disjoint datasets, and assign each of them to
a distinct device. We set the local mini-batch sample size to∣∣ξim(t)

∣∣ = 500, ∀m, i, t, for each experiment.
We consider M = 20 devices in the system. For simplicity,

we assume that the s channel gains associated with each
OFDM symbol from each device to each PS antenna are
iid, and σ2

h = 1. For each experiment, we measure the test
accuracy for T = 400 global iterations, and we set the power
allocation factor at the devices to αt = 1 + 10−3t, t ∈ [T ].
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TABLE I: CNN architecture for image classification on MNIST and CIFAR-10.

MNIST CIFAR-10

5 × 5 convolutional layer, 32 channels,
ReLU activation, same padding

3 × 3 convolutional layer, 32 channels,
ReLU activation, same padding

3 × 3 convolutional layer, 32 channels,
ReLU activation, same padding

2 × 2 max pooling

2 × 2 max pooling
dropout with probability 0.2

3 × 3 convolutional layer, 64 channels,
ReLU activation, same padding

5 × 5 convolutional layer, 64 channels,
ReLU activation, same padding

3 × 3 convolutional layer, 64 channels,
ReLU activation, same padding

2 × 2 max pooling
dropout with probability 0.3

2 × 2 max pooling

3 × 3 convolutional layer, 128 channels,
ReLU activation, same padding

3 × 3 convolutional layer, 128 channels,
ReLU activation, same padding

fully connected layer with 1024 units,
ReLU activation, dropout with probability 0.2

2 × 2 max pooling
dropout with probability 0.4

softmax output layer with 10 units

We further assume that s = d/2 resulting in N = 1. We note
that, for a fixed power allocation factor αt, ∀t, the value of s
does not have any impact on the accuracy of the proposed
analog FEEL scheme; instead, any change in s scales the
average transmit power, whose value is proportional to N . We
assume that the CSI estimation error at the PS, i.e., h̃nk,i(t), is
distributed according to CN

(
0, σ̃2

h

)
, ∀k, i, n, t.

For numerical comparison, we also consider a benchmark,
in which the PS receives the average of the local model updates
∆θ(t) = 1

M

∑M
m=1 ∆θm (t) from the devices in an error-

free manner, and updates the global model according to this
noiseless observation. We refer to this as the error-free shared
link scenario, and its accuracy can serve as an upper bound
on the performance of the proposed analog FEEL scheme.

In Fig. 1 we illustrate the performance of the proposed
analog FEEL scheme with no CSIT for increasing number
of PS antennas, K ∈ {1, 10,M, 2M, 5M, 2M2}, with non-
iid MNIST data distributed across the devices, and number
of local iterations τ = 3. In Figs. 1a and 1b we assume
perfect CSI at the PS, and investigate the performance for
an increase in the noise variance from σ2

z = 10 to σ2
z = 50.

We also include the performance of the error-free shared link
scenario. As can be seen, both the final test accuracy and the
convergence speed increases with the number of PS antennas,
with the improvement significantly more noticeable when the
noise level is higher. This is due to the fact that increasing K
mitigates the effects of both the interference and noise terms,
inferred from (19). Thus, the advantage of having more PS
antennas is more pronounced when the channel is noisier. For
example, for σ2

z = 10, the proposed scheme with K = 2M2

antennas at the PS and average power P̄ = 2.3 performs
as well as the error-free shared link scenario. On the other
hand, further reducing the average signal-to-noise ratio P̄ /σ2

z

by setting σ2
z = 50 results in a small performance gap between

the error-free shared link scenario and the proposed scheme
with K = 2M2. These results illustrate the success of the
proposed scheme with sufficient number of PS antennas in
mitigating the noise term even when the average signal-to-
noise ratio P̄ /σ2

z is as small as 0.05. Surprisingly, the accuracy
improves drastically even with a few antennas at the PS, e.g.,
K = 10. We note that, with all the other parameters fixed,
the required average transmit power reduces with K, which
verifies a faster convergence rate with higher K resulting in a
faster reduction in the empirical variances of the local model
updates over time. The same observation is made by reducing
σ2
z from 50 to 10 while all the other parameters are fixed.

Similar observations can be made in Figs. 1c and 1d
considering imperfect CSI at the PS with σ̃2

h = Mσ2
h/2 and

σ̃2
h = Mσ2

h, respectively. We observe the additional benefits
of a large number of PS antennas in mitigating the adverse
effects of imperfect CSI at the PS. Comparing the two figures,
we can see that the benefits are more highlighted when the
variance of the CSI estimation error is larger. Even when this
variance is the same as that of the sum of channel gains from
the devices, i.e., when σ̃2

h = Mσ2
h, the proposed scheme with

a sufficient number of PS antennas performs almost as well
as the error-free shared link scenario. Therefore, the proposed
analog FEEL scheme can alleviate the negative effects of both
the lack of CSIT and the imperfect CSI at the PS.

In Fig. 2, we investigate the performance of the proposed
analog FEEL scheme for the more challenging CIFAR-10
dataset, distributed in an iid manner across the devices, con-
sidering different K values, K ∈ {M, 2M, 5M, 10M, 2M2},
with τ = 5 local iteration steps. Similarly to Fig. 1, we observe
that the performance of the proposed scheme improves signif-
icantly with the number of PS antennas, and the improvement
is more pronounced when the CSI is imperfect at the PS.
In both cases under consideration, the proposed scheme with
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Fig. 1: Test accuracy of the proposed analog FEEL algorithm for non-iid MNIST dataset with different number of antennas
K ∈ {1, 10,M, 2M, 5M, 2M2} for M = 20, σ2

h = 1 τ = 3, and
∣∣ξim(t)

∣∣ = 500, ∀m, i, t.

K = 2M2 provides a performance as well as that of the
error-free shared link scenario. However, the average required
power in the experiments with CIFAR-10 dataset is higher than
that for MNIST; this is mainly because of the larger network
architecture required to reach reasonable accuracy levels for
CIFAR-10, which leads to the gradients with higher norms,
and consequently, resulting in higher empirical variance for
the local model updates. Furthermore, the gaps between the
performance of the proposed analog FEEL scheme for differ-
ent K values are larger than those observed in Fig. 1, which
indicates that the benefits of increasing K is even more when
training larger models for more challenging learning tasks.

In Fig. 3, we illustrate the convergence rate of the proposed
analog FEEL algorithm, presented in Corollary 1, for the set-
ting considered in Fig. 2 for K ∈ {M, 2M, 5M, 10M, 2M2}.
The CNN for training on CIFAR-10, whose architecture is
provided in Table I, has d = 307498 parameters, and we
have M = 20 and σ2

z = σ2
h = 1. We set µ = 1, L = 5,

G2 = Γ = 1, ‖θ(0)− θ∗‖22 = 103. We consider a decreasing
learning rate η(t) = 1

µτ(10−4t+1) , and αt = 1+10−3t, t ∈ [T ].
We also consider the convergence rate of the error-free shared
link scenario given as follows:

E [F (θ(T ))]− F ∗ ≤L
2

( T−1∏
i=0

Aef(i)
)
‖θ(0)− θ∗‖22

+
L

2

T−1∑
j=0

Bef(j)

T−1∏
i=j+1

Aef(i), (43a)

where 0 < η(t) ≤ min
{

1, 1
µτ

}
, and we have

Aef(i) ,1− µη(i) (τ − η(i)(τ − 1)) , (43b)

Bef(i) , (1 + µ(1− η(i))) η2(i)G2 τ(τ − 1)(2τ − 1)

6
+ (τ2 + τ − 1)η2(i)G2 + 2η(i)(τ − 1)Γ, (43c)

which can be obtained by following the procedure presented
in the proof of Theorem 1. We investigate the convergence
rate having perfect and imperfect CSI at the PS in Fig. 3a and
Fig. 3b, respectively. We observe that the analytical results
in Fig. 3 corroborate the experimental ones presented above,
and the theoretical bound obtained for convex loss functions
without CSIT approaches that of the perfect communication
benchmark with the increasing number of PS antennas.

VI. CONCLUSIONS

We have studied FEEL, where colocated wireless devices
collaboratively train a global model using their local datasets,
and transmit their local updates to the PS over a wireless
fading MAC. With the goal of recovering the average local
model updates at the PS through over-the-air computation, we
have considered analog transmission of the local updates from
the devices over the wireless MAC. The current literature on
over-the-air FEEL relies on perfect CSI both at the devices and
the PS. However, acquiring perfect CSI in mobile wireless
networks is typically not possible, and even imperfect CSI
estimation can introduce delays and waste channel resources.
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Fig. 2: Test accuracy of the proposed analog FEEL algorithm for iid CIFAR-10 dataset with different number of antennas
K ∈ {M, 2M, 5M, 10M, 2M2} for M = 20, σ2
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z = 1, τ = 5, and

∣∣ξim(t)
∣∣ = 500, ∀m, i, t.
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Fig. 3: Upper bound on E [F (θ(T ))]−F ∗ for different number of antennas K ∈ {M, 2M, 5M, 10M, 2M2} with d = 307498
parameters, M = 20, σ2

z = σ2
h = 1, τ = 5, µ = 1, L = 5, G2 = Γ = 1, ‖θ(0)− θ∗‖22 = 103, and η(t) = 1

µτ(10−4t+1) .

Therefore, in this work, we have studied FEEL without any
CSI at the devices and with imperfect CSI at the PS. To
mitigate the effects of the time-varying channel without CSI,
we assumed that the PS is equipped with multiple antennas,
and designed a beamforming technique at the PS to estimate
the computation result. We have derived the convergence rate
of the proposed analog FEEL algorithm that highlights the
impact of various system parameters on the performance.
Experimental results on MNIST and CIFAR-10 datasets cor-
roborated the theoretical convergence results, and illustrated
that, with the proposed algorithm, increasing the number of
PS antennas provides a better estimate of the average local
model updates thanks to a better alignment of the desired
signals, as well as the elimination of the interference and noise
terms. Asymptotically, the proposed scheme guarantees that
the wireless MAC becomes deterministic, despite the lack of
CSIT and perfect CSI at the PS.

APPENDIX A
PROOF OF THEOREM 1

We define an auxiliary variable υ(t) given by

υ(t+ 1) , θ(t) + ∆θ(t), (44)

where ∆θ(t) is as defined in (6). We note that

θ(t+ 1) = θ(t) + ∆̂θ(t). (45)

We have

‖θ(t+ 1)− θ∗‖22 = ‖θ(t+ 1)− υ(t+ 1) + υ(t+ 1)− θ∗‖22
= ‖θ(t+ 1)− υ(t+ 1)‖22 + ‖υ(t+ 1)− θ∗‖22

+ 2〈θ(t+ 1)− υ(t+ 1),υ(t+ 1)− θ∗〉. (46)

Next, we bound the three terms on the RHS of (46).

Lemma 1. We have

E
[
‖θ(t+ 1)− υ(t+ 1)‖22

]
≤

(
1 +

σ̃2
h

Mσ2
h

)
η2(t)τ2G2

K

+

(
1 +

σ̃2
h

Mσ2
h

)
σ2
zd

2α2
tKMσ2

h

. (47)

Proof. See Appendix B.

Lemma 2. We have

E
[
‖υ(t+ 1)− θ∗‖22

]
≤

(1− µη(t) (τ − η(t)(τ − 1)))E
[
‖θ(t)− θ∗‖22

]
+ (1 + µ(1− η(t))) η2(t)G2 τ(τ − 1)(2τ − 1)

6
+ η2(t)(τ2 + τ − 1)G2 + 2η(t)(τ − 1)Γ. (48)

Proof. See Appendix C.
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Lemma 3. We have

E
[
〈θ(t+ 1)− υ(t+ 1),υ(t+ 1)− θ∗〉

]
= 0. (49)

Proof. From the definition of υ(t+ 1) in (44), it follows that

E
[
〈θ(t+ 1)− υ(t+ 1),υ(t+ 1)− θ∗〉

]
=

E
[
〈∆̂θ(t)−∆θ(t),θ(t) + ∆θ(t)− θ∗〉

]
. (50)

From the independence of hm,k,i(t), h̃m,k,i(t), and zk,i(t),
∀m ∈ [M ],∀k ∈ [K],∀i ∈ [d], and (33) and (34), expectation
of ∆̂θ(t) with respect to the channel gains and noise terms
results in E

[
∆̂θ(t)

]
= ∆θ(t). Since the local model updates

at the global iteration t are independent of the channel char-
acterizations during the same global iteration, it follows that

E
[
〈∆̂θ(t)−∆θ(t),θ(t) + ∆θ(t)− θ∗〉

]
= 0. (51)

This completes the proof of Lemma 3.

Substituting the results in Lemmas 1-3 into (46) yields

‖θ(t+ 1)− θ∗‖22
≤ (1− µη(t) (τ − η(t)(τ − 1)))E

[
‖θ(t)− θ∗‖22

]
+

(
1 +

σ̃2
h

Mσ2
h

)
η2(t)τ2G2

K
+

(
1 +

σ̃2
h

Mσ2
h

)
σ2
zd

2α2
tKMσ2

h

+ (1 + µ(1− η(t))) η2(t)G2 τ(τ − 1)(2τ − 1)

6
+ η2(t)(τ2 + τ − 1)G2 + 2η(t)(τ − 1)Γ, (52)

and solving it recursively concludes Theorem 1.

APPENDIX B
PROOF OF LEMMA 1

We have

E
[
‖θ(t+ 1)− υ(t+ 1)‖22

]
= E

[∥∥∆̂θ(t)−∆θ(t)
∥∥2
2

]
=

d∑
i=1

E
[(

∆θ̂i(t)−∆θi(t)
)2]

, (53)

where ∆θi(t) denotes the i-th entry of vector ∆θ(t), for
i ∈ [d]. In the following, we bound E

[(
∆θ̂i(t)−∆θi(t)

)2]
,

∀i. Here we remind that ∆θ̂i (t) =
∑5
l=1 ∆θ̂i,l (t), where

∆θ̂i,l (t) is defined in (34). From the independence of
hm,k,i(t), h̃k,i(t), and zk,i(t), ∀m ∈ [M ],∀k ∈ [K],∀i ∈ [d],
and the fact that the local model updates at the global iteration
t are independent of the channel realizations during the same
global iteration, it is easy to verify that

E
[(

∆θ̂i(t)−∆θi(t)
)2]

=E
[(

∆θ̂i,1(t)−∆θi(t)
)2]

+

5∑
l=2

E
[
∆θ̂2i,l(t)

]
. (54)

Lemma 4. We have
d∑
i=1

E
[(

∆θ̂i,1(t)−∆θi(t)
)2]

=
1

KM2

M∑
m=1

E
[
‖∆θm(t)‖22

]
.

(55)

Proof. According to definition of ∆θ̂i,1(t) in (34), we have

E
[(

∆θ̂i,1(t)−∆θi(t)
)2]

= E
[( 1

M

M∑
m=1

( 1

Kσ2
h

K∑
k=1

|hm,k,i(t)|2 − 1
)

∆θm,i(t)
)2]

(a)
= E

[ 1

M2

M∑
m=1

(
− 1

K
+

1

K2σ4
h

K∑
k=1

|hm,k,i(t)|4
)

∆θ2m,i(t)
]

(b)
= E

[ 1

KM2

M∑
m=1

∆θ2m,i(t)
]
, (56)

where (a) follows from the independence of hm,k,i(t),
∀m, k, and (b) follows since E

[
|hm,k,i(t)|2

]
= σ2

h and
E
[
|hm,k,i(t)|4

]
= 2σ4

h. Lemma 4 follows from (56).

Lemma 5. We have
d∑
i=1

E
[
∆θ̂2i,2(t)

]
=

(M − 1)

KM2

M∑
m=1

E
[
‖∆θm(t)‖22

]
. (57)

Proof. We first consider 1 ≤ i ≤ d/2. By substituting ∆θ̂i,2(t)
from (34), it follows that

E
[
∆θ̂2i,2(t)

]
= E

[( 1

KMσ2
h

M∑
m=1

M∑
m′=1,m′ 6=m

K∑
k=1

Re
{

(hm,k,i(t))
∗
hm′,k,i(t)

(
∆θm′,i(t) + j∆θm′,d/2+i(t)

)})2]
(a)
= E

[ 1

K2M2σ4
h

M∑
m=1

M∑
m′=1,m′ 6=m

K∑
k=1( (

Re
{

(hm,k,i(t))
∗
hm′,k,i(t)

(
∆θm′,i(t) + j∆θm′,d/2+i(t)

)})2
+ Re

{
(hm,k,i(t))

∗
hm′,k,i(t)

(
∆θm′,i(t) + j∆θm′,d/2+i(t)

)}
Re
{

(hm′,k,i(t))
∗
hm,k,i(t)

(
∆θm,i(t) + j∆θm,d/2+i(t)

)})]
(b)
= E

[ 1

2KM2

M∑
m=1

(
(M − 1)

(
∆θ2m,i(t) + ∆θ2m,d/2+i(t)

)
+

M∑
m′=1,m′ 6=m

(∆θm,i(t)∆θm′,i(t)

−∆θm,d/2+i(t)∆θm′,d/2+i(t)
) )]

, (58)

where (a) and (b) follow from the independence of hm,k,i(t),
∀m, k, and E

[
|hm,k,i(t)|2

]
= σ2

h, respectively. Similarly, for
d/2 + 1 ≤ i ≤ d, it follows that

E
[
∆θ̂2i,2(t)

]
= E

[( 1

KMσ2
h

M∑
m=1

M∑
m′=1,m′ 6=m

K∑
k=1

Im
{

(hm,k,i(t))
∗
hm′,k,i(t)

(
∆θm′,i(t) + j∆θm′,d/2+i(t)

)})2]
= E

[ 1

2KM2

M∑
m=1

(
(M − 1)

(
∆θ2m,i−d/2(t) + ∆θ2m,i(t)

)
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+

M∑
m′=1,m′ 6=m

(∆θm,i(t)∆θm′,i(t)

−∆θm,i−d/2(t)∆θm′,i−d/2(t)
) )]

. (59)

From (58) and (59), it follows that
d∑
i=1

E
[
∆θ̂2i,2(t)

]
= E

[ (M − 1)

KM2

M∑
m=1

d/2∑
i=1

(
∆θ2m,i(t) + ∆θ2m,d/2+i(t)

) ]
=

(M − 1)

KM2

M∑
m=1

E
[
‖∆θm(t)‖22

]
. (60)

Lemma 6. We have
d∑
i=1

E
[
∆θ̂2i,3(t)

]
=

σ2
zd

2α2
tKMσ2

h

. (61)

Proof. According to the definition of ∆θ̂i,3(t), given in (34),
for 1 ≤ i ≤ d/2 we have

E
[
∆θ̂2i,3(t)

]
= E

[( 1

αtKMσ2
h

M∑
m=1

K∑
k=1

Re
{

(hm,k,i(t))
∗
zk,i(t)

})2]
(a)
= E

[ 1

α2
tK

2M2σ4
h

M∑
m=1

K∑
k=1

(
Re
{

(hm,k,i(t))
∗
zk,i(t)

})2 ]
(b)
=

σ2
z

2α2
tKMσ2

h

, (62)

where (a) follows from the independence of hm,k,i(t) and
zk,i(t), ∀m, k, and (b) follows since E

[
|hm,k,i(t)|2

]
= σ2

h

and E
[
|zk,i(t)|2

]
= σ2

z . The same result can be obtained for
d/2 + 1 ≤ i ≤ d by following the same procedure as above.
It is straightforward to derive (61) from (62).

Lemma 7. We have
d∑
i=1

E
[
∆θ̂2i,4(t)

]
=

σ̃2
h

KM2σ2
h

M∑
m=1

E
[
‖∆θm(t)‖22

]
. (63)

Proof. By Substituting ∆θ̂i,4(t) from (34), for 1 ≤ i ≤ d/2,
we have

E
[
∆θ̂2i,4(t)

]
= E

[( 1

KMσ2
h

M∑
m=1

K∑
k=1

Re
{(
h̃k,i(t)

)∗
hm,k,i(t)

(
∆θm,i(t) + j∆θm,d/2+i(t)

) })2]
(a)
= E

[ 1

K2M2σ4
h

M∑
m=1

K∑
k=1

(
Re
{(
h̃k,i(t)

)∗
hm,k,i(t)(

∆θm,i(t) + j∆θm,d/2+i(t)
) })2 ]

(b)
= E

[ σ̃2
h

2KM2σ2
h

M∑
m=1

(
∆θ2m,i(t) + ∆θ2m,d/2+i(t)

) ]
, (64)

where (a) follows from the independence of h̃k,i(t) and
hm,k,i(t), ∀m, k, and (b) is the result of E

[∣∣h̃k,i(t)∣∣2] = σ̃2
h

and E
[
|hm,k,i(t)|2

]
= σ2

h, ∀i. Similarly, for d/2+1 ≤ i ≤ d,
we can obtain

E
[
∆θ̂2i,4(t)

]
= E

[ σ̃2
h

2KM2σ2
h

M∑
m=1

(
∆θ2m,i−d/2(t) + ∆θ2m,d/2(t)

) ]
. (65)

From (64) and (65), we have
d∑
i=1

E
[
∆θ̂2i,4(t)

]
= E

[ σ̃2
h

KM2σ2
h

M∑
m=1

d/2∑
i=1

(
∆θ2m,i(t) + ∆θ2m,d/2+i(t)

) ]
=

σ̃2
h

KM2σ2
h

M∑
m=1

E
[
‖∆θm(t)‖22

]
. (66)

Lemma 8. We have
d∑
i=1

E
[
∆θ̂2i,5(t)

]
=

σ̃2
hσ

2
zd

2α2
tKM

2σ4
h

. (67)

Proof. From the definition of ∆θ̂i,5(t), given in (34), for 1 ≤
i ≤ d/2 we have

E
[
∆θ̂2i,5(t)

]
= E

[( 1

αtKMσ2
h

K∑
k=1

Re
{(
h̃k,i(t)

)∗
zk,i(t)

})2]
(a)
= E

[ 1

α2
tK

2M2σ4
h

K∑
k=1

(
Re
{(
h̃k,i(t)

)∗
zk,i(t)

})2]
(b)
=

σ̃2
hσ

2
z

2α2
tKM

2σ4
h

, (68)

where (a) follows from the independence of h̃k,i(t) and
zk,i(t), ∀k, and (b) follows since E

[∣∣h̃k,i(t)∣∣2] = σ̃2
h and

E
[
|zk,i(t)|2

]
= σ2

z . The same result can be obtained for
d/2 + 1 ≤ i ≤ d by following the same procedure as above.
The proof of Lemma 8 is completed from (68).

By substituting the results of Lemmas 4-8 into (53), it
follows that

E
[
‖θ(t+ 1)− υ(t+ 1)‖22

]
=

(
1 +

σ̃2
h

Mσ2
h

)
KM

M∑
m=1

E
[
‖∆θm(t)‖22

]
+

(
1 +

σ̃2
h

Mσ2
h

)
σ2
zd

2α2
tKMσ2

h

(a)
=

(
1 +

σ̃2
h

Mσ2
h

)
η2(t)

KM

M∑
m=1

E
[∥∥∥ τ∑

l=1

∇Fm
(
θlm(t), ξlm(t)

)∥∥∥2
2

]

+

(
1 +

σ̃2
h

Mσ2
h

)
σ2
zd

2α2
tKMσ2

h
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(b)

≤

(
1 +

σ̃2
h

Mσ2
h

)
η2(t)τ

KM

M∑
m=1

τ∑
l=1

E
[ ∥∥∥∇Fm (θlm(t), ξlm(t)

)∥∥∥2
2

]

+

(
1 +

σ̃2
h

Mσ2
h

)
σ2
zd

2α2
tKMσ2

h

(c)

≤

(
1 +

σ̃2
h

Mσ2
h

)
η2(t)τ2G2

K
+

(
1 +

σ̃2
h

Mσ2
h

)
σ2
zd

2α2
tKMσ2

h

, (69)

where (a) follows by replacing ∆θm(t) from (36), (b) is due
to the convexity of ‖·‖22, and (c) follows from Assumption 3.

APPENDIX C
PROOF OF LEMMA 2

We follow the same procedure as the one used to prove [31,
Lemma 3]. We have

E
[
‖υ(t+ 1)− θ∗‖22

]
= E

[
‖θ(t) + ∆θ(t)− θ∗‖22

]
= E

[
‖θ(t)− θ∗‖22

]
+ E

[
‖∆θ(t)‖22

]
+ 2E [〈θ(t)− θ∗,∆θ(t)〉] . (70)

From the convexity of ‖·‖22, it follows that

E
[
‖∆θ(t)‖22

]
≤ 1

M

M∑
m=1

E
[
‖∆θm(t)‖22

]
(a)
=
η2(t)

M

M∑
m=1

E
[∥∥∥ τ∑

i=1

∇Fm
(
θim(t), ξim(t)

) ∥∥∥2
2

]
≤ η2(t)τ

M

M∑
m=1

τ∑
i=1

E
[∥∥∇Fm (θim(t), ξim(t)

)∥∥2
2

]
(b)

≤ η2(t)τ2G2, (71)

where (a) follows by replacing ∆θm(t) from (36), and (b)
follows from Assumption 3. Plugging the above inequality into
(70) yields

E
[
‖υ(t+ 1)− θ∗‖22

]
≤E

[
‖θ(t)− θ∗‖22

]
+ η2(t)τ2G2

+ 2E [〈θ(t)− θ∗,∆θ(t)〉] . (72)

We bound the last term on the RHS of the above inequality.
We have

2E [〈θ(t)− θ∗,∆θ(t)〉] (a)
=

2

M

M∑
m=1

E [〈θ(t)− θ∗,∆θm(t)〉]

=
2η(t)

M

M∑
m=1

E
[
〈θ∗ − θ(t),

τ∑
i=1

∇Fm
(
θim(t), ξim(t)

)
〉
]

=
2η(t)

M

M∑
m=1

E
[
〈θ∗ − θ(t),∇Fm

(
θ(t), ξ1m(t)

)
〉
]

+
2η(t)

M

M∑
m=1

E
[
〈θ∗ − θ(t),

τ∑
i=2

∇Fm
(
θim(t), ξim(t)

)
〉
]
.

(73)

Next we bound the two terms on the RHS of the above
equality. We have

2η(t)

M

M∑
m=1

E
[
〈θ∗ − θ(t),∇Fm

(
θ(t), ξ1m(t)

)
〉
]

(a)
=

2η(t)

M

M∑
m=1

E [〈θ∗ − θ(t),∇Fm (θ(t))〉]

(b)

≤ 2η(t)

M

M∑
m=1

E
[
Fm(θ∗)− Fm(θ(t))− µ

2
‖θ(t)− θ∗‖22

]
= 2η(t)

(
F ∗ − E [F (θ(t))]− µ

2
E
[
‖θ(t)− θ∗‖22

] )
(c)

≤ −µη(t)E
[
‖θ(t)− θ∗‖22

]
, (74)

where (a) follows since Eξ
[
∇Fm

(
θ(t), ξ1m(t)

)]
=

∇Fm (θ(t)), (b) follows since Fm is µ-strongly convex,
and (c) holds because F ∗ ≤ F (θ(t)). For the second term on
the RHS of (73), we have

2η(t)

M

M∑
m=1

E
[
〈θ∗ − θ(t),

τ∑
i=2

∇Fm
(
θim(t), ξim(t)

)
〉
]

=
2η(t)

M

M∑
m=1

τ∑
i=2

E
[
〈θ∗ − θ(t),∇Fm

(
θim(t), ξim(t)

)
〉
]

=
2η(t)

M

M∑
m=1

τ∑
i=2

E
[
〈θim(t)− θ(t),∇Fm

(
θim(t), ξim(t)

)
〉
]

+
2η(t)

M

M∑
m=1

τ∑
i=2

E
[
〈θ∗ − θim(t),∇Fm

(
θim(t), ξim(t)

)
〉
]
.

(75)

From Cauchy-Schwarz inequality, it follows that

2η(t)

M

M∑
m=1

τ∑
i=2

E
[
〈θim(t)− θ(t),∇Fm

(
θim(t), ξim(t)

)
〉
]

≤ η(t)

M

M∑
m=1

τ∑
i=2

E
[ 1

η(t)

∥∥θim(t)− θ(t)
∥∥2
2

+ η(t)
∥∥∇Fm (θim(t), ξim(t)

)∥∥2
2

]
(a)

≤ 1

M

M∑
m=1

τ∑
i=2

E
[ ∥∥θim(t)− θ(t)

∥∥2
2

]
+ η2(t) (τ − 1)G2,

(76)

where (a) follows from Assumption 3. Also, the following
lemma presents an upper bound on the second term in the
RHS of (75).

Lemma 9. The second term on the RHS of (75) is upper
bounded as follows:

2η(t)

M

M∑
m=1

τ∑
i=2

E
[
〈θ∗ − θim(t),∇Fm

(
θim(t), ξim(t)

)
〉
]

≤ −µη(t)(1− η(t))(τ − 1)E
[
‖θ(t)− θ∗‖22

]
+
µ(1− η(t))

M

M∑
m=1

τ∑
i=2

E
[∥∥θim(t)− θ(t)

∥∥2
2

]
+ 2η(t)(τ − 1)Γ. (77)

Proof. See Appendix D.
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Substituting the results in (76) and (77) into (75) yields

2η(t)

M

M∑
m=1

E
[
〈θ∗ − θ(t),

τ∑
i=2

∇Fm
(
θim(t), ξim(t)

)
〉
]

≤ −µη(t)(1− η(t))(τ − 1)E
[
‖θ(t)− θ∗‖22

]
+

(1 + µ(1− η(t)))

M

M∑
m=1

τ∑
i=2

E
[ ∥∥θim(t)− θ(t)

∥∥2
2

]
+ η2(t) (τ − 1) + 2η(t)(τ − 1)Γ. (78)

We have

1

M

M∑
m=1

τ∑
i=2

E
[ ∥∥θim(t)− θ(t)

∥∥2
2

]
=
η2(t)

M

M∑
m=1

τ∑
i=2

E
[∥∥∥∑i

l=1
∇Fm

(
θlm(t), ξlm(t)

)∥∥∥2
2

]
(a)

≤ η2(t)G2 τ(τ − 1)(2τ − 1)

6
, (79)

where (a) follows from the convexity of ‖·‖22 and Assumption
3. For η(t) ≤ 1, ∀t, it follows from (78) and (79) that

2η(t)

M

M∑
m=1

E
[
〈θ∗ − θ(t),

τ∑
i=2

∇Fm
(
θim(t), ξim(t)

)
〉
]

≤ −µη(t)(1− η(t))(τ − 1)E
[
‖θ(t)− θ∗‖22

]
+ (1 + µ(1− η(t))) η2(t)G2 τ(τ − 1)(2τ − 1)

6
+ η2(t) (τ − 1)G2 + 2η(t)(τ − 1)Γ. (80)

By substituting the results in (74) and (80) into (73), we obtain

2E [〈θ(t)− θ∗,∆θ(t)〉]

≤ −µη(t) (τ − η(t)(τ − 1))E
[
‖θ(t)− θ∗‖22

]
+ (1 + µ(1− η(t))) η2(t)G2 τ(τ − 1)(2τ − 1)

6
+ η2(t) (τ − 1)G2 + 2η(t)(τ − 1)Γ. (81)

Plugging (81) into (72) completes the proof of Lemma 2.

APPENDIX D
PROOF OF LEMMA 9

We have

2η(t)

M

M∑
m=1

τ∑
i=2

E
[
〈θ∗ − θim(t),∇Fm

(
θim(t), ξim(t)

)
〉
]

(a)

≤ 2η(t)

M

M∑
m=1

τ∑
i=2

E
[
〈θ∗ − θim(t),∇Fm

(
θim(t)

)
〉
]

(b)

≤ 2η(t)

M

M∑
m=1

τ∑
i=2

E
[
Fm(θ∗)− Fm(θim(t))

− µ

2

∥∥θim(t)− θ∗
∥∥2
2

]

=
2η(t)

M

M∑
m=1

τ∑
i=2

E
[
Fm(θ∗)− F ∗m + F ∗m − Fm(θim(t))

− µ

2

∥∥θim(t)− θ∗
∥∥2
2

]
= 2η(t)(τ − 1)

(
F ∗ − 1

M

∑M

m=1
F ∗m
)

+
2η(t)

M

M∑
m=1

τ∑
i=2

(
F ∗m − E

[
Fm(θim(t))

])
− µη(t)

M

M∑
m=1

τ∑
i=2

E
[∥∥θim(t)− θ∗

∥∥2
2

]
(c)

≤ 2η(t)(τ − 1)Γ− µη(t)

M

M∑
m=1

τ∑
i=2

E
[∥∥θim(t)− θ∗

∥∥2
2

]
,

(82)

where (a) follows since Eξ
[
∇Fm

(
θ(t), ξim(t)

)]
=

∇Fm (θ(t)), ∀i,m, t, (b) holds because Fm is µ-strongly
convex, and (c) follows since F ∗m ≤ Fm(θim(t)), ∀m, i, t. We
have

−
∥∥θim(t)− θ∗

∥∥2
2

= −
∥∥θim(t)− θ(t)

∥∥2
2
− ‖θ(t)− θ∗‖22

− 2〈θim(t)− θ(t),θ(t)− θ∗〉
(a)

≤ −
∥∥θim(t)− θ(t)

∥∥2
2
− ‖θ(t)− θ∗‖22

+
1

η(t)

∥∥θim(t)− θ(t)
∥∥2
2

+ η(t) ‖θ(t)− θ∗‖22

= −(1− η(t)) ‖θ(t)− θ∗‖22 +
( 1

η(t)
− 1
)∥∥θim(t)− θ(t)

∥∥2
2
,

(83)

where (a) follows from the Cauchy-Schwarz inequality. The
proof of Lemma 9 is completed by substituting the result in
(83) into (82).
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