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Abstract

Gyrotaxis describes the tendency of bottom-heavy motile micro-organisms to swim sideways under the

balancing of gravitational and viscous torque. A suspension of gyrotactic microswimmers will self-focus

into a plume in a pipe with a shearing downflow. This work utilises the dilute assumption and

model microswimmers, such as the gyrotactic Chlamydomonas and Dunaliella, as hydrodynamically

contributing (but not interacting) particles in a flowing suspension that are also subjected to rotational

noise. In this framework, the suspension is governed by the Smoluchowski equation and the Navier-

Stokes equation.

We then further reduce the Smoluchowski equation into a transport equation for the swimmers using

the Fokker-Planck model and the generalised Taylor dispersion (GTD) model. Both models are used

to calculate the formation of the gyrotactic plume and the subsequent blip instability via a stability

analysis. The Fokker-Planck model is found to be not as accurate as the GTD model. The calculation

of the gyrotactic plume also results in the discovery of a series of imperfect transcritical bifurcations

in the uniform solution and a singular solution when the Richardson number approaches a certain

threshold. The transcritical bifurcations are likely linked to the formation of bioconvective patterns,

whereas the singular solution is found to be an extension of Kessler (1986).

Despite encouraging results from the GTD model, it cannot be applied in a general flow field or capture

shear trapping in inhomogeneous shear flows. Therefore, a new model using a novel transformation

and local approximation of the Smoluchowski equation is proposed. The resulting new transport model

performs better than the GTD model due to its ability to capture shear trapping. It also exposes

many new drifts and dispersions arising from the interaction between the orientational and spatial

dynamics. Nevertheless, this new framework can be further improved by including the semi-dilute

effect and better modelling at the wall.
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Chapter 1

Introduction

1.1 Motivation

Many aqueous microorganisms, such as bacteria, algae and certain types of phytoplankton, have

developed motility, that is, their ability to propel themselves in a fluid environment by various

‘swimming’ mechanism. From a fluid dynamics perspective, these motile (swimming) microorganisms

are self-propelling, orientable particles suspended in a fluid environment. In this work, they shall

be referred to as ‘microswimmers’, or ‘swimmers’ for short. Each microswimmer is subjected to

forces from their surroundings, such as the viscous force from fluid flow and gravity, while they swim

towards a certain direction. By regulating their swimming mechanism or using their own geometry,

many of them are also capable of steering themselves, sometimes against the environmental trend,

towards a direction that can increase their chances of survival. Therefore, collectively, their transport

in a fluid medium is not trivial but strongly dependent on their swimming direction and the fluid

flow. This strong coupling between their overall transport and the fluid flow prompts an interesting

fluid dynamics problem.

Accurate modelling of the transport of microswimmers in a suspension in response to the environment is

of fundamental importance for many biological, ecological and engineering applications. In evolutionary

biology, motile microorganisms develop taxis, which is their tendency to swim towards or away from

environmental cues such as gravity, light intensity and chemical gradient, to seek food and energy or

to evade predators. Quantifying the mechanism of these taxes help us understand the evolutionary

pressure behind the development of motility. For example, many phytoplanktons in the ocean are

not motile, as the development of motility without taxes only add to the consumption of energy

25



without much benefit. However, some microalgae, especially those heavier than water, developed

taxes by using their geometry. They are bottom-heavy, such that they can orient themselves to swim

upward (towards the water surface) to maximise the sunlight one can receive for photosynthesis. Their

tendency to swim upward is known as gravitaxis. However, the side effect of being bottom-heavy is

that their upswimming can be disrupted in a shear flow, as the viscous torque from the ambient flow

balances out the restoring gravitational torque acting on the bottom-heavy microswimmer, resulting

in a sideway swimmer transport on average. This tendency to swim sideways under shear is known as

gyrotaxis (Kessler, 1985b). There seems to be a delicate balance between the development of motility

and taxes and the energy investment needed for swimming. A quantitative study of gyrotaxis and

the resulting collective transport might help us fully understand this interesting trade-off.

The collective transport of microswimmers as a result of gravitaxis and gyrotaxis also has ramifications

in ecology. For example, gyrotaxis in the motile species among phytoplankton might be responsible

for the formation of ecological hotspots in the ocean (Durham et al., 2009). When a strong shear in

the ocean disrupts their upward motility, gyrotactic species are trapped at a certain depth, triggering

the formation of a thin phytoplankton layer. This thin layer is often found in coastal waters where the

shearing is strong but the turbulent intensity is low (Durham & Stocker, 2012). Durham et al. (2013)

have also shown that the gyrotactic motility in some phytoplanktons encourages their aggregation

into microscale patches in turbulent water, which might play a role in their sexual reproduction.

In a more controlled environment, the interaction between the orientation-dependent transport of

microswimmers and the fluid they are suspended in can also lead to interesting patterns. For example,

it has long been observed that patterns of convective rolls can spontaneously appear in a shallow

suspension of gravitactic microswimmers if the swimmers are also slightly denser than the fluid. The

phenomenon is known as bioconvection because the pattern resembles that of a Rayleigh-Bérnard

convection. Based on this analogy, it was suggested that the overturning instability is the main

mechanism driving the pattern formation (Childress et al., 1975), in which gravitactic swimmers

would accumulate at the top surface of the fluid, aggregate due to the instability, and sink back down

as a plume due to their negative buoyancy. However, it was later shown that a gyrotactic instability

could also accumulate swimmers into a downflowing plume without an upper boundary (Pedley et al.,

1988). In a vertical downflowing pipe, the same gyrotactic mechanism can focus the microswimmers

into a plume-like structure. This phenomenon, dubbed as gyrotactic focusing, was first shown by

Kessler (1985b) to demonstrate the mechanism of gyrotaxis. It has been proposed that the above

phenomena can also be used in the production of biofuel to reduce the energy cost of mixing or

harvesting bottom-heavy algal species (Croze et al., 2013; Bees & Croze, 2014).
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All of the above are the results of the collective behaviour of swimmers in a suspension in which the

emergent behaviour arises from the individuals’ orientational responses to their environment. While

an individual swimmer can be modelled in a Stokesian environment given its small size (1-10 µm for

bacteria and 10-100 µm for algae), the emergent behaviour and the macroscopic flow of a suspension

of swimmers often occur at a macroscopic scale orders of magnitude larger than the individuals. For

example, the bioconvective pattern has a typical length scale of millimetres to centimetres (see Bees,

2020, fig. 1), whereas the turbulence in the ocean has a dissipative scale of millimetres (see Durham

et al., 2013, p.4). The difference in lengthscale poses a significant challenge to the modelling of their

collective behaviour and pattern formation. Therefore, many model the suspension under some form

of coarse-graining instead of modelling the discrete individuals at a large scale. However, creating an

accurate and widely applicable coarse-grained model for microswimmers remains a major challenge

(Bees, 2020).

This work aims to find ways to overcome the challenge by using and evaluating existing coarse-graining

models while developing better ones that can be used to model phenomena such as gyrotactic focusing

and bioconvection. We hope that by further developing and evaluating models for the transport of

microswimmers in an experimentally realisable set-up, one can eventually use them in more a complex

context, such as the engineering of biofuel production and the study of ecology and carbon cycle in

the ocean.

1.2 Flow around individual swimmers

1.2.1 Stokes flow

As mentioned, microorganisms such as bacteria and algae have diameters no larger than 100 µm.

Their swimming speed can range between tens to hundreds µm per second (Pedley & Kessler, 1992;

Bees, 2020). As a result, the Reynolds number of individual microswimmers in water are typically no

larger than 10−2 (Pedley & Kessler, 1992), and the flow around a microswimmer can be treated as a

Stokes flow, where the flow field u∗ and pressure q∗ around the microswimmer are governed by the

Stokes equation

−µ∗∇2∗
x u∗(x∗) +∇∗

xq
∗(x∗) = f∗, ∇∗

x · u∗(x∗) = 0. (1.1)

Here µ∗ is the dynamic viscosity of the fluid and f∗ the disturbance force per unit volume. In this

thesis, ∗ denotes dimensional variables. One can then non-dimensionalise the Stokes equation by a
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characteristic length a∗ and characteristic speed U∗ to get

−∇2
xu(x) +∇xq(x) = f , and ∇x · u(x) = 0, (1.2)

where the non-dimensionalised pressure q = q∗a∗/(µ∗U∗) and disturbance force f = f∗a2∗/(µ∗U∗) have

been further normalised by µ∗ . Typically, the swimmer’s length (radius or equivalent) and swimming

speed are taken as a∗ and U∗ for the disturbance flow around a single swimmer.

It is well known that in a Stokesian environment, the flow is linear and time-independent. These

properties of the Stokes flow leads to the celebrated Scallop Theorem (Purcell, 1977), which stated

that the reciprocal motion (i.e. time-symmetric motion that is invariant under time-reversal) of a

swimmer could not achieve a net displacement over a long time in an environment with a vanishing

Reynolds number. Instead, locomotion can be only achieved by a non-reciprocal motion. In many

bacteria, motility is achieved by a ‘corkscrew’ swimming mechanism, the continuous rotation of their

helical tail. For algae, locomotion is typically achieved by the non-reciprocal ‘breast stroke’ beat of its

flagella. The detailed mechanism of cell motility can be accurately modelled with the Stokes equation.

It has been an intensely studied subject in the recent decade, spurred by many numerical methods

(e.g. Cortez, 2001; Smith, 2009; Schoeller et al., 2021) for Stokes flows and the recent advancement in

experimental techniques such as light microscopy (see review by Lauga & Powers, 2009). However,

this work is not as concerned about the detailed mechanics of individuals’ swimming as their collective

dynamics. Therefore, we shall refer readers to the recent publication by Lauga (2020) for more details

on the subject of cell motility.

1.2.2 Multipole representation

Instead of modelling the detailed geometry and swimming mechanism of an individual swimmer, this

work uses a multipole representation to approximately describe the influence of a microswimmer in

the Stokes flow. To derive the multipole representation, we first write down the impulse response

uδ(x) to the Stokes equation

uδ(x) =

(︃
I
r
+

xx

r3

)︃
· F

δ

8π
= G · F

δ

8π
. (1.3)

It is the solution to the problem

−∇2
xu

δ(x) +∇xq
δ(x) = Fδδ(x), ∇x · uδ(x) = 0, (1.4)
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where Fδ is the unit vector representing the viscosity-normalised impulse (and its direction), δ(x) the

Dirac-delta at the origin and r = |x| the distance from the origin. Here,

G =
I
r
+

xx

r3

is the Oseen-Burger tensor, Green’s function of the Stokes equation. The solution uδ also represents

the flow around a point force Fδ (normalised by viscosity) applied on the fluid at the origin.

Because of linearity, a passive particle or swimmer of arbitrary shape and swimming mechanism can

be represented as the summation of point forces, surface tractions and surface velocity. Therefore,

the flow around the particle/swimmer can be represented as the summation of the free-stream flow

u∞ and the disturbance flow ud created by either a set of forces, surface tractions, surface velocities

or a combination of the above.

In this work, we are only concerned with the flow field far from the particle or swimmer at the origin.

Therefore, a Taylor expansion of G(x−xα) about x0 = xα = 0 would provide a far-field representation

of the flow, resulting in

udi (x) = −Fj
8π

Gij +
Mjk

8π

∂Gij
∂xk

+H.O.T., (1.5)

where F is the overall drag and M the overall first moment of traction on the swimmer or particle.

The above expansion only shows the zeroth- and first-order terms. The higher-order terms at order n

would decay as 1/rn+1. Therefore, regardless of the swimming mechanism or shape, the influence

seen faraway would be well approximated by the first few singularities in this multipole expansion.

The tensor M can be split into its symmetric and antisymmetric parts M = S + L. Together with the

overall drag, F, S and L provide a low-order representation of the swimmer or particle, which can be

measured experimentally (e.g. Drescher et al., 2011) or modelled according to the swimmer’s geometry

(e.g. Pedley & Kessler, 1990). The singularities F, S and L are also referred to as the Stokeslet,

stresslet and rotlet, respectively, as they each represents a point force, a force dipole with vanishing

dipole length and a point torque in the flow. Fig. 1.1 shows the streamline of the three-dimensional

Stokesian flow field generated by a Stokeslet, a stresslet and a rotlet on the cross-sectional plane at

which the Stokeslet, stresslet rotlet are applied. The vector fields are equivalent to the two-dimensional

flow fields.
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(a) (b) (c)

Figure 1.1: The streamline driven by (a) a Stokeslet (point force, F), (b) a stresslet (force dipole, S)
and (c) a rotlet (point torque, L) in a two-dimensional flow. The streamlines also represent the cross-
section vector field of a three-dimensional flow on the plane where the point Stokeslet/stresslet/rotlet
is acting.

1.2.3 Approximating swimmers as pushers or pullers

We have shown that the far-field velocity induced by a suspended particle or swimmer in a Stokesian

environment can be well approximated by the first few expansion of the Green’s function of the Stokes

equation, i.e. the Stokeslet, stresslet and rotlet. If a swimmer is force-free (F = 0) and torque-free

(L = 0), then the leading order effect comes from the stresslet. Furthermore, if the swimmer is also

axisymmetric about and moving along the swimming direction p, then the tensor S must be in the

form of S = σ0(pp− I/3) (see Kim & Karrila, 1991, §3.3.4), where the scalar σ0 can be empirically

measured as a property of the swimmer.

The sign of σ0 is of important physical significance as it determines if an isotropic suspension of

swimmers would be subjected to hydrodynamic instability (Saintillan & Shelley, 2008a). Swimmers

with σ0 > 0 are called pullers. The straining flow around a puller comes towards the cell body

parallel to the swimming direction and is pushed away from the body perpendicular to the swimming

direction (fig. 1.2b). This is known as contractile swimming. Swimmers with σ0 < 0 are called

pushers. The straining flow comes towards the cell body perpendicular to the swimming direction

and is pushed away from the body parallel to the swimming direction (fig. 1.2a). This is known as

extensile swimming. Saintillan & Shelley (2008a,b) have shown that a homogeneous and isotropic

pusher suspension (σ0 < 0) is prone to an instability due to the hydrodynamic stresses from the

pushers, while a puller suspension is stable. Therefore, accounting for the hydrodynamic stresses from

swimmers is particularly important in a pusher suspension.

Drescher et al. (2010a, 2011) and Guasto et al. (2010) used particle image velocimetry to measure

the flow field around a swimming bacterium Escherichia coli and an alga Chlamydomonas reinhardtii.
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(a) (b)

(c) (d)

(e) (f)

Figure 1.2: The streamline around (a) a pusher (σ0 < 0), (b) a puller (σ0 > 0), (c) an idealised E. coli
(c.f. Drescher et al. 2011) and (d) an idealised representation of the time- and azimuthally-averaged
flow around C. reinhardtii (c.f. Drescher et al. 2010a; Guasto et al. 2010). The colour of the contour
shows the magnitude of the velocity of the flow in log scale. In (d), the inset shows the far-field
idealised flow around C. reinhardtii. For comparison, (e, f) show the experimental measurements of
the flow field around (e) an E. coli (adapted from Drescher et al. 2011, DOI: 10.1073/pnas.1019079108.
Copyright (2011) by the National Academy of Sciences.) and (f) a C. reinhardtii (adapted with
permission from Guasto et al. 2010, DOI: 10.1103/PhysRevLett.105.168102. Copyright (2010) by the
American Physical Society.).
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Their measurements showed that the far-field flow around E. coli could indeed be well approximated

by an idealised force dipole with a finite dipole length (figs. 1.2c,e), closely resembling that of an

idealised pusher. However, the flow near the cell body also showed a significant departure from the

idealised low-order approximation, which is expected as higher-order singularities are likely playing a

more significant role locally near the cell body (see Drescher et al., 2011, fig. 1). The measurement

around C. reinhardtii painted a more complex picture (Guasto et al., 2010; Drescher et al., 2010a).

Because of the unsteady ‘breast-stroke’ beating of the two flagella, the flow field near the algae

cell is inherently unsteady. Guasto et al. (2010) took a time-resolved measurment of the unsteady

flow around a beating cell, while both Guasto et al. (2010) and Drescher et al. (2010a) presented

the beat-cycle averaged velocity field. Despite the unsteadiness, the time-averaged flow remains

dominated by the stresslet, especially in the far-field, as suggested by the theory. The near-field time-

and azimuthally-averaged flow can be more faithfully represented by three off-centred point forces

(stokeslets), in which the two acting outside the cell body represents the beating flagella pulling the

cell towards the swimming direction, and the other one represents the drag force acting on the cell

body in the opposite direction (compare fig. 1.2d with fig. 1.2f). However, at around seven swimmer

radius away from the centre, the flow topology began resembling that of an idealised puller (see inset

of 1.2d). In summary, the low-order approximation works well in the far-field for both swimmers, but

a higher-order expansion might be needed to describe the near-field flow.

This thesis will only consider microswimmers as their idealised low-order representation, i.e. the

summation of Stokeslets, stresslets and rotlets. As long as the occurrences of two swimmers en-

countering at a close distance are low, the detailed flow field near the cell body would not strongly

affect the dynamics of the suspension macroscopically. In other words, we assume that the near-field

hydrodynamic interactions are rare and negligible. This assumption implicitly implies that the

suspension has a characteristic lengthscale much larger than the swimmer and is dilute enough such

that the average distance between swimmers is much larger than the size of swimmers. In the following

section, we shall further discuss the concentration regime at which this presumption is valid.

1.3 Suspension Regime

As mentioned, it is important to be aware of the different regimes a suspension can have and how

different theories are more suitable for each regime. The division of concentration regime presented

in this section is based on the volume fraction ϕ. It dictates the significance of the interactions
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between swimmers, which may include the far-field and near-field hydrodynamic interactions and

the direct contact between swimmers if the volume fraction ϕ is high enough. The hydrodynamic

disturbance velocity at a distance R∗ caused by a net force on a swimmer of effective radius a∗ is

of order O(a∗/R∗). Therefore, the importance of these interactions scales with the volume fraction

(ϕ∗)−1/3 ∼ a∗/R∗. In the following subsections, we shall present the regimes at an increasing order of

the volume fractions.

1.3.1 Dilute solution

In this regime, the concentration is low enough such that the average distance between swimmers R∗

is much larger than the swimmer size a∗, i.e. ϕ→ 0. Therefore, one can approximate the Stokesian

flow field by linearly superposing the hydrodynamic contribution of the low-order representation of

each swimmer. The superposition allows the development of a continuum model for the suspension of

swimmers later in the thesis. However, this superposition is, strictly speaking, not mathematically

legal, as the solution flow field about each swimmer does not account for the presence of other

swimmers, i.e. the superposed solutions do not share the same boundaries. If ϕ is not tending to zero,

the superposition may lead to unwanted artefacts such as the divergence paradox (see §1.4 and Hinch

(2010)). However, if the solution is dilute enough, the presence of other swimmers far away would

not have a strong effect on the swimmer in consideration, and the approximation by superposition is

justified.

This work assumes the swimmer suspension in consideration is diulte enough for the dilute approxi-

mation, i.e. ϕ→ 0. However, in reality, the suspensions have a finite but small volume fraction. We

will discuss the threshold at which the dilute approximation is valid shortly.

1.3.2 Semi-Dilute solution

We define semi-dilute as the regime where the naive superposition can no longer capture interactions

between swimmer. At the dilute end of this regime, hydrodynamic interactions are still dominated by

the far-field, but modelling for the discrete swimmers is needed to capture the interactions accurately.

One of the commonly used methods to capture such interaction is the method of reflection. “The

method of reflection is based on the idea that the ambient field about each particle consists of the

original ambient field plus the disturbance field produced by other particles. The method is iterative,

since a correction of the ambient field about a given particle generates a new disturbance solution for
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that particle, which in turn modified the ambient field about another particle” (cited from Kim &

Karrila, 1991, chapter 8). The accuracy of each pairwise hydrodynamic interaction can be improved by

a factor of order O(a∗/R∗ ∼ ϕ1/3) per iteration of reflection. Therefore, considering more reflections

improve the accuracy of the hydrodynamic forcing on swimmers in a suspension of finite but small

volume fraction.

However, at the more concentrated end of this regime, the approximation provided by the method of

reflection would no longer be enough due to the poor representation of the flow field near the cell

body by the low-order multipole representation. Typical approaches to model suspension in this

regime, such as Stokesian Dynamics (Brady & Bossis, 1988), utilise lubrication theory to account for

the near-field interaction. Other computational methods, such as regularised Stokeslet (Cortez, 2001),

boundary element method (e.g. Smith, 2009) or force-coupling method (e.g. Schoeller et al., 2021),

involve simulation of the detailed geometry and swimming motion of the swimmer. It should be noted

that, for biological swimmers, the near-field is much more complex than the multipole representation

and often involves the spatiotemporal dynamics of the swimmer’s swimming mechanism (c.f. §1.2.3).

While the detailed modelling of these complex behaviour deviates from the reductionist approach this

work is seeking, we note that some swimming mechanisms can create novel interactions, such as the

synchronised beating of sperm flagella (e.g. Schoeller & Keaveny, 2018), that cannot be captured

otherwise. Seeking a macroscopic model that can capture these interactions remains a major challenge

that sits outside the current scope.

The volume fraction threshold at which solution becomes semi-dilute is not clear cut, but it is clear

from the method of reflection that the significance of the far-field hydrodynamic interactions between

swimmers scale with the volume fraction. For example, Batchelor (1972) made an O(ϕ) correction to

the sedimentation speed of a suspension of sedimenting particles due to the effect of hydrodynamic

interaction and showed that the average sedimentation speed slows down by −6.55ϕus compared to

the standalone sedimentation speed us.

Earlier experiments by Kessler et al. (1992) have shown that the interactions between gyrotactic

swimmers may not be neglected at an average volume fraction of ϕ = 0.25%. However, the density

fluctuation in their experiments may also imply that the local volume fraction where the interaction

becomes significant is higher than the averaged value. For all intents and purposes of this thesis,

we shall use ϕ = 2.5% as an arbitrary local threshold to indicate any local breakdown of the

dilute assumption since this value corresponds to the lowest volume fraction Ishikawa & Pedley

(2007a,b) have considered in their work on the semi-dilute suspension. However, one should note that

hydrodynamic interactions may have already become significant at a lower volume fraction than the

arbitrary threshold.
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1.3.3 Concentrated / Liquid crystalline solution

At the concentrated side of the spectrum of volume fractions, the direct interactions between swimmers

become important. This is the regime where concentrated collective behaviour, such as bacterial

turbulence (Dombrowski et al., 2004; Koch & Subramanian, 2011) and the spontaneous flow in a

confined suspension (Wioland et al., 2013), occurs. These phenomena are driven by both the nematic

alignment of swimmers (Simha & Ramaswamy, 2002) and the long-ranged hydrodynamic interactions

(Saintillan & Shelley, 2008a,b).

It is not easy to model the collective behaviour in this regime using a discrete simulation, as one should

resolve both the complex near-field flow and the nematic alignment of multiple bodies simultaneously.

Crude approximations of the hydrodynamic forces, such as slender body theory (e.g. Saintillan &

Shelley, 2007) and Jeffery orbit (e.g. Lushi et al., 2014), can be used in conjunction with models for

the nematic alignment between swimmers to capture the dynamic of individual swimmers. However,

these individual-based models would not be as accurate as the Stokesian based simulations used

in the semi-dilute suspension, as they assumed a locally linear flow field and ignored higher-order

hydrodynamic interactions.

Alternatively, many phenomenological continuum models have been proposed. Some use the fact

that some bacteria are long and thin, which invites the use of liquid crystal theory (e.g. Simha &

Ramaswamy, 2002; Marchetti et al., 2013) to model the neumatic order of swimmers. Others (e.g.

Wensink et al., 2012; Dunkel et al., 2013; Linkmann et al., 2019) directly seek a continuum equation

phenomenologically using the Toner-Tu theory (Toner & Tu, 1998), i.e. writing a phenomenological

equation that accounts for the most relevant physical effects and satisfies all the necessary symmetry.

This thesis notes the value of these more phenomenologically-driven approaches, which might be

more relevant when the nematic alignment is important, and modelling from the first principle is

difficult. Some of these approaches, such as the Toner-Tu theory, might also be applicable to derive a

macroscopic description for the suspension this thesis set out to study. However, whenever possible, a

bottom-up approach is preferred because it gives more physical insight at every level of approximation

or abstraction.

1.3.4 Flow regime

Besides the volume fraction of suspension, the Reynolds number of the flow is also an important

parameter. Often in an active suspension, novel collective behaviour emerges at the micro- to meso-

scale such that a Stokesian environment can be assumed. However, for bioconvection and many other
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potential applications and examples listed in §1.1, the macroscopic flow can become inertial even if

the microscopic flow around the swimmer is Stokesian. Such is the characteristic that distinguishes

bioconvection and gyrotaxis-related phenomena from other phenomena in the field of active matter.

Consequently, many of the aforementioned Stokesian-based theories or numerical tools alone are not

adequate to fully model the collective behaviour in a nonlinear flow environment.

1.4 Modelling a dilute suspension

One of the objective of this thesis is to seek a continuum model for a dilute suspension of microswim-

mers that is suitable for phenomena such as bioconvection and gyrotactic focusing. To relate the

microscopic mechanics governed by the Stokesian dynamics introduced in the previous subsection to

the macroscopic properties we seek, we will use statistics to describe a suspension with a large number

of microswimmers. In other words, we will model the conservation of the probability density function

Ψ(x,p, t) of finding a swimmer at position x with orientation p at time t, where p also defines the

swimming direction. However, to use this approach, we must first write down the governing equations

for the trajectories of swimmers. In following the subsections, we shall list the ingredients that govern

the orientational and spatial trajectories for a single microswimmer.

It should be noted that, although the trajectories of swimmers are derived microscopically in a Stokes

flow, the utilisation of statistics at the macroscopic level under the dilute assumption and the clear

separation between the microscopic and macroscopic scales allow the model to be used in a wide

range of scenario. In particular, the continuum model presented in this section was developed with

the aspiration that it can be applied to high Reynolds number flow in the future. However, high

Reynolds number flows remain outside the scope of this thesis.

1.4.1 Jeffrey’s Equation

Derived directly from the Stokes equation (1.2), Jeffrey’s orbit (Jeffery, 1922; Bretherton, 1962)

ṗ∗ =
1

2
Ω∗ ∧ p+ α0p · E∗ · (I − pp) (1.6)

governs the orientational trajectory of a general body of revolution in a linear flow field with vorticity

Ω∗ = ∇∗
x ∧ u∗ and rate-of-strain tensor E∗ = (∇∗

xu
∗ +∇∗

xu
∗T )/2. Were the body a spheroid, the
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Bretherton constant α0 = (κ2 − 1)/(κ+ 1) can be calculated from the aspect ratio κ and represents

how slender the particle/swimmer is. Jeffrey’s orbit is also widely used as an approximation model for

the orientational dynamics of microswimmers as they are often idealised as bodies of revolution about

their swimming directions (see Pedley & Kessler, 1992; Saintillan & Shelley, 2015). This work will

take the same approximation, i.e. assuming swimmers as general bodies of revolution subjected to a

locally linear flow field. As the flow features of our target application are orders of magnitude larger

than the swimmer, the assumption of a locally linear flow field is a valid approximation (see §1.1).

1.4.2 Effective torque from taxes

Taxes in biological microswimmers modify the swimmers’ orientation according to the environment.

In the Jeffrey’s orbit framework, the effective torque from a taxis can be included in ṗ∗. Pedley &

Kessler (1990) have first written down the formula accounting for the gravitational restoring torque

when a bottom-heavy swimmer is perturbed from its upright position. The modified trajectory of the

swimmers’ orientation is

ṗ∗ =
1

2B∗

[︂
k̂− (k̂ · p)p

]︂
+

(︃
Ω∗(x)

2
∧ p+ α0p · E∗ · (I − pp)

)︃
, (1.7)

where k̂ is the unit vector pointing upwards (against gravity) and B∗ the gyrotactic time scale. The

factor 1/(2B∗) represents the strength of gyrotaxis, where B∗ is defined as

B∗ =
µ∗α⊥

2h∗ρ∗sg
∗ . (1.8)

Here µ∗ is the fluid viscosity, α⊥ the dimensionless resistance coefficient for rotation about an axis

perpendicular to p, h∗ the offset (along p) between the swimmer’s centre-of-mass and centre-of-

buoyancy, ρ∗s the swimmer’s density, and g∗ the gravitational acceleration. In the absence of rotational

noise, one can demonstrate the gyrotaxis of bottom-heavy swimmers by considering the equilibrium

orientation, i.e. by solving ṗ∗ = 0 in (1.7). For example, in a quiescent flow, the swimmer’s equilibrium

orientation would be the upright position (p = k̂). This results in negative gravitaxis. However,

if a small shear is imposed, the swimmer would be perturbed slightly sideways from its upright

position. With the swimmers’ motility, the perturbed orientation to one side results in gyrotaxis.

If one defines θ as the angle between p and k̂ and assumes the direction of vorticity Ω∗ from the

shearing is perpendicular to k̂, the orientation p for a spherical (α0 = 0) bottom-heavy swimmer is
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given by

sin θ = B∗ω∗, cos θ > 0, (1.9)

where ω∗ = |Ω∗|. This model, first formulated by the series of work by Pedley and Kessler (see Pedley

& Kessler, 1992), is further evident experimentally by Durham et al. (2009). Here, θ would only

have a solution if B∗ω∗ ⩽ 1, which represents the range of shear relative to the gravitational torque

(∼ 1/B∗) before the vorticity too strong for the gravitational torque to balance. At B∗ω∗ > 1, the

swimmer would follow the strong shear and tumble without a static equilibrium.

Besides gyrotaxis, the framework can also be used to model some other taxes such as phototaxis (e.g.

Williams & Bees, 2011; Drescher et al., 2010b) or chemotaxis of phoretic artificial swimmers (e.g.

Tătulea-Codrean & Lauga, 2018). The framework is applicable as long as the taxes can be represented

by an effective torque on the swimmer. However, not all taxes can be represented by an effective

torque in the modified Jeffrey’s orbit. For example, many bacteria perform chemotaxis by decreasing

the tumbling frequency of their run-and-tumble motion in a nutrient-rich environment (Berg, 1993).

The ṗ∗ framework is not suitable for the stochastically driven run-and-tumble chemotaxis. Instead, it

has to be modelled by the stochastic run-and-tumble term. More discussion on the run-and-tumble

motion will follow shortly.

1.4.3 Swimming and sedimentation

As a result of the linearity of Stokes flow, the spatial trajectory of a swimmer can be written as

ẋ∗ = u∗ + V ∗
c p+ u∗

s, (1.10)

the superposition of passive advection by the flow u∗, active swimming V ∗
c p in direction p and

‘slip’ velocity u∗
s, which is the velocity relative to the local flow due to an external force. In the

context of biological microswimmers, u∗
s usually represents the sedimentation velocity of a swimmer.

We note that the swimming speed V ∗
c and the sedimentation velocity u∗

s are not constant in some

swimmers. For example, some bacteria lower their swimming speed in nutrient-rich environments via

chemokinesis to increase their nutrient uptake (Son et al., 2016). The sedimentation speed of a slender

body can also vary with the orientation (Clifton et al., 2018). In this work, the swimming speed

V ∗
c is assumed to be constant in this work and the sedimentation velocity u∗

s is assumed relatively

negligible compared to V ∗
c or u∗ for simplicity (see Pedley, 2010a). However, in the rare occasion

where there is no vertical ambient flow, u∗
s might become significant (Maretvadakethope et al., 2019).
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1.4.4 Stochasticity in the trajectory

Most microswimmers are between 1-100 µm in diameters, which are too large to be subjected to

a significant thermal translational diffusion (Pedley & Kessler, 1992; Saintillan, 2018; Bees, 2020).

However, fluctuations from their swimming mechanism, such as flagellar beating, may subject the

swimmers to rotational noise. Here we assume the rotation noise as Gaussian such that later we

can characterise it as a rotational diffusion with a rotational diffusivity d∗r. The coupling between

rotational diffusivity and swimming results in a correlated random walk, which behaves like an

effective spatial diffusion in a quiescent fluid. Using the generalised Taylor dispersion theory (Brenner,

1980; Frankel & Brenner, 1991), one can demonstrate that the effective spatial diffusivity scales with

(V ∗
c )

2/6d∗r. However, applying this theory in a general flow field would be a subject for discussion

later in the thesis. A more thorough introduction to the theory will follow in §1.5.2.

Conventionally, the spreading of biological microswimmers is only characterised by the coupling

between rotational diffusion and swimming, while translational diffusion is disregarded. However,

if the fluctuations from the swimming mechanism can subject the swimmer to rotational diffusion,

there is no reason the randomness would not partly manifest as translational diffusion too. There

is little evidence suggesting that the translational diffusion from fluctuations is negligible, despite

the conventional treatment of microswimmers. Separating translational diffusion from the random

walk due to rotational diffusion is experimentally difficult, so there are no measurements on such

translational diffusivity. Nevertheless, this work shall consider the possibility of a non-negligible

translational diffusivity D∗
T later in chapter 4.

Besides translational and rotational diffusion, biological microswimmers also exhibit other stochastic

behaviour. Most notable, bacteria such as E. coli randomly alternate between swimming in a nearly

straight line and fast random reorientation (Alt, 1980), caused by the unbundling and re-bundling

of their flagella (Berg, 2004). By adjusting the tumbling frequency according to the local chemical

concentration in this rum-and-tumble motion, bacteria perform chemotaxis in such a stochastic way

that it cannot be captured by a deterministic torque.

Given the stochastic nature of the motion of microswimmers, their trajectories are governed by a

Langevin equation. In the next subsection, we shall summarise all of the above ingredients for the

motion of bottom-heavy microswimmers and write down a conservation equation.
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1.4.5 Formulating the governing equations

Smoluchowski Equation

The configuration of a dilute suspension of microswimmers subjected to translational D∗
T and

rotational d∗r noise at time t∗ can be described by the probability density/distribution function

Ψ∗(x∗,p∗, t) of finding a swimmer with the centre-of-mass position x∗ and orientation p, governed by

the Fokker-Planck equation,

∂Ψ∗

∂t∗
+∇∗

x · [ẋ∗Ψ∗ −D∗
T∇∗

xΨ
∗] +∇p · [ṗ∗Ψ∗ − d∗r∇pΨ

∗] = 0. (1.11)

derived from the Langevin equations governing the swimmers’ rotational and spatial trajectories.

Here, ∇p = (I − pp)(∂/∂p) denotes the gradient operator on the unit sphere. An extra term

− 1

τr

[︄
Ψ∗ −

∫︂
Sp

K(p|p′)Ψ∗(x∗,p′, t∗)dp′

]︄
(1.12)

can be added to the right-hand side to account for the run-and-tumble dynamics of some chemotactic

bacteria, where the kernel K(p|p′) is the probability associated with an orientation jump (tumbling)

from p′ to p, given the pre-tumble orientation was p′. However, since the algal species do not usually

perform such manoeuvres, we shall omit this term in this thesis. Equation (1.11) is the Fokker-Planck

equation for the probability density function of a swimmer’s spatial and orientational position. When

a Fokker-Planck equation is applied to the position of a Brownian particle, it is also sometimes referred

to as the Smoluchowski equation (Smoluchowski, 1906). To avoid confusion with the Fokker-Planck

model to be introduced later, eq. (1.11) shall be referred to as the Smoluchowski equation in the rest

of this work. Here, Ψ∗ is normalised by

∫︂
Sp

Ψ∗(x∗,p, t∗)dp = n∗(x∗, t∗), (1.13)

where n∗(x, t) is the dimensional number density of swimmers and Sp the unit sphere of orientations.

Because of how this work normalises Ψ∗, it has the same dimension as n∗, which is the inverse of

volume. Here we also define the local orientational probability density function (p.d.f.) f(x∗,p, t∗) as

Ψ∗(x∗,p, t∗) further normalised by the local number density n∗(x∗, t∗), i.e.

f(x∗,p, t∗) = Ψ∗(x∗,p, t∗)/n∗(x∗, t∗). (1.14)
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Here, f(x∗,p, t∗) is subjected to the normalisation condition

∫︂
Sp

f(x∗,p, t∗)dp = 1. (1.15)

Note that f(x∗,p, t∗) is both a function of p and x∗. For bottom-heavy microswimmers the spatial

trajectory ẋ∗ and orientational trajectory ṗ∗ are governed by eqs. (1.7) and (1.10) respectively.

Equation of flow and the bulk stress tensor

Equations (1.7) and (1.10) require the knowledge of the flow field, which accounts for both the ambient

flow and the disturbance flow from each swimmer. In the context of the Smoluchowski equation, the

flow field should have been a random variable because the disturbance flow depends on the random

configuration of the swimmers. However, in a dilute system with many swimmers, the mean-field

u∗(x∗, t∗) of the flow can be used instead based on a coarse-graining approximation (Saintillan &

Shelley, 2008a,b). In the approximation, the hydrodynamic contributions of the swimmers are

rewritten as the bulk stresses and forces, which would then be added to the mean-field flow equation

for u∗(x∗, t∗). For a dilute suspension (ϕ→ 0), the superposition let us use the ensemble average of

the stresses and forces from the multipole representation of swimmers as the bulk stress and force.

This coarse-graining approach, sometimes referred to as the Doi-Saintillan-Shelley model, was used

by Saintillan & Shelley (2008a,b) to demonstrate the long-range hydrodynamic instability of pusher

suspension in the Stokes regime. However, similar approaches had already been widely adopted for

passive suspensions prior to the applications in active suspensions (see Doi & Edwards, 1988).

In this work, swimmers are further idealised as self-propelling particles that are axisymmetric along

the swimming direction. Hence, the hydrodynamic contribution from the swimming motion of each

individual can be written as S∗ = σ∗
0(pp− I/3), given by the idealised pusher/puller assumption (see

§1.2.3). The bulk stress, taken from the ensemble average of the stresslets, is

Σp∗(x∗, t∗) =
1

V ∗

∫︂
V ∗

∫︂
Sp

Ψ∗(x∗
0,p, t

∗)σ∗
0(pp− I/3)δ(x∗ − x∗

0)dpdx
∗
0 = σ∗

0n
∗ (⟨pp⟩ − I/3) . (1.16)

Here the bracket ⟨·⟩ represents the ensemble average, and V ∗ the volume of the x∗-space. Meanwhile,

the ensemble average of the negative buoyancy forces on the swimmers gives the bulk buoyancy force

1

V ∗

∫︂
V ∗

∫︂
Sp

Ψ∗(x∗
0,p, t

∗)(−υ∗g∗∆ρ∗k̂)δ(x∗ − x∗
0)dpdx

∗
0 = −n∗υ∗g∗∆ρ∗k̂, (1.17)
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where υ∗ is the volume of each swimmer, g∗ the gravitational acceleration, ∆ρ∗ the density of swimmer

minus that of the fluid and k̂ the upward unit vector. We note that the stress system calculated by

Batchelor (1970) for passive orientable particles would also contribute hydrodynamic stresses to the

flow due to the excluded volume of the particles. The stress system also includes the rotlet contribution

when a particle experiences external torque, such as the gravitational restoring torque. Random

rotation, as given by d∗r, would also contribute extra stresses (Hinch & Leal, 1972a,b). However, a

calculation by Pedley & Kessler (1990) on C. augustae (née C. nivalis, Bees 2020) has shown that the

stresslet contribution from the swimmers’ active swimming dominates the hydrodynamic contribution.

Therefore, this work shall neglect the hydrodynamic contributions from the excluded volume, the

external torque and the rotational noise on swimmers.

To calculate u∗(x∗, t), one can add the bulk stress and buoyancy force to the equation governing

the flow. As mentioned in §1.3.4, this thesis is aspired to develop a model suitable for cases where

the macroscopic might be in the inertial regime. For example, the flow in phenomena such as

bioconvection and gyrotactic trapping in the ocean is highly nonlinear. Therefore, here we shall keep

the inertial terms in the Navier-Stokes equation instead of the Stokes equation adopted by most work

on microswimmer suspension. The equation governing u∗ are

∂u∗

∂t∗
+ (u∗ · ∇∗

x)u
∗ = − 1

ρ∗
∇∗

xq
∗ + ν∗∇2∗

x u∗ +
1

ρ∗
∇∗

x ·Σp∗ − n∗υ∗g′∗k̂, (1.18)

and the continuity condition

∇∗
x · u∗ = 0, (1.19)

where g′∗ = ∆ρ∗/ρ∗g∗ is the reduced gravity. Note that n∗ and Σp∗ depend on Ψ∗.

In summary, the Smoluchowski equation (1.11), the Navier-Stokes equations (1.18), and the continuity

condition (1.19) form the system of equations governing the dilute microswimmer suspension. Since

ẋ∗ and ṗ∗ in (1.11) depend on u∗ while Σp∗ and n∗ in (1.19) depend on Ψ∗, the set of equations are

coupled and shall be solved simultaneously.

Nonetheless, by using the ensemble average as the bulk stress tensor and the bulk buoyancy force, we

are also effectively taking a linear superposition of the Stokeslets and stresslets without considering

the hydrodynamic interactions between them (see §1.3.1). It is easy to show that, in the absence of

an external flow, the disturbance flow field calculated from the naive superposition of Stokeslets scales

with V ∗
c ϕ

∗(L∗/a∗)2, which will diverge with increasing domain size L∗ (see Guazzelli & Hinch, 2011;

Hinch, 2010). The divergence is not physical but an artefact of the naive superposition. This so-called
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divergence paradox was resolved by Batchelor (1972) using a technique known as hydrodynamic

renormalisation. Calculations by Batchelor (1972) and later work such as Hinch (1977) are O(ϕ) to

O(ϕ2) corrections to the sedimentation speed of negatively buoyant particles. Based on the dilute

assumption (ϕ→ 0) and the fact that sedimentation speed is relatively small relative to the strong

ambient flow and swimming speed, the divergence and its correction are likely negligible in the grand

scheme. Moreover, previous work such as the Doi-Saintillan-Shelley model from Saintillan & Shelley

(2008a,b), seminal work on bacterial suspension (Subramanian & Koch, 2009), as well as some of the

foundational work on bioconvection (Pedley & Kessler, 1990, 1992), were all built upon the dilute

assumption without considering the divergence paradox. Yet, their theories were still successful in

demonstrating some key physics and phenomena of microswimmer suspension. Therefore, this work

has chosen to build upon the same dilute assumption and will not consider the paradox’s effect.

Nevertheless, readers should be aware when extending this work to a non-dilute suspension.

1.5 Modelling the transport of microswimmers in a suspen-

sion

The combination of the Smoluchowski equation and the Navier-Stokes equation described in the

previous section is a suitable model for a dilute suspension of microswimmers, with the added benefit

of being able to model nonlinear phenomena in contrast to the other Stokesian models. Despite its

descriptive merit, direct numerical simulations of the equations were rarely performed due to the

challenge in computational cost. In a three-dimensional simulation, the Smoluchowski equation is

resolved in both translational space x (3 dimensions) and orientational space p (2 dimensions), as

well as in time t (1 dimension). When combining the 6-dimensions equation with the high resolution

required for the nonlinear Navier-Stokes equation, our calculation suggests that a full numerical

simulation is barely achievable with a high-performance computer cluster. Saintillan & Shelley

(2008a,b) reduced it to a two-dimensional problem to illustrate the hydrodynamic instability. Others,

such as Jiang & Chen (2019, 2020), utilised a parallel assumption from the specific example to reduce

the number of dimensions resolved. However, to fully capture phenomena such as bioconvection, a

three-dimensional simulation remains necessary.

Such a challenge can be overcome by directly simulating individual swimmers using the Langevin

equations instead (e.g. Durham et al., 2013; Lushi et al., 2014). With a larger number of swimmers,

the simulation may provide some phenomenological observation, but the cost of discrete methods do
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not scale well with the number of swimmers and the results are hard to analyse theoretically due to

their noisy output.

Instead, this work seeks a macroscopic transport model for the swimmer density n∗ in place of the

Smoluchowski equation. The macroscopic model should capture how the local flow and the environment

affect the transport of swimmers by pre-computing an approximated orientational distribution. In

other words, we seek a way to decouple the orientational space operations from the Smoluchowski

equation such that we can pre-compute the orientation-dependent transport properties. In this work,

we shall introduce two existing models for the transport of microswimmers, both of which overcame

the challenge of the Smoluchowski equation by taking a semi-heuristic approach to the transport of

swimmers. In both models, the quasi-steady orientational distribution is solved separately under

a certain flow field, and the effective transport coefficients are estimated using a phenomenological

model. Both models assume the transport equation takes the form of an advection-diffusion equation

∂n∗

∂t∗
+∇∗ · [(u∗ +V∗

m)n
∗] = ∇∗ · [(D∗

m +D∗
T I) · ∇∗n∗] , (1.20)

where V∗
m is the advection from the swimmer’s motility (and sedimentation) and D∗

m the effective

diffusivity from the combined effect of the swimmer’s stochasticity and motility. The detailed definition

of V∗
m and D∗

m will be introduced below with the subscript m.

1.5.1 The Fokker-Planck Model (Model F)

The Fokker-Planck model was first introduced by Pedley & Kessler (1990) when they tried to model

the bioconvective pattern exhibited by a gyrotactic suspension. For simplicity, hereafter, we shall

refer to the Fokker-Planck model as model F. The model was developed based on the postulation

that the particle’s orientation dynamics have reached a/an (quasi-) equilibrium. In other words, they

have postulated that the orientational p.d.f. f(x∗,p, t∗) ≈ g(p;x∗, t∗), where g(p;x∗, t∗) satisfies

∇p · [ṗ∗(x∗, t∗)g(p;x∗, t∗)] = d∗r∇2
pg(p;x

∗, t∗), (1.21a)

subject to ∫︂
Sp

g(p;x∗, t∗)d2p = 1, (1.21b)

and ṗ∗ is given by eq. (1.7). It should be stressed that the above equations were directly postulated

in the original publication where model F first appeared (Pedley & Kessler, 1990). Moreover,
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the equations only consider the orientational dynamics. In contrast, the Smoluchowski equation

(1.11) couples the spatial and orientational dynamics together as a governing for a single p.d.f. in

both orientational and spatial positions. Later in §4.5, we shall demonstrate to what limit this

approximation can be justified asymptotically from the Smoluchowski equation.

Because ṗ∗ depends on the local flow field, which might vary with x∗ and t∗, the solution g(p;x∗, t∗),

which should be solved in p-space, would also depend on x∗ and t∗ as parameters. Given the

orientational p.d.f. approximation, the advection due to swimmers’ motility naturally arises as the

ensemble average

V ∗
c ⟨p⟩(x∗, t∗) ≡ V ∗

c

∫︂
Sp

pg(p;x∗, t∗) d2p. (1.22)

Therefore, in the Fokker-Planck model, the advection of swimmers by their motility is given as

V∗
F = V ∗

c ⟨p⟩, (1.23)

where the subscript F in place ofm denotes model F. The original theory did not consider sedimentation

of swimmers because it is relatively small compared to the motility. Although Pedley (2010b) has

later superposed a constant sedimentation −V ∗
s k̂ to V∗

F , sedimentation is neglected in this thesis as

it is relatively insignificant to the vertical ambient flow to be introduced later (see §1.4.3).

As for the diffusivity, Pedley & Kessler (1990) took inspiration from the fluctuation-dissipation theory

and postulated an effective diffusivity, given by the covariance matrix multiplied by a correlation

time, i.e.

D∗
F = V ∗

c
2τ ∗(⟨pp⟩ − ⟨p⟩⟨p⟩), (1.24)

in which the correlation time τ ∗ of swimmers’ random walk was empirically measured. It should be

stressed that D∗
F is postulated instead of being rigorously derived from the Smoluchowski equation

(1.11). Pedley (2010b) also admitted that D∗
F is essentially ad hoc, as the correlation time scale

considers both the natural variability of the swimmer properties in the population and the randomness

in the swimming direction. Therefore, the correlation time scale τ ∗ was often measured directly from

experiments (e.g Hill & Häder, 1997; Vladimirov et al., 2000).

1.5.2 Generalise Taylor Dispersion Theory (Model G)

The generalised Taylor dispersion theory was originally developed by Brenner (1980) as an extension

of the classical Taylor-Aris dispersion (Taylor, 1953; Aris & Taylor, 1956) and later further extended
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by Frankel & Brenner (1989, 1991, 1993) to the transport of passive particles in a suspension. The

theory approximated the spatial (x-space) moments of the impulse response solution of (1.11) in a

quiescent or homogeneous shear flow. The resulting long time growth rates of the first and second

moments were used as the effective drift and diffusivity for the coarse-grained advection-diffusion

equation. The theory was later extended to gyrotactic swimmers separately by Hill & Bees (2002) and

Manela & Frankel (2003). For simplicity, hereafter, we shall refer to this model from the generalise

Taylor dispersion theory as model G.

The long-time and homogeneous shear flow assumptions allowed the swimmers to sample long enough

in the orientational space under the same condition, such that the orientational distribution of each

swimmer would have reached an equilibrium. Although model G share the same orientational p.d.f.

g(p;x∗, t∗) as model F, which satisfies (1.21), they have different interpretations. Model F relies

on a local approximation at each location x and assumes the orientational p.d.f. has reached a

quasi-equilibrium without the interaction with the spatial dynamics (i.e. separating orientational

dynamics from the spatial ones in the Smoluchowski equation). Meanwhile, model G was developed

assuming that the flow is homogeneous in x and derived following the Langrangian orientational p.d.f.

of each particle.

Despite the difference in the interpretation of g, using the growth rate of the first-order statistical

moment of the distribution calculated from the Smoluchowski equation, model G derived the same

effective driftV∗
G = V∗

F = V ∗
c ⟨p⟩. However, model G has derived a different effective diffusivity directly

from the Smoluchowski equation using the second-order statistical moment instead of postulating one

like in model F. Following a similar procedure as Aris & Taylor (1956)’s method of moments, one can

derive the effective diffusivity as given by

∇p · [ṗ∗b∗
GTD]− d∗r∇2

pb
∗
GTD − b∗

GTD · G∗ = V ∗
c (p− ⟨p⟩g) g;

∫︂
Sp

b∗
GTD(p;x

∗, t∗)d2p = 0 (1.25a)

leading to

D∗
G =

∫︂
Sp

[︃
V ∗
c d

∗
rb

∗
GTDp+

b∗
GTDb

∗
GTD · G∗

g

]︃sym
d2p, (1.25b)

where G∗(≡ ∇∗
xu

∗) is the velocity gradient tensor. Here, b∗
GTD(p;x

∗, t∗) = B∗(p;x∗, t∗)g(p;x∗, t∗),

where B∗ is the long-time limit of the difference between the overall average position and the average

position of the swimmer with orientation p (Frankel & Brenner, 1991, 1993; Hill & Bees, 2002).
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1.5.3 Preliminary comparison between model F and G and the need for

a new model

While the advection of swimmers from model F and G are the same, their effective diffusivities are,

in principle, accounting for slightly different physics. The model G diffusivity DG accounts for only

the random walk from the swimmer’s random rotation, but that of model F also accounts for other

physics such as the natural variability among swimmers.

We can compare the two models by assuming the stochasticity in swimmer’s orientation as the only

source of randomness in the swimmers. On this assumption, Pedley (2010b) later suggested that

one can impose τ ∗ ∼ 1/d∗r. However, model F remains a more heuristic approach than model G

because the link between D∗
F and the Smoluchowski equation is missing. In contrast to the postulated

model F, model G derived the effective diffusivity D∗
G directly from the solution of the Smoluchowski

equation (1.11). The scaling of b∗
GTD ∼ O(V ∗

c /d
∗
r) and D∗

G ∼ O(V 2∗
c /d∗r) naturally emerge, and D∗

G is

the result of dispersion in x∗-space due to randomness in p-space and p-dependent motility in x∗.

Because of the more rational derivation and the correct scaling of D∗
G with d∗r, model G has been

demonstrated on multiple occasions, both numerically (Croze et al., 2013) and experimentally (Croze

et al., 2017), to be more accurate than model F. In particular, model G shows that the magnitude of

the cross-stream component in D∗
G in a shear flow decays to zero as shearing increases towards infinity,

while that of D∗
F tends to a finite constant (see Bearon et al., 2012, fig. 1). Bees interpreted the

qualitative difference in the following paragraph: “as vorticity increases beyond a threshold, the cells

tumble, and in a plane normal to the vorticity vector, their orientations scan all directions, yielding in

the F model in the limit of large vorticity D ∝ var(p) with three nonzero eigenvalues. However, the

G model explicitly evaluates the spatial moments: As vorticity increases, the tumbling cells swim in

tighter trajectories and sample less of the shear flow; components of the diffusion tensor normal to the

vorticity decay to zero with increasing vorticity” (Bees, 2020, §4.2). This qualitative difference can

result in vastly different gyrotactic plumes, which we will exploit later in the thesis to demonstrate the

superiority of model G when comparing the results from both models with experimental observations.

However, the model G has an important limitation when applied to a general flow field, in which

various forms of G∗ would appear. The formulae (1.25a) and (1.25b) proposed by Frankel & Brenner

(1991, 1993) were derived by extending the original GTD theory in a quiescent flow (Frankel &

Brenner, 1989) to a homogeneous shear flow. For this purpose, Frankel & Brenner (1991) introduced

a transformation that maps the position in a sheared suspension into a stationary one, such that
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the original theoretical framework in Frankel & Brenner (1989) can be applied. The transformation

resulted in the extra terms −b∗
GTD ·G∗ and b∗

GTDb
∗
GTD ·G∗/g in (1.25a) and (1.25b). In principle, the

mapping is only valid if IR(eig(G∗)) ⩽ 0, thereby restricting the framework’s applicability to the subset

of linear flows which are not straining-dominant. Moreover, if IR(eig(G∗)) > 0, the left-hand-side

operator on b∗
GTD in (1.25a) might become singular, resulting in a singular b∗

GTD and D∗
GTD. For

example, Bearon et al. (2011) demonstrated the singularity in D∗
GTD as a function of local velocity

gradient G∗ in the straining-dominant region of a two-dimensional convective cell. This restriction

of model G needs to be overcome if one seeks to couple the transport of swimmers with the flow

equation to model any macroscopic phenomena.

1.6 Objective and Overview

This thesis aims to improve the transport model of swimmers by developing better methodologies and

evaluating existing ones using known examples of pattern formation. The suspension of gyrotactic

motile microorganisms has been selected as the main subject of this thesis. Gyrotaxis was chosen

because it is relatively simple to model, yet its consequences are significant in nature. It is also

one of the simplest phenomena that invovles both the microscopic and the macroscopic scale. It

is particularly challenging to model because while the microscopic flow is Stokesian and linear, the

macroscopic flow can become nonlinear. Yet, it is also easily realisable in experiments and can be

quantitatively measured and compared with theoretical results (e.g. Croze et al., 2017). Moreover,

the phenomena related to gyrotaxis are often found at a large scale with a low volume fraction,

which fulfils the dilute assumption. Therefore, it is an ideal phenomenon to study while developing a

multiscale model for dilute microswimmer suspensions. Ultimately, we hope that by developing the

mathematical tools for analysing and modelling a gyrotactic suspension, we can gain a fundamental

understanding of how the motility and taxes of microorganisms interact with the flow field and give

rise to complex macroscopic phenomena.

This thesis has of two main objectives. The first is to better understand the behaviour of gyrotactic

suspension from the dynamical system perspective. We will study some classical collective behaviour

of gyrotactic swimmers, such as the formation of gyrotactic plumes, blips and bioconvection, from

the point of view of the suspension’s stability and bifurcation. The second is to evaluate existing

transport models for the swimmers in the context of the aforementioned phenomena and develop

better ones that can be applied in the future in other contexts. These two objectives serve each other,
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as a better model gives better predictions of the collective behaviour, while a better understanding of

the collective behaviour helps us better evaluate different models. Ultimately, we hope to create a

transport model that is transferable to other types of collective behaviour and swimmers.

The thesis is organised as follow. In chapter 2, we will apply model F and G to model gyrotactic focusing

and evaluate their merits by comparing their qualitative results with experimental observations. In

modelling gyrotactic focusing, we will also show how the solution for the gyrotactic plume may

become unstable or even bifurcate with changing parameters. Such a bifurcation and instability can

be used in conjunction with the qualitative experimental observation to show that model G can more

faithfully capture the dispersion of swimmers than model F. In chapter 3, the bifurcation analysis is

further extended to show how the suspension bifurcates from a single plume solution to potentially

multiple plumes as one increases the container size or the number of swimmers in the system.

Given that model G will be shown to be more accurate, in chapter 4, we will focus on the shortcomings

of model G by evaluating it against the Smoluchowski equation in a parallel flow. While model G can

more accurately capture the dispersion of swimmers in a homogeneous shear flow, it cannot capture

the shear trapping of non-spherical swimmers in an inhomogeneous shear flow (Rusconi et al., 2014;

Bearon & Hazel, 2015). Then, we will present a new model that is more accurate in capturing the net

swimmer flux in an inhomogeneous shear flow and can overcome the restriction of model G mentioned

in §1.5.2.

After that, in chapter 5, we will discuss how the new model can be applied to the gyrotactic suspension

and what implications the new model might bring. We will also briefly discuss the limitation of the

dilute assumption, including the semi-dilute and wall effects. Lastly, in chapter 6, we summarise

the achievements of this thesis. We will conclude this work with an outlook on the development of

continuum models for the microswimmer suspension and the modelling of gyrotactic bioconvection.
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Chapter 2

Formation of gyrotactic plumes and blips

2.1 Introduction to gyrotaxis

Gyrotaxis is typically observed a in suspension of motile and bottom-heavy micro-organisms such as

Chlamydomonas, Dunaliella, Heterosigma and Volvox. Because their centre of gravity is offset from

their centre of buoyancy, the gravitational torque from the offset tends to orient the micro-organisms

upright. With their flagellum positioned at the opposite side of their centre of buoyancy, they tend to

swim upward (against gravity) in the absence of flow, which also makes them gravitactic. However,

in the presence of a vortical or shearing flow, they deviate from the upright orientation due to the

viscous torque from the vorticity of the flow. The balance between the viscous and gravitational

torques creates a sideway net drift, which results in gyrotaxis (see §1.4.2).

Kessler first demonstrated the mechanism and coined the term ‘gyrotaxis’ in a series of experimental

studies carried out in a vertical pipe (Kessler, 1984, 1985a,b, 1986). In his experiments, a downflowing

pipe naturally created a shearing flow due to the higher velocity at the centre and the no-slip condition

at the wall. The balance between the viscous torque from the shearing and the gravitational torque

on each swimmer created a motility-induced flux towards the centre of the cylindrical pipe, resulting

in their accumulation along the centreline of the pipe. The column of the accumulated swimmers,

often called a gyrotactic plume, could further accelerate the flow at the centreline due to the negative

buoyancy force exerted by the swimmers, thereby further increasing the shear rate and attracting

even more swimmers towards itself (Kessler, 1986).

Further to the formation of a gyrotatic plume along the pipe centreline in a downward flow, Kessler

observed that, under certain conditions, the plume could subsequently break down into multiple blips.
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The blips are localised regions with high density of swimmers. They appear to be uniformly spaced

vertically and remain axisymmetric (Kessler, 1986; Denissenko & Lukaschuk, 2007). In the right

condition, they can spontaneously appear along the gyrotactic plume, usually at the later stage of

the plume formation. In general, the plumes, and consequently the blips, are more pronounced when

the background number density is high. Kessler (1986) argued that the blips were the consequence

of a singularity in the parallel plume solution. To resolve the singularity, either the axisymmetry

or steadiness would break down with the streamwise invariance. However, the solution was built

upon a primitive model of swimmer transport, as we shall discuss shortly. Later, Hwang & Pedley

(2014b) performed a linear stability analysis on the plume structure in a two-dimensional channel

flow using model F. In contrast to the previous work, Hwang & Pedley did not report any singularity

in the plume. Instead, they found the emergence of a varicose-type instability mode in the plume

that shared some structural similarities with the blips. Their theory also seemed to have recovered

the spacing between the blips. In this thesis, we will show that both theories are possible explanation

to the formation of blips.

Kessler (1986) originally modelled the spatial distribution of swimmers with a simple advection-

diffusion equation for the swimmers to understand his experimental observations. In the primitive

model, the horizontal drift was proportional to ambient vorticity, while the diffusivity was assumed

to be constant and isotropic. Although the model was primitive, it enabled the subsequent finding

of an analytic solution to the plume structure when the pressure gradient was zero. The primitive

model of Kessler (1986) was later superseded by the Fokker-Planck model (model F, Pedley & Kessler

1990) and the generalized Taylor dispersion theory (model G, Hill & Bees 2002; Manela & Frankel

2003). Since then, there have been a number of studies applying either model to the gyrotactic plume.

For example, model F was used in Hwang & Pedley (2014b) to study both the plume and the blip

formation in a rectangular channel. Model G was used by Bees & Croze (2010) and Bearon et al.

(2012) to study the dispersion of gyrotactic swimmers in the plume. In particular, Bearon et al. (2012)

showed that the prediction of the swimmer distribution from model G is significantly different from

that of model F. The individual-based simulation by Croze et al. (2013) further showed that model

G provides a more accurate prediction of the swimmer distribution than model F, especially when

the shear (or vorticity) rate of the surrounding flow is high. The experiment by Croze et al. (2017)

showed a similar result. Recently, Jiang & Chen (2020) have also demonstrated the superiority of

model G by comparing the results with the Smoluchowski equation.

In this chapter, we will study the emergence of plumes and blips observed in the original pipe flow

experiment of Kessler (1986) using both model F and G. We will update the previous study by
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Figure 2.1: Schematic diagram of the flow configuration and the frames of reference. Here the stability
analysis is performed on the global frame of reference x = (r, ψ, z).

Hwang & Pedley (2014b), where they analysed the plume in a rectangular channel using model F, to

a cylindrical pipe using both model F and G. Despite the encouraging results of Hwang & Pedley

(2014b) in showing the blips as the result of an instability, no such analysis is available for pipe flows.

Hence, it is not possible to make any direct comparison with the previous experiments (Kessler, 1986;

Denissenko & Lukaschuk, 2007; Croze et al., 2017). Predicting the occurrence of blips is particularly

important for experiments such as Croze et al. (2017) because one may want to actively encourage or

avoid blips for the study of gyrotactic suspension. Another objective of this chapter is to extensively

study the bifurcation and stability of the suspension. Unlike the channel flow studied by Hwang &

Pedley (2014b), in this set up we shall see the emergence of bistability and the related hysteresis

in the bifurcation of the basic state, the possibility of which was previously conjectured by Bees &

Croze (2010). Further to this, a particular emphasis of the present study is given to an extensive

and comparative assessment of model F and model G for studying bifurcation and stability of the

suspension in a downward pipe flow. From this, we shall see that the prediction of model G offers a

more realistic description for the experimental observation on the blip instability than that of model

F, highlighting the need for an accurate swimmer transport model to describe the pattern-formation

in a suspension of gyrotactic micro-organisms.

This chapter is organised as follows. In §2.2, the equations of motion are introduced and formulated
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for linear stability analysis with the model F and G. The numerical methods used in this analysis

are introduced in §2.3. In §2.4, the bifurcation of the basic state given in the form of a steady

axisymmetric and axially uniform plume is presented with a particular emphasis on their bistable

nature in some parameter regime. The instability of these basic states is subsequently studied in

§2.5. The implication of these findings is discussed in §2.6 from both experimental and theoretical

perspectives.

2.2 Problem formulation

We consider a downward fluid flow in a cylindrical vertical pipe, in which a puller-type gyrotactic

species of microswimmers are suspended. For simplicity, we will assume the swimmers are spherical

(α0 = 0) in chapters 2 and 3. For more rounded algal species like those in the Chlamydomonas genus,

O’Malley & Bees (2012) showed that the effective eccentricity while they swim is much smaller than

that of their inanimate bodies due to the influence of their flagella beating. Therefore, in effect, a

spherical approximation of the swimmer might be quite reasonable at the continuum level.

We express the position in space in a cylindrical co-ordinate x∗ = [r∗, ψ∗, z∗]T , where r∗ is the radial,

ψ∗ the azimuthal and z∗ the streamwise (or axial) direction pointing upward (against gravity). We

define vectors î, ĵ and k̂ as the unit vectors in the direction of r, ψ and z respectively. We will also use

r, ψ and z as subscripts to express the componets of vectors or tensors in their respective direction

(e.g. p = [pr, pψ, pz]
T ). Both of the coordinate systems and the flow geometry are sketched in fig. 2.1.

As mentioned in §1.3.1, this work is built upon the dilute assumption, in which we will neglect any

swimmer-swimmer interactions. Following Pedley & Kessler (1990) and Hwang & Pedley (2014b), we

will further neglect the stresslet term (1/ρ∗)∇∗
x ·Σ∗

p for the majority of the chapter, as it is negligible

compared to the negative buoyancy. As discussed in §1.2.3, the stresslet term Σ∗
p is not responsible for

the generation of any instabilities for the puller-type swimmers considered in this chapter (Saintillan

& Shelley, 2007, 2008a; Pedley, 2010b), so negligance of the term would not significant alter the

stability calculation. Later in §2.6.3, we will also briefly discuss the significance of the term.
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2.2.1 Non-dimensionalisation and boundary conditions

In this chapter, the governing eqs. (1.18) to (1.21) are non-dimensionalised by the swimmer speed V ∗
c

and the pipe radius h∗,

x =
x∗

h∗
, t =

t∗V ∗
c

h∗
, u =

u∗

V ∗
c

, q =
q∗

ρ∗V ∗2
c

, n =
n∗

N∗ , (2.1a − e)

where N∗ is the background swimmer density (i.e. the swimmer number density when the suspension

is uniform). The resulting dimensionless equations are

∇x · u = 0, (2.2a)

∂u

∂t
+ (u · ∇x)u = −∇xq +

1

Re
∇2
xu− Ri n k̂, (2.2b)

∂n

∂t
+∇x · [(u+ ⟨p⟩)n] =

1

dr
∇x · (Dm · ∇xn), (2.2c)

∇p ·
[︃
β[k̂− (k̂ · p)p]g + 1

2
Ω ∧ pg

]︃
= ∇2

pg, (2.2d)

with boundary conditions

u|r=1 = 0, (2.2e)[︃
(u+ ⟨p⟩)n− 1

dr
Dm · ∇xn

]︃
|r=1 · i = 0, (2.2f)

where

Ri =
N∗υ∗g′∗h∗

V ∗2
c

, Re =
V ∗
c h

∗

ν∗
, β =

1

2B∗d∗r
, dr =

d∗rh
∗

V ∗
c

, Ω =
Ω∗

d∗r
. (2.2g)

Here, Re is the Reynolds number based on the swimming speed, Ri the Richardson number and

dr the dimensionless rotational diffusivity. We note that (2.2d) is further divided by dr, since the

appropriate time scale in the orientation space would be 1/d∗r, different from h∗/V ∗
c in the physical

space. Lastly, the dimensionless translational diffusivities for models F and G are given by

DF =
D∗
Fd

∗
r

V ∗2
c

= τ(⟨pp⟩ − ⟨p⟩⟨p⟩) (2.2h)

and

DG =
D∗
Gd

∗
r

V ∗2
c

=

∫︂
Sp

[︃
bGTD(p)p+

bGTD(p)bGTD(p)

g(p)
· G
]︃sym

d2p (2.2i)

respectively, where bGTD = b∗
GTDd

∗
r/V

∗
c , i.e.

∇p · [ṗbGTD]−∇2
pbGTD − bGTD · G = (p− ⟨p⟩) g;

∫︂
Sp

bGTDd
2p = 0, (2.2j)
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where τ = τ ∗d∗r and G = G∗/d∗r = ∇xu/dr.

2.2.2 Basic state

The basic state of (2.2) is first calculated under the parallel assumption. In other words, we assume

the velocity and swimmer distribution are steady, axisymmetric and homogeneous along the axial

direction, i.e.

u = u0 = U(r)k̂, n = N(r),
∂

∂t
=

∂

∂z
=

∂

∂ψ
= 0. (2.3)

The basic-state pressure q0(r, z) is obtained by integrating (2.2b) in the radial direction

∂q0
∂z

=
2

Re

∂U

∂r

⃓⃓⃓⃓
r=1

−Ri, (2.4a)

which is composed of the pressure gradient driving the flow,

∂qd0
∂z

=
2

Re

∂U

∂r

⃓⃓⃓⃓
r=1

, (2.4b)

and the hydrostatic pressure gradient balancing out the gravitational term (i.e. Ri) in (2.4a).

Substituting (2.3-2.4) into (2.2) yields the following equations for the basic state:

−r∂q
d
0

∂z
+

1

Re

∂

∂r
r
∂U

∂r
− rRi(N − 1) = 0, (2.5a)

−∂q
d
0

∂r
= 0, (2.5b)

∂

∂r
(rN⟨pr⟩0) =

1

dr

∂

∂r
(rDrr,0

∂N

∂r
), (2.5c)

with the boundary conditions

U(1) = 0,

[︃
⟨pr⟩0N − Drr,0

dr

∂N

∂r

]︃ ⃓⃓⃓
r=1

= 0, (2.5d)

and the compatibility condition at the centre

∂U

∂r

⃓⃓⃓⃓
r=0

= 0,
∂N

∂r

⃓⃓⃓⃓
r=0

= 0. (2.5e)

Here, the subscript 0 in ⟨pr⟩0 and Drr,0 indicates the variables are calculated from U(r) of the steady

basic state.
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Since the total number of the swimmers is preserved over the given control volume, we impose the

normalisation condition for the swimmer number density,

∫︂ 1

0

N(r)rdr =
1

2
. (2.6)

The flow rate Q given as a parameter, such that

−
∫︂ 1

0

U(r)rdr =
Q

2π
. (2.7)

The negative sign is placed such that when Q is positive, there is a net downflow.

2.2.3 Linear stability analysis

Now, we consider a small perturbation about the basic state

u = u0 + ϵu′ +O(ϵ2), q = q0 + ϵq′ +O(ϵ2), n = N + ϵn′ +O(ϵ2), (2.8)

where u0 = (0, 0, U(r)), u′ = (u′r, u
′
ψ, u

′
z) and ϵ≪ 1. We also defineΩ0 = ∇x∧u0/dr, Ω

′ = ∇x∧u′/dr,

G0 = ∇xu0/dr and G′ = ∇xu
′/dr accordingly. Here, we note that the axial velocity perturbation

and the swimmer number density over a given control volume V0 should satisfy

∫︂
V0

n′dV =

∫︂
V0

u′zdV = 0, (2.9)

as the flow rate Q is fixed and the total number of the swimmers over the entire domain is preserved

in time. The linearised equations for the small perturbation are then given as

∂u′z
∂z

+
1

r

∂(ru′r)

∂r
+

1

r

∂u′ψ
∂ψ

= 0, (2.10a)

∂u′z
∂t

+ U
∂u′z
∂z

+ u′r
∂U

∂r
= −∂q

′

∂z
+

1

Re
∇2u′z − Ri n′, (2.10b)

∂u′r
∂t

+ U
∂u′r
∂z

= −∂q
′

∂r
+

1

Re
(∇2u′r −

u′r
r2

− 2

r2
∂u′ψ
∂ψ

), (2.10c)

∂u′ψ
∂t

+ U
∂u′ψ
∂z

= −1

r

∂q′

∂ψ
+

1

Re
(∇2u′ψ −

u′ψ
r2

+
2

r2
∂u′r
∂ψ

), (2.10d)
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∂n′

∂t
+ n′(

⟨pr⟩0
r

+
∂⟨pr⟩0
∂r

) + ⟨pr⟩0
∂n′

∂r
+ U

∂n′

∂z
+ ⟨pz⟩0

∂n′

∂z
+

⟨pz⟩0
r

∂n′

∂ψ
+ u′r

∂N

∂r

+ ⟨pr⟩′
∂N

∂r
+N

∂⟨pr⟩′

∂r
+N

⟨pr⟩′

r
+N

∂⟨pz⟩′

∂z
+
N

r

∂⟨pψ⟩′

∂ψ

=
1

dr

[︃
D′
rr

r

∂N

∂r
+
∂D′

rr

∂r

∂N

∂r
+D′

rr

∂2N

∂r2
+
∂D′

rz

∂z

∂N

∂r
+

1

r

∂D′
rψ

∂z

∂N

∂r

+
1

r

(︃
Drr,0

∂n′

∂r
+Drz,0

∂n′

∂z
+ 2Drψ,0

∂2n′

∂r∂ψ
+
∂Drψ,0

∂r

∂n′

∂ψ
+ 2Dψz,0

∂2n′

∂ψ∂z

)︃
+

∂Drr,0

∂r

∂n′

∂r
+ 2

∂Drz,0

∂r

∂n′

∂z
+Drz,0

∂2n′

∂r∂z

+ Drr,0
∂2n′

∂r2
+Dzz,0

∂2n′

∂z2
+

1

r2
Dψψ,0

∂2n′

∂ψ2

]︃
, (2.10e)

with the boundary conditions at the wall

u′z|r=1 = u′r|r=1 = u′ψ|r=1 = 0, (2.10f)

Nu′r +N⟨pr⟩′ + n′⟨pr⟩0 =
1

dr

(︃
D′
rr

∂N

∂r
+Drr,0

∂n′

∂r
+Drz,0

∂n′

∂z
+
Drψ,0

r

∂n′

∂ψ

)︃
. (2.10g)

Here, D′
m and ⟨p⟩′ are computed by linearising (2.2d) and (1.25a) in a similar manner to Hwang &

Pedley (2014a,b). The detailed set of lengthy linearised equations can be found in Appendix A.1.

Finally, the following normal-mode solution is introduced for linear stability analysis:

u′(r, ψ, z, t) = û(r)ei(αz+mψ−ωt) + c.c, q′(r, ψ, z, t) = q̂(r)ei(αz+mψ−ωt) + c.c.

n′(r, ψ, z, t) = n̂(r)ei(αz+mψ−ωt) + c.c, (2.11)

where α is the axial wavenumber (real), m the wavenumber in the azithumal direction (positive

integer) and ω the complex frequency. Substitution of the normal-mode solution into (2.10) yields an

eigenvalue problem, as detailed in Appendix A.2.

2.3 Numerical methods

2.3.1 Calculating the orientational distribution

To obtain the basic state from (2.5) and subsequently examine its stability, one must first compute

⟨p⟩ and Dm in (2.2c) as a function of Ω (models F and G) and G (model G): see §1.5.1 and §1.5.2.

To obtain them, one need to solve for g(p) and b(p) in p-space at each G (which includes Ω). In
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this chapter, we represent the p-space by the Eulerian angles (λ, θ) ∈ [−π, π]× [0, π], where λ is the

longitudinal angle from the r-axis on the r − ψ plane and θ the latitudinal angle from the z-axis.

The discretisation is performed using a central finite difference scheme of sixth order in λ and second

order in θ. For the compatibility conditions in p-space, a periodic condition is implicitly prescribed

in λ and Neumann conditions are explicitly prescribed in θ at θ = 0 and θ = π. The discretisation

is applied to (1.21) and (1.25a) in MATLAB and directly inverted (with the respective normalisation

conditions) to obtain g(p) and b(p) at each G, which are then used to compute ⟨p⟩ and Dm. The

computation is performed with 32× 101 points in λ⊗ θ. The numerical method is validated with the

steady result from the unsteady pseudo-spectral solver for g(p) in Hwang & Pedley (2014a,b). Since

the base flow is a pure shear flow, we only have to compute a library of ⟨p⟩ and Dm for both model F

and G when G = −2S îk̂ (and Ω/2 = S ĵ), where S ≡ −(∂rU)/(2dr) is the local shear rate normalised

by dr. Similarly, ⟨p⟩′ and D′
m used in (2.10e) are calculated by applying the same discretisation

schemes to the equations in Appendix A.1 as a function of S.
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Figure 2.2: Components of ⟨p⟩ and Dm against S from model F (red dashed lines) and model G (blue
lines) (c.f. Bearon et al. 2012, fig. 1).

Fig. 2.2 shows the resulting ⟨p⟩ and Dm as function of S for C. augustae using both model F and G,
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which is also the equivalent of fig. 3 of Hwang & Pedley (2014a) (S ↦→ S/2 in their notation) and fig.

1 of Bearon et al. (2012) (S ↦→ −σ in their notation).

2.3.2 Solving for the basic state

To compute the basic state, the radial direction is discretised using a Chebyshev collocation method.

The collocation points and differential matrices in r are generated using the script provided by

Weideman & Reddy (2000). To improve numerical accuracy, (2.5c) is pre-integrated with the no-flux

condition (2.5d), while the variable N(r) in (2.5) is transformed into H(r) = lnN(r). The resulting

equations governing the variables [∂zq
d
0 ;U(r);H(r)] are

−r∂q
d
0

∂z
+

1

Re

∂

∂r
r
∂U

∂r
− rRi(exp (H)− 1) = 0, (2.12a)

⟨pr⟩0 =
1

dr
Drr,0

∂H

∂r
, (2.12b)

with the boundary condition

U(1) = 0, (2.12c)

the compatibility conditions at the centre

∂U

∂r

⃓⃓⃓⃓
r=0

= 0,
∂N

∂r

⃓⃓⃓⃓
r=0

= 0, (2.12d)

and the normalisation conditions ∫︂ 1

0

exp(H(r))rdr =
1

2
(2.12e)

and

−
∫︂ 1

0

U(r)rdr =
Q

2π
, (2.12f)

in which the comptability conditions (2.12d) are explicitly prescribed at r = 0, the no-slip condition

(2.12c) at r = 1 for U(r), the normalisation condition (2.12e) at r = 1 for H(r) and the flow rate

(2.12f) at the driving pressure ∂zq
d
0 .

A Newton-Ralphson method is implemented in MATLAB to solve (2.12) for [∂zq
d
0 ;U(r);H(r)] at each

value of Ri and Q. The function used to calculate the residue from the Newton-Ralphson method is

also modified and used in conjunction with the ODE solver ode15s in MATLAB to create an ad hoc

unsteady solver for the time evolution of the axisymmetric and axially-uniform plume. The two solver

give identical steady results when the steady plume is stable to an axially uniform and axisymmetric
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Parameter Description Reference Value Units

ρ∗ Fluid density 1 g/cm3

g∗ Gravitational acceleration 980 cm/s2

ν∗ Dynamic viscosity 0.00957 cm2/s
h∗ Radius of pipe 0.1 ∼ 0.4 (0.19) cm
N∗ Average swimmer number density 0 ∼ 3.13× 105 swimmers/cm3

∆ρ/ρ Relative swimmer number density 0.05 −
υ∗ Cell volume 2.1× 10−9 cm3

g′(= g∗∆ρ/ρ) Relative gravity 49 cm/s2

B∗ gyrotactic time scale 3.4 sec
V ∗
c Swimming speed 6.3× 10−3 cm/s
τ ∗ Correlation time scale 5.35 s
D∗
V (= V ∗

c
2τ ∗) Nominal translation swimmer diffusivity 2.12× 10−4 cm2/s

d∗r Rotational diffusivity 0.067 1/s

Table 2.1: Dimensional parameters and their reference values in the present study. Most of the
parameters for the swimmer properties are taken from the data for C. augustae (Pedley & Kessler,
1990; Bees et al., 1998; Pedley, 2010b).

Parameter Description Reference Value

Ri Richardson number 0 ∼ 160
Q Dimensionless Flow Rate 0 ∼ 7
Re Reynolds number based on V ∗

c 0.066 ∼ 0.26 (0.126)
β gyrotactic time scale divided by d∗r 2.2
dr Rotational diffusivity normalised by V ∗

c /h
∗ 2.13

Table 2.2: Dimensionless parameters and their values in the present study.

perturbation, but the unsteady solver will diverge from an unstable solution.

2.3.3 Solving for the linear stability

For the linear stability, the radial direction of (A.7) is discretised using the same discretisation method

as the one for the basic state. The boundary conditions are applied explicitly. The discretised

eigenvalue problem is solved using the function eig in MATLAB, which support explicit boundary

conditions. The computation is performed with Nr = 175, showing no difference from the results

with Nr = 100. The computed eigenvalues for Ri = 0 are validated against pipe flow stability data of

Schmid & Henningson (1994, 2001) and Meseguer & Trefethen (2003) with excellent agreement.
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2.3.4 Parameters

A list of parameters and their values used in the present study are summarised in table 2.1. In the

present study we will use τ ∗ = 5.35s, which is slightly different from τ ∗ = 5s used in previous studies

(e.g. Hwang & Pedley, 2014b). To provide consistent and quantitatively comparable results between

the two models, the value for τ ∗ is chosen such that the two models to share the same radial diffusivity

in a stationary suspension. In other words, we follow the approach of Bearon et al. (2012), in which

τ ∗ is chosen to match DG,rr with DF,rr in the absence of any flow (i.e. stationary medium). This gives

τ = 0.36, consistent with that of Bearon et al. (2012).

In this study the radius of the cylindrical pipe is chosen to be around 0.2cm, so that we obtain results

comparable with to Hwang & Pedley (2014b). The parameters for the swimmer’s properties, including

swimming speed V ∗
c , gyrotactic time scale B∗, relative density ∆ρ/ρ and rotational diffusivity d∗r,

are taken for C. augustae from previous studies (e.g. Pedley & Kessler, 1990; Bees et al., 1998;

Pedley, 2010b; Hwang & Pedley, 2014b), except for the shape of the swimmer, which we assume to

be spherical. As in the linear stability analysis of Hwang & Pedley (2014b) and the experiment of

Croze et al. (2017), only the flow rate Q and the background swimmer number density (represented

by Ri) are varied in this study. Based on the parameter values given in table 2.1, the dimensionless

parameters and their values are given in table 2.2.

2.3.5 Pseudo-arclength continuation

Finally, to study the bifurcation of the basic state, the Newton-Raphson solver is combined with a

pseudo-arclength continuation algorithm such that we can seek steady plume solutions in the Ri −Q

parameter space exhaustively. In this chapter, the continuation is performed by keeping Q constant

while we continue the solution in Ri . In chapter 3, we shall further extend the same continuation

methodology to varying Q, Ri or the pressure gradient while keeping one of the parameters constant.

The pseudo-arclength continuation method is briefly described as follow. First, we rewrite the

system of equations (2.12) for the basic state (i.e. the steady plume solution) as F (U ,Λ) = 0, where

U = [∂zq
d
0 ;U(r);H(r)] represents the solution we seek, and Λ = Ri the parameter to be varied. For a

given initial Λ0, we can solve for U0 in F (U0,Λ0) = 0 using the Newton solver mentioned in §2.3.2.

Then, we can find the next solution U at Λ by using (U ,Λ) = (U0,Λ0) + ∆s(U̇0, Λ̇0) as the initial
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guess and solving

F (U ,Λ) = 0, (2.13a)

U̇0(U − U0) + Λ̇0(Λ− Λ0) = 0 (2.13b)

iteratively in a Newton solver. Here, ∆s is a prescribed step size and (U̇0, Λ̇0) the tangent vector to

the solution (U0,Λ0). In general, the tangent vector (U̇ , Λ̇) at (U ,Λ) can be found by linearly solving

∂F (U ,Λ) · (U̇ , Λ̇) = 0, (2.14a)

(U̇0, Λ̇0) · (U̇ , Λ̇) = 1 (2.14b)

after the convergence of each solution set (U ,Λ). Here ∂F (U ,Λ) is the last Jacobian of F (U ,Λ) taken

from the Newton iteration for (U ,Λ). The initial (U̇0, Λ̇0) for the first iteration is (U̇0, Λ̇0) = (0, 1),

which also sets the direction of the continuation. The above steps are repeated to generate a series of

solutions U at each Λ = Ri , which we will use as the basic state for the stability analysis later.

2.4 Basic state

In this section, we shall present the basic-state solutions, i.e. the plumes, found in the Q− Ri space

using either model F or G.

2.4.1 Very low flow rate

At a very low flow rate (i.e. Q→ 0), models F and G share the same asymptotic value for ⟨p⟩ and the

radial diagonal component of Dm (see Bearon et al. (2012) and fig. 2.8). Therefore, the two models

would give almost identical results when Q is small enough. Hence, here we report the result from

model G only.

When Q = 0, a stationary uniform suspension (i.e. U(r) = 0 and N(r) = 1) is a solution to (2.5).

However, a further numerical search has also found that there exists another solution at Q = 0

featured with non-trivial U(r) and N(r), consistent with Bees & Croze (2010). Bifurcation diagrams

of these two solutions with respect to Ri are shown for small positive Q in fig. 2.3, where the centreline

number density N(0) and axial velocity U(0) are used to represent the state of the steady solutions.

For Q = 0, the two solutions meet at Ri = Ri c(≃ 189.9), and their stabilities have been checked using
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(a) (b)

Figure 2.3: Bifurcation of steady solutions with Ri at very low flow rates: (a) the swimmer number
density N(0) and (b) the centreline velocity U(0) along the pipe axis. Here, , stable; ,
unstable. The grey area indicates where Q < 0 contours would be. The insets show N(r) and U(r)
at Ri = 160: blue , the lower branch; red , the middle branch. Note that as Q → 0, the
results from models F and G coincides. Also, see fig. 3.2 for the full transcritical bifurcation diagram.

the unsteady solver described in §2.3. The stationary solution (U(r) = 0 and N(r) = 1) is found to be

stable for Ri < Ri c, but becomes unstable for Ri > Ri c. On the other hand, the non-trivial solution,

featured with a downflow and a high swimmer number density along the pipe axis, is unstable for

Ri < Ri c. This solution gains its stability when Ri > Ri c, and the form of the solution is subsequently

changed with an upflow and a lower swimmer number density along the pipe axis. The interchange of

the stability of the two solutions at Ri = Ri c indicates that the stationary suspension in the vertical

pipe experiences a transcritical bifurcation with Ri .

When a small downflow (Q > 0) is applied, the transcritical bifurcation point given at zero flow

rate turns into a saddle-node point. At Ri > Ri c, the axial velocity is upward instead of downward

(i.e. U(0) > 0), even though the overall net flow is downward (Q > 0). If a small upflow (Q < 0) is

applied instead then the opposite is true, as shown by the grey area in fig. 2.3. The transition from a

transcritical to a saddle-node bifurcation is the consequence of an imperfect bifurcation caused by the

addition of a small non-zero flow rate. This behaviour of the solutions with two parameters, Ri and
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Q, can be understood within the framework of codimension two bifurcation (i.e. bifurcation with two

parameters). The overall bifurcation is also closely related to how the system would evolve with the

flow direction. The imperfect transcritical bifurcation is also related to the wavelength of gyrotactic

bioconvection, which we will discuss further in chapter 3.

2.4.2 Model F

(a)
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101
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(0

)
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Q=0.1

Q=0.6

Q=1.1

Q=2.1

Q=3.1

Q=4.1

Q=5.1

(b)

Figure 2.4: Bifurcation of the steady solutions at high flow rates (model F): (a) N(0) with respect to
Ri for several flow rates Q; (b) surface plot of N(0) in the Q− Ri space. In (a), , stable; ,
unstable. The blue cross (x) indicates the first saddle-node point where lower and middle branches
meet, while the red cross (x) indicates the second saddle-node point where middle and upper branches
meet. In (b), the blue and red curves indicate the trajectories of the two saddle-node points with
change in Q, respectively. The graph at the bottom shows the projection of the trajectories onto the
Q−Ri plane.

The solution featured with N(0) > 1 and U(0) < 0 in fig. 2.3 is further continued for much higher

flow rates with model F. Fig. 2.4a shows the result from such continuation with model F, in which

the number density at the pipe axis N(0) is used to represent the state of the corresponding steady

solution. At sufficiently low flow rate (Q ≲ 1), the bifurcation of the solutions featured with two

saddle-node points (highlighted by the crosses in fig. 2.4a), indicating the emergence of three solutions

at the given flow rate. With the increasing order of N(0), the three types of solutions will be denoted

by lower, middle and upper branches, respectively, and they are visualised in fig. 2.5. Here, we note

that N(0) was found to uniquely represent each solution per parameter set, and hence was used as

a representation for each solution. In general, as the solution is continued from the lower to upper

branch, both the velocity and swimmer distribution near the pipe axis (r = 0) tend to be sharper.
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This is expected because the lower branch state is a homotopy of the uniform suspension obtained

with increasing flow rate (i.e. state without gyrotactic instability), while the middle and upper branch

states are homotopy of nonlinearly developed plumes from the gyrotatic instability at zero flow rate

(i.e. state with nonlinearly saturated gyrotactic instability). Examination of the stability of each

solution to axially and radially uniform perturbations (i.e. unsteady calculation of the basic state)

reveals that the lower and upper branches are stable, whereas the middle one is unstable, indicating

the bistable nature of the basic state featured with hysteresis.
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Figure 2.5: Steady plume solutions in different branches (model F): Downward velocity U(r) (top) and
swimmer number density N(r) (bottom) profiles at (blue) Q = 0.1;Ri = 132, (red) Q = 0.6;Ri = 108
and (yellow) Q = 1.1;Ri = 95.04 (model F). Here, the left, middle and right columns represent the
lower , middle and upper branch solutions, respectively.

As the flow rate Q is further increased, the two saddle-node points become closer. They eventually

merge and disappear with the increasing Q. The curves in fig. 2.4b show how the two saddle-node

points evolved with Q in the Q−Ri −N(0) space. At the bottom of this figure, the trajectories of the

two saddle-node points are projected onto the Q− Ri plane to visualise how the Ri values at these

points change with Q. The two saddle-node points in the Q− Ri plane indeed merge as Q increases.

Beyond this merging point, the bistable behaviour of the steady solutions disappears, as there exists

only a single steady solution. This type of codimension two bifurcation is a cusp bifurcation (see

Zeeman, 1976; Thom, 1989).
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Lastly, it is worth mentioning that, in model F, the density at the pipe axis N(0) decreases with

increasing Ri for sufficiently large Ri (see the upper branch in fig. 2.4a). As discussed in Hwang &

Pedley (2014b), the decrease of N(0) is the direct consequence of increasing Drr with the increase

of background base-flow shear (see fig. 2.8b of this paper and fig. 3b of Hwang & Pedley (2014b)),

which smooths out the gyrotactic focusing near the pipe axis.

2.4.3 Model G

Now, we compare the steady basic-state solutions obtained from model F to those from model G.

Fig. 2.6a shows the bifurcation diagram of the steady solution obtained using model G. When the

swimmer number density at the pipe axis is relatively small (i.e. N(0) < 102), the same kind of cusp

bifurcation is seen in this case (compare with fig. 2.4a). Also, the related form of the steady solutions

is qualitatively identical to that obtained with model F, as shown in fig. 2.7. However, as the solution

is continued further from the middle branches, its behaviour turns out to be very different from that

obtained with model F. In particular, for all the flow rates considered, the bifurcation curves do not

properly form the upper branches, contrary to model F (compare with fig. 2.4b). Indeed, irrespective

of the flow rate Q, the continued solution from the middle branch asymptotically exhibits a singular

(a) (b)

Figure 2.6: Bifurcation of the steady solutions at high flow rates (model G): (a) N(0) with respect to
Ri for several flow rates Q; (b) surface plot of N(0) in the Q− Ri space. In (a), , stable; ,
unstable. Here, the blue, red and black crosses (x) indicate the first, second and third saddle-node
points, respectively, as the solution is continued from the lower to the upper branch. The grey area
indicates the cases where the volume fraction at the pipe axis is greater than 2.5% (see §1.3.2). Note
that all curves asymptotically approach a vertical line that corresponds to Ri s ≃ 59.86. In (b) the blue
and red curves indicate the trajectories of the two saddle-node points with change in Q, respectively.
The graph at the bottom shows the projection of the trajectories onto the Q− Ri plane.
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Figure 2.7: Steady plume solutions in different branches (model G): Downward velocity U(r) (top) and
swimmer number density N(r) (bottom) profiles of the steady basic states at (red) Q = 1.1;Ri = 65.9,
(yellow) Q = 2.1;Ri = 62 and (purple) Q = 3.1;Ri = 56.9 (model G). Here, the left, middle and right
columns represent the lower, middle and upper branch solutions, respectively.

behaviour at Ri = Ri s(≃ 59.86) in fig. 2.6a), implying N(0) → ∞ with the continuation. This

suggests that a steady downflowing upper branch solutions may not necessarily exist for Ri > Ri s.

The origin of the singularity in the steady solution can be further studied from the following explicit

form of N(r) obtained with (2.5c) and (2.5d) (Bees & Croze, 2010):

N(r) = N(0) exp
(︂
dr

∫︂ r

0

⟨pr⟩0
Drr,0

dr
)︂
. (2.15)

This form of the solution indicates that the singularity would be directly related to the behaviour of

⟨pr⟩0/Drr,0 with prescribed background shear S ≡ −(dU/dr)/(2dr). Note that S is varying with the

radial position r (fig. 2.9) because of the coupling via the negative buoyancy. In effect, S(r) can also

be interpreted as the local rotary Péclet number. Fig. 2.8a shows the behaviour of ⟨pr⟩0/Drr,0 with

the background shear S for both model F and model G (see also fig. 1(f) in Bearon et al. (2012)). For

model F, the magnitude of ⟨pr⟩0/Drr,0 is bounded (max(|⟨pr⟩0/Drr,0|) = −3.47) for all the values of S.

However, in the case of model G, ⟨pr⟩0/Drr,0 monotonically decreases with S and is roughly linearly

proportional to S for sufficiently large S (fig. 2.8a). It should be mentioned that this difference in
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Figure 2.8: Averaged radial swimming velocity and radial diagonal component of diffusivity tensor
with the dimensionless shear rate, S = −(dU/dr)/(2dr) (see also fig. 1 Bearon et al., 2012): (a)
⟨pr⟩0/Drr,0; (b) Drr,0. Here, , model F; , model G. In (a), , linearised model (see 2.16).

⟨pr⟩0/Drr,0 between models F and G must originate from the difference in the translational diffusivity,

because they share exactly the same ⟨pr⟩ (see also §2.2). This is shown in fig. 2.8b.

Fig. 2.9 visualises the radial profiles of S(r) and ⟨pr⟩0/Drr,0(r) for models F and G along the

continuation curves at Q = 2.1. As the solution is continued from the lower to the upper branch, the

absolute values of S(r) monotonically increase for both model F and model G (figs. 2.9a,b). However,

⟨pr⟩0/Drr,0(r) do not behave like S(r). In particular, ⟨pr⟩0/Drr,0(r) for model F is bounded due to

the nature shown in fig. 2.8a. As a result, ⟨pr⟩0/Drr,0(r) in fig. 2.9b is bounded, whereas that in fig.

2.9d is not. This suggests that the singularity developed at Ris from model G originates from the

unboundedness of ⟨pr⟩0/Drr,0(S).

If the behaviour of ⟨pr⟩0/Drr,0 in model G is further simplified, the threshold Ris in fig. 2.6b can

be predicted analytically. For this purpose, we consider a simplified model for ⟨pr⟩0/Drr,0: the

translational diffusivity is set such that ⟨pr⟩0/Drr,0 is linearly proportional to the background shear

dU/dr. In other words, the simplified model assumes

⟨pr⟩0
Drr,0

= ηS =
−η
2dr

dU

dr
, (2.16)

where the proportionality constant η is obtained from the slope of ⟨pr⟩0/Drr,0 at S = 0 from either

model F or G, i.e. η ≡ ∂(⟨pr⟩0/Drr,0)/∂S|S=0. Meanwhile, the ⟨pr⟩0 in the simplified model is kept to

be the same as that used in both model F and model G. We shall refer to this model as the ‘linearised

model’. It is easy to show via an asymptotic analysis that η = β in both model F and G (see Bearon

et al., 2012, appendix B). The two models share the same asymptotics at S = 0 (c.f. §2.4.1). We
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Figure 2.9: (a,c) Rotary Péclet number S(r) and (b,d) net-flux-diffusion ratio ⟨pr⟩0/Drr,0 against
radial position r along the continuation at Q = 2.1 in (a-b) model F and (c-d) model G.

can also compare this simplified model with model F and G in terms of S (fig. 2.8a). Notably, the

approximation remains close to model G even in large shear.

Coincidentally, the behaviour of ⟨pr⟩0/Drr,0 against S in this ‘linearised model’ is the same as that of

Kessler (1986). In Kessler (1986), ⟨pr⟩0 is linear to shear rate S and Drr,0 is constant. In contrast, in

both model G and the subsequent ‘linearised model’, Drr,0 ∼ S−2 and ⟨pr⟩0 ∼ S−1 as the magnitude

of S increases towards infinity. As a result, the ‘linearised model’ shares the same linear behaviour in

⟨pr⟩0/Drr,0(S) with the simpler model of Kessler (1986), despite the different approximations for ⟨pr⟩0
and Drr,0. In the following, we will exploit the similarity in ⟨pr⟩0/Drr,0(S) between the ‘linearised

model’ and Kessler (1986) to understand the bifurcation.

Bifurcation of the steady solutions of the linearised model is shown in fig. 2.10. The bifurcation

diagram of the linearised model is qualitatively similar to that of model G: as the solution is continued

from the lower to upper branch, the swimmer number density at the pipe axis gradually becomes

singular at Ri ≃ Ris(= 57.68) irrespective of Q (compare with fig. 2.6a). The only qualitative

difference between fig. 2.6a and fig. 2.10 is the small extra bumpy behaviour in the bifurcation curves
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Figure 2.10: Bifurcation diagram of the linearised model with Ri for several Q. Here, the state of
steady solution is represented by the swimmer number density at the pipe axis N(0). As the solution
is continued from the lower branch, N(0) → ∞ at Ri = Ri s(≃ 57.68). Also, , stable; ,
unstable, and the blue crosses (x) indicate the saddle-node point. The grey area indicates the cases
where the volume fraction at the pipe axis is greater than 2.5% (see §1.3.2).

of model G, likely the consequence of the nonlinear behaviour of ⟨pr⟩0/Drr,0(S) in model G. This

suggests that the singularity at the centreline swimmer number density in model G indeed originates

from the monotonically decreasing ⟨pr⟩0/Drr,0 with the decreasing (more negative) background shear

rate S. In fact, as S → −∞, ⟨pr⟩0 scales with S−1 while Drr,0 scales with S−2, hence ⟨pr⟩0/Drr,0

scales with S (Bearon et al., 2012). This implies that the origin of the singularity in N(0) is essentially

associated with the lack of translational diffusion flux relative to the advection flux caused by

swimming in the radial direction in model G, as the magnitude of the local shear rate S increases

with N(0) towards infinity along the continuation.

The emergence of this singularity can be more precisely analysed. We now consider the following

equation for N(r), which can be obtained from (2.5) with Drr,0 in (2.16) of the linearised model:

−1

r

d

dr

(︃
r
d

dr
lnN(r)

)︃
= 8γ(N(r)− 1) + η

dU

dr

⃓⃓⃓⃓
r=1

. (2.17)

Here γ = ηRiRe/16 and η(dU/dr)|r=1 represents the driving pressure gradient. Since N(r) near

the singular regime is highly concentrated near the pipe axis, we assume that the swimmers are

highly focused in a small region around the axis: i.e. r ∈ [0, ϵ]. Then, from the constraint of N(r)

given by (2.6), N(r) ∼ O(ϵ−2) in r ∈ [0, ϵ]. Therefore, in this region, we can introduce a relevant
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rescaling of the radial coordinate r = ϵR, where R is of order unity, and define a normalised profile

N0(R) = N(r/ϵ)/N(0). Then, at O(ϵ−2), (2.17) is approximated as

(︃
1

N0

dN0

dR

)︃2

− 1

RN0

dN0

dR
− 1

N0

d2N0

dR2
= 8γN0(R). (2.18)

Now, it is evident that (2.18) does not contain the driving pressure gradient anymore. This implies

that, in the regime where the singular solution nearly develops, the form of the steady basics-state

solution should approximately be independent of the pressure gradient and the flow rate for r ∈ [0, ϵ],

confirming the numerical result for N(0) > O(103) shown in fig. 2.10.
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Figure 2.11: The swimmer distribution of the steady solutions normalised by the pipe axis value for
several flow rates (Q = 1, 2, 3, 4, 5): (a) the linearised model; (b) model G. Here, N(0) = 20, ;
N(0) = 33, ; N(0) = 55, ; N(0) = 90, for the coloured lines. The thick black solid
line indicates the solution of Kessler (1986) given in (2.19).

The solution to (2.18) was previously obtained by Kessler (1986) with the far field boundary condition

N0(∞) = 0: i.e.

N0(R) =
1

(1 + γR2)2
. (2.19)

We note that (2.18) is the leading-order approximation of (2.17) valid only for R ∈ [0, 1] (or,

equivalently, r ∈ [0, ϵ]). Therefore, (2.19) would be a good approximation of the full numerical
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solution of (2.17) for any Q in this region. The normalised swimmer number density of its numerical

solutions for several Q and N(0) is compared with (2.19) in §2.4.3. Indeed, (2.19) shows an excellent

agreement with the numerical solutions for R ∈ [0, 1]. We note that (2.19) is also a good approximation

of the swimmer-density profile of model G near the pipe axis, as demonstrated in §2.4.3.

Finally, if the solution (2.19) is substituted into (2.6), the resulting swimmer number density at the

pipe axis is obtained as

N(0) =
1

1− γ
. (2.20)

From the definition of γ, this implies that N(0) would be singular if γ → 1. At γ = 1, Ri = 16/(ηRe),

which should be a good approximation of Ris. Indeed, for the given Re and η of the linearised

model, the value of 16/(ηRe) is 57.66, which is in excellent agreement with the numerical singularity

Ri s ≃ 57.68 (see fig. 2.10).

The physical mechanism for the singularity is as follow. As Ri increases, the acceleration from the

negative buoyancy of swimmers would increase local downflow and the magnitude of shear rate S,

attracting more swimmers towards the centre from more negative ⟨pr⟩0/Drr,0. The increased swimmer

number density would increase the local downflow further, and the same process would be repeated

until the resulting averaged swimming flux and the radial diffusion are balanced (i.e. formation of a

steady solution). However, as the local shear rate near the central axis of the pipe further increases

due to increasing Ri and N(0), the effective radial diffusivity is also decreasing. At some Ri , the

lack of diffusion flux to counteract the positive feedback mechanism of gyrotactic focusing results

in singularity. The physical process described here is similar to that of linear gyrotactic instability,

except that the positive feedback mechanism here is highly nonlinear and results in a singularity.

2.5 Linear stability

In this section, we will perform a linear stability analysis with the steady plume solutions computed

in §2.4. We will focus on the axisymmetric mode and the first non-axisymmetric mode, which are

similar to the varicose and sinuous modes in downward channel flow (Hwang & Pedley, 2014b). The

typical spatial structures of these two modes are visualised in fig. 2.12, demonstrating the similarity

to fig. 8 in Hwang & Pedley (2014b): the axisymmetric mode is composed of a plume, the thickness

of which varies along the axial direction, whereas the non-axisymmetric mode is composed of an

anaxially meandering plume. In the present study we will focus more on the axisymmetric mode
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Figure 2.12: Spatial structure of the unstable (a) axisymmetric (m = 0) and (b) non-axisymmetric
(m = 1) mode at Ri = 92, Q = 1, α = 0.56, computed using a lower branch basic state. Here, the
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(m = 0) as it is more physically relevant and observable in experiments. The first non-axisymmetric

mode (i.e. when m = 1) is also presented briefly.

Given the existence of multiple basic-state solutions for a given set of Ri and Q, it is not straightforward

to present the conventional neutral stability diagram. Therefore, in this section we present the stability

of the steady solutions along each of the continuation curves shown in §2.4. For each steady solution

(basic state) and the corresponding set of parameters, the maximum growth rate ωi,max is sought

out for all real α. Here, the value of α used to search for ωi,max ranges from 0.001 to 20, and the

corresponding αmax is also computed.

2.5.1 Axisymmetric mode

Model F

Fig. 2.13 shows how the maximum growth rate ωi,max and the corresponding streamwise wavenumber

αmax change with Ri for each fixed Q along the continuation curves in fig. 2.4a. At low Q(≲ 1),

the basic state becomes unstable to axially varying perturbations near the first saddle-node point

where N(0) increases rapidly with Ri, as the solution continued from the lower to the middle branch.

With a further continuation, the solution stabilises, in that the value of ωi begins to reduce, before

the second saddle-node point (fig. 2.13a). The streamwise wavenumber retaining the maximum

growth rate also behaves similarly to ωi,max: αmax grows as the solution continued from the lower to

the middle branch, and it decays again with a further continuation. Finally, as Q increases, ωi,max

obtained for all the steady solutions along the continuation decreases, implying that increasing the

flow rate stabilises the streamwise perturbation.

Comparison of fig. 2.13a with fig. 2.4a also indicates that the destabilisation seems to correlate

with the rapid increase in N(0) of the basic state at least for the lower and middle branches. This

suggests that the instability is presumably associated with the sharp gradient in the base flow and

swimmer number density near the pipe axis, consistent with the previous observation in Hwang &

Pedley (2014b) where the instability of this type (varicose mode Hwang & Pedley, 2014b) was shown

to originate from the following simplified process:

∂n′

∂t
∼ −n′

(︂∂⟨pr⟩0
∂r

+
⟨pr⟩0
r

)︂
. (2.21)

This process also appears through the first to third terms in (2.10e) in the present pipe flow. We
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Figure 2.13: Stability of the axisymmetric mode (model F): (a) maximum growth rate ωi,max and (b)
the corresponding αmax of the steady solution at each Ri and Q. In (a), , stable; , unstable
to streamwise-uniform perturbation.

note that ∂⟨pr⟩0/∂r and ⟨pr⟩0/r must be negative near the pipe axis, because the swimmers swim

towards the centre (⟨pr⟩0 < 0) near the pipe axis and ⟨pr⟩0 = 0 at the pipe axis, implying that the

same mechanism of the instability is active in the vertical pipe case.

(a) (b)

Figure 2.14: (a) The maximum growth rate ωi,max and (b) the corresponding αmax in the N(0)−Q
plane (model F). Note that the contours do not contain any overlap because the basic state is stable
before N(0) decreases in the branch continuation.

To further explain the correlation between the growth rate and the nature of the steady solution near

the pipe axis, the maximum growth rate ωi,max in the Q − N(0) plane is plotted in fig. 2.14. For

N(0) ≲ 10, the basic state is destabilised on increasing N(0), consistent with the explanation given

above. However, as N(0) is further increased (N(0) ≳ 10), the solution is found to be stabilised again.

Here, we note that there are no overlapping contour lines in fig. 2.14, which one might have expected

from the existence of multiple N(0) for a given flow rate (see fig. 2.4a). This is because the basic
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state is stabilised (ωi < 0) well before N(0) starts to decrease along the upper branch (see fig. 2.4a).

In other words, the stabilisation takes place while N(0) is still increasing along the continuation.

The stability analysis result here is qualitatively similar to that in Hwang & Pedley (2014b), although

the stability diagram in the Q− Ri space is not directly shown here due to the complexity emerging

from the bifurcation of the basic state: the most unstable mode of the flow appears in the form of an

axisymmetric blip instability like their varicose mode, and this instability is stabilised if the flow rate

is sufficiently large. However, it should be mentioned that Hwang & Pedley (2014b) did not explore

for Ri > 90. Therefore, it is unclear whether the stabilisation observed at higher N(0) in the present

pipe flow would also occur in their channel flow.
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Figure 2.15: Stability of the axisymmetric mode (model G): (a) maximum growth rate ωi,max and (b)
the corresponding αmax of the steady solution at each Ri and Q. In (a), , stable; , unstable
to streamwise-uniform perturbation.

Model G

Now, we perform a linear stability using model G. Fig. 2.15 shows how the maximum growth rate

ωi,max changes with Ri along the continuation curves in fig. 2.6a for each fixed Q. Due to the wider

range of the values of ωi,max emerging in model G, here we have chosen to plot ωi,max in log scale in

fig. 2.15. Similar to the result of model F, the basic state is destabilised near the first saddle-node

point. However, in contrast with fig. 2.13, the basic state is no longer stabilised with the continuation

to upper branches. Instead, it is found that the growth rate continues to increase, and the basic state

always remains unstable along the continuation curve.

The maximum growth rate ωi,max in the Q−N(0) space is also plotted in fig. 2.16. It is interesting

to note that the growth rate appears to be almost independent of Q at high enough N(0). This is
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Figure 2.16: (a) The maximum growth rate ωi,max and (b) the corresponding αmax in the N(0)−Q
plane (model G).

presumably because the profile of the basic-state solution is almost independent of Q for sufficiently

high N(0), as discussed in §2.4.3. This observation is also consistent with the notion that the

instability is essentially driven by the local flow dynamics near the centreline of the pipe through

(2.21).

The main difference in the stability of models F and G appears from the upper branch basic state. In

a way, this would not be surprising because models F and G show significantly different upper branch

states. Model F exhibits decreasing N(0), as the steady basic-state solution is continued along the

upper branch. By the contrary, model G shows increasing N(0) with the continuation. This feature

greatly impacts on the stability result, and we shall provide a further discussion on this issue in §2.6.1.

2.5.2 Non-axisymmetric mode

Finally, we have computed the stability of the non-axisymmetric mode (sinuous mode). It was found

that, at m = 1, the non-axisymmetric mode is always the most unstable when α = 0 in both model F

and model G (i.e. when the perturbation is streamwise uniform). Fig. 2.17 shows how the maximum

growth rate ωi,max changes with Ri along the continuation curves shown in figs. 2.4a and 2.6a for

models F and G, respectively. At low Q(∼ 0.1), the base flow becomes unstable to azimuthally varying

(and streamwise-uniform) perturbation at a lower Ri than the streamwise varying axisymmetric

perturbation in both models, before the continuation reaches the first saddle-node point. For model

F, the growth rate peaks at the middle branch, similar to the axisymmetric mode. However, as

the solution continued to the upper branch, the non-axisymmetric mode is destabilising again, even
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Figure 2.17: Stability of the non-axisymmetric mode: maximum growth rate ωi,max at each Ri and
Q, using (a) model F and (b) model G. In both figures, , stable; , unstable to streamwise-
uniform perturbation. In (a) the point with maximum N(0) is marked with a black circle in each
curve. In (b) the blue, red and black crosses (x) indicate the first, second and third saddle-node
points, respectively.

though N(0) is decreasing at the upper branch. For model G, the non-axisymmetric mode stabilises

after the first saddle-node point despite increasing N(0).

As Q increases, ωi,max obtained for all the steady solutions along the continuation decreases. At

higher Q(≳ 1), for model F, ωi,max remains increasing along the branch continuation even though

N(0) started decreasing (as shown by the point indicating maximum N(0) along each continuation

curve). For model G, because of the strong stabilising effect of the flow rate, the mode is only unstable

when Q ≲ 3.0. In fig. 2.17b, at higher Q(≳ 1), the mode is destabilising with increasing N(0) before

the third saddle-node point. The growth rate ωi,max peaks at the third saddle-node point. Beyond

the third saddle-node point where N(0) tends toward infinity (i.e. approaching the singularity at Ris),

ωi,max decreases along the continuation curve. This is also the regime where there is a self-similar

profile at the centre of the pipe, as discussed in §2.4.3, implying that the non-axisymmetric mode is

stabilising when the self-similar plume structure becomes narrower.

The fact that the mode is most unstable when α = 0 and that it is not as correlated to N(0) as

the axisymmetric mode strongly suggest that the non-axisymmetric mode is driven by a different

mechanism. In fact, Hwang & Pedley (2014b) showed that the sinuous mode is driven by gyrotactic

instability, even though Hwang & Pedley (2014b) did not take into account the spanwise variation.

According to Hwang & Pedley (2014b), the gyrotactic instability is expected to originate from the

following simplified process

∂n′

∂t
∼ −

(︃
⟨pr⟩′

∂N

∂r
+N

∂⟨pr⟩′

∂r
+N

⟨pr⟩′

r
+N

∂⟨pz⟩′

∂z
+
N

r

∂⟨pψ⟩′

∂ψ

)︃
, (2.22)
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which also corresponds to the first term and the second line of (2.10e). We note that this gyrotactic

instability mechanism is different from that of (2.21), which is driven by the gradient in the base flow

average swimming. Although both mechanisms originate from gyrotaxis, the former is driven directly

by gyrotaxis, while the latter is the result of the net flux of swimmers in the radial direction due to

non-uniform shear rate. A more in-depth discussion on both mechanisms can be found in Hwang &

Pedley (2014b).

To confirm this mechanism, we have performed the stability analysis with the second line of (2.10e)

suppressed. The non-axisymmetric mode is found no longer unstable for all the parameter space for

both model F and model G, which shows that the mode is indeed driven by the gyrotactic mechanism.

2.6 Summary and discussion

Thus far, we have explored the bifurcation and stability of a downflowing gyrotactic micro-organism

suspension in a vertical pipe flow. This work provides a full picture of the bifurcation and stability of

the gyrotactic plume in the original experiment of Kessler (1985a,b, 1986) with the more up-to-date

continuum models (model G, in particular), while extending the stability analysis of Hwang & Pedley

(2014b) for channels to pipes. In particular, both models F and G have been used in the present

study, offering some useful physical insights into the benefits and drawbacks of the existing continuum

descriptions.

2.6.1 Models F and G

The basic-state steady solutions from models F and G have been compared previously in a series of

experimental and numerical studies (Bearon et al., 2012; Croze et al., 2013, 2017). In the present

study a bifurcation analysis has been performed and revealed a complete description of the existence

of multiple solutions, their mutual relations and the singularity threshold for the first time. In a

stationary suspension, both models F and G exhibit a transcritical bifurcation with Ri (fig. 2.3). With

the addition of a small flow rate Q, this transcritical bifurcation with Ri evolves into an imperfect

bifurcation involving a saddle-node point (fig. 2.3). The further increase of the flow rate results in

the disappearance of the saddle-node point, exhibiting a cusp bifurcation in terms of two parameters,

Ri and Q (figs 2.4b, 2.6b).

Despite the qualitative similarity in the behaviour of the steady solutions of models F and G, especially
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at low flow rates, they also exhibit several vital differences. These differences between models F and

G stem fundamentally from how the translational diffusivity Dm changes with S, especially when |S|

is high (see fig. 2.8b). The difference in Drr(S) results in different bifurcation behaviour, as shown by

the comparison between figs. 2.4a and 2.6a. The differences are particularly profound at high N(0),

where the magnitude of the background shear rate |S| is large. In model F, the plume structure of the

steady solution eventually smooths out as it is continued from the middle to the upper branch. This

should be related to the recovery of Drr in model F on increasing |S|. In contrast, the monotonically

decreasing Drr(S) at large |S| in model G causes the plume structure of the steady solution to be

more focused as it is continued to the upper branch. This is also the essential reason why model G

does not admit any steady solution, at some regime of Ri at a given finite Q. On the contrary, in

model F, there always exists at least one steady solution, albeit not physically realistic.

As for the stability of the basic state, the main difference between the two models is that model F

shows restabilisation of the axisymmetric mode on increasing N(0), whereas model G exhibits a rapid

increase in its growth rate (figs. 2.14, 2.16). Given that the only difference between models F and

G is in the expression of the translational diffusivity, this difference should also originate from the

diffusivity. It has been shown both numerically (Croze et al., 2013) and experimentally (Croze et al.,

2017) that the diffusivity prediction of model F is not as accurate as model G in modelling gyrotactic

focusing. This suggests that the restabilisation at high N(0) is likely not physical but an artefact of

model F. Furthermore, model F showed that the non-axisymmetric mode has a higher growth rate

than the axisymmetric mode at high Ri, but this is not supported by any previous experiments, in

which only the axisymmetric instability mode (i.e. blip) has been observed. On the contrary, under

model G, the axisymmetric mode remained the dominant mode in most of the parameter space (except

at very low flow rates), which is more consistent with the observation of blips in the experiment. These

stability results suggest that model F shows little consistency with the experimental observations,

and would not be as accurate as model G in predicting the blip occurrences.

2.6.2 Breakdown of the homogeneous shear assumption

Despite the encouraging result from model G, one should be aware of the limitation model G impose.

In the application of the GTD theory outlined by Hill & Bees (2002) and Bearon et al. (2012), the

shear rate of the flow was approximated to be locally homogeneous at each spatial point without

taking into account the effect of inhomogeneity in the shear profile. However, the high swimmer

density at the centre also gives rise to a rapidly changing shear rate in the solutions. This may also
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break down the assumptions made in model G. In particular, model G cannot capture the shear

trapping phenomena first demonstrated experimentally by Rusconi et al. (2014). However, Bearon &

Hazel (2015) have utilised the Smoluchowski equation directly and shown that, even in the absence of

gyrotaxis, non-spherical swimmers may still aggregate in the regions of high or low shear due to the

inhomogeneity in the flow shear. In effect, such inhomogeneous shear can also generate an extra net

advective swimmer-density flux towards or away from the centre, depending on the shear magnitude

and the geometry of the swimmer (Vennamneni et al., 2020), but model G cannot capture the shear

trapping flux due to its quasi-homogeneous assumption. Given that the formation of the middle to

upper branch solutions in the present study is strongly linked to the high shear rate near the centre,

this shear trapping effect might also be significant were the swimmers not as spherical as we have

assumed. The topic of shear trapping will be further investigated in chapter 4.

2.6.3 Effect of the bulk stress tensor

Despite the interesting bifurcation and the stability of the basic state, which may offer sound

explanations to the previous experiments, care must also be taken in interpreting the present

analysis with the assumptions made in modelling of the suspension. We have assumed in §2.2 that the

contribution of swimming motions of individual micro-organisms to the flow field (i.e. the (1/ρ∗)∇∗ ·Σ∗
p

term in (1.18)) would be negligible throughout the chapter. However, as the plume solution diverge

near the critical Ri s, we cannot rule out the possibility that the the stresslet tensor might be able to

attenuate such singularity. To this end, we have recomputed the steady solutions using model G with

the stresslet term included, assuming that it is the dominant stress from the swimmers besides the

buoyancy force: see §1.4.5. The stresslet term considered is given by (1.16), where σ∗
0 = 10−10gcm2s−s

for C. augustae (Pedley, 2010b).

Fig. 2.18 shows the effect of the stresslet term on the bifurcation of the steady solutions computed

with model G. The stresslet term only slightly modifies how N(0) changes with Ri , without significant

impact on the result (fig. 2.18a). We have also arbitrarily increased σ0 to further understand any

potential role of the stresslet in the bifurcation (fig. 2.18b). As shown at the top of fig. 2.18b,

the changes in the stresslet strength do not alter the singular behaviour of N(0) (i.e. N(0) → ∞

). Moreover, the stresslet term seems to appear to introduce further bifurcation probably involving

the emergence of unsteady solutions, as the Newton solver failed to converge within the prescribed

residue (> 10−4) in the parameter space where the middle branch solutions reside (dashed lines in

fig. 2.18b). However, this issue has not been further pursued in the present study as the singular
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(a) (b)

Figure 2.18: Bifurcation of steady plume solution (a) with (lighter lines) and without (darker lines)
the stresslet for several Q and (b) for several arbitrarily scaled stresslet strengths σ0 at Q = 2. The
grey area indicates the cases where the volume fraction at the pipe axis is greater than 2.5%. In (a)
the lighter and darker lines almost overlap. In (b) the dashed line ( ) represents the solutions
obtained with large residue (> 10−4) in the solver.

behaviour of N(0) is still found to exist even with such an unphysically strong stresslet, implying

that the removal of this singularity likely involve hydrodynamic interactions between swimmers in

the semi-dilute regime (see §1.3.2 and §5.2.1).

2.6.4 Implications of the singularity and comparison with experiments

In §2.4.3 we have demonstrated that the solution blows up as γ = ηRiRe/16 → 1, irrespective of

the flow rate Q. We note that η = β is strictly a parameter from the given swimmer properties and

ReRi is proportional to N∗(h∗)2 if the swimmer properties and fluid viscosity are fixed. Here, we can

define the cross-sectional area of the pipe as A∗ = (h∗)2π. Therefore, the physical interpretation of

the singularity at γ → 1 is that there exists a maximum number of swimmers per unit length of the

pipe N∗A∗ which the self-focused steady plume (upper branch) can hold.

Interestingly, the idea of having a limited capacity in the swimmer number per unit length of pipe of

the steady plume has also been discussed in Kessler (1986). In the present study, we have extended

the theory. We have demonstrated that if the flow rate is low enough with the centreline velocity at

the order of the swimming speed, there exists a lower branch state which can surpass such a threshold.

However, as shown in figs. 2.6a,10, the upper branch state still has the swimmer capacity threshold

given by γ = 1, implying that there exist certain initial conditions which will never reach any steady

state. Meanwhile, if the flow rate is high enough, the hysteresis disappear (figs. 2.6a,10) and a steady
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solution given in this form is no longer possible beyond the capacity threshold.

In both the experiments of Kessler (1986) and Denissenko & Lukaschuk (2007) where plumes and

blips are observed, the total number of swimmers (per unit length) N∗A∗ is an order of magnitude

higher than the capacity threshold. Therefore, no steady solution is obtained with model G in the

regimes studied by Kessler (1986) and Denissenko & Lukaschuk (2007). Instead, in many cases, it

was observed that the plume continued to self-focus until blips start to form. According to Kessler

(1986), beyond the capacity threshold, the parallel assumption for calculating the plume structure

broke down and led to the formation of blips, which is in contrast to Hwang & Pedley (2014b)’s

theory of blips as an instability of the steady plume. However, given the strong correlation between

N(0) and the varicose instability (fig. 2.16), the physical mechanism of the varicose instability first

suggested by Hwang & Pedley (2014b), i.e. the mechanism driven by the gradient in swimming flux

in the radial direction, is still likely at play in the breakdown of the streamwise invariance while the

plume is evolving towards the singularity. Therefore, Kessler (1986) was correct in suggesting the

singularity, while Hwang & Pedley (2014b) provided the mechanism for the breakdown of the parallel

symmetry.

In some cases, steady but very focussed plumes were observed in the experiments of Kessler (1986)

and Denissenko & Lukaschuk (2007) even when the background swimmer density was higher than the

capacity threshold. In those cases, it is likely that the hydrodynamic interactions between swimmers

had helped keeping the number density from blowing up. More discussion of the semi-dilute effect on

the plume will follow in §5.2.1.

Meanwhile, the experiment by Croze et al. (2017) is in the lower Ri regime where a steady solution

can be found. In this regime, the dilute assumption and model G is accurate and blip formation is

more likely to conform to the instability theory suggested by Hwang & Pedley (2014b). It is likely

that the instability calculation can be repeated for Dunaliella and be directly comparable to the

experimental set up of Croze et al. (2017).
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Chapter 3

Bioconvection and the formation of

multiple plumes

3.1 A brief introduction to bioconvection

In the previous chapter, we have demonstrated how gyrotactic microswimmers self-focus into a

plume structure under the influence of a downflow. However, even without a downward flow, the

coupling mechanism between gyrotaxis and negative buoyancy could still be linearly unstable in an

initially quiescent and uniform suspension (Pedley et al., 1988). The instability was believed to be

responsible for initiating the convective pattern often observed in a shallow and well-mixed suspension

of gyrotactic micro-organisms.

The convective pattern, coined as bioconvection by Platt (1961), was known much earlier than

the discovery of gyrotaxis, partly because it is an easily observable and repeatable phenomenon.

Documentations of bioconvective patterns can be traced back to as early as the 1860s (Bees, 2020), but

the mathematical modelling of the phenomenon only gained traction in the 1970s. Prior to dicovering

gyrotaxis, bioconvection was often understood as the result of an upper boundary and modelled as

the coupling between negative buoyancy and gravitaxis, which is the tendency of micro-organisms

to swim against gravity (e.g. Childress et al., 1975). When enough negatively buoyant swimmers

have accumulated at the upper surface due to gravitaxis, an overturning instability can arise, where

some regions with enough accumulated swimmers sink with the fluid. The resulting upwelling and

downwelling regions effectively form convective rolls, hence the name bioconvection. However, since

the discovery of gyrotaxis, Pedley et al. (1988) have shown that a gyrotactic instability can arise in
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an initially uniform and stationary suspension without an upper surface. Therefore, even for a well

mixed and deep gyrotactic suspension, downwelling regions can still spontaneously form in the middle

of the suspension (see fig. 3 of (Kessler, 1986)).

Pedley et al. (1988) has further compared the horizontal wavelength of the plume structures with

observations in experiments but failed to obtain a good agreement. They proposed three potential

origins for the discrepancy: 1) finite-depth effect; 2) poor estimation of diffusivity; 3) nonlinear

evolution of the plumes. The first issue was tackled by Hill et al. (1989) and later by Bees et al. (1998),

where the linear stability of shallow suspensions was examined. The second can be improved by using

a better transport model than the constant and isotropic diffusivity in the primitive model. In the

the previous chapter we have demonstrated that the generalised Taylor dispersion model (model G)

is more accurate than model F. Therefore, in this chapter, we will mainly focus on the result from

model G.

The main objective of this chapter is to address the third issue, i.e. the role of nonlinearity in the

plume formation. Like in the previous chapter, an infinitely long pipe is considered, and the solution

is assumed to be uniform in the axial and azimuthal directions. In other words, we will ignore the

finite-depth effect for simplicity. Several previous studies have considered similar steady solutions for

the nonlinear axially-uniform gyrotactic plume in a downflowing pipe. Kessler (1986) first derived an

analytical solution (see eq. (2.19)), but it was limited to the case where the pressure gradient is zero.

Bees & Croze (2010) obtained the solution asymptotically and found that there can be more than

one solution for a given set of parameters. More recently, Bearon et al. (2012) and Croze et al. (2013,

2017) have computed the solution numerically using model G. Despite these advances made over

the years, little attention has been paid to the existence of the solutions itself. Only in §2.4.3 have

we discovered the existence of a steady solution is limited within a certain range of the parameters.

Indeed, for a sufficiently large downflow, the solution obtained with model G does not exist when the

Richardson number is greater than a critical value.

In this chapter, we will extend the findings of the previous chapter. We will consider both upward and

downward flows, and exhaustively seek the nonlinear solutions, by extending the computation of the

plume solutions in §2.4.1. In contrast to the previous chapter, here we seek solutions at a Richardson

number much higher than the threshold Ris. Also, there can be more than one plume forming in

the pipe. We will show that the number of plumes forming in the pipe is related to the transcritical

bifurcation shown in §2.4.1. All these solutions emerge through a sequence of transcritical bifurcations

as the Richardson number increases.
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3.2 Problem formulation

The equations for the axisymmetric and axially uniform solution to the gyrotactic suspension in a

cylindrical pipe is the same as the equations for the basic state in §2.2.2. However, to better show the

stability of the solution in time, here we rewrite it as a set of unsteady equations

∂U

∂t
= −G+

1

Re

1

r

∂

∂r
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and the normalisation conditions ∫︂ 1

0

N(r; t)rdr =
1

2
. (3.1d)

The downward flow rate Q is defined as

∫︂ 1

0

U(r; t)rdr = − Q

2π
. (3.1e)

Some of the above equations are repeated for easier readership. Here, we define G = ∂q/∂z + Ri

as the driving pressure gradient that excludes the hydrostatic pressure from the negative buoyant

swimmers (i.e. G = ∂qd0/∂z). If Q is steady and prescribed, then the pressure gradient is obtained as

G = (2/Re)∂rU |r=1. Note that the three parameters Q, Ri and G only share two degrees of freedom.

If either two are prescribed, the reamining one shall be solved simultaneously with the solution.

Lastly, the steady version of (3.1) can be further simplified into (2.15) and

− 1

Re
D2U = −Ri

(︃
N(0) exp

(︃
dr

∫︂ r

0

⟨pr⟩
Drr

dr

)︃
− 1

)︃
−G, (3.2)

where N(0) is determined by (2.6) and G is determined by (2.7). Here, we denote the radial Laplace

operator by D2 = (1/r)∂r(r∂r).

The above equations are solved using the pseudo-arclength and Newton-Raphson method provided

in §2.3. However, in this chapter, we shall also implement two other pseudo-arclength continuation
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Figure 3.1: Comparison between numerical solutions of (3.2) and the linear and weakly non-linear
analysis in §3.4. (a) Bifurcation diagram (U(0) against Ri) of the Q = 0 solutions from (3.2). Here,
the line type represents the stability of the solution: , stable; , unstable. The bifurcation
point (Ric,n) from (3.7) is denoted by magenta crosses (×), while the slope of the bifurcation curve
calculated from (3.12) is indicated by the short magenta dot-dashed segment ( ). The dotted blue
lines ( ), representing U(0) = ±1, are added to locate the Ri values for (b-i). (b-i) Comparisons
between the nonlinear steady solution (blue lines) and the corresponding (appropriately normalised)
linear instability mode û(r) at Q = 0 and Ri as indicated in (a).

methods, one with a prescribed G and varying Ri or Q and one with a prescribed Ri and varying Q.

The principle for the continuation algorithm is the same as that suggested in §2.3.5, which will not be

repeated here for brevity.

3.3 Extending the low flow rate results

In §2.4.1 and fig. 2.3, we have briefly shown that there exist multiple branches of solutions at each Q

as long as Q is near zero. Here, the same bifurcation diagram, but with a larger range of Ri and Q, is

presented. In fig. 3.1a and fig. 3.2, the axial velocity U(0) is used to represent the state of the steady

solutions. Fig. 3.1a shows how the solution from (3.2) changes with Ri at Q = 0, while fig. 3.2 shows
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Figure 3.2: Contours of U(0) against Ri at each given Q ∈ [−2.5, 2.5]. Here, each contour line
in the U(0) − Ri plane indicates the value of Q: black, Q = 0; blue to green, Q ∈ [0.1, 2.5] with
0.2 increment; red to yellow, Q ∈ [−2.5,−0.1] with −0.2 increment. The line type represents the
stability of the solution: , stable; , unstable. The thick dotted black lines ( ) show the
bifurcation by varying Q for given G = 0 (see §3.5).

the same at other Q in the range [−2.5, 2.5]. We have also plotted some of the steady solutions U(r)

when |U(0)| = 1 and Q = 0 in fig. 3.1b-i (blue lines), for reasons that will become apparent later in

§3.4.1. The respective value of Ri for each U(r) can be found in each panel of fig. 3.1b-i, as well as in

fig. 3.1a.

Focusing on Q = 0, from fig. 3.1a, it is apparent that there exist multiple branches of steady solutions

other than the uniform-suspension solution represented by U(0) = 0. In fact, as we increase Ri , there

seems to be a countable but infinite number of branches emerging via a sequence of transcritical

bifurcations. Each branch coincides with the uniform suspension at a certain Ri , which forms the

bifurcation point. We shall define Ric,n as the Richardson number of each bifurcation point from

the left in fig. 3.1a, where n is the index. For convenience, we shall also index the Q = 0 branches

accordingly too. For example, the first bifurcation at Ri(= Ric,1 ≈ 190) is connected to the first

Q = 0 branch (see the black line crossing the leftmost Ric in fig. 3.1a). At each bifurcation point,

there is also an exchange of stability, as we examine the stability of the solution near each bifurcation

(see §3.4.1). However, except for the first bifurcation, the stability exchange takes place not with

the most unstable mode but with a less unstable one. When a small downflow or upflow is applied

(i.e. Q ̸= 0), each transcritical bifurcation point turns into a saddle-node point via an imperfect

bifurcation. This is similar to the finding of §2.4.1 for the first branch solution, but the same happens

to all the other branches.
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3.4 The origin of an infinite number of solution branches

In this section, we will examine the linear stability of a uniform suspension in the vertical pipe. We

will further restrict the perturbation to be axisymmetric, parallel and axially uniform, given the nature

of the solutions of interest. To be consistent with our numerical results in §3.3 and fig. 3.1a, in this

section we will fix the flow rate when adding the perturbation, i.e. Q = 0. We will demonstrate that

the multiple transcritical bifurcations of the computed solutions are the result of the pipe geometry,

which also confines the suspension in a domain with finite horizontal extent. We will then extend

it to the weakly nonlinear regime, similarly to previous work by Bees & Hill (1999). The resulting

amplitude equation demonstrates that all the bifurcations in fig. 3.1a are indeed transcritical.

3.4.1 Linear stability analysis

We first consider a perturbation to the stationary uniform suspension in a cylindrical pipe with infinite

depth, i.e. U = ϵu1(r, t) + ϵ2u2(r, t) + O(ϵ3) and N = 1 + ϵn1(r, t) + ϵ2n2(r, t) + O(ϵ3). Given that

⟨pr⟩(S) is odd and Drr(S) is even with respect to the radial shear rate S, this yields

⟨pr⟩ = ϵζ
∂u1
∂r

+ ϵ2ζ
∂u2
∂r

+O(ϵ3), and
Drr

dr
= D +

ϵ2

8d3r

∂2Drr

∂S2

⃓⃓⃓⃓
S=0

(︃
∂u1
∂r

)︃2

+O(ϵ3), (3.3)

where ζ = −(∂S⟨pr⟩|S=0)/(2dr) (ζ is negative) and D = Drr|S=0/dr are constants that depend only on

dr and β. We also note that −ζ/D = β/2 (see §2.4.3 and Bearon et al. 2012). At O(ϵ), the perturbed

equations for linear stability are then obtained as

∂u1
∂t

=
1

Re
D2u1 − Ri n1 −G1, (3.4a)

and
∂n1

∂t
= −ζD2u1 +DD2n1, (3.4b)

with boundary conditions

u1(1) = 0,

[︃
ζ
∂u1
∂r

−D
∂n1

∂r

]︃ ⃓⃓⃓
r=1

= 0. (3.4c)

Because we have fixed Q = 0, the perturbed pressure gradient G1 is found such that the flow rate is

not altered by the perturbation, i.e. ∫︂ 1

0

u1rdr = 0. (3.4d)

90



While (3.4) can be solved numerically, we shall proceed to focus on the special case when one of

the stability modes is neutrally stable. Introducing a neutrally stable and stationary normal mode

(i.e. u1(r, t) = û(r) and n1(r, t) = n̂(r)), (3.4) is then simplified into a single equation:

D2û+ κ2û = ReG1, (3.5)

where κ2 = −RiReζ/D = RiReβ/2. The left-hand side of (3.5) is the Bessel differential equation,

which admits the Fourier–Bessel series as solutions. Substituting the boundary conditions, the mode

shapes of û(r) should take the form

û(r) =
G1Re

κ2

(︃
1− J0(κr)

J0(κ)

)︃
, (3.6)

where Jm(r) is the m
th Bessel function of the first kind. Enforcement of (3.4d) into (3.6) subsequently

leads to an infinite number of discrete values of κ(= κc,n) satisfying J2(κc,n) = 0, at which (3.6)

becomes a neutrally stable solution to (3.4). Here n indicates the nth zeros of J2(r). In this case, G1

in (3.6) becomes an arbitrary real constant, as (3.4d) is satisfied for any G1. The values of κc,n also

yield the critical values of

Ric,n =
2κ2c,n
Reβ

(3.7)

for the neutral stability of each mode. These values of Ric,n calculated from κc,n match perfectly with

the bifurcation points computed numerically in the previous section, as shown in fig. 3.1a. Finally,

it should be mentioned that (3.7) is equivalent to (3.14) in Pedley et al. (1988) and (31) in Bees

& Hill (1999), where a continuous set of the critical values of the parameters equivalent to Ri and

κ are obtained from linear stability analysis. However, in the present study, the introduction of a

finite domain in the radial direction results in discrete values of κc,n and Ric,n with the corresponding

eigenmode in the form of a cylindrical harmonic (i.e. Bessel functions) that satisfies the given boundary

conditions.

3.4.2 Weakly nonlinear analysis

We further proceed to perform a weakly nonlinear analysis close to Ric,n. In the previous study by

Bees & Hill (1999), where a uniform suspension is considered in an unbounded domain, it was assumed

that the leading nonlinear term would appear at the third order due to translational invariance of

the suspension in the horizontal direction. However, in the present study, such invariance is broken

due to the pipe’s cylindrical geometry. Hence, there is no reason that the leading nonlinear term
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would emerge at the third order. In this study, we start by assuming Ri−Ric,n = ϵ∆Ri (∆Ri is the

normalised distance from the bifurcation point) with a slow time scale T = ϵt. Given the perturbation

form introduced in §3.4.1, at O(ϵ2), we get

∂Tu1 +∆Ri n1 = −∂tu2 −G2 +
1

Re
D2u2 −Ric,n n2, (3.8a)

where G2 = (2/Re)u′2(1) and

∂Tn1 + ζ
1

r
∂r (r(∂ru1)n1) = −∂tn2 − ζD2u2 +DD2n2. (3.8b)

We also introduce amplitude A(T ) for the linear perturbation

u1(r, t, T ) = A(T )û(r) and n1(r, t, T ) = A(T )n̂(r), (3.9)

where the linear instability mode is normalised to be û(0) = 1. Therefore, the normalised first-order

velocity profile is

û(r) = fc,n(r) ≡
(︃
1− J0(κc,nr)

J0(κc,n)

)︃
/

(︃
1− 1

J0(κc,n)

)︃
. (3.10)

Following the procedure of a weakly nonlinear analysis (e.g. Drazin, 2002), we apply the solvability

condition to (3.8) using the adjoint of (3.4). Now, the adjoint of û is the same as û = fc,n(r), and

n̂ = −βû/2. However, the adjoint of n̂ is (ζRe)−1gc,n(r), where gc,n(r) is

gc,n(r) =

(︃
J0(κc,n)− J0(κc,nr)−

r2 − 1

2
κc,nJ1(κc,n)

)︃
/ (J0(κc,n)− 1) . (3.11)

From the solvability condition, we arrive at

(︃
C +

F

DRe

)︃
∂TA− β

2
C∆RiA− βE

2Re
A2 = 0, (3.12)

where C, E and F are dependent on κc,n and are defined by

C =

∫︂ 1

0

fc,n(r)
2rdr =

κ2c,n
8

(︃
1− 1

J0(κc,n)

)︃−2

, (3.13)

E =

∫︂ 1

0

gc,n(r)∂r
[︁
rf ′

c,n(r)fc,n(r)
]︁
dr, (3.14)
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Figure 3.3: Continuations of the steady solution emerged from the first bifurcation point with U(0) > 0.
(a) Plots of U(0)( ) , Ri( ) and N(1)( ) for several G on increasing Q from 0. (b) The
relation between G and Q for several fixed Ri . Inset: the maximum achievable flow rate Qmax plotted
for each Ri .

F =

∫︂ 1

0

fc,n(r)gc,n(r)rdr = −
3κ2c,n
16

(︃
1− 1

J0(κc,n)

)︃−2

. (3.15)

While C and F are found analytically, E is numerically integrated owing to the complexity of the

Bessel function. The numerical values of −CRe/E are plotted as the local slopes of the corresponding

branch at each bifurcation point in fig. 3.1a.

Now, given the quadratic nonlinearity in (3.12), it is clear that all the bifurcations in fig. 3.1a are

transcritical. We have also computed the slopes of the non-trivial branches in fig. 3.1a, which are

given by −CRe/E, when they cross each bifurcation point. As shown by the dot-dashed lines in fig.

3.1a, the computed slopes match with those of the numerically computed nonlinear solutions perfectly

at the bifurcation points.

Finally, the neutrally stable eigenmodes (3.6) used for the weakly nonlinear analysis (red line, with

appropriate sign) are compared with the numerical solutions (blue line) around each bifurcation point

(at U(0) = ±1) in fig. 3.1. As expected, there is an excellent agreement between them.

3.5 Existence of steady solution

As previously noted, there are three parameters Q, G and Ri that control the bifurcation of (3.1).

Here, Q and G are dependent on each other, providing only two degrees of freedom in total. Now,

without loss of generality, we shall vary the three parameters Q, G and Ri in a controlled manner to
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explore the existence of the steady solutions reported in §3.3. We first prescribe G and continue the

steady solutions to (3.1) by changing Q – the related bifurcation diagrams for G = 0 are also shown

in fig. 3.2 (dotted lines). Here, we note that the change of Q for a given G requires a change of Ri ,

given the relation of the three parameters. Fig. 3.3a shows how U(0), Ri and N(1) change with Q

for several prescribed G. It is found that all the solutions blow up at a certain respective threshold of

Q (say Qc,G(G)): as Q→ Qc,G(G), U(0) and Ri blow up and N(1) approaches zero (i.e. depletion of

the swimmer number density at the wall).

To further explain the existence of a threshold value of Q, we also perform continuation by changing G

for prescribed Ri . Fig. 3.3b shows the continuation of the first two steady solution branches reported in

fig. 3.1a for fixed Ri ∈ [200, 1400]. Now, it becomes apparent that there exists a maximum achievable

Q(≡ Qmax,Ri(Ri)) at each Ri . Plotting Qmax,Ri(Ri) against Ri (inset in fig. 3.3b) shows that Qmax,Ri

reaches its maximum at Qmax ≈ 3.1 and Ri ≈ 1174. The maximum downward flow rate Qmax(> 0)

is typically achieved with a downward pressure gradient (G > 0) (i.e. Qmax = max (Qc,G(G)) in fig.

3.3a). However, any further increase of G counter-intuitively decreases, rather than increases, the

flow rate of the steady solution.

Lastly, we note that fig. 3.3 only shows the first and second solution branches that emerge from

Q = 0 in fig. 3.1a. However, the same qualitative behaviours have been found from all the other

solution branches: for example, the relation between N(1) and Q, the blow-up of U(0) and Ri as

Q→ Qc,G, and the existence of Qmax.

3.6 Discussion

In this study, we have sought the nonlinear, steady and axisymmetric solutions for a suspension of

gyrotactic swimmers in an infinitely long pipe. An infinite number of steady solutions have been

found. Each of them stems from a transcritical bifurcation on the uniform solution. The exact values

of the bifurcation points have also been found by solving the linearised equations for the neutral

stabilities.

Comparing the present study with Bees & Hill (1999), who showed the existence of an uncountably

infinite number of solutions to a similar set of equations in an unbounded domain, we can conclude that

the countably infinite number of transcritical bifurcations originates from the finite horizontal domain

and the flow geometry (i.e. pipe). Firstly, the finite horizontal domain yields discrete eigenvalues from

the equations for the linear stability (3.4), making (κc,n, Ric,n) a discrete set rather than a continuous
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curve. Hence we have a countably infinite number of bifurcation points. Secondly, the cylindrical

geometry of the pipe breaks the translational invariance in the horizontal direction. In an unbounded

domain, this invariance in the uniform suspension is broken by the primary bifurcation (i.e. pitchfork

bifurcation (see Bees & Hill, 1999)). However, in the pipe, the primary bifurcation takes place in a

circumstance where the translational invariance is already broken by the flow geometry, which leads

to the primary bifurcation to be transcritical instead.

The existence of many steady solutions has also hinted at the possible dynamical route from a uniform

suspension to the gyrotactic pattern. Except for the first branch, all the other steady solution branches

found in fig. 3.1a are saddles in the state space. In other words, if a stationary and uniform suspension

at Ri > Ri c,n is perturbed with the nth most linearly unstable mode from (3.6), the system would

first evolve towards the corresponding nonlinear steady solution. Therefore, the flow patterns related

to the unstable solutions in the present study may well be observed at least transiently, before further

development of the flow state or its breakdown in the axial and/or azimuthal directions. Indeed,

early numerical simulations by Ghorai & Hill (1999, 2000) found such a transient dynamics, which

strongly hinted at the dynamical importance of the initial perturbation. Furthermore, the increasing

number of nonlinear steady solutions and linearly unstable mode as Ri increases strongly hinted at

the increasing complexity of the system as Ri increases.

Finally, the emergence of multiple axisymmetric steady solutions with increasing Ri implies that

similar solutions may well exist for the non-axisymmetric case. This implies that the route to the final

flow pattern would be a highly complicated process, involving competition between the axisymmetric

and non-axisymmetric states. Lastly, it should also be pointed out that these axially uniform steady

solutions may also be unstable to axially varying perturbations (see §2.5).
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Chapter 4

A new transport model for swimmers and

biased Active Brownian Particles (ABPs)

4.1 The need for a new transport model for swimmers/biased

ABPs

In chapter 2, we have explored in detail the consequences of model F and G and how the plume

structure depends on the transport model. In particular, we have demonstrated that the singularity in

the parameter space is highly sensitive to the effective diffusivity of swimmers in high shear. To this

end, model G seems to provide a better accuracy (see §2.6.1). Despite the merit, model G also has an

important limitation – it is only applicable to vorticity-dominant flows but not straining-dominant

flows (see §1.5.2 and Bearon et al., 2011). Indeed, in a recent review (Bees, 2020), this limitation of

model G has been pointed out as a significant challenge for the modelling of bioconvection. Moreover,

model G was derived for a homogenous shear flow. When applied to an inhomogeneous shear flow, the

model would implicitly assume the flow is quasi-homogeneous locally. Therefore, it cannot describe

the extra advection (or drift) caused by the inhomogeneity in the shear flow and cannot capture

related phenomena such as the shear trapping of non-spherical swimmers with no taxis (Bearon &

Hazel, 2015; Vennamneni et al., 2020).

The uncertainty around the transport properties of swimmers, especially the effective diffusivity of

swimmers, is an artefact of the coarse-grained transport model for swimmers. One way to remove

such artefact is to solve the Smoluchowski equation directly. Still, as mentioned in §1.5, there remains

a significant challenge in computational cost to solve the equation directly. One can reduce the
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computational cost by using some symmetries to reduce the number of dimensions (e.g. Chen &

Jiang, 1999; Saintillan & Shelley, 2008a; Saintillan, 2010; Jiang & Chen, 2020), but the symmetries

are problem-specific. Another way to overcome the challenge is to come up with a better model.

As mentioned in §1.6, one of the key objectives of this thesis is to develop a new continuum model for

the transport of swimmers. This chapter is going to propose a new transport model to overcome the

inherent limitations of model G and the inaccuracy of model F. We will show that the Smoluchowski

equation admits an exact transformation into a transport equation which shares many similarities to

the platform used in model F and G. Combining this transformation with the method of multiple

scales, this work proposes an approximated but novel transport equation for the swimmers, in which

the orientation dynamics is determined only with the local flow information in the physical space

like the previous models. We will show that this new model removes the limitations of model G and

offers a more accurate prediction of the swimmer distribution in an inhomogeneous shear flow.

Lastly, one shall note a slight change of terminology in this chapter. In the previous chapters,

microswimmers are mostly referred to as ‘swimmers’, which signifies their biological origin and their

hydrodynamic contributions to the flow. However, in the following chapter, we will further simplify

the problem by prescribing a flow field rather than solving the swimmer transport with the flow

simultaneously. Still, the end goal is to solve the suspension dynamics with the flow simultaneously in

future work. In other words, the swimmers’ hydrodynamic contributions are neglected in this chapter

for simplicity. To this end, the appropriate name for this class of particles is biased active Brownian

particles (ABPs), or ‘particles’ for short. These particles can be artificial and self-propel in different

ways, but they are assumed to have a negligible effect on the flow field. ABPs are governed by the

same set of trajectories as in §1.4.1 and §1.4.3, but in addition to the rotational noise (§1.4.4), ABPs

may also be subjected to translational noise. Therefore, D∗
T was also introduced in (1.11) alongside

d∗r. Also, as an extension of the conventional non-biased ABPs, in this section, we consider ABPs

that can have a biased trajectory (e.g. gyrotaxis).

This chapter is organised as follows. In §4.2, the readers are reminded about the Smoluchowski

equation that governs the configuration of the active Brownian particle suspension. Then, the

non-dimensionalisation scheme of this chapter is introduced. After that, we will briefly summarise

the discussion on model G thus far in §4.3. In §4.4, the exact transformation of the Smoluchowski

equation into a transport equation is introduced. While the transformed equation cannot be directly

used as a model, it sets up the mathematical platform for the local approximation. In §4.5, the

local approximation is presented for the development of a novel transport equation model. Then,
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the mathematical structure of this model is compared with that of model G. In §4.6, we will present

examples of gyrotactic particle suspensions in one-dimensional vertical and horizontal shear flows and

demonstrate the superiority of the newly-introduced model over model G. We will also compare these

results with those obtained through the exact transformation of the Smoluchowski equation. In §4.8,

we will further dissect the physical interpretation of the transformation compared to model G and

discuss the physical origin of the dispersion of particles. Lastly, in §4.9, we will briefly outline the

potential application of the local approximation and the remaining challenges in the proposed model.

4.2 Problem Formulation

We consider a dilute suspension of biased or non-biased active Brownian particles (ABPs), where there

is randomness in both the physical x∗- and orientational p- spaces. The equations that govern the

statistical configuration of the suspension were already introduced in §1.4.5, in which the probability

density function Ψ(x∗,p, t∗) is governed by the Smoluchowski equation (1.11). The deterministic part

of the x∗-space trajectory is governed by (1.10). As mentioned, we will neglect the sedimentation u∗
s

for the time being. The self-propelling velocity is assumed to have a constant magnitude, but the

direction p is changing according to (1.7), which accounts for the viscous rotation from the local

flow and the gravitational torque. In this chapter, we will prescribe a flow field instead of solving it

simultaneously.

4.2.1 Non-dimensionalisation

Equation (1.11) is subsequently non-dimensionalised with a suitable length and time scales. In this

chapter, the characteristic length h∗ is chosen from the given flow field, and the inverse of rotational

diffusivity 1/d∗r is selected as the time scale. Note that we have chosen the p-space time scale

rather than the swimming speed of the previous chapters. This is for the convenience of the later

multi-scale approximation. However, we shall also use the characteristic speed U∗ of the flow for the

non-dimensionalisation of the flow field. Hence,

x =
x∗

h∗
, t = t∗d∗r, and u =

u∗

U∗ .
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The dimensionless parameters for the motility V ∗
s , the flow speed U∗, the translational diffusivity D∗

T

and the gyrotactic timescale B∗ are

Pes =
V ∗
s

h∗d∗r
, Pef =

U∗

h∗d∗r
, DT =

D∗
T

(h∗)2d∗r
, and β =

1

2d∗rB
∗

respectively, in which Pef and Pes are the ambient flow and motility Péclet numbers. The dimen-

sionless form of (1.11) is then given by

∂Ψ

∂t
+∇x · [(Pefu+ Pesp)Ψ] + Lp(x, t)Ψ = DT∇2

xΨ, (4.1)

where we also introduce the p-space linear operator

Lp(x, t)Ψ = ∇p ·
[︃(︃
β
[︂
k̂− (k̂ · p)p

]︂
+

Pef
2

Ω ∧ p+ Pefα0p · E · (I − pp)

)︃
Ψ

]︃
−∇2

pΨ. (4.2)

By the divergence theorem, the integration over p-space of the operator Lp(x, t) acting on any

arbitrary continuously differentiable function a(p) satisfies

∫︂
Sp

Lp(x, t) a(p) d2p = 0. (4.3)

Physically, it is related to the conservation of probability distribution in p-space. We also note that

(4.2) may be modified to account for other taxes by including the relevant modelling terms, e.g. the

run-and-tumble and chemotaxis process (see (1.12) and Subramanian & Koch 2009) or phototaxis

(Williams & Bees, 2011). Therefore, we expect that many deterministic trajectories for the orientation

dynamics would also be given as a linear operator Lp(x, t) that satisfies (4.3). In the following sections,

we will use the linear operator Lp(x, t) to represent the orientation dynamics in p-space to maintain

this level of abstraction in the orientation dynamics.

4.3 Limitation of the GTD model

We have already introduced model G (§1.5.2) and discussed some of its limitations (§1.5.3 and §2.6.2).

Here, we shall briefly summarise the discussion on model G so far.

Model G is based on two assumptions: 1) the timescale in p-space is much faster than that of x-space

(a quasi-steady assumption in p-space); 2) the size of the particle is much smaller than the length

scale of the flow, allowing the approximation of a locally homogeneous velocity gradient tensor ∇u (a
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quasi-homogeneous shear assumption in x-space). Under these assumptions, model G obtains the

effective drift and diffusivity using the impulse response of (4.1). The effective drift and diffusivity

are calculated from the impulse response using the Oldroyd time derivative of the first and second

statistical moments in the limit of t → ∞ (for further details, see Frankel & Brenner, 1991, 1993).

The resulting advection-diffusion (or drift-diffusion) equation for the particle distribution n(x, t) is

given by (1.20), or in the non-dimensionalisation scheme of this chapter,

∂tn+∇x · [(Pes⟨p⟩g + Pefu)n] = DT∇2
xn+ Pe2s∇x · DG∇xn. (4.4)

The effective advection is given by the sum of Pes⟨p⟩g and Pefu and the effective diffusivity provided

by Pe2sDG, which is computed from eqs. (2.2i) and (2.2j). Here, note that the advective drift caused

by the particles’ motility is obtained from the ensemble-averaged velocity of individual particles,

given that each of their orientational distribution is g(x, t;p). The term Pes⟨p⟩g can therefore be

interpreted as the average motility of individual particles. Furthermore, symmetry is enforced in the

tensor DG as its definition is given by the second-order statistical moment’s derivative in time.

Recent studies (Croze et al., 2013, 2017) and our work in chapter 2 have shown that it offers a more

accurate and physically relevant description for swimmer transport in both stationary and sheared

suspensions than model F. However, as mentioned earlier, model G has some important limitations.

Firstly, as discussed in §1.5.3, model G was developed for a pure shear flow. It would encounter

singularities if the same formulae were applied to a straining-dominant flow (Bearon et al., 2011).

Secondly, as briefly discussed in §2.6.2, the homogeneous assumption in model G prevents it from

accurately capturing the shear trapping phenomena observed in Rusconi et al. (2014), even though

the direct solution of the Smoluchowski equation can capture the phenomena (Bearon & Hazel, 2015;

Vennamneni et al., 2020). This work aims to overcome these limitations by deriving a mathematically

similar drift and dispersion coefficient but from a different perspective of the Smoluchowski equation.

4.4 Exact transformation into a transport equation

The purpose of this chapter is to obtain a transport equation that resembles (4.4). The key approach

taken by Frankel & Brenner (1991, 1993) lies in the approximation of the Oldroyd time derivative of the

first- and second-order statistical moments using Ψ in (4.1) for the ‘phenomenological’ effective drift

Pes⟨p⟩ and diffusivity DG. Instead, in this chapter, we shall start by seeking an exact mathematical

transformation of (4.1) into a transport equation that resembles (4.4). In particular, this transformation
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will be utilised in §4.5 as the foundation for a new transport-equation-based model that can overcome

the limitations of model G.

We define n(x, t) and f(x,p, t) as Ψ(x,p, t) = n(x, t)f(x,p, t), so that f(x,p, t) at each x becomes

the probability density function in p space satisfying
∫︁
Sp
f(p)d2p = 1. Now, from (4.3), integration

of (4.1) over p-space gives the following equation in the (x, t)-space,

∂tn(x, t) +∇x · [(Pes⟨p⟩f (x, t) + Pefu(x, t))n(x, t)] = DT∇2
xn(x, t), (4.5)

where

⟨p⟩f (x, t) ≡
∫︂
Sp

pf(x,p, t)d2p. (4.6)

Here, we note that (4.5) appears as a standard advection-diffusion equation. However, in the absence

of the full information of Ψ(x,p, t), it is not solvable because ⟨p⟩f (x, t) is still unknown. Furthermore,

while some may interpret ⟨p⟩f (x, t) as the normalised polar order (Saintillan & Shelley, 2015), it is not

immediately apparent what is the precise physical implication of Pes⟨p⟩f (x, t) compared to Pes⟨p⟩g
in (4.4) (c.f. Frankel & Brenner, 1991, 1993; Hill & Bees, 2002; Manela & Frankel, 2003). Therefore,

it would be useful if there is an alternative form of (4.5), in which ⟨p⟩f(x, t) can be replaced with

⟨p⟩g(x, t) and the other related terms. More discussion on the comparison between ⟨p⟩f and ⟨p⟩g
will follow in §4.8.1.

Multiplying (4.5) by f(x,p, t) and subtracting it from (4.1) gives

n ∂tf + (Pefu · ∇xf −DT∇2
xf)n− 2DT (∇xf) · (∇xn)

+ Pes(pf − ⟨p⟩ff) · ∇xn+ Pesn(p · ∇xf − f∇x · ⟨p⟩f )

+ nLp(x, t)f = 0, (4.7)

each term of which may be interpreted physically as described in table 4.1. Next, we introduce the

following set of linear equations which use each term in (4.9) as the driving term:

Lp(x, t)fu(x,p, t) = Pefu · ∇xf, (4.8a)

Lp(x, t)fDT
(x,p, t) = −DT∇2

xf, (4.8b)

Lp(x, t)bDT
(x,p, t) = −2DT∇xf, (4.8c)

Lp(x, t)bc(x,p, t) = Pes(p− ⟨p⟩f )f, (4.8d)

Lp(x, t)fc(x,p, t) = Pes(p · ∇xf − f∇x · ⟨p⟩f ), (4.8e)
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Lp(x, t)f∂t(x,p, t) = ∂tf. (4.8f)

As a reminder, the p-space operator Lp defined in (4.2) is the linear operator that defines the

orientational flux due to taxes and viscous rotation by the locally linear flow field ∇u. Here, the

solutions f⋆ and b⋆, with (·)⋆ indicating any subscript above, are subjected to the integral condition∫︁
Sp
f⋆d

2p = 0 or
∫︁
Sp
b⋆d

2p = 0, so as not to contain the homogeneous solution. This enables us

to define the solutions to (4.8) uniquely. Also, (4.8) is only integratable if the integration of the

right-hand side of each equation in (4.8) over p-space is zero due to the solvability condition in (4.3).

The subtraction of (4.5) times f from (4.1) to get (4.7) ensures the solvability conditions are met in

(4.8). Therefore, as long as the linear operator in p-space Lp is continuous and fulfills the conditions

in (4.3), the presented theorem will work.

Terms Physical meaning
n ∂tf Unsteadiness of f in p-space

Pefnu · ∇xf Passive advection of f in x by the ambient flow u

−DT (∇2
xf)n Translational diffusion of f in x

−2DT (∇xf) · (∇xn) Cross-translation diffusion in x between n and f

Pes(pf − ⟨p⟩ff) · ∇xn
Change in f induced by motility and
gradient of particle distribution in x

Pesn(p · ∇xf − f∇x · ⟨p⟩f )
Change in f induced by
motility and inhomogeneity of f in x

Table 4.1: Physical meaning of each term in equation (4.7)

Lastly, we note that the introduced variables are still functions of both x and t because Lp can have

coefficients varying in x while f depends on both x and t. With the introduced variables, (4.7) can

be rewritten as

[Lp(bDT
+ bc)] · ∇xn+ [Lp(fu + fDT

+ fc + f∂t + f)]n = 0. (4.9)

This leads to

[bDT
+ bc] · ∇xn+ [fu + fDT

+ fc + f∂t + f ]n = n g, (4.10)

where the homogeneous solution g(x, t;p), defined by

Lp(x, t)g(x, t;p) = 0 subject to (4.11a)∫︂
Sp

g(x, t;p)d2p = 1, (4.11b)

is added after multiplying n(x, t), which can be obtained by integrating (4.10) over p-space. Here,

(4.11a) share the same formula for g as the orientional space Fokker-Planck equation (1.21) used in

model F and model G. Despite the same formula and value, the g in model F and in this transformation
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Terms Physical meaning
⟨p⟩g Averaged motility of individual particle from the homogeneous solution of Lp

V∂t
Drift due to interaction between particles’ orientational dynamics
and the unsteadiness of f in p-space

Vu
Drift due to interaction between particles’ orientational dynamics
and passive advection of f in x by the flow field u

Vc
Drift due to interaction between particles’ motility
and the inhomogeneity of particles’ orientational dynamics in x

VDT

Drift due to interaction between particles’ orientational dynamics
and translational diffusion of f in x

DDT

Dispersion from interaction between particles’ orientational dynamics
and the dispersion of n and f due to translational diffusion of f and n

Dc
Dispersion due to interaction between
particles’ motility and orientational dynamics

Table 4.2: Physical meaning of each derived term in equation (4.15)

has a slightly different physical interpretation. In the context of model F, it represents the quasi-

steady orientational p.d.f. at each local position in x. Here, g(x, t;p) should be interpretted as the

homogeneous solution of the operator Lp, which is an artefact of the integration step (4.10). The

exactness of g in this step contrasts the model F’s interpretation of g as a quasi-steady approximation.

Alternatively, g can also be interpretted the same way as model G, in which g is the Langrangian

orientational p.d.f. of each particle in a homogeneous flow with the same velocity gradient as the

local flow.

Note that (4.10) is merely a different form of (4.7). Still, it is a significant transformation for the

next step. Multiplying p by (4.10) and integrating in p-space then yields

(DDT
+ Dc) · ∇xn+ [Vu +VDT

+Vc +V∂t + ⟨p⟩f ]n = n⟨p⟩g, (4.12)

where

V⋆(x, t) =

∫︂
Sp

pf⋆(x,p, t)d
2p, (4.13)

D⋆(x, t) =

∫︂
Sp

pb⋆(x,p, t)d
2p (4.14)

with (·)⋆ indicating any of the subscripts used in (4.8). Now, it is important to note that this step is

the equivalent of taking the first-order orientational moment of (4.10). Some may interpret it as just

another way of taking the orientational moment of eq. (4.1) to get the evolution equation of the polar

order ⟨p⟩f (c.f. Saintillan & Shelley, 2015, eq. 9.9). However, the key contribution of this work is

that we have first taken the step from (4.9) to (4.10) before taking the orientational moment. As we
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shall show in the next step, the resulting equation does not involve the higher moments, such as the

nematic order. In this way, we have avoided the closure problem inherent in the evolution equations

of the polar and nematic orders.

Lastly, replacing n⟨p⟩f in (4.5) with that of (4.12) leads to the following transport equation:

∂tn+∇x · [(Pefu+ Pes(⟨p⟩g −Vu −VDT
−Vc −V∂t))n]

= DT∇2
xn+ Pes∇x · (DDT

+ Dc) · ∇xn. (4.15)

The important benefit of (4.15) is that it has a mathematical structure comparable to (4.4) of model

G, as they share Pes⟨p⟩g, which represents the average motility of individual particles. Furthermore,

this is an exact transport equation directly obtained from (4.1) without making any assumptions.

However, it should be mentioned that (4.15) is not the only transport equation one can obtain from

(4.1) – indeed, we have already retrieved a different form of transport equation from (4.1) that is

(4.5). This is essentially the consequence of taking the orientational moment from (4.10) to (4.12),

which reduces the dimensionality of the derived equation. Similar to how the evolution equations of

the polar and nematic orders were derived from the tensor harmonic expansion of (4.1) (c.f. Saintillan

& Shelley, 2015, eqs 9.6-9.10), one can take any higher-order tensor harmonic expansion of (4.10)

to get an equivalent of (4.12) for a higher-order moment. (The infinite expansion form a complete

basis.) Alternatively, instead of the higher-order moments, one can also use some truncated basis of

the p-space (e.g. spherical harmonics) in place of p to form another set of equations. These equations

can then be summed with (4.5) to arrive at some transport equations too. However, the particular

choice p as the multiplication factor for this step is probably the most physically relevant because

the resulting expression in (4.12) decomposes ⟨p⟩f in (4.5) into the averaged motility of individual

particle Pes⟨p⟩g and the other terms from (4.1). Hence, each term in (4.15) would also admit a

physical implication, as listed in table 4.2. More importantly, later in §4.5.2, we will further show

how ⟨p⟩g and Dc in (4.15) can be related to the effective drift and diffusivity of model G. Lastly, it is

also important to note that DDT
and Dc in (4.15) do not necessarily describe a diffusion process, as

they are not guaranteed to be either symmetric or positive definite. Therefore, one should be careful

in understanding their actual roles, and, in this sense, (4.15) cannot precisely be referred to as an

advection-diffusion equation. More discussions on this issue will follow in §4.5.2 and §4.8.2.
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4.5 A new transport equation model using local flow infor-

mation

While the transport equation in (4.15) is obtained without applying any approximation to (4.1),

the formulae for V⋆ and D⋆ given in (4.8) are based on f = Ψ/n, requiring the full knowledge of

Ψ (i.e. the solution to (4.1)). Therefore, the transformation discussed in §4.4 does not alleviate the

difficulty related to the computational cost of the full Smouchowski equation (4.1). To resolve this

issue, in this section, we will combine the transformation technique leading to (4.12) with a multiple

time-scale asymptotic analysis. This results in an approximated form of (4.15) utilising only the local

flow information (i.e. a local approximation).

4.5.1 Local approximation of the transformed transport equation

First, we assume Pes(≡ ϵ) ≪ 1, Pef ≲ O(ϵ) and DT ≲ O(ϵ), and define P̃ef = Pef/ϵ and D̃T = DT/ϵ.

Physically, these assumptions imply that the timescale in the orientational p-space is much faster

than that in x-space (i.e. a quasi-steady assumption). Hence, the orientational component of Ψ

(i.e. f(x,p, t)) will first relax to a quasi-equilibrium in p-space while the x-dependency of Ψ is still

evolving slowly. This then enables us to introduce a slowly-varying time scale T = ϵt for the dynamics

of Ψ in x-space.

The assumptions of this local approximation are most valid in phenomena such as gyrotactic focusing

and bioconvection, where h∗/V ∗
c , the time it takes for swimmers to swim across the container width or

characteristic length, is longer than the orientation timescale 1/d∗r, and the flow speed is comparable

to the swimming speed. For example, the parameters used to model the gyrotactic plume formation

in chapter 2 give h∗/V ∗
c = 30.15 and 1/d∗r = 14.93, while the flow rate was chosen such that the

flow speed is comparable to the swimming speed. The approximation would be more accurate if the

characteristic length is wider (e.g. bioconvection in chapter 3).

The standard multiple-scale asymptotic analysis is subsequently applied by expanding Ψ = Ψ(0) +

ϵΨ(1) + ϵ2Ψ(2) +O(ϵ3). We substitute the expansion into the Smoluchowski equation (4.1) and yield

the following set of equations at successive orders of ϵ:

O(1) : ∂tΨ
(0) + LpΨ(0) = 0; (4.16a)

O(ϵ) : ∂TΨ
(0) + p · ∇xΨ

(0) + P̃efu · ∇xΨ
(0) + ∂tΨ

(1) + LpΨ(1) = D̃T∇2
xΨ

(0); (4.16b)

106



O(ϵ2) : ∂TΨ
(1) + p · ∇xΨ

(1) + P̃efu · ∇xΨ
(1) + ∂tΨ

(2) + LpΨ(2) = D̃T∇2
xΨ

(1); etc.. (4.16c)

Integrating over p-space, (4.16) becomes:

O(1) : ∂tn
(0) = 0; (4.17a)

O(ϵ) : ∂Tn
(0) + ∂tn

(1) +∇x ·
[︂
(P̃efu+ ⟨p⟩(0))n(0)

]︂
= D̃T∇2

xn
(0); (4.17b)

O(ϵ2) : ∂Tn
(1) + ∂tn

(2) +∇x ·
[︂
(P̃efu+ ⟨p⟩(1))n(1)

]︂
= D̃T∇2

xn
(1); etc.. (4.17c)

At the transient time t ≳ O(1) and each order of ϵ, we assume the time dependency of Ψ(i) in p-space

has reached quasi-equilibrium, while the time dependency of Ψ(i) in x-space is slow. In other words,

we assume that, at each order, f (i) is independent of t as it has reached quasi-equilibrium and n(i)

independent of t because it only varies at the slow time scale T . Therefore, equation (4.16a) now

becomes

Lpf (0) = 0, (4.18)

which implies that the leading order orientational distribution f (0) takes the homogeneous solution of

Lp(x, t) as the solution, i.e. f (0) = g(x, T ;p).

Following a similar transformation to that in §4.4, we multiply (4.17b) by f (0) and subtract it from

(4.16b). The subtraction is particularly important for biased ABPs compared to their non-biased

counterpart, as it guarantees the solvability condition in (4.3). This operation is equivalent to the

steps towards (4.7) in §4.4. The operation yields

n(0)∂Tf
(0)

+ (P̃efu · ∇xf
(0) − D̃T∇2

xf
(0))n(0) − 2DT (∇xf

(0)) · (∇xn
(0))

+ (p− ⟨p⟩(0))f (0) · ∇xn
(0) + n(0)(p · ∇xf

(0) − f (0)∇x · ⟨p⟩(0))

+ n(1)Lpf (1) = 0. (4.19)

Now, (4.19) can be rewritten as

[Lp(bg,DT
+ bg,c)] · ∇xn

(0) + n(0)Lp [fg,u + fg,DT
+ fg,c + fg,∂T ] + n(1)Lpf (1) = 0, (4.20)
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where fg,⋆ and bg,⋆ are defined by

Lp(x, T )fg,u(x, T ;p) = P̃efu · ∇xf
(0), (4.21a)

Lp(x, T )fg,DT
(x, T ;p) = −D̃T∇2

xf
(0), (4.21b)

Lp(x, T )bg,DT
(x, T ;p) = −2D̃T∇xf

(0), (4.21c)

Lp(x, T )bg,c(x, T ;p) = (p− ⟨p⟩g)f (0), (4.21d)

Lp(x, T )fg,c(x, T ;p) = (p · ∇xf
(0) − f (0)∇x · ⟨p⟩g). (4.21e)

Lp(x, T )fg,∂T (x, T ;p) = ∂Tf
(0), (4.21f)

where all fg,⋆ and bg,⋆ are subjected to the integral condition
∫︁
Sp
d2p = 0.

Equations (4.21) and (4.20) and are the equivalent of (4.8) and (4.9) respectively. We can then follow

the same derivation as §4.4, which would lead to

∂Tn
(1) +∇x ·

[︂
(⟨p⟩g + P̃efu)n

(1)
]︂

= D̃T∇2
xn

(1) +∇x ·
[︁
(Dg,c + Dg,DT

)∇xn
(0) + (Vg,u +Vg,DT

+Vg,c +Vg,∂T )n
(0)
]︁
, (4.22)

where Vg,⋆ and Dg,⋆ are defined according to (4.13-4.14).

The subscript g signifies that they are approximated using f (0) = g in (4.21). However, in (4.21), we

have used f (0) instead of g on the right-hand side to highlight their different physical interpretation.

Although they share the same value, in the context of (4.18) and this asymptotic, f (0) is the quasi-

steady orientational p.d.f. at each location x, which has the same physical interpretation as the g of

(1.21) in model F. In (4.21), the p.d.f. f (0), as an approximation of f , is used to formulate Vg,⋆ and

Dg,⋆. However, as mentioned in the previous section, g and ⟨p⟩g arise from the homogeneous solution

of Lp. The term arises from an exact integration of Lp, not as an approximation of f . With the

swimming speed Pes, the term Pes⟨p⟩g can also be interpreted as the average motility of individual

particles. Model G obtained the same Pes⟨p⟩g in the Langrangian framework and gave Pes⟨p⟩g a

similar interpretation as the current model. More discussion on this matter will follow in §4.8.1. To

conclude, Vg,⋆ and Dg,⋆ arise from the quasi-steady approximation f (0), whereas ⟨p⟩g arises from the

exact homogeneous solution of Lp.

Now, equation (4.22) is at O(ϵ2). If we are to recover how n evolve over the long time T , we can

recompose ∂Tn = ∂Tn
(0) + ϵ∂Tn

(1) + ..., by summing up (4.17a-4.17c) with the corresponding ϵ scaling
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while substituting (4.17c) with (4.22). Hence,

Pes∂Tn+∇x · [(Pes⟨p⟩g + Pefu)n]

≈ DT∇2
xn+ Pe2s∇x ·

[︁
(Dg,c + Dg,DT

)∇xn
(0) + (Vg,u +Vg,DT

+Vg,c +Vg,∂T )n
(0)
]︁
. (4.23)

Note that we have only included n(0) and n(1) when recomposing n in this example as we are closing

the problem at O(ϵ2). Therefore, (4.23) is accurate up to O(ϵ2). However, if we close the problem at

a higher order, we can repeat a similar process from (4.19) to (4.22) at a higher order.

Here, we would argue that at the transient time t → ∞, ∂t ≈ Pes∂T and n ≈ n(0). Because (4.23)

is accurate up to O(ϵ2) while replacing Pe2sn
(0) with Pe2sn would only introduce an error at O(ϵ3),

the substitution of n(0) by n shall not impact the accuracy of (4.23) tremendously. Under these

approximations, we derive the approximated equation

∂tn +∇x ·
[︂
Pes

(︂
⟨p⟩g + P̃efu

)︂
n− Pe2s (Vg,u +Vg,DT

+Vg,c +Vg,∂T )n
]︂

≈ PesD̃T∇2
xn+ Pe2s∇x · [(Dg,c + Dg,DT

)∇xn] (4.24)

for the transport of n(x, t), where the drifts and dispersion coefficients are defined by (4.13-4.14) and

(4.21).

The approximated transport equation (4.24) is identical to (4.15), except that their coefficients in

(4.21) are now obtained by replacing f in (4.8) with g in (4.11a). This is a crucial advantage of (4.24)

over (4.15) because g in (4.11a) can be solved pointwise at each x if the local flow information (i.e. Ω

and E) is known. Therefore, (4.24) no longer requires the full solution to (4.1).

Here, the derivation above is similar to that of Bearon & Hazel (2015) and Vennamneni et al. (2020).

However, in deriving (4.24), we have assumed T = ϵt. This time-scale separation is different from

T = ϵ2t of Bearon & Hazel (2015) and Vennamneni et al. (2020). We note that the Vg,⋆ and Dg,⋆

terms in (4.24) scale with Pe2s, while the rest of the equation scales with Pes. Therefore, the effect of

these terms appears only at O(ϵ2), while the rest of the terms are still non-zero at O(ϵ). This contrasts

with the non-biased ABPs suspensions considered in Bearon & Hazel (2015) and Vennamneni et al.

(2020). In their cases, the translational diffusion was negligible (DT = 0), the averaged orientation

of individual particles was not biased (⟨p⟩g = 0), and the flow was parallel such that u · ∇x = 0.

Hence, if T = ϵt was assumed, the equation at O(ϵ) would simply be degenerate. However, as an
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extension from the non-biased ABPs, the equation at O(ϵ) becomes non-degenerate when biased

motility (i.e. taxes) is included. In general, there is no reason that the leading-order equation has to

have such a trivial solution in the presence of taxes, translational diffusion, or a non-parallel flow

field. Therefore, these leading order effects require us to retain the scaling T = ϵt.

4.5.2 Comparison with model G

Model G was derived semi-heuristically by evaluating an effective drift and diffusion coefficient using

the Oldroyd time derivative of first and second statistical moments of particle displacement (Frankel

& Brenner, 1991, 1993). In contrast, the local approximation model in (4.24) was directly derived

from the Smoluchowski equation (4.1). Despite the fundamentally different derivation procedures,

(4.4) of model G and (4.24) of the local approximation model in this study share a lot in common.

Apart from the same flow advection (Pefu) and diffusion (DT ) terms, they share the same individual

particles’ motility Pes⟨p⟩g and have a similar form of effective diffusivity DG and dispersion Dg,c. In

particular, the two models become identical for stationary non-diffusive (Pef = DT = 0) suspensions,

as will be shown below. These similarities suggest that the transformed equation (4.15) and its local

approximation (4.24) are not only mathematically useful but also physically meaningful. In this

subsection, we will make a detailed comparison between model G and the local approximation model

from a theoretical perspective. Further comparisons will follow in §4.6 with some flowing examples.

1. Assumptions: Both model G and the local approximation model assume that the time scale

in p-space is much faster than that of x-space (i.e. quasi-steady assumption). As a result, the

intrinsic orientational dynamics of the particles in p-space is not captured by either model, and

the unsteadiness in these models are driven by the unsteady flow dynamics typically at a much

larger time scale. However, unlike model G, the local approximation model does not assume

local homogeneity in the background velocity gradient. As such, we shall see that this model

has an important advantage over model G (see point (ii) and discussion in §4.7.1).

2. Drift : Compared to the drift term Pes⟨p⟩g in model G, the local approximation model contains

extra drift terms, −Vg,c, −Vg,u, −Vg,DT
and −Vg,∂T . They originate from the transformation

in §4.4. As described in table 4.2, these terms arise from the complicated interactions between

particles’ orientational dynamics and the particles’ motility, the advection by the surrounding

shear flow, the diffusion of particles and the unsteadiness of the prescribed flow field. Since

Pes = ϵ in the local approximation, (4.24) suggests that these terms would be relatively less
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important than the drift term Pes⟨p⟩g. In this case, the drift term used in model G remains a

good approximation. However, if ⟨p⟩g ≲ O(Pes), the drifts caused by these extra terms will

become important. In §4.7.1, we shall demonstrate that such a case does happen in a parallel

shear flow, especially through Vg,c.

3. Diffusion and dispersion: Further to the given translation diffusion term with the diffusivity

PesD̃T (= DT ), the local approximation model in (4.24) exhibits the extra terms with the

coefficients Dg,c and DDT
, which originates from the particles’ motility and translational diffusion

respectively (see table 4.2). The dispersion Dg,c is obtained from (4.21d), which only differs

from (1.25a) of model G by the extra bGTD ·G term, while (1.25b) from GTD differs from (4.14)

by the extra bGTDbGTD · G/g term and the enforcement of symmetry. These differences are a

consequence of extending the original GTD theory in a quiescent flow (Frankel & Brenner, 1989)

to a shear flow (Frankel & Brenner, 1991, 1993). Therefore, the local approximation model

shares the same formulae as the original GTD model in a quiescent flow but differs from model

G when extended to a homogeneous shear flow. Another important difference between model G

and the local approximation model is that model G does not have an equivalent DDT
term. In

GTD, DT was superposed, but the interaction between DT and the particles’ motility was not

considered, unlike the local approximation. Lastly, it should be stressed that there is no reason

to enforce symmetry in Dg,c and DDT
in the local approximation model, as they are directly

derived by approximating the Smoluchowski equation (4.1). As such, the related processes are

not necessarily diffusion. A more detailed discussion on the matter will follow in §4.8.2.

4. Stationary and uniformly sheared suspensions : While we have contrasted the two models, there

are special cases where they show strong similarities. Firstly, if the suspension is quiescent with

negligibly small translational diffusivity DT , model G and the local approximation model are

identical. Indeed, in this case, Vg,⋆ = 0, Dg,DT
= 0 and Dg,c = DG in (4.24), confirming the

physical relevance of the local approximation model proposed in this chapter. Secondly, if the

suspension is immersed into a uniform parallel shear flow with negligible DT , the only difference

at the steady-state is between Dg,c and DG. More specifically, the difference arises from the

extra bGTD · G in (2.2j) and bGTDbGTD · G/g in (2.2i). Therefore, by the zero components

in G, the cross-stream direction component in the tensors Dg,c and DG would be equal in a

uniform parallel shear flow. However, as discussed in §4.3, the bGTD ·G term in (2.2j) can cause

a singularity in DG if IR(eig(G)) > 0. (In a parallel shear flow, the singularity does not arise

because IR(eig(G)) = 0.) If the flow is straining-dominant, like the flow near a stagnation point

(Bearon et al., 2011), then DG might become singular. By contrast, the local approximation
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does not have this term for Dg,c in (4.21d). Therefore, as long as the orientational dynamics

operator Lp is mathematically well-posed, the local approximation model does not suffer from

this issue, offering a significant practical advantage over model G. In the following section, we

shall make a more detailed comparison considering a couple of parallel flow examples.

4.6 Flow examples

Now, we will test the accuracy of the local approximation model proposed in §4.5. To this end, we will

numerically solve the transport equation for the particle distribution from the local approximation

model and model G, and their predictions will then be compared with the full analytical and numerical

solution to the Smoluchowski equation (4.1). In line with the subject of this thesis, we will consider

the suspension of bottom-heavy motile (i.e. gyrotactic) micro-organisms in a one-dimensional parallel

shear flow.

4.6.1 Numerical method

Our numerical method is loosely based on the Spherefun package (Townsend et al., 2016), which

utilises the double Fourier sphere (DFS) method to represent the spherical space p. The method

transforms the longitude and latitude coordinates (λ, θ) ∈ [−π, π]× [0, π] into two independent Fourier

space variables. Here, we follow the definition of Townsend et al. (2016, p. C405) and define λ and θ

such that each component of p = [px, py, pz]
T can be written as

px = cosλ sin θ, py = sinλ sin θ, pz = cos θ. (4.25)

Periodicity in the spherical space was maintained by enforcing the reflectional symmetry in its

transformed coefficients (see Townsend et al., 2016, p. C406). The ∇p · [ṗΨ] operation and the

p-dependent part of the ∇x · [ẋΨ] operation in (4.1) were completely implemented in the spectral

space. Meanwhile, based on the parallel assumption in the physical space x, we have discretised

the cross-stream direction (x or z, depending on the prescribed flow field) by a 6th order central

difference scheme with an equispaced grid. Time integration was conducted semi-implicitly, in which

the ∇2
p term was advanced with a second-order Crank-Nicolson method while the rest are marched

with a third-order Runge-Kutta method. The matrix inversion arising in the Crank-Nicolson method

was solved using the algorithm for the Helmholtz equation in the Spherefun package. For simplicity,
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we have implemented a periodic boundary condition in the cross-stream direction. The method was

validated by comparing the p-space results with the solver developed in §2.3 and with the analytical

solution of the following example.

Since the numerical solutions of the Smoluchowski equation are compared with the steady results

from model G and the local approximation, we have also computed the drifts and effective dispersion

from the local approximation (4.21) by directly inverting the linear Lp operator in spectral space.

Meanwhile, model G’s drifts and effective diffusivities were taken from the numerical methods

developed for the previous chapters. We have also implemented the DFS method for model G. The

drifts and effective diffusivities from the DFS method show negligible differences from that of the

finite difference method described in §2.3, which acts as a validation for the current method. The

resulting drifts and effective diffusivities/dispersions are then used in the transport equation to solve

the steady solution of n (see (4.30-4.32)) by direct inversion in the discretised x-space.

4.7 A suspension of gyrotactic active particles in a prescribed

vertical flow
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Figure 4.1: The prescribed flow profile for the examples in (a) §4.7 and (b) §4.7.4. In (a), the vertical
flow is W (x) = − cos(πx)− 1. In (b), the horizontal flow is U(z) = cos(πz).

In line with the theme of the thesis, we will revisit the formation of the gyrotactic plume in this

example. However, we will not consider how the particles may alter the flow via buoyancy or

hydrodynamic interactions for simplicity. Also, we will only consider the two-dimensional channel flow

case instead of the cylindrical pipe considered in the previous chapters. We will apply a prescribed

parallel shear flow u(x) = [0, 0,W (x)]T to the suspension.
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Figure 4.2: Comparison of the steady-state particle distributions given by the direct integration of
(4.1) (black solid line, nf,s), the local approximation model of §4.5 (blue dot-dashed line, ng,s) and
model G (red dashed line, nGTD) of suspensions of (a) spherical and strongly gyrotactic (β = 2.2,
α0 = 0), (b) non-spherical and strongly gyrotactic (β = 2.2, α0 = 0.31), (c) non-spherical and weakly
gyrotactic (β = 0.21, α0 = 0.31) and (d) non-spherical and non-gyrotactic (β = 0, α0 = 0.31) particles.
The suspensions are subjected to a vertical flow W (x) = − cos(πx)− 1 with Pes = 0.25 and Pef = 1.
Note that the vertical scale for n(x) in (c, d) is much smaller than that in (a, b).

Four types of idealised motile micro-organisms are considered: a strongly gyrotactic and spherical

particle (β = 2.2, α0 = 0), a strongly gyrotactic but non-spherical particle (β = 2.2, α0 = 0.31), a

weakly gyrotactic non-spherical particle (β = 0.21, α0 = 0.31) and non-gyrotactic and non-spherical

particle (β = 0, α0 = 0.31). The parameters β = 2.2 and α0 = 0.31 for the strongly gyrotactic

particle is based on Chlamydomonas augustae (Pedley & Kessler, 1990; Croze et al., 2010), while the

gyrotactic parameter β = 0.21 for the weakly gyrotactic particle is based on Dunaliella salina (Croze

et al., 2017). Since we cannot find any experimental value of α0 for D. salina, we will assume the

weakly gyrotactic particle shares the same value of α0 = 0.31 for comparisons. Lastly, we have also

considered a suspension of non-spherical and non-gyrotactic particles for completeness.

In the following subsections, we will first assume that the gyrotactic particle undergoes no translational

diffusion and that the dilute suspension is well described by (4.1) with DT = 0. Later, we will add

114



translational diffusion (i.e. finite DT ) to the particles to show the extra drift and dispersion that may

arise from it. Also, to avoid the additional complication that may arise due to the boundary conditions

in the physical space (e.g. wall accumulation of Ezhilan et al., 2015), we will assume a periodicity of 2h∗

in the x-direction. Therefore, the shear flow profile W (x) is periodic in x ∈ [−1, 1]. For convenience,

we shall also define the shear profile S(x) = −(Pef/2)∂xW (x) with W (x) = − cos(πx) − 1. The

flow profile is plotted in fig. 4.1a. The initial condition of the suspension is given to be uniform in

(x,p)-space.

4.7.1 Steady solutions
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Figure 4.3: Comparison of the drifts and dispersion terms in (4.30-4.31,4.34) at the steady state.
The plots show the values of ⟨px⟩f (blue, solid), ⟨px⟩g (blue, dashed), Dxx,c (red, solid), PesDxx,g,c

(red, dashed), Vx,c, (green, dashed) and PesVx,g,c (green, dashed) in a suspension of (a) spherical and
strongly gyrotactic (β = 2.2, α0 = 0), (b) non-spherical and strongly gyrotactic (β = 2.2, α0 = 0.31),
(c) non-spherical and weakly gyrotactic (β = 0.21, α0 = 0.31) and (d) non-spherical and non-gyrotactic
(β = 0, α0 = 0.31) particles. The suspensions are subjected to a vertical flow W (x) = − cos(πx)− 1
with Pes = 0.25 and Pef = 1.

In this subsection, we shall first compare the converged steady state with the prediction from the

local approximation model and model G. Fig. 4.2 shows the particle distribution at converged steady
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state nf,s after the numerical integration of the Smoluchowski equation for the suspensions of the

idealised particles. Here, a non-negligibly large Pes(≡ 0.25) is deliberately chosen to highlight the

deviation under the local approximation model from the exact solution to the Smoluchowski equation.

In the case of spherical gyrotactic particle suspension (fig. 4.2a), an analytical solution (4.26) has

been found for the steady state of spherical gyrotactic particle suspension in a vertical flow.

Analytical solution to a suspension of spherical gyrotactic swimmers in a vertical flow

If the gyrotactic active particles in a vertical flow is spherical, the steady solution of (4.1) can be

written analytically as Ψ(x,p,∞) = ns(x)fs(p), where

fs(p) =
β

4π sinh β
exp (β cos θ), (4.26a)

and

ns(x) = A exp (−βPefW (x)

2Pes
), (4.26b)

where A is the normalisation factor determined by the integral condition
∫︁ 1

−1
n(x)dx = 1. Equation

(4.26) may also explain the results of Jiang & Chen (2020), who showed that the particle distribution

is strongly dependent on β and the ratio between the two Péclet numbers (Pef/Pes).

If we substitute the corresponding parameters of this example into (4.12-4.15), we can recover

PesDxx,c∂xns = ns⟨px⟩g, (4.27)

which represents the equilibrium between a dispersion flux and the net-drift that is responsible for

gyrotactic focusing. Note that Vx,c = 0 in this example because fs is independent of x. Here, to

recover Dxx,c, we can substitute fs(p) into (4.8d) to get

bx,c(x;p) = − Pes
βS(x)

(fs(p)− g(p)) , (4.28)

and therefore

Dxx,c = − Pes
βS(x)

(︄∫︂
Sp

fs(p)pxd
2p−

∫︂
Sp

g(p)pxd
2p

)︄
=

Pes
βS(x)

⟨px⟩g. (4.29)

The numerical solution, in this case, agrees very well with the analytical solution (fig. 4.3a).
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Comparison of the steady solutions

In fig. 4.2, we have also plotted the steady-state particle distribution given by the local approximation

model in §4.5 (ng,s) and model G (nGTD) for other types of swimmers/particles. For strongly gyrotactic

particles (figs. 4.2a,b), the two models give predictions very close to the exact results from the direct

integration of the Smoluchowski equation, although model G is found to predict slightly better than

the local approximation model. However, for weakly gyrotactic particles (fig. 4.2c), the small Pes

local approximation outperforms model G. Lastly, if the particles are non-spherical and non-gyrotactic,

the local approximation makes predictions almost identical to the exact result from the Smoluchowski

equation. Inspite of the small variation in n(x) in the non-gyrotactic case (note the small scale of n(x)

in fig. 4.3d), the shear trapping mechanism that causes such aggregation is the dominant effect in

this case, and the aggregation can be observed in experiments (Rusconi et al., 2014). Model G cannot

predict the aggregation of particles due to shear trapping, giving a uniform distribution instead.

Now, we investigate the performance of the local approximation model and model G in terms of the

coefficients of the transport equation given by each model. For a suspension of gyrotactic particles

with DT = 0 in a prescribed parallel shear flow, the exact steady solution for the particle distribution

nf,s = n(x,∞) is given from (4.15) by

∂x[(Pes⟨px⟩g − PesVx,c)nf,s] = Pes∂x[Dxx,c∂xnf,s]. (4.30)

Similarly, the steady solution to the local approximation model in (4.24), denoted by ng,s(x), is given

by

∂x[(Pes⟨px⟩g − Pe2sVx,g,c)ng,s] = Pe2s∂x[Dxx,g,c∂xng,s]. (4.31)

Finally, the steady solution to model G, nGTD(x), is given by

∂x[Pes⟨px⟩gnGTD] = Pe2s∂x[Dxx,GTD∂xnGTD]. (4.32)

Fig. 4.3 shows the x-components of the drift and the phenomenological diffusion/dispersion coefficients.

First, we compare the phenomenological diffusion/dispersion from the local approximation and model

G with those from the exact transformation (see the right-hand side of (4.30-4.32)). We note from the

discussion in §4.5.2 that Dxx,g,c = Dxx,GTD for G considered in this case, as most of its components

are zeros: compare Dxx,g,c from (4.21d) and (4.14) with Dxx,GTD from (2.2j) and (2.2i). Furthermore,

when particles are spherical, Dxx,c can be directly extracted as a function of the local vertical shear
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rate S using the analytic solution of (4.1) given in §4.7.1. In fig. 4.4, Dxx,c, Dxx,g,c and Dxx,GTD

are plotted as a function of the vertical shear rate S. It is found that PesDxx,g,c (and PesDxx,GTD)

approximates Dxx,c quite well for all the range of S considered. In general, Dxx,c remains a good

approximation for Dxx,g,c for all the four cases considered at all the horizontal location x (fig. 4.3).

The good approximation of Dxx,c by PesDxx,GTD also explains why model G has consistently been

found to outperform model F (Croze et al., 2013, 2017).
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Figure 4.4: Comparison of the xx component of Dc/Pes (black line), Dg,c (blue dot-dash line) and
DG (red dashed line) as a function of the local vertical shear S(x) for spherical gyrotactic particles
(β = 2.2,α0 = 0), in which Dc/Pes is computed from fs(p) of §4.7.1. Note that Dg,c overlaps with DG

in the figure because they share the same formulae.

As for the left-hand side of (4.30-4.32), all methods share the same ⟨px⟩g term. However, the local

approximation gives Vx,g,c as an approximation of Vx,c, while model G does not have an equivalent

term. Given that the local approximation model shares the same right-hand side as model G for the

x component, the inclusion of Vx,g,c becomes the differentiating factor for the performance of the two

models in these examples. As shown in fig. 4.3, Vx,g,c follows Vx,c closely in the weakly gyrotactic cases

(figs. 4.3c,d) but poorly in the strongly gyrotactic cases (figs. 4.3a,b). Hence, the local approximation

model performs better than model G in fig. 4.2c but slightly worse in figs. 4.2a,b. However, in the

strongly gyrotactic cases, the left-hand side of (4.30) and (4.31) are dominated by ⟨px⟩g, so the poor

estimation of Vx,c does not strongly affect the overall performance of the local approximation model

(figs. 4.2c,d).

Given the observation in the weakly gyrotactic cases (figs. 4.3c,d), the drift Vg,c seems to be an

important term in (4.24). Here, we further discuss the importance of this term from a physical

perspective. The term Vg,c arises from the inhomogeneity of the local flow field (i.e. shear S(x) in this

example). Given the GTD theory assumes a locally homogeneous shear flow (i.e. a quasi-homogeneous

assumption), it cannot capture the effect of inhomogeneity in the shear S(x) (see §4.5.2, point (i)), as
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is evident from the lack of an equivalent term for Vg,c in (4.4). The form of (4.21e) for Vg,c suggests

that there are two physical mechanisms at play that contribute to Vg,c. One is the net flux caused by

different levels of gyrotactic drift at different levels of shear at the adjacent location. The flux mainly

manifests in the −g∇x · ⟨p⟩g term in (4.21e), which diminishes in the absence of gyrotaxis. The other

is the shear trapping mechanism of Bearon & Hazel (2015) and Vennamneni et al. (2020), which arises

from the ‘eccentric shape’ of the particles. In the presence of inhomogeneous shear, the non-spherical

shape leads to some inhomogeneity of g in the x-space (for the detailed mechanism, see Vennamneni

et al., 2020). Therefore, having a non-uniform shear in x-space can lead to non-zero ∇xg, even if the

particle does not exhibit biased motility (i.e. ⟨p⟩g = 0). This behaviour would primarily manifest in

the p · ∇xg term in (4.21e).

The importance of the drift term with Vg,c can be further understood by examining the scaling of

the four cases in fig. 4.2 and fig. 4.3. In the first case where the particles are spherical and strongly

gyrotactic (α0 = 0, β ∼ O(1)), the form of (4.24) implies Pe2sVx,g,c ∼ O(Pe2s), an order-of-magnitude

smaller than Pes⟨px⟩g: i.e. ⟨p⟩g ≫ PesVx,g,c. This behaviour remains the same in the second case,

where the particles are non-spherical and strongly gyrotactic (α0 ≠ 0, β ∼ O(1)). However, in the third

case where the particles are spheroidal and weakly gyrotactic (α0 ∼ β ∼ O(Pes)), ⟨px⟩g ∼ PesVx,g,c

due to ⟨px⟩g ∼ O(Pes) from β ∼ O(Pes). Hence, if the particles are weakly gyrotactic, Vx,g,c is

of significance, and the local approximation model performs better than model G. Lastly, for the

spheroidal and non-gyrotactic particles (α0 ̸= 0, β = 0), Vx,g,c becomes dominant while ⟨px⟩g = 0. In

this case, Vx,g,c is purely from the shear trapping mechanism proposed by Bearon & Hazel (2015) and

Vennamneni et al. (2020). Model G is no longer accurate due to the lack of a term equivalent to Vx,g,c

in (4.32): indeed, nGTD from model G in fig. 4.2d gives a uniform distribution even though the exact

solution nf,s shows a non-trivial wavy distribution. By the inclusion of the drift term Vx,g,c, ng,s from

the local approximation model recovers the effect of inhomogeneity and gives an excellent prediction

for nf,s obtained from the full Smoluchowski equation (fig. 4.2d).

4.7.2 Transient dynamics

In this subsection, we investigate the transient dynamics from the perspective of the exact transformed

equation. Rewriting (4.5) for this example, we have

∂tn+ Pes∂x [⟨px⟩fn] = 0, (4.33)
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in which ⟨px⟩f can be expanded through (4.12) into

⟨px⟩f = ⟨px⟩g − Vx,c − Vx,∂t −Dxx,c
∂xn

n
. (4.34)

Substituting (4.34) into (4.33) yields the transport equation

∂tn+ Pes∂x [(⟨px⟩g − Vx,c − Vx,∂t)n] = ∂xDxx,c∂xn. (4.35)

Figures B.1–4 in appendix B show how the balance in (4.34) evolves in time from a uniform suspension.

In the beginning, all terms were zeros, except for ⟨px⟩g and the unsteadiness in f , which balance

out each other. Note that the unsteadiness in f was transformed into a drift Vx,∂t in the transport

equation (see (4.21f)). As the suspension starts to evolve, the p-space evolves first in the time scale of

order unity (i.e. the fast time scale in §4.5) – note that the time scale in the p-space is 1/d∗r (see §4.2).

The fast-changing f drives the drift Vx,∂t away from ⟨px⟩g in the beginning, resulting in non-zero ⟨px⟩f
in (4.34), which in turn generates the unsteadiness in n in (4.33). Therefore, n(x, t) does not start

evolving until Vx,∂t has become significantly different from ⟨px⟩g. At t ∼ O(1), Vx,∂t is close to zero,

indicating that f has reached the quasi-steady regime, justifying the assumption of §4.5. It is also in

this time interval where Vx,c ≈ Vx,g,c and Dxx,c ≈ Dxx,g,c, implying that the local approximation in

§4.5 would be valid after this short initial transient.

For t ≳ O(1), n(x, t) evolves slowly, while ⟨px⟩f diminishes towards zero, mainly due to the increasing

magnitude of (∂xn/n) to balance ⟨px⟩g in (4.34). As ⟨px⟩f vanishes, n(x, t) reaches a steady equilibrium.

During this slow transient period, f also evolves slowly, but slow enough such that Vx,∂t remains

insignificant. Note that, in this example, the prescribed flow field is steady, such that Vx,g,∂T vanishes.

If the prescribed flow were unsteady in the long timescale T , we would also expect Vx,∂t to be

significant and to be well approximated by Vx,g,∂T . In all the examples considered, Dxx,c remains

close to the approximation Dxx,g,c. In a weakly and non-gyrotactic suspensions, Vx,c does not evolve

far from Vx,g,c either, but in a strongly gyrotactic suspension, Vx,c is found to change direction as

t→ ∞. As mentioned in §4.7.1, Vx,c is considerably small compared to ⟨px⟩g in this case. Therefore,

regardless of the fact that Vx,g,c differs from Vx,c, the local approximation model still performs well.
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4.7.3 Effect of translational diffusion

Lastly, we will consider a non-zero translational diffusion for the previous examples. Micro-algae

such as Chlamydomos and Dunaliella are often considered to have negligible thermal diffusion given

their relatively large sizes (see reviews by Pedley & Kessler, 1992; Saintillan, 2018; Bees, 2020). Their

random walk is often modelled only through the rotational diffusion by assuming that the intracellular

biochemical noise only affects the rotational motion. However, in theory, there is no reason that the

randomness can be modelled solely through the rotational diffusion without translational diffusion

because the swimming mechanisms very often involve sophisticated noisy beating dynamics of cilia

and flagella (e.g. Wan & Goldstein, 2014). Given the ambiguity in choosing a biologically relevant

value for DT , here we will simply consider some values of DT to demonstrate the role of translational

diffusion in the transport equation, i.e. VDT
and DDT

.

We consider the steady-state particle distribution at an arbitrary value of DT = 0.01, which is chosen

to be of similar magnitude as PesDc. This arbitrary choice was made to highlight the potential role of

translational diffusion. Also, for biological microswimmers, any DT value larger than PesDc would be

physically unrealistic (c.f. experimental measurements of Croze et al. (2017)). We have also computed

the steady-state at DT = 0.002, but since the results are qualitatively the same, we shall only present

the DT = 0.01 case here.

The exact steady-state particle distribution nf,s(x) from the Smoluchowski equation (4.1) is given by

∂x[(Pes⟨px⟩g − Pes(Vx,c + Vx,DT
))nf,s] = ∂x[(DT + Pes(Dxx,c +Dxx,DT

))∂xnf,s], (4.36)

and the distribution from the local approximation ng,s is given by

∂x[(Pes⟨px⟩g − Pe2s(Vx,g,c + Vx,g,DT
))ng,s] = ∂x[(DT + Pe2s(Dxx,g,c +Dxx,g,DT

))∂xng,s]. (4.37)

Note that Pe2sVx,g,DT
and Pe2sDxx,g,DT

scale with PesDT from (4.21b) and (4.21c). Meanwhile, nGTD

is given by

∂x[Pes⟨p⟩gnGTD] = ∂x[(DT + Pe2sDxx,GTD)∂xnGTD]. (4.38)

As shown before in §4.5.2, model G gives Dxx,GTD = Dxx,g,c. However, it does not offer any

approximations for Vx,c, Vx,DT
and Dxx,DT

. Therefore, any difference between ng,s and nGTD has to

come from Vx,g,c, Vx,g,DT
and Dx,g,DT

.

Fig. 4.5 shows the steady-state particle distributions with DT = 0.01 for the same parameters
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Figure 4.5: Comparison of the steady-state particle distributions given by the direct integration
of (4.1) (black solid line, nf,s), the local approximation of §4.5 (blue dot-dashed line, ng,s) and
model G (red dashed line, nGTD) of suspensions of (a) spherical and strongly gyrotactic (β = 2.2,
α0 = 0), (b) non-spherical and strongly gyrotactic (β = 2.2, α0 = 0.31), (c) non-spherical and weakly
gyrotactic (β = 0.21, α0 = 0.31) and (d) non-spherical and non-gyrotactic (β = 0, α0 = 0.31) particles.
The particles are diffusive such that DT = 0.01. The suspensions are subjected to a vertical flow
W (x) = − cos(πx)− 1 with Pes = 0.25 and Pef = 1. Note that the vertical scale for n(x) in (c, d) is
much smaller than that in (a, b).

considered in fig. 4.2. One can see that the introduction of non-zero DT has further smoothed out

the particle distributions in all cases considered by comparing fig. 4.2 and fig. 4.5. However, DT does

not seem to have significantly altered most of the conclusions drawn in §4.7.1, except that the local

approximation model now performs better than model G even in strongly gyrotactic suspensions.

This improved performance can be attributed to several factors. Firstly, Vx,c becomes closer to the

approximation Vx,g,c in strongly gyrotactic suspensions in the presence of DT , as shown by figs. 4.6a,b

in comparison with figs. 4.3a,b. Secondly, DT gives rise to Vx,DT
(cyan solid lines in fig. 4.6), which

can be as large in magnitude as Vx,c in strongly gyrotactic cases (figs. 4.6a,b). Since model G does

not contain either Vc or VDT
, the inclusion of Vx,g,c and Vx,g,DT

approximating Vx,c and Vx,DT
gives a

better performance for the local approximation model. Thirdly, the introduction of DT also gives rise

to Dxx,DT
(magenta solid lines in fig. 4.6). Despite being not as large as Dxx,c overall, Dxx,DT

has
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Figure 4.6: Comparison of the drifts and dispersion terms in (4.36-4.37) at the steady state. The
plots show the values of ⟨px⟩f and ⟨px⟩g (blue), Dxx,c and PesDxx,g,c (red), Vx,c and PesVx,g,c (green),
Dxx,DT

and PesDxx,g,DT
(magneta), Vx,DT

and PesVx,g,DT
(cyan) calculated using the steady-state

f(x,p,∞) (solid lines) and g(x,∞;p) (dashed lines) of a suspension of (a) spherical and strongly
gyrotactic (β = 2.2, α0 = 0), (b) non-spherical and strongly gyrotactic (β = 2.2, α0 = 0.31), (c)
non-spherical and weakly gyrotactic (β = 0.21, α0 = 0.31) and (d) non-spherical and non-gyrotactic
(β = 0, α0 = 0.31) particles. The particles are diffusive such that DT = 0.01. The suspensions are
subjected to a vertical flow W (x) = − cos(πx)− 1 with Pes = 0.25 and Pef = 1.

a variation over x comparable to that of Dxx,c (magenta and red solid lines in fig. 4.6). Therefore,

the local approximation model, which contains the terms with Vx,g,c, Vx,g,DT
and Dx,g,DT

, predicts

particle distributions better than model G.

Comparing the strongly gyrotactic (fig. 4.6b) with the weakly gyrotactic case (fig. 4.6c), one can also

conclude that the effect of Vx,DT
and Dxx,DT

are much stronger in strongly gyrotactic suspensions.

Since Vx,DT
and Dxx,DT

are driven by ∇xf and ∇2
xf according to (4.8b) and (4.8c), the large Vx,DT

and Dxx,DT
are likely driven by the larger variation of f in x induced by the stronger gyrotaxis.

Lastly, it is worth noting that Dxx,DT
and Dxx,g,DT

can be negative for some domain in x. As

mentioned in §4.4, the terms with Dxx,DT
and Dxx,g,DT

do not necessarily represent diffusion – they

depict the dispersive behaviour introduced by translational diffusion. Therefore, negative diagonal
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Figure 4.7: Comparison of the steady-state particle distributions given by the direct integration of
(4.1) (black solid line, nf,s), the local approximation of §4.5 (blue dot-dashed line, ng,s) and model G
(red dashed line, nGTD) of suspensions of (a) strongly gyrotactic particles (β = 2.2, α0 = 0.31) and
(b) weakly gyrotactic particles (β = 0.21, α0 = 0.31). The suspensions are subjected to horizontal
shear flow U(z) = cos(πz) with Pes = 0.25 and Pef = 1.

values in DDT
are allowed. They physically represent the reduction in the spreading of particles due

to the interaction between the DT -driven cross-dispersion between n(x, t) and f and the particles’

orientational dynamics (see (4.8c) and table 4.2). The same interpretation can also be applied to the

approximation Dg,DT
. More discussion on the implication of these dispersion tensors will follow in

§4.8.2.

4.7.4 A suspension of gyrotactic active particles in a prescribed horizontal

flow

In this section, we consider a horizontal shear flow u = [U(z), 0, 0]T in the gyrotactic suspension

instead of a vertical shear flow. Similar to §4.7, we first assume an infinite x-domain with a periodicity

in z and no translational diffusion. The horizontal shear flow is prescribed as U(z) = cos (πz), as

shown in fig. 4.1b. We also introduce the shear profile S(z) = (Pef/2)∂zU(z). As noted in §4.5.2, the

cross-stream dispersion Dzz,g,c from the local approximation is the same as Dzz,GTD from model G. It

is similar to how Dxx,g,c = Dxx,GTD in the vertical shear case. Fig. 4.7a shows that the steady-state

particle distribution profiles n(z) of the strongly gyrotactic suspension (β = 2.2,α0 = 0.31) computed

from the local approximation model and model G is similar. Similar to the case in §4.7.1, the small

differences come from the presence of Vz,g,c, which is relatively small when compared to ⟨p⟩g (fig.

4.8a). However, in fig. 4.7b, the steady-state particle distribution profile n(z) for weakly gyrotactic

non-spherical particles (β = 0.21,α0 = 0.31) computed from the local approximation model is more
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Figure 4.8: Comparison of the vertical drifts and dispersion terms at the steady state. The plots
show the values of ⟨pz⟩f (blue, solid), ⟨pz⟩g (blue, dashed), Dzz,c (red, solid), PesDzz,g,c (red, dashed),
Vz,c, (green, dashed) and PesVz,g,c (green, dashed) at the steady state of a suspension of (a) strongly
gyrotactic particles (β = 2.2, α0 = 0.31) and (b) weakly gyrotactic particles (β = 0.21, α0 = 0.31).
The suspensions are subjected to a horizontal shear flow U(z) = cos(πz) with Pes = 0.25 and Pef = 1.

accurate than that of model G due to the presence of Vz,g,c, which is consistent with the prediction of

§4.5.2. The explanation for the better performance of the local approximation method is the same as

that in §4.7.1, in which the inclusion of Vz,g,c is improving the prediction from the local approximation

(fig. 4.8b).

The transient dynamics is also investigated for the horizontal flow. As shown in figs. B.5,6, the

simulation initially shows the dominant balance between Vz,∂t and ⟨pz⟩g. At the time scale of order

unity, Vz,∂t diminishes quickly, driven by the fast-changing f . At t ≳ O(1), Vz,∂t becomes insignificant,

indicating that f has reached the quasi-steady regime. Meanwhile, the local approximation accurately

predicts Vz,c ≈ Vz,g,c and Dzz,c ≈ Dzz,g,c, similar to how Vx,c ≈ Vx,g,c and Dxx,c ≈ Dxx,g,c in §4.7.2.

However, unlike the vertical flow cases, figs. B.5,6 show that ⟨pz⟩f does not tend to zero as t→ ∞

in these horizontal flow cases. Instead, fig. 4.8 shows that they stay in roughly the same order as

⟨pz⟩g at steady equilibrium. Moreover, both Vz,g,c and Dzz,g,c remain good approximations to Vz,c and

Dzz,c respectively for a long time, even when particles are strongly gyrotactic. Therefore, when the

flow is horizontal, the local approximation model outperforms model G even in strongly gyrotactic

suspensions.
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4.8 Discussion

4.8.1 Physical implication of the transformation

In this chapter, we set out to seek a model transport equation that can predict the particle distribution

given by the Smoluchowski equation without solving the equation directly. To achieve the goal,

in §4.4, we have shown how the Smoluchowski equation (4.1) can be transformed into a transport

equation by expanding ⟨p⟩fn in the integrated equation (4.5) into ⟨p⟩gn and other drifts V⋆n and

dispersions/diffusions D⋆∇xn. This expansion of ⟨p⟩f shows a key difference from model G, which

takes the averaged orientation ⟨p⟩g of individual particle directly as the drift.

To better show the implication of this transformation, here we rewrite the procedures in §4.4 under

the assumption of a parallel flow and DT = 0. We can rewrite (4.5) as

∂tn(x, t) +∇x · [(Pes⟨p⟩f (x, t)n(x, t)] = 0, (4.39)

in which ⟨p⟩fn can be expanded through (4.12) or

⟨p⟩f = ⟨p⟩g −Vc −V∂t − Dc
∇xn

n
(4.40)

into the transport equation

∂tn+ Pes∇x · [(⟨p⟩g −Vc −V∂t)n] = Pes∇x · Dc∇xn. (4.41)

Note that equations (4.39-4.41) are the equivalent of (4.33-4.35) in general coordinates. Now, eq. (4.39)

and the rewritten eq. (4.41) yield two different interpretations of ABPs transport. In (4.39), particles

are purely advected by the Eulerian motility flux Pes⟨p⟩fn, which is the ensemble-averaged flux of

particles coming in and out of a certain control volume at position x due to the motility of the particle.

The flux depends on the orientational and spatial distribution of particles inside and at the vicinity

of the control volume. However, in (4.41), the average Eulerian motility flux Pes⟨p⟩fn is decomposed

into the flux from the average motility of individual particles Pes⟨p⟩gn, the advective flux due to

unsteadiness in particles’ orientational dynamics −PesV∂tn, the shear trapping flux −PesVcn and

the dispersion flux −PesDc∇xn.

It is evident from (4.40) that the average Eulerian motility flux Pes⟨p⟩fn is different from the flux of

the average motility of individual particles Pes⟨p⟩gn. However, it might also be counterintuitive at
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first glance to decipher their differences. Here, the average motility of individual particles Pes⟨p⟩g is

defined as the ensemble average of the self-propelling velocity of individual particles when subjected

to the local velocity gradient or other local factors that may influence their orientation (e.g. taxes).

The average motility of individual particles Pes⟨p⟩g is based on the average orientation of individual

particles ⟨p⟩g, which is calculated from the homogeneous solution (g) to the operator Lp, representing

the orientational dynamics of individual particles. It is a function of the local velocity gradient and

the particles’ property only and is independent of any (x, t)-space configuration. In other words, ⟨p⟩g
is calculated when the orientational dynamics (Lp) is decoupled from the rest of the Smoluchowski

equation. The resulting average motility Pes⟨p⟩g provides a Langrangian view of each individual’s

motility after being averaged in the local p-space. Therefore, the average motility flux Pes⟨p⟩gn at

each (x, t) depends only on the local velocity gradient at the specified location.

By contrast, the average Eulerian motility flux Pes⟨p⟩fn does consider the spatial and orientational

distribution of particles at the nearby location in the (x, t)-space. It is the result of averaging

the particles’ motility PespΨ in the Smoluchowski equation (4.1). It includes the flux from the

average motility of individuals Pes⟨p⟩gn and other fluxes from drifts and dispersions arising from

the interaction between the orientational dynamics (Lp) and the rest of the Smoluchowski equation.

For example, it includes the effect of the different orientation distribution at the nearby location,

which gives rise to the extra shear trapping flux −PesVcn, even when the average motility Pes⟨p⟩g
is zero (as demonstrated in §4.7.1, fig. 4.3d). It also includes the effect of the changing orientation

over time, which interacts with the orientational dynamics and manifests as the extra flux −PesV∂tn

through the particles’ motility. Lastly, it includes the dispersion flux PesDc∇xn, which arises from

the distribution of how the particles’ instantaneous motilities are different from the averaged motility

of the particles in the control volume. All of the above extra drifts and dispersions are dependent

on the configuration of the suspension in (x, t)-space (c.f. §4.7.2), in contrast to Pes⟨p⟩g. Therefore,

one may interpret Pes⟨p⟩g as the Langrangian view of each individual’s motility and Pes⟨p⟩f as the

Eulerian view of the overall drift of all the particles in the suspension at the given location due to the

particles’ motility.

The fact that ⟨p⟩g is part of ⟨p⟩f in (4.40) physically implies that the averaged motility of individuals

only contributes to part of the overall Eulerian drift caused by particles’ motility. It also indicates

that particles dispersion physically comes from the same Eulerian motility flux Pes⟨p⟩fn that includes

the effect of other drifting terms. This physical perspective is in stark contrast to that of model G.

Model G takes Pes⟨p⟩gn directly as the overall motility flux from its approximation of the temporal

growth rate of the first statistical moment (mean), which is effectively using Pes⟨p⟩gn as a first-order

127



approximation to Pes⟨p⟩fn. Because of this, it does not capture the drifts like Vc and V∂t. Meanwhile,

the effective diffusivity Pe2sDG is found by asymptotically matching it with the temporal growth rate

of the second statistical moment (variance). Therefore, in the GTD derivation, it is hard to follow

how Pe2sDG arises from the particles’ motility. On the contrary, the transformation introduced in this

study has directly shown how the dispersion arises from the motility of the particle.

Extending the decomposition to a more general ABP suspension, the passive advection and translation

diffusion of particles shall also interact with the orientational dynamics and give rise to extra drifts

and dispersion through the particles’ motility. Indeed, the interactions give rise to Vu, VDT
and DDT

,

which has already been introduced in §4.4. Their physical meanings are summarised in table 4.2.

4.8.2 Non-trivial phenomenological dispersion

In §4.4 and §4.5.2, we have briefly highlighted that Dc and DDT
, and their respective approximation

Dg,c and Dg,DT
, are not necessarily positive definite and symmetric, as they are directly obtained

through the Smoluchowski equation (4.1). In fact, there is no reason that the dispersive behaviour

of suspensions originating from the orientational dynamics of each ABP would need to solely be

described by a ‘diffusion’ process. This is in contrast to the effective diffusivity DG of model G, which

was positive definite and symmetric by definition (Frankel & Brenner, 1991, 1993). In this subsection,

we shall further demonstrate that Dg,c is indeed asymmetric, in contrast to the positive definite DG.

Focusing on spherical particles, here we shall show that Dg,c caused by dispersion is not necessarily

symmetric.

Fig. 4.9 shows a component-wise comparison between Dc, Dg,c and DG as a function of the local shear

rate S(x) for a suspension of idealised spherical (α0 = 0) gyrotactic particles (with β = 2.2) in a

vertical shear flow. In general, Dc obtained through the transformation is not a function of the local

shear S alone as Dc is computed from f(x,p, t). However, as shown in §4.7.1, for the particular case

of a spherical gyrotactic particle suspension in vertical shear and at steady equilibrium, Dc/Pes can

be written as a function of S(x).

The comparison shows that Dc and the approximation Dg,c are highly asymmetric compared to the

symmetric diffusivity tensor from model G when the shear rate is not zero. These non-symmetric

dispersion tensors indicate that the diffusion process alone might not be the best physical description

of the random walk of biased ABPs. Instead, we consider them as dispersions in the (x,p)-space,

analogous to the original Taylor-Aris dispersion (Taylor, 1953; Aris & Taylor, 1956). In the Taylor-Aris

128



(a)

0 5 10 15

0

0.02

0.04

0.06

0.08

0.1
(b)

0 5 10 15

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

(c)

0 5 10 15

-0.08

-0.06

-0.04

-0.02

0
(d)

0 5 10 15

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 4.9: Comparisons of the components of Dc/Pes (black line), Dg,c (blue dot-dash line) and DG

(red dashed line) as a function of the local vertical shear S(x) for a suspension of spherical gyrotactic
particles (β = 2.2,α0 = 0), in which Dc/Pes is computed from fs(p) of §4.7.1.

dispersion, the cross-stream diffusion gives rise to additional streamwise dispersion through the shear

flow. Similarly, in ABP suspensions, the rotational diffusion (in p-space) gives rise to translational

dispersion (in x-space) through the particles’ motility. While the extra streamwise dispersion in

Taylor-Aris dispersion is sometimes referred to as ‘effective diffusivity’ (see Cussler, 2009, §4.5), it is

not a physical diffusion caused by a translational random walk but the result of the combination of

cross-stream diffusion and a shear flow. Similarly, the ‘effective diffusivity’ Dc here is not a diffusion

from the translational random walk but the result of the interplay between particles’ orientational

dynamics and motility. Therefore, Dc and the approximation Dg,c do not necessarily have to conform

to the symmetric and positive definite requirement of a physical diffusivity. This interpretation of Dc

and Dg,c contrasts with the approach of the generalised Taylor dispersion model, in which the effective

diffusivity DG was obtained by the temporal asymptotic growth rate of the statistical variance of

particle distribution using the classical definition of diffusion. By definition, DG must be positive

definite and symmetric.

A similar argument can be applied to DDT
and Dg,DT

. Because they are not obtained by the growth

rate of the statistical variance but by the transformation of the Smoluchowski equation, they can

have a negative xx component in §4.7.3. However, one should be careful not to isolate the tensor
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and interpret it alone. The dispersion tensors DDT
and Dg,DT

, which have a O(Pe2s) impact on the

transport equation, cannot exist without a positive DT , which has a O(1) impact. Therefore, we are

not claiming that swimmers will exhibit negative diffusion. Instead, a negative DDT
or Dg,DT

implies

that the coupling between the swimmer’s orientation dynamics and translation diffusion can result in

a small reduction in its ‘effective diffusivity’ compared to the translation diffusion alone.

4.8.3 Shear trapping in the presence of weak gyrotaxis
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Figure 4.10: The absolute shear trapping advection in the x-direction (|Vx,g,c|) of non-spherical
swimmers (α0 = 0.31), with (a, c) β = 0 (solid lines), β = 0.21 (dot-dash lines) and (b, d) β = 2.2,
under prescibed Poiseulli flows at various flow rates. In (a, b), |Vx,g,c| is plotted as a function of the
ambient flow Pèclet number Pef at each location across different flow rate (c.f. fig. 9b of Vennamneni
et al. (2020)). In (c, d), |Vx,g,c| is plotted as a function of the local shear rate S(x) = (−Pef/2)∂xW (x)
at each prescribe flow. (c.f. fig. 9d of Vennamneni et al. (2020)). Note that in (a, c), the β = 0 (solid
lines) and β = 0.21 (dot-dash lines) plots are virtually indistinguishable.

Since the discovery of shear trapping by Rusconi et al. (2014), there have been several works

explaining the experimental observation. Ezhilan et al. (2015) demonstrated high-shear trapping with

the Smoluchowski equation, although they focused mostly on the effect of translational diffusivity

and the development of the boundary-layer-like wall accumulation due to the no-flux boundary
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condition. Bearon & Hazel (2015) computed both high- and low-shear trapping from an individual-

based simulation. They first demonstrated how to derive the effective drift, equivalent to Vg,c in this

work, based on a low Pes asymptotics from the Smoluchowski equation. Recent work by Vennamneni

et al. (2020) further investigated shear trapping based on the same asymptotic approach as Bearon &

Hazel (2015). They explained the mechanism of both high- and low-shear trapping as the result of

the same Vg,c term changing direction in different regimes of Pef .

However, none of the above work considered the effect of the presence of taxes on the shear trapping

flux. Because of the non-vanishing gyrotactic drift ⟨p⟩g in §4.5, the asymptotics by both Bearon &

Hazel (2015) and Vennamneni et al. (2020) would break down if ⟨p⟩g were non-zero. In §4.5, we have

extended the methodology by Bearon & Hazel (2015) to include the effect of non-zero gyrotactic

drift ⟨p⟩g and demonstrated how the drift from taxis is more significant than the shear trapping drift

(i.e. Pes⟨p⟩g ≪ Pe2sVg,c). However, if the strength of the taxis is small (e.g. in the case of a weakly

gyrotactic swimmer such as Dunaliella), the effect of shear trapping can also be as significant as that

from the taxis.

To show the effect of gyrotaxis on shear trapping, we will compare the shear trapping flux Vg,c

from the local approximation (§4.5) with that of Vennamneni et al. (2020). Following the flow

configuration of Vennamneni et al. (2020), in this section, we consider a downward flowing (−z

direction) two-dimensional Poiseulle flow with the flow profile W (x) = −(1− x2), where x ∈ [−1, 1].

We also define the shear profile S(x) = −Pefx.

However, before accounting for the effect of gyrotaxis, we must clarify the scaling of Vg,c with S(x)

and S ′(x). In (4.21e), we have shown that Vg,c depends on ∇xg. As g depends on the local velocity

gradient, Vg,c depends on both the second-order derivative (gradient of gradient, which is a third-order

tensor) and the gradient of the local velocity field, not just the gradient alone. Appendix C shows

how Vg,c can be written explicitly as functions of the gradient and the second-order derivative of

the local velocity field. In the context of a parallel flow, Vg,c would depend on both the local shear

rate S(x) and its gradient S ′(x). Vennamneni et al. (2020) showed that Vg,c scales with Pe−2
f at

high shear across different prescribed flows (c.f. fig. 4.10a) but did not distinguish the effect of S(x)

from that of S ′(x). In fig. 4.10c, we find that Vg,c scales with S(x)
−3 at high shear within the same

flow. Note that in fig. 9d of Vennamneni et al. (2020), the S(x)−3 scaling of Vg,c was also shown

but was not apparent because they did not compute solutions at high enough Pef for the scaling to

show. The reason behind the seemingly contradictory scaling (Pe−2
f verses S−3) of Vg,c was due to

the contribution of S ′(x). Within the same parabolic flow (constant Pef), S
′(x) was kept constant
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across x. Therefore, only S(x) was varying across x and Vg,c(x) scales with S(x) to the power −3.

However, when compared across different parabolic flow profile with varying magnitude (changing

Pef ), both S
′(x) and S(x) scale with Pef . In such a case, Vg,c scales with Pe−2

f . Therefore, one can

infer that Vg,c ∝ S−3S ′(x), i.e. Vg,c also scales with S ′(x). This scaling is consistent with the formula

derived in appendix C.
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Figure 4.11: (a) The shear trapping advection in the x-direction (Vx,g,c) of non-spherical swimmers
(α0 = 0.31) with various gyrotactic strength β against local shear S(x) under a prescibed Poiseulli
flow (Pef = 64).
(b) The absolute dispersion in the x-direction (|Dxx,g,c|) of non-spherical swimmers (α0 = 0.31) against
local shear S(x) in each prescibed Poiseulli flow. Results from swimmers with strong gyrotaxis
(β = 2.2) are plotted in dashed lines, whereas those without gyrotaxis (β = 0) are plotted with solid
lines. Note that results from the same β overlaps, implying that |Dxx,g,c| is independent of the overall
flow rate (Pef ), but only depends on β and the local shear S(x)

Now, we can demonstrate the effect of gyrotaxis on shear trapping. In a Poiseulle flow profile,

figs. 4.10a,c show that weak gyrotaxis has almost no impact on Vg,c, but figs. 4.10b,d show that

strong gyrotaxis, through the term ∇x · ⟨p⟩g in (4.21e), can reverse the direction of Vg,c at very low

shear. Fig. 4.11a shows how increasing gyrotactic strength β can reverse the direction of Vg,c at low

shear. However, as the shear rate S increases, ∇xg becomes significant, such that it can reverse the

Vg,c direction back into high-shear trapping we usually see in non-gyrotactic swimmers. Irrespective

of β, the direction of Vg,c will reverse again from high-shear trapping (at a low shear) to low-shear

trapping (at a high shear) as the shear rate S continue to increase. The reversal of Vg,c at low shear

due to the term ∇x · ⟨p⟩g may explain why the direction of Vg,c in strongly gyrotactic swimmers is

opposite to that of weakly gyrotactic or non-gyrotactic swimmers in fig. 4.3.

On the other hand, Dxx,g,c only depends on the local shear and swimmers’ property. Therefore,

fig. 4.11b demonstrates a Pe−2
f scaling irrespective of S ′(x), consistent with the observation by

Vennamneni et al. (2020). Furthermore, the scaling does not seem to be strongly affected by β, as

shown in fig. 4.11b.
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4.9 Concluding remarks on the local approximation model

We have presented a method to transform the Smoluchowski equation into a transport equation

exactly for a given flow field. The method involves decomposing the average Eulerian motility flux

Pes⟨p⟩fn at a fixed location into the flux from the average Langrangian motility flux of individual

particles Pes⟨p⟩gn and other contributions. The transformation has shown that Pes⟨p⟩g is different

from Pes⟨p⟩f and only constitutes part of Pes⟨p⟩f . The transformation also unveils the explicit form

of the other drift and dispersion terms contributing to the overall average Eulerian motility. These

terms include the shear trapping drift Vc and the particle dispersion Dc due to rotational diffusion.

In addition, we have also discovered the drift V∂t due to the interaction between unsteadiness

in orientation and orientational dynamics itself, the drift VDT
and dispersion DDT

arise from the

interaction between translational diffusion and orientational dynamics, and the drift Vu from the

interaction between passive advection of orientational distribution and orientational dynamics.

Although the transformation has revealed these new physical drifts and dispersions, which are

physically interpretable in a transport equation, they cannot be directly used as a model due to

the prerequisite to first obtain Ψ(x,p, t) by solving the Smoluchowski equation directly. In this

regard, this work has presented a new model based on the local approximation of the transformation,

which only relies on the local flow information instead of the global flow configuration. By assuming

that the time scale of the orientational dynamics is much faster than that of the spatial dynamics,

we have approximated the orientational space probability density function f(x,p, t) = Ψ/n by the

homogeneous solution g(x, t;p) of the orientational space operator Lp, thereby circumventing the

need to solve for Ψ. The approximation gives the same shear trapping drift Vg,c and the particle

dispersion Dg,c as that of Bearon & Hazel (2015) and Vennamneni et al. (2020) when the particles

have no taxes or diffusion, but it is also extendible to particles with taxes or translational diffusion.

We have also made connections between Dg,c and the effective diffusivity DG from model G. In a

quiescent flow, the two tensors are equal. When the prescribed flow is parallel, Dg,c and DG share

the same cross-stream component (the xx component in verticle shear flows u = [0, 0,W (x)]T and

zz component in horizontal shear flows u = [U(z), 0, 0]T ). The comparison between the two models

also highlighted the missing shear trapping drift Vg,c and the drift VDT
and dispersion DDT

from

translational diffusion in model G. In particular, when the first-order drift Pes⟨p⟩g is small, the

second-order drift from Pe2sVg,c can become significant.

The numerical examples of suspensions in horizontal and vertical shear flows have further illustrated

the importance of including Vg,c. When ⟨p⟩g from gyrotaxis is small, the local approximation method
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better predicts the particle distribution than model G. In the extreme case where ⟨p⟩g = 0, model G

would give an unphysical uniform distribution while the local approximation can accurately capture

the shear trapping phenomena. Meanwhile, when DT ̸= 0, the local approximation method has also

shown better prediction than model G because of the inclusion of Vg,DT
and Dg,DT

in addition to Vc.

Overall, this work has shown that the local approximation method is either on-par with or better

than model G in approximating the transport of biased ABPs.
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Chapter 5

Discussion

5.1 Using the Smoluchowski equation to directly model the

formation of gyrotactic plumes

In chapters 2 and 3, we have focused on the formation of gyrotactic plume using model G. Then,

chapter 4 has introduced the direct use of the Smoluchowski equation and the local approximation

model in a prescribed flow field. In other words, we have ignored the effect of buoyancy in chapter 4.

This section shall combine the knowledge of the previous chapters and re-model the gyrotactic plume

using the full set of equations (1.11,1.18,1.19). Note that we will still consider the hydrodynamic

contribution from the stresslet tensor negligible as the contribution from the buoyancy of swimmers

remain dominant in this case.

While it is feasible to discretise the Smoluchowski equation directly under the parallel assumption, it

is still significantly costly to compute all the solutions in the parameter space with the continuation

algorithm introduced in §2.3.5. However, in the special case where swimmers are spherical and the

flow is vertical, the analytical solution found in §4.7.1 might offer a shortcut. It was found that in

this special case, the ratio between ⟨pr⟩ and Drr,c from the exact transformation can be written out

analytically, in the non-dimensionalisation of chapter 4, as

⟨pr⟩
Drr,c

=
βS(x)

Pes
= −βPef

2Pes

∂W

∂x
. (5.1)
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Figure 5.1: Contours of U(0)/Re against κ2 of the plume solutions at each given Q ∈ [−2.5, 2.5],
calculated using (5.2). The contour is valid for any dilute suspension of spherical gyrotactic swimmers
subjected to a vertical flow. Here, each contour line in the (U(0)/Re)−κ2 plane indicates the value of
Q: black, Q = 0; blue to green, Q ∈ [0.1, 2.5] with 0.2 increment; red to yellow, Q ∈ [−2.5,−0.1] with
−0.2 increment. The line type represents the stability of the solution: , stable; , unstable.

In the notation of chapters 2 and 3, (5.1) becomes

⟨pr⟩
Drr,c

= βS(x) = − β

2dr

∂U

∂r
. (5.2)

This relationship coincides exactly with the linearised model in §2.4.3 (c.f. eq. (2.16)). In other words,

the linear line in fig. 2.8a representing the linearised model is coincidentally ‘exact’ if non-interacting

swimmers are only contributing hydrodynamically via buoyancy. Meanwhile, fig. 2.10 shows the

singularity in the ‘exact’ solution.

Therefore, the cusp bifurcation found in fig. 2.6a before the solution become singular is an artefact of

the approximation of model G, which can be removed if the full the Smoluchowski equation is used

to calculate the swimmer distribution instead of the approximation offered by model G.

In fig. 5.1, we have used (5.2) to recalculate the bifurcation diagram in fig. 3.2. The bifurcation

point and the weakly nonlinear analysis remains the same because the analysis depends only on the

linearised behaviour of −⟨pr⟩/Drr(S) at S = 0, which equals (β/2)S regardless of the model used.

However, the extended Q = 0 solution curves are smoothed out by the simpler linear relationship

between ⟨pr⟩/Drr and S. The linear relationship between ⟨pr⟩/Drr and S also implies that, unlike fig.

3.2, the Q = 0 lines in fig. 5.1 are no longer specific to a certain β value but universal to all spherical

gyrotactic swimmer suspensions in a vertical pipe.

However, it is important to reiterate that only in this special case, where swimmers are spherical

and the flow is vertical, can Drr,c be written as a function of S. For other non-spherical swimmers,
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Drr,c depends on the global solution, not just the local velocity field (e.g. §4.7.4). Nevertheless, its

approximation Drr,g,c can be calculated at a function of S, and share same value as model G in a

vertical shear flow.

5.2 Experimental implication

Given the bifurcations and singularities shown in chapters 2 and 3 and reiterated in the previous

section, one can see that the gyrotactic plume formation in a dilute suspension is a complex dynamical

system that exhibits multiple hystereses. Here we try to summarise the expected experimental

observation based on the knowledge discovered in the thesis.

At a low enough Ri < Ri s, a single plume is expected when a downflow is imposed. If the plume

is focussed enough (high N(0)), the plume might become unstable to streamwise perturbation, and

blips may form along the plume (fig. 2.16). This route to the formation of blips follows the blip

instability mechanism suggested by Hwang & Pedley (2014b). If the flow rate is low enough, a sinuous

instability mode might also arise (fig. 2.17b). On the other hand, if an upflow is imposed, gyrotactic

swimmers will swim towards the wall. The stability of the upflowing solution has yet been analysed,

partly due to the complication arising from the wall (see §5.3).

As Ri increases towards and beyond Ri s, hysteresis occurs. At a low enough flow rate, where the

crtical Richardson number Ri c of the first saddle node of the respective flow rate Q is larger than Ri s

(Q ≲ 4, c.f. fig. 2.10) and Ri is between Ri s and Ri c, the plume can either become steady (lower

branch) or evolve towards a singularity (N(0) → ∞) depending on the initial condition. If the initial

condition is between the manifold of the lower branch and the unstable middle branch, the plume

will likely evolve into the lower branch solution. However, if initially the plume is already beyond

the manifold of the middle branch (e.g. high N(0) or −U(0)), the system might evolve towards the

singularity. Beyond the saddle node or if the flow rate is high (Q ≳ 4), there is no steady solution for

a finite positive Q until after the first transcritical point. If a downflow is imposed in this regime,

either the system will evolve toward the singularity, or the flow rate will not be achievable with a

steady solution.

This saddle-node bifurcation might be demonstratable in an experiment. If a steady plume is formed

at low Q and Ri smaller than that of the saddle node, one can perhaps ‘kick’ the system from the

lower branch across the middle branch manifold and towards the singularity by increasing the velocity

at the centre locally. Perhaps this can be achieved by the drop of a small but heavy sphere (e.g. a

137



ball bearing) at the centre of the pipe. Alternatively, one can gradually increase Ri from a lower

branch solution by slowly adding more swimmers to the system while maintaining the same flow

rate. Given the saddle-node bifurcation, a sudden loss of the steady solution is expected as Ri is

gradually increased past the saddle node. Depending on how the pressure gradient or the flow rate

is configured, the system may either suddenly evolve from the mild lower branch solution to a very

sharp profile given by the singularity or struggle to achieve a steady solution with the targetted flow

rate regardless of the pressure gradient.

As Ri further increases beyond the first transcritical point, multiple plumes are expected because κ2

is increasing with Ri . As shown in fig. 5.1, the parameter κ2 = RiReβ/2 determines the bifurcations.

Although the solution profiles in fig. 3.1a remain axisymmetric, the increasing number of peak and

trough in the steady profiles after each bifurcation strongly indicates the system’s tendency to form

multiple plumes. As κ2 = RiReβ/2 scales with the average swimmer number density N∗ and the

pipe’s cross-sectional area (h∗)2, it matches the experimental observations where more plumes are

formed in a wider container. However, the exact dynamical route towards multiple plumes remains to

be solved. In chapter 3, the axisymmetric steady solutions at finite Q are nonlinear extensions of the

Bessel functions from the linear and weakly nonlinear analysis of the Q = 0 solutions. So perhaps

by the same technique, one can seek the solutions to multiple plumes by adding azimuthal variation

to the Bessel functions and extending them nonlinearly at finite Q. We shall expect some of the

unstable solutions (as represented by the dashed lines) in fig. 5.1 stabilises as we extend them to the

azimuthally-varying variants, which may correspond to the multiple plumes observed in experiments.

Lastly, we shall discuss the singularity in the context of experimental observations. In §2.6.4, we have

interpreted the threshold Ri s at which singularity occurs as the maximum number of swimmers per

unit length a plume can contain. It is a useful interpretation of the system behaviour within the

physical presumption of the work. However, as the mathematical model evolves toward the singularity,

physically, a singular solution is not possible. Rather, it signifies the breakdown of either the parallel

assumption or the dilute assumption. The breakdown of the streamwise invariance, which results in

blips, have already been discussed in §2.6.4. As for the dilute assumption, it may well be invalid near

the centre of the pipe where the volume fraction becomes significant.

5.2.1 Semi-dilute effect

To address the issue of the far-field hydrodynamic interaction between swimmers, as discussed in

§1.3.2, we have highlighted the parameter space where the dilute assumption would start breaking
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down in grey in figs. 2.6a,2.10,2.18. The greyed-out areas represent the parameter regime in which

the volume fraction at the pipe axis is higher than a threshold value of 2.5× 10−2.

As shown by the shaded area, the semi-dilute effect shall also play a role in preventing the singularity as

N(0) becomes very large. As the plume becomes very localised at the central axis where hydrodynamic

interactions between swimmers start to dominate, Denissenko & Lukaschuk (2007) observed that the

thickness of the plume stays roughly the same irrespective of flow rate and swimmer concentration.

However, our scaling analysis in (2.18) suggested that the thickness shall scale with N(0)−2 under

the dilute assumption, which is tending towards zero as N(0) → ∞. Therefore, it is likely that a

semi-dilute effect has prevented N(0) from tending toward infinity and the plume thickness from

further shrinking. If the hypothesis of a universal plume thickness is true, then there exists a universal

local profile N0(R) that can be calculated locally from the semi-dilute effect.

In the previous study by Ishikawa & Pedley (2007a) for a suspension of squirmers, it was shown

that when the ambient flow is stationary, the rotational noise due to hydrodynamic interactions

between randomly positioned swimmers scales with the volume fraction ϕ of the swimmers while the

translational diffusivity decreases. We should note that in Ishikawa & Pedley (2007a), the rotational

noise is purely due to higher-order hydrodynamic interactions in the semi-dilute regime, and not

the swimmer’s inherent rotational randomness. However, as an approximation, we can superpose an

additional rotational diffusion due to swimmer-swimmer interactions. Therefore, although N(0) → ∞

was found at Ri → Ri s due to decreasing Drr at high shear, in reality, the higher-order hydrodynamic

interactions at such a high N(0) might increase the effective rotational diffusivity dr at the pipe

axis. An increase in dr will decrease |S| and the magnitude of the ratio ⟨pr⟩0/Drr,0 locally (c.f. fig.

2.9), which might help attenuate the singularity. However, previous work such as Ishikawa & Pedley

(2007a) was only performed in a quiescent ambient flow. The issue of how the effective dr, and thereby

⟨pr⟩0 and Drr,0, would change with the volume fraction in the presence of ambient shear has not

been very well understood. In this respect, it would be interesting to see how additional modelling

incorporating the semi-dilute effect would modify the plume in the future. Perhaps it can also shed

light on the universal plume hypothesis.

5.3 Wall effect

It is well known that many biological swimmers tend to aggregate at the boundary in a confined

suspension. The subject of how biological swimmers interact with an impenetrable surface has been
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under intense investigation recently. Individually, swimmers’ interaction with the surface depends

on a range of factors, including but not limited to their geometry (e.g. Chen & Thiffeault, 2021),

interactions with neighbouring swimmers (e.g. Drescher et al., 2009), ciliary contact (Kantsler et al.,

2013) and their swimming mechanism (Spagnolie & Lauga, 2012). Some of these are the results of

hydrodynamic interactions or nematic alignment with the boundary, but biological responses from the

swimmers may also play a part in their aggregation at a surface (e.g. biofouling). Therefore, capturing

the physical reality of swimmers at the boundary is a matter of understanding the microscopic

dynamic of individual swimmers and their biology.

This work considers the swimmer suspension at the macroscopic level, in which swimmers are

considered as a continuum via statistics. In this framework, we are not as concerned about how

individual swimmer interacts with the boundary hydrodynamically or align with the boundary as

how they swim towards the boundary in the first place. In other words, the current framework can

capture wall-ward transport phenomena such as the high-shear trapping mechanism (Bearon & Hazel,

2015; Vennamneni et al., 2020) or the wall accumulation due to a no-flux boundary condition (Ezhilan

et al., 2015) at the system’s lengthscale, but not the microscopic interactions with the boundary that

arise at the swimmers’ lengthscale. Nevertheless, if one can represent these interactions as an extra

term in the Smoluchowski equation or a suitable boundary condition in the (x,p)-space, it might offer

a way account for the microscopic wall-effect in the macroscopic framework. For example, the recent

work by Chen & Thiffeault (2021) might offer some insight into how the geometry of a swimmer

can be turned into a boundary condition in the Smoluchowski equation. After obtaining a suitable

boundary condition for the Smoluchowski equation, it would be interesting to investigate how the

transformation in §4.4 can be applied at the boundary in future work.

Lastly, it is worth noting that a no-flux boundary condition in the Smoluchowski equation is different

from a no-flux boundary in the approximated transport equation in §4.5. Although both conditions

only concern the x-space flux, the swimming term PespΨ implies that the x-space flux is p-dependent

in the Smoluchowski equation. For example, in the absence of translation diffusion (DT = 0), the

Smoluchowski equation would become ill-posed unless the wall-normal component of ⟨p⟩f is vanishing

(c.f. Ezhilan et al., 2015), while the transport equation would remain well-posed with the inclusion

of an approximated dispersion tensor. The wall accumulation and the boundary-layer-like swimmer

density profile near a no-flux wall have already been thoroughly discussed by Ezhilan et al. (2015),

but it would be interesting to investigate further the physics of wall accumulation in the light of the

transformed equation in future work.
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Chapter 6

Conclusion

6.1 Summary of Thesis Achievements

In this thesis, we have modelled a suspension of gyrotactic microswimmers in a continuum framework.

Much of the work focused on the formation of plumes and the subsequent blips in a dilute suspension

using different transport models for the swimmers. We have compared their consequences in terms of

the bifurcation and stability of the steady solution. Using the prediction of blips, we have concluded

that the earlier Fokker-Planck model suggested by Pedley & Kessler (1990) is not as accurate as

the later application of the generalised Taylor dispersion theory on gyrotactic swimmers (Manela &

Frankel, 2003; Hill & Bees, 2002). The superiority of the GTD model is consistent with the recent

experimental comparison of the two models in Croze et al. (2017).

The investigation into the formation of plumes and blips also led to the discovery of the complex

bifurcation of the suspension in a verticle cylindrical pipe. At a low Richardson number, which

represents the number of swimmers in the system or the pipe size, we have shown a threshold Ris at

which the system tends towards a singular solution at the central axis of the pipe. The singularity is

shown to be an extension of Kessler (1986), in which the concept of a limited capacity of swimmers

in a single axisymmetric and steady plume was proposed. Our extension suggested that while it may

be locally true, another lower branch of steady solutions can also exist beyond the Ris threshold, as

long as the flow rate is low enough.

Furthermore, at an even higher Richardson number, we have shown a sequence of imperfect transcritical

bifurcations of the uniform solution. Although the computed solutions remain axisymmetric, the

bifurcating solutions strongly indicate the possibility of multiple plumes. Effectively, the analysis
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has established how the increase in Richardson number promotes the formation of a bioconvective

pattern with multiple plumes from a single plume.

While it is evident that the GTD model is more accurate than the ad hoc Fokker-Planck model,

the GTD model is also limiting in applications. As we have demonstrated in chapter 4, it cannot

capture the shear-trapping flux due to an inhomogeneous shear. It also cannot be used in a straining-

dominant flow. To this end, we have proposed a new transport model for active Brownian particles

(which are swimmers with negligible hydrodynamic contribution) based on the local approximation

of an exact transformation of the Smoluchowski equation. The new model can capture the shear

trapping phenomenon while being as accurate as the GTD model, especially in a weakly or non-

gyrotactic swimmer suspension. It can also potentially overcome the limitation of the GTD model in

a straining-dominant flow.

Along with the new model, we have also discovered many other drifts and dispersions that can

arise from the interactions between the particles’ orientational dynamics and other terms in the

Smoluchowski equation, such as the unsteadiness in the orientational space due to an unsteady local

flow field, the passive advection by the flow and the translational diffusion. These extra terms are

highly non-trivial and may contribute to unexpected drifts or dispersions not foreseen by previous

models. Further investigation into these terms may unveil more novel physics of swimmer/ABP

suspensions.

6.2 Future Work and Outlook

6.2.1 Outstanding issues in the modelling of gyrotactic plumes and blips

Despite the progress made by this work in the theory describing gyrotactic plumes and blips, there is

much work to be done to fully and accurately model the phenomenon. In the light of the transformation

introduced in chapter 4, we have briefly shown how it might impact the conclusion drawn in chapters 2

and 3. Still, we have not recomputed the streamwise stability of the plume using the new model.

Perhaps a better way to predict the blips is to directly linearise the Smoluchowski equation and

compute the stability of the solution in §5.1. Although it will be more computationally expensive, it

is feasible and can provide a more accurate result. As mentioned in §5.2, one of the challenges in

predicting the blips is that theym can arise from an unsteady plume evolving towards the singularity.

This challenge can be overcome by invoking a quasi-steady assumption and using the temporary

142



plume structure as the basic state for the streamwise stability analysis.

Another important aspect that has been neglected in the current work is the shape of the swimmers.

In chapters 2 and 3 and §5.1, the swimmers are assumed spherical to simplify the work. However, as

shown in chapter 4, the inhomogeneous shear may also contribute an extra shear trapping flux when

the swimmers are elongated. In reality, neither Chlamydomonas nor Dunaliella species are spherical

(although there is a lack of data on the shape of Dunaliella species). Therefore, it is important to

include and study the effect of swimmers’ shape in future work.

6.2.2 Future development of the local approximation model

As pointed out by a recent review (Bees, 2020), there is a gap between discrete modelling of individual

swimmers/particles and their equivalent modelling at the continuum level. In particular, the restriction

on the type of flow field imposed by the generalised Taylor dispersion model needs to be overcome to

improve our understanding of the transport of swimmer/ABP suspension. The model presented in

chapter 4, which is applicable to any flow field, is perhaps the most important contribution of this

thesis. However, throughout the thesis, the analysis we have performed are predominantly in pure

shear flows. We have yet to implement the new model in a straining-dominant flow. Therefore, the

natural next step in developing the new model is to implement it in a general flow field that includes

straining flow. The convective cell of Bearon et al. (2011) might be a good example to put the model

to the test.

While the examples of chapter 4 focused mainly on gyrotactic ABPs, the framework presented can also

be extended to other types of taxes, such as phototaxis, as well as other types of particle motions, such

as the orientation-dependent sedimentation of elongated particles (e.g. Ardekani et al., 2017; Clifton

et al., 2018; Lovecchio et al., 2019). As mentioned in §1.4.2, as long as the taxis is an effective torque,

it can be included in the operator Lp. Then, the framework presented in chapter 4 to transform and

locally approximate the orientational distribution will also be valid. Hence, the potential applications

of the framework are vast.

6.2.3 Extending beyond the dilute assumption

The formation of the singular plume solution shows that there is always a possibility where swimmers

self-aggregate and break the dilute assumption. Therefore, the current dilute framework needs to
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be extended to the semi-dilute regime. To this end, pioneering work by Ishikawa et al. (2006, 2007)

and Ishikawa & Pedley (2007a,b) based on discrete Stokesian simulation might offer a way to correct

for the hydrodynamic interactions at the continuum level, as discussed in §5.2.1. Another important

challenge to overcome is the interaction with the wall, which has already been thoroughly discussed

in §5.3. Much work is still needed to incorporate these far- and near-field hydrodynamic interactions

into the new model.

6.2.4 Applying the work to bioconvection and beyond

One of the objectives of the thesis is to better model and analyse the bioconvection of gyrotactic

microswimmers. While we have not directly modelled the phenomenon, the work on gyrotactic plume,

especially chapter 3, has provided some important foundational knowledge on gyrotactic bioconvection.

To better connect this work on gyrotactic plumes with bioconvection, the work in chapter 3 shall be

extended azimuthally, either with the new model or with the Smoluchowski equation. As mentioned

in §5.2, one shall seek a stable solution with multiple plumes using the same continuation technique.

The suggested analysis might provide crucial hints on the route toward a fully developed bioconvection

from a dynamical system perspective. Also, previous predictions on the wavelength are based on

outdated transport models, such as the primitive model (Ghorai & Hill, 2000, 2007; Ghorai et al.,

2015) or the Fokker-Planck model (Bees & Hill, 1999). The suggested analysis will likely give a more

accurate prediction of the horizontal wavelength of gyrotactic plumes in a deep suspension. One may

also further extend the analysis to include the finite-depth effect, similar to how Bees & Hill (1998)

extended the previous analysis.

As shown by this work, gyrotactic bioconvection is a perplexing phenomenon and embodies many

aspects of biophysics, ranging from the suspension dynamics, the high and low Reynolds number

fluid mechanics to the microscopic biomechanics of the individual swimmers. Studying bioconvection

helps us further the knowledge on these topics, which can then be applied to many applications,

such as the gyrotactic trapping and patchiness of phytoplankton in the ocean and the modelling of

biofuel production. This work has advanced the physics of bioconvection from the dynamical system

perspective and has overcome the challenge of developing a transport model applicable in a general

flow field. However, our work has also exposed many more challenges ahead, such as the tendency

for a gyrotactic suspension to run into the semi-dilute regime due to the singularity. The accurate

modelling of bioconvection remains an important milestone in the field of active suspension.
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Appendix A

Detailed formulae for the stability analysis

of the gyrotactic plume

A.1 Linearised equations for perturbed average orientation

and diffusivity

In (2.10e) the values of D′
m and ⟨p⟩′ are required. To obtain these values, we first need to compute

g(p)′ with a perturbation of Ω′:

∇p ·
[︃
λ[k̂− (k̂ · p)p]g′ + 1

2
Ω ∧ pg′

]︃
−∇2

pg
′ = −∇p ·

[︃
1

2
Ω′ ∧ pg

]︃
. (A.1)

Then, ⟨p⟩′ can be computed with g(p)′ by

⟨p⟩′ =
∫︂
Sp

pg′(p) d2p. (A.2)

For model F, D′
F is obtained easily by (Hwang & Pedley, 2014b)

D′
F = τ(⟨pp⟩′ − ⟨p⟩⟨p⟩′ − ⟨p⟩⟨p⟩′). (A.3)

However, for model G, the process is more involved, as D′
G not only depends on Ω′, but also G′ = ∇u′.

Hence,

D′
G =

∫︂
Sp

[︃
b′
GTDp+

b′
GTDbGTD

g
· G +

bGTDb
′
GTD

g
· G
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−bGTDbGTDf
′

g2
· G +

bGTDbGTD
g

· G′
]︃sym

d2p, (A.4)

where the perturbed b′
GTD due to G′ (and Ω′) is needed. We can compute b′

GTD by solving

∇p · [ṗb′
GTD]−∇2

pb
′
GTD − b′

GTD · G = −⟨p⟩′g + (p− ⟨p⟩)g′ + bGTD · G′

−∇p ·
[︃
1

2
(Ω′ ∧ p)bGTD

]︃
. (A.5)

In practice, the left-hand side of (A.1) and (A.5) is the same linear operator used in (2.2d) and

(1.25a), while their right-hand side can be viewed as different forcing terms. Therefore, g′ and b′
GTD

can be obtained by imposing the different forcing term on the right-hand side of (A.1) and (A.5),

similarly to the framework of Hwang & Pedley (2014a,b).

A.2 Equations for linear stability

Using the framework in Appendix A.1, ⟨p⟩′ and D′
m can be written as linear combinations of the

components of Ω′ (models F and G) and G′ (model G), hence also as a linear combination of u′. This

allows us to write ⟨p⟩′ and D′
m as follows:

⟨pr⟩′ =
ξ1
dr
(
∂u′r
∂z

− ∂u′z
∂r

); (A.6a)

⟨pψ⟩′ =
ξ2
dr
(
∂u′r
∂z

− ∂u′z
∂r

); (A.6b)

⟨pz⟩′ =
ξ3
dr
(
1

r

∂u′z
∂ψ

−
∂u′ψ
∂z

) +
ξ4
rdr

(
∂(ru′ψ)

∂r
− ∂u′r
∂ψ

); (A.6c)

D′
rr =

1

dr
(ξ5

∂u′z
∂r

+ ξ6
∂u′r
∂r

+ ξ7
∂u′ψ
∂r

+ ξ8
∂u′z
∂z

+ ξ9
∂u′r
∂z

+ ξ10
∂u′ψ
∂z

+
1

r
(ξ11

∂u′z
∂ψ

+ ξ12(
∂u′r
∂ψ

− u′ψ) + ξ13(
∂u′ψ
∂ψ

+ u′r))); (A.6d)

D′
rz =

1

dr
(ξ14

∂u′z
∂r

+ ξ15
∂u′r
∂r

+ ξ16
∂u′ψ
∂r

+ ξ17
∂u′z
∂z

+ ξ18
∂u′r
∂z

+ ξ19
∂u′ψ
∂z

+
1

r
(ξ20

∂u′z
∂ψ

+ ξ21(
∂u′r
∂ψ

− u′ψ) + ξ22(
∂u′ψ
∂ψ

+ u′r))); (A.6e)

D′
rψ =

1

dr
(ξ23

∂u′z
∂r

+ ξ24
∂u′r
∂r

+ ξ25
∂u′ψ
∂r

+ ξ26
∂u′z
∂z

+ ξ27
∂u′r
∂z

+ ξ28
∂u′ψ
∂z

+
1

r
(ξ29

∂u′z
∂ψ

+ ξ30(
∂u′r
∂ψ

− u′ψ) + ξ31(
∂u′ψ
∂ψ

+ u′r))), (A.6f)
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where ξ1−4 are the same for models F and G, but ξ5−31 are different for models F and G.

Application of the normal-mode assumption of (2.11) to (2.10), we get

iαûz +
1

r

∂rûr
∂r

+
1

r
imûψ = 0, (A.7a)

iωûz + LOSûz +
∂U

∂r
ûr = −iαp̂− Ri n̂, (A.7b)

iωûr + LOSûr = −∂p̂
∂r

+
1

Re
(− ûr

r2
− 2im

r2
ûψ), (A.7c)

iωûψ + LOSûψ = −1

r
imp̂+

1

Re
(− ûψ

r2
+

2im

r2
ûr), (A.7d)

iωn̂ + Lnn̂

+
∂N

∂r
ûr + (

∂N

∂r
+N

∂

∂r
+
N

r
)(
iαξ1
dr

ûr −
ξ1
dr

∂ûz
∂r

)

+ iαN
ξ2
dr
(iαûr −

∂ûz
∂r

) +
imN

r
(
ξ3
dr
(
im

r
ûz − iαûψ) +

ξ4
rdr

(
∂rûψ
∂r

− imûr))

=
1

d2r

[︃
(
1

r

∂N

∂r
+
∂N

∂r

∂

∂r
+
∂2N

∂r2
)

(︃
ξ5
∂ûz
∂r

+ ξ6
∂ûr
∂r

+ ξ7
∂ûψ
∂r

+ iα(ξ8ûz + ξ9ûr + ξ10ûψ) +
im

r
(ξ11ûz + ξ12ûr + ξ13ûψ) +

1

r
(−ξ12ûψ + ξ13ûr)

)︃
+ iα

∂N

∂r

(︃
ξ14

∂ûz
∂r

+ ξ15
∂ûr
∂r

+ ξ16
∂ûψ
∂r

+ iα(ξ17ûz + ξ18ûr + ξ19ûψ)

+
im

r
(ξ20ûz + ξ21ûr + ξ22ûψ) +

1

r
(−ξ21ûψ + ξ22ûr)

)︃
+

im

r

∂N

∂r

(︃
ξ23

∂ûz
∂r

+ ξ24
∂ûr
∂r

+ ξ25
∂ûψ
∂r

+ iα(ξ26ûz + ξ27ûr + ξ28ûψ)

+
im

r
(ξ29ûz + ξ30ûr + ξ31ûψ) +

1

r
(−ξ30ûψ + ξ31ûr)

)︃]︃
, (A.7e)

where

LOS = iαU − 1

Re

(︃
1

r

∂

∂r
(r
∂

∂r
)− α2 − m2

r2

)︃
, (A.7f)

and

Ln = (
⟨pr⟩0
r

+
∂⟨pr⟩0
∂r

) + ⟨pr⟩0
∂

∂r
+ iαU + iα⟨pz⟩0 +

im⟨pz⟩0
r

− 1

dr

[︃
1

r

(︃
Drr,0

∂

∂r
+ iαDrz,0 + 2imDrψ,0

∂

∂r
+ im

∂Drψ,0

∂r
− 2αmDψz,0

)︃
+

∂Drr,0

∂r

∂

∂r
+ 2iα

∂Drz,0

∂r
+ iαDrz,0

∂

∂r

+ Drr,0
∂2

∂r2
− α2Dzz,0 −

m2

r2
Dψψ,0

]︃
. (A.7g)
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The boundary conditions at the wall are

ûz|r=1 = ûr|r=1 = ûψ|r=1 = 0 (A.7h)

and

Nûr +N⟨pr⟩′ + ⟨pr⟩0n̂ =
1

dr

(︃
D′
rr

∂N

∂r
+Drr,0

∂n̂

∂r
+ iαDrz,0n̂+ im

Drψ,0

r
n̂

)︃
. (A.7i)

The compatibility conditions at the centre of the pipe are

ûz = ûr = ûψ = p̂ =
∂n̂

∂r
= 0 when m ⩾ 2; (A.7j)

ûr + iûψ = 0, ûz =
∂n̂

∂r
= p̂ = 0 when m = 1; (A.7k)

ûr = ûψ = 0,
∂ûz
∂r

=
∂n̂

∂r
= 0 when m = 0. (A.7l)

These equations can now be discretised in the radial direction and solved as an eigenvalue problem,

as mentioned in §2.3.
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Appendix B

Transient dynamics of sheared ABP

suspension under transformation

This appendix shows the transient dynamics of the ABP suspensions in §4.6. The original intent of

the author was to show the evolution of the drifts and dispersions from the exact transformation and

the local approximation as movies. However, given the constraint of the format of this thesis, the

snapshots at some choosen time are shown instead in this appendix.

The figures of these snapshots are shown in the next few pages.
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Figure B.1: The transient evolution of the particle distribution n(x, t) (c.f. fig. 4.2a) and balancing
of terms in (4.34) in comparison to their respective local approximation (c.f. fig. 4.3a) in a
suspension of spherical and gyrotactic particles (β = 2.2, α0 = 0) subjected to a vertical shear flow
W (x) = − cos (πx)− 1 with Pes = 0.25 and Pef = 1. The bottom-left panel in each subfigure is the
zoomed version of the panel on the right.
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Figure B.2: The transient evolution of the particle distribution n(x, t) (c.f. fig. 4.2b) and balancing of
terms in (4.34) in comparison to their respective local approximation (c.f. fig. 4.3b) in a suspension
of non-spherical and gyrotactic particles (β = 2.2, α0 = 0.31) subjected to a vertical shear flow
W (x) = − cos (πx)− 1 with Pes = 0.25 and Pef = 1. The bottom-left panel in each subfigure is the
zoomed version of the panel on the right.
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Figure B.3: The transient evolution of the particle distribution n(x, t) (c.f. fig. 4.2c) and balancing of
terms in (4.34) in comparison to their respective local approximation (c.f. fig. 4.3c) in a suspension
of non-spherical and weakly gyrotactic particles (β = 0.21, α0 = 0.31) subjected to a vertical shear
flow W (x) = − cos (πx)− 1 with Pes = 0.25 and Pef = 1.
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Figure B.4: The transient evolution of the particle distribution n(x, t) (c.f. fig. 4.2d) and balancing of
terms in (4.34) in comparison to their respective local approximation (c.f. fig. 4.3d) in a suspension
of non-spherical and non-gyrotactic particles (β = 0, α0 = 0.31) subjected to a vertical shear flow
W (x) = − cos (πx)− 1 with Pes = 0.25 and Pef = 1.
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Figure B.5: The transient evolution of the particle distribution n(x, t) (c.f. fig. 4.7a) and balancing of
terms in (4.40) in comparison to their respective local approximation (c.f. fig. 4.8a) in a suspension
of non-spherical and weakly gyrotactic particles (β = 2.2, α0 = 0.31) subjected to a horizontal shear
flow U(x) = cos (πz) with Pes = 0.25 and Pef = 1. The bottom-left panel in each subfigure is the
zoomed version of the panel on the right.
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Figure B.6: The transient evolution of the particle distribution n(x, t) (c.f. fig. 4.7b) and balancing of
terms in (4.40) in comparison to their respective local approximation (c.f. fig. 4.8b) in a suspension
of non-spherical and weakly gyrotactic particles (β = 0.21, α0 = 0.31) subjected to a horizontal shear
flow U(x) = cos (πz) with Pes = 0.25 and Pef = 1.

165



166



Appendix C

The dependency of shear trapping flux on

the second derivative of the velocity field

For gyrotactic swimmers, the corresponding orientational dynamics, as represented by Lp in (4.2),

can be rewritten into two parts,

Lp(x, t)a(p) = PefGij(x, t)LGp,ija(x, , t;p) + Lhpa(x, t;p), (C.1)

in which Gij(x, t)LGp,ij = (Ω(x)∧p)/2+α0p ·E · (I −pp) is the flow field dependent part (i.e. Jeffrey

Orbit), while Lhp = β[k − (k · p)p] −∇2
p is the spatially homogeneous part of the operator. Here,

a(x, t;p) can be any arbitrary but continuous function in p, Gij = ∂xiuj and the Einstien summation

of subscripts i, j and k are implicitly implied. If one take the x-space gradient of Lpg(x, t;p) = 0, in

which g(x, t;p) is the homogeneous solution at each (x, t), then

Pef
∂Gi,j

∂xk
LGp,ijg + Lp

∂g

∂xk
= 0. (C.2)

Here, we define the second derivative of the velocity field , a third order tensor, as Hkij(x, t) =

∂xk∂xiuk(x) such that the above can be rewritten as

PefHkij(x)LGp,ijg + Lp∂xkg = 0. (C.3)

Now, we define a new function hij(x, t;p) in p-space, where

Lphij(x, t;p) = −LGp,ijg(x, t;p), (C.4)
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and ∫︂
Sp

hij(x, t;p)d
2p = 0. (C.5)

Therefore, by substituting hij into (C.3) and inverting the differential operator Lp, one can get

PefHkij(x, t)hij(x, t;p) = Lp∂xkg. (C.6)

Following a similar procedure as §4.4, we multiply the above equation by p and take the p-space

integral again to get

PefHkij(x, t)⟨p⟩h,kij = ∂xk⟨pxk⟩g = ∇ · ⟨p⟩g, (C.7)

where we define

⟨p⟩h,kij(x, t) =
∫︂
Sp

pkhijd
2p. (C.8)

Now, we can rewrite (4.21e) as

Lpfg,c = g∇ · ⟨p⟩g − p · ∇g = PefHkij(⟨p⟩h,kijg − pkhij) (C.9)

which also imply that Vg,c scales with the second derivative of velocity PefHkij. In cases where the

flow is parallel, it implies that Vg,c is proportional to the gradient of shear S ′.
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Appendix D

Proof of permission to reuse figures

Fig. 1.2e is reproduced from Drescher et al. (2011), in which the authors retains copyright to the

article and the National Academy of Sciences of the United States of America holds copyright to

the collective work and retains an exclusive License to Publish. Permission is not required to reuse

original figure for noncommercial and educational use.

Fig. 1.2f is reproduced from Guasto et al. (2010). Permission was granted by the publisher, American

Physical Society, and the lead author, Prof. Jeffery S. Guasto, to reuse the figure in this thesis. The

proves of permission are enclosed in the next few pages.
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