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Abstract—This paper presents a novel FPGA-based switch
design that achieves high algorithmic performance and an
efficient FPGA implementation. Crossbar switches based on
virtual output queues (VOQs) and variations have been rather
popular for implementing switches on FPGAs, with applications
to network-on-chip (NoC) routers and network switches. The
efficiency of VOQs is well-documented on ASICs, though we
show that their disadvantages can outweigh their advantages
on FPGAs. Our proposed design uses an output-queued switch
internally for simplifying scheduling, and a queue balancing
technique to avoid queue fragmentation and reduce the need
for memory-sharing VOQs. Our implementation approaches the
scheduling performance of the state-of-the-art, while requiring
considerably fewer FPGA resources.

Index Terms—FPGA, switch, virtual output queues, output-
queued, crossbar, scheduling algorithms, queue balancing

I. INTRODUCTION

Full-interconnection could be considered as one of the fun-
damental and most challenging problems in computer science,
appearing from low-level circuits to higher-level applications
including neural networks. The challenges come from the fact
that the possible paths in a fully-interconnected system are
O(P 2), where P is the number of inter-connected entities.
The scale of this number directly impacts both software
and systems engineering, and different techniques exist for
attempting to make the best use of silicon and cycles.

Switch designs are an integral part in FPGA designs.
They are used inside the programmable logic for accessing
different memories and peripherals from multiple workers,
as well as for interfacing with input/output devices, such as
for implementing network switches or stacks [1], or commu-
nicating with other FPGAs. In order to achieve scalability
for a higher number of entities, hierarchical approaches try
to eliminate hardware complexity from centralised complex
switch architectures. Even with hierarchical switch designs,
efficient switch architectures of a lower radix (number of ports)
are still important as building blocks [2]. Such hierarchical
approaches also include network-on-chip (NoC) designs [3],
which still rely on switches of a lower radix (NoC routers),
with some performance trade-offs [4].

In hardware, such as for network switch implementations,
the main principle behind the research in high-performance
switching is to try to temporarily rearrange the packets in
time, to optimise the efficiency of more primitive interconnects
such as crossbars. Generally, the main challenge with the
latest FPGA-based switches is that the better the scheduling
performance they offer, the more hardware complexity is
required, becoming less versatile and scalable.

This paper presents an FPGA-based switch architecture that
exhibits high scheduling performance, while having similar
FPGA design attributes as simpler designs, at a resource
utilisation considerably less that the state-of-the-art. Our tar-
get specification is low to medium radix (number-of-port)
switches with high scheduling performance, and an efficient
full-throughput (output-per-cycle) FPGA implementation. The
main contribution is the novel queue balancing technique that
achieves an algorithmic performance close to the optimal for
the studied traffic pattern, but with less resources than the
state-of-the-art on FPGAs [5].

II. BACKGROUND AND RELATED WORK

A. Crossbars and Head-of-Line (HOL) Blocking

The crossbar is a simple and popular interconnect for both
FPGAs and ASICs. It consists of wires having crosspoints
everywhere there is an input-output port combination, resulting
in a crosspoint complexity of PI×PO, where PI is the number
of input ports and PO the number of output ports. On the
crosspoints there are smaller ”switches” which are logically
equivalent to 2-to-1 multiplexers. On FPGAs, crossbars can
logically be implemented with a PI − to− 1 multiplexer per
output port [6].

Its main functionality is to apply permutations of its input,
hence the potential of collisions (head-of-line blocking), that
occurs when two entities send a packet to the same entity
simultaneously. Thus, more complex switch architectures are
required to overcome this limitation, such as by temporarily
rearranging the forwarding of the incoming packets.

B. Input-Queued Crossbar

The input-queued switch uses virtual output queues (VOQs)
before the crossbar. There are PI × PO queues, where PI is
the number of inputs and PO the number of outputs, to allow
temporarily holding any incoming packets without collisions.
Each VOQ corresponds to every input-output combination.

Figure 1(a) shows how VOQs are used in high-level for a
switch of 4 input ports. A scheduling algorithm is responsible
for the dequeuing decisions. One advantage of the input-
queued crossbar is that each group of VOQs can be represented
by a single memory, because there is up to one write and up
to one read from each group per cycle.

The input-queued switch is one of the most popular switch
architectures on FPGA designs. There are works that focus on
the implementation efficiency of its scheduling algorithm [7],
[8], as well as its memory-sharing potential [2]. The research
on scheduling algorithms for VOQs has been rather deep
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Fig. 1. Switches using different traditional queuing techniques

outside the FPGA domain, due to the importance of scheduling
performance and complexity, as well as the performance
requirements under different traffic types.

One fundamental limitation of input-queued switches is
that only one packet per VOQ group can be extracted per
cycle. Another disadvantage is the queue fragmentation, as the
distribution of free space depends on the nature of the traffic.

Finally the most important drawback for FPGA implemen-
tation could be considered the scheduling algorithm, which
can be computationally expensive. The challenge is that
for performing well there still need to be a multiple-cycle
scheduling step to adequately approximate maximal matching
[9]. On hardened network switches this is not a concern,
such as with an ASIC implementation that reconfigures the
crossbar once every 9 cycles [10]. This is because of the
much higher operating frequency and the wider packets, which
can be sent progressively in smaller flits. On an equivalent
FPGA implementation, although a high operating frequency
is achieved from splitting scheduling across multiple cycles,
the throughput is reduced considerably [5].

C. Output-Queued Crossbar

The output-queued crossbar is considered the best perform-
ing switch algorithmically [11]. As illustrated in the example
of figure 1(b), there is a crossbar and only one queue per
input port, however, these operate at PI times the base op-
erating frequency. This speedup (or equivalent workarounds)
is necessary to be able to serve all requests one-by-one, and
essentially remove HOL blocking from the crossbar. This is
widely accepted as expensive and non-scalable [5], [12].

There are optimisations that use a lower speedup [11]. Still,
requiring a logic speedup is less desirable on FPGAs [5], due
to the restricted operating frequency when compared to ASICs
overall, as well as the more homogeneous timing behaviour
across the different FPGA resources [13], [14]. Hipernetch [5]
is a relatively recent FPGA-based solution that uses a fully-
pipelined structure that emulates an output-queued crossbar,
with its high resource utilisation as its main drawback.

D. Output-Queued Switch (Without Memory Sharing)

A simpler variation of the latter design is the output-queued
switch, which achieves the same performance as the output-
queued crossbar in terms of average packet latency, without
any speedup. There are output queues in the same organi-
sation as virtual output queues, i.e. each port de-multiplexes
the packet to PO queues according to its destination. The
difference to VOQs is that the output arbiters multiplex
between queues destined directly for the output port, rather
than between queues of the same input port. This is visualised
in figure 1(c).

One consideration has to do with the memory organisation
of the switch, which becomes a concern for scalability, as some
configurations require PI×PO queues. In literature, an output-
queued switch usually refers to also having a memory sharing
technique, sometimes similar to VOQs. When compared to the
input-queued switch, one notable advantage of this approach
is that it simplifies the scheduling complexity, as the arbiter
decisions are independent of one another. This is because no
crossbar is involved for limiting to passable permutations once
the packets are stored in the queues.

On FPGAs, this is not a common network switch ar-
chitecture currently [2]. However, an equivalent generalised
approach without memory sharing is used in router designs
on FPGA-based NoCs [15], also known as the split-merge
switch [16].

III. PROPOSED SOLUTION

Our solution uses an output-queued switch to simplify
scheduling decisions and improve scheduling performance, in
combination with a queue balancing mechanism for overcom-
ing memory fragmentation with little hardware overhead.

One shortcoming of the output-queued switch is the reduced
efficiency of the queues, which can cause fragmentation for
certain traffic. For uniform Bernoulli arrivals this is not a
problem, because the probability of each queue receiving a
packet is equal among all queues, resulting in uniform queue
occupancy. However, under uneven traffic such as with bursts,
it is helpful to have a mechanism to balance the queues.



The idea is to add a rotator near the input ports, to create
a round-robin effect for queue-balancing, such as from bursts.
Note that there is no balancing guarantee, as it rotates all
inputs based on a cycle counter, and alternative designs for
randomising the input packets would also be appropriate.
Figure 2 presents this approach in high-level.
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Fig. 2. Input rotation for load balancing, and valid bit queues for reproducing
the correct packet order

If plain round-robin arbiters are controlling the queue mul-
tiplexers, one issue would be that the order between packets
arriving from a source to a destination is partially lost. This
is because the rotation effect can land a packet in multiple
queues (as the number of inputs (PI )). Thus, a workaround
is required, that allows the arbiters to prioritise based on the
arrival time.

As shown in figure 2, the required order information can
be obtained by an additional set of PO queues, each holding
packets of PI bits. Each packet is holding bits corresponding to
the enqueue signals of each output queues, when grouped per
output port rather than per input port (as per output-queuing),
that have arrived on the same cycle. Each output arbiter holds
the head packet of its corresponding queue until it extracts all
packets that arrived together on that cycle, represented by this
head packet. On each cycle, when no packet goes to a port,
then no packet is stored in the valid bit queue of that port.
In this way, the arbiters can expect at least one valid bit per
valid bit packet, and no idle cycles or valid bit queue space
is wasted for low input rates. The queue depth requirement
for each valid bit queue is PI ∗ depthFIFO, to be able to
handle the worst case of full utilisation with packets arriving
on different cycles.

IV. EVALUATION

In order to evaluate our solution and the queue balancing
approach, we compare it against a selection of alternative
monolithic (non-hierarchical) switch architectures. First, the
scheduling performance is evaluated using simulations. The

simulation experiments (sections IV-A and IV-B), low-level
implementation details are abstracted, meaning that there is 0
processing latency, and the packet-size, operating frequency
and other details are not used. Then we proceed with FPGA-
based implementation (section IV-C) to investigate their re-
source requirements and timing characteristics.

The list of compared switches goes as follows: (1) input-
queued that uses VOQs with dual round-robin matching, which
is a typical scheduling algorithm (DRRM [9]), (2) “output-
queued”, (3) “output-queued with rotator” for load balancing
and (4) Hipernetch [5], which is a highly-optimised FPGA-
based network switch implementation, and is functionally
equivalent to the ”output-queued crossbar” of section II-C.
Note that two variations of (1) are studied, First, (1a) the input-
queued ”DRRM (1-iter)” switch only performs a single itera-
tion of DRRM, while (1b) “DRRM” uses a log2(PI)-iteration
version of the scheduling algorithm for better scheduling
performance [17].

For all experiments, we consider a memory organisation
of PI × PO independent queues for all switches, including
the optimal ”output-queued crossbar” (represented by Hiper-
netch) for consistency and simplicity. Any memory sharing
techniques are purposely omitted to also approach the best case
in terms of any related implementation overhead on perfor-
mance. For FPGA implementation, (1b) is not used, since such
iterative algorithms are more challenging to implement within
a single FPGA cycle for yielding full-throughput. In this case,
(1a) can still give insights on (1b) with a hypothetical optimal
scheduler implementation, as the FPGA-based evaluation is
not used here for assessing algorithmic performance.

A. Scheduling Performance (Simulation): Latency

First, we would like to measure the algorithmic performance
of the approaches, independently of the implementation de-
tails and packet size. We adopt the open-source simulation
framework of Hipernetch [5]. Two additional switch models
are developed, the output-queued and the output-queued with
the rotator. Each data point represents an average of multiple
runs, each with 25000 cycles of simulation time. The number
of ports is indicatively set to 16, and each input port produces
a burst of 32 packets on average, with the same average rate
across the ports (uniform bursty traffic).
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Fig. 3. Output-queued switches yield the lowest packet latencies

The first experiment studies the average packet latency, i.e.
the average time a packet stays in the queues in cycles. For
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Fig. 4. Packet loss while varying the input rate and FIFO depth under uniform bursty traffic

this experiment, the queues are conventionally considered of
infinite size, to focus on the weakness of the switches as
scheduling approaches.

As observed from figure 3, the output-queued switch and
the output-queued crossbar perform almost identically, and
achieve the lowest average latency. The input-queued DRRM
switch is a close second, while its single-iteration version is
significantly worse. As a numerical example for 100% input
rate of bursty traffic, the output-queued switches yield an
average latency of 633 cycles, which is 1.2 times lower than
the 738 cycles of DRRM, which is in turn 3.3 times lower
than the 2404 cycles of DRRM with 1 iteration.

Since this assumes infinite queues, the proposed switch with
the rotator is omitted here, as its average-latency performance
is identical to the other output-queued switches.

B. Scheduling Performance (Simulation): Packet Loss

There are applications where packet loss is allowed, such as
in network switches. For instance, the Transmission Control
Protocol (TCP [18]), which is the prominent protocol in
today’s internet, assumes and mitigates packet losses, such
as through acknowledgements and retransmissions. In such
cases, minimising the packet loss rate is crucial for service
and application performance.

On FPGAs it is important to study the impact of packet loss,
as it relates directly to the queue size and organisation. For
example, the main argument for input-queued switches (with
VOQs) is the ability to share memories, reducing the queue
complexity from PI ×PO (quadratic for PI = PO) to PI [2].
However, according to the theoretical switching performance,
we show that it can still be worth using PI × PO queues, but
of a fraction of the size.

Figure 4 illustrates the impact of the queue depth on the
packet loss rate, for five different switching approaches. From
left to right, the switches are sorted according to their ascend-
ing overall performance, starting from a DRRM-based switch
with 1 iteration. The main observation is the rotator effect on
the output-queued switch, which considerably improves the
queue utilisation efficiency. The output-queued switch with
the rotator yields a similar packet loss profile to the output-
queued crossbar (equivalent [5]), which is considered optimal.
The packet loss profile of the output-queued switch without
rotator is very similar to the input-queued switch.

As a numerical example, an input rate of 80% and a FIFO
depth of 32, the output-queued switch improves its packet loss
from 11.7% to 1.3% by including a rotator (9x reduction in

packet loss). An 11.7% packet loss can also be achieved with
an output-queued switch with a rotator with a FIFO depth of
only 7 (4.6x reduction in queue space). Under the same traffic,
a FIFO depth of 32 yields 26% packet loss for DRRM with
1 iteration (20x more than the rotator with the same FIFOs),
and it is closer to our proposed switch with only a single
register per FIFO (32x space reduction) at 26.1% packet loss.
Lowering the memory requirements can be a key to avoiding
BRAM-based implementation using VOQs, which can be a
limiting factor for scalability.

C. FPGA Performance (Implementation)
In order to assess the implementation efficiency of the

compared switches as FPGA designs, they are implemented
from scratch, except with Hipernetch [5], which uses a similar
setup. These implementations work as peripherals on a real
FPGA for validation purposes, but are out-of-context in terms
of any I/O devices, system memories etc. Switches (1), (2)
and (3) feature LUTRAM-based FIFOs with depth equal to 8.
The open source Hipernetch (4) implementation [5] only has
a register per FIFO by default.

The plots (a), (b) and (c) in figure 5 present the imple-
mentation results as reported by Vivado for the Xilinx Alveo
U280 board. As can be observed, the maximal operating
frequency (fmax) is similar between switch implementations
of the same port configuration, except with the input-queued
switch which has a significant overhead in both 8x8 and 16x16
configurations. With respect to the FPGA resources, the look-
up table (LUT) and flip-flop register (FF) utilisation varies
less between different switch sizes, and the difference is more
consistent across different approaches.

The overhead of adding the rotator to the output-queued
switch is rather small, as the fmax drops from 380 to 343
MHz for 8x8, but increases from 188.5 to 202 MHz for 16x16.
Small variations are expected from heuristic-based place-and-
route tools, but the increase in frequency can also be explained
by the addition of pipeline stages from the rotator. In terms of
LUTs and FFs, there is generally a 10% to 19% increase when
adding the (pipelined) rotator. Though, it is still considerably
more efficient than Hipernetch that uses, for example, 59%
more FFs and 44% more LUTs for 16 ports.

Figure 5(d) summarises how the obtained operating fre-
quency translates into the aggregate port bandwidth in billion
bits per second (Gbps). Since all studied approaches produce
an output per cycle [5], the frequency is multiplied by the
studied packet size (256-bit) and number of ports to provide
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the aggregate throughput. As an observation, at around 800
Gbps for both 8 and 16 ports, the aggregate bandwidth is
similar between the switches excluding the input-queued. The
jump to 16 ports approximately halves the operating frequency,
hence the smaller variation in the aggregate throughput. This
means that hierarchical switches using centralised designs as
building blocks are still relevant for scalability [2].

Finally, figure 5(e) presents the port-to-port latencies in
nanoseconds by multiplying the clock period by the latency
of each switch in FPGA cycles. The latency of (1) and (2) is
1 cycle (plus one more for enqueuing a single packet), where
(3) uses a pipelined barrel shifter implementation, resulting
in additional log2(PI) cycles, though further optimisation and
retiming is left as future work. (4) comes with an optimisation
parameter (S). We select two well-performing [5] configura-
tions with S = 3 and 4 for the 8x8 and 16x16 configurations
respectively, that provide a latency of 4 FPGA cycles in both
cases. (2) has the lowest latency, which may be also useful
in certain applications where the single-cycle latency might
be desirable, such as for easier backpressure support, or in
systems where exhaustive scheduling is a requirement, includ-
ing for bursts in some systems interconnects. All switches
here provide relatively low port-to-port latencies, including our
proposal (3), especially when compared with hierarchical and
iterative alternatives which have already been shown to be an
order of magnitude higher than (4) Hipernetch [5].

V. CONCLUSIONS

A novel switch architecture is proposed that approaches the
algorithmic and FPGA-based performance of the state-of-the-
art, but with a considerable reduction in resource utilisation.
It is also demonstrated that the input-queued switches can
be inappropriate for high-throughput FPGA applications, due
to their costly scheduling algorithms and the low theoretical
switching performance. Additionally, queue fragmentation can
reduce the utilisation by tens of times for demanding traffic.
Our rotator-based switch solves the fragmentation issue for
the output-queued switch, while having a small hardware
overhead. Our solution targets monolithic high-performance
designs with a low to medium radix in mind, and for FPGA
use, but can be applied in existing hierarchical designs such
as for implementing routers for network-on-chips (NoCs) and
other switches aiming at scalability.
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