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Abstract

We introduce a general model for suppliers competing for a buyer’s procurement
business. The buyer faces uncertain demand and there is a requirement to reserve
capacity in advance of knowing the demand. Each supplier has costs that are
two dimensional, with some capacity costs incurred prior to production and some
production costs incurred at the time of delivery. These costs are general functions
of quantity and this naturally leads us to a supply function competition framework
in which each supplier offers a schedule of prices and quantities. We show that there
is an equilibrium of a particular form: the buyer makes a reservation choice that
maximizes the overall supply chain profit, each supplier makes a profit equal to their
marginal contribution to the supply chain, and the buyer takes the remaining profit.
This is a natural equilibrium for the suppliers to coordinate on since no supplier
can do better in any other equilibrium. These results make use of a submodularity
property for the supply chain optimal profits as a function of the suppliers available
and build on the assumption that the buyer breaks a tie in favor of the solutions that
give the largest supply chain profit. We demonstrate the applications of our model
in three operations management problems: a newsvendor problem with unreliable
suppliers, a portfolio procurement problem with supply options and a spot market,
and a bundling problem with non-substitutable products.

Keywords: capacity game; supply function; option contract; submodularity;
Nash equilibrium

1 Introduction

We deal with capacity reservation decisions that can also be thought of as purchasing an
option for supply. Capacity reservation can be modeled in a two-stage framework. In the
first stage, before knowing the demand, a buyer reserves a certain amount of capacity by
paying a reservation price. In the second stage, after discovering information about the
actual demand, the buyer decides the supply amount which cannot exceed the reserved
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amount. At this stage, the buyer pays an execution price only for the amount of capacity
that is used.

In this paper, we develop a general framework to study a capacity setting in which
multiple suppliers are competing against each other for a buyer’s procurement business
by offering both reservation and execution prices. From a modeling standpoint, our
framework allows volume-dependent marginal costs (of capacity and production) for the
suppliers, which are consistent with many practical situations despite being rarely studied
in the literature [Cachon, 2003]. For example, capacity investment often involves a one-
off setup cost [Luss, 1982, Van Mieghem, 2003], there may be (dis)economies of scale in
production [Haldi and Whitcomb, 1967, Ha et al., 2011], or in cases where a supplier
manages a portfolio of facilities with heterogeneous technologies the overall cost is far
from linear. This framework includes constant marginal costs and reservation cost only
(i.e., execution cost is zero) as special cases, so it is flexible enough to capture a range of
applications as we will demonstrate in Section 4.

With constant marginal costs, it is plausible to focus on simple contract forms, but
with general cost functions, more sophisticated contract formats may be worthwhile, such
as bids specifying a schedule of prices and quantities (i.e., a supply function). This type
of supply function bid often occurs in practice through the offer of some form of quantity
discount. Competition with function bids is appropriate in a situation where a buyer does
not stipulate a specific bidding format in its Request for Quote (RFQ), so that suppliers
can bid in whatever format they like.

We model this capacity game in a Stackelberg framework, where the suppliers are
leaders and the buyer is a follower. Each supplier has a good understanding of the infor-
mation about all supplier costs and the distribution of the buyer’s demand, but the buyer
may not know the suppliers’ costs. This assumption is appropriate for industries where
the operating environments are more transparent and/or the production technologies are
more mature such as electricity, electronics and semiconductors [Wu and Kleindorfer,
2005, Mart́ınez-de Albéniz and Simchi-Levi, 2009, Anderson et al., 2017].

Within this framework, we first show that given knowledge of the other suppliers’ bids,
it is optimal for each supplier to set execution prices at execution costs and make profits
only through the buyer’s reservation payment. Second, we identify conditions under
which there exists an equilibrium at which the buyer makes a reservation choice that
maximizes the overall supply chain profit, each supplier makes a profit that is equal to
their marginal contribution to the supply chain and the buyer takes the remaining profit.
This equilibrium is of particular interest since it possesses some benevolent properties.
For example, at this equilibrium there is no deadweight loss for the decentralized supply
chain, and it is also the best equilibrium for the suppliers and thus a natural equilibrium
for them to coordinate on. Third, we apply our general framework to a variety of problems
in operations management and demonstrate that our equilibrium analysis holds in a range
of circumstances.

Main contributions. First, we develop a general framework to study a broad class
of capacity games in which the suppliers compete using supply functions and their costs
are two-dimensional and nonlinear. Existing models have focused on problems where
suppliers are restricted to a simple strategy space (i.e., scalar decision variables). To
our knowledge, this paper is the first to study supply function competition in a capacity
reservation setting. Moreover, the framework considered here encapsulates a wide range
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of applications in operations. Second, in this framework, we identify a natural property
that is sufficient for a well-behaved equilibrium; that is, the supply chain optimal profits
are submodular in terms of the set of suppliers available. While the equilibrium is not
new, the result on sufficiency is. Third, we provide two different sets of conditions for
the capacity games under which this submodularity property holds. This result is proved
based on discrete convexity analysis and is of interest in its own right.

Related literature. Our paper studies supplier competition in a capacity reservation
setting. It will be helpful to look in detail at three directly related papers in operations
management. Wu and Kleindorfer [2005] consider an industrial buyer who purchases
supply options from competing suppliers, while having access to an open spot market.
No reservation cost at the suppliers is considered and the buyer’s downward-sloping de-
mand arises from utilization maximization. This demand modeling approach allows the
buyer to rank suppliers by using a price index, which together with the zero reservation
cost assumption leads to a Bertrand type of equilibrium for the suppliers. In contrast,
our model considers a stochastic demand and that the suppliers have a two-dimensional
nonlinear cost. In this case we obtain a Vickrey-Clarke-Groves (VCG) type of equilib-
rium. Mart́ınez-de Albéniz and Simchi-Levi [2009] study a setting where marginal costs
are constants and each supplier chooses a reservation price and an execution price for
their limitless capacity. They show that there may be efficiency loss in equilibrium of up
to 25% of the supply chain optimal profit. Our paper differs from theirs by considering
general cost functions and allowing suppliers to submit function bids. By enlarging the
strategy space of suppliers, we show that when the supply chain optimal profit is sub-
modular (which happens under some commonly studied settings), there is no efficiency
loss and each supplier makes a profit equal to their marginal contributions.

The third related paper is Anderson et al. [2017] (hereafter [ACS17]), which considers
a discrete setting, where each supplier owns a block of capacity and the buyer must
reserve all of a block or none. The general framework that we give here covers this model
as a special case since we can recover their setting by restricting the buyer’s capacity
choice to be either zero or the block size. Equal block sizes are necessary and assumed
in [ACS17] to ensure submodularity of the buyer’s profit, which is then used to establish
an equilibrium result. However, given the supply function bids considered in our model,
equal block sizes are no longer applicable. On the other hand, our use of submodularity
for the supply chain marks a significant difference from [ACS17]. Since the buyer’s profit
depends on supplier bids, which are endogenous decisions, it would not be appropriate
to look for submodularity for the buyer’s profit in our model given the supply function
bids considered. We also note that the discrete framework of [ACS17] with each supplier
having multiple blocks of capacity cannot be used to approximate the continuous functions
here because costs are all tied to individual blocks and there is no way to restrict the
buyer to use blocks in a specific order. Thus, if there are blocks with low costs then
they will be preferred by the buyer. This independence of choice between blocks in their
setting is fundamental in their proofs, so that even where our results appear similar,
they are derived in a different way. Moreover, the equilibrium result they have is quite
fragile and fails for unequal-size blocks (as well as in the extension with each supplier
having multiple blocks), whereas our result holds with general cost functions as long as
the optimal supply chain profit is submodular.

In our model suppliers compete by offering a pair of function bids, which resembles

3



what is studied in the supply function equilibrium (SFE) literature [Klemperer and Meyer,
1989, Anderson and Philpott, 2002, Johari and Tsitsiklis, 2011, Sunar and Birge, 2019].
However, the game type is very different. The key difference is that the SFE literature
does not involve a two-stage buyer decision, with capacity choices first. Another impor-
tant difference is that the SFE literature has finite marginal costs, whereas our model
allows a fixed cost that applies only when reservation or execution amounts are greater
than zero. The consequence is that we need to consider the set of suppliers selected by
the buyer, which is not a concern in the SFE literature.

Finally, we can compare our model with VCG models [Vickrey, 1961, Rothkopf et al.,
1990]. The equilibrium profit allocation we obtain is of VCG style, but there is a fun-
damental difference: the VCG models take a mechanism design perspective in which the
buyer selects bids that maximize system welfare, and pays according to each bidder’s
contribution. With this setup the equilibrium result is for bidders to bid truthfully and
the auction result is efficient. The model we propose is a pay-as-bid auction with no
freedom for the buyer to choose payment rules. We give conditions for an equilibrium in
which the bidders mark up by the exact VCG amounts. We still get an efficient auction
result, but without truthful bids.

2 Model setup

The structure of the model is illustrated in Figure 1. At the start the suppliers offer bids,
following which a single buyer selects the capacity amount to reserve from each supplier.
Then the buyer observes a signal (strictly a set of signals) about some intrinsic uncertain
events (e.g., demand, spot price or supply). The signal is a set of random variables each
with a known distribution. For example the signal might be either a forecast or the
actual market demand, or it could contain information on the likelihood of a supplier
being able to deliver. We do not need to impose any restrictions on signal distributions,
and when there is more than one signal they can be correlated. In the next stage, the
choice of amount to buy from each supplier is made by the buyer constrained by the
capacity already reserved. No penalty is incurred by the buyer if there is a mismatch
between the reserved capacity and the execution amount. After that the uncertain events
are realized and then the buyer sells the product to consumers and collects the revenue.
The expected revenue to the buyer is determined by the amounts bought and the signal
received. On the other hand, the suppliers’ bids and the buyer’s reservation decision
are based on the public information about the distribution of the signal. We are not
considering risk aversion, so we can use the expected payoff as the objective for the buyer
and the suppliers.

Suppliers each 
offer a supply 
function bid

Time 5Time 3Time 1Time 0

Buyer reserves capacity 
from suppliers and pays 

reservation prices

Buyer sells the 
products to consumers 
and collects revenues

Buyer decides purchase 
amounts and pays 
execution prices

Reservation ExecutionBidding

Time 2

Buyer observes a 
signal of 

uncertain events

Time 4

Uncertain events (e.g., 
demand, spot price, or 

supply) are realized

Figure 1: The timeline

Let N = {1, . . . , n} denote the set of suppliers. The buyer makes capacity decision
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u = (u1, . . . , un), where each ui ∈ Ui ⊆ R+. We assume that each Ui is compact and
contains 0. Typically, Ui is a closed interval [0, d̄i] where d̄i is the upper limit of the
capacity amount. We may also have Ui = {0,Wi}, which corresponds to the case where
the buyer either does not use this supplier, or uses the full amount Wi that the supplier
has available. We write η for the random variable or set of variables, that are the signal
received, with η ∈ G ⊆ Rk for some positive integer k. After η has been received,
the buyer chooses amounts s = (s1 . . . , sn). These amounts depend on the capacities
already purchased so that s ≤ u. Supplier i offers a pair of payment functions Ri(·) and
Pi(·), where Ri(ui) is the payment made to supplier i when the buyer makes a capacity
reservation of ui, and Pi(si) is the payment made to supplier i given an execution amount
si. In the formulation of the game there may be restrictions on the bids allowed, which
we capture by specifying an allowed set of functions A, and restrict the supplier’s choice
to Ri(·) ∈ A and Pi(·) ∈ A. We will assume that all functions in A are lower semi-
continuous and take the value zero at zero. Hence if the buyer decides not to include
supplier i, then no payment is made.

Besides payments made by the buyer to the suppliers, we also have costs Ei(ui) and
Ci(si) incurred by supplier i who reserves a capacity ui and then is required to produce an
amount si. We assume that Ei(·) ∈ A and Ci(·) ∈ A. The revenue to the buyer depends
on the signal η and the execution amounts s, and we write this as V (η, s). Given that
η is a signal, V (η, s) may involve an expectation over other variables (as will be made
specific in Section 4).

Since execution amounts will depend on the signal η, we can write a policy for the
buyer as (u, s(·)), where u ∈ U = U1× · · · ×Un and s(·) is a function from the signal set
G to U, taking the value s(η) at η. For simplicity, we will often write s for s(·). Given a
set of supplier bids B = {(Pi(·), Ri(·)) ∈ A×A : i ∈ N}, the total expected buyer profit
with a policy choice (u, s(·)) is

ΠB(u, s) = Eη

[
V (η, s(η))−

∑
i∈N

(Pi(si(η)) +Ri(ui))

]
,

where we write Eη to indicate the expectation over η. The buyer’s problem is to maximize
its expected profit by making an optimal reservation choice u and a set of execution
amounts s(η) for each possible signal η ∈ G, i.e., to solve maxu∈U Π◦B(u), where

Π◦B(u) = max
s(·)≤u

ΠB(u, s). (1)

With bids B and buyer choice (u, s(·)), supplier i has an expected profit of

πi(u, s) = Eη [Ri(u)− Ei(ui) + Pi(si(η))− Ci(si(η))] , i ∈ N. (2)

The supply chain expected profit is

ΠC(u, s) = ΠB(u, s) +
∑
i∈N

πi(u, s) (3)

= Eη

[
V (η, s(η))−

∑
i∈N

(Ci(si(η)) + Ei(ui))

]
, (4)
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which is independent of the bids Pi and Ri. We define the set of bids where each supplier
bids at cost as C = {(Ci(·), Ei(·)) : i ∈ N}. Then the supply chain profit is the buyer
profit with these bids, and hence the notation ΠC is consistent with ΠB.

We write I(u) = {i : ui > 0} for the support of a vector u and use Π∗C(S), S ⊆ N ,
to denote the optimal supply chain profit when the capacity reserved is restricted to be
zero outside the set S. Thus

Π∗C(S) = max
u∈U, I(u)⊆S

Π◦C(u), (5)

where Π◦C(u) is defined in (1) with B replaced by C. Similarly, given a set of supplier bids
B = {(Pi(·), Ri(·)) : i ∈ N}, we use Π∗B(S), S ⊆ N , to denote the optimal buyer profit
when the capacity reserved is restricted to be zero outside the set S. Thus

Π∗B(S) = max
u∈U, I(u)⊆S

Π◦B(u).

Since the maximizations above are taken over u ∈ U (a vector) and s(·) (a function), to
ensure that the maxima exist and are attained, we shall assume that buyer profit ΠB(u, s)
is upper semi-continuous in both arguments u, s ∈ U.

3 Best response and equilibrium behavior

We now look at each supplier’s best response problem. As a Stackelberg leader, each
supplier is able to anticipate the buyer’s reservation choice provided that the competitors’
bids are observed. Our first result characterizes the best response for a supplier, given
bids by the other suppliers. This result is more explicit than the related result on best
response in [ACS17] and requires a different proof. Note that in their setting with blocks,
the equivalent result fails when a single supplier offers more than one block.

Denote the marginal contribution of supplier i ∈ N to the expected profit of the buyer
under bids B by

Zi(B) = Π∗B(N)− Π∗B(N \ {i}).

In particular, we denote ∆i = Zi(C) as the marginal contribution of supplier i to the
expected profit of the whole supply chain.

Theorem 1 (Best Response). Given {(Pj(·), Rj(·)) : j ∈ N\{i}} for any i ∈ N , we have

(a) The profit for supplier i is no more than Zi = Zi(Bi), where Bi = {(Pj(·), Rj(·)) :
j ∈ N, j 6= i} ∪ {(Ci(·), Ei(·))}.

(b) If Zi > 0 then the profit Zi is achieved by the offer (P̄i(·), R̄i(·)) defined by:

P̄i(s) = Ci(s), and

R̄i(u) = Ei(u) + Zi when ui > 0 and R̄i(u) = 0 when ui = 0,

provided supplier i has preferred status under this set of bids.

(c) If Zi > 0, then for any ε > 0, an offer of
(
P̄i(·), R̄i(·)− ε

)
will achieve within ε of

the maximum possible supplier profit.

6



Proof. (a) We consider any feasible offer (P̃i(·), R̃i(·)) from supplier i, giving a set of bids:
B̃i = {(Pj(·), Rj(·)) : j ∈ N, j 6= i} ∪ {(P̃i(·), R̃i(·))}. Then the buyer’s profit from any
policy (ũ, s̃(·)) is

ΠB̃i(ũ, s̃(·)) = E

[
V (η, s̃(η))−

∑
j 6=i

(Pj(s̃(η)) +Rj(ũ))− (P̃i(s̃(η)) + R̃i(ũ))

]
= ΠBi(ũ, s̃(·))− E

[
P̃i(s̃(η)) + R̃i(ũ)− Ci(s̃(η))− Ei(ũ))

]
.

The expectation term here is just the expected profit for supplier i. Since ΠBi(ũ, s̃(·)) ≤
Π∗B̃i

(N), we can deduce that if supplier i has profit strictly greater than Zi, then

ΠB̃i(ũ, s̃(·)) < Π∗B̃i(N)− Zi = Π∗B̃i(N \ {i}) = Π∗Bi(N \ {i}).

Thus buyer choices that deliver a profit more than Zi to supplier i will not achieve the
expected buyer profit Π∗Bi(N \ {i}), which is available to the buyer through not selecting
supplier i (i.e. setting ui = 0). Hence supplier i cannot achieve a profit of more than Zi.

(b) Let (ū, s̄(·)) be optimal for the buyer with bids Bi. Since Zi > 0, we know
that Π∗Bi(N) > Π∗Bi(N \ {i}), which implies that ūi > 0. Consider the set of bids:
B̄i = {(Pj(·), Rj(·)) : j ∈ N, j 6= i} ∪ {(P̄i(·), R̄i(·))}. Then

ΠB̄i(ū, s̄(·)) = ΠBi(ū, s̄(·))− Zi = Π∗Bi(N)− Zi.

But for the buyer choice (u, s(·)) with ui > 0, we have

ΠB̄i(u, s(·)) = ΠBi(u, s(·))− Zi ≤ Π∗Bi(N)− Zi,

and, for any buyer choice with ui = 0, we have

ΠB̄i(u, s(·)) = ΠBi(u, s(·)) ≤ Π∗Bi(N \ {i}) = Π∗Bi(N)− Zi.

Thus (ū, s̄(·)) is optimal for B̄i and because of the preferred status of supplier i we know
that this supplier is selected by the buyer, hence delivering the maximum profit Zi for
supplier i.

(c) In this case with the bid (Ci(s), R̄i(u)−ε) the profit for supplier i is Zi−ε provided
ui > 0. Given this offer, the buyer by choosing (ū, s̄(·)), defined in part (b), will achieve
a profit of Π∗Bi(N)−Zi + ε = Π∗Bi(N \ {i}) + ε, which is therefore greater than any buyer
profit available when ui = 0. Hence the buyer’s optimal choice must have ui > 0. �

Theorem 1 shows that the maximum profit for a supplier is the increase in profit
available to the buyer from including the supplier when his bids are made at cost. More-
over, when optimizing for the supplier, it is sufficient to consider supplier bids that are
at cost for the execution component and make money only by adding a fixed amount to
the reservation costs. However, we should note that the expected profit to the supplier
is unaffected by parts of the function bids that are never selected by the buyer whatever
demand occurs. The consequence is that there are a continuum of other best response
function offers available.

Now let us consider the equilibrium strategies for suppliers. Since the buyer’s opti-
mization problem is embedded in the suppliers’ best responses, we need to specify the
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buyer’s choice when there are different options that give the same expected value to the
buyer. The suppliers have an interest in raising prices to the point where the buyer is
about to drop them from consideration. Therefore, a tie-breaking assumption is critical,
otherwise, we can have a difficulty in defining optimal behavior for the suppliers, as a
type of ε-optimality could occur when a supplier sets his price just below a benchmark
value at which the buyer no longer wishes to select the supplier. Consequently, we make
the following assumption.

Assumption 1 (Tie-Breaking Rule). In case of multiple optimal solutions, the buyer
will select one that gives the largest supply chain profit.

One reason why the buyer may select this Tie-Breaking Rule, in the case of multiple
optimal solutions, is that by electing to give more profit to the suppliers, the buyer can
potentially benefit in the future. It is also in line with that for the classic Bertrand
competition model, where the firms have constant and different marginal costs. In this
model, it is often assumed that the firm with the lowest cost prices at the second lowest
cost or at the monopoly price, whichever is smaller, and wins the entire market [Vives,
2000, p. 123]. On the other hand, the Tie-Breaking Rule we have chosen is required if we
want to ensure that an equilibrium exists as the following proposition demonstrates. Note
that this result implies that there may not be an equilibrium if we use randomization to
break ties. Thus, with the buyer breaking ties according to Assumption 1, the supply
chain can be sustained in the long run, a desirable result for all supply chain members.

Proposition 1. In any equilibrium between suppliers in which the buyer has multiple
optimal solutions, the buyer will select one that gives the largest supply chain profit.

We say that supplier i ∈ N has preferred status under bids B if the buyer’s preferred
choice u under B satisfies ui > 0. In particular, if these bids are all at costs (i.e., B = C),
then supplier i is said to have absolute preferred status. It is evident that the absolute
preferred status of a supplier is exogenous to suppliers’ bidding decisions.

Note that the Tie-Breaking Rule stated above is sufficient for our equilibrium result
when there is a unique supply chain optimal solution (as can be seen from our proof
of Theorem 2), which is plausible in usual circumstances. In dealing with the unusual
circumstance of multiple supply chain optimal solutions, we do not impose any specific
restrictions on the buyer’s preferred choice among a set of optimal solutions after applica-
tion of the Tie-Breaking Rule. We only require that such a preference is public knowledge
and satisfies the following assumption, which is related to the Independence of Irrelevant
Alternatives axiom from decision theory.

Assumption 2 (Independence). (a) Let X and X ′ be the sets of optimal solutions
under two respective sets of bids after application of the Tie-Breaking Rule and let
(u, s(·)) ∈ X ′ ⊆ X. If (u, s(·)) is the preferred buyer choice among alternatives of
X, then it remains so among alternatives of X ′. And (b) if supplier i ∈ N has absolute
preferred status with zero marginal contribution to the supply chain (i.e., ∆i = 0), then
such a status will not change in the absence of another supplier.1

1Part (a) sometimes implies part (b), but not always.
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With the Tie-Breaking Rule and Independence assumption, we will write (u∗N , s
∗
N(·))

to denote the buyer’s preferred choice for the supply chain problem with all bids at costs.
We write N∗(C) for the set of suppliers with absolute preferred status, i.e., N∗(C) =
I(u∗N).

We are interested in a particular set of supplier bids, which we call the supply chain
contribution bids. These are the bids:

B̄ = {(Ci(·), R̄i(·)) : i ∈ N∗(C)} ∪ {(Ci(·), Ei(·)) : i /∈ N∗(C)},

where

R̄i(ti) =

{
Ei(ti) + ∆i, if ui > 0;
0, if ui = 0.

Notice that they fit the pattern of the best response bids in Theorem 1, where the
execution prices are offered at cost and the reservation prices involve a fixed additional
markup on the reservation costs. The markup for supplier i is his marginal contribution
∆i to the supply chain as defined earlier. Our theorem below establishes conditions under
which the bids B̄ are a Nash equilibrium for the suppliers.

Theorem 2 (Nash equilibrium). If Π∗C(·) is submodular, then the supply chain contri-
bution bids B̄ are a Nash equilibrium for the suppliers, at which (a) the buyer makes a
supply chain optimal choice (u∗N , s

∗
N); (b) the buyer makes profit Π∗C(N)−

∑n
i=1 ∆i; and

(c) supplier i, i ∈ N , makes profit ∆i. Moreover there is no equilibrium in which any of
the suppliers makes a greater profit than they do with the supply chain contribution bids.

Proof. Denote I(u∗N\{i}) = N−i∗(C). We start by establishing an intermediate result: if

Π∗C(·) is submodular then (i) for any S ⊆ N ,

Π∗C(N)− Π∗C(S) ≥
∑
i∈N\S

(Π∗C(N)− Π∗C(N \ {i})) ; (6)

and (ii) for any i ∈ N , we have N∗(C) \ {i} ⊆ N∗−i(C).
Part (i) is implied by Proposition 2.1 in Nemhauser et al. [1978]. We prove part (ii)

by contradiction. Since Π∗C(·) is submodular, by definition we obtain

Π∗C(N) + Π∗C(N \ {i, j}) ≤ Π∗C(N \ {i}) + Π∗C(N \ {j}). (7)

Suppose statement (b) is false and there exists j ∈ N∗(C) and j 6= i such that j /∈ N∗−i(C).
Then by definition, Π∗C(N \ {i}) = Π∗C(N \ {i, j}), which together with inequality (7)
implies Π∗C(N \ {j}) ≥ Π∗C(N), which in turn implies that the marginal contribution of
supplier j to the supply chain is zero, even in the absence of supplier i. However, supplier
j has absolute preferred status (i.e., j ∈ N∗(C)) but has not in the absence of supplier i
(i.e., j /∈ N∗−i(C)), which contradicts part (b) of the Independence assumption.

Now we prove the results in the theorem. First observe that for any buyer choice
(u, s),

ΠB̄(u, s) = E[V (η, s(η))−
∑
i∈N

(Ci(s(η)) + Ei(u))]−
∑
j∈I(u)

∆j.
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The expectation term is bounded above by Π∗C(I(u)). Moreover from (6) we know that
Π∗C(N)− Π∗C(I(u)) ≥

∑
i∈N\I(u) ∆i. Putting these inequalities together we get

ΠB̄(u, s) ≤ Π∗C(N)−
∑
j∈N

∆j. (8)

On the other hand, recalling that we use (u∗N , s
∗
N) to denote the buyer’s preferred

choice for the supply chain problem with all bids C at costs, we have

ΠB̄(u∗N , s
∗
N) = E[V (η, s∗N(η))−

∑
j∈N

(Cj(s
∗
N(η)) + Ej(u

∗
N))]−

∑
j∈I(u∗N )

∆j.

Observe that the expectation term is just Π∗C(N). Thus

ΠB̄(u∗N , s
∗
N) ≥ Π∗C(N)−

∑
j∈N

∆j, (9)

which implies that the upper bound in (8) is achieved at (u∗N , s
∗
N). In other words,

solution (u∗N , s
∗
N) is not only optimal to the supply chain, but also optimal to the buyer.

Therefore, under bids B̄, if the buyer still has multiple optimal solutions after application
of the Tie-Breaking Rule, then these optimal solutions form a subset of supply-chain
optimal solutions, which together with part (a) of the Independence assumption implies
that (u∗N , s

∗
N) is the preferred choice of the buyer under bids B̄. Moreover, the inequalities

(8) and (9) imply that Π∗C(N) = Π∗C(N \ {j}) for any j 6∈ I(u∗N), and hence each supplier
i achieves the profit ∆i.

Now let us establish that this is an equilibrium, i.e., no supplier can improve his profit
with a (unilaterally) different offer. According to part (ii) of the intermediate result we
already proved: for any i ∈ N , I(u∗N) ⊆ I(u∗N\{i}) ∪ {i}, dropping a supplier from the set
available will not cause other suppliers previously selected to also be dropped. Then

ΠB̄(u∗N\{i}, s
∗
N\{i}) ≥ Π∗C(N \ {i})−

∑
j∈N∗(C)\{i}

(Π∗C(N)− Π∗C(N \ {j}))

= Π∗C(N \ {i})−
∑

j∈N,j 6=i

(Π∗C(N)− Π∗C(N \ {j}))

=
∑
j∈N

Π∗C(N \ {j})− (|N | − 1)Π∗C(N),

which is exactly the upper bound on buyer profit in (8) for any feasible (u, s). Therefore,
(u∗N\{i}, s

∗
N\{i}) is also optimal for the buyer under bids B̄. Thus

Π∗B̄(N \ {i}) = Π∗B̄(N) =
∑
j∈N

Π∗C(N \ {j})− (|N | − 1)Π∗C(N), (10)

and there is no loss to the buyer from a restriction that supplier i is unavailable.
Now suppose that given bids B̄−i, supplier i gives a different offer (P̃i(·), R̃i(·)), leading

to bids B̃i = {(P̄j(·), R̄j(·)) : j 6= i} ∪ {(P̃i(·), R̃i(·))}. Suppose that (ũ, s̃) is the optimal
choice by the buyer given bids B̃i. Then

Π∗B̃i(N) = ΠC(ũ, s̃)−
∑

j 6=i,ũj>0

∆j − π̃i.
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So

π̃i= ΠC(ũ, s̃)−
∑

j 6=i,ũj>0

∆j − Π∗B̄(N \ {i})

≤ Π∗C(I(ũ))−
∑

j∈N,j 6=i

∆j +
∑

j /∈I(ũ),j 6=i

(Π∗C(N)− Π∗C(N \ {j}))− Π∗B̄(N \ {i})

≤ Π∗C(I(ũ))−
∑

j∈N,j 6=i

∆j + Π∗C(N)− Π∗C(I(ũ))− Π∗B̄(N \ {i})

= Π∗C(N)− (|N | − 1)Π∗C(N) +
∑
j 6=i

Π∗C(N \ {i})− Π∗B̄(N \ {i}),

where the first inequality is from the optimality of Π∗C(I(ũ)), and the second inequality
follows from (6). We can use (10) and cancel terms to obtain π̃i ≤ ∆i, thus showing that
no improvement in profit for supplier i is possible, and leading to an equilibrium.

For the final statement of the theorem, we let π∗j and π∗B be the equilibrium profits of
supplier j ∈ N and the buyer, respectively. Suppose that in an equilibrium set of offers
B = {(Pj(·), Rj(·)) : j ∈ N}, there is a supplier i with higher profit than with the supply
chain contribution bids, i.e., π∗i > Π∗C(N)− Π∗C(N \ {i}). Since π∗B +

∑
j∈N π

∗
j ≤ Π∗C(N),

this implies that π∗B +
∑

j∈N,j 6=i π
∗
j < Π∗C(N \ {i}). Now choose any supplier k ∈ N∗(B)

and k 6= i, and consider supplier k deviating by offering the new bid (Pk(·), Rk(·) + ε)
where ε < Π∗C(N \ {i}) − π∗B −

∑
j∈N,j 6=i π

∗
j is a small positive number. If we can show

that k is still chosen by the buyer, then this will improve his profit and this is enough to
show that B is not an equilibrium.

If the buyer chooses supplier k, then the buyer’s profit is at least Π∗C(N \ {i}) −∑
j∈N,j 6=i π

∗
j − ε, which is strictly greater than π∗B from the choice of ε. Whereas if the

buyer does not choose supplier k, then the buyer will choose among suppliers in N \ {k},
and her profit cannot be greater than π∗B which is the buyer’s profit without the deviation
by supplier k, given a free choice among suppliers in N . Thus supplier k is still chosen
by the buyer with his new bid. �

The above theorem characterizes a Nash equilibrium based on the supply chain con-
tribution offers. In this equilibrium, each supplier’s profit is equal to his marginal contri-
bution to the overall supply chain, a result that can be seen as allowing a fair allocation
of profits. It is straightforward that each supplier makes a nonnegative profit. Suppliers
in N∗(C) each make a strictly positive profit while the other suppliers each make zero
profits. On the buyer’s side, the profit is nonnegative, which is a direct result of the sub-
modularity property of Π∗C(S) and is also implied by the fact that the buyer can achieve
zero profit if it does not purchase from any supplier.

In equilibrium the buyer makes a choice that maximizes the supply chain profit, i.e.,
the supply chain is coordinated in equilibrium. This is a desired result since there is no
deadweight loss for the decentralized supply chain. Much of the supply chain coordination
literature [Cachon, 2003] focuses on designing contracts (e.g., revenue sharing or buy
back) to achieve the chain optimal profit in a dyadic supply chain. In contrast, in our
model the supply chain optimality arises at equilibrium as a result of supplier competition
(rather than by way of design). In the same way, the profit allocation in the equilibrium
of Theorem 2 is a VCG result, but this is not from a mechanism design that sets prices
paid in a particular way, but arises as an equilibrium from our pay-as-bid capacity game.
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Since no supplier can do better at equilibrium than by using supply chain contribution
bids, this is a natural equilibrium for suppliers to coordinate on. However, there are
other possible equilibria, which also achieve the maximum supplier profits and involve
different offers away from the amounts that are selected by the buyer. In particular, it is
possible to construct equilibria that have continuous functions for the reservation bids Ri,
“smoothing out” the discontinuities that occur at zero for the supply chain contribution
bids. Further details are given in the Electronic Companion.

As shown in Theorem 2 an important role in establishing the equilibrium is played
by the submodularity property for the supply chain optimal profit. This distinguishes us
from [ACS17] in which it is shown that the buyer optimal profit is submodular for the
all-or-nothing setting with equal-size blocks. With submodularity applying to the supply
chain profit, the scope of our framework is significantly expanded as will be shown in
Section 4. Theorem 3 below gives two conditions under each of which the supply chain
optimal profit is submodular as a set function.

Theorem 3 (Submodularity). Π∗C(·) is submodular as a set function if either

(a) n = 2 and V (η, s) is subadditive in s; or

(b) the function Eη [maxs≤u (V (η, s)−
∑n

i=1Ci(si))] is M \-concave in u ∈ U, where
U = [0, d̄]n or U = {0, d̄}n for some constant d̄ > 0, and {Ei(·) : i ∈ N} are convex
functions.

Proof. (a) For submodularity with n = 2 we simply need to show that Π∗C({1, 2}) ≤
Π∗C({1}) + Π∗C({2}). Let (u∗, s∗(·)) be the optimal supply chain choice. Then

Π∗C({1, 2}) = E[V (η, s∗(η))−
∑

i(Ci(s
∗(η)) + Ei(u

∗))]

= E[V (η,
∑

j[s
∗(η)]j)−

∑
i(Ci(

∑
j[s
∗(η)]j) + Ei(

∑
j[u
∗]j))],

where for any vector x we define [x]1 := (x1, 0) and [x]2 := (0, x2), and the summations
are all over i, j ∈ {1, 2}. Using subadditivity of V we have

Π∗C({1, 2}) ≤ E[
∑

i V (η, [s∗(η)]i))−
∑

i(Ci([s
∗(η)]i) + Ei([u

∗]i))]

=
∑

i ΠC([u
∗]i, [s

∗(η)]i) ≤ Π∗C({1}) + Π∗C({2}).

(b) Note that the supply chain optimal profit as a set function can be expressed as follows:

Π∗(σ) = max
u≤σd̄

max
s(·)≤u

ΠC(u, s(·)), σ ∈ {0, 1}n.

According to (4) and noticing that concavity implies M \-concavity, with the conditions
of the theorem, Π∗C(u) ≡ maxs≤u ΠC(u, s) is M \-concave in u ∈ U, which implies that
Π̃C(u) = Π∗C(ud̄) is M \-concave in u ∈ U0, where U0 = [0, 1]n if U = [0, d̄]n and
U0 = {0, 1}n if U = {0, d̄}n. Let

Π̃(σ̄) = max
{

Π̃C(u) : u ∈ U and u ≤ σ̄
}
, σ̄ ∈ U0.

We now show that Π̃(·) is M \-concave over U0, which implies that Π∗(·) (which is the
same as Π̃(·) if U = {0, d̄}n and is the restriction of Π̃(·) to {0, 1}n if U = [0, d̄]n) is
submodular over {0, 1}n.
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We assume U = [0, d̄]n. In the case that U = {0, d̄}n, we can use the same proof
by simply replacing Rn by Zn and replacing [0, 1]n by {0, 1}n. Consider the infimal
convolution function

Π̄(σ̄) = sup
{

Π̄C(u) + α(ū) : u + ū = σ̄, u, ū ∈ Rn
}
, σ̄ ∈ Rn;

where Π̄C(u) = Π̃C(u) −
∑n

i=1 δ[0,1](ui) and α(ū) = −
∑n

i=1 δ[0,1](t̄i), with Π̃C(u) = −∞
if u 6∈ [0, 1]n and δ[0,1](·) is a function taking the value zero on the set [0, 1] and infinity
elsewhere (i.e., δ[0,1](x) = 0 if x ∈ [0, 1] and δ[0,1](x) = +∞ otherwise). It is clear that both
Π̄C(·) and α(·) are M \-concave over Rn. According to Murota [2009, Section 4.2], Π̄(σ̄) is
M \-concave over Rn. Note that the restriction of Π̄(σ̄) on [0, 1]n is exactly Π̃(σ̄), which
therefore is M \-concave over [0, 1]n with straightforward direct verification according to
the definition of M \-concavity. We then conclude that Π̃(·) is submodular over [0, 1]n

[Murota and Shioura, 2004]. �

As discussed earlier, our framework covers the model in [ACS17] as a special case.
Indeed, condition (b) can be satisfied in their equal-block case for which U = {0, d̄}n.
While the conditions in Theorem 3 may seem complicated, we provide simpler conditions
for specific applications in Section 4. Finally, we remark that the second condition uses
a property of M \-concavity from discrete convexity, which has seen growing applications
in operations [Chen and Li, 2020].

4 Applications and examples

The framework is general enough to encompass many different specific circumstances
and we give three examples in this section. Numerical illustrations can be found in the
Electronic Companion.

4.1 Newsvendor problem with unreliable suppliers

In a typical newsvendor problem, each supplier has a one-dimensional cost incurred before
demand D is realized. This is equivalent to the special case of our model where execution
costs are zero (i.e., Ci(·) = 0). We will consider the case of unreliable suppliers, who
may not be able to deliver the amount requested in full. We consider stochastically
proportional yield, that is, an order for an amount si from supplier i ∈ N will result in
a delivered amount given by εisi, where εi is the yield from supplier i. This assumption
has been used in other studies such as Federgruen and Yang [2008]. In the special case
where εi follows a Bernoulli distribution, we will have an all-or-nothing type of supply
disruption model [Babich et al., 2007]. Denote by ε = (ε1, · · · , εn) the vector of yields
from all the suppliers. Consistent with the newsvendor literature, any shortfall in demand
is lost. The salvage value is β ≥ 0 for each unit of overstock, and the penalty is α ≥ 0 for
each unit of understock. The product is sold by the buyer to final customers at a retail
price ρ > β − α.

At the time when the buyer determines the reservation quantities, only information
about the distributions of the suppliers’ yields and the demand are known. Before the
buyer determines the execution amounts a signal η is observed. The expected buyer
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revenue is given by

V (η, s) = ED,ε
[
(ρ− β + α) min

{∑
i∈N εisi, D

}
+ β

∑
i∈N εisi − αD

∣∣ η] , (11)

that is, the expectation is taken over D and ε conditional on the signal η. Since the
execution costs Ci(·) are zero, the buyer chooses s ≤ u to maximize V (η, s). Since both
(ρ − β + α) and β are positive the maximum occurs at s = u. We have the following
result, which shows that the convexity of the cost functions is a key requirement for the
equilibrium results of Theorem 2 in this newsvendor application.

Proposition 2. In the newsvendor model, if U = [0, d̄]n or U = {0, d̄}n for some constant
d̄ > 0, and the cost functions Ei are (weakly) convex, then the supply chain optimal profit
is submodular and the conclusions of Theorem 2 apply.

4.2 Portfolio procurement problem

This application involves a buyer procuring a homogeneous product by using supply
options and a spot market. Similar to Wu and Kleindorfer [2005] and [ACS17], we
consider an open spot market so that the suppliers who participate in the options market
cannot manipulate the spot price. With a random demand D, if the buyer orders amounts
given by the vector s, any shortfall in demand is met by purchases in a spot market at a
price P0. Both the final demand D and the spot market price P0 are unknown at the time
when s is chosen, but have distributions that are determined by the signal η received.
For example η may be a pair of forecasts for D and P0. Note that at the time when the
reservation decision is made, only the distribution of the signal is known to the buyer.
The products bought from the suppliers and the spot market are sold by the buyer to
final customers at a price ρ > Pmax, where Pmax is the maximum spot price. If demand
turns out to be less than the execution amounts s, then the excess can be sold at a salvage
value β ≥ 0 for each unit of overstock. To avoid arbitrage by the buyer, we assume that
β ≤ Pmin, where Pmin is the minimum spot price. Then the expected buyer revenue given
signal η and the execution quantities s is

V (η, s) = ED,P0

[
(ρ− P0)D + (P0 − β) min

{∑
i∈N si, D

}
+ β

∑
i∈N si

∣∣ η] , (12)

that is, the expectations over D and P0 are taken conditional on the signal η.
In the case where there are just two suppliers, we will have an equilibrium of the

standard type without any additional conditions.

Proposition 3. In the portfolio procurement model, if there are just two suppliers, then
the supply chain optimal profit is submodular and the conclusions of Theorem 2 apply.

In moving to more than two suppliers, we need to assume that the execution costs are
linear (i.e., each supplier has a constant marginal execution cost) as well as the reservation
costs being convex. Moreover, we require that the signal η gives the actual demand D
and spot price P0. Thus there may be a shortfall in the amount supplied if the reserved
quantities are too small, but there will not be an excess since otherwise costs can be saved
by reducing the reservation quantities. Given the signal η (or equivalently, the realized
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demand and spot price) as well as the execution quantities s, the buyer revenue is

V (η, s) = (ρ− P0)D + (P0 − β) min

{∑
i∈N

si, D

}
+ β

∑
i∈N

si. (13)

In addition, with linear execution costs we can write Ci(si) = cisi (i ∈ N), where ci is a
constant. Thus, we can formulate the execution problem at the second stage as follows:

max
s≤u

(
V (η, s)−

∑
i∈N

cisi

)
. (14)

Solving the above problem gives the optimal execution amounts. We have the following
result.

Proposition 4. In the portfolio procurement model, with η = (D,P0), if U = [0, d̄]n or
U = {0, d̄}n for some constant d̄ > 0, the execution costs Ci are linear, and the reservation
costs Ei are (weakly) convex, then the supply chain optimal profit is submodular and the
conclusions of Theorem 2 apply.

4.3 Non-substitutable products

Although our applications are primarily for the case where all suppliers provide the same
product, our model also deals with situations in which different products are supplied.
As an example, consider a buyer and two suppliers, where products 1 and 2 can be sold
separately or bundled together, with a price premium for the bundled product. There is
a substantial literature of bundling in an operations context (see, e.g., Geng et al. [2005]
and the references therein). Let ρi be the price for product i, i = 1, 2, and ρ > ρ1 + ρ2 be
the price for the bundle having equal quantities of the two products. Let D be the demand
for the bundle and assume demand for each of the individual products is unlimited. If
signal η = D and w = min{s1, s2, D}, then V (η, s) = ρw+

∑2
i=1 ρi(si−w). Now suppose

that execution costs are linear with Ci(si) = cisi and ci < ρi, i = 1, 2. In this case the
execution amounts will always equal the reserved amounts u1 and u2. Thus

max
s≤u

(V (η, s)− C1(s1)− C2(s2)) = (ρ− ρ1 − ρ2) min{u1, u2, D}+
2∑
i=1

(ρi − ci)ti,

which is concave in u = (u1, u2). Thus from Theorem 2 we obtain the usual equilibrium
solution provided that E1 and E2 are convex functions.

5 Conclusions and discussion

In this paper, we have developed a general framework to study a broad class of capacity
games. This framework allows us to examine supplier competition in a capacity market
where suppliers’ costs may be nonlinear. In this setting, suppliers each submit a bid
consisting of a reservation price function and an execution price function. The buyer
decides how much capacity to reserve from each supplier and then, after obtaining further
information about the demand, determines how much capacity to use.
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When the competitors’ bids are observed, we have shown that an optimal strategy
for each supplier is to set the execution price to be the execution cost and add a margin
on the reservation cost. This implies that suppliers make profits only from the buyer’s
reservation payments. This result does not hold when bids are constrained to have con-
stant marginal costs (considered by [Mart́ınez-de Albéniz and Simchi-Levi, 2009]). We
have also given conditions under which the supply chain optimal profit is submodular
in the set of suppliers, which allows us to identify an equilibrium in which the buyer’s
reservation choice is first best, each supplier’s profit equals his marginal contribution to
the supply chain and the buyer takes the remaining profit. We finally demonstrate how
the model can be applied specifically to three important problems in operations.

We have chosen a relatively simple modelling framework, but the equilibrium results
extend directly to cases where the costs and bids for one supplier depend on the capacity
and execution amounts of all suppliers, rather than just those for this supplier. In fact
our proofs are written for this more general case. An example of this occurs when players
can partially collaborate by sharing warehouse facilities or transport links.

This paper can be extended in several directions. First we assume, as in many other
supplier competition models, that supplier costs are known to the other suppliers. How-
ever, in some settings a model that considers cost uncertainties may be more appropriate.
Second our equilibrium analysis builds on the submodularity condition. When this con-
dition fails, the VCG strategies may not be a Nash equilibrium, as we demonstrate in
Example 5 given in the Electronic Companion. It would therefore be interesting to inves-
tigate further what the equilibria look like without the submodularity. Finally, we should
note our assumption that the random demand is exogenous. An important extension is
to the case where the buyer can influence demand through setting a price.
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Electronic Companion to “Capacity Games with Sup-

ply Function Competition”

In this electronic companion we give some definitions in Section A.1, provide proofs for
the propositions in Section A.2, and show examples of applications in Section A.3.

A.1 Some definitions

The set of real numbers is denoted by R, and R̄ = R∪{+∞} and R = R∪{−∞}. The set
of integers is denoted by Z, and Z̄ = Z∪{+∞} and Z = Z∪{−∞}. We use D to denote
either Z or R. Denote [n] = {1, . . . , n} for any positive number n. The characteristic
vector of S ⊆ [n] is denoted by χS ∈ {0, 1}n. For i ∈ [n], we write χi for χ{i}, which is
the ith unit vector, and χ0 = 0 (zero vector).

A.1.1 M \-convexity

For a function f : Dn → R ∪ {−∞,+∞}, the set

domDf = {x ∈ Dn : f(x) ∈ R}

is called the effective domain of f . For a vector z ∈ Rn, define the positive and negative
supports of z as

supp+(z) = {i ∈ [n] : zi > 0}, supp−(z) = {i ∈ [n] : zi < 0}.

A function f : Zn → R̄ is said M \-convex if for any x, y ∈ domZf and any i ∈ supp+(x−y),
there exists j ∈ supp−(x− y)∪{0} such that the following exchange property is satisfied:

f(x) + f(y) ≥ f(x− χi + χj) + f(y + χi − χj).

Similarly, a function f : Rn → R̄ is said M \-convex if for any x, y ∈ domRf and any
i ∈ supp+(x− y), there exist j ∈ supp−(x− y) ∪ {0} and λ0 > 0 such that

f(x) + f(y) ≥ f(x− λ(χi − χj)) + f(y + λ(χi − χj))

for all λ ∈ Rn with 0 ≤ λ ≤ λ0. A function f : Dn → R is said M \-concave if (−f) is
M \-convex.

A.1.2 Laminar convexity

A non-empty set L ⊆ 2[n] is called a laminar family if for any A,B ∈ L, we have
A ∩B = ∅, or A ⊆ B, or B ⊆ A. A function f : Dn → R̄ is said laminar convex if it can
be represented as

f(x) =
∑
S∈L

fS(x(S)),

where {fS} are univariate convex functions, L is a laminar family, and x(S) =
∑

i∈S xi.
A function f : Dn → R is said laminar concave if (−f) is laminar convex.
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A.2 Proofs of Propositions

In all the proofs we write cost and bid functions for individual suppliers as functions of
the complete vectors. For example we write Ri(u) even though we have assumed that Ri

depends only on ui. In fact our results hold in the more general case where costs for one
supplier can depend on the quantities for other suppliers.

A.2.1 Proof of Proposition 1

Suppose that under bids B = {(Ri(·), Pi(·)) : i ∈ N}, the buyer selects an optimal
solution (u, s) that gives a lower expected supply chain profit than another optimal
solution (u′, s′), i.e., ΠC(u, s) < ΠC(u

′, s′) and ΠB(u, s) = ΠB(u′, s′). Denote by πi and π′i
the corresponding expected profits of supplier i ∈ N under these two solutions given the
bids B. Since

∑
i∈N πi <

∑
i∈N π

′
i according to (3), there is a supplier k ∈ I(u′) such that

πk < π′k. We claim that given the other suppliers’ bids in B are unchanged, supplier k
will have an incentive to deviate from his current pair of bids (Rk(·), Pk(·)) to a new pair
of bids (R′k(·), P ′k(·)), where

P ′k(x) = Pk(x)− ε(Pk(x)− Ck(x))/π′k,

R′k(x) = Rk(x)− ε(Rk(x)− Ek(x))/π′k,
(A-1)

and 0 < ε < π′k − πk. Under this new set B′ of bids, it is evident that the buyer improves
her expected profit by exactly ε(πk/π

′
k) with solution (u, s), which is (strictly) smaller

than ε, the expected profit improvement she can achieve by selecting solution (u′, s′). On
the other hand, suppose that under bids B′ the buyer selects an optimal solution (u′′, s′′)
and the corresponding expected profit for player k is π′′k . Denote π̃k = πk(u

′′, s′′), which
is defined as in (2). Then according to (A-1) the buyer’s expected profit is

ΠB′(u
′′, s′′) = ΠB(u′′, s′′) + ε(π̃k/π

′
k),

which implies that her expected profit improvement is at most ε(π̃k/π
′
k). Therefore, we

have π̃k/π
′
k ≥ 1 due to optimality of her selection, and thus according to (A-1) supplier

k’s new expected profit π′′k = (π′k − ε)(π̃k/π′k) ≥ π′k − ε > πk. We conclude that, under
bids B′, the buyer will deviate from her current solution, which results in both the buyer
and supplier k being better off. In other words, (u, s) under bids B is not at equilibrium.

A.2.2 Proof of Proposition 2

We will check the conditions in Part 1(b) of Theorem 2. According to (11), and using
the fact that V (η, s) increases in s and Ci(·) = 0, we have

Eη

[
max
s≤u

(
V (η, s)−

n∑
i=1

Ci(si)

)]

= Eη[V (η,u)] = Eη

[
ED,ε

[
(ρ− β + α) min

{∑
i∈N

εiui, D

}
+ β

∑
i∈N

εiui − αD

∣∣∣∣∣ η
]]

,

which is concave in each ui because ρ − β + α ≥ 0, and hence is M \-concave in u ∈ U.
Thus we have established that all the conditions Part 1(b) of Theorem 2 are satisfied,
given the conditions of Proposition 2. Hence the conclusions follow.
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A.2.3 Proof of Proposition 3

Given there are just two suppliers, we show that V (η, s) is subadditive in s, which leads
to satisfaction of conditions Part 1(a) of Theorem 2 and we are done. According to (12),
V (η, s) is the expectation of the sum of the following three functions of s:

(ρ− P0)D, (P0 − β) min

{∑
i∈N

si, D

}
, and β

∑
i∈N

si.

The first function is a non-negative constant (with respect to s) and thus clearly sub-
additive. The last function is clearly additive and hence also subadditive. The middle
non-negative function can be easily verified to be subadditive. Therefore, as the expec-
tation of the sum of three subadditive functions, V (η, s) is subadditive.

A.2.4 Proof of Proposition 4

According to the conditions of the proposition, we assume that, for each supplier i ∈ N ,
the execution cost Ci(si) = cisi for some constant ci ≥ 0. Also assume without loss of
generality that β = c0 ≤ c1 ≤ · · · ≤ cn ≤ ρ. For η = (D,P0), according to (13) and (14),
we wish to solve the following maximization problem:

max
s≤u

(
(ρ− P0)D + (P0 − β) min

{
D,
∑

i∈N si
}
− (ci − β)

∑
i∈N si

)
. (A-2)

It is optimal to use reserved capacities u as much as possible unless it is more expensive
than to purchase from the spot market. Therefore, given β ≤ P0 ≤ ρ, it is not difficult
to see that, if we let k = k(P0) = max{i : ci ≤ P0}, then the optimal value of (A-2) is
given by

k+1∑
i=1

ρ̄ibi(u | η), (A-3)

where ρ̄i = ρ − ci and bi(u | η) = min
{

(D −
∑i−1

j=1 uj)
+, ui

}
(1 ≤ i ≤ k), ρ̄k+1 = ρ − P0

and bk+1(u | η) =
(
D −

∑k
i=1 ui

)+

. Denote ai = D −
∑i

j=1 uj for i = 0, 1, . . . , k. Then

bk+1(u | η) = a+
k and

bi(u | η) = min{a+
i−1, ui} = a+

i−1 − (a+
i−1 − ui)+ = a+

i−1 − a+
i , i = 1, . . . , k.

which leads to

k+1∑
i=1

ρ̄ibi(u | η) = ρ̄1D −
k∑
i=1

(ρ̄i − ρ̄i+1)a+
i = ρ̄1D −

k∑
i=1

(ρ̄i − ρ̄i+1)

(
D −

i∑
j=1

uj

)+

.

Noticing that (D− x)+ is convex in x ≥ 0 and ρ̄i− ρ̄i+1 ≥ 0, we conclude that the above
function of u is laminar concave with the corresponding laminar family L = {{1, . . . , i} :
i ∈ N}, which implies that the expression in (A-3) as a function of u ∈ U is laminar
concave and thus M \-concave. Therefore, Part 1(b) and Part 2 of Theorem 2 apply.
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A.3 Examples

In this section we give some concrete numerical examples to illustrate the results obtained
in Section 4. Some counter-examples are also provided to demonstrate the limitation of
our results. We use the following example to illustrate Proposition 2.

Example 1. Consider an example with three suppliers. The buyer faces a random
demand D, which follows a uniform distribution over the support [0, 100]. The supplier
costs are E1(x) = 4.5x, E2(x) = 0.1x2, E3(x) = 5.5x, and Ci(·) = 0 for i = 1, 2, 3. The
random yield from each supplier follows a Bernoulli distribution. Specifically, there is a
probability pi that supplier i can deliver the full amount of the buyer’s order, where we
set p1 = 0.7, p2 = 0.8 and p3 = 0.85. We assume the yields and demand are independent
of each other. The retail price, salvage value and penalty cost are respectively ρ = 10,
β = 3 and α = 1 per unit of the product. We can carry out the detailed calculations
to find the supply chain optimal solutions for different sets of available suppliers. For
example, the values for u1 and u2 when S = {1, 2} are chosen to maximize the following
expression:

(ρ− β + α)
(
p1p2 E[min{u1 + u2, D}] + p1(1− p2)E[min{u1, D}]

+ (1− p1)p2 E[min(u2, D)]
)

+ β
2∑
i=1

piui − αE[D]

= 8

(
0.56

(
u1 + u2 −

(u1 + u2)2

200

)
+ 0.14

(
u1 −

u2
1

200

)
+ 0.24

(
u2 −

u2
2

200

))
+ 3(0.7u1 + 0.8u2)− 50.

The optimal reservation choices and profits are summarized in Table 1.

Suppliers S (u∗S)1 (u∗S)2 (u∗S)3 Π∗C(S)

{1, 2, 3} 14.71 25.50 25.92 135.62
{1, 2} 35.26 27.35 0 126.76
{1, 3} 22.27 0 41.03 64.61
{2, 3} 0 25.94 35.86 133.19
{1} 57.14 0 0 41.43
{2} 0 33.33 0 96.67
{3} 0 0 56.62 58.99

Table 1: Supply chain optimal reservation choices and profits

Proposition 2 implies that Π∗C(·) is submodular as can be checked from the table.
Thus, the equilibrium in Theorem 2 applies: we have zero execution prices, and the
reservation price is the sum of the reservation cost Ei(x) and the supply chain marginal
contribution ∆i for x > 0. Here these contributions are 2.43 for supplier 1, 71.01 for
supplier 2, and 8.86 for supplier 3. In this equilibrium the buyer receives the remainder
of the total supply chain profit: 135.62− 2.43− 71.01− 8.86 = 56.32. �
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To illustrate the results in Proposition 3, we draw an example from Mart́ınez-de
Albéniz and Simchi-Levi [2009]. In this example, there are two suppliers, and we will
give an example with three suppliers later.

Example 2. This example matches Example 1 in Mart́ınez-de Albéniz and Simchi-Levi
[2009] in which there is no spot market. The demand is uniformly distributed over [0, 1],
so F (x) = x or F̄ (x) = 1−F (x) = 1− x for x ∈ [0, 1]. There are two suppliers and their
marginal costs are (c1, e1) = (0, 60) and (c2, e2) = (75, 5). The retail price is ρ = 100.

We begin with the supply chain optimal problems. When both suppliers are available,
the supply chain problem is:

max
u1, u2∈[0,1]

(∫ u1

0

(
(ρ− c1)F̄ (x)− e1

)
dx+

∫ u2

0

(
(ρ− c2)F̄ (x+ u1)− e2

)
dx

)
.

We can calculate that the optimal solution is u∗N = (4/15, 8/15). The supply chain
optimal profit is Π∗C(N) = 32/3. When only supplier 1 is available, the optimal solution
is u∗{1} = 2/5 and the supply chain optimal profit is Π∗C({1}) = 8. When the buyer is

allowed to choose supplier 2 only, the optimal solution is u∗{2} = 4/5 and the supply chain

optimal profit is Π∗C({2}) = 8.
If suppliers are restricted to each offering a pair of reservation price and execution

price, MS show that in equilibrium these two suppliers bid infinitesimally close to each
other, and the following is a continuum of ε-equilibria, (p∗1, r

∗
1) = (p∗2, r

∗
2) =

(
p, 60− 55

75
p
)
,

which are parameterized with p ∈ [50, 75]. In equilibria, the buyer’s reservation choice is

u∗ =
(

4
15
, 40

3(100−p)

)
. The profit split amongst players is

Π∗B =
8(150− p)2

225(100− p)
, π∗1 =

8p

225
, and π∗2 =

800(75− p)
9(100− p)2

, (A-4)

and the resulting supply chain profit is Π∗C = 32(225−2p)
9(100−p) + 800(75−p)

9(100−p)2 . Note that none of these
equilibria is supply chain optimal except the one with p = 75.

We now demonstrate that the above strategies do not form an equilibrium if suppliers
are allowed to offer function bids. Fix supplier 1’s bid (p∗1, r

∗
1) = (p, 60 − 55

75
p), and we

examine supplier 2’s best response in choosing a function bid. Using Theorem 1, we can
show that the following offer for supplier 2 improves his profit: setting execution price
to be execution cost, and for the reservation price, charging a fixed payment of 32(75−p)

9(100−p)
on top of reservation cost. Given this offer (and supplier 1’s offer (p∗1, r

∗
1)), the buyer’s

reservation amounts are ũ =
(

4
15
, 8

15

)
, which gives her a profit equal to 8− 32(75−p)

9(100−p) . Also
if the buyer purchases from only supplier 2, she makes the same profit. According to the
tie-breaking rule, the buyer will select ũ. Then supplier 2’s profit becomes π̃2 = 32(75−p)

9(100−p) ,

which is strictly greater than π∗2 in (A-4) for any p < 75.
From Proposition 3 we know there is an equilibrium with supply chain contribution

bids, where there are fixed markups applied to the reservation costs of Π∗C(N)−Π∗C({2}) =
8
3

and Π∗C(N)−Π∗C({1}) = 8
3
. At this equilibrium, the buyer’s optimal reservation choice

is u∗ = (4/15, 8/15). The profit split amongst players is

Π∗B = 16/3 and π∗1 = π∗2 = 8/3. (A-5)
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Thus, each supplier’s profit equals his contribution to the supply chain system and the
buyer takes the remaining profit. Moreover, the reservation choice by the buyer is supply
chain optimal (in contrast with the case with constant prices).

An important message of this example is that imposing a restriction that each supplier
submits a pair of reservation price and an execution price rather than a function bid leads
to a higher buyer profit. On the other hand, the suppliers are better off if they submit
function bids. This can be easily seen by comparing the profit splits in (A-4) and (A-5).
�

For the equilibrium in Theorem 2, the capacity reservation price is obtained by simply
adding a fixed markup to the reservation cost. Thus, it cannot be represented by defining
marginal prices for capacity reservation: to do so would require an infinite marginal price
for the first ε amount of capacity. However, the supply chain contribution bids are not
the only equilibrium strategies. We can construct an alternative form of equilibria with
finite marginal prices from the capacity offers of the supply chain contribution bids by
smoothing out the beginning part of each of these bids. The example below demonstrates
this with power functions.

Example 3 (Example 2 continued). We revisit Example 2. As shown earlier, this ex-
ample satisfies the submodularity property. Besides the equilibrium with supply chain
contribution bids, we can show that the following bids with power functions (parameter-
ized by β1 and β2) form a Nash equilibrium:

P ∗1 (x) = 0, 0 ≤ x ≤ 1, R∗1(x) =

{
60x+ 8

3
− 8

3

(
15
4

)β1+1 ( 4
15
− x
)β1+1

, 0 ≤ x ≤ 4
15
,

60x+ 3
8
, 4

15
< x ≤ 1;

P ∗2 (x) = 75x, 0 ≤ x ≤ 1, R∗2(x) =

{
5x+ 8

3
− 8

3

(
15
8

)β2+1 ( 8
15
− x
)β2+1

, 0 ≤ x ≤ 8
15
,

5x+ 8
3
, 8

15
< x ≤ 1.

where β1, β2 ≥ 2.
Given the above bids, the buyer’s optimal reservation choice is (4/15, 8/15), matching

the supply chain optimal solution. In addition, it can be shown that neither supplier
has an incentive to unilaterally deviate from their power function bids. A detailed proof
of this result can be found in an earlier version of this paper (Anderson et al. 2019)2.
The profit split in equilibrium is that each supplier makes a profit of 8/3 and the buyer’s
profit is 16/3.

Compared with the supply chain contribution bids, the only difference of the above
power function bids is that suppliers 1 and 2 respectively lower their reservation prices

by 8
3

(
15
4

)β1+1 ( 4
15
− x
)β1+1

for x ∈
[
0, 4

15

]
and 8

3

(
15
8

)β2+1 ( 8
15
− x
)β2+1

for x ∈
[
0, 8

15

]
.

With these power functions, the reservation prices become differential and thus can be
represented with their marginal prices.

The power functions are chosen so that the buyer will never choose to reserve an
amount below 4/15 from supplier 1 and an amount below 8/15 from supplier 2. This is
done by setting the values of β1 and β2 large enough (both are at least 2 for this example)
to ensure that the price drops at the beginning part of each offer are inconsequential in
terms of the buyer’s optimal choice and the equilibrium for the suppliers.

2E.J. Anderson, B. Chen and L. Shao (2019). Capacity games with supply function competition.
https://arxiv.org/abs/1905.11084
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It is easy to see that when β1 and β2 approach positive infinity, the power function bids
reduce to the supply chain contribution bids. Moreover, one can construct an equilibrium
at which one supplier uses supply chain contribution bids (with an infinitely large βi
value), while the other supplier uses power function bids (with a finite βi value). Despite
the multiplicity of equilibrium bidding strategies, all these equilibria lead to the same
profit allocation.

A final point about these power-function bids is that a pair of larger values of β1 and
β2 will imply that the corresponding markups increase more steeply at the beginning of
the offers. Figure 2 illustrates this with different β values. �
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Figure 2: Illustration of supplier markups with different values of β1 and β2

To complement Example 2 in which there are only two suppliers, the following example
considers three suppliers.

Example 4. Consider the case where there is no spot market. Suppose the demand
follows a uniform distribution over [0, 1]. There are three suppliers whose costs are:
C1(x) = x,E1(x) = 3x; C2(x) = 2.5x,E2(x) = 2x; and C3(x) = 5x,E3(x) = x. The retail
price is ρ = 10. We can carry out the detailed calculations to find the supply chain optimal
solutions for different sets of available suppliers. One way to do these calculations is to
use the screening curve approach that is common in calculation of optimal generation mix
in electricity markets (see Green, 2005)3. We summarize the optimal reservation choices
and profits in Table 2.

Using the results in the table, we can easily check the submodularity of Π∗C(S). We can
now construct an equilibrium set of offers where the suppliers offer at cost and in addition
require a fixed reservation payment of ∆i, which then becomes supplier i’s profit. Here
these amounts are 0.08333 for supplier 1, 0.0333 for supplier 2, and 0.0333 for supplier
3. In this equilibrium the buyer receives the remainder of the total supply chain profit:
2.1333− 0.15 = 1.9833. �

The submodularity property (and hence the Nash equilibrium) in Proposition 4 may
not hold when suppliers have decreasing marginal reservation costs as we demonstrate
with the following example.

3R. Green (2005). Electricity and markets. Oxford Review of Economic Policy 21(1), 67–87.
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Suppliers S (u∗S)1 (u∗S)2 (u∗S)3 Π∗C(S)

{1, 2, 3} 1/3 4/15 1/5 2.1333
{1, 2} 1/3 2/5 0 2.1
{1, 3} 1/2 0 3/10 2.1
{2, 3} 0 3/5 1/5 2.05
{1} 2/3 0 0 2
{2} 0 11/15 0 2.0167
{3} 0 0 4/5 1.6

Table 2: Supply chain optimal reservation choices and profits

Example 5. Suppose the demand is fixed with D = 10 and the retail price is ρ = 20.
There are three suppliers with N = {1, 2, 3}. Supplier 1 and supplier 2 have the same
marginal costs with c1(x) = c2(x) = e1(x) = e2(x) = 0, for x ∈ [0, 5] (and an infinite cost
for any larger amount). Supplier 3’s marginal costs are c3(x) = 0 and e3(x) = 10 − x
for x ∈ [0, 10]. So both supplier 1 and supplier 2 have the capacity of 5 and supplier 3’s
capacity is 10.

We now look at the supply chain optimal problems. If all the three suppliers are
available, the buyer will choose 5 units from each of supplier 1 and supplier 2. The supply
chain optimal profit is Π∗C({1, 2, 3}) = 200. If only suppliers 3 and 1 (or 2) are available,
the buyer will choose 5 units from each of 3 and 1 (or 2). The supply chain optimal
profit is Π∗C({1, 3}) = Π({2, 3}) = 162.5. If supplier 3 is the sole supplier, the buyer will
choose 10 units from supplier 3 and the supply chain optimal profit is Π∗C({3}) = 150.
Therefore, we have Π∗C({1, 2, 3}) + Π∗C({3}) = 350 > 325 = Π∗C({1, 3}) + Π∗C({2, 3}), which
contradicts the submodularity property.

We can also show that the proposed equilibrium in Theorem 2 will not apply in this
case. If each of suppliers 1 and 2 asks for a fixed payment of 200− 162.5 = 37.5, and the
buyer makes the supply chain optimal choice of selecting these two suppliers, then the
buyer profit is 200−75 = 125. However, this is less than the profit available to the buyer
from selecting supplier 3 alone, which gives the buyer a profit of 150. So this is not an
equilibrium. We can check that an equilibrium exists where both suppliers 1 and 2 ask
for a fixed payment of 25, and the buyer chooses both of these offers. �
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