
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

A case for precise, fine-grained pointer synthesis
in high-level synthesis

NADESH RAMANATHAN, Imperial College London, UK
GEORGE A. CONSTANTINIDES, Imperial College London, UK
JOHN WICKERSON, Imperial College London, UK

This article combines two practical approaches to improve pointer synthesis within HLS tools. Both approaches
focus on inefficiencies in how HLS tools treat the points-to graph – a mapping that connects each instruction to
the memory locations that it might access at runtime. HLS pointer synthesis first compute the points-to graph
via pointer analysis and then implements its connections in hardware, which gives rise to two inefficiencies.
Firstly, HLS tools typically favour pointer analysis that is fast, sacrificing precision. Secondly, they also favour
centralising memory connections in hardware for instructions that can point to more than one location.

In this article, we demonstrate that a more precise pointer analysis coupled with decentralised memory
connections in hardware can substantially reduce the unnecessary sharing of memory resources.We implement
both flow- and context-sensitive pointer analysis and fine-grained memory connections in two modern HLS
tools, LegUp and Vitis HLS. An evaluation on three benchmark suites, ranging from non-trivial pointer use
to standard HLS benchmarks, indicates that when we improve both precision and granularity of pointer
synthesis, on average, we can reduce area and latency by around 42% and 37% respectively.

ACM Reference Format:
Nadesh Ramanathan, George A. Constantinides, and John Wickerson. 2021. A case for precise, fine-grained
pointer synthesis in high-level synthesis. 1, 1 (October 2021), 26 pages. https://doi.org/10.1145/nnnnnnn.
nnnnnnn

1 INTRODUCTION
High-level synthesis (HLS) is the process of automatically compiling behavioral descriptions
expressed in software, such as in C, into hardware expressed in register-transfer level (RTL) [8].
HLS is beginning to gain traction in industry since it improves design productivity and its quality
of results are becomingly comparable to hand-written RTL [3, 18]. As such, it is crucial to keep
pushing the boundaries of modern HLS compilers to support more program features and better
analyses [25]. One such effort to push the boundaries of C-based HLS is the synthesis of pointers.
In C, pointers enable dynamic addressing of memory locations, which in turn enables the

expression of dynamic data structures such as linked lists and trees. Although many HLS tools
accept C as their input language, most do not have good support for pointers. For instance, some
HLS tools, like LegUp [5] and Bambu HLS [27] are overly conservative with implementing pointers,
while others, like Vitis HLS [47], do not support pointers at all. Due to the recent surge of interest
in HLS, we believe that now is the time to scrutinise and explore efficient pointer synthesis within
modern-day HLS tools. Furthermore, recent HLS works on synthesising pointer-manipulating

Authors’ addresses: Nadesh Ramanathan, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK;
George A. Constantinides, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK; John Wickerson,
Imperial College London, South Kensington Campus, London, SW7 2AZ, UK.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2021 Association for Computing Machinery.
XXXX-XXXX/2021/10-ART $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

, Vol. 1, No. 1, Article . Publication date: October 2021.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Nadesh Ramanathan, George A. Constantinides, and John Wickerson

programs [44, 45], atomic pointers [30, 32] and dynamic memory allocation [10, 11, 24, 48, 49] are
examples where pointers are used non-trivially, increasing the need for efficient pointer synthesis
in future HLS tools.

The key to implementing pointers in HLS is the points-to graph, which associates each instruction
in the program with the set of memory locations it might access at runtime [17, 36]. The standard
HLS approach is first to compute the points-to graph and then to implement its connections between
memory instructions and memory elements in hardware. In this article, we focus on inefficiencies
that arise during these two steps.

Precise pointer analysis. The points-to graph of a program is computed by a pointer analysis. The
number of connections in this graph can depend on the precision of this analysis. Although fully
precise pointer analysis is undecidable [29], there are several analyses that can yield good precision
within a reasonable time on large codebases [9, 13, 15, 40, 41, 43, 52].

Existing HLS tools tend to sacrifice precision in favour of quicker analysis times. For example,
LegUp HLS uses an implementation of Andersen analysis [13], as it claims that the compiler
community has developed fast insensitive analyses [21, §4.11]. Alas, Andersen analysis is flow- and
context-insensitive. We demonstrate that switching to a pointer analysis due to Sui and Xue [39]
that is flow-sensitive (considers the order of instructions in a program) and context-sensitive
(considers a function’s calling context) can substantially reduce false sharing of memory resources,
with minimal impact on analysis times.

Fine-grained memory connections. Once the points-to graph is computed, HLS tools must determine
how to connect instructions to the memory locations that they could point to during runtime.
Existing HLS tools that support pointers take what we call a coarse-grained approach, where
a centralised memory subsystem is put in place. Any instructions that can point to more than
one memory location are forced to access these locations via a global memory controller. This
approach ensures accessibility but introduces complicated circuitry for address arbitration and
forces independent memory accesses to be serialised. LegUp takes this approach for all instructions,
except for those that are connected to just one location in the points-to graph [22, §4.2.3.1]. Vitis HLS
only synthesises programs where all memory instructions are connected to just one location [46,
Chapter 1].

Instead of adopting coarse-grained memory connections, as provided by modern HLS tools, we
investigate the efficacy of decentralising the memory connections between instructions and the
locations they can point to at runtime. We implement fine-grained memory connections in which
the global memory controller is eschewed in favour of a series of per-instruction arbiters. The idea
is to connect each instruction directly to the memory locations that it might access at runtime (as
determined by the pointer analysis), and to handle address disambiguation locally. Although there
are well-known approaches to decentralise memory connections [33–35], they have largely been
overlooked and unimplemented by modern HLS tools. However, given the rising influence of HLS
and the growing need for pointers in HLS, such approaches must be revisited systematically. We
must especially explore their effects within the context of also scrutinising points-to precision.

Article Outline. In summary, we make the case for improving the precision and granularity of
pointer synthesis of HLS tools. We outline the following material in this article:
(1) In §2, we present a worked example that demonstrates why and how precision and granularity

influence pointer synthesis within HLS.
(2) In §3, we describe how we have prototyped flow- and context-sensitive pointer analysis (§3.1)

and fine-grained memory connections (§3.2) within two modern HLS tools, LegUp [21] and
Xilinx Vitis HLS [47].

, Vol. 1, No. 1, Article . Publication date: October 2021.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

A case for precise, fine-grained pointer synthesis in high-level synthesis 3

Table 1. A summary of how precise, fine-grained pointer synthesis affects area and latency. (More details
about our experiments are in Section 4.) We write ▼ to indicate decreases and ▲ to indicate increases. On
average, improving the precision and granularity of pointer analysis leads to 42% and 37% in area and latency
reductions across three benchmarks and two HLS tools.

LegUp HLS Vitis HLS
benchmark area latency area latency

PTABen ▼67% ▼49% ▼40% ▼2%
Array Partitioning ▼11% ▼16% ▼94% ▼92%
CHStone ▲1% ▼2% - -

combined ▼25% ▼22% ▼67% ▼47%

(3) In §4, we evaluate the effects of precision and granularity of pointer synthesis in both HLS
tools using three benchmark suites:
• a benchmark suite with non-trivial pointer use called PTABen [50],
• a benchmark suite used for HLS array partitioning [6], and
• a standard HLS benchmark suite called CHStone [12].

Summary of results. The choice of benchmarks for evaluating our work is a delicate one. We have
included the standard CHStone benchmark because it is widely used, but as shown in Table 1, our
approach has a negligible effect there. (That said, we found that disabling function-inlining on
these benchmarks leads to more opportunities for precise pointer synthesis, as we discuss in §4.3.)
The problem with CHStone is that it is designed to reflect the kind of programs that work well
with current HLS tools, and hence avoids non-trivial pointer use, probably because HLS tools do
not support pointers very well. In turn, we believe that one reason HLS tools do not have good
pointer support is the lack of demand for non-trivial pointer use from HLS benchmarks. Thus, in
this article, we seek to move beyond this chicken-and-egg situation by including other benchmarks
too.
The PTABen benchmarks involve non-trivial use of pointers, and Table 1 shows that precise,

fine-grained pointer synthesis has the most impact on these benchmarks. Some improvements are
also seen from the array partitioning benchmarks, which consist of more regular but partitioned
memory accesses. Current HLS tools can do a decent job on these benchmarks but there are still
inaccuracies in interpretation of the points-to graph.

Comparison to our prior work. This article extends our conference paper at FPL 2020 [31] in three
ways. Firstly, in our conference paper, we identified that the points-to graph supplied to HLS
pointer synthesis is often imprecise. In this article, we further identify that pointer synthesis itself
is centralised and does not completely exploit the reduction in memory connections made possible
by precise pointer analysis. Hence, we explore a holistic approach of not only focusing on precision
but also connection granularity to improve the efficiency of pointer synthesis in HLS. Secondly,
where the conference paper only prototyped our implementations for the LegUp tool, this article
shows how our implementations are also effective when applied to the Xilinx Vitis HLS tool. Finally,
where the evaluation in our conference paper was limited to the PTABen benchmark suite, this
article includes two further benchmark suites: array partitioning and CHStone.

Supplementary material. We provide some supplementary material which includes an LLVM pass
that allows programs with pointers that can point to multiple locations, which would otherwise
not be synthesisable via Vitis HLS [1]. The details of this LLVM pass are discussed in §3.2.2.

, Vol. 1, No. 1, Article . Publication date: October 2021.

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Nadesh Ramanathan, George A. Constantinides, and John Wickerson

int a = 1, b = 2; int main() {
int c = 3, r = 0; p = &a; f();
int *p; p = &b; f();

p = &c;
void f() { r += *p; ❷
r += *p; ❶ return r;
} }

(a) a program

❷

❶

p

c

b

a

(b) imprecise analysis

❷

❶

c

b

a

(c) precise analysis

❷

❶

c

b

a

m
em

or
y
co
nt
ro
lle
r

M
U
X

(d) imprecise coarse-grained
hardware

❷

❶

c

b

a

m
em

or
y
co
nt
ro
lle
r

M
U
X

(e) precise coarse-grained
hardware

❷

❶

c

b

a

M
U
X

M
U
X

(f) imprecise fine-grained
hardware

❷

❶

c

b

a

M
U
X

M
U
X

(g) precise fine-grained
hardware

Fig. 1. An example program that uses pointers non-trivially. Figs. 1b and 1c shows the points-to graph
generated by an insensitive Andersen analysis and precise analysis respectively. Figs. 1d and 1e represents
the hardware generated by LegUp, using the results of Figs. 1b and 1c respectively. Figs. 1f and 1g represents
hardware generated by our modifications to both LegUp and Vitis HLS, using the results of Figs. 1b and 1c
respectively. In Fig. 1b, blue arrows are the results on Andersen analysis. Red lines are the points-to relation
between pointer instructions and memory variables.

, Vol. 1, No. 1, Article . Publication date: October 2021.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

A case for precise, fine-grained pointer synthesis in high-level synthesis 5

2 MOTIVATING EXAMPLE
In this section, we discuss an example that shows how precise analysis and fine-grained memory
connections influence HLS-generated pointer hardware.

Consider the program in Fig. 1a, which consists of a pointer, p, and four variables, a, b and c and
r. Overall, the program accumulates the dereferenced value of p three times. We disable inlining
for this example, to avoid HLS optimisations. In this program, p is first assigned to a, then to b and
finally to c. Note that the function f is called after the first two assignments. p is dereferenced once
within function f, labelled as ❶, and once in main, labelled as ❷.

At the LLVM-level, each direct access to p is a LLVM instruction. Additionally, dereferencing
pointer p requires two LLVM loads.1 In practice, the code in Fig 1a also generates three stores to p
and two loads of p. For brevity, we have eliminated these direct accesses to p in our diagrams.

Insensitive Andersen analysis. When Andersen analysis interprets this program, it infers that p may
point to either a, b or c, as shown by the blue arrows in Fig. 1b. Notice that Andersen analysis
relates variables without considering any instructions, i.e. the output of Andersen analysis is
{(p, a), (p, b), (p, c)}. From this output, the best a HLS tool can infer is that both ❶ and ❷ may
access a, b or c during runtime, i.e. {(❶, a), (❶, b), (❶, c), (❷, a), (❷, b), (❷, c)} , as shown by the
red lines in Fig. 1b. In summary, Andersen analysis suggests that both memory instructions may
access any of the three variables at runtime.
Some HLS tools, such as LegUp, enable such possibility via its addressable memory controller

that handles pointer disambiguation at runtime. Fig. 1d shows hardware generated using a memory
controller based on Andersen analysis. On one side, instructions ❶ and ❷ are connected to the
controller and, on the other side, memory elements of a, b and c are also connected to the controller.
Additionally, ❶ and ❷ may alias and must not be scheduled in parallel or out-of-order.

Precise pointer analysis. A flow- and context-sensitive analysis understands the order in which the
assignment to p occur: a, b and then c. Hence, a precise analysis can infer that ❶ is called after
p is assigned to a and b, but not c. Also, it infers that ❷ always accesses c. As a consequence, a
precise analysis provides a more refined points-to result in Fig. 1c, compared to Andersen analysis
in Fig. 1b. Notice that precise analysis relates instructions to variables, rather than variables to
variables as in Andersen analysis.

This refined points-to graph influences pointer synthesis in HLS tools, reducing addressing
circuitry by removing false sharing. For example, ❶ only accesses a and b, and ❷ only ever accesses
c during runtime. Hence, only ❶, a and b need to be connected to the memory controller and ❷
can be directly connected to c, as shown in Fig. 1e. This optimisation reduces arbitration within
the memory controller and simplifies the addressing circuitry of ❷ and c. Finally, the scheduler
can reorder ❶ and ❷.

Fine-grained memory connections. Figs. 1d and 1e show groups of instructions and memory elements
that have been forced to share a single physical connection. This physical connection limits the
possibility of independent accesses and also increases false sharing. Instead using a memory
controller, we can localise the memory connections on a per-instruction basis.
Fig. 1f shows how we introduce fine-grained memory connections, instead of the memory

architecture in Fig. 1d. We introduce multiplexing per pointer load (or demultiplexing per pointer
store) based on the set of inputs of the points-to graph. In this case, the points-to graph is from
Andersen analysis, i.e. Fig. 1b. The selection criterion of each multiplexer is the runtime value of p.
Using fine-grained connections simplifies the addressing circuitry in two ways. Firstly, the memory

1Since LLVM memory instructions use three-address code [19]

, Vol. 1, No. 1, Article . Publication date: October 2021.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Nadesh Ramanathan, George A. Constantinides, and John Wickerson

elements can be accessed without latency delays from the memory controller. Secondly, arbitration
is localised to each instruction.

Combining precision and fine-grained connections. The key benefit of using fine-grained connections
is that we can customize the memory connections for each pointer instruction. This customization
is advantageous when the points-to graph is precise for each instruction, as in Fig. 1c. Fig. 1g shows
the memory architecture resulting from improving both precision and connection granularity. ❶ is
connected to a and b via a multiplexer, since the runtime value of p can only point to these two
elements. ❷ is directly connected to c, without necessitating a multiplexer, or even loading the
runtime value of p. In summary, this generated hardware is smaller and faster than all previous
generated hardware discussed in this example.

3 METHOD
In this section, we prototype our implementations to improve precision and connection granularity
of pointer synthesis. Our implementations focus on tackling inefficiencies both generation and
interpretation of points-to graph within modern HLS tools.
In §3.1, we focus on introducing more precise pointer analysis when generating the points-to

graph. Although precise pointer analysis is well studied in the software world, it has been hardly
considered in the HLS context. Hence, we leverage flow- and context-sensitive pointer analysis
from SVF [39], which is an LLVM-based pointer analysis tool. We can pass the intermediate LLVM
IR of both LegUp and Vitis HLS to SVF to generate more precise points-to graphs. Handling these
precise graphs require a fundamental shift in how modern HLS tools view points-to graphs. We
discuss this view in detail.
Then, in §3.2, we focus on inferring fine-grained memory connections when interpreting the

points-to graph. Although well-known methods [34, 35] exist, these methods have neither been
considered in comparison to modern HLS memory controllers nor evaluated in the context of points-
to precision of pointer synthesis. We explore both these aspects. We prototype two implementations
within LegUp and Vitis HLS respectively to improve connection granularity. For LegUp HLS,
we tap into its backend to prevent the generation of a global memory controller, but instead
prototype memory arbitration on per-instruction basis. For Vitis HLS, we prototype a front-end
implementation inspired by Séméria et al. [34, 35]. Both these prototypes are then supplied with
refined points-to graphs from precise pointer analysis, to evaluate the influence of points-to
precision within HLS.

3.1 Leveraging precise pointer analysis
To leverage precise analysis, we must first understand how Andersen analysis is used in HLS. Let
V be the set of variables in the IR code. Andersen analysis produces a points-to relation between
variables, AnderPts ⊆ V × V . For example, AnderPts = {(p, a), (p, b), (p, c)} based on the IR code in
Fig. 1a, as shown by the blue arrows in Fig. 1b.

3.1.1 Understanding imprecise analysis. An LLVM-based HLS tool uses the results of Andersen
analysis to generate the memory addressing for all indirectly-addressed LLVMmemory instructions.
From this analysis, an HLS tool infers a points-to relation between instructions and variables. Let I
be the set of LLVM memory instructions. Let deref ⊆ I × V relate instructions to pointers that it
dereferences. InstPts relates instructions and variables, i.e. InstPts ⊆ I × V . InstPts is inferred using
the results of Andersen analysis, as follows:

InstPts = DirectPts ∪ IndirectPts

, Vol. 1, No. 1, Article . Publication date: October 2021.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

A case for precise, fine-grained pointer synthesis in high-level synthesis 7

where

IndirectPts = {(𝑖, 𝑣) | 𝑖 ∈ I ∧ 𝑣 ∈ V ∧ ∃𝑣𝑝 ∈ V . (𝑖, 𝑣𝑝) ∈ deref ∧ (𝑣𝑝 , 𝑣) ∈ AnderPts}

DirectPts represents directly addressed instructions, which are instructions whose variables are
expressed in the LLVM source. For example, all loads and stores to @p and @r in Fig. 1a are
part of DirectPts. IndirectPts represents indirectly addressed instructions, where this relation
between instructions and variables that must be inferred from Andersen analysis. IndirectPts
defines that an instruction 𝑖 points to variable 𝑣 if instruction 𝑖 dereferences a pointer 𝑣𝑝 , i.e.
(𝑖, 𝑣𝑝) ∈ deref , and Andersen analysis states that 𝑣𝑝 points to 𝑣 . For example, since AnderPts =

{(p, a), (p, b), (p, c)} and {(❶, p), (❷, p)} ∈ deref , ❶ and ❷ must be related to a, b and c i.e.
IndirectPts = {(❶, a), (❶, b), (❶, c), (❷, a), (❷, b), (❷, c)}. Together, DirectPts and IndirectPts form
a points-to graph that LegUp uses for memory addressing. IndirectPts is shown by red edges in
Fig. 1b.

3.1.2 Implementing precise analysis. A precise pointer analysis produces a points-to relation
between instructions and variables, i.e. I ×V , for all LLVM memory instructions. We utilise the SVF
pointer analysis [39], that can be configured as either a flow-sensitive analysis (FSInstPts ⊆ I ×V) or
a flow-and-context-sensitive analysis (FSCSInstPts ⊆ I × V). In general, FSCSInstPts ⊆ FSInstPts ⊆
InstPts, since SVF’s flow-sensitive analysis takes Andersen analysis as input and SVF’s flow-and-
context-sensitive analysis takes its flow-sensitive analysis as input.

An LLVM-based HLS tool can directly use the points-to relation of SVF for memory addressing,
i.e. IndirectPts = FSInstPts or IndirectPts = FSCSInstPts. This is because SVF directly provides the
relation between instructions and variables (I × V) to the HLS tool, rather than forcing the HLS
tool to derive the points-to relation from Andersen analysis that only relates variables (V × V).
For example, for the code in Fig. 1a, SVF generates IndirectPts = FSInstPts = {(❶, a), (❶, b), (❷, c)}.
SVF encodes that ❶ only accesses a and b and ❷ only accesses c, as seen in Fig. 1c.

3.1.3 SVF implementation details. We did not tightly integrate LegUp and Vitis HLS with SVF, since
all three tools were implemented with different LLVM versions. So, we designed a simple interface
between these HLS tools and SVF via file I/O streams. SVF is a demand-driven pointer analysis [16],
which applies flow- and/or context-sensitive analysis on a per-instruction basis. However, we
configure SVF to analyse the entire program, with unlimited time and memory budgets, since we
want to exploit the best-case precision for every instruction. We configure SVF to support several
LLVM instructions for indirect accesses including loads, local variables, arrays, function arguments,
selects and phi-nodes. We can also support multiple pointer indirections, since it still translates to
instructions points to variables.

3.2 Introducing fine-grained memory connections
Whenever an instruction points to more than one variable, the HLS-generated hardware must be
able to cope with pointer disambiguation at runtime. The set of instructions that require pointer
disambiguation, MultiAddrInst, is defined as follows:

MultiAddrInst = {𝑖 ∈ I | ∃𝑣 ∈ V . ∃𝑣 ′ ∈ V . 𝑣 ≠ 𝑣 ′ ∧ (𝑖, 𝑣) ∈ InstPts ∧ (𝑖, 𝑣 ′) ∈ InstPts}

where an instruction 𝑖 is in MultiAddrInst if it points to at least two distinct variables 𝑣 and 𝑣 ′ in
InstPts. In the next two subsubsections, we discuss how LegUp and Vitis HLS natively deal with
pointer instructions that can point to more than one variable and how we introduce per-instruction
arbitration for these instructions.

, Vol. 1, No. 1, Article . Publication date: October 2021.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Nadesh Ramanathan, George A. Constantinides, and John Wickerson

❷

❶

c

b

a

p

m
em

or
y
co
nt
ro
lle
r

rd_data

en
addr

rd_data

en
addr

rd_data

rd_data

rd_data

rd_data

(a) Coarse-grained loads
in LegUp

❷

❶

c

b

a

p

==

M
U
X

rd_dataA_TAG

rd_data

rd_data

rd_data

(b) Fine-grained loads
in LegUp

Fig. 2. Implementing indirect loads of code in Fig. 1a within LegUp HLS.

3.2.1 Generating per-instruction arbitration without memory controller in LegUp HLS. LegUp
HLS supports pointer disambiguation via a global memory controller. All the instructions in
MultiAddrInst are connected to one side of memory controller. Any memory variables can be
accessed by MultiAddrInst must be also be connected to the controller, which LegUp refers to as
global memories. The set of LegUp’s global memories, GlobalMem, is defined as follows:

GlobalMem = {𝑣 ∈ V | ∃𝑖 ∈ MultiAddrInst . (𝑖, 𝑣) ∈ InstPts}
LocalMem = V \ GlobalMem

where any variable 𝑣 is implement as globalmemory (GlobalMem) if an instruction 𝑖 is inMultiAddrInst
and points to 𝑣 . All other variables are implemented in local memories, which can be directly con-
nected.
For example, LegUp infers the following from Andersen analysis in Fig. 1b: MultiAddrInst =

{❶,❷}, GlobalMem = {a, b, c} and LocalMem = ∅. The memory connections in Fig. 1d is based
on this imprecise inference. However, LegUp infers the following from SVF’s precise analysis in
Fig. 1c: MultiAddrInst = {❶}, GlobalMem = {a, b} and LocalMem = {c}. The memory connections
in Fig. 1e are based on this precise inference.

Fig. 2a shows the original LegUp connections to handle pointer disambiguation. Each instruction
must obey the signalling protocol of the controller: enable, write enable, address, read data and
write data signals. Loads only require three signals as seen in the figure, whereas stores require
four signals. If the memory element is an array, then the address signal is also required to index
the array. In this example, the address signal is provided to ❶ and ❷ by the runtime value of p,
as shown in the dotted lines of Fig. 2a. This value is directly wired as the address signal to the
memory controller.

Fig. 2b shows how we can customise each instruction’s memory connections based on the points-
to graph in Fig. 1c. For ❶, we read the value of p and compare it against the address tag of a, i.e.
A_TAG. We maintain the same addressing space from the memory controller for the comparison.
Then, we feed the result of the comparison to a multiplexer that is tailored to ❶. Based on the
points-to graph, the choice for ❶ is only between a and b. Additionally, ❷ is directly wired to c.
We do not even need to read the runtime value of p for ❷ in Fig. 2b, compared to Fig. 2a. In general,
we must introduce multiplexing for as many variables that an instruction can point to and for all
necessary signals depending on whether the instruction is a load or a store.

3.2.2 LLVM transformations to support fine-grained connections in Vitis HLS. Natively, Vitis HLS
does not provide any hardware to perform address disambiguation at runtime. As such, Vitis HLS

, Vol. 1, No. 1, Article . Publication date: October 2021.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

A case for precise, fine-grained pointer synthesis in high-level synthesis 9

Before

@a = global i32 1
@b = global i32 2
@c = global i32 3
@p = global i32* NULL

After

@a = global i32 1 // A_TAG=1
@b = global i32 2 // B_TAG=2
@c = global i32 3 // C_TAG=3
@p = global i32 0 // P_TAG=4

(a) enumerating address

Before store @a, ** @p
store @b, ** @p
store @c, ** @p

After store 1, @p // A_TAG=1
store 2, @p // B_TAG=2
store 3, @p // C_TAG=3

(b) updating pointer addresses

Before %1 = load ** @p
%2 = load * %1 ❷

After

%1 = load @p
%2 = load @a
%3 = load @b
%4 = icmp %1, 1 // A_TAG=1
%5 = select %4, %2, %3
%6 = load @c
%7 = icmp %1, 3 // C_TAG=3
%8 = select %7, %6, %5 ❶

(c) replacing indirect load of ❷ after Andersen analysis

Before %1 = load ** @p
%2 = load * %1 ❷

After %2 = load @c ❷

(d) replacing indirect load of ❷ after precise analysis

Fig. 3. Snippets of LLVM IR from Fig. 1a before and after our Vitis transformation, inspired by Séméria et
al. [34, 35].

is fundamentally limited in its ability to support pointer-manipulating code [46, Chapter 1]. Unless
the pointer analysis can statically determine the single location that a pointer dereferences from,
Vitis HLS forbids the pointer code from being synthesised, i.e. it only supports pointer code when
MultiAddrInst = ∅.

In order to evaluate any non-trivial pointer code in meaningful manner, we have to address this
limitation within Vitis HLS. Hence, we extend Vitis HLS to handle cases when MultiAddrInst ≠ ∅.
As mentioned earlier, Vitis HLS does not provide any memory controller capabilities. We considered

, Vol. 1, No. 1, Article . Publication date: October 2021.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Nadesh Ramanathan, George A. Constantinides, and John Wickerson

introducing a memory controller in hardware at Verilog level for Vitis HLS. Unfortunately, this
option was ruled out since we had no access to its back-end generator, unlike with LegUp HLS.
Therefore, the possibility of implementing coarse-grained memory connections was eliminated
within Vitis HLS. As consequence, we focussed on introducing a front-end optimisation to support
pointer synthesis. Vitis HLS now enables us to tap into its front-end by injecting an LLVM source-
to-source pass. Using this mechanism, we introduce fine-grained memory connections for pointer
synthesis within Vitis HLS, which we provide in our supplementary material.
We implement a standard HLS method to implement fine-grained memory connections by

Séméria et al. [34, 35]. Although this method is well-known, it has not been implemented in the
context of evaluating precision of pointer synthesis, which is the focus of this section. We re-write
the LLVM IR compiled from Fig. 1a, which involves three key transformations, as illustrated in
Fig. 3.

The first transformation enumerates all memory locations in the code to allow direct addressing
of these variables, as shown in Fig. 3a. We also replace pointer variables with regular variables, just
like the declaration of @p. Our pass only supports global variables and arrays currently. We can
extend our prototype to support local variables in the future.
The second transformation replaces all direct pointer instructions. For example, Fig. 3b shows

three stores to **p that we replace with the respective address tags. These transformations must
be implemented to both loads and stores. We must also keep track of all the replaced instructions
and make sure we replace its use within each basic block.
The third transformation replaces all pointer dereferencing instructions with direct loads or

stores and selection (multiplexing) mechanism based on the enumerated addresses. These injected
instructions are designed to mimic the same behaviour as the replaced pointer instruction. The
set of direct loads and stores are directly obtained from the points-to graph, which we use to load,
compare and select the correct variable based on the runtime value of the pointer.

This is where points-to precision matters. If we inject instructions based on Andersen analysis,
as in Fig. 1b, then we have to inject four loads (p, a, b and c) and two compare and select pairs to
replace ❷, as shown in Fig. 3c. This is because Andersen analysis deems that ❷ could point to a, b
or c at runtime. On the other hand, precise analysis eliminates two of three possibilities and states
with certainty that ❷ only ever accesses c. Consequently, we can simply inject one direct load from
c to replace ❷ with precise analysis, as shown in Fig. 3d.

Hence, the quality of pointer analysis can directly influenced the number of injected instructions,
which affects operation scheduling (due to aliasing) and circuit area as well. We also handle indirect
stores, which is similar to how we handle indirect loads, only we have to also read from and then
update all the locations that a pointer could point to.
More details on our transformation can be obtained from our LLVM source code, which is

presented at [1].

4 EVALUATION
We evaluate our prototype implementations on pointer synthesis on three benchmark suites and
two different HLS tools. The variation of benchmarks are designed to represent the program
properties that range from standard to challenging programs for current HLS tools. The variation
in HLS tools shows that our implementations are generally applicable to a variety of LLVM-based
HLS tools.

Design points. Fig. 4 shows our six design points: four and two within LegUp and Vitis HLS
respectively. The rightward arrows represent our implementation that moves from an imprecise
pointer analysis like Andersen analysis to a precise pointer analysis within both HLS tools, as

, Vol. 1, No. 1, Article . Publication date: October 2021.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

A case for precise, fine-grained pointer synthesis in high-level synthesis 11

Imprecise
coarse-grained
LegUp HLS

(ImpreciseCoarseLegUp)

Imprecise
fine-grained
LegUp HLS

(ImpreciseFineLegUp)

Imprecise
fine-grained
Vitis HLS

(ImpreciseFineVitis)

Precise
coarse-grained
LegUp HLS

(PreciseCoarseLegUp)

Precise
fine-grained
LegUp HLS

(PreciseFineLegUp)

Precise
fine-grained
Vitis HLS

(PreciseFineVitis)

Fig. 4. Design points for evaluation.

discussed in §3.1. The downward arrows represent our implementation that introduces fine-grained
memory connections within LegUp HLS, as discussed in §3.2.1. We also extend Vitis HLS to directly
provide fine-grained connections, as discussed in §3.2.2. Note that Vitis HLS does not provide any
coarse-grained memory connections natively.

Software and synthesis setup. We use different synthesis setups per HLS tool. We also do not
directly compare between HLS tools, since their HLS optimisations and stages vary. For LegUp HLS,
we use LegUp 5.1’s pure hardware, which synthesises all memories in a C program as FPGA registers
or RAMs. We synthesise and place-and-route all designs using Quartus v15.0 to a Cyclone V SoC
FPGA (5CSEMA5F31C6N). For Vitis HLS, we use Vitis HLS v20.1. We synthesise and place-and-route
all designs using Vivado v20.1 to a Xilinx Kintex 7 FPGA (xc7k160tfbg484-1).

Section outline. This section is outlined as follows. In §4.1, we evaluate our prototypes on the
PTABen benchmark suite. In §4.2, we evaluate our prototypes on the array partitioning benchmark
suite. In §4.3, we evaluate our prototypes on the CHStone benchmark suite. In §4.4, we discuss the
impact of precise analysis on the analysis times via a pathological example. In §4.5, we summarise
our implementations on these benchmarks across HLS tools.

4.1 Evaluation of PTABen programs
What is PTABen? The PTABen benchmark suite comprises over 400 hand-written programs that

test for correctness and precision of pointer analyses. Although these pointer-based programs may
be common programming patterns within modern software codebases, these patterns are relatively
new to the HLS community.

Which programs do we select? PTABen organises its programs in terms of testing objectives. We
identified programs whose objective is to test the flow- and context-sensitivity of pointer analysis
(two subfolders). Out of 50 programs, we are able to synthesise 32 programs. The remaining
programs are unsynthesisable because they require dynamic memory allocation, recursion or C
structures.

Do we make changes to these programs? Weminimally modify these 32 programs from PTABen for
our purposes. PTABen inserts alias checks, via backdoor calls to SVF, that are meant to instrument
the points-to precision of various instructions. We convert these backdoor calls into non-inlined

, Vol. 1, No. 1, Article . Publication date: October 2021.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Nadesh Ramanathan, George A. Constantinides, and John Wickerson

Program Memory instructions Memory locations

cs0 25 8
cs1 29 11
cs2 56 23
cs3 53 20
cs4 38 16
cs5 38 8
cs6 39 7
cs7 34 12
cs8 34 17
cs9 44 19
cs10 46 15
cs11 22 8
cs12 22 16
cs13 32 9
cs14 24 9
cs15 14 14
cs17 68 20
cs18 8 13
cs19 18 11
cs20 29 17
simple1 18 6
simple2 26 9
simple3 18 9
global1 15 8
global2 15 8
global3 20 9
global4 34 10
global5 18 12
branch1 22 7
branch2 17 6
branch3 34 9
strong-update 12 12

Table 2. Number of memory instructions and locations per PTABen program

functions where we dereference all pointers involved. These changes enable us to instrument
the points-to sets of individual instructions of HLS-generated hardware. We also accumulate all
dereferenced values and return the final output, so that the HLS tools cannot optimise away any
pointer-relation instructions.

What is the pointer profile of selected programs? Table 2 shows the number of memory instructions
and memory locations within each PTABen program that we synthesised. These include both direct
and indirect accesses as well as pointer and variable/array locations. On average, each PTABen
program has a mean of 32 instructions (with standard deviation of 21 instructions) and 12 locations
(with standard deviation of 5 locations).

, Vol. 1, No. 1, Article . Publication date: October 2021.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

A case for precise, fine-grained pointer synthesis in high-level synthesis 13

0.2 0.5 1
0.2

0.5

1

Flow-sensitive

Fl
ow

-a
nd

co
nt
ex
t-s

en
si
tiv

e
a) Relative area

0.2 0.5 1
0.2

0.5

1

Flow-sensitive

b) Relative latency

Fig. 5. Relative area and latency of different types of precise analysis, relative to imprecise Andersen analysis.
Data points represent coarse-grained LegUp (), fine-grained LegUp (), and fine-grained Vitis ().

As a comparison, the CHStone benchmarks have a mean of 117 instructions (with standard
deviation of 112 instructions), which is much larger and more varied than the PTABen programs.
However, these consist of mostly direct accesses, and are a very small portion of the design. On the
original LegUp implementation (ImpreciseCoarseLegUp), the CHStone programs average at 0.008
memory instructions per ALM, whereas the PTABen programs average at 0.1 memory instructions
per ALM. Hence, the PTABen programs have a ratio that is at least an order of magnitude higher
than CHStone, which shows the significant increase in complexity of pointer use, and highlights
that the PTABen suite is moving beyond standard memory patterns synthesised by most HLS tools.

Result outline. First, we discuss the HLS effects of the different precise analyses that are possible
via SVF in §4.1.1. Then, we present the LegUp and Vitis synthesis results in §4.1.2 and §4.1.3.

4.1.1 Understanding the impact of flow- vs flow-and-context-sensitive analysis on PTABen. SVF
provides three different configurations: insensitive Andersen analysis, flow-sensitive analysis
and flow-and-context-sensitive analysis. Hence, we have two choices when it comes to precise
analysis. Fig. 5 shows the hardware area and latency of the two possible choices, relative to
imprecise Andersen analysis. These graphs show us two important points. Firstly, regardless of
tool or connection granularity, all points are in the lower-left quadrant. This means that both
of the precise analyses always lead to improvements (or no change) in both area and latency,
compared to imprecise Andersen analysis. Secondly, all the points are on or below the diagonal.
This means that flow-and-context-sensitive analysis always leads to improvements (or no change)
in both area and latency, compared to just flow-sensitive analysis. This trend is expected, since
FSCSInstPts ⊆ FSInstPts ⊆ InstPts.
On average, hardware generated from flow- and context-sensitive analysis is 13% smaller and

10% faster than flow-sensitive analysis. Henceforth, when we mention precise analysis, we are
referring to flow-and-context-sensitive analysis. All the rightward arrows in Fig. 4 are moving from
Andersen analysis (imprecise analysis) to flow-and-context-sensitive analysis (precise analysis).

4.1.2 Evaluating precise, fine-grained pointer analysis of LegUp HLS on PTABen. Fig. 6 shows four
metrics that we measure when synthesising the 32 programs from PTABen on our four LegUp-based
design points in Fig. 4.

, Vol. 1, No. 1, Article . Publication date: October 2021.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Nadesh Ramanathan, George A. Constantinides, and John Wickerson

0.6

0.8

1
a) Relative edge count

0.01

0.1

1
b) Relative area

precise coarse-grained LegUp (PreciseCoarseLegUp)
imprecise fine-grained LegUp (ImpreciseCoarseLegUp)

precise fine-grained LegUp (ImpreciseFineLegUp)

0.2

0.5

1
c) Relative latency

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
0

5

10

15
d) Analysis times (in milliseconds)

Fig. 6. Pointer synthesis metrics of LegUp by PTAben programs and by design point. We enumerate the fol-
lowing PTABen programs (from cs_tests and fs_tests) in this order: cs0-15.c, cs17-20.c, simple1-3.c,
global1-5.c, branch1-3.c and strong-update.c. All metrics are relative to imprecise coarse-grained LegUp
(ImpreciseCoarseLegUp).

The effects of precise analysis on points-to ratio. Fig. 6(a) shows relative edge count of the points-to
graph generated by SVF using precise analysis, compared to imprecise Andersen analysis. On
average, precise analysis reduces the relative edge count by 17%, compared to imprecise Andersen
analysis. We also see that precise analysis can reduce relative edge count by a maximum 37%. There
are also programs that do not benefit from precise analysis, i.e. the relative edge count is close to 1,
which are the branch programs since sometimes control paths are hard to analyse even by precise
analysis.
We only report a single bar per program, because both rightward arrows in Fig. 4 produce the

same ratio, i.e. edge count of PreciseCoarseLegUp divided by edge count of ImpreciseCoarseLegUp is
the same as edge count of PreciseFineLegUp divided by edge count of ImpreciseFineLegUp.

, Vol. 1, No. 1, Article . Publication date: October 2021.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

A case for precise, fine-grained pointer synthesis in high-level synthesis 15

The effects of precise analysis on analysis times. These edge count reductions comes at a cost of
additional time for pointer analysis. Fig. 6(d) shows the analysis times required for both imprecise
and precise analysis. Although, on average, precise analysis is 4× slower than imprecise analysis,
these analysis times, measured in milliseconds, are insignificant compared to the HLS compilation
or hardware synthesis times. For perspective, it takes 5 seconds to compile Program 1 from C to
Verilog and another 2 minutes to synthesise the generated Verilog into a bitstream within LegUp
HLS.

The effects of precise, fine-grained pointer analysis on hardware runtimes and area. Fig. 6(b) and (c)
show the relative area and latency of the generated hardware for our three LegUp-based design
points relative to LegUp’s original implementation, which is ImpreciseCoarseLegUp. Please note
the area numbers in this paper refer to either ALM in LegUp HLS or LUT count in Vitis HLS,
post-place-and-route. These numbers are implicitly proportional to multiplexing circuitry required
to implement the memory sharing between pointer instructions and memory locations in hardware.

Introducing precise analysis. The first option is simply to provide LegUpwith amore precise points-to
graph generated by SVF’s precise analysis, i.e. PreciseCoarseLegUp. On average, PreciseCoarseLegUp
reduces area and latency by 60% and 30%, compared to ImpreciseCoarseLegUp. Hence, we see that
reduction in edge count directly influences the quality of generated hardware.
Although the edge count is reduced for all except three programs (programs 29 to 31), we do

not see reduction in area and latency for the same number of programs. For example, we do not
see area reduction via PreciseCoarseLegUp in six programs (instead of three): Program 9, 14, 15,
18, 24 and 25. We also do not see latency reduction for programs 9, 14, 15 and 18. The reason
for this is, despite the points-to graph becoming more precise, LegUp is unable to simplify the
addressing circuitry or memory allocation, i.e. LegUp still uses their global memory controller.
Despite FSCSInstPts ⊂ InstPts for these programs, LegUp may generate the same GlobalMem. These
observations led to our second option.

Introducing fine-grained connections. The second option is to use imprecise Andersen analysis but
introduce fine-grained per-instruction arbitration, i.e. ImpreciseFineLegUp. On average, Imprecise-
FineLegUp reduces area and latency by 54% and 39%, compared to ImpreciseCoarseLegUp, despite
both design points using the same input points-to graph. ImpreciseFineLegUp can reduce area
and latency by up to 96% and 67%, compared to ImpreciseCoarseLegUp. We see that fine-grained
connections either reduce area or latency for all expect one program (Program 30). Avoiding use of
the memory controller can result in reduced addressing circuitry or reduced cycle count to access
the same memory element.2
On average, compared to PreciseCoarseLegUp, using fine-grained connections increases area

but reduces latency. However, with closer observation, we see that whether ImpreciseFineLegUp
or PreciseCoarseLegUp performs better depends on the program, as they can outperform each
other. Sometimes reducing the edge count improves hardware performance more than fine-grained
connections, and vice versa. Also, occasionally, PreciseCoarseLegUp is slightly above 1. These cases
are rare and shows that sometimes PreciseCoarseLegUp may suffer from longer critical paths. These
observations led to our third option.

Introducing both precise analysis and fine-grained connections. The third option combines precise
analysis and fine-grained memory connections within LegUp, i.e. PreciseFineLegUp. On average,
PreciseFineLegUp reduces area and latency by 67% and 49%, compared to ImpreciseCoarseLegUp.

2A load via a memory controller always takes one cycle, whereas direct load can be instantaneous, if it is a register. A store
via a memory controller takes two cycles whereas a direct store takes one cycle.

, Vol. 1, No. 1, Article . Publication date: October 2021.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Nadesh Ramanathan, George A. Constantinides, and John Wickerson

0.2 1 5
0.2

1

5

Relative edge count

a) relative area

0.2 1 5
0.2

1

5

Relative edge count

b) relative latency

Fig. 7. Pointer synthesis metrics of Vitis for the same set of PTABen programs as in Fig. 6. All data points are
relative to imprecise fine-grained Vitis (ImpreciseFineLegUp).

Hardware generated by PreciseFineLegUp can reduce area and latency by up to 98% and 80%. In
general, we see that the benefits of precise analysis is amplified when memory generation is
sensitive to the points-to precision. This is because PreciseFineLegUp reduces false sharing both at
the level of graph connections as well as hardware memory connections.

4.1.3 Evaluating precise, fine-grained pointer analysis of Vitis HLS on PTABen. Fig. 7 shows relative
area and latency versus relative edge count from employing precise analysis within Vitis HLS. As
noted previously, Vitis HLS does not implement coarse-grained or fine-grainedmemory connections.
We implement fine-grained memory connections within Vitis HLS, as discussed in §3.2.2. Then, we
can apply precise analysis on top of our implementation of fine-grained connections in Vitis, as
shown by rightward arrow in Fig. 4.
Firstly, note that almost all of the points are below 𝑦 = 1. This means that employing precise

analysis almost always leads to a reduction (or no change) in both area and latency. Also, on
average, we see that employing precise analysis within Vitis HLS via PreciseFineVitis reduces area
and latency by 40% and 26%, compared to ImpreciseFineVitis. PreciseFineVitis can reduce area and
latency by up to 76% and 63%, compared to ImpreciseFineVitis. Only one program is 5% larger in
PreciseFineVitis, compared to ImpreciseFineVitis, which we can attribute to a very small program
having relatively large synthesis variations.

4.2 Evaluation of array partitioning benchmarks
What is EASY?. The next set of programs we evaluate are the array partitioning benchmarks

from EASY by Cheng et al. [6]. These are a set of programs that consist of independent functions
that are meant to access independent matrices that have been partitioned from the same source.
As such, these partitioned programs are more typical benchmarks for HLS since consists of array
accesses and loops with fixed intervals. We synthesise all five programs of this benchmark: matrix
multiplication, matrix addition, histogram, line-of-sight and substring.

What is the programming paradigm of EASY?. For each benchmark, we partition the function
and data by powers of 2, from 1 up to 16, and generate individual programs for each partition
count. Figure 8 shows this programming paradigm, where we have two partitioned arrays and two

, Vol. 1, No. 1, Article . Publication date: October 2021.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

A case for precise, fine-grained pointer synthesis in high-level synthesis 17

int *p;
int p1[SIZE], p2[SIZE];

int f1(){ return p[0];❶}

int f2(){ return p[0];❷}

int main(){
int ret;
p=p1; ret = f1();
p=p2; ret += f2();
return ret;
}

(a) an EASY program

❷

❶

p2

p1

(b) imprecise analysis

❷

❶

p2

p1

(c) precise analysis

Fig. 8. A minimal example of the EASY programming paradigm (partition count of 2) and why precise analysis
benefits pointer synthesis of both LegUp and Vitis HLS

independent functions sharing a pointer p. The main function assigns different array partitions
to different function calls. Within each function, this pointer is dereferenced and used for the
particular EASY computations. In the original EASY programs, these functions are compiled using
C pthreads as independent functions, however the scope of this article is only for sequential C
programs. We target these programs on both LegUp and Vitis HLS.
Figures 8b and 8c shows the points-to results of Andersen (imprecise) and precise analysis

respectively. In the case of imprecise analysis, the HLS tool is informed that both functions could
access both array partitions, which means the HLS tool must put in place pointer disambiguation
circuitry. Precise analysis, on the other hand, identifies the one-to-one connection between the
different functions and partitions, enabling simpler memory circuitry and reduces false sharing of
independent partitions. In the case of Vitis HLS, the tool also identifies that there is no aliasing
between f1 and f2, and therefore the functions can run in parallel. In contrast, LegUp HLS executes
one basic block at a time, but the memory arbitration is simplified by precise analysis.

4.2.1 Evaluating precise, fine-grained pointer synthesis of LegUp HLS on EASY. LegUp HLS only
supports execution of a single basic block at any given time. Although functions are deemed to be
independent, they cannot execute in parallel within LegUp HLS. Hence, the cycle count is very
similar across partition counts and design points for each benchmark. So, as shown in Fig. 9, we
report the clock frequencies versus area utilisation for each benchmark and LegUp design point
(Fig. 4), where each data point is a partition count.

ImpreciseCoarseLegUp, the original LegUp implementation, suffers most clock frequency degra-
dation as we increase the partition count for all five benchmarks. This design point connects all
pointer instructions to all partitioned arrays, generating large fan-ins and fan-outs that directly
delay the critical path.

Instead of connecting all instructions to global memory controller, we can introduce arbitration
on a per-instruction basis, i.e. ImpreciseFineLegUp (downward arrow in Fig 4). The clock frequency
of ImpreciseFineLegUp degrades at a slower rate than ImpreciseCoarseLegUp. On average, Imprecise-
FineLegUp has 2% higher frequency than ImpreciseCoarseLegUp. ImpreciseFineLegUp’s frequency
can either be up to 20% faster or slower than ImpreciseCoarseLegUp. This difference of degradation

, Vol. 1, No. 1, Article . Publication date: October 2021.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Nadesh Ramanathan, George A. Constantinides, and John Wickerson

0 10000 20000

100

150

200

250

Cl
oc
k
fr
eq
ue
nc
y
(M

H
z)

a) matrix multiplication

0 1500 3000

100

150

200

250

b) matrix addition

0 10000 20000

100

150

200

250

Cl
oc
k
fr
eq
ue
nc
y
(M

H
z)

c) histogram

0 10000 20000

100

150

200

250

d) line-of-sight

0 5000 10000

100

150

200

250

ALMs

Cl
oc
k
fr
eq
ue
nc
y
(M

H
z)

e) substring

Fig. 9. Clock frequency against area utilisation in LegUp HLS for both imprecise and precise analyses
on HLS benchmarks exploring array partitioning by Cheng et al. [6]. We show imprecise coarse-grained
LegUp (ImpreciseCoarseLegUp,), imprecise fine-grained LegUp (ImpreciseFineLegUp,), precise LegUp
(PreciseCoarseLegUp and PreciseFineLegUp,)

is not very obvious for line-of-sight and substring, since their independent functions still share a
few arrays.
What ImpreciseFineLegUp may gain in frequency, compared to ImpreciseCoarseLegUp, it loses

in area overheads. Per-instruction arbitration is costly for arrays and gets costlier as we scale

, Vol. 1, No. 1, Article . Publication date: October 2021.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

A case for precise, fine-grained pointer synthesis in high-level synthesis 19

the partition count. On average, ImpreciseFineLegUp generates circuits that are 30% larger than
ImpreciseCoarseLegUp. ImpreciseFineLegUp’s hardware can be up to 2.3× larger than ImpreciseCoarse-
LegUp.

We also can employ precise analysis (rightward arrows in Fig 4) to these programs. Since precise
analysis generates a points-to ratio of one for all these programs, the connection granularity does
not matter. As such, both PreciseCoarseLegUp and PreciseFineLegUp generate the same hardware
for these programs. On average, PreciseFineLegUp generates circuits that are 20% faster and 11%
smaller, compared to ImpreciseCoarseLegUp. As we scale the partition count, PreciseFineLegUp can
be up to 60% faster and 38% smaller compared to ImpreciseCoarseLegUp. PreciseFineLegUp is also
20% faster and 30% smaller, compared to ImpreciseFineLegUp. Reducing the number of points-to
graph connections significantly reduces the area required for memory connections in hardware.

4.2.2 Evaluating precise, fine-grained pointer synthesis of Vitis HLS on EASY. Fig. 10 shows the
impact of employing precise analysis within Vitis HLS. Vitis HLS allows for multiple functions to
run in parallel using the dataflow pragma. However, this pragma only works if the alias analysis
identifies that functions are independent. Precise analysis is able to do so (rightward arrow in
Fig 4). On average, PreciseFineVitis is 3.7× faster and 38% smaller than ImpreciseFineVitis, with a
maximum of 50× faster and 94% smaller. PreciseFineLegUp can be 70% slower and 50% larger than
ImpreciseFineVitis, but only when the partition count is one. We see that the latency of matrix
multiplication, matrix addition and histogram scales with partition count, unlike line-of-sight and
substring. This is because the latter two benchmarks still share arrays after partitioning, which
means the dataflow pragma does not parallelise functions.

4.3 Evaluation of CHStone benchmarks
What is CHStone and why did we choose it? The final set of benchmarks we evaluate is the

CHStone benchmark suite [12]. CHStone is a standard HLS benchmark consisting of 12 programs
from various domains such as arithmetic, media processing, security and microprocessor design.
Themainmotivation for experimentation on the CHStone benchmark is to evaluate the performance
of our methods on a standard HLS benchmark. We also chose CHStone since it is reflection of the
argument that current HLS benchmarks only have trivial pointer use.

Which method and HLS tool did we evaluate CHStone on? There were two limiting factors in
our experimentation specific to CHStone. Firstly, we do not discuss the impact of precise analysis
on CHStone programs, i.e. all horizontal arrows in Figure 4. Since the pointer use is trivial, the
points-to results of imprecise Andersen analysis and precise SVF analysis are the same. Therefore,
we implemented precise analysis by default for CHStone. Instead, we focus on only understanding
the effect of fine-grained memory connections on pointer synthesis.
Secondly, we only experiment with CHStone programs within LegUp HLS. There were several

reasons for this decision. First, the CHStone benchmarks and synthesis contraints have been heavily
optimised within the LegUp tool. Hence, it is a very good baseline, which may not necessarily
produce a positive result on our method. It was important for us to showcase that our method
may not be effective in some cases. Second, it is a considerable amount of time to efficiently port
CHStone to Vitis HLS including the right optimisations and synthesis directives to achieve a strong
enough baseline for experimentation.

Due to these limiting factors, we only explore one vertical arrow in Figure 4 from PreciseCoarse-
LegUp to PreciseFineLegUp. Please note that these factors only apply specifically to the CHStone
experiments. Instead, we have add an extra dimension of discussion to CHStone: function inlining.
The effects of fine-grained memory connections with and without function inlining shows how

, Vol. 1, No. 1, Article . Publication date: October 2021.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Nadesh Ramanathan, George A. Constantinides, and John Wickerson

0 10000 20000
0

10

20

30
Ti
m
e
(s
ec
on

ds
)

a) matrix multiplication

0 10000 20000
0

0.05

0.1

0.15
b) matrix addition

0 10000 20000
0

0.2

0.5

0.75

1

Ti
m
e
(s
ec
on

ds
)

c) histogram

0 5000 10000

0.5

0.75

1

d) line-of-sight

0 10000

0.01

0.02

0.03

0.04

Slices

Ti
m
e
(s
ec
on

ds
)

e) substring

Fig. 10. Latency against area utilisation in Vitis HLS for both imprecise and precise analyses on HLS bench-
marks exploring array partitioning by Cheng et al. [6]. We show imprecise fine-grained Vitis (ImpreciseFineVitis,

) , and precise fine-grained Vitis (PreciseFineVitis,).

overoptimised HLS benchmarks can be and how the slightest change can offer new problems and
insights.

Employing fine-grained connections in LegUp HLS for CHStone. However, introducing fine-grained
memory connections can improve latency and area. Fig. 11(a) shows the summary of the relative

, Vol. 1, No. 1, Article . Publication date: October 2021.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

A case for precise, fine-grained pointer synthesis in high-level synthesis 21

0.1 1 10
0.1

1

10

relative area

re
la
tiv

e
la
te
nc
y

a) Inlined

0.1 1 10
0.1

1

10

relative area

b) Non-inlined

Fig. 11. Relative latency vs area of fine-grained LegUp (ImpreciseFineLegUp) of ChStone benchmarks (when
enabling and disabling inlining), compared to original inlined LegUp HLS (ImpreciseCoarseLegUp).

latency vs area when implementing fine-grained connections. First, note that none of the data
points are in the top half of the graph. This means our implementation never generates designs that
are slower than the original CHStone synthesis in LegUp. Most programs lie at (1,1), which means
they are not affected by fine-grained connections. This is because most CHStone programs have a
points-to ratio (edge count divided by number of instructions) of one, that is MultiAddrInst = ∅.
Only two programs have points-to ratio larger than one: adpcm and jpeg. These two programs,
which are represented by the two points not at (1,1) in Fig. 11(a), run 6% and 3% faster with fine-
grained connections. Fine-grained connections reduce area by 4% for jpeg but increase area by 15%
for adcpm. This could be because adpcm’s points-to ratio of 1.5 is much larger than jpeg’s points-to
ratio of 1.1.

The effects of fine-grained connections when function inlining is disabled. The points-to ratio
of CHStone programs are optimised for inlining. When we disable inlining, the points-to ratio
of most CHStone programs become larger than one. In general, inlining small trivial functions
enables localised compiler optimisations, thereby reducing latency. However, inlining large complex
functions leads to replication of large functions, thereby increasing area. Fig. 11(b) shows the
relative latency vs area when implementing fine-grained connections (ImpreciseFineLegUp) after
disabling inlining for CHStone programs, compared to the inlined CHStone within original LegUp
(ImpreciseCoarseLegUp).

We see that most programs are slower, since most points reside in the top half of the graph. On
average, ImpreciseFineLegUp is 60% slower than ImpreciseCoarseLegUp, with a maximum of 5×.
However, we also see that 8 out of 12 programs are on the left half of the graph. This suggests
that ImpreciseFineLegUp can reduce area, compared to ImpreciseCoarseLegUp. On average, circuits
generated by ImpreciseFineLegUp are 10% smaller than ImpreciseCoarseLegUp. Circuits generated by
ImpreciseFineLegUp can also be up to 65% larger than ImpreciseCoarseLegUp. We also see a corner
case where when disable inlining, ImpreciseFineLegUp’s implementation of motion is 75% smaller
and 20% faster than ImpreciseCoarseLegUp, simply by disabling inlining since the points-to ratio
remained one and unchanged.

, Vol. 1, No. 1, Article . Publication date: October 2021.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Nadesh Ramanathan, George A. Constantinides, and John Wickerson

p = &v0

p = &v1

p = &v2

p = &v3

p = &v4

p = &v5
p = &v6
p = &v7
p = &v8

p = &v17
p = &v18
p = &v19
p = &v20

.........

.........

(a) sample program execution

0 500 1,000 1,500 2,000

0

20

40

Flow- and context-sensitive analysis

Flow-sensitive analysis
Andersen analysis

Number of functions

A
na
ly
si
st
im

e
(s
)

(b) analysis times

Fig. 12. An example where the input program causes analysis times of precise analysis to grow significantly.

4.4 Worst-case analysis
There are programs that can cause the time taken for precise analysis to grow significantly. A
natural way to construct programs that are challenging to analyse precisely is to use recursion.
However, recursion is generally unsupported by HLS tools. So, we devise a pathological program
consisting of numerous non-recursive function calls, each assigning different addresses to a pointer.
Fig. 12a shows a sample program execution with three levels of call depth, where each node is a
function call. Fig. 12b shows the analysis times of all three analyses, as we scale the call depth of
this synthetic program. We see that analysis time of flow- and context-sensitive analysis grows
significantly faster than the other two analyses. This example suggests that the time penalty of
using precise analysis is only noticeable for programs that are rather large or contrived, both of
which are unlikely to appear in practice.

4.5 Summary of results
In this section, we have evaluated our implementations on three benchmark suites with different
properties. The PTABen benchmark suite is a set of programs that use pointers in non-trivial ways.
Our implementations generate PTABen hardware that reduces area and latency by 67% and 49% in

, Vol. 1, No. 1, Article . Publication date: October 2021.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

A case for precise, fine-grained pointer synthesis in high-level synthesis 23

LegUp HLS (40% and 26% in Vitis HLS). These results provide a good reflection of how future HLS
tools should adapt to growing program complexities in the software world.
The array partitioning benchmark suite is a set of programs that use arrays extensively and

include various HLS angles such as memory partitioning, aliasing and loop pipelining. Our imple-
mentations generate array-partitioned hardware that reduces area and latency by 11% and 16% in
LegUp HLS (94% and 92% in Vitis HLS).
Finally, the CHStone benchmark suite is a standard HLS suite that represents the different

application domains synthesised via HLS. Our implementations generate CHStone hardware
that reduces latency by 2% on average in LegUp HLS, and is never slower than the original
implementation. We also show that CHStone programs are heavily optimised for inlining. When
we disable inlining, our implementations can reduce area by 10% but increase latency by 60%.

5 RELATEDWORK
In this section, we discuss existing pointer synthesis within HLS and the different existing pointer
analyses in software.

5.1 Existing pointer synthesis in HLS
Séméria et al. [33] were the first to support the synthesis of pointers via HLS. Their method first
replaces loads and stores to pointers with case statements and then encodes the addresses of
each case label. Our work is inspired by theirs in that we also attempt to enumerate possible
loads and stores before selecting the right choice. However, they never compared their method
to any other architectures, most likely because they pioneered pointer synthesis. In addition,
their implementation is based on the SUIF compiler framework, which is outdated and hardly
used. Furthermore, they only tested very few programs that were synthetically generated and
one CHStone program: jpeg. These reasons made it hard for us to compare against their work
in a meaningful manner. In this article, we intend to perform these comparisons systematically,
especially in the context of improving points-to precision. Our article is the first to evaluate several
implementations across multiple benchmarks and tools.
Pilato et al. [28] propose implement memory accesses within high-level synthesis in a semi-

automatic framework. Their approach is of addressing pointers is coarse-grained. They implement
pointers as input ports, requiring runtime addressing for pointer disambiguation. They also propose
global interconnections that connects all module to each other using elaborate memory interfacing,
in a ring-like fashion [28, Figure 7]. Additionally, all memories are targeted as BRAM regardless of
whether they are variables or arrays. Finally, they require users to use pragmas to allocate memories
either internally or externally to a function. Their methodology of supporting pointers is very
different to LegUp or Vitis HLS, since pointers are allocated directly in DRAM, which is possibly
off-chip. As such, it was not possible to compare their work to ours.

Two prior works, by Séméria et al. [33] and Zhu et al. [51], support precise pointer analysis within
HLS. However, neither work empirically studies the effects of precision on hardware synthesis.
Séméria et al. developed their tool within the SUIF framework [42], which has a flow- and context-
sensitive pointer analysis developed by Wilson and Lam [43].

5.2 Existing pointer analysis in software
Insensitive pointer analyses. There are several insensitive pointer analyses [2, 4, 38]. Two well-
known insensitive pointer analyses are Andersen [2] and Steensgaard analysis [38]. Both these
approaches can be viewed as constructing a constraint graph with variables as nodes and points-to
relations as edges and then computing the transitive closure of this graph.

, Vol. 1, No. 1, Article . Publication date: October 2021.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Nadesh Ramanathan, George A. Constantinides, and John Wickerson

Among all the insensitive pointer analyses, Andersen analysis is the most-widely used algo-
rithm [17, 36]. Hence, there have been many attempts to improve the analysis times of Andersen
analysis including Hardekopf et al. [13]. Hardekopf et al. noticed that cycles between nodes result in
the same points-to set for all those nodes and hence proposed online cycle detection to improve the
practical running time of Andersen analysis. LegUp HLS uses an LLVM version of this algorithm [21,
§4.11].

Precise pointer analyses. There are several flow-sensitive analyses. Most flow-sensitive analyses are
implemented as data-flow analysis [7, 15], that iteratively propagates information across the entire
program. Although this propagation improves precision, it necessitates significantly more compute
time and memory. Hence, more recent tools [14, 39] utilise sparsity to reduce time and memory
complexity.

There are several context-sensitive pointer analyses. Some of these analyses are flow-insensitive [20,
23, 26, 41]. Several other analyses are both flow- and context-sensitive [9, 37, 40, 43, 51]. Although
most these tools would return the same points-to graph, several options were either built using
non-LLVM compiler framework [9, 43], written in Java [37] or based on symbolic analysis [51],
thus requiring redesign. Hence, in this paper, we utilise SUPA [40], an extension of SVF [39] built
in LLVM, which supports flow- and context-sensitive pointer analysis.

6 CONCLUSION
In this article, we implemented methods to improve the precision and connection granularity of
pointer synthesis within HLS tools. Our implementations overcome practical HLS inefficiencies
that focus on the generation and interpretation of the points-to graph. Additionally, our article is
the first to systematically and comprehensively test these different implementations across several
benchmarks and HLS tools.

Firstly, we have shown that implementing a more precise analysis (flow-and-context-sensitive)
reduces unnecessary sharing of HLS memory resources, with minimal impact on analysis times.
Secondly, we have shown that introducing fine-grained memory connections further improve the
sensitivity of the hardware connections to the points-to precision. Fine-grainedmemory connections
introduces on per-instruction basis reduce unnecessary sharing of memory connections and aliasing
during memory scheduling. We show that when both precision and connection granularity are
improved, we can reduce area and latency by around 42% and 37% across three benchmark suites,
ranging from non-trivial pointer use to standard HLS benchmarks, and two HLS tools.

As the complexity of pointer-based programs synthesisable via HLS increases, pointer synthesis
will become increasingly important. We hope this work motivates research into how HLS tools
compute the points-to graph and how back-end generators analyse, customise and implement this
graph in hardware. We also hope this work motivates research into considering more complex
memory elements in the points-to graph such as heaplets, stacks (function scoping) and C structures
required to support data structures like linked lists and trees. Another interesting direction that we
did not consider in this work is pointer use within multi-threaded programs.

REFERENCES
[1] [n.d.]. ([n. d.]). Supplementary material on GitHub, https://github.com/nadeshr/ppa-hls.
[2] Lars Ole Andersen. 1994. Program analysis and specialization for the C programming language. Ph.D. Dissertation.

University of Cophenhagen.
[3] Berkeley Design Technology, Inc. 2010. An Independent Evaluation of: The AutoESL AutoPilot High-Level Synthesis Tool.

Technical Report. http://www.bdti.com/MyBDTI/pubs/AutoPilot.pdf.
[4] Michael Burke, Paul Carini, Jong-Deok Choi, and Michael Hind. 1994. Flow-insensitive interprocedural alias analysis

in the presence of pointers. In International Workshop on Languages and Compilers for Parallel Computing. Springer,

, Vol. 1, No. 1, Article . Publication date: October 2021.

https://github.com/nadeshr/ppa-hls
http://www.bdti.com/MyBDTI/pubs/AutoPilot.pdf

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

A case for precise, fine-grained pointer synthesis in high-level synthesis 25

234–250.
[5] Andrew Canis, Jongsok Choi, Mark Aldham, Victor Zhang, Ahmed Kammoona, Jason Anderson, Stephen Brown,

and Tomasz Czajkowski. 2011. LegUp: High-Level Synthesis for FPGA-Based Processor/Accelerator Systems. In
Field-Programmable Gate Arrays (FPGA).

[6] Jianyi Cheng, Shane T Fleming, Yu Ting Chen, Jason H Anderson, and George A Constantinides. 2019. EASY: Efficient
Arbiter SYnthesis from Multi-threaded Code. In Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. 142–151.

[7] Jong-Deok Choi, Michael Burke, and Paul Carini. 1993. Efficient flow-sensitive interprocedural computation of
pointer-induced aliases and side effects. In Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages. 232–245.

[8] Philippe Coussy, Daniel D. Gajski, Michael Meredith, and Andres Takach. 2009. An Introduction to High-Level
Synthesis. IEEE Design and Test of Computers 26, 4 (2009).

[9] Maryam Emami, Rakesh Ghiya, and Laurie J Hendren. 1994. Context-sensitive interprocedural points-to analysis in
the presence of function pointers. ACM SIGPLAN Notices 29, 6 (1994), 242–256.

[10] Nicholas V Giamblanco and Jason H Anderson. 2019. ASAP: Automatic Sizing and Partitioning for Dynamic Memory
Heaps in High-Level Synthesis. In 2019 International Conference on Field-Programmable Technology (ICFPT). IEEE,
275–278.

[11] Nicholas V Giamblanco and Jason H Anderson. 2019. A Dynamic Memory Allocation Library for High-Level Synthesis.
In 2019 29th International Conference on Field Programmable Logic and Applications (FPL). IEEE, 314–320.

[12] Yuko Hara, Hiroyuki Tomiyama, Shinya Honda, Hiroaki Takada, and Katsuya Ishii. 2008. CHStone: A benchmark
program suite for practical C-based high-level synthesis. In 2008 IEEE International Symposium on Circuits and Systems.
IEEE, 1192–1195.

[13] Ben Hardekopf and Calvin Lin. 2007. The ant and the grasshopper: fast and accurate pointer analysis for millions of
lines of code. In Proceedings of the 28th ACM SIGPLAN Conference on Programming Language Design and Implementation.
290–299.

[14] Ben Hardekopf and Calvin Lin. 2009. Semi-sparse flow-sensitive pointer analysis. ACM SIGPLAN Notices 44, 1 (2009),
226–238.

[15] Ben Hardekopf and Calvin Lin. 2011. Flow-sensitive pointer analysis for millions of lines of code. In International
Symposium on Code Generation and Optimization (CGO 2011). IEEE, 289–298.

[16] Nevin Heintze and Olivier Tardieu. 2001. Demand-driven pointer analysis. ACM SIGPLAN Notices 36, 5 (2001), 24–34.
[17] Michael Hind and Anthony Pioli. 2000. Which pointer analysis should I use?. In Proceedings of the 2000 ACM SIGSOFT

international symposium on Software testing and analysis. 113–123.
[18] Sakari Lahti, Panu Sjövall, Jarno Vanne, and Timo D Hämäläinen. 2018. Are we there yet? A study on the state of

high-level synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 38, 5 (2018),
898–911.

[19] Chris Lattner and Vikram Adve. 2002. The LLVM instruction set and compilation strategy. CS Dept., Univ. of Illinois at
Urbana-Champaign, Tech. Report UIUCDCS (2002).

[20] Chris Lattner and Vikram Adve. 2003. Data structure analysis: An efficient context-sensitive heap analysis. Technical
Report. Tech. Report UIUCDCSR-2003-2340, Computer Science Dept., Univ. of Illinois

[21] LegUp Computing Inc. 2017. LegUp 5.1 Documentation. (2017). https://www.legupcomputing.com/docs/legup-5.1-
docs/index.html.

[22] LegUp Computing Inc. 2017. LegUp 6.4 Documentation. (2017). https://bit.ly/legup-memory-controller.
[23] Lian Li, Cristina Cifuentes, and Nathan Keynes. 2013. Precise and scalable context-sensitive pointer analysis via value

flow graph. ACM SIGPLAN Notices 48, 11 (2013), 85–96.
[24] Tingyuan Liang, Jieru Zhao, Liang Feng, Sharad Sinha, and Wei Zhang. 2018. HI-DMM: High-performance dynamic

memory management in high-level synthesis. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 37, 11 (2018), 2555–2566.

[25] Grant Martin and Gary Smith. 2009. High-level synthesis: Past, present, and future. IEEE Design & Test of Computers
26, 4 (2009), 18–25.

[26] Erik M Nystrom, Hong-Seok Kim, and W Hwu Wen-mei. 2004. Bottom-up and top-down context-sensitive summary-
based pointer analysis. In International Static Analysis Symposium. Springer, 165–180.

[27] Christian Pilato and Fabrizio Ferrandi. 2013. Bambu: A modular framework for the high level synthesis of memory-
intensive applications. In 2013 23rd International Conference on Field programmable Logic and Applications. IEEE,
1–4.

[28] Christian Pilato, Fabrizio Ferrandi, and Donatella Sciuto. 2011. A design methodology to implement memory accesses
in high-level synthesis. In Proceedings of the seventh IEEE/ACM/IFIP international conference on Hardware/software
codesign and system synthesis. 49–58.

, Vol. 1, No. 1, Article . Publication date: October 2021.

https://www.legupcomputing.com/docs/legup-5.1-docs/index.html
https://www.legupcomputing.com/docs/legup-5.1-docs/index.html
https://bit.ly/legup-memory-controller

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Nadesh Ramanathan, George A. Constantinides, and John Wickerson

[29] Ganesan Ramalingam. 1994. The undecidability of aliasing. ACM Transactions on Programming Languages and Systems
(TOPLAS) 16, 5 (1994), 1467–1471.

[30] Nadesh Ramanathan, George A Constantinides, and John Wickerson. 2018. Concurrency-Aware Thread Scheduling
for High-Level Synthesis. In 2018 IEEE 26th Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 101–108.

[31] Nadesh Ramanathan, George A Constantinides, and John Wickerson. 2020. Precise Pointer Analysis in High-Level
Synthesis. In 2020 30th International Conference on Field-Programmable Logic and Applications (FPL). IEEE, 220–224.

[32] Nadesh Ramanathan, John Wickerson, and George A Constantinides. 2017. Scheduling Weakly Consistent C Concur-
rency for Reconfigurable Hardware. IEEE Trans. Comput. 67, 7 (2017), 992–1006.

[33] Luc Séméria and Giovanni De Micheli. 1998. SpC: synthesis of pointers in C: application of pointer analysis to the
behavioral synthesis from C. In Proceedings of the 1998 IEEE/ACM international conference on Computer-aided design.
340–346.

[34] Luc Séméria and Giovanni De Micheli. 2001. Resolution, optimization, and encoding of pointer variables for the
behavioral synthesis from C. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 20, 2
(2001), 213–233.

[35] Luc Séméria, Koichi Sato, and Giovanni De Micheli. 2001. Synthesis of hardware models in C with pointers and
complex data structures. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 9, 6 (2001), 743–756.

[36] Yannis Smaragdakis, George Balatsouras, et al. 2015. Pointer analysis. Foundations and Trends® in Programming
Languages 2, 1 (2015), 1–69.

[37] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. 2016. Boomerang: Demand-driven flow-and
context-sensitive pointer analysis for java. In 30th European Conference on Object-Oriented Programming (ECOOP 2016).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[38] Bjarne Steensgaard. 1996. Points-to analysis in almost linear time. In Proceedings of the 23rd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages. 32–41.

[39] Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow analysis in LLVM. In Proceedings of the 25th
international conference on compiler construction. ACM, 265–266.

[40] Yulei Sui and Jingling Xue. 2018. Value-flow-based demand-driven pointer analysis for C and C++. IEEE Transactions
on Software Engineering (2018).

[41] JohnWhaley andMonica Lam. 2007. Context-sensitive pointer analysis using binary decision diagrams. Ph.D. Dissertation.
Citeseer.

[42] Robert P Wilson, Robert S French, Christopher S Wilson, Saman P Amarasinghe, Jennifer M Anderson, Steve WK
Tjiang, Shih-Wei Liao, Chau-Wen Tseng, Mary W Hall, Monica S Lam, et al. 1994. SUIF: An infrastructure for research
on parallelizing and optimizing compilers. ACM Sigplan Notices 29, 12 (1994), 31–37.

[43] Robert P Wilson and Monica S Lam. 1995. Efficient context-sensitive pointer analysis for C programs. ACM Sigplan
Notices 30, 6 (1995), 1–12.

[44] Felix Winterstein. 2017. Separation Logic for High-level Synthesis. Springer.
[45] Felix Winterstein, Samuel Bayliss, and George A Constantinides. 2013. High-level synthesis of dynamic data structures:

A case study using Vivado HLS. In 2013 International Conference on Field-Programmable Technology (FPT). IEEE,
362–365.

[46] Xilinx. 2018. Vivado Design Suite User Guide: High-Level Synthesis (v2018.2).
[47] Xilinx. 2020. Vitis Unified Software Platform Documentation: Application Acceleration Development (v2020.1).
[48] Zeping Xue andDavid B Thomas. 2015. SysAlloc: A hardwaremanager for dynamicmemory allocation in heterogeneous

systems. In 2015 25th International Conference on Field Programmable Logic and Applications (FPL). IEEE, 1–7.
[49] Zeping Xue and David B Thomas. 2016. SynADT: Dynamic data structures in high level synthesis. In 2016 IEEE 24th

Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 64–71.
[50] Y. Sui and J. Xue. 2020. PTABen Benchmark suite. (2020). https://github.com/SVF-tools/PTABen.
[51] Jianwen Zhu. 2005. Towards scalable flow and context sensitive pointer analysis. In Proceedings. 42nd Design Automation

Conference, 2005. IEEE, 831–836.
[52] Jianwen Zhu and Silvian Calman. 2004. Symbolic pointer analysis revisited. In PLDI. ACM, 145–157.

, Vol. 1, No. 1, Article . Publication date: October 2021.

https://github.com/SVF-tools/PTABen

	Abstract
	1 Introduction
	2 Motivating example
	3 Method
	3.1 Leveraging precise pointer analysis
	3.2 Introducing fine-grained memory connections

	4 Evaluation
	4.1 Evaluation of PTABen programs
	4.2 Evaluation of array partitioning benchmarks
	4.3 Evaluation of CHStone benchmarks
	4.4 Worst-case analysis
	4.5 Summary of results

	5 Related work
	5.1 Existing pointer synthesis in HLS
	5.2 Existing pointer analysis in software

	6 Conclusion
	References

