Decision support tools in Advanced Therapy Medicinal Product development, manufacturing and distribution: present and future
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Abstract
Advanced Therapy Medicinal Products (ATMPs) are a novel class of biological therapeutics that utilise ground-breaking clinical interventions to prevent and treat life-threatening diseases. Their clinical success has led to an unprecedented rise in the demand that looks into a predicted market size of USD 9.6 billion by 2026. This paper discusses how mathematical models can serve as tools to assist decision-making in ATMP development, manufacturing and distribution. Recent contributions in the space of process, techno-economic and supply chain modelling are highlighted. Lastly, we present and discuss how Process Systems Engineering can be further advanced to support ATMP commercialisation.

Introduction 
Advanced Therapy Medicinal Products (ATMPs) comprise a novel category of biopharmaceuticals. ATMPs are therapeutics primarily based on genes, tissues or cells and they have demonstrated promising results in the treatment of acute and chronic conditions, including cancer, genetic and neuro-degenerative diseases [1], [2]. ATMPs are broadly classified in gene therapies, somatic cell therapies and tissue-engineered medicinal products [3], [4]. Gene therapies introduce, remove or change the content in the patient’s genetic code. This can be achieved either by introducing directly to the patient either a vector carrying genetic payload (in vivo) or by transplanting to the patient cells that have been previously engineered to produce therapeutic proteins and/or factors (ex vivo). Tissue- and cell-based products can be either autologous or allogeneic. In the first case, the patient’s own tissue/cells are collected and then re-administered to the patient, while in the latter patient tissue/cells are replaced with new, healthy ones coming from a compatible donor. 
[image: ]
Figure 1: Rationale behind the classifications of ATMPs. The numbered boxes represent the 3 categories highlighted by the European Medicines Agency (EMA) [2]. Cell-based gene therapies (CGT), somatic cell therapies and tissue engineered products (*) can be administered through an autologous or an allogeneic route. Non-viral gene delivery methods are reviewed in Uludag et al. [5].
As of 2020, the 69% of the 1220 active ATMPs clinical trials belonged to in vivo (35%) and ex vivo (30%) gene therapies, followed by somatic cell therapies (30%) and tissue-engineering (1%) [6]. With a predicted market size of USD 9.6 billion by 2026 [7] ATMPs have the potential to transform the current healthcare landscape. Beyond the promising results demonstrated in the treatment of life-threatening diseases, ATMPs have shown great potential in preventive medicine as well. The latter has been sealed by the recent approval of viral vectors as safe and efficacious platforms for vaccine development [8]. 
As more ATMPs reach clinical testing and commercialisation, the field experiences an increasing need for innovative solutions for process development, manufacturing and infrastructure to ensure clinical availability and patient accessibility. Manufacturers are required to standardise processes, while ensuring safety, efficacy, and reproducibility. In that respect, successful processes are challenged by the complex biological profiles, as well as the, often, patient-specific nature of ATMPs. The latter, can hinder volumetric scale up and lead to increased manufacturing and distribution costs [9]. Patient-specific ATMPs are also challenged by diversity in the starting raw materials which can lead to variabilities in the final therapy. To mitigate this, manufacturers may be required to optimise process parameters at a patient-specific basis to ensure that the final product falls within specs.
Successful product and process development requires systematic and collective approaches that can ensure in-depth understanding of the challenges and design of suitable mitigation strategies. Despite being in their infancy, ATMPs can adapt methodologies and tools that have been well-established in the development, manufacturing and distribution of other biologics, such as monoclonal antibodies (mAbs). Approaches such as Quality by Design (QbD) and decision support tools in manufacturing and supply chain can greatly benefit and expedite ATMP process development and optimisation [10].
In this review we focus on recent contributions in the space of Process Systems Engineering with application to ATMPs. We discuss three classes of ATMPs, namely viral vectors, RNA-based therapeutics and vaccines, and cell and gene therapies. We summarise advances in mathematical modelling assisting decision-making in the development, manufacturing and distribution of ATMPs. Lastly, we present and discuss generic mathematical models and decision support tools that are adaptable and suitable for application in the space of ATMPs.
Viral vectors
Viruses have a natural ability to transduce their genome into cells. This makes them ideal vehicles for the delivery of engineered therapeutic genes and suitable for a variety of pharmaceutical applications, such as vaccines and cell-based gene therapies. Lenti-, adeno-, retro- and γ-retro- viruses are amongst the most commonly used vectors in current clinical trials and approved therapeutics. Currently, 70% of the 841 on-going global gene-therapy clinical trials rely on viral vectors [11], [12]. Adeno-associated viruses (AAV) have shown to be suitable for in vivo gene therapy, with significant success already achieved through the approval of Luxturna [13] and Zolgelsma [14]. Lentiviruses and γ-retroviruses are instead preferred platforms for ex vivo gene therapy and are being used in the manufacturing of cell and gene therapy products [15]–[17]. In vaccine applications, adenoviruses have demonstrated their suitability and flexibility as carriers, with the commercial approval of the Vaxzevria (Astrazeneca) and the Janssen COVID-19 vaccines [18]. 
Product titres and total process recoveries in viral vector manufacturing remain low with respect to other biological products [19]. Manufacturing techniques have been compared and intensified over the years. There exist multiple trade-offs related to cell growth, viral growth and selection of operating mode selection [20], [21]. Furthermore, process validation is hindered by lack of product understanding and quality profile characterisation. For instance, the impact of vector structure on potency remains unclear [22]. Suitable analytical tools to characterise vector titres and purity, such as distinguishing full from empty capsids, are still under development, challenging effectiveness of quality control [23]. 
The unprecedented market boom in regenerative therapies and viral vector vaccines has led to shortages in the global viral vector supply. To meet the exponentially rising demand, viral vector manufacturers are asked to simultaneously tackle engineering product and process-related challenges, while scaling up their production. This has highlighted the need for decision-making tools to enable improved planning in manufacturing and distribution [24]. 
2.1 Mathematical modelling approaches in viral vectors
Viral vector process development comprises various, often conflicting, objectives that need to be met, including maximisation of yields, technology scalability and minimisation of downstream complexity and costs. Comisel et al. [25] developed the first decisional tool to identify the most suitable cell culture technology in lentiviral vector bioprocesses. In this work, techno-economic models for adherent and suspension-based technologies were linked to a brute-force optimisation framework. Outcomes suggested that the single use stirred tank bioreactor was the most cost-effective scalable platform in most scenarios. 
Researchers have highlighted early on the opportunities the potential of mathematical tools in viral vector development and manufacturing. Tanaka et al. [26] presented the first implementation of a Quality by Design (QbD) framework to an AAV vector-based gene therapy manufacturing. A workflow of practical development steps was discussed. The identification of a quality target profile and Critical Quality Attributes (CQAs) was followed by a risk assessment methodology, process optimisation and establishment of a suitable design space. Finally, a control strategy for CQA monitoring was proposed, relying both on in-process monitoring and release testing. Emerson et al. [8] reviewed the suitability of multivariate data analysis (MVDA) for tackling challenges related to lentiviral vector growth in cell culture systems. One of the key requirements identified to exploit the potential of such approaches was the availability of high-quality training data through improved Process Analytical Technologies (PATs). The combination of MVDA and PATs was argued to provide invaluable insight in the intricate biological mechanisms that have thus far hindered rapid process development for ex vivo gene therapies. 
RNA-based therapeutics and vaccines
RNA therapies and vaccines are a promising and rapidly evolving area of the biopharmaceutical industry, looking at 5 approved products and 80 therapeutics and/or vaccines in trials [27]. They and can be classified in three broad categories: (i) therapies that target nucleic acids (NAs) (DNA or RNA); (ii) therapies that target proteins; and (iii) therapies that encode proteins [28]. The first category utilises double-stranded molecules that operate through RNA interference mechanisms (RNAi); or single-stranded antisense oligonucleotides (ASOs) that prevent the translation of RNA into proteins [28], [29]. RNA therapies that target proteins utilise RNA aptamers, which are single-stranded oligomers that can consist either of DNA or RNA and are designed to bind to a specific site of a certain protein and modulate its function [30.] .
Therapies that encode proteins find applications in personalised cancer vaccines [31], RNA vaccines [32] for infectious diseases and protein-replacement therapies, such as haemophilia treatments [33], [34]. These therapeutics deliver messenger RNA (mRNA) and/or self-amplifying RNA (saRNA) to the patient’s cells. The difference is that while mRNA encodes only for a specific antigen, saRNA also encodes for an alphaviral replication machinery, which enables amplification of the RNA upon delivery to the cytoplasm. [35].
RNA therapy manufacturing and distribution face significant challenges that are tied both to the product/process complex nature, as well as the rapidly growing demand. COVID-19 has played a central role in enhancing the latter, leading to the first regulatory approvals of RNA vaccines for commercial use. To meet the unprecedented increase in the demand, manufacturers needed to make key decisions, while the product was still in development and/or clinical trials. This led to tasks been run in parallel and in-risk, underlying the need for informed tools that can support online decision-making process. As such, mathematical models can support decision-making and enable the techno-economic evaluation of these novel therapeutics. At the same time, they can offer a framework for the identification of the main sources of uncertainty and bottlenecks of the production process [36]. From a supply chain point of view, RNA molecules require special handling and cold chain distribution, which may hinder the applicability of these therapies at a large scale, especially in developing countries [37]. In that respect, mathematical models can assist the design and optimisation of robust and flexible supply chain networks. 
Mathematical modelling approaches in RNA therapeutics and vaccines
To assist vaccine development, van de Berg et al. [38] demonstrated a QbD framework for the identification of the CQAs and Critical Process Parameters (CPPs) in m- and sa- RNA vaccines. The analysis was based on the combination of mechanistic, statistical and machine learning modelling for the identification of the allowed CPP ranges; known as Design Space. Moreover, a novel qualitative framework to describe the relationship between CPPs and CQAs is also proposed. Kis et al. [39] developed a Mixed Integer Linear Programming (MILP) supply chain model in GAMS to the performance of RNA vaccines as platform for vaccine production in Kenya. The work compared RNA to another three emerging platform technologies; namely outer membrane vesicle vaccines with genetically customizable membrane antigens (customOMV), virus-like particle vaccines with genetically configurable epitopes (customVLP), and humanized yeast-produced vaccines (hYeast). In the same work, the authors developed detailed process economics models to estimate the capital and operating costs. The models were developed using SuperPro Designer (Intelligen, Inc, Scotch Plains, NJ, USA) and they were used in conjunction with the MILP formulation for the comparison of centralised and decentralised manufacturing networks.
The same group, compared three COVID-19 mRNA vaccines (Moderna, Pfizer-Biontech and CureVac) with the saRNA developed by Imperial College and a hypothetical next-generation saRNA vaccines [36]. The authors develop a process model in SuperPro Designer to estimate the production costs and the main sources of uncertainty. Lastly, Kis et al. [40]  perform techno-economic analysis to estimate the cost/dose of saRNA vaccines, using  SuperPro Designer. In the same study, they estimate the reactor size required for an annual production of 1 billion doses. The tool developed in this work enables comparison of platform technologies to conventional vaccine manufacturing processes.
Cell and gene therapies
Cell therapies are based on the principle of injecting viable cells into the human body aiming to replace diseased or missing ones. This procedure can also be combined with gene therapy aiming to re-engineer the cells to express certain functionalities. In the latter case the therapy is referred to as “Cell and Gene Therapy” (CGT). The cell types used in CGTs vary, including various types of stem cells, such as hematopoietic or mesenchymal, as well as immune cells, such as T lymphocytes. The source of the cells can either be the patients themselves (autologous therapy) or a healthy donor (allogeneic therapy). Owing to their promising outcomes, cell therapy products have been receiving increasing scientific and industrial interest, confirmed by over 2,184 clinical trials (Active recruiting, not yet recruiting and enrolling) at the time of writing (ClinicalTrials.gov [27]). Despite their clinical potential, there are only 19 CGT products that have received US FDA authorisation [41]. This can be partially attributed to their highly complex clinical profile and manufacturing process that requires significant time to be standardised. Autologous Chimeric Antigen Receptor (CAR) T cells are amongst the latest CGT products to have received market authorisation demonstrating promising results in the treatment of B-cell lymphoma [15]–[17], [42].
A key characteristic that is hindering their development is their patient-specific nature. This often complicates understanding of their mode of action, as well as standardisation of manufacturing practices and scale up. Alongside experimental research, mathematical models are being developed to assist understanding and decision-making of CGTs during various stages of their development. Here we present some of the latest contributions in the field.
Mathematical modelling approaches in cell and gene therapies
At a preclinical and/or research stage several groups have been developing mathematical models to assist understanding of the therapy mode of action. Indicatively, Sigal et al. [43] developed and Ordinary Differential Equation (ODE) model to study the effect of immunotherapy as means of cancer treatment. Hardiansyah and Ng [44] demonstrated a Quantitative Systems Pharmacology (QSP) approach to study complex relationships between disease burden and immune system proteins in CAR T cell therapy. One could say that mathematical models describing CGT manufacturing are still in their infancy. This could be partially attributed to the fact that CGT products are relatively new compared to other biologics, such as monoclonal antibodies. Nonetheless, there are several works studying various aspects of the development and expected challenges in CGT manufacturing. Picken et al. [45] employed a Monte Carlo approach to study the effect of biological variability in mesenchymal stromal cell therapy manufacturing. Stacey et al. [46] presented an in vitro/in silico integrated tool to assist cell culture optimisation during manufacturing. The mathematical model is based on kinetic equations that capture cell differentiation from progenitor to mature, making it suitable for CGT development that is based on differentiating cell populations. The same group presented a framework and mechanistic model for the optimisation of cell therapy manufacturing [47]. The need for automation in CGT manufacturing has been identified early on and is being supported by several advancements towards the development of versatile, automated platform technologies [48]. In this space, Van Beylen et al. [49] presented a Model-Based Control (MPC) framework for the implementation of personalised feeding strategies, monitoring lactate levels in cell therapy manufacturing. 
CGT therapeutics are patient-specific, involving tedious manufacturing procedures and, often, campaigns that are dedicated to the production of a single therapy. This hinders scale up and may lead to significantly higher manufacturing costs when compared to other biological products. For these reasons and despite their relatively small market, CGT manufacturing processes have attracted the attention of several groups that look into identifying cost-effective setups that meet the demand. Chilima et al. [50] presented a techno-economic analysis on facility footprint and fixed capital investment of cell therapies. They used factorial methodologies and provided a cost assessment, comparing scale-out (autologous) to scale-up (allogeneic) therapy manufacturing. As mentioned earlier in this section, allogeneic therapies use cells derived from a healthy donor as opposed to patient's own cells. This promises higher flexibility in scaling up the manufacturing process as cells from a single donor may be compatible with more than one patient. This may allow therapies to be manufactured in small batches, rather than individually. Currently, allogeneic stem cells are used as cancer treatment, while several allogeneic CAR T cell therapies are in clinical trials. The scale up capabilities of these therapies have increased attention of the scientific and industrial community that uses mathematical models to evaluate their economics and scale up [51]–[53].
Work is also being carried out in the understanding, design and optimisation of robust scheduling and supply chain framework that can support CGT manufacturing and distribution. Farsi et al. [54] proposed a hybrid Agent-Based Modelling and Discrete Event Simulation framework for optimal resource planning in CGT manufacturing and cryogenic storage. Wang et al. [55] developed a MILP model for the identification of suitable supply chain networks in CAR T cell therapies, targeting multiple objectives under stochastic demand. For the same product, Moschou et al. [56] presented a MILP investment planning model to propose patient-centric, cost-efficient supply chain network structures. Karakostas et al. [57] considered a General Variable Neighbourhood Search algorithm to identify key elements impacting design and operation in CAR T cell supply chains.
Further decision support tools
Many of the open challenges related to process development, manufacturing and distribution of ATMPs are related to biological complexity and patient-specificity of the product. Thorough understanding of the therapy mode of action is necessary for the development of robust process that meet the target product profile. Genome-scale characterisation is also necessary for the determination of CQAs in ATMP development and manufacturing and can further enable the development of tailored PAT tools [22], [23]. Understanding and mapping CQA –CPP interplay allows the identification of a robust design space throughout process development. Computer-based modelling has already demonstrated its potential in bio-pharmaceutical development and manufacturing, offering low-cost experimentation platforms to assess product and process performance [58]–[60]. Owing to their biological nature, ATMPs can greatly benefit by adopting procedures and mathematical models previously established for similar products [61], [62]. 
Similar to product development and manufacturing, ATMP distribution faces challenges that are often present across pharmaceutical supply chains. Demand uncertainty, in-risk manufacturing and distribution are amongst the dominant ones. The COVID-19 pandemic has added further pressure to manufacturers, testing the resilience of the global supply chain. Specifically, COVID-19 has led to exponentially increasing demand in RNA- and viral vector- vaccines, challenging vector availability intended for CGT manufacturing. This has highlighted the need for informed, decision-support tools in ATMP supply chain to enable strategic and operational planning. Generic optimisation-based frameworks for scheduling of multi-product batch, semi-continuous or continuous bio-pharmaceutical plants have been proposed in recent works [63], [64]. Features, such as multi-product facilities, considered by these models, make them suitable and transferable to assist ATMP supply chain optimisation. Similarly, works looking at in-risk planning and pharmaceutical supply chains under uncertainty can provide a solid basis that will expedite future developments tailored to ATMPs [65], [66]. Supply chains of ATMPs are reshaping the well-established one-size-fits-all paradigm. Their versatility in preventive healthcare as well as targeted therapeutics is highlighting the contrast between centralised large-scale deployment and decentralised strategies. The latter are emerging with autologous CAR-Ts, where the patient specificity favours scale-out approaches and distributed manufacturing. The sensitive nature of ATMPs highlights the increasing importance of end-to-end monitoring and transparency of operations.
Conclusions and outlook
Enhanced clinical understanding together with advances in experimental procedures are revolutionising the current healthcare landscape, giving rise to highly specific therapeutics and medicinal products. Advanced Therapy Medicinal Products (ATMPs) form a class of novel biologics that utilise ground-breaking technologies for the prevention and treatment of otherwise life-threatening diseases. Despite their clinical success, ATMPs face significant manufacturing and distribution challenges that are tightly linked to their complex biological profile and patient-specific nature. In this respect, integrated in vitro/in silico decision support tools can enhance process development and enable real-time decision-making in manufacturing and distribution. Similar to other biologics, ATMPs can greatly benefit from engineering-driven tools that offer a whole-systems approach for the development of mathematical models to assist process development, optimisation and control. Finally, Engineering is faced with a great opportunity to branch out into the development of tools that capture patient-specificity and assess solutions that combine engineering, medical and social objectives, aiming to advance the current state of the art in personalised therapies.
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