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Abstract

We present the supplementary material for the article Rowińska et al. (2021). In par-

ticular, we provide background material on the class of generalised hyperbolic distributions

and continuous-time autoregressive moving average processes. Moreover, we include a detailed

description of the data used in our empirical work and expand on some of our empirical results.
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1 Introduction

This supplementary material provides additional material for the article Rowińska et al. (2021). It

is structured as follows.

First, Section 2 reviews the definition of the generalised hyperbolic distribution and its impor-

tant subclasses and specifies the parameterisation used in our empirical study. Then, Section 3

provides background material on CARMA processes and their simulation and estimation. Such

processes lie at the heart of the short-term factor in our new stochastic model. Next, Section 4

provides a detailed data description and exploratory data analysis. Moreover, Section 5 describes

how we have dealt with the seasonal behaviour of the various time series. Finally, Section 6 presents

the detailed empirical results from our new models proposed for wind-related variables, which have

been summarised in Section 6 in the main article Rowińska et al. (2021).

This supplementary material contains material from the PhD thesis Rowińska (2020).

2 Generalised hyperbolic distributions

In our article, we consider distributions from the generalised hyperbolic (GH) class. Their proper-

ties such as fat tails and skewness make them suitable for our applications. Most importantly, they

are infinitely divisible, which in particular means that they can generate a Lévy process (L(t))t≥0

such that L(1) has a generalised hyperbolic density.

Lüthi & Breymann (2016) provided a concise introduction to these distributions and developed

an R package ghyp, which came in useful many times during our research.

2.1 Definitions and properties

We begin by defining the building block of these Gaussian mixture distributions: the generalised

inverse Gaussian distribution (GIG).

Definition 2.1 (Generalised inverse Gaussian distribution). The density of a generalised

inverse Gaussian variable W ∼ GIG(λ, χ, ψ) with parameters satisfying one of the following

� χ > 0, ψ ≥ 0, λ < 0,

� χ > 0, ψ > 0, λ = 0,

� χ ≥ 0, ψ > 0, λ > 0,

is given by

fGIG(x) =

(
ψ

χ

)λ
2 xλ−1

2Kλ

(√
χψ
) exp

(
−1

2

(χ
x

+ ψx
))

.

Now we are ready to define generalised hyperbolic distributions as Gaussian mixtures.
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Definition 2.2 (Generalised hyperbolic distribution). A random vector X follows a univari-

ate generalised hyperbolic (GH) distribution if

X
law
= µ+Wγ +

√
WσZ, (2.1)

where Z ∼ N(0, 1), σ, µ, γ ∈ R and W is a scalar-valued random variable, independent of Z, whose

distribution is generalised inverse Gaussian: GIG(λ, χ, ψ).

We interpret the parameters of generalised hyperbolic distribution as follows.

� µ corresponds to the location.

� Σ = σ2 measures the dispersion.

� λ, χ and ψ determine the shape, i.e. the relationship between the tails and the center:

as a rule of thumb, their large values indicate that the distribution resembles a Gaussian

distribution.

� γ indicates the skewness: γ = 0 means that the distribution is symmetric.

We also observe that

X|W = w ∼ N (µ+ wγ,wΣ) .

We recall one more desirable property of this distribution class.

Proposition 2.1 (Lüthi & Breymann (2016), Proposition 1). The generalised hyperbolic class is

closed under linear transformations: if

X ∼ GH (λ, χ, ψ, µ,Σ, γ)

and

Y = aX + b

for a, b ∈ R, then

Y ∼ GH
(
λ, χ, ψ, aµ+ b, a2Σ, aγ

)
.

2.2 Special cases of generalised hyperbolic distributions

In the class of generalised hyperbolic distributions we distinguish special subclasses.

� Hyperbolic (hyp) for λ = 1.

� Normal inverse Gaussian (NIG) for λ = 1
2 .

� Variance gamma (VG) for χ = 0 and λ > 0 (a limiting case).

� Generalised hyperbolic Student’s-t (often called Student’s-t) for ψ = 0 and λ < 0.
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In our research we use the R package ghyp (Lüthi & Breymann (2016)) to fit 11 different

distributions to the increments of the Lévy process of interest and rank them according to the

Akaike information criterion (AIC). Namely, we compare symmetric and asymmetric versions of

hyp, NIG, VG, Student’s-t and GH distributions, as well as a Gaussian distribution, to find the

best fitting one.

2.3 Parametrisations

The (λ, χ, ψ, µ,Σ, γ) parametrisation has alternatives; the R package ghyp (Lüthi & Breymann

(2016)) lets the user choose between three options. The other two are (λ, ᾱ, µ,Σ, γ, ) and (λ, α, µ,∆, δ, β)

parametrisations. Lüthi & Breymann (2016) provided ranges of parameters for special cases listed

in Subsection 2.2 as well as explicit functions switching between parametrisations.

3 Background on CARMA processes

We will now review the definition and key properties of continuous-time autoregressive moving

average processes.

Definition 3.1 (CARMA process). Let {L(t) : t ≥ 0} be a Lévy process and 0 ≤ q < p. We

define the L-driven CARMA(p,q) process with parameters [a1, . . . , ap; b1, · · · , bq] as a stationary

solution of the system of formal stochastic differential equations

a(D)Y (t) = b(D)DL(t), (3.1)

where D denotes “differentiation” with respect to t,

a(z) := zp + a1z
p−1 + · · ·+ ap, (3.2)

b(z) := b0 + b1z + · · ·+ bp−1, (3.3)

a(z) and b(z) have no common roots, bq = 1 and bj = 0 for q < j < p. Since we cannot define the

derivative DL(t) in the usual sense, we interpret Equation (3.1) as the state-space representation,

i.e.

Y (t) = bTX(t), (3.4)

dX(t) = AX(t)dt+ edL(t), (3.5)

where

A =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−ap −ap−1 −ap−2 · · · −a1


, (3.6)
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e =



0

0
...

0

1


, b =



b0

b1
...

bp−2

bp−1


. (3.7)

Following Brockwell et al. (2011), we assume that X(0) is independent of {L(t), t ≥ 0}, all

eigenvalues of A (easily calculated as roots of the autoregressive polynomial a(z)) have negative

real parts and

X(0)
law
=

∫ ∞
0

eA(t−u)edL(u). (3.8)

Then {X(t), t ≥ 0} is a strictly stationary solution of Equation (3.5).

In order to define CARMA(p,q) on the real line, we can define a Lévy process {L′(t), t ≥ 0} such

that L(t) and L′(t) are iid. Then we extend L(t) to the whole real line as

L̃(t) := L(t)1[0,∞)(t)− L′(−t−)1(−∞,0](t), t ∈ R. (3.9)

In the remaining part of this chapter we will denote L̃ by L and call it the background driving

Lévy process of Y (t). Now we are ready to provide the necessary and sufficient conditions for the

existence of a covariance stationary solution of Equation (3.5).

Proposition 3.1 (Brockwell et al. (2011), Proposition 1). Equation (3.5) has a covariance sta-

tionary solution X such that X(t) is independent of {L(s)− L(t)}s>t for all t ∈ R if and only if

the real parts of the roots of a(z) = 0 are negative. This solution has the form

X(t) =

∫ t

−∞
eA(t−u)edL(u)

law
=

∫ ∞
0

eAuedL(u).

This leads us to an alternative definition of the continuous autoregressive moving average

process (CARMA).

Definition 3.2 (CARMA(p,q) process). Let us assume that L is a Lévy process, the roots of

a(z) = 0 are distinct and their real parts are negative. Then we define the L-driven CARMA(p,q)

process with parameters a1, . . . , ap; b1, . . . , bq as the process satisfying

Y (t) = bTX(t) =

∫ ∞
−∞

g(t− u)dL(u)

with

g(t) = bT eAte1[0,∞)(t)

called the kernel of the CARMA process {Y (t)}. Y is a causal function of L because Y (t) does

not depend on {L(s)− L(t), s ≥ t} for all t.
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To assure the existence and uniqueness of our CARMA processes, we need to state the following

additional assumptions.

Assumption 3.1. Unless stated otherwise, we assume that roots of a(z) = 0 are distinct and their

real parts are negative. Furthermore, a(z) and b(z) have no common roots.

CARMA processes have an intuitive and very useful representation as a sum of Lévy-driven

Ornstein-Uhlenbeck processes, described in more detail in Subsection 3.4. This observation helps

us estimate the parameters of these objects as well as simulate them.

Proposition 3.2 (Brockwell et al. (2011), Proposition 2). Under Assumption 3.1, any CARMA(p,q)

process Y (t) can be expressed as a sum of dependent and possibly complex-valued CAR(1) processes,

i.e.

Y (t) =

p∑
r=1

Y (r)(t), (3.10)

where for r = 1, . . . , p

Y (r)(t) =

∫ t

−∞
αre

λr(t−u)dL(u), (3.11)

αr =
b(λr)

a′(λr)
, (3.12)

with a′(·) denoting the derivative of a(·).

In our article Rowińska et al. (2021), we focus on one particular example: the CARMA(2,1)

process, whose properties we will review in the following.

Example 3.1 (CARMA(2,1)). The Lévy-driven CARMA(2,1) process is defined as the strictly

stationary solution to the system of equations

(D2 + a1D + a2)Y (t) = (b0 +D)DL(t), (3.13)

where t ∈ R, b(z) = b0 + z and a(z) = z2 + a1z + a2 = (z − λ1)(z − λ2), λ1 6= λ2, Re(λ1) < 0 and

Re(λ2) < 0. Furthermore, for u ≥ 0 the kernel of Y (t) equals

g(u) = α1e
λ1u + α2e

λ2u, (3.14)

where α1 = b0+λ1

λ1−λ2
and α2 = b0+λ2

λ2−λ1
. Therefore we can represent this process as

Y (t) = α1

∫ t

−∞
eλ1(t−u)dL(u) + α2

∫ t

−∞
eλ2(t−u)dL(u). (3.15)

3.1 The sampled CARMA process

In practice, we typically observe the continuous-time process Y (t) only in discrete time. Precisely,

we denote by {Yn := Y (nh), n = 0, 1, . . . , N} the sampled process, where N is the number of

available observations and h > 0 is a small, fixed interval between the consecutive observations.

The following proposition explores the relationship between the continuous and discrete processes,

which prepares us for the estimation of CARMA(p,q) parameters.
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Proposition 3.3 (Brockwell et al. (2011), Proposition 3). Under Assumption 3.1 the following

hold.

1. The sampled process {Yn := Y (nh), n = 0, 1, . . . , N}, with a fixed h > 0, can be represented

as Yn =
∑p
r=1 Y

(r)
n , where n ∈ Z. For each r = 1, . . . , p, the discrete-time process {Y (r)

n } is

obtained by sampling the component CAR(1) process {Y (r)(t)} (cf. Subsection 3.4) at spacing

h > 0. As Y is strictly stationary,

∀n ∈ Z Y (r)
n = eλrY

(r)
n−1 + Z(r)

n , (3.16)

with the iid noise

∀n ∈ Z Z(r)
n = αr

∫ nh

(n−1)h
eλr(nh−u)dL(u). (3.17)

2. The sampled process {Yn := Y (nh), n = 0, 1, . . . , N} satisfies

φ(B)Yn =

p∑
r=1

V rn−r+1 =: Un, (3.18)

where

φ(z) :=

p∏
r=1

(
1− eλrhz

)
= 1−

p∑
r=1

φrz
r (3.19)

and B denotes the backshift operator, i.e. BjYn := Yn−j. For each r = 1, . . . , p, we define

the iid sequence {V (r)
n } by

V (r)
n :=

∫ nh

(n−1)h

p∑
k=1

αk

e(r−1)hλk − r−1∑
j=1

φje
(r−1−j)hλk

× e(nh−u)λkdL(u). (3.20)

3. We can represent the right-hand side of Equation (3.18) as an invertible moving average

θ(B)Wn := Wn + θ1Wn−1 + · · ·+ θp−1Wn−p+1, (3.21)

where {Wn} is a sequence of white noise (possibly not iid) and θ1, . . . , θq are moving average

constants depending on the CARMA process. Therefore {Yn} can be represented as a weak

ARMA(p,p-1) process (an ARMA(p,p-1) process allowing for not iid driving white noise)

such that

φ(B)Yn = θ(B)Wn (3.22)

and

Wn = θ(B)−1
p∑
r=1

V pn−r+1. (3.23)

3.2 Estimation

We can now estimate the CARMA parameters, following the algorithm described by Garćıa et al.

(2011). Brockwell et al. (2011) showed that for a fixed sampling interval h > 0 the mean corrected
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sampled CARMA(p,q) process is a weak ARMA(p,p-1) process, so we can estimate ARMA(p,p-1)

parameters and map them to the continuous setting as outlined below.

Since we are particularly interested in the CARMA(2,1) process, we specify the estimation

procedure for this particular process. We slightly abuse the notation by denoting variables and

their estimates with the same symbols; the meaning should be clear from the context.

1. We estimate the ARMA(2,1) parameters β = (φ1, φ2, θ)
T , using the quasi-maximum likeli-

hood approach (alternatively one could use least squares).

2. Equation (3.18) has the form

Yn − φ1Yn−1 − φ2Yn−2 =
(
1− eλ1hB

) (
1− eλ2hB

)
Yn. (3.24)

By multiplying through and matching coefficients, we obtain

φ1 = eλ1h + eλ2h, φ2 = −e(λ1+λ2)h. (3.25)

This gives us a nonlinear system of two equations for the estimators of λ1 and λ2, whose

solutions are

λ1 = log

φ1
2

+

√(
φ1
2

)2

+ φ22

 , (3.26)

λ2 = log

φ1
2
−

√(
φ1
2

)2

+ φ22

 . (3.27)

From there we immediately calculate a1 = − (λ1 + λ2) and a2 = λ1λ2.

Remark 3.1. We implicitly assume that φ1 > 0 and φ2 < 0, so this method is not suitable for

some CARMA processes. Alternative estimation methods include quasi-maximum likelihood

implemented in the R package yuima, see Iacus & Mercuri (2015).

3. The right-hand side of Equation (3.18) implies the form of the autocovariance of the process

φ(B)Yn:

∀s ∈ R γU (s) = Cov (φ(B)Yn, φ(B)Yn−s) . (3.28)

Furthermore, using Corollary 3 by Barndorff-Nielsen et al. (2013), for all s ∈ R we calculate

the autocovariance of Y (t)

γY (s) = Cov (Y (s), Y (0)) =

∫ ∞
0

g(x)g(x+ s)dx = w1e
λ1s + w2e

λ2s, (3.29)

where

w1 =
α2
1λ1λ2 + α1

2λ22 + 2λ1λ2α1α2

2λ1λ2 (λ1 + λ2)
, (3.30)

w2 =
α2
2λ1λ2 + α2

2λ21 + 2λ1λ2α1α2

2λ1λ2 (λ1 + λ2)
. (3.31)
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Thus for all s ∈ R the autocorrelation of Y (t) equals

δY (s) =
γY (s)

γY (0)
=
w1e

λ1s + w2e
λ2s

w1 + w2
. (3.32)

For CARMA(2,1) we can rewrite Equation (3.28) as

γU (0) = (1 + φ21 + φ22)γY (0) + (2φ2φ2 − 2φ1)γY (1)− 2φ2γY (2),

γU (1) = −φ2γY (3) + φ1(φ2 − 1)γY (2)

+ (1 + φ21 + φ22 − φ2)γY (1) + φ1(φ2 − 1)γY (0),

(3.33)

where we use explicit formulae for γY (·) given by Equation (3.29). Since they depend on a0,

a1 and b0, we plug in the estimates of the first two parameters.

On the other hand, the autocorrelation function at the first lag of a moving average process

with coefficient θ can be expressed as

δU (1) =
γU (1)

γU (0)
=

θ

1 + θ2
. (3.34)

Now we can replace the left-hand side of Equation (3.34) by expressions from Equation (3.33)

to get a non-linear equation for b0, which we solve numerically.

4. Having estimated the parameters of CARMA(2,1), we need to recover the background driving

Lévy process L(t), using results by (Brockwell et al. 2011, Section 5):

X(0)(t) = X(0)(0)e−b0t +

∫ t

0

e−b0(t−s)Y (s)ds, (3.35)

X(1)(t) = DX(0)(t) = −b0X(0)(t) + Y (t). (3.36)

The canonical state vector Y(t) is given byY (1)(t)

Y (2)(t)

 =
1

λ1 − λ2

−λ2(b0 + λ1) (b0 + λ1)

λ1(b0 + λ2) −b0 + λ2

X(0)(t)

X(1)(t)

 . (3.37)

To recover the background driving Lévy process L(t) we can choose one of two equations,

either with r = 1 or r = 2:

L(t) =
1

αr

[
Y (r)(t)− Y (r)(0)− λr

∫ t

0

Y (r)(s)ds

]
. (3.38)

We approximate the integral using the trapezoidal rule. Brockwell et al. (2011) recommend

choosing r such that |λr| is minimal, which minimizes the contribution of λr
∫ t
0
Y (r)(s)ds

compared to Y (r)(t)− Y (r)(0).

3.3 Simulation

To simulate any CARMA(p,q) process, we use its representation as a sum of CAR(1) processes

stated in Proposition 3.2. For brevity, we restrict our attention to simulating a CARMA(2,1)
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process Y (t) with parameters a1, a2 and b0 and eigenvalues of the matrix A: λ1 and λ2. We start

by simulating two Ornstein-Uhlenbeck processes Y (1)(t) and Y (2)(t) with λ1 and λ2, driven by the

same Lévy process (cf. Section 3.4.3). Then we compute

Y (t) = α1Y
(1)(t) + α2Y

(2)(t),

where

α1 =
b0 + λ1
λ1 − λ2

α2 =
b0 + λ2
λ1 − λ2

.

3.4 Example: Lévy-driven CAR(1) processes

One of the most important processes belonging to the CARMA class is the Lévy-driven CAR(1)

process, also called the Lévy-driven Ornstein-Uhlenbeck process. For more details we refer the

reader to Brockwell et al. (2007).

Definition 3.3 (Lévy-driven CAR(1) process). Let L(t) be a Lévy process. The L-driven

Ornstein-Uhlenbeck process with the parameter λ > 0 is a strictly stationary solution of the stochas-

tic differential equation

dY (t) = −λY (t)dt+ dL(t), t > 0.

As in Equation (3.9), we extend L(t) to the whole real line. If λ > 0, for all t > s ∈ R, the

process Y (t) defined by

Y (t) =

∫ t

−∞
e−λ(t−u)dL(u)

is a strictly stationary solution to

dY (t) = −λY (t)dt+ dL(t).

The process L(t) is called the background driving Lévy process of Y (t).

3.4.1 The sampled CAR(1) process

In this section we point out the relationship between the Ornstein-Uhlenbeck process and the

discrete autoregressive process of order one. We denote by {Yn := Y (nh), n = 0, 1, . . . , N} the

sampled CAR(1) process, where N is the number of available observations and h > 0 is a small,

fixed interval between the consecutive observations. The sampled CAR(1) process is the discrete

time autoregressive AR(1) process:

∀n ∈ Z Yn = φYn−1 + Zn,

where

φ = e−λh
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and

∀n ∈ Z Zn =

∫ nh

(n−1)h
eλ(nh−u)dL(u)

is the iid and positive noise.

3.4.2 Estimation

To estimate the parameters of a CAR(1) process Y (t) we follow the procedure suggested by Brock-

well et al. (2007) and the references therein. Again, we slightly abuse the notation by denoting

variables and their estimates with the same symbols, the meaning of which is clear from the context.

We proceed as follows.

1. We estimate the parameter φ of the sampled process Yn, for example by maximising the

likelihood function.

2. We compute

λ = − log(φ).

3. For all n = 1, . . . N we define the increments of the driving process L(t) on intervals

((n− 1)h), nh] by

∆h
nL := Lnh − L(n−1)h = Ynh − Y(n−1)h + λ

∫ nh

(n−1)h
Yudu.

We recover these increments using the trapezoidal rule

∆h
nL ≈ Yn − Yn−1 +

λh

2
(Yn + Yn−1) .

3.4.3 Simulation

We simulate a CAR(1) process Y (t) as follows.

1. We partition the interval [0, T ] into N equal intervals of length h = T
N .

2. For i = 1, . . . , N we simulate the increments of the driving process ∆h
nL following the appro-

priate centred distribution, for example from the generalised hyperbolic class. If the mean µ

of Lévy increments differs from zero, after simulating the increments we subtract the mean

from the resulting time series.

3. We set the initial value of Y to 0.

4. For n = 1, . . . , (N − 1) we use the Euler-Maruyama method to compute

Yn+h = Yn + λhYn + (Ln+h − Ln) + hµ.

In practice we first simulate a CAR(1) process of length 2N . We further discard the first half of

the time series as a burn-in period. We finally resample the resulting time series every 1
h points to

obtain a process corresponding to the original data, if needed.
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3.5 Simulation study

In order to test the quality of the estimation procedure used for the CARMA process driven by a

Lévy process we simulated 1,000 paths of Y with N = 1, 824 observations. The simulation method

requires simulating two Ornstein-Uhlenbeck processes driven by the same Lévy noise. We use the

Euler-Maruyama method with the step size h = 0.01. We first simulate two Ornstein-Uhlenbeck

processes of length 2N
h = 364, 800. We discard the first half of each time series as a burn-in period.

Finally, we resample every 1
h = 100 points to obtain two time series of length N = 1, 824.

For each path we re-estimate the parameters partrue, which after averaging over all paths give

us Monte Carlo estimates parMC. We compute the bias and standard error of all parameters:

parMC − partrue and

√∑1000
i=1 (parMC

i −partrue)
2

1000 , respectively. We additionally report the relative bias

and error defined as parMC−partrue

parMC and

√∑1000
i=1 (parMC

i
−partrue)2

1000

parMC , respectively. From Table 1 we learn

that the (relative) biases as well as (relative) standard errors of estimates are small. We present

histograms of resulting estimates in Figure 1.

a1 a2 b0

True estimate 0.809 0.048 0.194

Monte Carlo estimate 0.811 0.045 0.191

Standard error 0.116 0.023 0.066

Relative error 0.143 0.519 0.348

Bias 0.002 -0.003 -0.004

Relative bias 0.002 -0.059 -0.019

Table 1: Parameters of CARMA(2,1) kernel estimated via bootstrapping with 1, 000 simulations.

Figure 1: Parameters of CARMA(2,1) kernel estimated from 1, 000 simulated paths (from left

to right: a1, a2 and b0). Red vertical lines indicate true estimates, while red lines Monte Carlo

estimates.

Remark 3.2. It is crucial to simulate the Ornstein-Uhlenbeck processes on a sufficiently refined

grid. For example, the Euler-Maruyama step size ht = 1.0 results in large (relative) biases of

estimated parameters.
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Similarly we re-estimate the parameters of the generalised hyperbolic noise. In Table 2 we

observe large standard and relative errors as well as (relative) biases. However, we recall that

to each path of the noise’s increments we fit 11 distributions from the generalised hyperbolic

class and choose the one with the smallest value of AIC (Akaike information criterion). Slightly

different parameters might result in a distribution belonging to a different class. Therefore the

distributions fitted to similar paths might have very different parameters. Figure 2 helps explain

this phenomenon. For example, the estimates of λ and γ are clearly bimodal, so the average of

parameters resulting from both cases matches neither of two distributions. However, this should

not worry us because these different parameters result in very similar distributions.

λ α δ β µ

True estimate -2.131 0.020 11.592 -0.020 1.178

Monte Carlo estimate 0.631 0.415 29.214 -0.153 5.802

Standard error 38.008 1.212 20.699 1.062 9.926

Relative error 60.282 2.923 0.709 -6.944 1.711

Bias 2.761 0.394 17.622 -0.132 4.624

Relative bias 4.379 0.951 0.603 0.866 0.797

Table 2: Parameters of the generalised hyperbolic noise estimated via bootstrapping with 1, 000

simulations.

Figure 2: Parameters of the generalised hyperbolic noise estimated from 1, 000 simulated paths

(from left to right: λ, α, δ, β and µ). Red vertical lines indicate true estimates, while blue lines

Monte Carlo estimates.
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4 Exploratory data analysis

4.1 Data description

In our empirical work, we consider daily data from the Austrian and German energy markets:

electricity spot and monthly futures prices, total load (total energy generation) as well as wind

energy generation. Unless stated otherwise, we estimate our models on five-year-long time series of

daily data between 01.01.2011 and 31.12.2015. We downloaded hourly time series from the website

of the Open Power System Data project (Open Power System Data (2019)) and Austrian Power

Grid (Austrian Power Grid (2019)). We use the following time series.

� Austrian Power Grid (APG):

– Day-ahead forecasts of wind energy production in Austria [MW].

– Day-ahead forecasts of total load (total energy production) in Austria [MW].

� Open Power System Data:

– Day-ahead forecasts of wind energy production in Germany, summed over all four energy

providers: TransnetBW, TenneT, 50Hertz and Amprion [MW].

– Actual total load (total energy production) in Germany [MW].

– Spot prices (day-ahead baseload prices) in the joint Austrian-German market [EUR].

These two data sources are not fully consistent with regard to the load as they provide values

from different areas of Austria. The Open Power System Data gather data not only from the

control area APG, but also from the rest of the country, including industrial production units and

railroad consumption, not connected to the APG (European Commission (2018)). However, in

our research we are mostly interested in the impact of wind energy generation on energy prices.

Since wind energy should not influence commercial production units, these inconsistencies do not

cause problems in our analyses — especially as Austrian load is a few orders of magnitude smaller

than German one, so any differences in the Austrian data become negligible when we look at

both countries together. Figure 3 presents the control areas of four German transmission system

operators.

Remark 4.1. The meaning of the term “load” varies across the literature: it can denote either

power (the rate of electricity consumption over time) in kW or MW or consumed energy in kWh

or MWh (Hong (2014)). Although hourly data sets will report the same magnitude regardless of

the meaning, in our research we consider also other time periods, so for consistency we report the

data in MWh and EUR/MWh. We recall that we define a watt as one joule per second, so it

measures the power produced or used in a given time in other words, the rate of energy generation
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Figure 3: Control areas of transmission system operators in Germany (McLloyd (2013)).
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or consumption. We also recall that

1 kW = 103 W

1 MW = 106 W

1 GW = 109 W.

On the other hand, watt-seconds are units of energy defined as one joule. For example, a country

with hourly demand of 20 GW will use 20 GWh in one hour. A country with hourly demand of

10 GW will use the same amount of energy in two hours. Conversions of energy units are similar

to power units:

1 kWh = 103 W h

1 MWh = 106 W h

1 GWh = 109 W h.

We aggregate the data to daily values: we average the prices and sum up total wind energy

productions as well as total loads. Similarly to Jónsson et al. (2010), we approximate the unavail-

able day-ahead forecasts of total load in Germany by randomly perturbing the actual total load.

Precisely, we assume that for each day t = 1, . . . , N (N denotes the number of observed days)

forecasted load(t) = actual load(t) + ε(t),

where ε ∼ N
(
0, σ2

)
and σ equals approximately 2% of averaged actual load. While this method

works very well in practice (Jónsson et al. (2010), Veraart (2016)), Jónsson et al. (2010) point

out some flaws of this approach. First, it cannot account for possibly autocorrelated residuals of

forecasted load. Second, it assumes the independence of forecast errors of wind energy production

and total load, which is unrealistic as they both stem from weather forecasts. However, the effect of

these simplifications on our applications is negligible. Alternatively, we could obtain the forecasted

load by smoothing the actual load, as we expect the forecasts to be smoother than the data.

We sum up the values of forecasted load and wind energy production in both countries to get

figures for the whole region. Finally, we convert the units to gigawatts. In the rest of this sup-

plementary material, “wind” denotes the sum of day-ahead forecasts (true or perturbed) of wind

energy production levels in Austria and Germany (in GWh).

4.2 Futures prices

In Rowińska et al. (2021), we propose a model calibration procedure which additionally requires the

prices of monthly futures contracts: one month ahead (1MAH) up to six months ahead (6MAH),

which we downloaded from the webpage of the European Energy Exchange (2017). Figure 4 shows

the empirical data for 1MAH and 6MAH, the two most extreme time horizons considered. Since
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the trading periods of futures contracts are limited, we can see discontinuities in the beginning and

the end of trading periods. We also note seasonal patterns in the data as well as the downward

trend over time. Finally, as opposed to the spot prices, we do not observe large spikes in the futures

prices. ter Haar (2010) explains this finding by the smaller influence of demand-supply imbalances

on longer term contracts. Table 3 presents the summary statistics of considered futures data.

For more details about futures contracts, including a thorough data analysis, we refer the reader

to ter Haar (2010) and the references therein.

Figure 4: Time series of futures prices data: one-month-ahead (red) and six-months-ahead (blue).

Min. 1st Qu. Median Mean 3rd Qu. Max.

1MAH 27.60 32.45 38.45 40.33 48.16 63.70

2MAH 26.40 32.54 38.50 40.96 48.56 67.80

3MAH 26.40 33.60 38.58 41.35 47.50 67.50

4MAH 28.00 33.17 38.15 41.33 46.88 65.50

5MAH 24.40 33.58 38.65 40.85 47.00 66.00

6MAH 26.65 33.25 36.55 39.40 42.00 65.25

Table 3: Summary statistics of monthly futures prices computed after removing NA values.

4.3 Summary statistics

Table 4 presents the summary statistics of the daily data: the day-ahead electricity prices, the

day-ahead forecasts of wind energy production and the total load, denoted by S, WD and LD,

respectively.
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When we write WD(t), we refer to the wind energy production forecast for day t, which is

available on day t− 1. Similarly, LD(t) denotes the forecasted daily load for day t.

First we note the high variability of all time series. We would like to point out the occurrence of

daily negative prices and the strict positivity of daily wind energy production forecasts. Figure 5a,

Figure 6a and Figure 7a illustrate the same data with time series plots, in which we can clearly

see the seasonal patterns. Furthermore, during the time of observations, the spot prices have

significantly decreased while the wind energy production increased. Also, the plots of the empirical

autocorrelation functions, see Figure 5b, Figure 6b and Figure 7b, indicate strong seasonal patterns

in all variables.

In Figure 8 we observe the densities as well as the relationships (scatter plots and correlation

coefficients) between variables. We also see that wind energy production forecasts are clearly

right-skewed. Finally, the correlation coefficients between S and WD as well as between S and

LD indicate some level of dependency between these variables.

Min. 1st Qu. Median Mean 3rd Qu. Max.

S -54.70 31.26 38.76 39.18 48.35 99.43

WD 2.21 67.44 117.93 156.30 204.42 792.91

LD 1103.53 1441.13 1617.32 1586.58 1727.01 2005.90

Table 4: Summary statistics of day-ahead electricity prices S [EUR/MWh], day-ahead forecasts of

daily wind energy production WD [GWh] and day-ahead forecasts of daily load LD [GWh].

(a) Time series plot of electricity spot prices S. (b) Autocorrelation function of electricity spot

prices S.

Figure 5: Time series and autocorrelation function plots of electricity spot prices S.
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(a) Time series plot of day-ahead forecasts of

daily wind energy production WD.

(b) Autocorrelation function of day-ahead fore-

casts of daily wind energy production WD.

Figure 6: Time series and autocorrelation function plots of day-ahead forecasts of daily wind energy

production WD.

(a) Time series plot of day-ahead forecasts of

daily load LD.

(b) Autocorrelation function of day-ahead fore-

casts of daily load LD.

Figure 7: Time series and autocorrelation function plots of day-ahead forecasts of daily load LD.
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Figure 8: Relationships between day-ahead forecasts of wind energy generation WD and total load

LD as well as electricity price S.
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4.3.1 Wind penetration index and residual demand

Min. 1st Qu. Median Mean 3rd Qu. Max.

WPI 0.00 0.04 0.07 0.10 0.13 0.52

RD 693.18 1267.06 1471.30 1430.28 1590.27 1919.02

Table 5: Summary statistics of day-ahead wind penetration index WPI [-] and day-ahead residual

demand RD [GWh].

(a) Time series plot of day-ahead forecasts of the

wind penetration index WPI.

(b) Time series plot of day-ahead forecasts of

the residual demand RD.

Figure 9: Time series and autocorrelation function plots of day-ahead forecasts of WPI and RD.

Table 5 shows the summary statistics of the two time series of the wind penetration index

(WPI) and the residual demand (RD). In the discussed period (2011–2015) on average 10% of

total energy produced in Austria and Germany came from wind. Figure 9a and Figure 9b present

both time series. We note that WPI is very volatile and oscillates a lot around its mean level.
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5 Dealing with seasonality

5.1 Seasonal patterns in the data

All variables considered in our study exhibit seasonal patterns. According to Figure 10, the on

average lowest prices occur during the weekends and in the summer months. We also see that

the prices decreased from 2011 to 2015. Figure 11 shows that, while (unsurprisingly) we generate

similar amounts of wind energy regardless of the weekday, the production is much higher in winter

than in summer. Moreover, we notice a significant increase in wind energy production as the years

progressed, which might explain the decrease in prices. When it comes to the total load and residual

demand, in Figure 12 and Figure 13 we can see that similarly to spot prices lowest values occur

during the weekends as well as in summer. The total energy generation stayed approximately

the same over the years. Finally, from Figure 14 we learn that the highest values of the wind

penetration index occur on the weekends and in winter, which is mostly due to lower values of

total load in the denominator.

(a) Averaged day-ahead electricity prices S

grouped by weekdays.

(b) Averaged day-ahead electricity prices S

grouped by months.

Figure 10: Day-ahead electricity prices S grouped by seasons: weekdays (left panel) and months

(right panel).
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(a) Averaged day-ahead forecasts of daily wind

energy production WD grouped by weekdays.

(b) Averaged day-ahead forecasts of daily wind

energy production WD grouped by months.

Figure 11: Day-ahead forecasts of daily wind energy production WD grouped by seasons: weekdays

(left panel) and months (right panel).

(a) Averaged day-ahead forecasts of daily load

LD grouped by weekdays.

(b) Averaged day-ahead forecasts of daily load

LD grouped by months.

Figure 12: Day-ahead forecasts of daily load LD grouped by seasons: weekdays (left panel) and

months (right panel).
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(a) Averaged day-ahead forecasts of the residual

demand RD grouped by weekdays.

(b) Averaged day-ahead forecasts of the residual

demand RD grouped by months.

Figure 13: Day-ahead forecasts of the residual demand RD grouped by seasons: weekdays (left

panel) and months (right panel).

(a) Averaged day-ahead forecasts of the wind

penetration index WPI grouped by weekdays.

(b) Averaged day-ahead forecasts of the wind

penetration index WPI grouped by months.

Figure 14: Day-ahead forecasts of the wind penetration index WPI grouped by seasons: weekdays

(left panel) and months (right panel).
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5.2 Seasonality functions

Before we propose models for any of the variables, we remove trends and seasonal patterns from

all data sets by assuming that

S(t) = ΛS(t) + S(t),

WD(t) = ΛWD(t) +WD(t),

LD(t) = ΛLD(t) + LD(t),

WPI(t) = ΛWPI(t) +WPI(t),

RD(t) = ΛRD(t) +RD(t),

where Λ? denote deterministic seasonality and trend functions for appropriate variables, while bars

detrended and deseasonalised variables. Let

Λ?1(t) = c?0 + c?1t+ c?2 cos

(
c?3 + 2πt

365

)
,

where stars correspond to coefficients of the variable of interest. We additionally define dummy

variables for days of the week (dMon, . . . , dSat) and main holidays (h(t) = 0 for Dec 24th, Dec 25th,

Dec 26th and Jan 1st; h(t) = 1 otherwise). We set

Λ?2(t) = c?hh(t) + c?MondMon(t) + · · ·+ c?SatdSat(t),

and

Λ?3(t) = c?hh(t) + c?MondMon(t) + · · ·+ c?FridFri(t),

where the latter does not include a dummy variable for Saturday. Now we can define

ΛS(t) = ΛS1 (t) + ΛS2 (t),

ΛWD(t) = ΛWD
1 (t),

ΛLD(t) = ΛLD1 (t) + ΛLD2 (t),

ΛWPI(t) = ΛWPI
1 (t) + ΛWPI

3 (t),

ΛRD(t) = ΛLD(t)− ΛWD(t).

As we do not observe weekly effects in WD, we remove only yearly seasonality. Furthermore, the

dummy variable for Saturday is not significant in case of WPI, so we do not include this variable.

Finally, since RD is an additive function of LD and WD, we do not introduce any additional

seasonal factors for this variable.

We use the function nls from the R package stats (R Core Team (2018)) to estimate the coeffi-

cients of seasonality functions Λ. We initialise all parameters with 0.1. We present the estimated
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parameters in Table 6, Table 7, Table 8 and Table 9. The estimated coefficients reflect the patterns

in the data. For example, cSSat has the smallest magnitude of all weekly coefficients of ΛS , which

corresponds to lower spot prices on the weekends. Also, the trend coefficient cWD
1 is positive, which

reflects the gradual increase in wind energy production over time.

Estimate Std. Error t value Pr(> |t|)

cS0 9.757 1.9 5.135 3.119e-07

cS1 -0.0134 0.0003584 -37.4 2.038e-227

cS2 -3.027 0.2672 -11.33 8.465e-29

cS3 8328 32.17 258.9 0

cShol 30.33 1.814 16.72 1.795e-58

cSMon 13.92 0.698 19.94 3.931e-80

cSTue 15.53 0.6981 22.25 3.38e-97

cSWed 16.03 0.6982 22.96 1.303e-102

cSThu 15.52 0.6982 22.22 5.643e-97

cSFri 14.23 0.6987 20.37 3.359e-83

cSSat 6.471 0.6981 9.27 5.122e-20

Table 6: Estimated parameters of the seasonality and trend function ΛS .

Estimate Std. Error t value Pr(> |t|)

cWD
0 106.7 5.282 20.2 4.895e-82

cWD
1 0.05425 0.005024 10.8 2.15e-26

cWD
2 66.29 3.7 17.92 2.923e-66

cWD
3 -4.364e+04 20.62 -2117 0

Table 7: Estimated parameters of the seasonality and trend function ΛWD.

5.3 De-seasonalised and de-trended data

Figure 15, Figure 16, Figure 17, Figure 18 and Figure 19 present plots of deseasonalised time series

averaged by weekdays or months. We can see that the deseasonalisation procedure was effective

and removed most seasonal effects (please pay attention to the scale in the plots).

Since in in our article Rowińska et al. (2021) we explore the relationship between electricity spot

prices and wind energy production, we first need to check if such a relationship exists in deseason-

alised data sets. In Figure 20 we observe strong correlations between S and three deseasonalised

wind-related variables: WD (-0.600), WPI (-0.635) and RD (0.721). We also note that in first
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Estimate Std. Error t value Pr(> |t|)

cLD0 868.2 20.77 41.81 4.178e-268

cLD1 -0.01136 0.003918 -2.899 0.003784

cLD2 -113 2.916 -38.74 8.935e-240

cLD3 -5.853e+04 9.441 -6199 0

cLDhol 458.2 19.83 23.11 8.758e-104

cLDMon 337.1 7.63 44.18 4.403e-290

cLDTue 380.5 7.631 49.87 0

cLDWed 386.7 7.632 50.67 0

cLDThu 373.7 7.632 48.97 0

cLDFri 340.4 7.637 44.57 1.059e-293

cLDSat 109.7 7.631 14.38 1.692e-44

Table 8: Estimated parameters of the seasonality and trend function ΛLD.

two cases the correlations are negative, while in the last one positive. This agrees with the ex-

pectations, since cheap wind energy tends to lower the prices (in case of the residual demand we

subtract wind energy generation from the load, so we swap the sign).

(a) Averaged deseasonalised day-ahead electric-

ity prices S grouped by weekdays.

(b) Averaged deseasonalised day-ahead electric-

ity prices S grouped by months.

Figure 15: Deseasonalised day-ahead electricity prices S grouped by seasons: weekdays (left panel)

and months (right panel).
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(a) Deseasonalised averaged day-ahead forecasts

of daily wind energy production WD grouped by

weekdays.

(b) Deseasonalised averaged day-ahead forecasts

of daily wind energy production WD grouped by

months.

Figure 16: Deseasonalised day-ahead forecasts of daily wind energy production WD grouped by

seasons: weekdays (left panel) and months (right panel).

(a) Deseasonalised averaged day-ahead forecasts

of daily load LD grouped by weekdays.

(b) Deseasonalised averaged day-ahead forecasts

of daily load LD grouped by months.

Figure 17: Deseasonalised day-ahead forecasts of daily load LD grouped by seasons: weekdays

(left panel) and months (right panel).
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(a) Deseasonalised averaged day-ahead forecasts

of the wind penetration index WPI grouped by

weekdays.

(b) Deseasonalised averaged day-ahead forecasts

of the wind penetration index WPI grouped by

months.

Figure 18: Deseasonalised day-ahead forecasts of the wind penetration index WPI grouped by

seasons: weekdays (left panel) and months (right panel).

(a) Deseasonalised averaged day-ahead forecasts

of the residual demand RD grouped by week-

days.

(b) Deseasonalised averaged day-ahead forecasts

of the residual demand RD grouped by months.

Figure 19: Deseasonalised day-ahead forecasts of the residual demand RD grouped by seasons:

weekdays (left panel) and months (right panel).
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Figure 20: Relationships between deseasonalised electricity spot prices S and deseasonalised fore-

casts of wind energy production WD, wind penetration index WPI and residual demand RD.
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Estimate Std. Error t value Pr(> |t|)

cWPI
0 0.2015 0.01653 12.19 6.527e-33

cWPI
1 3.422e-05 3.178e-06 10.77 2.962e-26

cWPI
2 0.03468 0.002365 14.67 4.102e-46

cWPI
3 -75.88 24.94 -3.043 0.002378

cWPI
hol -0.1179 0.01608 -7.332 3.388e-13

cWPI
Mon -0.02055 0.00536 -3.834 0.0001301

cWPI
Tue -0.02341 0.00536 -4.367 1.331e-05

cWPI
Wed -0.0262 0.005361 -4.887 1.116e-06

cWPI
Thu -0.02371 0.005361 -4.423 1.032e-05

cWPI
Fri -0.02388 0.005367 -4.449 9.142e-06

Table 9: Estimated parameters of the seasonality and trend function ΛWPI .

6 Numerical results for wind-related variables

In this subsection we describe the results of the estimation procedure from Subsection 6.2 in

Rowińska et al. (2021) run on three wind-related variables.

6.1 Wind energy production

In Table 10 we can see that the asymmetric normal inverse Gaussian distribution minimises the

Akaike information criterion (AIC), therefore it provides the best fit. Figure 21 shows that the fit

is indeed very good, apart from some imperfections in the right tail. Therefore we assume that the

marginal distribution of WD is asymmetric normal inverse Gaussian with(
λ, χ, ψ, µ, c =

√
Σ, γ

)
= (−0.50, 2.21, 2.21,−121.45, 8.79, 121.39) .

The value of the parameter γ is positive, which reflects the positive skewness of WD.

For the kernel we obtain parameter estimates ν̄ = 0.99 and λ̄ = 0.57, so similarly to Barndorff-

Nielsen et al. (2013) we are outside the semimartingale setting, but this does not cause any problems

since we are not modelling a tradable asset. The fit between autocorrelation functions is good, as

shown in Figure 22.

6.2 Residual demand

A quick look at Figure 20 suggests that we expect the marginal distribution of RD to be asymmet-

ric. Table 11 shows that indeed the best fit is provided by the asymmetric hyperbolic distribution.

Apart from some minor issues in the left tail, this distribution fits very well, as we observe in
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model symmetric lambda alpha.bar mu sigma gamma aic llh

3 NIG FALSE -0.500 2.212 -121.451 77.228 121.395 21945.436 -10968.718

5 t FALSE -6.690 0.000 -212.251 58.792 212.452 21948.790 -10970.395

2 hyp FALSE 1.000 1.682 -113.757 79.374 113.742 21950.036 -10971.018

1 ghyp FALSE -6.715 0.000 -213.113 58.569 213.321 21950.789 -10970.394

4 VG FALSE 2.067 0.000 -101.971 83.414 101.966 21962.771 -10977.386

8 NIG TRUE -0.500 0.716 -20.367 113.947 0.000 22192.167 -11093.084

6 ghyp TRUE -0.524 0.715 -20.333 113.970 0.000 22194.166 -11093.083

7 hyp TRUE 1.000 0.331 -20.978 112.161 0.000 22197.557 -11095.779

10 t TRUE -1.802 0.000 -18.542 118.648 0.000 22198.139 -11096.070

9 VG TRUE 1.171 0.000 -21.571 112.311 0.000 22199.454 -11096.727

11 gauss TRUE Inf -0.000 111.723 0.000 22383.348 -11189.674

Table 10: Generalised hyperbolic distributions fitted to WD with parametrisation (λ, α, µ,Σ, γ).

Figure 21: WD and the fitted generalised hyperbolic distribution: histogram and q-q plot.
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Figure 22: True and estimated autocorrelation functions of WD according to the model described

in Subsection 6.1 in Rowińska et al. (2021).
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Figure 23. Therefore the marginal distribution of RD is asymmetric hyperbolic with(
λ, χ, ψ, µ, c =

√
Σ, γ

)
= (1.00, 0.26, 2.53, 96.44, 11.12,−96.43) .

model symmetric lambda alpha.bar mu sigma gamma aic llh

2 hyp FALSE 1.000 0.809 96.439 123.598 -96.435 23019.220 -11505.610

4 VG FALSE 1.568 0.000 95.617 124.152 -95.607 23019.521 -11505.760

1 ghyp FALSE 1.253 0.595 95.796 123.875 -95.795 23021.045 -11505.522

3 NIG FALSE -0.500 1.532 108.093 120.079 -108.117 23024.637 -11508.319

5 t FALSE -4.000 0.000 149.128 112.832 -150.102 23041.408 -11516.704

8 NIG TRUE -0.500 0.898 21.547 147.663 0.000 23199.988 -11596.994

6 ghyp TRUE -0.559 0.895 21.473 147.727 0.000 23201.982 -11596.991

7 hyp TRUE 1.000 0.655 21.368 145.660 0.000 23205.129 -11599.565

10 t TRUE -1.996 0.000 19.800 152.178 0.000 23205.779 -11599.889

9 VG TRUE 1.475 0.000 21.750 145.478 0.000 23209.951 -11601.976

11 gauss TRUE Inf -0.000 145.640 0.000 23350.474 -11673.237

Table 11: Generalised hyperbolic distributions fitted to RD with parametrisation (λ, α, µ,Σ, γ).

Figure 23: RD and the fitted generalised hyperbolic distribution: histogram and q-q plot.

The kernel parameters are estimated as ν̄ = 0.82 and λ̄ = 0.20, so again we are not dealing

with a semimartingale. Figure 24 presents the good match between the empirical and theoretical

autocorrelation functions.
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Figure 24: True and estimated autocorrelation functions of RD according to the model described

in Subsection 6.1 in Rowińska et al. (2021).
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6.3 Wind penetration index

Similarly to WD, the deseasonalised wind penetration index is best described by the asymmetric

normal inverse Gaussian distribution. From Table 12 we learn that the skewness parameter γ

is positive, but of smaller magnitude than the one of WD. Again, we are satisfied with the fit

presented in Figure 25. The marginal distribution of WPI is thus asymmetric hyperbolic with(
λ, χ, ψ, µ, c =

√
Σ, γ

)
= (−0.50, 1.71, 1.71,−0.07, 0.22, 0.07) .

model symmetric lambda alpha.bar mu sigma gamma aic llh

3 NIG FALSE -0.500 1.712 -0.067 0.050 0.067 -4956.436 2482.218

2 hyp FALSE 1.000 1.110 -0.062 0.052 0.062 -4955.579 2481.789

1 ghyp FALSE 0.227 1.447 -0.063 0.051 0.063 -4955.566 2482.783

4 VG FALSE 1.757 0.000 -0.059 0.053 0.059 -4945.900 2476.950

5 t FALSE -4.411 0.000 -0.095 0.045 0.095 -4940.267 2474.133

8 NIG TRUE -0.500 0.686 -0.014 0.072 0.000 -4688.184 2347.092

6 ghyp TRUE -0.618 0.676 -0.014 0.072 0.000 -4686.234 2347.117

10 t TRUE -1.750 0.000 -0.012 0.076 0.000 -4681.876 2343.938

7 hyp TRUE 1.000 0.402 -0.014 0.071 0.000 -4678.876 2342.438

9 VG TRUE 1.206 0.000 -0.014 0.071 0.000 -4674.755 2340.378

11 gauss TRUE Inf 0.000 0.071 0.000 -4493.115 2248.557

Table 12: Generalised hyperbolic distributions fitted to WPI with parametrisation (λ, α, µ,Σ, γ).

Figure 25: WPI and the fitted generalised hyperbolic distribution: histogram and q-q plot.
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For the kernel we obtain the parameter estimates ν̄ = 0.88 and λ̄ = 0.39, so once again

we are outside the semimartingale setting. These parameters provide good matching between

autocorrelation functions, as presented in Figure 26.

Figure 26: True and estimated autocorrelation functions of WPI according to the model described

in Subsection 6.1 in Rowińska et al. (2021).
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