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Abstract

We introduce a four-factor arithmetic model for electricity baseload spot prices in Germany

and Austria. The model consists of a deterministic seasonality and trend function, both

short- and long-term stochastic components, and exogenous factors such as the daily wind

energy production forecasts, the residual demand and the wind penetration index. We describe

the short-term stochastic factor by a Lévy semi-stationary (LSS) process, and the long-term

component is modelled as a Lévy process with increments belonging to a class of generalised

hyperbolic distributions.

We derive the corresponding futures prices and develop an inference methodology for our

multi-factor model. The methodology allows to infer the various factors in a step-wise proce-

dure taking empirical spot prices, futures prices and wind energy production and total load

data into account.

Our empirical work shows that taking into account the impact of the wind energy gen-

eration on the prices improves the goodness of fit. Moreover, we demonstrate that the class

of LSS processes can be used for modelling the exogenous variables including wind energy

production, residual demand and the wind penetration index.

Keywords: CARMA model, Electricity spot prices, Electricity futures prices, Lévy process, Lévy

semistationary process, Wind energy
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1 Introduction

One of the main challenges of the 21st century is reinforcing sustainable economic growth in order

to tackle climate change. An important part of this task is a more effective use of renewable energy

sources, such as the wind power. From the economic point of view, these sources are notorious for

being risky to invest in because of their unpredictable influence on the electricity prices. This is

due to their high dependence on the weather – and weather forecasts still do not reach the desirable

level of accuracy.

In this article, we aim to develop a new model for electricity spot prices which takes the

impact of renewable sources of energy, and wind energy in particular, into account. Electricity is

considered a commodity with unique characteristics that make the use of standard tools of financial

mathematics difficult or even impossible. First, energy storage to date is either limited or expensive,

so supply and demand must match at almost all times. Over time the prices tend to a long-term

average determined by this balance, so they exhibit a mean reversion. Any disturbances of this

equilibrium can result in significant spikes in the electricity spot (day-ahead) market, which leads

to a strong and heteroscedastic (time-varying) volatility of electricity spot prices. Furthermore,

electricity prices are seasonal. The demand is much higher in winter months (due to the need

of heating and longer use of lights) as well as during hot summer months (due to the use of air

conditioning). Since prices are elastic functions of demand, very cold or very warm weather usually

results in more expensive electricity. The periodic behaviour can also be observed at a smaller,

weekly scale, namely the demand is higher in the peak time, i.e. Monday to Friday between 8 am

and 8 pm, when people need electricity for their activities at work and home.

In the literature, one can find a variety of electricity price models: some start from a model

for the spot prices and then derive the corresponding futures prices (eg. Carmona et al. (2013),

Cartea et al. (2009), Benth et al. (2014)), others model the futures prices directly (eg. Benth &

Paraschiv (2018), Barndorff-Nielsen et al. (2015), Barndorff-Nielsen et al. (2013), Borovkova &

Geman (2006)). For a comprehensive recent survey on the electricity price models, we refer to

Deschatre et al. (2021).

Recently, modelling approaches have been developed that try to take into account the increas-

ingly important role of renewable sources of energy. For instance, Ketterer (2014a) develops an

ARMA-GARCH model for German electricity prices where wind power features as an exogenous

factor both in the conditional mean and the conditional variance model. Elberg & Hagspiel (2015)

develops a copula model for the spatial dependence structure of wind power in Germany; Veraart

(2016) proposes to model German electricity prices by regime-switching Lévy semi-stationary pro-

cesses, where the regimes are determined based on the level of the wind penetration index. Also,

Deschatre & Veraart (2018) investigate the impact of wind energy production on the spikes in the

spot prices.

2



Multi-factor models have also become popular recently: Benth et al. (2014) propose an arith-

metic model for spot prices with three factors: a deterministic seasonality and trend function as

well as short- and long-term stochastic parts. Lingohr & Müller (2021) extend this work by intro-

ducing both a dependence on residual demand in the model and by using conditionally independent

increment processes as driving processes for the short-term price variability.

This article extends the work by Benth et al. (2014) and complements the work by Lingohr &

Müller (2021) as follows: We propose to model electricity prices by an arithmetic model consisting

of four components: a seasonality and trend term, exogenous variables based on wind energy

production forecasts, a short-term stochastic factor and a long-term stochastic factor. We propose

to model the short-term stochastic factor by a Lévy semi-stationary (LSS ) process (rather than a

CARMA(2,1) process as in Benth et al. (2014) or a generalized Ornstein-Uhlenbeck process driven

by a conditionally independent increment process as in Lingohr & Müller (2021)). Also, rather

than using an α-stable driving process as in Benth et al. (2014), we choose processes from the

generalised hyperbolic class, which not only capture the features of electricity prices but also are

easy to fit thanks to the algorithm implemented by Lüthi & Breymann (2016). We note that while

we are using maximum-likelihood and GMM methods for parameter estimation, Müller & Seibert

(2019) propose an alternative estimation procedure for CARMA process on Markov chain Monte

Carlo methods.

Moreover, we allow for exogenous variables in order to take into account the relationship be-

tween electricity spot prices and wind energy production forecasts. We stress that it is the wind

energy production forecasts, not the actual values, that impact the price, as they represent the

information available to market participants at the time of transaction (Ketterer (2014b)). It is

crucial that we focus on day-ahead forecasts, because longer forecasting horizons reduce their ac-

curacy and usefulness for making market decisions. We will denote the day-ahead forecasts of wind

energy production by WD.

Jónsson et al. (2010) argue that the same level of wind energy production will affect the price in

a different way depending on the total demand. In the literature we find two ways of combining

these two variables: the wind penetration index, suggested for example by Jónsson et al. (2010),

as well as the residual load (or demand) studied by Nicolosi & Fürsch (2009) and others. In

our empirical work, we consider both time series and compare the goodness-of-fit of the resulting

models.

The remainder of this article is structured as follows. In Section 2, we introduce a four-factor

arithmetic model for spot prices, and we derive a formula for futures prices in Section 3. In

Section 4 we describe how to fit the model to empirical data and study all model terms in detail.

Our empirical results are presented in Section 5, and Section 6 gives an outlook on the use of

Lévy stationary processes for modelling the exogenous variables. We summarise our key findings
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in Section 7 and relegate the proofs of our theoretical results to Section 8. Additional theoretical

background material and empirical results are available in the supplementary material Rowińska

et al. (2021). This articles contains material from the PhD thesis Rowińska (2020).

2 The multi-factor model

Benth et al. (2014) argue that electricity spot prices can be well described by a three-factor model

consisting of 1) a seasonality and trend component, 2) a long-term factor given by a Lévy process

and 3) a short-term stationary factor given by a stable CARMA process. We extend their model

by replacing the model for the short-term factor by a linear combination of a Lévy semi-stationary

process and exogenous variables. In doing so, we find that we can further improve the model fit.

2.1 Model definition

We denote by (Ω,F , {F(t)}t∈R,P) a filtered probability space satisfying the usual conditions of

right-continuity and completeness. Let S = (S(t))t≥0 denote the electricity spot price process.

Suppose that x = (x(t))t≥0 denotes an M -dimensional vector of exogenous (deterministic) variables

for M ∈ N. We denote by x = (x(t))t≥0 their detrended and deseasonalised counter-parts, see

Section 5 in Rowińska et al. (2021) for details. We propose the multi-factor model with exogenous

variables given by

S(t) = Λ(t) + Z(t) + Y (t) + a>x(t), t ≥ 0, (2.1)

where Λ = (Λ(t))t≥0 denotes a deterministic seasonality and trend function, Z = (Z(t))t≥0 is

a Lévy process with zero mean (under P), which describes the non-stationary long-term and low-

frequency stochastic dynamics of the spot price. The (stationary) short-term dynamics of the price

process are modelled as a sum of a stationary process Y = (Y (t))t≥0 and a linear combination

of exogenous variables, where a ∈ RM is a parameter vector. We shall assume that Z and Y are

independent.

2.2 Modelling the short term factor by a Lévy semi-stationary process

Our main innovation compared to the model described in Benth et al. (2014) is two-fold: first,

to model the short-term factor by a Lévy semi-stationary process, see Barndorff-Nielsen et al.

(2013), rather than by an α-stable CARMA process (which is in fact a special case of our more

general model), and, second, to include exogenous variables. Suppose that Y = (Y (t))t≥0 is a Lévy

semi-stationary (LSS) process without drift denoted by

Y (t) =

∫ t

−∞
g(t− s)σ(s−)dL(s). (2.2)
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Here g : (0,∞) → R denotes a deterministic function with lim
t→∞

g(t) = 0. Furthermore, L =

(L(t))t∈R is a two-sided Lévy process with characteristic triplet given by (d, b, lL) (with a trun-

cation function h(z) = 1{x:|x|≤1}(z)), where d denotes the drift, b the variance of the Gaussian

component and lL the Lévy measure. The volatility process σ = (σ(t))t∈R is assumed to be

càdlàg, non-negative, strictly stationary and independent of L. Let us define φt(s) := g(t −

s)σ(s−). According to Barndorff-Nielsen et al. (2013), the process (φt(s))s≤t is integrable with

respect to L if and only if (φt(s))s≤t is {F(t)}t∈R-predictable and the following three conditions

hold almost surely: (1) b
∫ t
−∞ (φt(s))

2
ds < ∞, (2)

∫ t
−∞

∫∞
−∞

(
1 ∧ |φt(s)z|2

)
lL(dz)ds < ∞, (3)∫ t

−∞

∣∣∣dφt(s) +
∫∞
−∞ (h (zφt(s))− φt(s)h(z)) lL(dz)

∣∣∣ <∞.

To ensure the square integrability, we assume that L and σ have finite second moments and re-

place condition (1) by
∫ t
−∞ EP

[
φt(s)

2
]
ds =

∫ t
−∞ g(t−s)2EP

[
σ(s)2

]
ds <∞ and EP

[
(g(t− s)σ(s)ds)

2
]
<

∞. For the latter condition it is enough to ensure that for some a ∈ (0, 1)
∫∞

0
g2a(x)dx <∞ and∫ t

−∞ g2(1−a)(t− s)EP
[
σ(s)2

]
<∞.

Note that Y is stationary if and only if σ(t) and the increments of L(t) are jointly stationary.

While our empirical studies (Section 5) do not indicate much stochastic volatility in our data, we

develop the theoretical framework which can accommodate σ with a short memory. We suggest

using a (stationary) Ornstein-Uhlenbeck process:

Assumption 2.1. The stochastic volatility process σ = (σ(t))t∈R in Equation (2.2) satisfies σ2(t) =∫ t
−∞ e−δ(t−s)dV (s) where δ > 0 and V = (V (t))t∈R denotes a two-sided Lévy subordinator inde-

pendent of the Lévy process L.

3 Pricing futures in the multi-factor model

We will now describe how electricity futures contracts can be priced in our new multi-factor model.

Here we will follow the approach described in Benth et al. (2014), but we note that alternative

approaches for pricing futures have been mentioned in the literature; see Weron (2008) for a detailed

discussion.

We will need to find a new probability measure Q which is equivalent to the physical measure P.

Since not all the assets in electricity markets are tradable, the resulting discounted price dynamics

do not need to be (local) martingales with respect to the equivalent measure. Hence we can choose

any probability measure equivalent to P.

3.1 Specification of an equivalent probability measure

Let T ∗ > 0 denote a finite time horizon and let θ(·) denote a real-valued function which is integrable

w.r.t. L on [0, T ∗]. As suggested by Barndorff-Nielsen et al. (2013), we define the equivalent
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martingale measure QθL via the generalised Esscher transform of L as follows

dQθL
dP

∣∣∣∣
F(t)

= exp

(∫ t

0

θ(s)dL(s)−
∫ t

0

φL (θ(s)) ds

)
, t ∈ [0, T ∗],

where φL(x) = log (E[exp(xL(1))]) denotes the log-moment generating function of L(1) (if it exists

for suitable x ∈ R). By analogy, let η(·) denote a real-valued function which is integrable w.r.t. V

on [0, T ∗]. Then we define QηV by

dQηV
dP

∣∣∣∣
F(t)

= exp

(∫ t

0

η(s)dV (s)−
∫ t

0

φV (η(s)) ds

)
, t ∈ [0, T ∗], (3.1)

where φV (x) = log (E[exp(xV (1))]) denotes the log-moment generating function of V (1) (if it exists

for suitable x ∈ R).

Similarly, let κ(·) denote a real-valued function which is integrable w.r.t. Z on [0, T ∗]. Then we

define a measure change for Z as

dQκZ
dP

∣∣∣∣
F(t)

= exp

(∫ t

0

κ(s)dZ(s)−
∫ t

0

φZ (κ(s)) ds

)
, t ∈ [0, T ∗]. (3.2)

We will then define the equivalent measure as Q = Qθ,η,κ = QL ×QV ×QZ .

If we choose the function θ(·), η(·) and κ(·) to be constant, then the change of measure will

preserve the desirable Lévy properties and the independence between the processes.

In order to guarantee the existence of the Esscher transforms above, we need the existence of

the corresponding exponential moments of L, V, Z, see (Barndorff-Nielsen et al. 2018, p. 347) for

a detailed discussion.

3.2 Pricing futures contracts

Suppose that 0 ≤ t ≤ T ≤ T ∗ and consider a futures contract f(t, T ) where T denotes the instanta-

neous delivery time. Using standard arguments, see Duffie (1992), we set f(t, T ) = EQ [S(T )|F(t)]

– assuming throughout that Z(T ), Y (T ) and hence S(T ) have finite Q-expectation. Then

f(t, T ) = EQ [S(T )|F(t)] = EQ[Λ(T ) + Z(T ) + Y (T ) + a>x(T )|F(t)]

= Λ(T ) + Z(t) + (T − t)EQ [Z(1)] + EQ[Y (T )|F(t)] + a>x(T ), where

EQ[Y (T )|F(t)] =

∫ t

∞
g(T − s)σ(s−)dL(s) + EQ [L(1)]

∫ T

t

g(T − s)EQ [σ(s)|F(t)] ds.

Due to its nonstorability, electricity is delivered over a time period rather than at one specific

moment. Thus for all 0 ≤ t ≤ T1 < T2 ≤ T ∗ we define the price of a futures contract with a

delivery period [T1, T2] by

F (t, T1, T2) := EQ

[
1

T2 − T1

∫ T2

T1

S(T )dT

∣∣∣∣Ft
]
. (3.3)
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If following Benth et al. (2014) we define time to maturity as u := u(t, T1, T2) = 1
2 (T1 + T2) − t,

then Equation (3.3) becomes

F (t, T1, T2) =
1

T2 − T1

∫ T2

T1

Λ(T )dT + Z(t) + uEQ [Z(1)] +G(t, T1, T2) +
1

T2 − T1

∫ T2

T1

a>x(T )dT,

where we define

G(t, T1, T2) :=
1

T2 − T1

∫ T2

T1

EQ[Y (T )|F(t)]dT

=
1

T2 − T1

(∫ T2

T1

∫ t

−∞
g(T − s)σ(s−) dL(s) dT

+ EQ [L(1)]

∫ T2

T1

∫ T

t

g(T − s)EQ [σ(s)|F(t)] ds dT

)
.

We define the deseasonalised futures price as

F̃ (t, T1, T2) := F (t, T1, T2)− 1

T2 − T1

∫ T2

T1

Λ(T )dT

= Z(t) + uEQ [Z(1)] +G(t, T1, T2) +
1

T2 − T1

∫ T2

T1

a>x(T )dT.

We want to show that the impact of Y on the (deseasonalised) futures prices as described by

G(t, T1, T2) is negligible when t is much smaller than T1. Hence we characterise the asymptotic

behaviour of G next.

Assumption 3.1. Suppose that Assumption 2.1 holds with limx→∞
∫ x

0
g(y)e−

δ
2 (x−y)dy = 0.

Proposition 3.1. Consider the multi-factor model and assume that either σ is constant or As-

sumption 3.1 holds. Then for ∆ > 0 and fixed t > 0,

lim
T1→∞

G(t, T1, T1 + ∆) = EQ[Y (0)], with EQ[Y (0)] = EQ [L(1)]EQ [σ(0)]

∫ ∞
0

g(y)dy.

where the limit is in the L2−sense w.r.t. Q.

The proof of Proposition 3.1 is given in the Section 8.

Hence, with u = 1
2 (T1 + T2)− t and for t� T1, we can approximate the deseasonalised futures

price by

F̃ (t, T1, T2) ≈ Z(t) + uβ1 + β0, (3.4)

where β0 = EQ [Y (0)] + 1
T2−T1

∫ T2

T1
a>x(T )dT , β1 = EQ [Z(1)].

Also,

F̃ (t, T1, T2)− 1

T2 − T1

∫ T2

T1

a>x(T )dT ≈ Z(t) + uβ1 + β∗0 , (3.5)

where β∗0 = EQ [Y (0)], β1 = EQ [Z(1)].

These approximations will prove useful for inference, see Section 4.
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4 Inference in the multi-factor model

Let us now turn towards inference in the multi-factor model. Our new model consists of (up to)

four factors which we will estimate in four separate steps. In doing so, we modify and extend the

algorithm proposed by Benth et al. (2014), pp. 398-9, to cope with our more general model setting.

4.1 Step 1: Dealing with seasonality and trend

First, we formulate a parametric model for the seasonality and trend function denoted by Λ.

We shall use a linear combination of a first order polynomial and a cosine function with yearly

frequency and dummies for the day of the week and holidays. The corresponding parameters are

then estimated by least squares. This results in an estimate Λ̂.

We proceed in a similar way to deseasonalise any exogenous variables x and we denote the

deseasonalised and detrended variables by x, see Section 5 in Rowińska et al. (2021) for details.

Finally, we compute the deseasonalised and detrended spot price denoted by S as S(t) = S(t) −

Λ̂(t) = Z(t) + Y (t) + a>x(t). In our notation we disregard the estimation error to simplify the

exposition.

4.2 Step 2: Filtering out the non-stationary long-term factor

The second step consists of filtering out the long-term factor Z. Here we modify the algorithm by

(Benth et al. 2014, pp. 398-9). Their key idea was to use futures prices to split spot prices into

the long and short-term factors. In Proposition 3.1 we showed that in the long end deseasonalised

futures prices are (stochastically) influenced only by the long-term factor Z.

Hence, we first need to determine a threshold u? such that deseasonalised prices of contracts

with u = u(t, T1, T2) = 1
2 (T1 + T2)− t ≥ u? are described approximately by Z alone. Benth et al.

(2014) recommend carrying out the estimation for various choices of the threshold u? until an

optimal level has been found.

Let us now denote the sample mean by ÊP[·]. For u ≥ u?, using Proposition 3.1 and EP [Z(t)] =

0, we can approximate

µF̃ (u) := ÊP

[
F̃ (t, T1, T2)

]
≈ uβ1 + β0, (4.1)

and by linear regression find the estimates β̂0 and β̂1.

Given these parameter estimates, we can recover a realisation of the long-term process by

setting

Ẑ(t) = Ẑ

(
1

2
(T1 + T2)− u

)
=

1

cardU(t, u?)

∑
(u,T1,T2)∈U(t,u?)

[
F̃ (t, T1, T2)− uβ̂1 − β̂0

]
, (4.2)

where U(t, u?) := {(u, T1, T2) ∈ R3 : u ≥ u? and ∃ F (t, T1, T2) : 1
2 (T1 + T2)− t = u}.
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Remark 4.1. In the absence of exogenous variables, we have that β0 = EQ(Y (0)) which does neither

depend on T1, T2 nor on t and the Equations (3.4) and (3.5) are identical. However, in the presence

of exogenous variables, the parameter β0 is technically still a function of T1 and T2, but not of t.

In the following, we have ignored this dependence in the estimation. In future work, one could

investigate an alternative approach: one could estimate a first, then approximate the left hand

side of Equation (3.5) and run the corresponding regression and recover Z via an adjusted version

of Equation (4.2).

Since futures contracts are traded only from Monday to Friday, Ẑ does not include estimates for

the weekends. Following Benth et al. (2014), we suggest extrapolating by setting Ẑ on Saturdays

and Sundays equal to the preceding Friday’s value.

Finally, we should check whether the recovered process Ẑ can be well modelled by the suggested

Lévy process.

4.3 Step 3: Estimating the parameters associated with the exogenous

variables

Since Y (t) + a>x(t) = S(t)− Λ(t)− Z(t), we obtain the estimated short-term factor by

̂(Y (t) + a>x(t)) = S(t)− Ẑ(t).

We then estimate a by linear regression, resulting in the estimate â. Now we can recover the

estimated stationary process Y by setting

Ŷ (t) = ̂(Y (t) + a>x(t))− â>x(t).

4.4 Step 4: Estimating the stationary short-term factor

We can now fit a model to the recovered LSS process Ŷ . In order to simplify the notation,

we will suppress the hat and just write Y for Ŷ . Recall that Y (t) =
∫ t
−∞ g(t − s)dM(s), for

dM(s) = σ(s−)dL(s).

4.4.1 Estimating a CARMA process

A very popular choice for the LSS process Y is a continuous-time autoregressive moving average

(CARMA) process, see Section 3 in Rowińska et al. (2021) for details. An LSS becomes a (volatility

modulated) CARMA(p,q) process with 0 ≤ q < p and parameters a1, . . . , ap, b1, . . . , bq, if the kernel
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function is given by g(x) = bT eAte1[0,∞)(x) with

A =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

−ap −ap−1 −ap−2 · · · −a1


, e =



0

0
...

0

1


, b =



b0

b1
...

bp−2

bp−1


.

As in Brockwell et al. (2011) all eigenvalues of A are assumed to have negative real parts.

The parameters of a CARMA process can be estimated using the algorithm described by Garćıa

et al. (2011). In particular, Brockwell et al. (2011) showed that for a fixed sampling interval the

mean corrected sampled CARMA(p,q) process is a weak ARMA(p,p-1) process, so we can estimate

ARMA(p,p-1) parameters and map them to the continuous setting as outlined in Subsection 3.2

in Rowińska et al. (2021).

What is more, the algorithm also enables us to recover the increments of the driving process of

the CARMA process M which, in the general LSS case, satisfies dM(t) = σ(t−)dL(t).

What type of process is M? Is stochastic volatility present? Suppose we have estimated

the CARMA parameters and have recovered the increments of M = (M(t))t≥0. We should first

check whether M could simply be modelled by a Lévy process. If this is not the case, e.g. since

we found significant auto-correlation in the squared increments of M , we could consider the choice

M(t) :=
∫ t

0
σ(s−)dB(s) for a standard Brownian motion B. We know that, in this case, [M ](t) =∫ t

0
σ2(s)ds. Let N denote the number of observations, then we denote by ∆h

nM = M(nh)−M((n−

1)h) for n = 1, . . . , N the recovered increments of the driving process over intervals of length h > 0.

Let C(t) :=
∫ t

0
σ(s)2ds and ∆h

nC := C(nh) − C((n − 1)h) =
∫ nh

(n−1)h
σ(s)2ds. We note that ∆h

nM

is mixed Gaussian with zero mean and conditional variance given by ∆h
nC.

Suppose that the volatility process satisfies Assumption 3.1. Then, we find that, for any t, s ∈ R,

κ1 := EQ
[
σ(t)2

]
= EQ [V (1)]

∫ ∞
0

e−δxdx =
EQ [V (1)]

δ
;

κ2 := VarQ
[
σ(t)2

]
= VarQ [V (1)]

∫ ∞
0

e−2δxdx =
VarQ [V (1)]

2δ
;

CovQ
(
σ(t+ s)2, σ(t)2

)
= VarQ [V (1)]

∫ ∞
0

e−δ(x+s)e−δxdx =
VarQ [V (1)]

2δ
e−δs = κ2e

−δ|s|.

Hence EQ
[
∆h
nC
]

= κ1h and, for k ∈ 0, . . . , N − n, we have

CovQ
(
∆h
n+kC,∆

h
nC
)

=
κ2

δ2
e−δhk

(
eδh + e−δh − 2

)
; CorQ

(
∆h
n+kC,∆

h
nC
)

= e−δkh.

Consider the case when L = B is a Brownian motion, and suppose we want to infer the parameter

δ > 0. Then we approximate the empirical autocorrelation function of the squared increments

(∆h
nM)2 by CorQ

(
∆h
n+kC,∆

h
nC
)

and estimate δ by least squares.
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4.4.2 General LSS processes

Other parameteric choices for the LSS process could be considered. E.g. one popular class is a

BSS process where g takes the form of the so-called gamma kernel given by

g(x) =
λν−0.5

Γ(2ν − 1)0.5
xν−1 exp(−0.5λx), for x > 0, ν > 0.5,

and σ is chosen such that Y has generalised hyperbolic marginal law, see Section 1.9 in Barndorff-

Nielsen et al. (2018).

In the absence of high-frequent observations, the estimation theory for such processes, however,

is not yet very advanced, and least squares and (generalised) methods of moments have mainly

been used so far, see Barndorff-Nielsen et al. (2013) and Chapter 10 in Barndorff-Nielsen et al.

(2018). Alternatively, a regression-based approach based on the log-variogram Bennedsen (2017)

seems to be a promising estimation method as well.

5 Empirical results

We analyse daily baseload electricity prices (i.e. averages of hourly spot prices) and monthly (from

one month up to six months ahead) baseload futures prices for Germany and Austria, traded

between 1 January 2011 and 31 December 2015. The corresponding time series are depicted in

Figure 1. In addition, we consider the daily time series of day-ahead forecasts of daily wind energy

(a) (b)

Figure 1: Time series of the daily electricity baseload prices and daily futures prices: (a) Time

series plot of electricity spot prices S, (b) Time series of futures prices data: One month (1MAH)

to six months (6MAH) ahead.

production forecast (WD) and of daily load forecast (LD), the daily wind penetration index (WPI)
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computed as the ratio WD/LD and the residual demand (RD) computed as LD−WD, depicted

in Figure 2.

Remark 5.1. When we write WD(t) and LD(t), we refer to the wind energy production forecast

and the load forecast, respectively, for day t, which is available on day t− 1.

(a) Wind energy produc-

tion forecast (WD)

(b) Load forecast (LD) (c) Wind penetration in-

dex (WPI)

(d) Residual demand

(RD)

Figure 2: Daily time series of day-ahead forecasts of a) the wind energy production forecast (WD),

b) the load forecast (LD), c) the wind penetration index (WPI), and d) the residual demand (RD).

A detailed data description and exploratory study of the data is provided in Section 4 in the

supplementary material Rowińska et al. (2021).

5.1 Seasonality and trend

First of all, we de-seasonalise and de-trend all time series using linear combinations of (first order)

polynomials, trigonometric functions and dummy variables. The details of this part of the data

analysis is described in Section 5 in the supplementary material Rowińska et al. (2021).

5.2 Long-term component

Next, we need to find an optimal threshold u? such that deseasonalised forward contracts with a

time to maturity of u = 1
2 (T1 + T2) − t ≥ u? are no longer stochastically influenced by Y . In our

empirical analysis we found that the estimation results were not very sensitive to the threshold

choice and we will in the following report the results when we fix u∗ = 16 days.

We run the linear regression in Equation (4.1), see Figure 3a, and use the estimates β̂0 and

β̂1 in Equation (4.2) to recover Z. The recovered process Ẑ and its increments are depicted in

Figure 3b and Figure 3c, respectively.

The process Ẑ appears to be non-stationary, therefore we study its increments, plotted in

Figure 3c. At first glance Ẑ has stationary increments, as confirmed at 0.01 significance level by

the augmented Dickey-Fuller (ADF) test, computed using the function adf.test from the R package

tseries (Trapletti & Hornik (2018)). We observe that the Ẑ has (mostly) uncorrelated increments,

12



(a) (b) (c)

Figure 3: The plots shows (a) µF̃ (u) with the fitted regression line, (b) Ẑ and (c) the increments

of Ẑ.

as shown in Figure 4a, and the autocorrelation of the squared increments, depicted in Figure 4b,

exhibits a significant autocorrelation for only a few days. Thus we model Ẑ by a Lévy process

with increments following a suitable infinitely divisible distribution (although a model of the type

Ẑ(t) =
∫ t

0
ω(s−)dW (s) for a standard Brownian motion W and a stochastic volatility process ω

might describe the second order structure slightly more precisely). Inspired by Barndorff-Nielsen

(a) (b) (c) (d)

Figure 4: The autocorrelation function of the (a) increments and of the (b) squared increments of

the estimated Z. (c) Histogram and (d) q-q plot of the generalised hyperbolic distribution fitted

to the increments of the estimated Z.

et al. (2013), we fit distributions from the class of generalised hyperbolic distributions, using the R

package ghyp provided by Lüthi & Breymann (2016). We find that the symmetric normal inverse

Gaussian distribution (with parameters α = 0.236, µ = −0.005, σ = 0.385) fits the data well, as

shown in Figure 4c and Figure 4d.

13



5.3 Short-term component

Finally, we estimate the short-term component. We fill first consider the two scenarios: one with

and one without exogenous variables.

5.3.1 Case 1: No exogenous variables

Let us first consider the case when we do not have any exogenous variables, i.e. when a = 0. Then

we set Ŷ (t) = S(t)− Ẑ(t). Figure 5a and Figure 5b show the resulting process and its autocorrela-

tion function, respectively. The augmented Dickey-Fuller (ADF) test (Trapletti & Hornik (2018))

allows us to reject the unit root hypothesis at significance level 0.01, suggesting Ŷ is stationary.

Inspired by Benth et al. (2014), we start by modelling Ŷ with a (possibly volatility modulated)

(a) (b) (c)

Figure 5: (a) Time series plot and (b) autocorrelation function of the estimated Y . (c) The

ARMA(2,1) model fitted to the estimated Y .

CARMA(2,1) process, a special case of an Lévy semi-stationary processes, see Barndorff-Nielsen

et al. (2018), pp. 31-32. A volatility modulated CARMA(2,1) process takes the form

Y (t) = α1

∫ t

−∞
eλ1(t−u)dM(u) + α2

∫ t

−∞
eλ2(t−u)dM(u), t ∈ R, (5.1)

where dM(u) = σ(u−)dL(u). The parameters are given by α1, α2, λ1, λ2, where λ1, λ2 are negative

(in general, have negative real parts) and are not identical.

Remark 5.2. The CARMA(2,1) process without stochastic volatility (i.e. with σ ≡ 1) clearly

satisfies the assumptions of Proposition 3.1. In the presence of stochastic volatility, in order

for Assumption 3.1 in Proposition 3.1 to hold, we require that λi 6= − δ2 for i = 1, 2. Then

lim
x→∞

∫ x
0
g(y)e−

δ
2 (x−y)dy = lim

x→∞

∑2
i=1 αi

∫ x
0
eλiye−

δ
2 (x−y)dy = lim

x→∞

∑2
i=1

αi
λi+

δ
2

(
eλix − e− δ2x

)
= 0.

As described above, we implement the algorithm from Garćıa et al. (2011) to fit a CARMA(2,1)

model to Ŷ , see Subsection 3.2 in the supplementary material Rowińska et al. (2021) for the

details. First, we use the function arima from the R package stats (R Core Team (2018)) to
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fit an ARMA(2,1) process. We estimate the ARMA(2,1) model with parameters (φ1, φ2, θ) =

(1.413,−0.446,−0.826). In Figure 5c we can see that the estimated discrete model describes

Ŷ accurately, although it cannot capture some extreme values. Next, we map the estimated

ARMA(2,1) parameters into CARMA(2,1) kernel parameters, which gives us the process

(D2 + 0.809D + 0.048)Ŷ (t) = (0.194 +D)DM(t),

where D denotes “differentiation” with respect to t (for details see Section 3 in the supplementary

material Rowińska et al. (2021)). Next, we recover the driving noise M .

As a first modelling approach, we assume that M ≡ Z, i.e. that there is no stochastic volatility

and M is given by a Lévy proceess. Then, as with the increments of Z, we choose the best fit

to the increments ∆M of the driving noise among 11 generalised hyperbolic distributions. From

Table 1 we learn that the best fit is given by the asymmetric Student’s-t distribution. Below we

describe the quality of these estimates, from now on called “true” estimates.

model symmetric lambda alpha.bar mu sigma gamma aic llh

5 t FALSE -2.131 0.000 1.178 7.708 -1.215 12403.016 -6197.508

1 ghyp FALSE -2.055 0.319 1.186 7.654 -1.191 12405.297 -6197.649

10 t TRUE -2.044 0.000 0.293 7.854 0.000 12412.389 -6203.194

3 NIG FALSE -0.500 0.962 1.310 7.606 -1.342 12413.597 -6202.799

6 ghyp TRUE -2.047 0.005 0.293 7.850 0.000 12414.389 -6203.194

8 NIG TRUE -0.500 0.908 0.306 7.724 0.000 12425.469 -6209.734

2 hyp FALSE 1.000 0.770 1.463 7.500 -1.498 12429.264 -6210.632

4 VG FALSE 1.528 0.000 1.444 7.517 -1.479 12438.049 -6215.025

7 hyp TRUE 1.000 0.724 0.286 7.604 0.000 12442.264 -6218.132

9 VG TRUE 1.503 0.000 0.285 7.614 0.000 12451.107 -6222.553

11 gauss TRUE Inf -0.034 7.949 0.000 12741.822 -6368.911

Table 1: Generalised hyperbolic distributions fitted to the recovered increments ∆M of the driving

noise of Ŷ .

Remark 5.3. We note that we assessed the quality of the estimation for the CARMA process driven

by a Lévy process in a simulation study, see Subsection 3.5 in Rowińska et al. (2021).

As a second modelling approach, we now consider the case when dM(t) = σ(t−)dB(t) for a

standard Brownian motion B. Figure 6a and Figure 6b present the autocorrelation functions of the

increments and squared increments of the recovered driving noise process M . Figure 6b indicates

that the squared increments of M are not independent, so the model could benefit from including

a short-memory stochastic volatility in the definition of Y . We notice the highest peak at lag 7,

which could indicate that some traces of weekly behaviour remained after the deseasonalisation.

In a next step, we estimated the stochastic volatility model described in Section 4.4.1. We use

the function nls from the R package stats (R Core Team (2018)), with the first six lags and the
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(a) (b) (c)

Figure 6: (a) The autocorrelation function of the recovered increments of M . (b) The autocorre-

lation function of the squared recovered increments of M . (c) True and estimated autocorrelation

functions of the squared recovered increments of M .

starting value equal zero. It gives us an estimate of δ̂ = 2.24, at significance level 0.01. Figure 6c

presents the empirical and estimated autocorrelation functions.

We conclude that the volatility modulated Brownian motion-driven CARMA process is a valid

alternative to a Lévy-driven CARMA process without stochastic volatility, as indicated by corre-

lated squared increments of the driving process M as well as by the presence of a statistically signif-

icant Ornstein-Uhlenbeck memory parameter. However, since the evidence of stochastic volatility

in our data set is relatively weak, we expect this model to be the preferred choice in data sets with

more pronounced volatility.

5.3.2 Case 2: Exogenous variables based on wind energy production

Now we will include exogenous variables based on wind energy production in the multi-factor

model. To this end, recall that we denote by WD the daily time series of day-ahead forecasts

of daily wind energy production forecast, by LD the daily load forecast, by WPI the daily wind

penetration index computed as the ratio WD/LD and by RD the residual demand computed as

LD −WD, see Figure 2. WPI is a dimensionless quantity with values between zero (no wind

energy production) and one (all energy production coming from wind energy). Because of energy

export, on rare occasions the value of WPI might exceed one. RD corresponds to energy from

sources other than wind, expressed in GWh. In the discussed period (2011–2015), on average 10%

of total energy produced in Austria and Germany came from wind and WPI appears to be very

volatile and oscillates a lot around its mean level.

The wind related variables WD, WPI and RD have clear seasonal patterns which we removed

by fitting suitable seasonality and trend functions via least squares and then subtracting the fitted
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functions from the observations, see Subsection 5.1 in Rowińska et al. (2021) for details. We

start by regressing the recovered short-term factor S(t)− Ẑ(t) = ̂(Y (t) + a>x(t)) on combinations

of these deseasonalised and detrended variables (WD, LD and WPI) and their squares. More

precisely, we choose M = 7 and

x>(t) = (1,WD(t),WPI(t), RD(t),WD
2
(t),WPI

2
(t), RD

2
(t)).

Remark 5.4. Elberg & Hagspiel (2015) suggest a similar approach, with some significant differences.

Firstly, they only consider the residual demand RD, whereas we also include to wind energy

generation WD and the wind penetration index WPI. Secondly, in order to capture the non-linear

relationship between spot prices and the residual demand, they suggest using splines. However,

as shown in Figure 20 in Rowińska et al. (2021), the relationships between deseasonalised wind

variables and spot prices do not seem to require a polynomial level higher than quadratic. Moreover,

linear regression results in a more parsimonious and intuitive model than splines, which is important

for practitioners. Thirdly, instead of varying model coefficients with time like Elberg & Hagspiel

(2015), we deseasonalise the data; again, the resulting model is easier to use in practice.

We are considering nine model specifications, denoted by Model 1–9, which are summarised

in Table 2. First we consider models with one wind-related variable each (models 4, 5 and 6),

to check which one helps explain electricity spot prices. We then extend them by adding square

terms (models 7, 8 and 9) to allow for non-linear relationships. We also look into all wind variables

together (model 3) as well as all wind variables in both linear and squared forms (model 2). These

two models let us compare the significance of variables of interest directly. Since the relationships

between explanatory variables are not linear, we do not expect any collinearity issues. However,

we include these two models to check if the impact of some variables on the prices changes due

to the presence of the others. In practice, we suggest using one of the remaining models to

avoid overfitting. For that reason and to keep the interpretability we do not include any models

with interaction terms between explanatory variables. Finally, we consider a model without any

information about the wind energy production for comparison.

In Table 2, we report the regression coefficients for all nine proposed models, estimated with robust

linear regression and ordinary least squares, respectively. In the remainder of the article we keep

the coefficients estimated with robust regression, as this approach should reduce the bias towards

outliers. The results of both estimation methods differ slightly, but almost only quantitatively:

only WD in the model 3 is significant at level 0.05 when we use the robust regression, while

insignificant with the standard linear regression.

The intercept becomes significant if we include squared variables. We are particularly interested in

model 2, where we include all three variables (WD, WPI and RD) as well as their squares. The

results indicate that all three wind-related variables help explain the short-term factor: WPI and

RD in their basic form, while WD squared. Since WD
2

and RD
2

take large values, the coefficients
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in front of them are very small. We also remark that there is a change in sign for WPI
2

depending

on the estimation method. However, the coefficient is insignificant and WPI
2

takes on average

very small values.

Model number EM intercept WD WPI RD WD
2

WPI
2

RD
2

1 x x x x x x x

2 r -0.849 0.0109 -54.3 0.0267 5.28e-05 -17.3 5.29e-06

2 o -0.854 0.00704 -45.5 0.0303 4.19e-05 17.9 5.93e-06

3 r -0.193 0.0169 -53.9 0.0266 x x x

3 o -0.115 0.0106 -38.6 0.0302 x x x

4 r -0.0913 -0.0441 x x x x x

4 o -0.116 -0.0451 x x x x x

5 r -0.114 x -73.4 x x x x

5 o -0.116 x -74.7 x x x x

6 r -0.191 x x 0.038 x x x

6 o -0.116 x x 0.0395 x x x

7 r -0.806 -0.0514 x x 6.11e-05 x x

7 o -0.912 -0.0542 x x 6.38e-05 x x

8 r -0.777 x -84.1 x x 143 x

8 o -0.839 x -87.7 x x 145 x

9 r -0.652 x x 0.0409 x x 2.31e-05

9 o -0.577 x x 0.0429 x x 2.17e-05

Table 2: Estimated coefficients of a>x(t) = a1 + a2 ·WD + a3 ·WPI + a4 ·RD + a5 ·WD
2

+ a6 ·

WPI
2

+a7 ·RD
2
. If the estimation method (EM) is indicated as “r”, then robust linear regression

(function rlm in the R package MASS) was used, if it is indicated as “o”, then ordinary linear

regression (function lm in the R package stats) was used. With “x” we denote variables absent in

a given model. Coefficients in bold are significant at level 0.05.

After having estimated â, we recover Ŷ (t) = ̂(Y (t) + a>x(t))− â(t)
>

x(t) and estimate a Lévy-

driven CARMA(2,1) process (without stochastic volatility).

5.3.3 Model comparisons

In this section we try to answer two questions: First, does the model fit for electricity spot prices

improve when exogenous variables based on wind energy production are included? Second, which

combination of wind energy variables gives the best results?

Since statistical significance gives us valuable information about the usefulness of different wind-
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related variables in explaining the electricity prices, we do not remove coefficients insignificant at

level 0.05. This choice allows us to interpret the compared models in a meaningful way.

We compare the models in sample, i.e. on the data set the model was fitted to (2011–2015). As

the difference between models lies only in the short-term factor Y (t) + â>x(t), we focus on this

part of the model. Using the parameters estimated in Section 5.3.2, for each model we simulate a

path of Y and then compute Y (t) + â>x(t).

In Figure 7 we present the densities of the simulated and empirical Y (t) + â>x(t). All mod-

els replicate the density relatively well. Additionally, for all models we measure the distances

between the true and simulated densities with four statistical distances provided in the R pack-

age philentropy (Drost (2018)): (1) Euclidean with d =
√

(
∑
|Pi −Qi|2); (2) Manhattan with

d =
∑
|Pi −Qi|; (3) Minkowski with d = (

∑
|Pi −Qi|p)

1
p ; (4) Chebyshev with d = max |Pi −Qi|.

Table 3 presents the models whose densities are the closest and the furthest from the empirical

Y (t)+â>x(t). The model 1 (with no wind information) maximises three out of four distances. This

confirms our intuition, since the model without any wind information should explain smaller parts

of prices than other models. On the other hand, model 9 (with RD linear and squared) minimises

three out of four distances, which would confirm the insights of Elberg & Hagspiel (2015).

measure Euclidean Manhattan Minkowski Chebyshev

min distance 9 9 9 7

max distance 1 1 1 8

Table 3: Best and worst models according to different statistical divergencies (in sample).

Similarly to Cartea et al. (2009), we also compare the true and simulated summary statistics.

Precisely, we simulate 1, 000 paths of Y (t) of the same length as the original data (N = 1, 824)

and then compute Y (t) + â>x(t). We compute the mean (m), variance (v), skewness (s) and

kurtosis (k) of each path, and average them over all paths to obtain Monte Carlo estimates of

summary statistics. In Table 4 we present squared differences between true and Monte Carlo

statistics and the squared differences normalised by the value of the appropriate true statistics.

Additionally, for all models we compute (normalised) Euclidean distances:√
(mtrue −mMC)

2
+ (vtrue − vMC)

2
+ (strue − sMC)

2
+
(

ktrue − kMC
)2

and √√√√(1− mMC

mtrue

)2

+

(
1− vMC

vtrue

)2

+

(
1− sMC

strue

)2

+

(
1− kMC

ktrue

)2

,

i.e. square roots of all columns of Table 4. From Table 5 and Table 6 we learn that models 8 and

1 perform best according to these distances, while models 4 and 5 worst.
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Figure 7: Densities of the true and simulated short-term factors Y (t) + â>x(t) for nine different

model variations: in sample.
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Model Mean (m) Variance (v) Skewness (s) Kurtosis (k)

1 0.00 (0.12) 14.39 (0.00) 0.09 (0.30) 17.85 (0.20)

2 0.09 (6.99) 32.45 (0.01) 0.13 (0.43) 39.41 (0.45)

3 0.02 (1.17) 25.62 (0.01) [0.02] ([0.06]) 35.04 (0.40)

4 [0.00] ( [0.00]) 533.92 (0.11) 0.32 (1.05) 56.07 (0.63)

5 0.47 (34.71) 6.81 (0.00) 0.05 (0.15) 35.99 (0.41)

6 0.25 (18.40) 24.76 (0.01) 0.04 (0.12) 35.69 (0.40)

7 0.00 (0.02) 279.02 (0.06) 0.29 (0.96) 77.63 (0.88)

8 0.01 (0.58) [0.09] ( [0.00]) 0.06 (0.20) [14.95] ( [0.17])

9 0.36 (26.94) 43.09 (0.01) 0.17 (0.57) 40.06 (0.45)

Table 4: Squared differences (squared normalised differences) between true and averaged (over

1000 MC simulations) summary statistics of Y (t) + â>x(t). Square brackets denote the minimum

value for a given statistics, while underlined numbers represent the corresponding maximum value.

Model 1 2 3 4 5 6 7 8 9

Distance 5.69 8.49 7.79 24.30 6.58 7.79 18.89 [3.89] 9.15

Table 5: Euclidean distances between summary statistics of Y (t)+ â>x(t): true and averaged over

1, 000 Monte Carlo simulations. Square brackets denote the minimum value for a given statistics,

while underlined numbers represent the corresponding maximum value.

Model 1 2 3 4 5 6 7 8 9

Distance [0.79] 2.80 1.28 1.34 5.94 4.35 1.38 0.97 5.29

Table 6: Normalised Euclidean distances between summary statistics of Y (t) + â>x(t): true and

averaged over 1, 000 Monte Carlo simulations. Square brackets denote the minimum value for

a given statistics, while underlined numbers represent the corresponding maximum value.
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Additionally, we look at the squared differences between the first ten moments of Y (t)+ â>x(t):

true (µtrue
1 , . . . , µtrue

10 ) and averaged over 1,000 Monte Carlo simulations (µMC
1 , . . . , µMC

10 ). We also

compute the same metric, but normalised by true moments. Thus for i = 1, . . . , 10 we compute(
µtrue
i − µMC

i

)2
and

(
1− µMC

i

µtrue
i

)2

, respectively. For each distance and each number of moments we

define the best model as the model minimising the distance and the worst as the one maximising

the distance. We present the best and worst models in Table 7 (differences between moments) and

Table 8 (sums of differences between moments). Clearly model 4 (WD) has the worst performance.

The best-performing models are 3 (all variables without squares) and 5 (WPI).

Best models Worst models

Moment Non-normalised Normalised Non-normalised Normalised

1 4 4 5 5

2 8 8 4 4

3 3 3 4 4

4 5 5 4 4

5 3 3 4 4

6 5 5 4 4

7 3 3 4 4

8 5 5 4 4

9 5 5 4 4

10 5 5 4 4

Table 7: Best and worst models: models minimising and maximising (normalised) squared distances

between the moments of empirical and simulated data (1,000 simulations). Models are described

in Table 2.

6 Outlook: A model for the exogenous factors

In Section 5.3.3 we showed that wind-related variables (WD, RD and WPI) help modelling

electricity spot prices. So far, we have treated such variables as exogenous. In this section, we will

give an outlook on how these three variables could be modelled.

While wind speed has been widely modelled using the Weibull distribution, see e.g. Weisser

(2003), we will show that the class of generalised hyperbolic distributions is suitable for describing

wind energy production data well.
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Best models Worst models

Highest moment Non-normalised Normalised Non-normalised Normalised

1 4 4 5 5

2 8 4 5 5

3 8 8 4 5

4 5 8 4 4

5 3 3 4 4

6 5 3 4 4

7 3 3 4 4

8 5 3 4 4

9 3 3 4 4

10 5 3 4 4

Table 8: Best and worst models: models minimising and maximising the sum of (normalised)

squared distances between the moments of empirical and simulated data (1,000 simulations), for

different numbers of moments. Models are described in Table 2.

6.1 Brownian semi-stationary processes with gamma kernels

Inspired by Barndorff-Nielsen et al. (2013), we propose to model wind-related variables by a Brow-

nian semi-stationary (BSS) process of the form

X(t) = µ+ c

∫ t

−∞
g(t− s)ω(s)dB(s) + γ

∫ t

−∞
q(t− s)ω2(s)ds, (6.1)

where µ, c and γ are real constants, ω is a stationary volatility process and B denotes a standard

Brownian motion independent of ω.

We will now fully specify the BSS process such that its marginal distribution is given by the

class of generalised hyperbolic distributions, see Section 2 in Rowińska et al. (2021). To this end,

we assume that the kernel functions g and q are of gamma-type. I.e. we denote the gamma density

with parameters ν̄ > 0 and λ̄ > 0 by

ḡ
(
t; ν̄, λ̄

)
=

λ̄ν̄

Γ(ν̄)
tν̄−1e−λ̄t,

and define

g (t) =
λ̄ν̄−

1
2√

Γ(2ν̄ − 1)
tν̄−1 exp

(
− λ̄

2
t

)
,

and

q(t) = g2(t) = ḡ
(
t; 2ν̄ − 1, λ̄

)
.

To ensure the existence of Equation (6.1), we assume that 1
2 < ν̄ < 1. We also let

ω2(t) =

∫ t

−∞
p(t− s)dU(s),
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for

p(t) =
1

λ̄
ḡ
(
t; 2− 2ν̄, λ̄

)
,

and a subordinator U(t), which we will specify later. We observe that

X(t)|ω ∼N
(
µ+ γ

∫ t

−∞
q(t− s)ω2(s)ds, c2

∫ t

−∞
g2(t− s)ω2(s)ds

)
= N

(
µ+ γσ2(t), c2σ2(t)

)
,

with

σ2(t) =

∫ t

−∞
e−λ̄(t−s)dU(s).

We can compute E
[
σ2(0)

]
= E[U(1)]

λ̄
and Var

(
σ2(0)

)
= Var(U(1))

2λ̄
. Barndorff-Nielsen et al. (2013)

showed that if U denotes a subordinator such that σ2 ∼ GIG(λ, χ, ψ), thenX ∼ GH
(
λ, χ, ψ, µ, c2, γ

)
,

so the marginal distribution of X uniquely determines the distribution of σ2. So the above con-

struction leads to a stationary stochastic process which has generalised hyperbolic marginal law.

Based on the explicit formula for the autocovariance of Brownian semi-stationary processes

provided by (Barndorff-Nielsen et al. 2018, p. 24), for s > 0, we get that

Cov (X(t+ s), X(t)) = c2E
[
ω2(0)

] ∫ ∞
0

g(x+ s)g(x)dx

+ γ2

∫ ∞
0

∫ ∞
0

q(x+ s)q(y)Cov
(
ω2(|x− y|), ω2(0)

)
dxdy.

Let us study each term separately. By Barndorff-Nielsen et al. (2013),

E
[
ω2(0)

]
= E [U(1)]

∫ ∞
0

p(x)dx = E [U(1)]

∫ ∞
0

1

λ̄

λ̄2−2ν̄

Γ (2− 2ν̄)
x1−2ν̄e−λ̄xdx =

E [U(1)]

λ̄
= E

[
σ2(0)

]
,

and

Cov
(
ω2(t+ s), ω2(t)

)
= Var (U(1))

∫ ∞
0

p(x+ s)p(x)dx = 2λ̄Var
(
σ2(0)

) ∫ ∞
0

p(x+ s)p(x)dx.

Furthermore,∫ ∞
0

g(x+ s)g(x)dx =

∫ ∞
0

λ̄2ν−1

Γ (2ν̄ − 1)
((x+ s)x)

ν̄−1
e−

λ̄
2 (2x+s)dx =

1

Γ(ν̄ − 1
2 )

2
3
2−ν̄K̄ν̄− 1

2

(
λ̄

2
s

)
,

where K̄α (x) = xαKα (x) and Kν (x) denotes the modified Bessel function of the third kind.

Finally, ∫ ∞
0

p(x+ s)p(x)dx =

∫ ∞
0

(
1

λ̄

λ̄2−2ν̄

Γ (2− 2ν̄)

)2

((x+ s)x)
1−2ν̄

e−λ̄(2x+s)dx

=
1

λ̄3

(
1

Γ (2− 2ν̄)

)2
Γ (3− 2ν̄)

Γ
(

1
2

) 22ν̄− 5
2 K̄ν− 1

2

(
λ̄s
)
.

Therefore

Cov (X(t+ s), X(t)) = P +Q,

with

P = c2E
[
σ2(0)

] 2
3
2−ν̄

Γ(ν̄ − 1
2 )
K̄ν̄− 1

2

(
λ̄

2
s

)
,
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and

Q = γ22λ̄Var
(
σ2(0)

) 1

λ̄3

(
1

Γ (2− 2ν̄)

)2
Γ (3− 2ν̄)

Γ
(

1
2

) 22ν̄− 5
2

λ̄4ν̄−2

Γ (2ν̄ − 1)
2∫ ∞

0

∫ ∞
0

(x+ s)2ν̄−2e−λ̄(x+s)y2ν̄−2e−λ̄yK̄ν̄− 1
2

(
λ̄|x− y|

)
dxdy

= cQ

∫ ∞
0

∫ ∞
0

(x+ s)2ν̄−2e−λ̄(x+s)y2ν̄−2e−λ̄yK̄ν̄− 1
2

(
λ̄|x− y|

)
dxdy,

where

cQ = γ2λ̄4ν̄−4Var
(
σ2(0)

)
22ν̄− 3

2
Γ (3− 2ν̄)

Γ
(

1
2

) (
1

Γ (2− 2ν̄) Γ (2ν̄ − 1)

)2

.

Similarly, we compute the variance of X:

Var (X(0)) = P0 +Q0,

with

P0 = c2E
[
σ2(0)

]
,

and

Q0 = cQ

∫ ∞
0

∫ ∞
0

(xy)2ν̄−2e−λ̄(x+y)K̄ν̄− 1
2

(
λ̄|x− y|

)
dxdy.

Now we are ready to estimate the parameters λ̄ and ν̄ of the gamma kernel by matching the first

lags of the empirical and theoretical autocorrelation functions, with the latter equal to

cor (X(t), X(t+ s)) =
P +Q

P0 +Q0
.

6.2 Estimation procedure

We start the estimation procedure by using the function stepAIC.ghyp from the R package ghyp

(Lüthi & Breymann (2016)) to fit 11 generalised hyperbolic distributions to X, where X denotes

the wind variable of interest (WD, RD or WPI). Here we find the distribution which minimises the

Akaike information criterion (AIC). Finally, we convert the parameters of the best fitting marginal

generalised hyperbolic distribution, see Subsection 2.3 in the supplementary material Rowińska

et al. (2021), to the parametrisation
(
λ, χ, ψ, µ, c =

√
Σ, γ

)
.

After fitting the marginal distribution, we proceed to estimate kernel parameters ν̄ and λ̄ by match-

ing first lags of the empirical and theoretical autocorrelation functions of X(t). Barndorff-Nielsen

et al. (2013) suggest using the first
⌊√

N
⌋

lags, where N denotes the number of observations.

Therefore we apply the function optim from the R package stats (R Core Team (2018)) to min-

imise the squared difference between the first
⌊√

1824
⌋

= 42 lags of the empirical and theoretical

autocorrelation functions. We set the initial parameters to ν̄ = 0.99 and λ̄ = 0.01.

Remark 6.1. The optimisation procedure is not sensitive to reasonable starting values. For exam-

ple, setting the initial values to ν̄ = 0.75 and λ̄ = 0.20 results in the same optimal parameters up
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to the third decimal place. On the other hand, the number of lags used in the estimation procedure

influences the results. In case of the residual demand, the estimation procedure performed on six

lags, with the original initial values, resulted in ν̄ = 0.87 and λ̄ = 0.26 instead of ν̄ = 0.82 and

λ̄ = 0.20. This should not surprise us considering the changing behaviour of the autocorrelation

function. Therefore the choice of the number of lags must correspond to the application of interest.

6.3 Numerical results

In this subsection we summarise numerical results of the estimation procedure from Subsection 6.2

run on three wind-related variables. Detailed tables and diagnostic plots are available in the

supplementary material Section 6 of Rowińska et al. (2021). Since we have constructed a BSS

process with marginal GH law, we can use the Akaike Information criteria to find the best sub-

class within the GH class for our three wind-related time series.

6.3.1 Wind energy production

According to the Akaike information criterion (AIC), the asymmetric normal inverse Gaussian

provides the best fit to the marginal distribution of the wind energy production data (out of 11

considered subclasses of the generalised hyperbolic distribution). Therefore we assume that the

marginal distribution of WD is asymmetric hyperbolic with(
λ, χ, ψ, µ, c =

√
Σ, γ

)
= (−0.50, 2.21, 2.21,−121.45, 8.79, 121.39) .

The value of the parameter γ is positive, which reflects the positive skewness of WD.

For the kernel we obtain the parameter estimates ν̄ = 0.99 and λ̄ = 0.57, which suggests that

the BSS process considered here is not a semimartingale, see Barndorff-Nielsen et al. (2013).

6.3.2 Residual demand

The marginal distribution of RD is best described the asymmetric hyperbolic distribution with(
λ, χ, ψ, µ, c =

√
Σ, γ

)
= (1.00, 0.26, 2.53, 96.44, 11.12,−96.43) .

The kernel parameters are estimated as ν̄ = 0.82 and λ̄ = 0.20, so again we are not dealing

with a semimartingale.

6.3.3 Wind penetration index

Similarly to WD, the deseasonalised wind penetration index is best described by the asymmetric

normal inverse Gaussian distribution with(
λ, χ, ψ, µ, c =

√
Σ, γ

)
= (−0.50, 1.71, 1.71,−0.07, 0.22, 0.07) .
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For the kernel we obtain the parameter estimates ν̄ = 0.88 and λ̄ = 0.39, so once again we are

outside the semimartingale setting.

7 Summary and outlook

In this article we introduced a four-factor arithmetic model of electricity spot prices, consisting

of a deterministic seasonality and trend function, both a short- and and a long-term stochastic

component and exogenous variables. We modelled the long-term component as a Lévy process

with increments belonging to the class of generalised hyperbolic distributions, and the short-term

component as a Lévy semi-stationary processes. We included (combinations of) the wind energy

production forecast, the residual demand and the wind penetration index as exogenous variables.

We showed how futures prices can be derived for our spot price model and carried out an empirical

study of electricity prices from the German and Austrian electricity market. In our empirical study,

we worked with the discretised counter-parts of our continuous-time models. We refer to Phillips

(1974), Sargan (1974), Hamerle et al. (1993) for details on how discretely observed exogenous

variables can be incorporated in a feasible way in continuous-time models.

We showed that even the basic model (without wind energy production data or stochastic

volatility) already provides a good fit to the data. We compared this benchmark model with

alternatives including wind energy generation. Each suggested model has different benefits and

drawbacks, so the choice should depend on the application of interest. For example, the model in-

cluding residual demand in the linear and squared form (model 9) minimises the distances between

true and fitted densities according to three out of four tested metrics. On the other hand, the

model without the information about wind energy production (model 1) maximises the same dis-

tances. If the quantity of interest is the distances between empirical and fitted summary statistics,

we suggest using the model with wind penetration index in the linear and squared form (model 8).

If one is interested in the goodness of fit of higher moments, the model with wind penetration

index (model 5) or the model with all wind variables (model 3) would both be good options.

Moreover, we rounded off this article by modelling wind-related variables – wind energy pro-

duction, wind penetration index and residual demand – with Brownian semi-stationary processes

with gamma kernels. The empirical results showed that this type of model suits our application

very well. Models of wind-related variables enable practitioners to apply models of electricity prices

without relying on additional data.

Our studies indicate that the inclusion of wind energy production data in electricity pricing

models is a promising area of research. We expect this effect to grow as wind energy constitutes

an increasingly bigger part of total energy production in many countries – therefore its impact

on the prices will increase. Furthermore, we suggest repeating similar experiments with other

27



renewables such as solar, possibly making use of already existing models of solar power generation

(Lingohr & Müller (2019) or Veraart & Zdanowicz (2015)). Since the participation of solar power

in the total energy generation in Austria and Germany is still smaller than of the wind power, its

impact might be smaller. However, the inclusion of other renewables would give us the full picture

and help explain the prices even better due to their priority in the electricity market (merit-order

effect).

Our work on modelling wind-related variables complements recent work by Benth & Pircalabu

(2018), who propose a non-Gaussian Ornstein–Uhlenbeck model for pricing wind power futures and

by Benth et al. (2021) who develop a multivariate continuous-time model of wind indices which

can be used for hedging of wind risk.

Going forward, it would be interesting to further develop joint models for electricity prices

and renewable sources of electricity to complement models using exogenous factors. Here the key

challenge lies in a suitable concept for modelling the dependence, and various ideas from classical

vector-valued time series models, regime-switching models to copula-based approaches would be

worth exploring further.

8 Appendix: Proofs of the theoretical results

To prove Proposition 3.1 we will use the following lemma.

Lemma 8.1. Suppose that a for stochastic processes H = (H(t))t≥0, and a random variable H̃,

with H, H̃ ∈ L2(Q) we have that H(T )
L2(Q)−→ H∗ as T → ∞. Then, for a fixed τ > 0, the

L2(Q)−limit of 1
τ

∫ T1+τ

T1
H(T )dT also exists and equals H̃.

Proof of Lemma 8.1. Our assumption says that lim
T→∞

EQ

[
(H(T )− H̃)2

]
= 0, so that for all ε > 0

there exists T̃ such that for all T > T̃ we have EQ

[(
H(T )− H̃

)2
]
< ε. Then, for a fixed τ > 0,

and for T1 > T̃ ,

EQ

(1

τ

∫ T1+τ

T1

H(T )dT −H∗
)2
 = EQ

(1

τ

∫ T1+τ

T1

(H(T )−H∗)dT

)2


≤ 1

τ

∫ T1+τ

T1

EQ(H(T )−H∗)2dT < ε,

where we used the Cauchy-Schwartz inequality and Fubini’s theorem.

Proof of Proposition 3.1. First we will show that lim
T1→∞

1
τ

∫ T1+τ

T1

∫ t
−∞ g(T − s)σ(s−) dL(s) dT = 0

in the L2(Q)−sense. As all considered functions are measurable and non-negative, we can use

Tonelli’s theorem ((Tao 2011, p. 171)) to compute

lim
T→∞

EQ

[(∫ t

−∞
g(T − s)σ(s−)dL(s)

)2
]

= EQ
[
L(1)2

]
EQ
[
σ(0)2

]
lim
T→∞

∫ t

−∞
g(T − s)2ds
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= EQ
[
L(1)2

]
EQ
[
σ(0)2

]
lim
T→∞

∫ ∞
T−t

g2(u)dy = 0,

which by Lemma 8.1 proves this statement.

Note that EQ(Y (0)) = EQ [L(1)]C, where C := EQ [σ(0)]
∫∞

0
g(y)dy. Now we need to prove

that lim
T1→∞

∫ T1+τ

T1

∫ T
t
g(T − s)EQ [σ(s)|F(t)] ds dT = C in the L2(Q)−sense. By Lemma 8.1 it is

enough to prove that lim
T→∞

EQ

[(∫ T
t
g(T − s)EQ [σ(s)|F(t)] ds− C

)2
]

= 0. The case when σ is a

constant is trivial, so we shall focus on the case when Assumption 3.1 holds.

We observe that

EQ

(∫ T

t

g(T − s)EQ [σ(s)|F(t)] ds− C

)2


= EQ

(∫ T

t

g(T − s)EQ [σ(s)|F(t)] ds

)2
− 2CEQ

[∫ T

t

g(T − s)EQ [σ(s)|F(t)] ds

]
+ C2. (8.1)

Using Jensen’s inequality and Tonelli’s theorem, we obtain the following lower bound

lim
T→∞

EQ

(∫ T

t

g(T − s)EQ [σ(s)|F(t)] ds

)2
 ≥ lim

T→∞

(
EQ

[∫ T

t

g(T − s)EQ [σ(s)|F(t)] ds

])2

= lim
T→∞

(∫ T

t

g(T − s)EQ [EQ [σ(s)|F(t)]] ds

)2

=

(
EQ [σ(0)] lim

T→∞

∫ T−t

0

g(y)dy

)2

= C2.

(8.2)

On the other hand, almost surely, we have

EQ [σ(s)|F(t)] = EQ

[√∫ s

−∞
e−δ(s−x)dV (x)

∣∣∣∣F(t)

]

≤ EQ

[√∫ t

−∞
e−δ(s−x)dV (x) +

√∫ s

t

e−δ(s−x)dV (x)

∣∣∣∣F(t)

]

=

√∫ t

−∞
e−δ(s−x)dV (x) + EQ

[√∫ s

t

e−δ(s−x)dV (x)

]

= σ(t)e−
δ
2 (s−t) + EQ

[√∫ s

t

e−δ(s−x)dV (x)

]
,

(8.3)

where to non-negative processes we apply the inequality
√
a+ b ≤

√
a +
√
b as well as the iden-

tity
∫ t
−∞ e−δ(s−x)dV (x) = e−δ(s−t)

∫ t
−∞ e−δ(t−x)dV (x) = σ(t)2e−δ(s−t). We remark that σ(s) is

stationary in mean, i.e. EQ [σ(s)] = EQ [σ(0)] for all s ∈ R. Furthermore,

EQ

[√∫ s

t

e−δ(s−x)dV (x)

]
= EQ

√∫ s−t

0

e−δudV (u)


≤ EQ

[√∫ ∞
0

e−δudV (u)

]
= EQ [σ(0)] ,

(8.4)
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as we integrate the non-negative exponential function w.r.t. a subordinator. Combining Equations

(8.3) and (8.4) leads to EQ [σ(s)|F(t)] ≤ σ(t)e−
δ
2 (s−t) + EQ [σ(0)]. Therefore

EQ [EQ [σ(s)|F(t)]EQ [σ(u)|F(t)]]

≤ EQ
[
σ(0)2

]
e−

δ
2 (s−t)e−

δ
2 (u−t) + EQ [σ(0)]

2
(
e−

δ
2 (s−t) + e−

δ
2 (u−t) + 1

)
. (8.5)

This implies that

lim
T→∞

EQ

(∫ T

t

g(T − s)EQ [σ(s)|F(t)] ds

)2


= lim
T→∞

∫ T

t

∫ T

t

g(T − s)g(T − u)EQ [EQ [σ(s)|F(t)]EQ [σ(u)|F(t)]] dsdu

≤ EQ
[
σ(0)2

](
lim
T→∞

∫ T

t

g(T − s)e− δ2 (s−t)ds

)2

+ 2EQ [σ(0)]
2

lim
T→∞

(∫ T

t

g(T − s)ds
∫ T

t

g(T − s)e− δ2 (s−t)ds

)

+ EQ [σ(0)]
2

(
lim
T→∞

∫ T

t

g(T − s)ds

)2

(8.6)

= EQ
[
σ(0)2

](
lim
T→∞

e−
δ
2 (T−t)

∫ T−t

0

g(y)e
δ
2ydy

)2

+ 2EQ [σ(0)]
2

lim
T→∞

∫ T−t

0

g(y)dy lim
T→∞

(
e−

δ
2 (T−t)

∫ T−t

0

g(y)e
δ
2ydy

)

+ EQ [σ(0)]
2

(
lim
T→∞

∫ T−t

0

g(y)dy

)2

= C2,

where we used Assumption 3.1. From Equations (8.2) and (8.6) we deduce that

lim
T→∞

EQ

[(∫ T
t
g(T − s)EQ [σ(s)|F(t)] ds

)2
]

= C2. Also, by Tonelli’s theorem

lim
T→∞

EQ

[∫ T
t
g(T − s)EQ [σ(s)|F(t)] ds

]
= EQ [σ(0)] lim

T→∞

∫ T
t
g(T − s)ds = C. Hence, taking the

limit in Equation 8.1 together with Lemma 8.1 implies that lim
T1,→∞

∫ T1+τ

T1

∫ T
t
g(T−s)EQ [σ(s)|F(t)] ds dT =

C in the L2(Q)−sense.
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