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Abstract 45 

 46 

The global terrestrial carbon sink is increasing1–3, offsetting roughly a third of anthropogenic 47 

CO2 released into the atmosphere each decade1, and thus serving to slow the growth rate of 48 

atmospheric CO24. It has been suggested that a CO2-induced long-term increase in global 49 

photosynthesis, a process known as CO2 fertilization, is responsible for a large proportion of the 50 

current terrestrial carbon sink4–7. The estimated magnitude of the historic increase in 51 

photosynthesis as result of rising atmospheric CO2 concentrations, however, differs by an order 52 

of magnitude between long-term proxies and terrestrial biosphere models7–13. Here, we quantify 53 

the historic effect of CO2 on global photosynthesis, by identifying an emergent constraint14–16 54 

that combines terrestrial biosphere models with global carbon budget estimates. Our analysis 55 

suggests that CO2 fertilization increased global annual photosynthesis by 11.85±1.4%, or 56 

13.98±1.63 Pg C (mean ± 95% confidence interval) between 1981 and 2020. Our results help 57 

resolve conflicting estimates of the historic sensitivity of global photosynthesis to CO2, and 58 

highlight the large impact anthropogenic emissions have had on ecosystems worldwide.  59 

 60 

 61 

 62 

  63 



Main 64 

 65 

Globally, photosynthesis results in the single largest flux of carbon dioxide (CO2) between the 66 

atmosphere and the biosphere17,18. Long-term changes in photosynthesis, for example in response 67 

to rising atmospheric CO2, could therefore provide an important feedback to climate change7. 68 

Global photosynthesis cannot be observed directly, however, and must instead be either 69 

predicted by terrestrial biosphere models (TBMs) or inferred from proxies18. The multiple long-70 

term proxies from which changes in global photosynthesis are derived include satellite-based 71 

estimates8,9, ice-core records of carbonyl sulfide13, and herbarium samples of deuterium 72 

isotopomers12, along with information gleaned from the seasonal cycle of atmospheric CO211. 73 

Despite the importance of photosynthesis, however, and the multiple proxies that exist, there is 74 

no consensus regarding the expected historic global change due to rising CO27–13.  75 

 76 

Satellite-based estimates of global photosynthesis are derived from observations of surface 77 

reflectance, and are therefore often regarded as a benchmark to which TBMs should be 78 

compared10. Such comparisons suggest that TBMs overestimate the sensitivity of global 79 

photosynthesis to CO29,10 (but see ref.19). However, satellite-TBM comparisons are mired by the 80 

fact that most satellite-based estimates do not incorporate the universally observed direct effect 81 

of increasing CO2 on the light use efficiency of leaves of C3 vegetation20, which is not 82 

observable from space21. In contrast, observation-based proxies, based on ice-core records of 83 

carbonyl sulfide (COS)13,22 and herbarium and field-based deuterium isotopomers12, suggest that 84 

TBMs may underestimate the sensitivity of global photosynthesis to CO2. TBMs themselves 85 

exhibit a large range of sensitivities of global photosynthesis to CO211,23,24, though few 86 

demonstrate sensitivities as low as the average satellite-inferred values9,21, or as high as those 87 

derived from the COS or deuterium proxies12,13,24. The spread in estimates of the sensitivity of 88 

global photosynthesis to CO2, and the lack of a global constraint, constitutes a large source of 89 

uncertainty in future projections of the Earth system25, and hinders attribution of the various 90 

processes responsible for long-term changes in the global carbon cycle. 91 

 92 

Here, we combine terrestrial biosphere models and estimates of the terrestrial carbon cycle to 93 

constrain the historic response of photosynthesis to rising CO2, and use the constraint in 94 



combination with biophysical theory to assess and reconcile differences in previous reports. Our 95 

analysis uses a variance normalization approach (see methods), which quantifies underlying 96 

relationships in multi-variate space, to identify an emergent multi-model relationship14–16 97 

between the modeled sensitivity of photosynthesis to CO2 and the terrestrial carbon sink from an 98 

ensemble of terrestrial biosphere models (TBMs). When combined with independent estimates of 99 

the global terrestrial carbon sink, this relationship provides an emergent constraint14–16, which we 100 

use to derive an observationally-inferred estimate of the historic effect of increasing CO2 on 101 

global gross primary photosynthesis (GPP). Combined with biophysical theory, the inferred 102 

constraint helps to reconcile the large apparent difference between satellite- and TBM-inferred 103 

sensitivities of GPP to CO2, and to examine previously published estimates from global GPP 104 

proxies. 105 

 106 
To identify the emergent multi-model relationship14–16 between the modeled terrestrial carbon 107 

sink and the sensitivity of photosynthesis to CO2, we use output from an ensemble of TBMs from 108 

the Trends in Net Land Atmosphere Carbon Exchanges project (TRENDY, Extended Data Table 109 

13). We first described the magnitude of the mean TBM modeled global terrestrial residual 110 

carbon sink (SLAND) over the period 1982-2012 as a function of the sensitivity of both GPP and 111 

total global ecosystem respiration (Reco) to CO2 (𝛽!"##, 𝛽!!$%&, Eq. 1), and an interaction term 112 

between 𝛽!!$%&	and the magnitude of modeled global ecosystem carbon losses that are not 113 

respired (i.e., the non-respired flux, γ). Note that we focus on SLAND in order to exclude land 114 

carbon sinks or sources directly resulting from land use and land-use change (e.g., regrowth of 115 

vegetation, deforestation). A positive univariate relationship between 𝛽!"##	and SLAND explained 116 

36% of the between-model variability in TBM estimates of mean annual SLAND (p = 0.03; 117 

Extended Data Fig. 1). A linear model that also includes 𝛽!!$%& and γ, however, explained 94% 118 

of the between-model variability in TBM estimates of mean annual SLAND (p <0.01, Extended 119 

Data Fig. 2, Extended Data Table 2). TBM sensitivities of photosynthesis and respiration to CO2 120 

thus directly relate to the magnitude of the modeled terrestrial sink on a multi-decadal scale (as a 121 

stronger CO2 fertilization effect leads to a larger modeled sink), suggesting a comparatively 122 

smaller influence of non-CO2 changes (e.g., climate, N deposition) on SLAND at the global and 123 

multi-decadal scale over the period6,26. The linear model (Extended Data Table 2) can be used to 124 

remove variance in the 𝛽!"##~ SLAND relationship (Extended Data Fig. 1) that is associated with 125 



other factors, allowing us to focus on the underlying partial relationship between 𝛽!"##~ SLAND. 126 

The resulting emergent relationship14–16 therefore provides an opportunity to constrain the wide 127 

range in estimates of the sensitivity of GPP to CO2 using the magnitude of SLAND inferred from 128 

the global carbon budget1.  129 

 130 

We use the identified relationship between 𝛽!"##, 𝛽!!$%& and γ with SLAND (Extended Data Fig. 2) 131 

to examine the underlying relationship between 𝛽!"##	and SLAND. First, we used the linear model 132 

(Extended Data Table 2) to remove variance in the univariate 𝛽!"##~ SLAND relationship 133 

contributed by 𝛽!!$%& and γ. Following this variance normalization, which adjusts the TBM 134 

modeled SLAND to account for variance introduced by modeled 𝛽!!$%& and γ (see Methods), SLAND 135 

estimated from the Global Carbon Project (v627) provides an emergent constraint on 𝛽!"## of 136 

0.54±0.03 (mean, standard dev.; Fig. 1a). The constrained CO2 sensitivity of photosynthesis is 137 

33.58% lower than the maximum TBM ensemble member, and 7.63% lower than the TBM 138 

ensemble mean. The associated uncertainty of the estimate is reduced by 73.90% compared to 139 

the unconstrained TBM model distribution (Fig. 1b). Considering present atmospheric CO2 140 

concentrations (416 ppm, 2020 A.D.), the constrained 𝛽!"## translates to an increase of 141 

11.85±0.71% in annual GPP between 1982 and 2020, equivalent to a 13.98±0.83 Pg C increase 142 

from 1982 to 2020 (using as reference the mean 1982 model GPP of 118 Pg C yr-1 from 143 

TRENDY-v6 S3). Note that although the magnitude of SLAND is higher for more recent than 144 

earlier decades, the constrained 𝛽!"## is robust to such changes and relatively independent of the 145 

period examined (Extended Data Fig. 4).  146 

 147 

Although the linear model does not provide a direct constraint on 𝛽!!$%&, due to the interaction 148 

term with γ, there is a strong correlation (r2 = 0.96, Fig. 1c) between 𝛽!"## and 𝛽!!$%&, as 149 

photosynthesis and respiration are highly coupled across ecosystems. This coupling can therefore 150 

provide an indirect constraint on 𝛽!!$%& (Fig. 1c). The resulting joint probability distribution of 151 

𝛽!!$%& of 0.49±0.04 is 39.44% lower than the maximum TBM ensemble member and 4.57% 152 

lower than the ensemble mean. The associated uncertainty of the estimate represents a 68.35% 153 

reduction compared to the unconstrained model distribution (Fig. 1d). Note that the resulting 154 



constraint on 𝛽!!$%& is subject to higher uncertainty due to the propagation of the uncertainty of 155 

the constrained 𝛽!"## through to the joint probability distribution of 𝛽!!$%& (Fig. 1d).      156 

 157 
The identified emergent constraint provides a point of comparison for satellite-based estimates of 158 

the sensitivity of global photosynthesis to CO2, the analysis of which has led to reports that 159 

TBMs greatly overestimate the effect of increasing CO2 on global photosynthesis9,10. When 160 

examined as a function of CO2, satellite-based estimates of 𝛽!"## derived from the Moderate 161 

Resolution Imaging Spectroradiometer (MODIS) GPP algorithm (MA)28 and a widely used 162 

machine learning upscaling approach (ML)29, are 68.95% and 69.82% lower than that inferred 163 

from the emergent constraint, respectively (Fig. 2). These commonly used GPP estimates 164 

however only account for the indirect effect of increasing CO2 on the fraction of absorbed 165 

photosynthetically active radiation (fAPAR)21.  166 

 167 

We reconciled the apparent difference between the emergent constraint and satellite-based 168 

estimates of the sensitivity of GPP to CO2 (Fig. 2) by modifying the satellite-based estimates to 169 

account for the direct effect of increasing CO2 on C3 light use efficiency (LUE). This direct 170 

effect reflects the competition between CO2 and O2 at the active sites of the RuBisCO enzyme, 171 

and the increasing competitiveness of CO2 as atmospheric CO2 rises (see methods). The direct 172 

effect of CO2-induced increases in LUE was roughly twice as large as the indirect effect of 173 

increases in fAPAR (Fig. 2a,b). The long-term sensitivity of the remote sensing-based estimates 174 

of GPP modified to account for both the direct (𝛽!'()) and indirect (𝛽!
*+,+-) effect of increasing 175 

CO2 (𝛽!"##) was 0.50±0.09 and 0.46±0.13 for the ML and MA approaches, respectively, (Fig. 176 

2b), which more closely approximated that of the TBM ensemble mean (𝛽!"##= 0.59±0.15, mean, 177 

std.) (Fig. 2b). The modified RS-based methods predict a 7.27±0.69% (ML) and 6.72±0.91% 178 

(MODIS) increase in global annual GPP for a 14.49% increase in atmospheric CO2 between 179 

1982 and 2012, similar to that predicted by the constrained 𝛽!"## (7.8±0.41% mean, std.). 180 

 181 

The identified emergent constraint also provides a point of comparison for other reported 182 

estimates of the sensitivity of global photosynthesis to CO2. A long-term COS proxy has been 183 

proposed13, which simulates photosynthetic change based on a mass balance of global COS 184 

sources and sinks from 1900 to 2013, and suggests an increase in photosynthesis equivalent to an 185 



effective 𝛽!"## of 0.94 (Extended Data Table 3). This is comparable to the highest sensitivity of 186 

the TBM models used here24. The COS estimate however integrates over a longer time-period, 187 

and therefore potentially captures changes in the land surface unrelated to CO2 such as 188 

reforestation and the agricultural green revolution30 and is thus not directly comparable to the 189 

emergent constraint and updated remote sensing estimates presented here. Another proxy, based 190 

on deuterium isotopomers gathered from herbarium specimens and field trials12, suggests a 191 

historic change equivalent to a 𝛽!"##of 1.03. Although higher than that derived from COS, the 192 

deuterium isotopomer estimate reflects the effect of increasing CO2 on photosynthesis in the 193 

absence of light limitation, and is thus expected to be much higher than the canopy integrated 194 

sensitivity. The emergent constraint identified here and the updated satellite methods suggest that 195 

such larger implied sensitivities are overestimates, as they would necessitate a larger residual 196 

terrestrial sink (Fig. 1a) than current evidence supports1. 197 

 198 

The closer agreement between the updated remote sensing approaches and the TBMs (Fig. 2) 199 

allows for their response to CO2 to be probed more deeply. The sensitivity of C3 photosynthesis 200 

to CO2 is a strong function of temperature31 (Fig. 3a; Eq. 2-7), due to the fact that the 201 

suppression of oxygenation by ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) 202 

with increasing CO2 is greater at higher temperatures. Reduced RuBisCo oxygenation reduces 203 

photorespiration at high temperatures, as represented by the temperature dependence of the 204 

photosynthetic CO2 compensation point (Γ*, Eq. 3). The resulting latitudinal gradient is 205 

reproduced by both the TBMs examined (Fig. 3b) and the updated remote sensing approaches 206 

(Fig. 3c,d,e). The results suggest that the influence of CO2 on photosynthesis at high latitudes is 207 

limited due to low temperatures. Estimates of the long-term change in GPP from the updated 208 

remote sensing approaches show large changes particularly in areas of intensive agriculture such 209 

as the midwestern US corn belt, central and northern Europe, and India (Fig. 3c, d). Compared to 210 

the remote sensing approaches (Fig. 3d), the TBMs predict smaller increases in arid mid- and 211 

low-latitude regions, particularly in Australia and South Africa, but larger increases in tropical 212 

forests (Fig. 3d). The lower TBM sensitivity, in particular of shrublands (Fig. 3f), is potentially 213 

due to poorly represented TBM processes such as the positive relationship between CO2 and 214 

woody shrub expansion32. The relatively higher TBM sensitivity regions, particularly tropical 215 

forests (Extended Data Fig. 5), may be due to insufficient TBM representation of nutrient 216 



constraints33, or the saturation of remote sensing vegetation indices at high leaf area34, reflecting 217 

large uncertainty regarding the response of tropical forest photosynthesis to CO235.  218 

 219 

The magnitude of the constrained TBM and updated satellite 𝛽!"## suggests that the global 220 

photosynthetic response to CO2 is consistent with the response of the light-limited photosynthetic 221 

rate which has also been suggested by observations of photosynthesis and biomass changes at the 222 

ecosystem scale36–38, theoretical models39,40, and by model results showing that electron 223 

transport-limited leaves are responsible for the majority of global carbon assimilated through 224 

photosynthesis41. That said, there are multiple processes inadequately represented in both TBMs 225 

and the satellite approaches that could lead to biases in the derived 𝛽!"##. For example, models 226 

have been shown to poorly reproduce changes in the seasonal cycle of atmospheric CO242, and 227 

demonstrate a range of responses when compared to Free Air CO2 Enrichment observations43. 228 

Nutrient limitation, woody encroachment, soil moisture feedbacks, disturbances and leaf area 229 

dynamics are all poorly represented in TBMs43,44, while remote sensing-based estimates of GPP 230 

are known to have biased responses to drought45. Such issues and differences in process 231 

representations lead to the spread in models. However, this spread is essential for developing an 232 

emergent constraint16.  233 

 234 

A strong emergent relationship between the unknown and the observable (in this case 235 

photosynthesis and the recent land carbon sink) would not be apparent if ignored and varying 236 

model factors affect the relationship. It is important to highlight, however, as with any 237 

application of the emergent constraint technique, multiple factors could lead to biases and 238 

undermine the robustness of the derived constraint. Of primary concern is the potential for 239 

emergent constraints to rely on spurious cross-model correlations that are not based on a clear 240 

physical relationship46. The constraint we identify is based on the known relationship between 241 

CO2 and the land-sink7, and tests suggest it is temporally robust (Extended Data Fig. 4). An 242 

additional source of uncertainty relates to the degree of structural similarity between models and 243 

the potential for systematic cross-model biases. For example, if all models in the ensemble had 244 

the same missing or biased process representation, which led to systematic bias in the modeled 245 

relationship between the sensitivity of photosynthesis to CO2 and the land sink across models, 246 

that could bias the emergent constraint reported here. Systematic cross-model biases with shared 247 



structural similarity could also lead to an underestimation of the uncertainty associated with the 248 

values derived from the emergent constraint46,47. The models we examine represent the state-of-249 

the-science for land surface modeling, and have substantial diversity of process representations 250 

and responses to forcings48, even for well-studied processes such as photosynthesis. Our analysis 251 

is also designed to reduce the influence of structural diversity on the results through variance 252 

normalization. That said, future implementations of new process representations or model 253 

structures may lead to updated inference on the response of photosynthesis to CO2.   254 

 255 

Global photosynthesis is the largest flux of carbon dioxide in the global carbon cycle, and small 256 

changes over time can lead to large changes in the net carbon sink. The resulting feedback from 257 

the effect of increasing CO2 on photosynthesis (the carbon-concentration feedback) has been 258 

estimated to be over four times larger, and more uncertain, than the direct carbon-climate 259 

feedback49. The large differences between estimates of historic changes in GPP8,9,11–13,22 is 260 

therefore disconcerting, and could potentially lead to incorrect inference regarding biases in 261 

current terrestrial biosphere models9,21, and long-term changes in related components of the 262 

global carbon cycle such as soil respiration10,50. The emergent constraint we identify bounds the 263 

plausible range of the historic effect of CO2 on global photosynthesis to a 𝛽!"## of 0.54±0.03 264 

(mean, standard dev.; Fig. 1a), and helps reconcile differences in previous estimates. The results 265 

also show that widely used remote sensing-based estimates of global photosynthesis need to 266 

incorporate the effect of increasing CO2 on photosynthetic light use efficiency, and provide a 267 

globally applicable approach that is consistent with the emergent constraint. Together, our results 268 

suggest that increases in atmospheric CO2 have led to a large increase in global photosynthesis 269 

since 1982, representing a carbon-concentration feedback that is underestimated by standard 270 

satellite-based methods9, but overestimated by terrestrial biosphere models and other proxies12,13.   271 
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Figure Legends 411 
 412 
Figure 1 | A constraint on the sensitivity of global photosynthesis to CO2. a, the relationship between 413 
the modelled sensitivity of global primary photosynthesis (GPP) to CO2 (𝛽!"##, TRENDY experiment S1: 414 
dynamic CO2 only) and the modelled normalized terrestrial carbon sink (PgC y-1, TRENDY experiment 415 
S3: dynamic CO2, climate and land-use). Individual TRENDY model (A-N) details are listed in Extended 416 
Table 1. The vertical dashed line and gray shading show the mean and standard error of the decadal 417 
residual terrestrial carbon sink between 1982 and 2012 as estimated by the Global Carbon Project 27. The 418 
red line and shaded area show the best linear fit across models, and the associated 95% prediction 419 
intervals. The horizontal dashed line shows the implied constraint on the sensitivity of GPP to CO2. b, 420 
The unconstrained probability density function (PDF) distribution of 𝛽!"## across models (black line, gray 421 
bars), which assumes that all of the TRENDY models are equally likely to be correct and that they come 422 
from a Gaussian distribution. The orange area represents the conditional probability distribution derived 423 
by applying the constraint from (a) to the across-model relationship. c, the relationship between 𝛽!"##and 424 
the sensitivity of ecosystem respiration to CO2 (𝛽!!$%&, TRENDY experiment S1). The vertical dashed 425 
line identifies the 𝛽!!$%& value that corresponds to the 𝛽!"## identified by the relationship in (a), and the 426 
dashed red line is the 1:1 line. d, The unconstrained probability density function (PDF) of 𝛽!!$%& across 427 
models (black line, gray bars). The orange area represents the conditional probability distribution derived 428 
by applying the constraint from (c) to the across-model relationship. See Extended Data Fig. 3 and 429 
Extended Data Table 1 for attribution to individual models. Note that the figure presents the partial 430 
relationship with the terrestrial carbon sink, excluding the influence of other factors through 431 
normalization. See Extended Data Fig. 1 for the underlying relationship between 𝛽!"##and the terrestrial 432 
carbon sink. The constrained distributions presented in Fig. 1b,d account for multiple sources of 433 
uncertainty in addition to the uncertainty of the regressions presented in Fig. 1a,b (see Extended Data Fig. 434 
3b).  435 
 436 
 437 
Figure 2 | Long-term changes in global annual photosynthesis from terrestrial biosphere models 438 
and multiple satellite observations. a, Relative changes in global photosynthesis (∆GPP, %) from 1982 439 
(CO2 = 341ppm) to 2012 (CO2 = 391ppm) based on simulations from process-based models in the 440 
TRENDY project model ensemble (orange, mean±std), and two different satellite approaches (empirical 441 
MODIS algorithm (MA, solid lines); a machine learning method (ML, dashed lines)). Estimates from the 442 
satellite approaches were obtained allowing for an effect of increasing CO2 on either: the fraction of 443 
absorbed photosynthetically active radiation (fAPAR, red lines, dots), the light use efficiency (LUE) of 444 
photosynthesis (blue line), or both fAPAR and LUE (black lines, dots). b, Inferred CO2 sensitivities 445 
(𝛽!"##, see methods) from the data presented in (a), for the standard satellite-based approaches using 446 
machine learning (ML) and the MODIS algorithm (MA) with the CO2 effect on GPP manifest through 447 
changes in fAPAR, the modified MA approach with a CO2 effect only on light use efficiency (MA, only 448 
LUE), and both ML and MA satellite remote sensing based approaches with an effect of increasing CO2 449 
on both LUE and fAPAR. Black error bars represent the standard error of 𝛽!"##. The horizontal orange 450 
area and dashed line indicate the 𝛽!"##constraint inferred from Fig. 1b (mean±std). 451 
 452 
 453 
Figure 3 | Spatial differences in the estimated long-term changes in global photosynthesis from light 454 
use efficiency theory, terrestrial biosphere models and satellite observations combined with theory. 455 
The global distribution of: a, the sensitivity of photosynthesis on a leaf area basis to CO2 (𝛽!'())	due to 456 
changes in light use efficiency; b, CO2 induced changes in photosynthesis (∆GPP, gC m-2 yr-1) from 1982 457 
to 2012 from an ensemble of terrestrial biosphere models (TBMs; TRENDY-S1); c, mean CO2-induced 458 
changes in GPP from the two updated satellite methods, which includes both a modelled direct (𝛽!'()) 459 



and measured indirect (𝛽!*+#+,) effect of increasing CO2 on GPP; d, the difference between the data 460 
presented in panels b and c; e, The latitudinal distribution of long-term changes in gross primary 461 
photosynthesis (∆GPP, PgC) from 1982 to 2012, from the TBM ensemble (orange shaded area, mean, 462 
standard deviation across models), and ∆GPP predicted from remote sensing (RS) approaches with 463 
(black, mean, standard deviation between MODIS and machine learning approaches) and without (red) a 464 
direct effect of CO2 on light use efficiency (see methods); f, Long-term changes in ∆GPP, separated by 465 
plant functional types (EBF, Evergreen broadleaved forest; SAV, savanna; DBF, deciduous broadleaved 466 
forests; CRO, croplands; SH, shrublands; GRA, grasslands; ENF, evergreen needleleaf forests; WET, 467 
wetlands). 468 
 469 
 470 
  471 



 472 
Methods 473 

 474 

Deriving an emergent constraint on the effect of increasing CO2 on global photosynthesis 475 

Emergent constraints have gained prominence in recent years as a means by which to infer 476 

unobserved quantities of interest in land surface and climate models14–16. The underlying core 477 

concept is that although there is a large spread in the model estimates of an observed variable X 478 

and an unobserved variable Y across models, the relationship linking the two is sometimes 479 

tightly constrained across models. Given the existence of a strong and robust relationship across 480 

models between X and Y, observations of X can be used to generate a probabilistic inference, or 481 

constraint, on Y. This approach has been termed ‘emergent’ because the functional relationship 482 

cannot be diagnosed from a single model, but rather emerges from examining the model 483 

spread14–16. 484 

  485 

The emergent constraint identified in this study links the sensitivity of gross primary 486 

photosynthesis to CO2 (𝛽!.,,, see definition below) to the magnitude of the residual terrestrial 487 

sink (SLAND). It is derived from a multiple linear regression across an ensemble of terrestrial 488 

biosphere models (TBMs) between the modelled SLAND, the sensitivity of gross primary 489 

photosynthesis to CO2, the sensitivity of total ecosystem respiration (calculated as the sum of 490 

autotrophic and heterotrophic respiration (Ra, Rh)) to CO2	(𝛽!-/01), and an interaction term 491 

between 𝛽!-/01and the magnitude of the non-respired flux (γ). The non-respired flux, γ (Pg C y-492 
1), represents all ecosystem CO2 losses that are not a result of respiration or land use change. The 493 

interaction term reflects the fact that the relationship between 𝛽!-/01and SLAND is expected to be 494 

smaller if ecosystem respiration constitutes a smaller portion of total ecosystem carbon losses. 495 

The use of a multiple linear regression allows for variance normalization, which removes 496 

explainable variance imposed on the 𝛽!.,,~ SLAND relationship, and provides a stronger emergent 497 

constraint than could be derived from the simple univariate relationship 𝛽!.,,and SLAND. 498 

 499 

We use global simulations from 14 TBMs (Extended Data Table 1) run as part of the Trends in 500 

Net Land-Atmosphere Exchange (TRENDY-v6) initiative (https://sites.exeter.ac.uk/trendy) (v6 501 

data are reported in Le Quere et al., 201827). In TRENDY, common input forcing data was 502 



prescribed for a series of model experiments from 1901 to 2015. Here we use both the results of 503 

the TRENDY-v6 scenario S3 simulations (temporally dynamic climate, CO2, land use) as 504 

reported in the Global Carbon Project (GCP27), and the TRENDY-v6 scenario S1 simulations 505 

(CO2-only: temporally dynamic CO2, time-invariant climate; pre-industrial land use mask). For 506 

more details on the TRENDY project see Sitch et al. (2015)3 and for details of the TRENDY-v6 507 

simulations used here see Le Quere et al. (2018)27.  508 

 509 

We estimated 𝛽!.,, and 𝛽!-/01 for each TRENDY-v6 TBM from annual GPP and Reco from the 510 

S1 (CO2-only) simulations, performed by 14 models (Extended Data Table 1), using Eq. 1 over 511 

the 1982-2012 period (in order to maintain consistency with the remote sensing methods 512 

assessed). γ is calculated for each TRENDY-v6 TBM from the S3 simulations as the annual 513 

difference between Net Biome Production plus land use change emissions and (GPP-Reco), 514 

averaged over the 1982-2012 period. Note that processes included in this category (e.g, fire, 515 

volatile organic compounds, dissolved organic carbon fluxes) differ by TBM. SLAND (Pg C y-1) is 516 

calculated for each TRENDY-v6 TBM from the S3 simulations reported by the GCP27, as the 517 

annual mean net biome productivity plus emissions from land use change, averaged over the 518 

same 1982-2012 period.  519 

 520 

We related the modeled GPP CO2 sensitivity (derived from S1 simulations) to the magnitude of 521 

the modeled terrestrial sink27 (Fig. 2) using a multiple linear regression. The regression model 522 

used (SLAND ~ 𝛽!.,, + 𝛽!-/01 + 𝛽!-/01: 𝛾) explained 94% of variation in between-model 523 

differences in the projected magnitude of SLAND (Extended Data Table 2, Extended Data Fig. 2).  524 

 525 

In order to extract the partial relationship between SLAND and 𝛽!.,,(Fig. 1a), we normalized the 526 

SLAND from each TBM to remove variance contributed by 𝛽!-/01 and 𝛾. Specifically, normalized 527 

SLAND (𝑆23456 ) was calculated as 𝑆23456 =SLAND – (𝜀 − 𝜀)̅, where 𝜀 = (𝑏𝛽!-/01 + 𝑐𝛽!-/01: 𝛾), 𝜀 ̅is 528 

the mean across models, and b and c are the corresponding regression coefficients of the terms in 529 

the linear model of SLAND (Extended Data Table 2). Using variance normalization to remove the 530 

influence of 𝛽!-/01and the interaction between 𝛽!-/01 and 𝛾 led to improved inference of 𝛽!.,, 531 

compared to the unnormalized relationship between SLAND and 𝛽!.,, (Extended Data Fig. 1).  532 

 533 



The emergent constraint approach relies on a tight relationship between a model predicted 534 

variable for which an observational constraint exists, and one for which there is no observational 535 

constraint available14–16. In the case of the relationship between 𝛽!.,, and SLAND, estimates of 536 

SLAND are made annually by the Global Carbon Project, along with the associated uncertainties1. 537 

The observed SLAND values we use are the mean reported annual values from the Global Carbon 538 

Project1 over the satellite era we study here (1982-2012). Note that the time period we used was 539 

chosen to both coincide with the satellite observations we use and to be sufficiently long so as to 540 

minimize the effect of macroclimatic events such as strong El Nino periods and volcanic 541 

eruptions, but our results were not highly dependent on the choice of period (Extended Data Fig. 542 

4). The Global Carbon Project does not report uncertainties on annual values, but quantifies 543 

SLAND uncertainty on a decadal basis, with an average uncertainty value of 0.9 PgC for each of 544 

the four decades including in this study1. This uncertainty reflects uncertainties from the 545 

component terms used to estimate SLAND (emissions from fossil fuel use and cement production; 546 

emissions from land use change; the growth rate of atmospheric CO2; the ocean sink), which the 547 

Global Carbon Project sums in quadrature to estimate the associated decadal SLAND uncertainty. 548 

 549 

The probability distribution of the constrained 𝛽!.,, (Fig. 2c) accounts for four sources of 550 

uncertainty. The first and second represent uncertainty in the Global Carbon Project SLAND 551 

estimate, used as a constraint, and uncertainty in the relationship between 𝛽!.,, and the 552 

normalized SLAND. These two sources of uncertainty are propagated to the joint probability 553 

distribution of 𝛽!.,, through bootstrapping with 10,000 bootstrapped samples, where each 554 

bootstrapped sample quantifies the 𝛽!.,, inferred from random sample of TBMs, with 555 

replacement, and a random sample from the distribution of Global Carbon Project SLAND 556 

estimates. The resulting joint probability uncertainty is the largest of the uncertainties considered 557 

(Extended Data Fig. 3b). The third and fourth sources of uncertainty reflect uncertainty in the 558 

normalization of SLAND due to the influence of individual models on the coefficients of the 559 

normalizing regression (Extended Data Table 2), and uncertainty regarding the true size of the 560 

non-respired flux contribution to SLAND. To quantify the uncertainty associated with the influence 561 

of individual models, we performed SLAND normalization and quantified 𝛽!.,, by using 562 

coefficients from 10,000 regression models estimated from model subsets. To quantify and 563 

propagate uncertainty regarding the true size of the non-respired flux contribution to SLAND, we 564 



also bootstrapped the SLAND normalization and quantified 𝛽!.,,assuming that the model estimates 565 

of the non-respired flux are equally likely to be correct and that they come from a Gaussian 566 

distribution. These two sources of uncertainty represent the second and third largest sources of 567 

the uncertainties considered (Extended Data Fig. 3b). The total uncertainty associated with the 568 

constrained 𝛽!.,,	was then calculated by summing the individual uncertainties in quadrature, and 569 

was then propagated through to the uncertainty associated with the constrained 𝛽!-/01. 570 

 571 

Other factors, in particular turnover times of vegetation and soil, and model-dependent climate 572 

sensitivities, are also expected to lead to between-model differences in SLAND. We included both 573 

vegetation and soil carbon turnover times, and three estimates of the sensitivity of GPP to 574 

climate (calculated as the slope of the relationship between annual SLAND and annual global 575 

temperature, annual tropical temperature, and the annual Multivariate ENSO Index (MEIv2; 576 

https://psl.noaa.gov/enso/mei/)) individually in the regression model to assess their importance. 577 

None were significant terms in the multiple linear regression and the best predictor (MEIv2 578 

sensitivity) only explained an additional 3% of between-model variance (see Extended Data 579 

Table 2). Specifically, when added individually as predictors to our baseline linear model, 580 

MEIv2 proved the best predictor (CS-MEI, p = 0.22), followed by tropical and global 581 

temperatures (CS-tropicalT and CS-globalT, p = 0.45, 0.90 respectively; Extended Data Table 582 

2). Each led to a reduction in the predicted R-squared (0.86, 0.85, 0.82 vs 0.89 for the baseline 583 

linear model), suggesting that the additional term in the model increased overfitting. We 584 

conclude from this analysis that differences in model sensitivities to climate are not responsible 585 

for differences in modeled SLAND, which are effectively predicted by SLAND ~ 𝛽!"## + 𝛽!!$%& + 586 

𝛽!!$%&:γ (Extended Data Table 2). Although sensitivities to climate are known to vary between 587 

models, and climate change is known to have had a large impact on the carbon sink in some 588 

regions, especially high-latitudes51 (Extended Data Fig. 7), the lack of an influence of differences 589 

in model sensitivities to climate suggests that climate change has had a smaller effect on the land 590 

sink at a global scale, compared to that of rising CO2, during our study period. This could be 591 

because climate change has both positive (e.g., growing season extensions) and negative (e.g., 592 

increased respiration) regional impacts on the land sink, which counterbalance each other at the 593 

global scale. This is supported by recent reports of a negligible influence of climate on the 594 



cumulative global land sink over the past few decades6, and projections from the models 595 

examined here (Extended Data Fig. 7). 596 

 597 

The 𝜷 metric of CO2 sensitivity 598 

We quantified the apparent sensitivity of GPP to CO2 in the remote sensing, terrestrial biosphere 599 

model and independent proxy estimates using two approaches: (1) the percent change in GPP 600 

with respect to GPP at the start of the time period (i.e. the f(CO2) introduced above), and (2) a 𝛽 601 

metric defined as the response ratio (R) of GPP with respect to CO2: 602 

 603 

   𝛽- =
[.,,(9);	.,,(9!)]/.,,(9!)
[?@(9);	?@(9!)]/?@(9!)

	     Eq. 1 604 

where GPP(t) is the value of gross primary photosynthesis (GPP) at time t, and Ca(t) is the value 605 

of atmospheric [CO2] at time t. Although other methods to calculate the β-factor have been 606 

proposed (e.g. 52), we use Eq. 1 for ease of interpretation. A β of 1 represents direct 607 

proportionality between the GPP CO2 response and the change in CO2. Note that to avoid undue 608 

influence of year-to-year variability in GPP, we estimated GPP(t) and GPP(t0) based on a linear 609 

regression fit to the GPP timeseries.  610 

 611 

Assessing the CO2-sensitivity of satellite-based estimates of GPP 612 

Recent reports have highlighted that the most commonly used satellite-based estimates of GPP 613 

have a much lower CO2-sensitivity than that derived from TBMs9,10. However, most satellite-614 

based estimates do not incorporate the universally observed direct effect of increasing CO2 on 615 

the light use efficiency of leaves of C3 vegetation20, which is not observable from space21. The 616 

effect of increasing CO2 on global C3 photosynthesis that we examine here manifests through 617 

two primary pathways: though increasing the biochemical rate of photosynthesis on a leaf area 618 

basis53, which we refer to as the direct effect, and through increases in leaf area on a ground area 619 

basis, allowing for the interception of greater amounts of light54,55, which we refer to as the 620 

indirect effect. The former, direct response, is due to the fact that CO2 is a substrate for the 621 

photosynthetic enzyme, Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Both 622 

CO2 and O2 compete at the active site of RuBisCO, so changes in the concentration of either 623 

affect the rate at which CO2 is assimilated, effectively changing the light use efficiency (LUE) of 624 



photosynthesis on a leaf area basis at a given light level. The latter, indirect response of 625 

increasing leaf area index (LAI55) and the resulting increase in the fraction of absorbed 626 

photosynthetically active radiation (fAPAR), reflects both the increased carbon available to 627 

invest in structural growth under elevated CO2, and potential changes in the hydrological 628 

equilibrium due to elevated CO2-induced increases in water use efficiency, which can lead to 629 

increased leaf area in water-limited ecosystems56–58. Both response pathways are incorporated in 630 

terrestrial biosphere models3, and long-term proxies account for each to differing degrees. The 631 

majority of satellite-based estimates, however, do not account for the direct effect of increasing 632 

CO2 on the biochemical rate of photosynthesis21,59. 633 

 634 

We assessed whether incorporating a CO2 sensitivity of LUE in remote sensing-based 635 

approaches for estimating GPP reconciled the difference between the sensitivity of remote 636 

sensing-based GPP to increasing CO2 and that implied by the emergent constraint. To do so, we 637 

develop a CO2 sensitivity function for incorporating the effect of increasing CO2 on the LUE of 638 

photosynthesis into satellite GPP estimates, based on the conservative assumption that the 639 

ecosystem-scale CO2 sensitivity is consistent with that of the electron-transport-limited rate of 640 

photosynthesis (Aj). This is supported by reports that the observed CO2 response of 641 

photosynthesis and biomass closely corresponds to the CO2-sensitivity of Aj37. In addition, it has 642 

been suggested that shaded, and thus primarily electron-transport limited, leaves contribute the 643 

majority of canopy38,60 and global photosynthesis 41. The assumption is further supported by 644 

optimal coordination theory, which posits that photosynthesis under typical daytime field 645 

conditions is close to the point where Rubisco-limited (Ac) and Aj are colimiting. The 646 

colimitation of Ac and Aj has been shown to hold across a range of ecosystems61, as has the 647 

downregulation of the maximum velocity of carboxylation (Vcmax) under elevated CO2 in order 648 

to maintain coordination62. Given the fact that the sensitivity of Aj to CO2 is much smaller than 649 

that of Ac63, the sensitivity of Aj to CO2 therefore represents a conservative approach to 650 

incorporate a CO2 sensitivity of light use efficiency39 in remote sensing estimates of 651 

photosynthesis. Note that we also make the conservative assumption that C4 plants operate at or 652 

near CO2 saturation64. 653 

 654 



The mechanistic photosynthesis model proposed by Farquhar et al. (1980)53 captures the 655 

biochemical controls of leaf photosynthesis and responses to variations in temperature, light and 656 

CO2 concentration. According to the model, the gross photosynthesis rate, A, is limited by either 657 

the capacity of the RuBisCO enzyme for the carboxylation of RuBP (Ribulose-1,5-658 

bisphosphate), the electron transport capacity for RuBP regeneration. In the case of the limitation 659 

by the electron transport capacity for RuBP regeneration, the photosynthetic rate (Aj, µmol m-2 s-660 
1) is given by: 661 

     𝐴A =	𝜑B𝐼
0";C∗

0"DEC∗
       Eq. 2 662 

where φ0 is the intrinsic quantum efficiency, I is the absorbed light (µmol m-2 s-1), 𝑐F 	(Pa) is the 663 

leaf internal CO2 concentration, and Γ∗  (Pa) is the CO2 compensation point. Γ* depends on 664 

temperature, as estimated through a biochemical rate parameter (r)65: 665 

     𝛤∗ = 𝑟EH𝑒
$%('()*+.-.)
)*+.-.0'      Eq. 3 666 

where R is the molar gas constant (8.314 J mol-1 K-1), r25 = 4.22 Pa, is the photorespiratory point 667 

at 25 ˚C. ΔH is the activation energy for Γ* (37.83 kJ mol-1), and T is the temperature in K. 668 

Assuming the CO2 sensitivity of light-limited photosynthesis allows for the development of an 669 

index of the effect of CO2 on photosynthetic LUE39 which can be incorporated in any remote 670 

sensing-based LUE model or empirical upscaling estimate of gross primary photosynthesis (GPP). 671 

 672 

By rewriting Eq. 2, substituting ci by the product of atmospheric CO2 (ca) and the ratio of leaf-673 

internal to -ambient CO2 (χ=ci/ca), the sensitivity of GPP and LUE to CO2 can be described as: 674 

     I.,,
I?J)

 =
I	K!L

123(4∗

1235)4∗

I?J)
 ,  675 

      = 𝜑B𝐼
I	M67)
I?J)

 ,  676 

    =>  I'()
I?J)

 = I	M67)
I?J)

     Eq. 4 677 

where	𝜙?JE =
02N;C∗

02NDEC∗
, and LUE = GPP/𝜑B𝐼. Note that the indirect effect of CO2 on GPP through 678 



𝜑BI, is explicitly accounted for in satellite-based methods through changes in the fraction of 679 

absorbed photosynthetically active radiation (fAPAR), and considered here as an independent 680 

effect. However, the direct effect, through changes in LUE, (𝜙?JE), is not. We used Eq. 4 to derive 681 

a scalar, 𝑓(𝐶𝑂E), to account for the direct effect of CO2 in any LUE based estimate of GPP (e.g., 682 

satellite or empirical upscaling approaches). To do so, we calculated ∆GPP in year t due to the 683 

effect of CO2 on LUE as GPP(t = 0) ∗ 𝑓(𝐶𝑂E), where: 684 

     𝑓(𝐶𝑂E) =
(M67)

8 ;M67)
-*+))

M67)
-*+)       Eq. 5 685 

𝑓(𝐶𝑂E) thus represents the fractional increase in LUE due to the direct effect of CO2 relative to a 686 

baseline period (here 1982, the start of the timeseries for the satellite-based methods considered 687 

here).  688 

The sensitivity of LUE to CO2 thus depends on both Γ*, which is calculated via Eq. 3, and χ. We 689 

estimated χ using the least-cost hypothesis66,67. This states that an optimal long-term 690 

effective value of χ can be predicted as a result of plants minimizing their total carbon costs 691 

associated with photosynthetic carbon gain, and explicitly expressed with the following model: 692 

     𝜒 ≈ 	 O
OD√Q

, 𝑤ℎ𝑒𝑟𝑒	𝜉 = L RS
T.VW∗

     Eq. 6 693 

where D is vapor pressure deficit, and 𝜂∗ is the viscosity of water relative to its value at 25 °C 68, 694 

and b is the ratio of the cost of maintaining carboxylation relative to that of maintaining 695 

transpiration66. The Michaelis-Menten coefficient of Rubisco (K) is given by: 696 

                Eq. 7 697 

where Kc and Ko are the Michaelis-Menten coefficient of Rubisco for carboxylation and 698 

oxygenation, respectively, expressed in partial pressure units, and Po is the partial pressure of O2. 699 

K responds to temperature via Kc and Ko, the temperature responses for which are described 700 

using a temperature response function described by Eq. 3 with specific parameters: ΔH is 79.43 701 

kJ mol-1 for Kc and 36.38 kJ mol-1 for Ko, r25 is 39.97 kPa for Kc and 27.48 kPa for Ko 65. We 702 



applied this derived sensitivity to the remote sensing approaches detailed below, on a per pixel 703 

basis in proportion to the percentage of C3 plants in a given pixel69, as C4 plants operate at or 704 

near CO2 saturation64. We thus make the conservative assumption of no direct CO2 effect on 705 

LUE in the C4 proportion of each pixel. 706 

 707 

Incorporating a CO2 sensitivity of light-use efficiency into satellite-based estimates of GPP 708 

The approach for incorporating a CO2 sensitivity we outline above (Eq. 5) can be incorporated 709 

into any satellite-based photosynthesis product. Here, we test it on two broadly used approaches. 710 

The first, the MODIS MOD17 algorithm (GPPXY5Z[28) and the second an empirical upscaling 711 

method based on a model tree ensemble (GPPX\]29). We applied the MODIS MOD17 GPP 712 

algorithm driven by 30-year (1982–2012) Global Inventory Modeling and Mapping Studies 713 

(GIMMS3g) fAPAR data70, to calculate a new 30-year global monthly gridded (0.5°) dataset of 714 

MODIS-derived GPP: 715 

 GPPXY5Z[6  = GPPXY5Z[×(1+	𝑓(𝐶𝑂E))  716 

   = fAPAR ×PAR ×LUEmax ×	𝑓(𝐷)×	𝑓(𝑇 F_)×(1+	𝑓(𝐶𝑂E))  717 

   = fAPAR ×PAR ×LUE     Eq. 8 718 

where LUEmax represents biome-specific maximum light use efficiency, 𝑓(𝐷) represents a 719 

water stress reduction scalar based on the atmospheric vapor pressure deficit, and 𝑓(𝑇 F_) 720 

represents a low-temperature stress reduction scalar. LUEmax, 𝑓(𝐷), and 𝑓(𝑇 F_) are 721 

parameterized according to Zhao and Running (2010)71. 𝑓(𝐶𝑂E) is estimated on a per-pixel 722 

based using Eq. 5. We used global monthly gridded (0.5°) weather data, provided by the Climate 723 

Research Unit at East Anglia University (CRU TS4.01). The total available photosynthetically 724 

active radiation (PAR), and vapor pressure deficit (D) were calculated from insolation and CRU 725 

climate data using a simple process-based bioclimatic model (STASH72).  726 

 727 

To incorporate a CO2 sensitivity in a global empirical upscaling dataset based on a model tree 728 

ensemble machine learning technique (GPPX\], 1982–201229), which does not account for the 729 

direct effect of CO2 on LUE, we followed the approach outlined for the MODIS GPP product. 730 

Specifically, we applied the CO2 function (Eq. 5) to spatially distributed GPPX\], as: 731 



     732 

GPPX\]6  = GPPX\](1 + 𝑓(𝐶𝑂E))     Eq. 9 733 

 734 

Early remote sensing GPP models39,73 advocated for including a CO2 effect on LUE, though 735 

primarily used the larger, light-saturated, sensitivity. A recent review8 found that the most widely 736 

used modern remote sensing GPP approaches28,29 do not include a CO2 effect on LUE, and of the 737 

3 that did (out of 14 assessed) two are enzyme kinetics, not LUE, models (BESS74, BEPS75). The 738 

third (cFix73) assumes the light-saturated CO2 sensitivity, which is not suitable for global 739 

application given the large contribution of RuBP regeneration limited leaves38,76. A recent 740 

study77 incorporated a CO2 effect on LUE using the light-limited sensitivity, as we do here, but 741 

the approach taken requires the reparameterization of the LUE model and is thus not easily 742 

applicable to other remote sensing GPP products. The approach proposed here provides a generic 743 

and conservative method for incorporating CO2 effects on LUE in any remote sensing GPP 744 

product, which allows us to quantify the relative importance of incorporating a CO2 effect in 745 

remote sensing GPP products and reconciles the large difference between remote sensing and 746 

TBM-derived sensitivities to CO2. Note that although many remote sensing GPP products are 747 

calibrated to observations from eddy-covariance networks, our implementation does not require 748 

recalibration, in particular as it only affects the CO2 sensitivity, and eddy-covariance 749 

observations are not known to contain information on the effect of CO2 on photosynthesis 750 

(Extended Data Fig. 6).       751 
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Extended Data Titles and Legends  934 
 935 
Extended Data Table 1 | The terrestrial biosphere models (TBMs) used. The model 936 
ensemble used the Trends in Net Land Carbon Exchange (TRENDY) version 6, as presented in 937 
the 2017 Global Carbon Project report27. 938 
 939 
[Footnote:] Note that VEGAS does not report SLAND in the Global Carbon Project. LPJ-GUESS 940 
does not report heterotrophic respiration in TRENDY-v6 S1. SDGVM and OCN are two 941 
additional models included in the Global Carbon Project and TRENDY-v6 that were excluded 942 
from our analysis due to data issues in the submitted simulations (SDGVM) and the lack of S1 943 
simulations (OCN). 944 
 945 
Extended Data Table 2 | Linear models of the land sink as estimated from terrestrial 946 
biosphere models. The baseline linear model presents the model used for variance normalization 947 
presented in the main text. The other three models assessing the role of climate sensitivities (CS) 948 
in a linear model of the land sink as estimated from terrestrial biosphere models. We tested the 949 
influence of climate by calculating the sensitivity of modeled SLAND to climate in three different 950 
ways, in order to assess whether between-model differences in the modeled sensitivity of SLAND 951 
to climate variability translate to between-model differences in predicted SLAND. Specifically, we 952 
calculated the climate sensitivity (CS) of each model as: (1) CS-globalT: The sensitivity of 953 
modeled global SLAND to global temperature (T), calculated as the slope between annual 954 
anomalies in modeled global SLAND and global T; (2) CS-tropicalT: The sensitivity of modeled 955 
global SLAND to tropical T variations, calculated as the slope between annual anomalies in 956 
modeled global SLAND and tropical T (motivated by a tight correlation between tropical T and the 957 
growth rate of atmospheric CO2); (3) CS-MEI: The slope of the relationship between annual 958 
modeled global SLAND anomalies and the Multivariate ENSO Index Version 2 (MEIv2: 959 
https://psl.noaa.gov/enso/mei/), as this integrates global interannual changes in climate. 960 
 961 
[Footnote:] Where γ denotes the non-respired flux, quantified as SLAND – (GPP - Reco), where 962 
SLAND is the residual terrestrial carbon sink taken from the Global Carbon Project, and GPP 963 
(Gross Primary Photosynthesis) and Reco (total ecosystem respiration) taken from TRENDY 964 
simulation S3 of the models listed in Extended Data Table 1. 𝛽!"##and 𝛽!!$%&are estimated from 965 
TRENDY-v6 S1 simulations. 966 
 967 
Extended Data Table 3 | Calculation of 𝜷𝐑𝐆𝐏𝐏from existing proxies.  968 
 969 
[Footnote:] Notes on published estimates of the response of global photosynthesis to CO2: 970 
Wenzel et al.11 use atmospheric observations of the seasonal cycle of CO2 to infer a GPP 971 
increase of 32% for northern extra-tropical ecosystems under a doubling of CO2, equivalent to a 972 
𝛽!"## of 0.32. This reflects the sensitivity of extra-tropical ecosystem photosynthesis to CO2, and 973 
is therefore expected to be lower than the global sensitivity due to the temperature dependence of 974 
the effect of CO2 on photosynthesis (Fig. 3a). It is also based on a doubling of CO2, and due to 975 
the saturating response of photosynthesis to elevated CO2 is likely an underestimate of, and not 976 
directly comparable to, the historic sensitivity.  977 
 978 



Ehlers et al.12 estimate the sensitivity of photosynthesis to CO2 based on measurements of 979 
deuterium isotopomers in herbarium samples of natural C3 vascular plant species, crops, and a 980 
Sphagnum moss species. Deuterium isotopomers provide an estimate of the 981 
photosynthesis/respiration ratio, and it’s change over time. In order to translate the change in the 982 
photosynthesis/respiration ratio to a change in photosynthesis, Ehlers et al. used a model with the 983 
assumption that photosynthesis is not limited by light12. The resulting 𝛽!"## of 1.03 therefore 984 
represents the sensitivity of photosynthesis in the absence of light limitation, which is expected 985 
to be considerably higher than that of whole-ecosystem global photosynthesis due to the large 986 
contribution of shaded leaves, as ∂Ac/∂CO2 >> ∂Aj/∂CO2 (see methods).  987 
 988 
Other published estimates of the effect of CO2 on global photosynthesis include correlative 989 
analyses based on eddy-covariance observations (Fernandez-Martinez et al., 201792; 𝛽!"##=1.2), 990 
oxygen isotope estimates (Ciais et al., 201293; 𝛽!"##=1.3±2.3), and modeled products (Cheng et 991 
al., 201794; Cernusak et al., 202022; Haverd et al., 202024; Ueyama et al. 202095;Sun et al., 20198; 992 
overall modeled 𝛽!"##range 0.1-1.6). We do not discuss these estimates in the main text due to 993 
the lack of causal relationship in 92, the very large uncertainty in 93, and the variety of 994 
assumptions employed in the modeled estimates 8,22,24,94,95.      995 
 996 
Extended Data Figure 1 | The relationship between the sensitivity of global primary 997 
photosynthesis (GPP) to CO2 (𝜷𝐑𝐆𝐏𝐏) and the terrestrial carbon sink (SLAND, PgC y-1). The 998 
emergent constraint on 𝛽!"##is comparable to that derived using the normalized SLAND, though 999 
the associated uncertainty is considerably higher due to the unexplained variance in the 1000 
𝛽!"##~SLAND relationship. The red line and shaded area show the best linear fit across models, 1001 
and the associated 95% prediction intervals. 1002 
 1003 
Extended Data Figure 2 | A multiple linear model of the terrestrial biosphere model 1004 
predictions of the global carbon sink. a, The terrestrial biosphere model (TBM) predictions of 1005 
the global carbon sink are predicted as a function of the modeled sensitivity of photosynthesis to 1006 
CO2	(𝛽!"##), the modeled sensitivity of respiration to CO2	(𝛽!!$%&) and the magnitude of the 1007 
modeled non-respired carbon flux (γ) (Extended Data Table 2). The red line and shaded area 1008 
show the best linear fit across models, and the associated 95% prediction intervals. b, the effect 1009 
size of each of the terms included in the model (mean, 95% CI), which estimates main effect on 1010 
the response from changing each predictor value, averaging out the effects of the other 1011 
predictors. TBM names and details are provided in Extended Data Table 1. Details of the linear 1012 
model used are provided in Extended Data Table 2. 1013 
 1014 
Extended Data Figure 3 | An emergent constraint on the sensitivity of global photosynthesis 1015 
to CO2. a, The relationship between the sensitivity of global primary photosynthesis (GPP) to 1016 
CO2 and the modeled terrestrial carbon sink (PgC y-1), in relative terms (∆GPP (%)). The vertical 1017 
gray shading shows the range of the observed terrestrial residual carbon sink over the period of 1018 
1982 to 2012, as estimated by the Global Carbon Project. The red line and shaded area show the 1019 
best linear fit across models, and the associated 95% prediction intervals, and the horizontal 1020 
dashed line shows the implied emergent constraint on the sensitivity of GPP to CO2. This figure 1021 
reproduces Fig. 1a, but includes model names, which correspond to labels given in Extended 1022 
Data Table 1. See Extended Data Fig. 1 for the underlying relationship between the sensitivity of 1023 
GPP to CO2 and the terrestrial carbon sink. b, Uncertainty contributions to the constrained 1024 



sensitivity of global photosynthesis to CO2. The unconstrained probability density function (PDF) 1025 
distribution of 𝛽!"## across models (black line, gray bars), which assumes that all of the 1026 
TRENDY models are equally likely to be correct and that they come from a Gaussian 1027 
distribution. The orange area represents the conditional probability distribution derived by 1028 
applying the constraint from (a) to the across model relationship, with dashed and dotted lines in 1029 
the orange area indicating the relative contribution of different sources of uncertainty (see 1030 
methods). 1031 
 1032 
Extended Data Figure 4 | Assessment of the effect of choice of period on the sensitivity of 1033 
global primary photosynthesis (GPP) to CO2 (𝜷𝐑𝐆𝐏𝐏). Estimates of the residual terrestrial sink 1034 
(SLAND) from the Global Carbon Project (GCP) used in this study were split into two 15-year 1035 
periods (1982-1997 (a, b) and 1998-2012 (c, d)) and the emergent constraint approach (see 1036 
methods) was applied to each independently, using GCP estimates of the land sink for those 1037 
periods to estimate a constrained value of 𝛽!"## from the TRENDY dynamic global vegetation 1038 
models (Extended Data Table 1). Estimated SLAND in panel a and c is SLAND ~ 1 + 𝛽!"## + 𝛽!!$%& 1039 
+ 𝛽!!$%&:γ. The vertical dashed lines in a and c indicate the GCP estimate of the mean residual 1040 
sink for that period. The red lines and shaded areas in a and c show the best linear fit across 1041 
models, and the associated 95% prediction intervals. 1042 
 1043 
Extended Data Figure 5 | Long-term changes in annual gross primary production (GPP) of 1044 
global tropical forests. GPP estimated by terrestrial biosphere models (TBMs) in the TRENDY 1045 
model ensemble considers either temporally dynamic CO2 and fixed climate and land use 1046 
(orange, experiment S1), temporally dynamic CO2 and climate, and fixed land use (red, 1047 
experiment S2), or temporally dynamic CO2, climate, and land use (purple, experiment S3). 1048 
Shaded areas represent the mean and standard error of the annual estimate across the TRENDY 1049 
ensemble. Remote sensing (RS) GPP considers temporally dynamic climate and land use, and 1050 
either fixed (blue) or varying (red) CO2. Tropical forests represent the Evergreen Broadleaf 1051 
Forest classification within tropical latitudes (23.5°N: 23.5°S). 1052 
 1053 
Extended Data Figure 6 | Assessment of the effect of CO2 on global primary photosynthesis 1054 
(GPP) at sites included in the FLUXNET 2015 dataset. (a) The distribution of the length of 1055 
the observational record at each of the 206 sites in the FLUXNET 2015 open access database. 1056 
The vertical red line indicates the median site record length (5 years). (b) The expected effect of 1057 
CO2 on GPP at all sites, demonstrated by comparing the GPP predicted by the original (x-axis) 1058 
and updated (y-axis) remote sensing-based methods for all site months of observations in the 1059 
FLUXNET 2015 database96. The mean expected difference across sites is 2.39%. 1060 
 1061 
Extended Data Figure 7 | Global and high latitude changes in the terrestrial carbon cycle. 1062 
Both the global (a, b, c) and northern land (high latitude, > 45°N) (d, e, f) contribution of CO2 1063 
(orange shaded area, derived from TRENDYv6 CO2-only simulations (S1)) and climate (red 1064 
shaded area, derived from the difference between TRENDYv6 CO2-only simulations and CO2 + 1065 
Climate simulations (S2-S1)), to long term (1900-2016) changes in annual net ecosystem 1066 
productivity (NEP), gross primary production (GPP) and ecosystem respiration (RECO). The 1067 
shaded areas represent the annual mean and standard error across the TRENDY model ensemble. 1068 
The impact of climate change is large in high latitude ecosystems, increasing both GPP (e) and 1069 
RECO (f). This does not however translate to a large impact on the global carbon cycle (a, b, c). 1070 
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