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To harness the potential of noisy intermediate-scale quantum devices, it is paramount to find the best
type of circuits to run hybrid quantum-classical algorithms. Key candidates are parametrized quantum
circuits that can be effectively implemented on current devices. Here, we evaluate the capacity and train-
ability of these circuits using the geometric structure of the parameter space via the effective quantum
dimension, which reveals the expressive power of circuits in general as well as of particular initialization
strategies. We assess the expressive power of various popular circuit types and find striking differences
depending on the type of entangling gates used. Particular circuits are characterized by scaling laws in their
expressiveness. We identify a transition in the quantum geometry of the parameter space, which leads to a
decay of the quantum natural gradient for deep circuits. For shallow circuits, the quantum natural gradient
can be orders of magnitude larger in value compared to the regular gradient; however, both of them can
suffer from vanishing gradients. By tuning a fixed set of circuit parameters to randomized ones, we find a
region where the circuit is expressive but does not suffer from barren plateaus, hinting at a good way to
initialize circuits. We show an algorithm that prunes redundant parameters of a circuit without affecting
its effective dimension. Our results enhance the understanding of parametrized quantum circuits and can
be immediately applied to improve variational quantum algorithms.
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I. INTRODUCTION

Quantum computers promise to tackle challenging prob-
lems for classical computers such as drug design, combina-
torial optimization and simulation of many-body physics.
While fully fledged large-scale quantum computers with
error correction are not expected to be available for many
years, noisy intermediate-scale quantum (NISQ) devices
have been investigated as a way to approach computa-
tionally hard problems with quantum processors available
now and in the near future [1,2]. Variational quantum algo-
rithms (VQAs) [3–6] have been a major hope in achieving
a quantum speedup with NISQ devices. The core idea is to
update a parametrized quantum circuit (PQC) in a hybrid
quantum-classical fashion. Measurements performed on
the PQC are fed into a classical computer to propose a new
set of variational parameters. A key challenge has been
the occurrence of barren plateaus, i.e., the gradients used
for optimization vanish exponentially with an increasing
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number of qubits [7], as well as for various types of cost
functions [8], entanglement [9] and noise [10]. Further,
the classical optimization part of variational algorithms
has been shown to be non-deterministic polynomial-time
(NP) hard [11]. Quantum algorithms that avoid the feed-
back loop to circumvent the barren-plateau problems have
been proposed [12–18]. Besides this approach, initializa-
tion strategies [19–21] and layer-wise learning [22] for
VQA could help to solve the aforementioned problems.
However, tools to evaluate the power of these strategies are
lacking. Hardware-efficient ansatze have been proposed to
tailor a PQC to the restrictions of the hardware [23]. A
widely used choice is quantum circuits arranged in layers
of single-qubit rotations followed by two-qubit entangling
gates. However, a key question is the space of possible
states this ansatz type can express [24–27].

Here, we introduce the effective quantum dimension GC
and parameter dimension DC as quantitative measures of
the capacity of a PQC. Parameter dimension DC measures
the total number of independent parameters a quantum
state defined by the PQC can express. In contrast, the effec-
tive quantum dimension GC [28,29] is a local measure to
quantify the space of states that can be accessed by locally
perturbing the parameters of the PQC. Both measures can
be derived from the quantum geometric structure of the
PQC via the quantum Fisher information metric (QFI) F
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[30,31]. From the QFI, one can obtain the quantum nat-
ural gradient (QNG) for a more efficient optimization via
gradients [30–32]. These methods allow us to evaluate the
expressive power, trainability, and number of redundant
parameters of different PQCs and find better initialization
strategies.

As demonstration of our tools, we provide an in-depth
investigation of popular hardware-efficient circuits, com-
posed of layered single-qubit rotations and two-qubit
entangling gates in various arrangements. We find striking
differences depending on the choice of circuit structure that
affect both the expressive power of the PQC in general as
well as the quality of specific initialization strategies. We
calculate the number of redundant parameters of various
PQC types, as well as how fast they converge toward ran-
dom quantum states as a function of the number of layers.
The choice of entangling gate has a pronounced effect on
the expressive power of particular initialization strategies.

We reveal a transition in the spectrum of the QFI in deep
circuits, which leads to a decay of the QNG. For shal-
low circuits, the QNG can be orders of magnitude larger
than the regular gradient. However, both suffer from the
barren-plateau problem. By tuning the PQCs parameters
from zero to a random set of parameters, we find a region
where both large gradients and large effective quantum
dimension GC coexist, which could serve as a good set of
initial parameters for the training of variational algorithms.
Finally, as an application of our method, we propose and
apply an algorithm that prunes redundant parameters from
PQCs, while keeping the parameter dimension constant.
This algorithm helps us to find expressive PQCs with a
reduced number of parameters to simplify training for vari-
ational algorithms as well as a reduced circuit depth to ease
the impact of noise.

The paper is organized as follows. First, we define PQCs
in Sec. II and the parameter dimension DC in Sec. III. Then,
we introduce the effective quantum dimension GC in Sec.
IV. Our results and the algorithm are presented in Sec. V,
which are discussed in Sec. VI. We give an overview of the
definitions of symbols in Table I.

II. PARAMETRIZED QUANTUM CIRCUITS

A PQC generates a quantum state of N qubits

|ψ(θ)〉 = U(θ)|0〉⊗N , (1)

with the unitary U(θ), the M -dimensional parameter vec-
tor θ , and product state |0〉⊗N as shown in Fig. 1. The
structure of the PQC influences its power to express quan-
tum states [24,25,33]. One way to measure expressiveness
is by determining the distance between the distribution
of states generated by the circuit and the Haar random
distribution of states [24,25]. This tells us how well the
PQC can express arbitrary states across the Hilbert space.

The appearance of barren plateaus or vanishing gradients
is connected to the aforementioned measure [7,34]. The
variance of the gradient var(∂iE) = 〈(∂iE)2〉 − 〈∂iE〉2 (〈.〉
denoting statistical average over many random instances)
in respect to the expectation value of a Hamiltonian H
(E = 〈0|U†(θ)HU(θ)|0〉) can vanish exponentially with
the number of qubits for PQCs with a random choice of
parameters. The variance also decreases with the number
of layers p of the PQC until a specific pr, where it remains
constant upon further increase of p > pr. For local cost
functions, it has been shown that in most cases low vari-
ance of the gradient of such PQCs correlates with high
expressibility [34].

III. PARAMETER DIMENSION

We now introduce the parameter dimension DC of a
PQC as another measure of capacity. As an example, we
take a PQC that can represent arbitrary N qubit quan-
tum states, which is parametrized by in total M = 2N+1

parameters a, b

|ψ(a, b)〉 =
2N∑

j =1

(aj + ibj )|j 〉, (2)

where |j 〉 is the j th computational basis state and aj , bj ∈
R. One can map the above state to DC = 2N+1 − 2
independent parameters, which lie on the surface of a
(2N+1 − 1)-dimensional sphere. Of the M parameters in
total, the final two parameters are dependent and do not
change the quantum state, as they correspond to the norm
and global phase of the quantum state. Conversely, for a
generic real-valued quantum state with bj = 0, we find
DC = 2N − 1 independent parameters, with one depen-
dent parameter due to the norm of the real-valued quan-
tum state. Analogous to the generic quantum state, we
now define the parameter dimension DC for a PQC C as
the number of independent parameters that the PQC can
express in the space of quantum states. In general, DC for
N qubits is upper bounded by the generic state Eq. (2) with
DC ≤ 2N+1 − 2. We define the redundancy

R = M − DC

M
, (3)

which is the fraction of dependent parameters of the PQC
that do not contribute to changing the quantum state. In
the next section, we show how DC can be determined for
hardware-efficient PQCs.

IV. EFFECTIVE QUANTUM DIMENSION

Now, we explain how the QFI F(θ) quantifies the
expressive power of a PQC (see Appendix B for an intro-
duction to the QFI and the QNG, and Appendix G on how
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TABLE I. Definitions of symbols.

Name Symbol Definition

Parametrized quantum circuit (PQC) |ψ(θ)〉 U(θ)|0〉⊗N

Quantum Fisher information metric (QFI) Fij (θ) Re(〈∂iψ |∂jψ〉 − 〈∂iψ |ψ〉〈ψ |∂jψ〉)
Expectation value of Hamiltonian H E E = 〈0|U†(θ)HU(θ)|0〉
Quantum natural gradient QNG F−1(θ)∂kE
Variance var(E) 〈(E)2〉 − 〈E〉2

Effective dimension GC(θ) rank(F(θ))
Parameter dimension DC GC(θrandom)

Number of parameters of a PQC M
Redundancy R (M − DC)/M

to calculate it). One can relate F(θ) to the distance in
the space of pure quantum states, which is given by the
Fubini-Study distance

DistQ
(
|ψ(θ)〉, |ψ(θ + dθ)〉

)2
=

∑

i,j

Fij (θ)dθidθj , (4)

where DistQ(x, y) = |〈x|y〉|2 and the QFI [30,31]

Fij (θ) = Re(〈∂iψ |∂jψ〉 − 〈∂iψ |ψ〉〈ψ |∂jψ〉), (5)

which corresponds to the real part of the quantum geomet-
ric tensor. F(θ) quantifies the change of the quantum state

when adjusting its parameter θ infinitesimally to θ + dθ .
The eigenvalue decomposition

F(θ) = VSVT, (6)

gives us V, which is a real-valued unitary with the ith
eigenvector α(i) placed at the ith column of V, and S,
which is a diagonal matrix with the M non-negative eigen-
values λ(i) of F(θ) along the diagonal. The eigenvalues
and eigenvectors obey the equation F(θ)α(i) = λ(i)α(i).

= or or

=

p times

CHAIN All-to-all (ALL)
Alternating (ALT)

(a) (b)

(c)

iSWAP

FIG. 1. (a) A sketch of a hardware-efficient parametrized quantum circuit (PQC) U(θ)|0〉⊗N = ∏1
l=p [WlVl(θl)]

√
Hd

⊗N |0〉⊗N , with
parameters θ and the initial state |0〉 of all N qubits being in state zero. The PQC consists of an initial layer of

√
Hd gates applied to

each qubit, where Hd is the Hadamard gate, followed by p repeated layers of parametrized single-qubit rotations Vl(θl) and entangling
gates Wl. Vl(θl) consists of single-qubit rotations Rα(θl,n) = exp(−iσαn θl,n/2) at layer l and qubit n around axis α ∈ {x, y, z}. (b) The
two-qubit entangling gates wl considered are controlled-NOT (CNOT) gates (control-σx), controlled-PHASE (CPHASE) gates (control-σz ,
diag(1, 1, 1, −1)), or

√
iSWAP gates. (c) The entangling layer Wl is composed of the two-qubit entangling gates wl, which are arranged

in a nearest-neighbor one-dimensional chain topology (denoted as CHAIN), via an all-to-all connection (ALL) or in an alternating fashion
(ALT) for even and odd layers l.
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Inserting Eq. (6) into Eq. (4) gives us

DistQ
(
|ψ(θ)〉, |ψ(θ + dθ)〉

)
= dθTFdθ = dθTVSVTdθ .

(7)

Now, we assume that the small variations in θ are in the
direction of the ith eigenvector of F(θ) with dθ = dμα(i),
where dμ is an infinitesimal scalar. We find

DistQ
(
|ψ(θ)〉, |ψ(θ + dμα(i))〉

)2

= dμα(i)
T
VSVTα(i)dμ = λ(i)dμdμ,

where we use VTα(i) = e(i), where e(i) is the ith basis vec-
tor. When updating θ ′ = θ + dμα(i), the quantum state
changes at a rate that is proportional to λ(i). The eigenval-
ues λ(i) = 0 are called singularities, as there is no change at
all in the quantum state, i.e., |〈ψ(θ)|ψ(θ + dμα(i))〉| = 1.
The case λ(i) being very small, i.e., 1 	 λ(i) > 0, is called
near singularity and is associated with plateaus in classical
machine learning where training slows down [35].

We now define the effective quantum dimension GC(θ)

for a PQC C as the rank of the QFI F(θ). It is given as
the total number of nonzero eigenvalues λ(i)(θ) of F(θ)
initialized with parameters θ [28,29]:

GC(θ) =
M∑

i=1

I[λ(i)(θ)], (8)

where I(x) = 0 for x = 0 and I(x) = 1 for x 
= 0. GC(θ)

is a local measure of expressiveness that counts the num-
ber of independent directions in the state space that can be
accessed by an infinitesimal update of θ .

A straightforward example is a generic single-qubit
quantum state shown in Fig. 2

|ψ(θ ,ϕ)〉 = cos
(
θ

2

)
|0〉 + exp(iϕ) sin

(
θ

2

)
|1〉 (9)

F(θ) =
[

1 0
0 sin2(θ)

]
. (10)

The eigenvalues and eigenvectors of the QFI F are
straightforward to calculate with λ1 = 1, α1 = {1, 0} and
λ2 = sin2(θ), α2 = {0, 1}. The effective quantum dimen-
sion is GC(θ ,ϕ) = DC = 2, except for the special case
θ = nπ , n integer, where the eigenvalue is λ2 = 0 and thus
GC(nπ ,ϕ) = 1. Here, any change in the direction of eigen-
vector α2 (corresponding to changing ϕ) will not yield any
change in the underlying quantum state. However, note
that except for these singular parameters we find GC = 2,
which is equivalent to the maximal number of independent
parameters DC of the system.

θ
φ

vθ

vφ

wθ

w  = 0φ

G                = 1C

G           = 2C

D = 2C

FIG. 2. An example to demonstrate the effective quantum
dimension GC and the parameter dimension DC for a single qubit
parametrized as |ψ(θ ,ϕ)〉 = cos(θ/2)|0〉 + exp(iϕ) sin(θ/2)|1〉.
The quantum state is described by M = 2 parameters θ and
ϕ. DC = 2 is the number of independent parameters of the
quantum state. GC(θ ,ϕ) denotes the number of independent
directions the quantum state can change to by locally perturb-
ing its parameters θ , ϕ. For a random state |v〉 (θ /∈ {0,π}) two
possible directions exist, along vθ and vϕ . The particular state
|w(θ = π ,ϕ)〉 can only be perturbed in direction wθ , as adjust-
ing ϕ does not change the state (e.g., |w(π ,ϕ + ε)〉 = |w(π ,ϕ)〉);
thus GC(θ = π ,ϕ) = 1.

As a further example, we consider the single-qubit
circuit with Pauli z matrix σz and Hadamard gate Hd

U(θ)|0〉 =
M∏

i=1

[
exp

(
−i
θi

2
σz

)]
Hd|0〉. (11)

Here, we find F = (1/4)JM ,M , where JM ,M is a M × M
matrix filled with ones. Diagonalizing F gives us M − 1
eigenvalues with λ = 0 and one eigenvalue λ1 = M/4
with eigenvector α1 = (1/

√
M )JM ,1. This circuit has a low

parameter dimension DC = 1 and a large redundancy of
R = (M − 1)/M , i.e., there are M − 1 parameter direc-
tions that do not yield any change of the quantum state.

For the type of PQC as shown in Fig. 1, which are
arranged in a layer-wise structure with the parametrized
gates being Pauli operators, the effective quantum dimen-
sion GC is equal or less than the parameter dimension DC,
which in turn is equal or less than the number of parameters
M

GC(θ) ≤ DC ≤ M . (12)

Given the aforementioned PQC types with a random set
of parameters θrandom ∈ random(0, 2π), we find numerical
evidence that GC(θrandom) is approximately equivalent to
DC

GC(θrandom) � DC. (13)

Thus, we can calculate DC by determining GC(θrandom) for
random sets of PQC parameters. The core intuition is that
starting from a sufficiently random initial parameter set,
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a change of the PQC parameters in the right direction is
able to bring one closer to any quantum state that can be
expressed by the PQC. For specific choices of parameters
such as θ = 0, we find GC < DC. Moving sufficiently away
from these special points, we recover that GC � DC.

We stress that Eq. (13) is not valid for arbitrary quantum
circuits, e.g., circuits where the parameters do not enjoy
a 2π periodicity. As a simple example, take the evolu-
tion of a single qubit with a single parameter t U(t)|0〉 =
exp(−i

√
2σzt) exp(−iσxt)|0〉. The evolution over all pos-

sible t (note the absence of 2π periodicity) will cover
all possible quantum states and thus DC = 2, whereas the
effective quantum dimension (with only a single parameter
t) is GC = 1 < DC.

We now consider different types of hardware-efficient
PQCs |ψ(θ)〉 = U(θ)|0〉⊗N , which are circuits that can be
efficiently run on NISQ quantum processors. We choose
an initial state |0〉⊗N , followed by a single layer of the
square root of the Hadamard gate (

√
Hd) on every qubit.

Then, we repeat p layers composed of parametrized single-
qubit rotations and a set of two-qubit entangling gates [see
Fig. 1(a)]. The single-qubit rotations are either chosen ran-
domly to be around the x, y, or z axis or fixed to a specific
axis. The two-qubit entangling gates are CNOT, CPHASE, or√

iSWAP gates [see Fig. 1(b)], which are common native
gates in current quantum processors [36]. The entangling
gates in each layer are arranged in a nearest-neighbor chain
topology (CHAIN), via all-to-all connections (ALL), or in an
alternating nearest-neighbor fashion (ALT) [see Fig. 1(c)].
The numerical calculations are performed using Ref. [37].

V. RESULTS

As a demonstration of our methods, we provide an in-
depth characterization of a PQC consisting of randomly
chosen x, y, and z rotations and CNOT gates in a chain
topology as function of the number of layers p in Fig. 3.
The parameter dimension DC (i.e., the number of indepen-
dent parameters of the quantum state that can be expressed
by the PQC) increases linearly with p in Fig. 3(a), until it
reaches the maximal possible value for DC = 2N+1 − 2 at
a characteristic number of layers pc. This point is reflected
in the spectrum of the QFI F , averaged over random
instances of the PQC [see Figs. 3(b)–3(d)]. Most notably,
the variance of the logarithm of the nonzero eigenvalues
reaches a maximum for pc [Fig. 3(b)]. Further, the min-
imum taken over all eigenvalues becomes minimal [Fig.
3(c)]. We can see this more clearly in the distribution of
eigenvalues [Fig. 3(d)]. With increasing p , the distribution
becomes broader, with a pronounced tail of small eigen-
values of F appearing close to the transition at pc. Above
the transition p > pc, the small eigenvalues suddenly dis-
appear from the distribution. We investigate the variance
of the gradient and the QNG in Fig. 3(e) for the two-qubit

Hamiltonian H = σ z
1σ

z
2 . The variance of the regular gra-

dient decays with p , reaching a minimum around p ≈ 20
[7], upon which it remains constant. The variance of the
QNG remains larger than the regular gradient; however,
the QNG decays for p > pc. In Fig. 3(f), we numerically
find that the variance of both the regular gradient and the
QNG vanish exponentially with an increasing number of
qubits N , demonstrating the barren-plateau problem. In
Appendix D, we show that the same result is also found
for more complicated Hamiltonians such as the transverse
Ising model.

In Fig. 4, we compare different types of PQCs with dif-
ferent entangling gates and arrangements. We note that
all circuits show the same qualitative behavior regarding
the transition in the QFI (see Fig. 3 and Appendix C) as
well as suffering from exponential decrease of the vari-
ance of the gradient with an increasing number of qubits.
However, key differences in the different PQCs appear.
We show the variance of the gradient for the Hamilto-
nian H = σ z

1σ
z
2 in Figs. 4(a), 4(c) and 4(e) for different

arrangements of the entangling gates (CHAIN, ALL, and
ALT) as well as different types of entangling gates (CNOT,
CPHASE, and

√
iSWAP). The variance decays with increas-

ing p , until it reaches a constant level, the value of which
is the same for all gates and arrangements. However,
CPHASE requires the most layers p to converge, followed
by

√
iSWAP and CNOT. Figures 4(b), 4(d), and 4(f) show the

redundancy R, which is the fraction of redundant parame-
ters of the PQC. It quickly reaches a constant level with
increasing p .

√
iSWAP has consistently low R, while for

CNOT it varies depending on the arrangement of entangling
gates. For CPHASE, we have consistently larger R. This
can be easily understood when considering that z rotations
commute with the entangling CPHASE layer. When two
z rotations appear consecutively on the same qubit, they
yield a redundant parameter. R for CNOT depends highly
on the entangling-gates arrangement.

We note that for these PQCs, the number of layers pc
at which the transition of the QFI occurs can be esti-
mated from the value of redundancy R. We find pc ≈ (1 −
RC)DC/N , where RC is the value of R for sufficiently large
p . The eigenvalue spectrum of these PQCs and further
types of PQCs are discussed in Appendix C.

In Fig. 5, we fix the single-qubit rotations around the
y axis and investigate different entangling gates arranged
in a nearest-neighbor one-dimensional chain. Depending
on the choice of entangling gates, we find that the vari-
ance of the gradient for H = σ z

1σ
z
2 decays to a different

constant level with increasing p [see Fig. 5(a)]. y
√

iSWAP
matches the variance found in Fig. 3(e), whereas y CNOT
and y CPHASE have higher variance. In Fig. 5(b), we show
the maximal DC for many layers p . DC scales exponen-
tially for y CNOT (DC ∝ 2N ) and y

√
iSWAP (DC ∝ 2N+1),

whereas for y CPHASE we find numerically an approximate
quadratic scaling DC ∝ N 2.
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FIG. 3. The properties of a PQC consisting of p layers of ran-
domly chosen x, y, and z rotations, followed by CNOT gates in
a chain topology (see Fig. 1) for N = 10 qubits. (a) The param-
eter dimension DC of the PQC [determined via Eq. (13)] scales
linearly with p , until it levels at a characteristic value pc ≈ 210.
(b) The variance of the logarithm of the nonzero eigenvalues of
F . The variance peaks around p ≈ pc. (c) The minimal nonzero
eigenvalue of F against p . It increases for p > pc. (d) The
histogram of the logarithm of the eigenvalues of the Fisher infor-
mation matrix F . The width of the distribution increases with
p , with a pronounced tail at small F developing around p ≈ pc,
which disappears for p > pc. (e) The variance of the gradient
var(∂kE) and the QNG var(F−1∂kE) in respect to the Hamilto-
nian H = σ z

1σ
z
2 . The gradient decays until p ≈ 20, after which

it remains constant. The QNG remains larger than the regular
gradient but decreases for p > pc. (f) The variance of the gradi-
ents and the QNG for varying qubit number N for depth p = 2N ,
showing an approximate exponential decrease with N .

In Fig. 6, we show how GC and the variance of the gra-
dient for H = σ z

1σ
z
2 change when tuning the parameters

of a PQC defined as U(aθrandom)|0〉, θrandom ∈ [0, 2π), a ∈
[0, 1]. When adjusting a = 0 to a = 1, this corresponds to
changing the PQC from parameters that are all zero to a
PQC with random parameters. As an example, we show a
PQC consisting of layered randomly chosen single-qubit
rotations around the x, y, or z axis and entangling gates
arranged in a chain. In Fig. 6(a), we show GC for different

(a) (b)

(c) (d)

(e) (f)

v
v

v

FIG. 4. The variance of the gradient and the redundancy of
different hardware-efficient PQCs plotted against the number of
layers p for N = 10 qubits. Each layer consists of single-qubit
rotations as randomly chosen rotations around the x, y, or z axis.
We plot different arrangements of entangling gates (as shown in
Fig. 1(c) with (a),(b) a nearest-neighbor one-dimensional chain,
(c),(d) all-to-all, and (e),(f) alternating nearest-neighbor connec-
tions. (a),(c),(e) The variance of the gradient var(∂kE) in respect
to the Hamiltonian H = σ z

1σ
z
2 . (b),(d),(f) The redundancy R [Eq.

(3)], which is the fraction of redundant parameters of the PQC.

types of entangling gates. GC increases with a, reaching
the parameter dimension DC for a = 1. CNOT and

√
iSWAP

increase faster with a compared to the PQC with CPHASE
gates. In Fig. 6(b), the variance of the gradient decreases
sharply once a particular a is reached. Note that there
is a specific range of parameters log10(a) ≈ −2.5 where
the PQCs have nearly maximal GC and the variance of
gradients remains large.

In Fig. 7, we show the scaling of GC(θ = 0, N ) with the
number of qubits N for a PQC with entangling gates in
a chain arrangement initialized with θ = 0, correspond-
ing to the point a = 0 in Fig. 6. Numerically, we find
linear scaling of GC(θ = 0, N ) for CPHASE entangling
gates, quadratic scaling for CNOT gates, and higher-order
polynomial or even exponential scaling for

√
iSWAP gates.
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(a) (b)
v

M
FIG. 5. The capacity of PQCs with y rotations and different
entangling gates. The entangling layer is arranged as a nearest-
neighbor one-dimensional chain. Three of the PQCs have y
rotations and as reference we show a PQC with randomized x,
y, or z rotations and CNOT gates. (a) The variance of the gradi-
ent var(∂kE) in respect to the Hamiltonian H = σ z

1σ
z
2 . (b) The

maximal parameter dimension DC of the PQCs as function of
the number of qubits N . For y CPHASE, we find an approximate
power law DC ∝ N 2.

As an application, we propose Algorithm 1 to remove
redundant parameters from a PQC C. The algorithm cal-
culates the eigenvectors of the QFI with eigenvalue zero.
Parameters that have a nonzero amplitude in the eigen-
vectors can potentially be removed from the PQC without
changing its expressive power. The algorithm removes one
redundant gate and removes the corresponding entry in
the QFI and then recalculates the eigenvectors of the QFI.
These steps are repeated until no redundant gates are left.
The resulting pruned PQC Cpruned has as many parameters
as the parameter dimension DC of the original PQC. We
demonstrate our algorithm on the CPHASE-CHAIN PQCs in
Appendix F and find a substantial reduction of parameters
without affecting DC.

(a) (b)

v

FIG. 6. Tuning the PQC parameters θ = aθrandom, where a =
(0, 1] and θrandom ∈ [0, 2π) for circuits composed of random x, y,
and z rotations and entangling gates arranged in a chain configu-
rations. (a) The effective quantum dimension GC as a function of
log10(a). The black dashed-dotted line is the number of param-
eters M . (b) The variance of the gradient var(∂kE) in respect
to Hamiltonian H = σ z

1σ
z
2 . All plots show the number of layers

p = 100 and N = 10 qubits.

FIG. 7. The effective quantum dimension GC(θ = 0) plotted
against the number of qubits N for a circuit consisting of ran-
domly chosen parametrized rotations around the x, y, or z axis
with parameters θ = 0, and two-qubit entangling gates arranged
in a nearest-neighbor chain. We compare CNOT, CPHASE, and√

iSWAP entangling gates. From the numerical results, we find
that GC scales quadratically for CNOT gates, linearly for CPHASE
gates, and with higher-order polynomial or even exponential
scaling for

√
iSWAP. The number of layers p is chosen such that

GC(θ = 0) is maximized.

Algorithm 1: Prune PQC of redundant parameters
Input : PQC C, QFI FC(θrandom), number of

parameters N C
param, DC < N C

param, empty set
K = {}

Output: Pruned PQC Cpruned with N
Cpruned
parameters ≈ DC

1 do
2 Get eigenvalues λ(i) of FC(θrandom) sorted in

ascending order, eigenvectors α(i) and rank r
3 Calculate β j = ∑Nparam−r

i=1 |α(i)j |2 where α(i)

denotes the ith eigenvector with corresponding
eigenvalue λ(i) = 0

4 Pick largest index k such that βk 
= 0
5 Update FC(θrandom) by removing row k and

column k
6 Add k to set K
7 while FC(θrandom) has nonzero eigenvalues;
8 Removing parameters corresponding to set K from

C gives pruned PQC Cpruned

VI. DISCUSSION AND CONCLUSIONS

We investigate the capacity and trainability of hardware-
efficient PQCs using the quantum geometric structure of
the parameter space. We introduce the notion of param-
eter dimension DC and effective quantum dimension GC,
which are global and local measures, respectively, of the
space of quantum states that can be accessed by the PQC.
Both can be derived from the QFI. We apply these con-
cepts on PQCs composed of layers of single-qubit rotations
and different types of entangling gates arranged in vari-
ous geometries. For comparable circuit depths p , we find
strong numerical evidence that PQCs constructed from
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CNOT or
√

iSWAP gates have lower variance of the gradi-
ent and thus higher expressibility compared to PQCs with
CPHASE gates. While two-qubit gates such as the CNOT and
CPHASE gates can be expressed as each other by apply-
ing specific single-qubit rotations, the PQCs we use only
have a limited amount of single-qubit rotations and thus
the choice and arrangement of two-qubit gates strongly
affects the expressibility of the PQC. Without losing gen-
erality, we study the properties of the variance of the
gradient using a two-qubit Hamiltonian H = σ z

1σ
z
2 , where

we take the variance over an ensemble of randomized
PQCs. The variance of the gradient of a generic Hamil-
tonian H = ∑

i biHi that consists of a polynomial number
of Pauli operators Hi shows the same exponential decay
as the two-qubit Hamiltonian [7,8], which we demonstrate
for a many-body Hamiltonian in Appendix D.

For a specific type of PQC composed of y rotations and
CPHASE gates, DC scales only quadratically with number
of qubits, which may imply that this PQC can be effi-
ciently simulated on classical computers. We find that the
redundancy of parameters varies strongly depending on the
configuration of the PQC as well as the type of gates.

The effective quantum dimension GC reveals the expres-
sive power of a PQC by local variations around a specific
parameter set. We find that depending on the entangling
gates, GC shows widely different scaling with number of
qubits, with the largest value found for

√
iSWAP gates.

While we only study the case θ = 0, PQCs with correlated
parameters could feature similar behavior [19]. Tuning the
parameters of a PQC from zero to a random set of param-
eters yields a crossover from large gradients and small GC
to vanishing gradients and large GC. For the PQCs inves-
tigated, we can find a range of parameters that combines
large gradients with a nearly maximal GC, which could be
an optimal starting point for gradient-based optimization.
Trade-offs between the expressibility of a circuit and the
magnitude of its gradients are a key challenge in finding
good initialization strategies [34].

When increasing the number of layers p to a value
pc, a transition occurs in the QFI when DC reaches its
maximal possible value. The transition is characterized
by a disappearance of small eigenvalues of the QFI and
a peak in the variance of the logarithm of eigenvalues.
This peak may be related to a transition in the optimiza-
tion landscape of control theory. When the system becomes
overparametrized with more parameters than degrees of
freedom, the optimization landscape changes from being
spin-glass-like with many near-degenerate minima to one
with many degenerate global minima [38,39]. This peak
in the QFI could be used to identify the transition. The
overparametrized regime may be useful for mitigating the
effect of noise [40,41]. For deep circuits p > pc, the tran-
sition leads to a decay of the QNG as small eigenvalues
are suppressed. For shallow circuits p < pc, the QNG
can be orders of magnitude larger in value compared to

the regular gradient; however, our numerical results sug-
gest that both the regular gradient and the QNG decrease
exponentially with the number of qubits. Thus, the QNG
most likely cannot help to solve the barren-plateau prob-
lem. This contrasts with the natural gradient in classical
machine learning, which is known to be able to over-
come the plateau phenomena that leads to a slow down of
optimization [35].

Imaginary-time evolution and variational quantum sim-
ulation use a matrix related to the QFI to update the
parameters of the PQC [31,42]. The effective quantum
dimension GC could give major insights into the conver-
gence properties of these algorithms. Recent proposals for
adaptively generated ansatze could benefit from the QFI
by taking the geometry of the PQC into account when
designing PQCs [21].

We demonstrate an algorithm to systematically reduce
the number of parameters and the depth of PQCs while
keeping the parameter dimension constant. This algorithm
can be immediately applied to PQCs used in VQAs to
reduce the number of parameters M without sacrificing
expressive power. Commonly used PQCs often contain
more parameters than necessary. Removing them reduces
the computational effort for calculating the gradient as
well as the QFI necessary for the QNG, which has been
shown to be highly beneficial for training [32,43]. When
compared to ordinary gradient descent, the sampling over-
head of training using the QFI and the QNG is constant
asymptotically for both an increasing number of itera-
tions and number of qubits, as has been proven recently
[43]. Furthermore, training with the QNG has a reduced
total cost, since it approaches the optimum faster [43].
Thus, NISQ algorithms that use the QFI to update their
parameters accomplish faster training than ordinary gradi-
ent descent. Our algorithm reduces the cost of calculating
QFI in each iteration of the training by truncating the
size of the QFI. As the QFI is a matrix, removing a sin-
gle parameter already reduces the number of elements
to measure by M . Further, with our approach one can
lower the number of parametrized gates needed to run
the VQA, which is especially important for NISQ-era
algorithms.

The QFI has widespread use in quantum metrology [44]
and quantum computing [31,45,46]. To facilitate its appli-
cation, various methods to calculate the QFI on quantum
computers have been developed and are being continu-
ously improved [46,47], which we review in Appendix G.
The most commonly applied methods are the shift rule
[47,48], the Hadamard test [45,49,50], and direct measure-
ment methods [51]. For these approaches, the number of
circuits to measure scales as the square

(
M 2

)
of the num-

ber of parameters (M ). Various approximations for the
QFI have been proposed [31,52–54]. Improved methods
for numerical simulation of the QFI are being developed
as well [55]. We provide code that can simulate the QFI
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for 26 qubits on a desktop computer [56]. We note that
calculations relying on a reduced number of qubits or lay-
ers can help to design better PQCs. Most commonly used
PQCs are constructed according to specific rules in a layer-
wise fashion. By evaluating the effective dimension within
smaller PQCs, one can identify rules and patterns for con-
structing PQCs with few redundant parameters. Then, one
can extrapolate these rules to PQCs with many qubits and
layers.

During the training of a PQC, the eigenvalue spectrum
of the QFI can gain specific features, as has been shown
for restricted Boltzmann machines [57]. We show that the
PQCs have a characteristic eigenvalue spectra depending
on the types of gates and their arrangement (see Appendix
E). The eigenvalues hold important information about the
trainability and generalization of a model. For example, a
model that generalizes well is known to have a low effec-
tive dimension in classical machine learning [29]. It would
be interesting to study in what way these statements trans-
late to quantum machine learning. The eigenvalues of the
Hessian could be applied as well [58]. Further, connections
to complementary measures of capacity based on classi-
cal Fisher information [59] and memory capacity [60],
respectively, could be explored.

While we study hardware-efficient PQCs, some of our
results can be carried over to other types of PQCs. The
transition in the QFI spectrum that we observe could be
used to characterize when a PQC is overparametrized. Fur-
ther, GC(θ) can be used to determine the amount of quan-
tum states that can be reached by varying the parameters of
PQCs. It would be straightforward to extend our concepts
to evaluate the capacity and trainability of noisy PQCs
[61], convolutional PQCs [62], optimal control [63], quan-
tum metrology [64], and programmable analog quantum
simulators [65].

The PYTHON and JULIA code for the numerical cal-
culations performed in this work are available in Ref.
[56].
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APPENDIX A: VARIATIONAL QUANTUM
EIGENSOLVER

The core idea of variational quantum eigensolver (VQE)
is to find the ground state of a Hamiltonian H by minimiz-
ing the parameters θ of a PQC in regards to an objective

function that represents the energy of a given Hamiltonian
E(θ) = 〈0|U†(θ)HU(θ)|0〉 [3]. The minimization is per-
formed with a classical optimization algorithm, whereas
the energy is measured on a quantum device. According
to the Ritz variational principle, the objective function
is lower bounded by the ground-state energy of H , i.e.,
E(θ) ≥ Eg , where Eg is the true ground state of H .

APPENDIX B: QUANTUM FISHER
INFORMATION METRIC

For VQE, the objective function is updated in a hybrid
classical-quantum algorithm in an iterative manner. At step
n of the procedure, the objective function is evaluated on
the quantum computer for a given θn. Based on the result,
a classical computer selects the next choice θn+1 such that
it (hopefully) decreases the objective function. A common
scheme to update parameters is ordinary gradient descent:

θn+1 = θn − η
∂E(θ)
∂θ

, (B1)

where η is a small coefficient and ∂E(θ)/∂θ is the gradient
of the objective function.

The above update rule assumes that the parameter space
for θ is a flat Euclidian space. However, in general this
is not the case, as the underlying PQC and cost func-
tion do not have such simple forms. Recent studies have
proposed the QNG, inspired by the natural gradient in
classical machine learning [66], to minimize the objective
function [30,31]. The main idea is to use information about
how fast the quantum state changes when adjusting the
parameter θ in a particular direction. Optimization with the
natural gradient updates the parameters according to

θk+1 = θk − ηkF−1(θ)
∂E(θ)
∂θ

, (B2)

where F(θ) is the Fubini-Study metric tensor or QFI:

Fij = Re(〈∂iψ |∂jψ〉 − 〈∂iψ |ψ〉〈ψ |∂jψ〉), (B3)

where |∂iψ〉 = ∂/∂θi|ψ(θ)〉 denotes the partial derivative
of |ψ(θ)〉. One can relate F(θ) to the distance in the space
of pure quantum states, which is the Fubini-Study distance,
given by

DistQ
(
|ψ(θ)〉, |ψ(θ + dθ)〉

)2
=

∑

i,j

Fij (θ)dθidθj , (B4)

where DistQ(x, y) = |〈x|y〉|2.

APPENDIX C: FURTHER DATA ON THE PQCs

In Fig. 8, we show further types of PQCs as defined in
the caption. We highlight that the PQC rand(xyw) CPHASE
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(a) (b)

(c) (d)

v

v
va

r[
lo

g(
ei

g(
F

))
]

FIG. 8. The properties of further PQCs plotted against layers
p for N = 10 qubits. The PQCs have nearest-neighbor chain
entangling layers. We define the types of PQCs in the legend:
rand(xyz) denotes randomized single-qubit rotations around the
x, y, and z axes. By rand(xyw), we denote randomized single-
qubit rotations around the x, y, and (x + y)/

√
2 axes. zxz denotes

that for every layer there are three single-qubit rotations, around
the z, x, and z axes. (a) The variance of the gradient var(∂kE)
in respect to the Hamiltonian H = σ z

1σ
z
2 . (b) The variance of the

QNG var(F−1∂kE). (c) The redundancy R of the parameters of
the PQCs. (d) The variance of the logarithm of the eigenvalues
of the QFI.

has lower redundancy compared to rand(xyz) CPHASE. The
reason is that the z rotations, which can commute with
the CPHASE layer, are replaced with noncommuting (x +
y)/

√
2 rotations. This leads to a faster decrease in the vari-

ance of the gradient as well. We also define a common type
of PQC zxz CNOT, which was first introduced in Ref. [23].
We note that while it has three rotations per qubit and layer,
compared to rand(xyz) CNOT the decay of the variance of
the gradient as a function of p remains the same in both
types of PQC. Finally, we show further examples of the
transition in the QFI, visible both in the peak of the vari-
ance of the logarithm of the eigenvalues, and in the decay
of the QNG.

APPENDIX D: VARIANCE OF GRADIENT OF
HAMILTONIANS

The variance of the gradient shows the same exponential
decay due to barren plateaus for any Hamiltonian that con-
sists of a sum of a polynomial number of Pauli operators
[7]. To demonstrate this, we compare the simple two-qubit

v

FIG. 9. The variance of the gradient for H = σ z
1σ

z
2 (solid

curves) and transverse Ising Hamiltonian (dashed curves) for
different types of PQC with entangling gates in a CHAIN con-
figuration for a varying number of layers p . For the transverse
Ising Hamiltonian, we divide the variance of the gradient by the
number of terms in the Hamiltonian. We use N = 10 qubits.

Hamiltonian H = σ z
1σ

z
2 and the transverse Ising model,

Hising =
N∑

n=1

σ z
nσ

z
n+1 + h

N∑

n=1

σ x
n , (D1)

with h = 1. The variance of the gradient in respect to the
Hamiltonian for different PQCs is shown in Fig. 9. We find
that the variance of the gradient divided by the number of
terms in the Hamiltonian has nearly the same value for
both the two-qubit Hamiltonian and the transverse Ising
Hamiltonian. As we take the variance over an ensemble of
randomized PQCs, it does not matter which Pauli operator
we use to calculate the variance.

APPENDIX E: HISTOGRAMS OF EIGENVALUES

In Fig. 10, we show the distribution of eigenvalues for
the PQCs of Fig. 4 in the main text. We find that a char-
acteristic spectrum for the different PQC types. Note that
CPHASE appears to have more pronounced tails in all cases.

APPENDIX F: PRUNING PQCs OF REDUNDANT
PARAMETERS

We apply Algorithm 1 of the main text to prune a
PQC of redundant parameters, i.e., parameters that can be
removed without changing the parameter dimension DC
and thus the expressiveness of the circuit. In Fig. 11(a), we
show the initial PQC, which is the CPHASE-CHAIN PQC.
In Fig. 11(b), we apply Algorithm 1 of the main text to
remove redundant parameters and reduce the number of
unitaries within the circuit substantially. The parameter
dimension DC = DCpruned = 126 remains constant before
and after pruning.
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(a) (b) (c)

FIG. 10. The distribution of eigenvalues of QFI for PQCs shown in Fig. 4 in the main text. (a) The nearest-neighbor chain arrange-
ment of entangling gates, (b) All-to-all connectivity. (c) Alternating nearest-neighbor connections. All graphs for N = 10 qubits and
number of layers p = 50.

APPENDIX G: MEASURING THE QUANTUM
FISHER INFORMATION METRIC

The QFI has found widespread use in quantum metrol-
ogy [44] and quantum computing [31,46,49]. As such,
various methods to calculate the QFI have been pro-
posed and are continuously being improved and devel-
oped. We now proceed to review methods for calculating
the M × M -dimensional positive-semidefinite QFI F(θ)
or Fubini-Study metric

Fij (θ) = Re(〈∂iψ |∂jψ〉 − 〈∂iψ |ψ〉〈ψ |∂jψ〉). (G1)

Shift rule. The QFI for pure states can be reformulated as
the second-order derivative of the fidelity of a quantum

1

Qubit

D
ep

th

2 3 4 5 6

xσ

yσ

zσ

I

1

Qubit
2 3 4 5 6

(a) (b)

FIG. 11. The pruning of the layered PQC composed of ran-
dom parametrized rotations with Pauli operators {σ x, σ y , σ z} and
CPHASE gates arranged in a nearest-neighbor chain. The PQC has
p = 40 layers and N = 6 qubits. The color scheme indicates the
type of parametrized rotation at a specific qubit and layer. The
identity operation I is to show that no operation (identity) is
applied at that particular qubit and depth, which results in prun-
ing of the redundant rotations. (a) We show the initial PQC with
Nparam = 240 parameters and parameter dimension DC = 126.
(b) Algorithm 1 removes redundant parametrized rotations and
replaces them with identity operator I . We show the pruned PQC
with Nparam = 126 and the same parameter dimension DC = 126,
reducing the PQC by 14 circuit layers and 114 parameters.

state [47]:

Fij (θ) = −1
2
∂i∂j |〈ψ(θ)|ψ(θ0)〉|2

∣∣∣
θ=θ0

. (G2)

A straightforward way to calculate the QFI is thus to cal-
culate the Hessian of the fidelity. First, we explain how
to calculate fidelities using the inversion test. The fidelity
K = |〈ψ1|ψ2〉|2 of two quantum states |ψ1〉 = U(θ1)|0〉
and |ψ2〉 = U(θ2)|0〉 is computed by preparing the first
state followed by the inverse of the second state, |ψ12〉 =
U†(θ2)U(θ1)|0〉. Then, the fidelity is measured as the
probability of sampling the all-zero state |〈ψ1|ψ2〉|2 =
|〈0|ψ12〉|2. Now that we know how to calculate the fidelity,
we can proceed to calculate its gradients as well. For quan-
tum computers, the shift rule is a practical way to calculate
gradients [67]. It applies directly to all PQCs where the
parametrized rotations are of the form exp(−iθG), where
the generator G is a Pauli string. Recently, the shift rule
has been also extended to circuits with general generators
G [47,68,69]. The shift rule for the QFI takes the following
form [47,48]:

Fij (θ) = −1
8

[
∣∣〈ψ(θ |ψ(θ + (ei + ej )π/2〉∣∣2 +

− ∣∣〈ψ(θ |ψ(θ + (ei − ej )π/2〉∣∣2

− ∣∣〈ψ(θ |ψ(θ + (−ei + ej )π/2〉∣∣2

+ ∣∣〈ψ(θ |ψ(θ − (ei + ej )π/2〉∣∣2],

where ei is the basis vector for the ith index of parameter
θ . The diagonal elements of the QFI simplify to

Fii(θ) = 1
4

[1 − |〈ψ(θ |ψ(θ + eiπ〉|2 . (G3)

To determine the full QFI, we have to measure 2M (M −
1)+ M fidelities in total via the shift rule.

Approximations of the QFI can be measured even more
efficiently on quantum computers [31,52]. For example,
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when unitaries within the PQC commute, one can use this
to speed up the calculation. This is the case for the diag-
onal and block-diagonal entries of the QFI, which can be
calculated in a time that scales linearly with M [31,47].

Hadamard test. We now review an alternative approach
to calculate the QFI. We assume a general ansatz for the
PQC for N qubits and M parameters:

|ψ(θ)〉 =
M∏

l=1

WlRl(θl)|0〉⊗N , (G4)

where Wi is an arbitrary unparametrized unitary and
Rl(θl) = exp(−ιθl/2σ

αl
nl ) is a parametrized rotation with

Pauli operator σαl
nl acting on qubit nl and αl ∈ {x, y, z}. This

ansatz includes hardware-efficient PQCs as used within our
manuscript.

As notation for our circuit, we define

U[l1:l2] := Wl2Rl2 · · · Wl1Rl1 . (G5)

The derivative of a PQC |ψ(θ)〉 = |ψ〉 in respect to the lth
index of the parameter is given by

∂l|ψ〉 = U(l:M ]Wl∂lRl(θl)U[1:l)|0〉,

= U(l:M ]WlRl(θl)

(
−ισ

αl
nl

2

)
U[1:l)|0〉,

= U[l:M ]

(
−ισ

αl
nl

2

)
U[1:l)|0〉⊗N .

We now discuss how to calculate the QFI with this ansatz.
The QFI given in Eq. (G1) consists of two terms. The sec-
ond term of the QFI is a product of two overlaps. Each
overlap takes a simple form

〈ψ |∂lψ〉 = − ι

2
〈0|⊗N U†

[1:l)σ
αl
nl

U[1:l)|0〉⊗N , (G6)

which can be evaluated as a measurement of the Pauli oper-
ator σαl

nl on the quantum state U[1:l)|0〉. This can be easily
measured by sampling in a Pauli rotated computational
basis.

The first term of the QFI given in Eq. (G1) consists of
two derivatives. For l ≥ k and our ansatz, it is given by

Re[〈∂kψ |∂lψ〉] = 1
4

Re[〈0|⊗N U†
[1:k)σ

αk
nk

U†
[k:l)σ

αl
nl

U[1:l)|0〉⊗N ].

(G7)

For l = k, this overlap is trivial to evaluate: Re[〈∂lψ |∂lψ〉]
= 1/4. For l 
= k, this overlap is not an observable and
takes a complex number in general. Here, the Hadamard
test can be employed [47,50,70]. The Hadamard test
calculates overlaps of two quantum states 〈ψ1|ψ2〉 and

FIG. 12. The Hadamard test to evaluate overlap
Re[〈∂kψ |∂lψ〉] for QFI.

can measure both real and imaginary parts. To mea-
sure Eq. (G7), we prepare an ancilla qubit in the state
1/

√
2(|0〉 + |1〉). The ancilla is entangled with the state

σ
αl
nl U[k:l)σ

αk
nk U[1:k)|0〉⊗N by replacing the Pauli operators

σ
αl
nl and σαk

nk with controlled unitaries. The corresponding
measurement circuit is depicted in Fig. 12. Finally, we
measure the expectation value of σ x of the ancilla and find

〈σ x〉 = Re[〈0|⊗N U†
[1:k)σ

αk
nk

U†
[k:l)σ

αl
nl

U[1:l)|0〉⊗N ]

= 4Re[〈∂kψ |∂lψ〉].

To calculate the QFI with this method, one requires
M (M − 1)/2 measurements with the Hadamard test for
the terms of type Re[〈∂kψ |∂lψ〉]. Further, one requires
M measurements of Pauli strings to obtain terms of type
〈ψ |∂lψ〉.

The Hadamard test for our ansatz requires controlled
unitaries applied on the ancilla and the qubit on which
the Pauli operator is acting. In case one wants to avoid
implementing controlled unitaries and the ancilla, one
can replace the controlled unitaries with direct measure-
ments [51].
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