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ABSTRACT

Based on the first-order shear deformation theory, a 3-node co-rotational triangular finite element formulation is
developed for large deformation modeling of non-smooth, folded and multi-shell laminated composite structures.
The two smaller components of the mid-surface normal vector of shell at a node are defined as nodal rotational
variables in the co-rotational local coordinate system. In the global coordinate system, two smaller components of
one vector, together with the smallest or second smallest component of another vector, of an orthogonal triad at
a node on a non-smooth intersection of plates and/or shells are defined as rotational variables, whereas the two
smaller components of the mid-surface normal vector at a node on the smooth part of the plate or shell (away from
non-smooth intersections) are defined as rotational variables. All these vectorial rotational variables can be updated
in an additive manner during an incremental solution procedure, and thus improve the computational efficiency
in the nonlinear solution of these composite shell structures. Due to the commutativity of all nodal variables in
calculating of the second derivatives of the local nodal variables with respect to global nodal variables, and the
second derivatives of the strain energy functional with respect to local nodal variables, symmetric tangent stiffness
matrices in local and global coordinate systems are obtained. To overcome shear locking, the assumed transverse
shear strains obtained from the line-integration approach are employed. The reliability and computational accuracy
of the present 3-node triangular shell finite element are verified through modeling two patch tests, several smooth
and non-smooth laminated composite shells undergoing large displacements and large rotations.
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1 Introduction

Laminated composite shell structures are extensively used in pressure vessels, aircraft and
spacecraft, automotive and other industries due to their high strength- and stiffness-to-mass ratios,
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excellent damage tolerance, superior fatigue response characteristics, and good damping behaviors
under dynamic loads. By choosing an appropriate combination of reinforcement and matrix
material, manufacturers can produce properties that exactly fit the requirements of a particular
structure design [1]. The mechanical properties of laminated composite structures are sensitive
to the lamination scheme and the ply orientation angle, so they often show unique responses
even under simple loading conditions and geometric configurations. Furthermore, the anisotropic
constitutive responses and the complexity of shell geometries, such as non-smooth and folded
shell structures, make it challenging to perform accurate structural analysis, especially when large
deformations are involved. Therefore, the development of reliable and efficient finite element
methods for laminated composite shell structures are important [1–5].

Various computational formulations have been proposed for modeling composite shells and
plates, and can be broadly classified into three categories: (1) single-director theories with
anisotropic constitutive relations and (2) multi-director theories, which include multi-layer for-
mulations, within which each layer has a single director with its own anisotropic constitutive
relation, and (3) 3-D continuum theories. Examples of single-director theories include the classical
laminated plate/shell theory (CLPT), the first-order shear deformation laminated plate/shell theory
(FSDT), and the higher-order shear deformation laminated plate/shell theories (HSDT). Examples
of multi-director theories include the layer-wise theory (LWT) and the zig-zag theory (ZZT).
Examples of 3-D continuum theories include solid-shell formulations with a single layer or a
multilayer structure.

In the single-director category, the CLPT is restricted to thin shell structures, as the effects of
transverse shear strains and thickness strains are ignored. Based on the CLPT, Madenci et al. [6]
proposed a free-formulation-based 3-node flat triangular shell element for geometrically nonlinear
analysis of thin composite shells. Kapania et al. [7] presented a 3-node triangular flat shell
element by combining a discrete Kirchhoff plate bending element with a membrane element for
linear static, free vibration and thermal analysis of laminated plates and shells. Bisegna et al. [8]
proposed a co-rotational triangular facet shell element for geometric nonlinear analysis of thin
piezo-actuated structures.

Also in the single-director category, under the FSDT, the transverse shear strains are assumed
to remain constant through the thickness, and the shell normal does not need to remain perpen-
dicular to the mid-surface after deformation, while the inextensibility of transverse shell normal
is assumed. Based on this theory, Peng et al. [9] proposed a meshfree method for bending
analysis of folded laminated plates. Pham et al. [10] presented a combination of the edge-based
smoothed finite element method (ES-FEM) and the three-node triangular elements (MITC3) for
static responses and free vibration of laminated composite shells. Truong-Thi et al. [11] presented
an extension of the cell-based smoothed discrete shear gap method using three-node triangular
elements for the static and free vibration analyses of carbon nano-tube reinforced composite
plates. Zhang et al. [12,13] developed an eight-node quadrilateral plate element with five mechan-
ical degrees of freedom and one electric degree of freedom for static and dynamic analyses
of piezoelectric integrated carbon nanotube reinforced functionally graded composite structures.
Kreja et al. [14] presented isoparametric eight-node Serendipity-type shell finite elements to check
the relevance of five- and six-parameter variants for large rotation plate and shell problems. The
FSDT provides a balance between computational efficiency and accuracy for the global structural
behaviors of thin and moderately thick laminated composite shells, while the local effects (e.g.,
inter-laminar stress distribution between layers, delamination, etc.) are often difficult to capture.
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The HSDT provides a more accurate description of the transverse shear stress distributions
by introducing more independent displacement parameters. Within the HSDT, Chen et al. [15]
presented a refined three-node triangular element satisfying the requirement of C1 weak-continuity.
Tran et al. [16,17] proposed an edge-based smoothing discrete shear gap method using 3-node
triangular elements combined with a C0-type higher-order shear deformation theory for static, free
vibration and buckling analyses of laminated composite plates. Jin et al. [18] proposed a com-
putationally efficient C0-type 3-node triangular plate element with linear interpolation functions
for the analysis of multi-layered composite plates based on the mixed global-local higher-order
theory.

In the multi-director category, the LWT assumes a layer-wise deformation pattern, and it
can predict the interlaminar stresses accurately. Liu et al. [19] employed a layer-wise three-node
triangular shell element for modeling the opening and shear modes of delamination. Phung-Van
et al. [20] presented an extension of the cell-based smoothed discrete shear gap method using
three-node triangular elements for dynamic responses of sandwich and laminated composite plates.
Marjanović et al. [21] presented a triangular layered finite element with delamination degrees of
freedom for composite shells based on the generalized LWT. For large deformation and large
overall motion, Vu-Quoc et al. [22,23] developed the dynamic formulations for geometrically-exact
multilayered composite beams, plates, and shells with ply drop-offs. However, layer-wise models are
computationally expensive since the number of unknowns depends on the number of the layers
of the laminates.

The ZZT describes a piecewise continuous displacement field in the plate thickness direction
and fulfills interlaminar continuity of transverse stresses at each layer interface. Carrera [24]
provides a comprehensive review of the ZZT. Versino et al. [25] developed six- and three-node
triangular plate elements for homogeneous, multilayer composite and sandwich plates based on
the refined zigzag theory. Nguyen et al. [26] developed a three-node triangular finite element
for visco-elastic composite laminates based on a high-order zigzag theory. Wu et al. [27] pro-
posed an efficient three-node triangular element with linear shape functions to model sandwich
plates based on the refined higher-order zig-zag model in conjunction with the three-field Hu–
Washizu variational principle. Liang et al. [28,29] proposed an efficient zigzag kinematic model for
composite laminates with multiple alternating stiff-soft layers, which has been realized within a
corotational shell element utilizing additional zigzag DOFs that are not subject to the corotational
transformations, making use of a 2D local shell system over the surface of the structure.

The 3D continuum-based theory accounts for fully 3D constitutive behaviors, so the inter-
laminar stress of composite laminates can be effectively captured. Houmat [30] studied the free
vibration of variable stiffness laminated composite plates using the 3D elasticity theory and the
p-version finite element method. Ye et al. [31] used the scaled boundary finite element method to
analyze the bending behaviors of the angle-ply composite laminated cylindrical shells based on 3D
theory of elasticity. Kumari et al. [32] adopted the Reissner variational principle and the extended
Kantorovich method to study the bending problem of composite cylindrical shells with arbitrarily
support boundary conditions. Vu-Quoc et al. [33] developed multilayered composite solid-shell
formulations, for both static and dynamic analyses, that could accommodate 3-D constitutive
relations without a need to impose zero transverse normal stresses. Fan et al. [34] developed
lowest-order (8-node hexahedral), and higher-order (32-node hexahedral) 3-D continuum solid-
shell elements, based on the theory of 3D solid mechanics, for static and dynamic analyses of
composite laminates.
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Despite these developments, numerical formulations based on the theories of HSDT, LWT,
ZZT and 3D continuum-based theory often lead to high computational costs, which is a major
concern in their practical applications. In the present study, a 3-node co-rotational triangular
composite shell finite element is developed based on FSDT, where vectorial rotational variables
are employed as rotational variables, two smaller components of one vector, together with the
smallest or second smallest component of another vector, of an orthogonal triad initially oriented
along the global coordinate system axes at each node on a non-smooth intersection of plates
and/or shells are defined as vectorial rotational variables, while two smaller components of the
mid-surface normal vector of shell at other nodes are defined as vectorial rotational variables. The
resulting element tangent stiffness matrices are symmetric owing to the commutativity of nodal
variables in calculating the second derivatives of strain energy with respect to local nodal variables
and the second derivatives of the local nodal variables with respect to global nodal variables.
Using such vectorial rotational variables, triangular and quadrilateral shell elements have been
developed for large displacement and large rotation analyses of smooth shell structures [35–38],
as well as non-smooth shells made of isotropic elastic materials [39,40]. The 3-node finite element
formulation proposed in the present study is capable of modeling both smooth and non-smooth
laminated composite shell structures experiencing large deformations.

There have been continuous efforts in developing triangular shell finite elements with high
computational accuracy and convergence [41,42]. It is well-known that triangular finite elements
may suffer from locking phenomena with thin shell/plate thickness, which results in the deteriora-
tion of computational accuracy and convergence. Up to now, there is no optimal 3-node triangular
shell element, the main reason is that the strain distributions derived from displacement shape
functions are often wildly different than expected. Barlow points, at which the strains derived from
displacement shape functions are “correct” for all desired deformation modes and all permitted
initial element shapes, can be found in a quadrilateral element, and they can be employed in
calculating the element tangent stiffness matrix to eliminate locking phenomena. There exist no
Barlow points, however, in a triangular shell element, thus there is no set of integration points
that provides zero membrane strain for all cases of pure bending about axes parallel to each
of the three edges of a triangular element. Most methods for eliminating locking problems of
quadrilateral shell elements do not work well in triangular elements, such as reduced integration
technique [43] and Hellinger-Reissner mixed formula method [44]. Macneal [45] proposed a line
integration method to overcome locking problems, where assumed membrane strains and assumed
shear strains are calculated respectively from the edge member membrane strains and the edge
member transverse shear strains. Bletzinger [46] presented a discrete shear gap method (DSG)
which utilizes only the usual displacement and rotational degrees of freedom at the nodes. Kim
et al. [47] developed a 3-node macro triangular element using assumed natural strain method
(ANS) for geometrically non-linear analysis of plates and shells. The ANS formula and the
macro element strategy can reduce the locking effect and preserve its advantages in preprocessing.
Argyris et al. [48,49] proposed a facet triangular shell element (TRIC) for nonlinear dynamic
and elasto-plastic shell analyses using the natural mode method. Lee et al. [50] presented a
Mixed Interpolation of Tensorial Components approach (MITC) for shell elements, which have
been extended to MITC3 and MITC3+ shell finite elements by introducing interpolation cover
functions and cubic bubble function for the rotations [51,52]. Cai et al. [53] proposed a locking-
free discrete shear triangular plate element without any numerical expediencies such as the reduce
integration and assumed strains method. In the present study, transverse shear strains of the
shell finite element are replaced with assumed shear strains obtained using the line integration
approach [35,45] to overcome shear locking.
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The outline of the paper is as follows. Section 2 describes the co-rotational framework and
the kinematics of the 3-node triangular composite shell element. Section 3 presents the composite
shell finite element formulation in the co-rotational local co-ordinate system. Section 4 gives the
transformation relationship between the local and global responses. Several numerical examples are
analyzed in Section 5 to verify the numerical accuracy of the present finite element. Conclusions
are presented in Section 6.

2 Co-Rotational Framework and Kinematics of the 3-Node Shell Finite Element

2.1 Co-Rotational Framework
The co-rotational framework for the 3-node shell finite element is depicted in Fig. 1. The

origin of the local co-rotational coordinate system of the element coincides with Node 1 in the
initial configuration, and the coordinate system rotates with the element’s rigid body rotation,
but does not deform with the element. Although the adopted definition is not invariant to nodal
ordering [54], the associated variability is negligible for large-displacement small strain problems.
To define the local system, we firstly calculate the vectors v120 and v130:

v120 =X20−X10, v130 =X30−X10 (1a,b)

where Xi0 (i = 1, 2, 3) is the position of Node i in the initial global coordinate system. The base
vectors of the local coordinate system in the initial configuration are calculated as follows:

ex0 = v120
|v120|

, ez0 = v120× v130
|v120× v130|

, ey0 = ez0× ex0 (2a,b,c)

Figure 1: Illustration of the co-rotational framework

In the deformed configuration, the vectors v12 and v13 are defined as

v12 =X20−X10+ d2− d1, v13 =X30−X10+ d3− d1 (3a,b)
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where di (i = 1, 2, 3) is the translational displacement vector of Node i in the global coordinate
system. Accordingly, the base vectors of the current local coordinate system can be obtained

ex = v12
|v12|

, ez = v12× v13
|v12× v13|

, ey= ez× ex (4a,b,c)

In the global coordinate system, we define the following vector that consists of all the global
DOFs (degrees of freedom) for each element:

uTG =
〈
dT1 nTg1 dT2 nTg2 dT3 nTg3

〉
(5)

where dTi = 〈
Ui Vi Wi

〉
are three translational displacement DOFs of Node i, and nTgi denotes

the vectorial rotational DOFs of Node i. For any node of smooth shells or located away from
non-smooth shells intersections, nTgi =

〈
pi,n pi,m

〉
is defined to represent the vectorial rotational

DOFs, in which pi,n and pi,m denote the two smaller global components of the shell director pi.
The remaining component of the shell director pi is defined as

pi,l = s4
√
1− p2i,n− p2i,m, i= 1, 2, 3 (6)

where s4 =±1 takes the same sign as that of pi,l in the previous loading step, and {n,m, l} denotes
the circular permutation of {X , Y , Z}.

On the other hand, if Node i is located on the intersections of non-smooth shells, the vectorial
rotational DOFs of Node i is defined as nTgi =

〈
eiy,n eiy,m eiz,n

〉
. Here, eiy,n and eiy,m are the two

smaller components of eiy, and eiz,n is the smallest or second smallest component of eiz, where eiy
and eiz are two orientation vectors of an orthogonal triad at Node i. At each incremental loading
step, the following relationships can be derived:

‖eiy‖2 = e2iy,l+ e2iy,m+ e2iy,n= 1⇒ eiy,l = s1
√
1− (e2iy,m+ e2iy,n) (7a)

‖eiz‖2 = e2iz,l + e2iz,m+ e2iz,n = 1⇒ eiz,m = s3
√
1− (e2iz,n+ e2iz,l) (7b)

‖eiy‖2 = 1

‖eiz‖2 = 1

eTiyeiz = 0

⎫⎪⎬
⎪⎭⇒ eiz,l =

−eiy,leiy,neiz,n+ s2eiy,m
√
1− e2iy,n− e2iz,n

1− e2iy,n
(7c)

The remaining components of the vectors eiy and eiz can be calculated by using eiy,n, eiy,m and
eiz,n according to Eqs. (7a)–(7c). The sign symbols (s1, s3) defined as 1 or −1 are respectively equal
to the signs of components eiy,l and eiz,m of the last incremental step, and we have s2 =−s1 · s3.
The vector eix is calculated as the cross-product of eiy and eiz:

eix = eiy× eiz (8)

Since the norm of a unit vector is identical to 1, defining the vectorial rotational variables
as above can avoid ill-conditioning in updating the mid-surface normal vector at a node on the
smooth part of the plate or shell (away from non-smooth intersections) or orientation vectors
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of an orthogonal triad at a node on a non-smooth intersection of plates or shells by properly
controlling the size of loading step in a nonlinear incremental solution procedure.

There are 15 degrees of freedom per element in the local coordinate system

uTL =
〈
tT1 θT1 tT2 θT2 tT3 θT3

〉
(9)

where tTi = 〈ui vi wi〉 are three translational displacement components, θTi = 〈ri,x ri,y〉 are vectorial
rotational components, ri,x and ri,y are the components of the shell director at Node i along the
x-axis and y-axis directions in the local coordinate system.

The relationship between the local and global translational displacements can be expressed as
follows:

ti =R(di+ vi0)−R0vi0 (10)

where,

RT
0 = [ex0 ey0 ez0

]
, RT = [ex ey ez

]
(11a,b)

vi0 =Xi0−X10, i= 1, 2, 3 (12)

At any node of smooth shells or any node away from non-smooth shell intersections, the
relationship between the shell directors expressed in the local and global coordinate systems can
be described as

ri0 =R0pi0, ri =Rpi (13a,b)

At any node on intersections of non-smooth shells, the following relationships between the
shell directors in the local and global coordinate systems hold:

ri0 =R0RT
i0Ri0pi0 =R0pi0, ri =RRT

i Ri0pi0 (14a,b)

where

RT
i0 =

[
eix0 eiy0 eiz0

]
, RT

i = [eix eiy eiz
]

(15a,b)

For convenience, eix0,eiy0 and eiz0 in the initial configuration are chosen to be coincident with
the base vectors of the global coordinate system.

eTix0 =
〈
1 0 0

〉
, eTiy0 =

〈
0 1 0

〉
, eTiz0 =

〈
0 0 1

〉
(16a,b,c)

2.2 Description of the Element Geometry and Kinematics
The finite element shape functions are expressed in the natural coordinate system as follows:

N1 = 1− ξ − η, N2 = ξ , N3 = η (17a,b,c)
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The displacement at any point of the element is calculated as follows:

t= 〈u v w
〉T =

3∑
i=1

Ni

[
ti+ 1

2
ζa(ri− ri0)

]
(18)

In the initial configuration, the shell director at Node i is calculated as the cross product of
the tangent vectors along two natural coordinate axes.

p̄i0 = ∂X0

∂ξ
× ∂X0

∂η

∣∣∣∣
(ξi,ηi)

, i= 1, 2, 3 (19)

where

X0 =
3∑
i=1

Ni(ξ ,η)Xi0 (20)

To ensure the uniqueness of the shell director at any node shared by multiple adjacent
elements in smooth shell regions, the following averaging procedure is adopted:

pi0 =

∑
e∈Si

p̄ei0

/∥∥p̄ei0∥∥∥∥∥∥∥∑e∈Si p̄ei0
/∥∥p̄ei0∥∥

∥∥∥∥∥
(21)

The Green–Lagrange strain of the nonlinear shallow shell theory is adopted. For convenience,
the strain vector is divided into membrane strain vector εm, bending strain vector zlχ and
transverse shear strain vector γ .

ε =
{
εm+ zlχ

γ

}
(22a)

εTm = 〈εxx εyy γxy
〉= 〈∂u

∂x
∂υ

∂y
∂u
∂y

+ ∂υ

∂x

〉
(22b)

χT =
〈
∂(rx− rx0)

∂x

∂(ry− ry0)

∂y
∂(rx− rx0)

∂y
+ ∂(ry− ry0)

∂x

〉
(22c)

γ T = 〈γxz γyz
〉= 〈∂w

∂x
+ rx− rx0

∂w
∂y

+ ry− ry0

〉
(22d)

zl =
1
2
ζa (22e)
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where, zl is the coordinate of the material point along the shell thickness direction, a is the
thickness of the element, and

rx0 =
3∑
i=1

Niri0,x, rx =
3∑
i=1

Niri,x, ry0 =
3∑
i=1

Niri0,y, ry =
3∑
i=1

Niri,y (23a,b,c,d)

3 Laminated Composite Shell Finite Element Formulation in the Co-Rotational Local Coordinate
System

The potential energy of a 3-node triangular composite shell finite element is defined as

	= 1
2

∫
V

{
εm+ zlχ

γ

}T
C
{
εm+ zlχ

γ

}
dV −We (24)

where We is the work done by the external load, C is the elastic constitutive matrix. In the
present study, we consider a laminated shell structure composed of long-fiber-reinforced materials.
The transversely isotropic elastic constitutive matrix of each individual lamina is expressed in the
material coordinate system as

C=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E1

1−μ12μ21

μ12E2

1−μ12μ21
0 0 0

μ12E2

1−μ12μ21

E2

1−μ12μ21
0 0 0

0 0 G12 0

0 0 0 G13 0
0 0 0 0 G23

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(25)

where, μ12 and μ21 are the Poisson’s ratios, E1 and E2 are the elastic moduli, G12, G23 and G31
are the shear moduli [1,14].

By enforcing the stationarity condition to the potential energy, we have

δ	= 1
2

∫
V

{
εm+ zlχ

γ

}T
C
[
Bm+ zlBb
Bγ

]
δuLdV − δWe = 0 (26)

which yields the element internal force vector:

fint = fext = 1
2

∫
V

[
Bm+ zlBb
Bγ

]T
C
{
εm+ zlχ

γ

}
dV (27)

where uL, fext and fint are element nodal displacement vector, external load vector and internal
force vector in the co-rotational local coordinate system, respectively. Bm, Bb and Bγ contain
the first-order derivatives of the membrane strain, bending strain, and shear strain, respectively.
Details of these matrices are given in Appendix A.
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By taking the first-order derivative of the internal force vector with respect to the local nodal
variables, a symmetric element tangent stiffness matrix is obtained

kT =
∫
V

[
Bm+ zlBb
Bγ

]T
C
[
Bm+ zlBb
Bγ

]
dV (28)

For elastic laminated shell elements, the integration along the shell thickness direction is
decoupled from the integration on the mid-surface, so Eqs. (27) and (28) involving volume
integrals can be rewritten in the following surface integral form:

fint =
a
2

∫
A

[
Bm

Bγ

]T
Deq1

{
εm

γ

}
dA+ a3

24

∫
A

[
Bb

0

]T
Deq2

{
χ

0

}
dA

+ a2

8

∫
A

([
Bm

Bγ

]T
Deq3

{
χ

0

}
+
[
Bb

0

]T
Deq3

{
εm

γ

})
dA (29)

kT = a
2

∫
A

[
Bm

Bγ

]T
Deq1

[
Bm

Bγ

]
dA+ a3

24

∫
A

[
Bb

0

]T
Deq2

[
Bb

0

]
dA

+ a2

8

∫
A

([
Bm

Bγ

]T
Deq3

[
Bb

0

]
+
[
Bb

0

]T
Deq3

[
Bm

Bγ

])
dA (30)

where Deq1, Deq2 and Deq3 are the equivalent elastic matrices:

Deq1 =
n∑
i=1

(ζi+1− ζi)Dci, Deq2 =
n∑
i=1

(ζ 3
i+1 − ζ 3

i )Dci, Deq3 =
n∑
i=1

(ζ 2
i+1 − ζ 2

i )Dci (31a,b,c)

n denotes the number of laminae; ζi is the dimensionless coordinate of the interface between
Layer i−1 and Layer i relative to the mid-surface:

ζi =−1.0+ 2
n
(i− 1), i= 1, 2, . . . ,n, (32)

Dci is the elastic matrix of the ith layer lamina:

Dci =TiTCiTi (33)

where Ci is the transversely isotropic elastic matrix of Layer i in the material coordinate system,
which is obtained by replacing the material properties of Eq. (25) with those of the ith layer; Ti is
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the transformation matrix between the material coordinate system of the ith layer lamina and the
co-rotational element local coordinate system:

Ti =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos2ϕi sin2ϕi
1
2
sin2ϕi 0 0

sin2ϕi cos2ϕi −1
2
sin2ϕi 0 0

− sin2ϕi sin2ϕi cos 2ϕi 0 0

0 0 0 cosϕi sinϕi

0 0 0 − sinϕi cosϕi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

where ϕi is defined as the ply orientation angle measured between the reinforcement fiber of the
ith layer lamina and the co-rotational local coordinate system of the composite element. It is
noted that, for symmetrical laminates, the third integrals of Eqs. (29) and (30) are equal to zero.

To alleviate shear locking phenomenon, the assumed transverse shear strain vector and its
first-order derivatives with respect to local nodal variables are employed. The modified line inte-
gration approach [35,45] is adopted to calculate the assumed shear strains, and by replacing the
conforming transverse shear strain and its first-order derivatives with the assumed strains and
its first-order derivatives with respect to local nodal variables, the following assumed strain finite
element formulation is obtained:

fint =
h
2

∫
A

[
Bm

B̃γ

]T
Deq1

{
εm

γ̃

}
dA+ h3

24

∫
A

[
Bb

0

]T
Deq2

{
χ

0

}
dA

+ h2

8

∫
A

⎛
⎝[Bm

B̃γ

]T
Deq3

{
χ

0

}
+
[
Bb

0

]T
Deq3

{
εm

γ̃

}⎞⎠dA (35)

kT = h
2

∫
A

[
Bm

B̃γ

]T
Deq1

[
Bm

B̃γ

]
dA+ h3

24

∫
A

[
Bb

0

]T
Deq2

[
Bb

0

]
dA

+ h2

8

∫
A

⎛
⎝[Bm

B̃γ

]T
Deq3

[
Bb

0

]
+
[
Bb

0

]T
Deq3

[
Bm

B̃γ

]⎞⎠dA (36)

where γ̃ is the assumed transverse shear strain vector, B̃γ is its first-order derivative with respect
to local nodal variables uL (refer to Eqs. (30)–(41) in reference [35]).

4 Stiffness Matrix of the 3-Node Shell Finite Element in the Global Coordinate System

The internal force fG of the 3-node triangular composite shell element in the global coordinate
system can be obtained from the local element internal force fint as follows:

fG =TT fint (37)
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where T is a transformation matrix consisting of the first-order derivatives of the local nodal vari-
ables with respect to the global nodal variables, which can be readily determined from Eqs. (10),
(13a), (13b) and (14a), (14b):

T= ∂uL
∂uTG

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
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0
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0
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∂θ1
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0
∂t2
∂dT2

0
∂t2
∂dT3

0

∂θ2

∂dT1

∂θ2

∂nTg1

∂θ2

∂dT2

∂θ2

∂nTg2

∂θ2

∂dT3

∂θ2

∂nTg3
∂t3
∂dT1

0
∂t3
∂dT2

0
∂t3
∂dT3

0

∂θ3
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∂θ3

∂nTg1

∂θ3

∂dT2

∂θ3

∂nTg2

∂θ3

∂dT3
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⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)

The element tangent stiffness KTG in the global coordinate system can be obtained by cal-
culating the first-order derivatives of the global internal force vector with respect to the global
nodal variables:

kTG = ∂fG
∂uTG

=TTkTT+ ∂TT

∂uTG
fint (39)

where
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(40)
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the sub-matrices in (40) involving the second-order derivatives are given in Appendix B. Consider-
ing the commutativity of the global nodal variables in the differentiation of (40), the second term
in the right-hand side of (39) is symmetric, and since the first term in the right-hand side of (39)
is also symmetric, the resulting element tangent stiffness matrix in the global coordinate system is
symmetric.

5 Numerical Examples

To verify the reliability and computational accuracy of present 3-node co-rotational trian-
gular composite shell element, two patch tests, and several smooth and non-smooth composite
shell problems are solved, and the solutions are compared to numerical results from literatures
[55–59]. In the following examples, the present 3-node triangular shell finite element using assumed
transverse shear strains to replace conforming transverse shear strains is designated as “CR3 T”
element. To show the element’s spatial isotropy (i.e., the element stiffness matrices are independent
of nodal ordering [41,50]), two alternative nodal ordering schemes are considered in 7 examples of
Examples 5.2, where triangular elements used for a quadrilateral patch are employed with different
nodal numbering as illustrated in Fig. 2.

Figure 2: Two nodal numbering schemes, (a) Scheme 1; (b) Scheme 2

5.1 Patch Tests
Patch tests for the membrane behavior and the transverse out-of-plane bending behavior of

plate and shell elements were suggested by MacNeal et al. [55], whereas rectangular plate with a
length L= 0.24, width W = 0.12 and thickness h= 0.001, Young’s modulus E = 106, and Poisson’s
ratio μ= 0.25, is considered.

In the membrane patch test, the displacements u,υ,wat the boundary nodes of the rectangular
plate (Fig. 3) are prescribed by u = 10−3(X + Y/2), υ = 10−3(Y + (X/2)) and w = 0. If this
patch test is solved as a linear problem, the displacements at any point of the plate can also
be calculated from above equations. The theoretical solution of this plate is a constant in-plane
membrane stress field given by

σx = σy= 1333, τxy= 400

10 elements are employed in modeling of the rectangular plate (Fig. 3), and the CR3T
element passes the membrane patch test exactly.
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Figure 3: Patch tests for in-plane membrane/out-of-plane bending plates

To construct a constant stress state of the plate under out-of-plane bending, the displacements
(u,υ,w) and rotations (θX , θY ) at any point of the plate mid-surface are prescribed by

u= υ = 0, w= 10−3 (X2+XY +Y2)

2

θX = 10−3(Y+ (X/2)), θY =−10−3(X+ (Y/2))

For a linear problem, the theoretical solution for the stresses at the top and bottom surfaces
of the plate is

σx = σy=±0.667, τxy =±0.200

In the present triangular shell element formulation, vectorial rotational variables are defined.
These can be calculated from the prescribed rotations,

pi,X = tan(θiY )√
1+ tan2(θiX )+ tan2(θiY )

, pi,Y = − tan(θiX )√
1+ tan2(θiX )+ tan2(θiY )

The rectangular plate is meshed into triangular elements (Fig. 3), and the linear solution
obtained by using 10 CR3T elements agrees exactly with the theoretical solution [55].

5.2 Laminated Cylindrical Shell
Laminated cylindrical shells subjected to a point load at the central point B are studied. The

shell geometry is shown in Fig. 4, where two straight edges are simply supported, length L =
508 mm, radius R = 2540 mm, central angle 2β = 0.2, and thickness t = 6.35 or 12.7 mm.

We consider two groups of lamination schemes consisting of 12 layers and 48 layers,
respectively. The first group includes four 12-layer lamination shells arranged as (0◦4/90

◦
4/0

◦
4) and

(90◦4/0
◦
4/90

◦
4), respectively. Here, 0◦ denotes the circumferential direction of the cylinder, and 90◦

denotes the cylinder’s axial direction. For instance, (90◦4/0
◦
4/. . .) indicates that there are 4 laminas

at 90 degrees followed by 4 laminas at 0 degrees, etc.). The second group consists of three 48-layer
laminations arranged as (0◦6/90

◦
6/0

◦
6/90

◦
6)s, (45

◦
2/−45◦2/0

◦
2/90

◦
2)3s, and (45◦2/−45◦2)6s, respectively, where

the subscript “s” indicates that the 48 laminas are arranged symmetrically with respect to the shell
mid-surface, and the number “3” or “6” before the letter “s” denote that 3 or 6 groups of laminae
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arranged as those in the parentheses. The material properties of these laminated cylindrical shells
are given in Tab. 1.

Figure 4: Laminated cylindrical shell

Table 1: Material properties of the laminated cylindrical shells

Young’s moduli Shear moduli Poisson’s ratio

12 layers E1 = 3.3 GPa, E2 = 1.1 GPa G12 =G13 =G23 = 0.66 GPa μ12 =μ21 = 0.25
48 layers E1 = 150 GPa, E2 = 10 GPa G12 =G13 = 6 Gpa, G23 = 4 GPa μ12 =μ21 = 0.25

Figure 5: Load-displacement curves of the laminated cylindrical shell (90◦4/0
◦
4/90

◦
4) with t =

6.35 mm
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Due to symmetry, only a quarter of these laminated cylindrical shells are studied by using
8× 8× 2 or 16× 16× 2 CR3T elements. The load-displacement curves obtained by the present
CR3T elements using two different nodal numbering schemes are depicted in Figs. 5–11, which
agree very well with the results obtained by Gal and Levy using triangular shell elements built
from the linear membrane constant strain triangle and the DKT flat triangular plate element [56]
and by Li et al. [36] using 9-node co-rotational quadrilateral composite shell elements (SQCS
element). As can be clearly seen from these simulation results, varying the lamination schemes and
shell thicknesses can lead to dramatically different structural responses of composite shells.

Figure 6: Load-displacement curves of the laminated cylindrical shell (0◦4/90
◦
4/0

◦
4) with t = 6.35 mm

Figure 7: Load-displacement curves of the laminated cylindrical shell (90◦4/0
◦
4/90

◦
4) with t =

12.7 mm

5.3 A Laminated Channel Section Cantilever
A laminated channel section cantilever is subjected to a concentrated load at the upper corner

point, as shown in Fig. 12, where L= 36 in, a= 2 in, b= 6 in, h = 0.06 in, and P(f ) = fPref
with Pref = 100 lb. Two cross-ply lamination schemes are considered, including (0◦/90◦/0◦) and
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(90◦/0◦/90◦), where the 0◦ and 90◦ directions are respectively along the t1-axis and the t2-axis of
the local material coordinate system depicted in Fig. 12. The composite material parameters are
E1 = 107 lb/in2, E2 = 4× 105 lb/in2, G12 =G13 = 2× 105 lb/in2, G23 = 8× 104 lb/in2, μ12 =μ21 =
0.333.

Figure 8: Load-displacement curves of the laminated cylindrical shell (0◦4/90
◦
4/0

◦
4) with t = 12.7 mm

Figure 9: Load-displacement curves of the laminated cylindrical shell (0◦6/90
◦
6/0

◦
6/90

◦
6) S with t =

6.35 mm

The laminated channel section cantilever is modeled using respectively (4 + 4 + 6) × 72 ×
2 and (6 + 6 + 9) × 108 × 2 CR3T element meshes, where the web is discretized respectively
by 6× 72× 2 and 9× 108× 2 elements, and the upper and the lower flanges are discretized by
4× 72× 2 and 6× 108× 2 elements, respectively. The load-deflection curves at the upper corner
point are presented in Fig. 13. For comparison, the results from Chróścielewski et al. [57] using
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(4 + 4 + 6) × 72 CAMe16 elements (Lagrange family of 16-node displacement-rotation-based
shell elements) are also plotted in this figure.

Figure 10: Load-displacement curves of the laminated cylindrical shell (45◦2/−45◦2/0
◦
2/90

◦
2)3S with t

= 6.35 mm

Figure 11: Load-displacement curves of the laminated cylindrical shell (45◦2/−45◦2)6S with t =
6.35 mm

Figure 12: Geometry and loading of the three-layer channel section cantilever
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Figure 13: Load-displacement curves of the three-layer channel section cantilever

The deformed shapes of the channel section cantilever with different lamination schemes
are presented in Figs. 14 and 15, where the vertical displacements at the upper corner of two
cantilevers are up to 5.0 in.

Figure 14: Deformed shape of the laminated channel section cantilever (0◦/90◦/0◦)

Figure 15: Deformed shape of the laminated channel section cantilever (90◦/0◦/90◦)

5.4 Stiffened Doubly Curved Cylindrical Panel
A stiffened doubly curved cylindrical panel is subjected to a lateral force at the midpoint

of the free curved edge (Fig. 16). The geometry is described by L = 2 m, a = 45◦, R = 1 m,
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H = 0.4 m, h0 = 0.01 m, Pref = 1 MN, P(λ) = λPref . Two lamination schemes are considered
as (0◦/90◦/90◦/0◦) and (90◦/0◦/0◦/90◦), where the 0◦ and 90◦ directions are respectively along the
t1-axis and t2-axis of local material coordinate system depicted in Fig. 16. The material properties
are E1 = 105 MPa, E2 = 7× 103 MPa, G12 = G13 = 4× 103 MPa, G23 = 3.2× 103 MPa, μ12 =
μ21 = 0.25.

Figure 16: Geometry and loading of the stiffened doubly curved cylindrical panel

The stiffened doubly curved cylindrical panel with lamination scheme (0◦/90◦/90◦/0◦) is mod-
eled using (30 + 30 + 14)× 40× 2 CR3T element meshes, where the flat panel is discretized by
14× 40× 2 elements, and two pieces of cylindrical panels are discretized by 30× 40× 2 elements,
respectively. The stiffened doubly curved cylindrical panel with lamination scheme (90◦/0◦/0◦/90◦)
is modeled using (25 + 25 + 12)×40×2 CR3T element meshes, where the flat panel is discretized
by 12×40×2 elements, and two pieces of cylindrical panels are discretized by 25×40×2 elements,
respectively. The load-deflection curves at Point A of the free curved edge are plotted in Fig. 17.
For comparison, the results from Chróścielewski et al. [57] using (10 + 10 + 4)× 12 CAMe16
elements are also reported in this figure.

Figure 17: Load-displacement curves of the stiffened doubly curved cylindrical panel
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The deformed shapes of the stiffened doubly curved cylindrical panel are presented in Figs. 18
and 19, which correspond to the states when the displacement of Point A is up to WA = 0.2167 m
for lamination scheme (0◦/90◦/90◦/0◦) and WA = 0.1692 m for lamination scheme (90◦/0◦/0◦/90◦)
in Fig. 17, respectively.

Figure 18: Deformed shape of the stiffened doubly curved cylindrical panel (0◦/90◦/90◦/0◦)

Figure 19: Deformed shape of the stiffened doubly curved cylindrical panel (90◦/0◦/0◦/90◦)

5.5 Laminated Sickle-Shell Problem
A laminated cantilever sickle shell is subjected to a lateral force at the free end, as shown

in Fig. 20, where length L = 10, width B = 1, thickness a = 0.01, and the radius of the semi-
cylinder R = 5. Two lamination schemes are considered as (0◦/90◦/0◦) and (90◦/0◦/90◦), where
the 0◦ direction is along the flat panel’s longitudinal direction and the semi-cylinder panel’s
circumferential direction, and the 90◦ direction is along the transverse direction. The dimensionless
material properties are E1 = 6× 107, E2 = 3× 107, G12 = G13 = 1.49× 107, G23 = 1.15× 107,
μ12 =μ21 = 0.3.

The cantilever sickle shell is modeled using (40 + 40)× 4× 2 CR3T elements, where the flat
panel and the semi-cylinder are discretized by 40×4×2 elements, respectively. The load-deflection
curves at the midpoint of the free end are plotted in Figs. 21 and 22 for the two lamination
schemes. For comparison, the results from Zhang et al. [58] using respectively two quadrature
elements (with 10 integration points along the length and 7 integration points along the width)



506 CMES, 2021, vol.129, no.2

incorporating thickness stretch and drilling rotations and 256× 10S4R elements of ABAQUS [59]
are also reported in these figures. It can be seen that the results of the present triangular shell
finite element formulation are in good agreement with them, although slight difference exists
because the thickness stretch is neglected in the present shell formulation.

Figure 20: Cantilever sickle shell subject to a lateral tip load

Figure 21: Load-displacement curves of the cantilever sickle shell (0◦/90◦/0◦)

The deformed shapes of the sickle shell at different levels of the lateral tip load are presented
in Figs. 23 and 24, showing large deflections and large rotations of the composite shell structure.
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Figure 22: Load-displacement curves of the cantilever sickle shell (90◦/0◦/90◦)

Figure 23: Deformed shapes of the cantilever sickle shell (0◦/90◦/0◦)

Figure 24: Deformed shapes of the cantilever sickle shell (90◦/0◦/90◦)
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6 Conclusions

A 3-node co-rotational triangular composite shell element for large deformation analysis of
smooth, folded and multi-shell laminated composite structures is proposed. Different from other
existing elements using traditional rotational variables, vectorial rotational variables are employed
in the present element under a co-rotational framework. All nodal variables are additive in
the nonlinear solution procedure, and the global tangent stiffness matrix is symmetric, which
enhances the computational efficiency and saves computer storage resource. To overcome shear
locking phenomenon, the conforming transverse shear strains are replaced with assumed transverse
shear strains by using the line integration method. The computational performance of the devel-
oped finite element formulation is demonstrated through solving several smooth and non-smooth
laminated composite shell structural problems.
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Appendix A. First- and second-order derivatives of strains with respect to local nodal variables

The first-order derivatives of membrane strains with respect to local nodal variables:

Bm = [Bm1 0 Bm2 0 Bm3 0
]

(A1)

Bmi =

⎡
⎢⎣
Ni,x 0 0
0 Ni,y 0

Ni,y Ni,x 0

⎤
⎥⎦ , i= 1, 2, . . . , 3 (A2)

where

Ni,x = J−1
11 Ni,ξ + J−1

12 Ni,η (A3)

Ni,y = J−1
21 Ni,ξ + J−1

22 Ni,η (A4)

J−1
jk ( j, k = 1, 2) is the component at the jth row and the kth column of the inversed Jacobian

matrix. Ni.ξ and Ni.η are the first-order derivatives of the shape function of node i with respect
to ξ and η.

The first-order derivatives of shear strains with respect to local nodal variables:

Bγ = [Bγ 1 Bγ 2 Bγ 3 Bγ 4 Bγ 5 Bγ 6
]

(A5)

Bγ (2i−1) =
[
0 0 Ni,x

0 0 Ni,y

]
, i= 1, 2, 3 (A6)

Bγ (2i) =
[
Ni 0

0 Ni

]
, i= 1, 2, 3 (A7)

The first-order derivatives of bending strain with respect to local nodal variables:

Bb=
[
0 Bb1 0 Bb2 0 Bb3

]
(A8)

Bbi =

⎡
⎢⎣
Ni,x 0
0 Ni,y

Ni,y Ni,x

⎤
⎥⎦ , i= 1, 2, 3 (A9)

Appendix B. Sub-matrices of the transformation matrix T and its first-order derivatives with respect to
global nodal variables

Sub-matrices of the transformation matrix T are give as follows:

∂tk
∂dTl

= ∂R
∂dTl

(dk+ vk0)+RδklI=

⎛
⎜⎝ ∂

∂dTl

⎡
⎢⎣
eTx
eTy
eTz

⎤
⎥⎦
⎞
⎟⎠ (dk+ vk0)+RδklI (B1)
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where,

δkl =
{
1, k= l

0 k �= l
, k, l= 1, 2, 3 (B2)

I=
⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ (B3)

∂ex
∂dTl

=
(

I
|v12|

− v12⊗ v12
|v12|3

)
∂v12
∂dTl

(B4)

∂ez
∂dTl

=
[

I
|v12× v13|

− (v12× v13)⊗ (v12× v13)

|v12× v13|3
](

∂v12
∂dTl

× v13+ v12× ∂v13
∂dTl

)
(B5)

∂ey
∂dTl

= ∂ez
∂dTl

× ex+ ez× ∂ex
∂dTl

(B6)

Case 1: If Node i is in smooth shells or away from non-smooth shell intersections:

∂θk

∂dTl
= ∂Rh

∂dTl
pk =

(
∂

∂dTl

[
eTx
eTy

])
pk (B7)

∂θk

∂nTgl
=Rhδkl

∂pk
∂nTgl

=
[
eTx
eTy

]
δkl

∂pk
∂nTgl

(B8)

In Eq. (B8),

∂pk
∂nTgk

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂pk,X
∂pk,n

∂pk,X
∂pk,m

∂pk,Y
∂pk,n

∂pk,Y
∂pk,m

∂pk,Z
∂pk,n

∂pk,Z
∂pk,m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B9)

where pk,X , pk,Y , pk,Z are three components of the shell director pk along the directions of global
coordinate axes; pk,n,pk,m are two vectorial rotational variables of Node k, which are the two
smallest components among pk,X , pk,Y , pk,Z.

∂pk,n
∂pk,n

= ∂pk,m
∂pk,m

= 1,
∂pk,n
∂pk,m

= ∂pk,m
∂pk,n

= 0,
∂pk,l
∂pk,n

=−pk,n
pk,l

,
∂pk,l
∂pk,m

=−pk,m
pk,l

l �= n �=m l,n,m∈ {X ,Y ,Z} (B10–13)



514 CMES, 2021, vol.129, no.2

Case 2: If Node i is located at an intersection of non-smooth shells,

∂θ i

∂dTj
= ∂Rh

∂dTj
RT
i Ri0pi0 = ∂

∂dTj

[
eTx
eTy

]
RT
i Ri0pi0 (B14)

∂θ i

∂nTgj
= δijRh

∂RT
i

∂nTgj
Ri0pi0 = δijRh

∂

∂nTgj

[
eix eiy eiz

]
Ri0pi0 (B15)

In Eq. (B15),

∂eiy
∂nTgi

=
[

∂eiy
∂eiy,n

∂eiy
∂eiy,m

0
]

(B16)

∂eiz
∂nTgi

=
[

∂eiz
∂eiy,n

∂eiz
∂eiy,m

∂eiz
∂eiz,n

]
(B17)

∂eix
∂nTgi

= ∂eiy
∂nTgi

× eiz+ eiy× ∂eiz
∂nTgj

(B18)

In Eqs. (B16)–(B18),

∂eiy,n
∂eiy,n

= 1,
∂eiy,m
∂eiy,m

= 1,
∂eiy,l
∂eiy,n

=−eiy,n
eiy,l

(B19–21)

∂eiy,l
∂eiy,m

=−eiy,m
eiy,l

,
∂eiz,n
∂eiz,n

= 1 (B22,23)

∂eiz,l
∂eiy,n

= 1

1− e2iy,n

(
− ∂eiy,l

∂eiy,n
eiy,neiz,n− eiy,leiz,n− s1s3eiy,m

∂c0
∂eiy,n

+ 2eiz,leiy,n

)
(B24)

∂eiz,l
∂eiy,m

= 1

1− e2iy,n

(
− ∂eiy,l

∂eiy,m
eiy,neiz,n− s1s3c0

)
(B25)

∂eiz,l
∂eiz,n

= 1

1− e2iy,n

(
−eiy,leiy,n− s1s3eiy,m

∂c0
∂eiz,n

)
(B26)

∂eiz,m
∂eiy,n

=− eiz,l
eiz,m

∂eiz,l
∂eiy,n

(B27)

∂eiz,m
∂eiy,m

=− eiz,l
eiz,m

∂eiz,l
∂eiy,m

(B28)

∂eiz,m
∂eiz,n

= −eiz,n
eiz,m

− eiz,l
eiz,m

∂eiz,l
∂eiz,n

(B29)
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where

c0 =
√
1− e2iy,n− e2iz,n,

∂c0
∂eiy,n

= −eiy,n
c0

,
∂c0

∂eiz,n
= −eiz,n

c0
(B30–32)

The first-order derivatives of the transformation matrix T with respect to the global nodal
variables are as follows:

∂2ti
∂dTj ∂uTg

=
[

∂2ti
∂dTj ∂dT1

0 . . .
∂2ti

∂dTj ∂dT3
0

]
(B33)

∂2θ i

∂dTj ∂uTg
=
[

∂2θ i

∂dTj ∂dT1

∂2θ i

∂dTj ∂nTg1
. . .

∂2θ i

∂dTj ∂dT3

∂2θ i

∂dTj ∂nTg3

]
(B34)

∂2θ i

∂nTgj∂u
T
g
=
[

∂2θ i

∂nTgj∂d
T
1

∂2θ i

∂nTgj∂n
T
g1

. . .
∂2θ i

∂nTgj∂d
T
3

∂2θ i

∂nTgj∂n
T
g3

]
(B35)

In Eqs. (B33)–(B35),

∂2ti
∂dTj ∂dTk

= ∂2R
∂dTj ∂dTk

(di+ vi0)+ ∂R
∂dTj

δikI+
∂R
∂dTk

δijI

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2eTx
∂dTj ∂dTk

∂2eTy
∂dTj ∂dTk

∂2eTz
∂dTj ∂dTk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(di+ vi0)+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂eTx
∂dTj

∂eTy
∂dTj

∂eTz
∂dTj

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

δikI+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂eTx
∂dTk

∂eTy
∂dTk

∂eTz
∂dTk

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

δijI (B36)

Case 1: If Node i is in smooth shells or away from non-smooth shell intersections,

∂2θ i

∂dTj ∂dTk
= ∂2Rh

∂dTj ∂dTk
pi =

⎡
⎢⎢⎢⎢⎣

∂2eTx
∂dTj ∂dTk

∂2eTy
∂dTj ∂dTk

⎤
⎥⎥⎥⎥⎦pi (B37)

∂2θ i

∂dTj ∂nTgk
= ∂Rh

∂dTj
δik

∂pi
∂nTgk

=

⎡
⎢⎢⎢⎢⎣

∂eTx
∂dTj

∂eTy
∂dTj

⎤
⎥⎥⎥⎥⎦ δik

∂pi
∂nTgk

(B38)
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∂2θ i

∂nTgj∂n
T
gk

=Rhδijδik
∂2pi

∂nTgj∂n
T
gk

(B39)

In Eqs. (B36)–(B39),

∂2ex
∂dTj ∂dTk

=− 1

|v12|3

⎡
⎣∂v12

∂dTj
⊗ v12

∂v12
∂dTk

+ ∂v12
∂dTk

⊗ v12
∂v12
∂dTj

+ v12 ⊗
(

∂v12
∂dTj

)T
∂v12
∂dTk

⎤
⎦

+ 3v12
|v12|5

⊗ v12
∂v12
∂dTj

⊗ v12
∂v12
∂dTk

(B40)

∂2ez
∂dTj ∂dTk

=
[

I
|v12× v13|

− (v12× v13)⊗ (v12× v13)

|v12× v13|3
](

∂v12
∂dTj

× ∂v13
∂dTk

+ ∂v12
∂dTk

× ∂v13
∂dTj

)

−
(

∂v12
∂dTj

× v13+ v12× ∂v13
∂dTj

)
⊗ (v12× v13)

|v12× v13|3
(

∂v12
∂dTk

× v13+ v12× ∂v13
∂dTk

)

− (v12× v13)

|v12× v13|3
⊗
(

∂v12
∂dTj

× v13+ v12× ∂v13
∂dTj

)T (
∂v12
∂dTk

× v13+ v12× ∂v13
∂dTk

)

−
(

∂v12
∂dTk

× v13+ v12× ∂v13
∂dTk

)
⊗ (v12× v13)

|v12× v13|3
(

∂v12
∂dTj

× v13+ v12× ∂v13
∂dTj

)

+3(v12× v13)⊗ (v12× v13)

|v12× v13|5
(

∂v12
∂dTj

× v13+ v12× ∂v13
∂dTj

)
⊗(v12× v13)

(
∂v12
∂dTk

× v13+ v12× ∂v13
∂dTk

)

(B41)

∂2ey
∂dTj ∂dTk

= ∂2ez
∂dTj ∂dTk

× ex+ ez× ∂2ex
∂dTj ∂dTk

+ ∂ez
∂dTj

× ∂ex
∂dTk

+ ∂ez
∂dTk

× ∂ex
∂dTj

(B42)

∂2pi

∂nTgi
2 =

⎡
⎢⎢⎢⎢⎣

∂2pi
∂p2i,n

∂2pi
∂pi,n∂pi,m

∂2pi
∂pi,m∂pi,n

∂2pi
∂p2i,m

⎤
⎥⎥⎥⎥⎦ (B43)
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∂2pi
∂p2i,n

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2pi,X
∂p2i,n

∂2pi,Y
∂p2i,n

∂2pi,Z
∂p2i,n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

∂2pi
∂p2i,m

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2pi,X
∂p2i,m

∂2pi,Y
∂p2i,m

∂2pi,Z
∂p2i,m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
,

∂2pi
∂pi,n∂pi,m

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2pi,X
∂pi,n∂pi,m

∂2pi,Y
∂pi,n∂pi,m

∂2pi,Z
∂pi,n∂pi,m

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B44–46)

∂2pi,l
∂p2i,n

=− 1
pi,l

− p2i,n
p3i,l

,
∂2pi,l
∂p2i,m

=− 1
pi,l

− p2i,m
p3i,l

,
∂2pi,l

∂pi,n∂pi,m
=−pi,npi,m

p3i,l
(B47–49)

Case 2: If Node i is located at an intersection of non-smooth shells,

∂2θ i

∂dTj ∂dTk
= ∂2Rh

∂dTj ∂dTk
RT
i Ri0pi0 =

⎡
⎢⎢⎢⎢⎣

∂2eTx
∂dTj ∂dTk

∂2eTy
∂dTj ∂dTk

⎤
⎥⎥⎥⎥⎦RT

i Ri0pi0 (B50)

∂2θ i

∂dTj ∂nTgk
= ∂Rh

∂dTj
δik

∂RT
i

∂nTgk
Ri0pi0 =

⎡
⎢⎢⎢⎢⎣

∂eTx
∂dTj

∂eTy
∂dTj

⎤
⎥⎥⎥⎥⎦ δik

[
∂eix
∂nTgk

∂eiy
∂nTgk

∂eiz
∂nTgk

]
Ri0pi0 (B51)

∂2θ i

∂nTgj∂n
T
gk

=Rhδijδik
∂2RT

i

∂nTgj∂n
T
gk

Ri0pi0 =Rhδijδik

[
∂2eix

∂nTgj∂n
T
gk

∂2eiy
∂nTgj∂n

T
gk

∂2eiz
∂nTgj∂n

T
gk

]
Ri0pi0 (B52)

∂2eix
∂nTgj∂n

T
gk

= ∂2eiy
∂nTgj∂n

T
gk

× eiz+ eiy× ∂2eiz
∂nTgj∂n

T
gk

+ ∂eiy
∂nTgj

× ∂eiz
∂nTgk

+ ∂eiy
∂nTgk

× ∂eiz
∂nTgi

(B53)

where

∂2eiy,l
∂e2iy,n

=−
e2iy,n
e3iy,l

− 1
eiy,l

,
∂2eiy,l

∂eiy,n∂eiy,m
=−eiy,neiy,m

e3iy,l
,

∂2eiy,l
∂e2iy,m

=−
e2iy,m
e3iy,l

− 1
eiy,l

(B54–56)

∂2eiz,l
∂e2iy,n

= 1

1− e2iy,n

{
−
[

∂2eiy,l
∂e2iy,n

eiy,n+ 2
∂eiy,l
∂eiy,n

]
eiz,n− s1s3eiy,m

∂2c0
∂e2iy,n

+ 4eiy,n
∂eiz,l
∂eiy,n

+ 2eiz,l

}
(B57)

∂2eiz,l
∂eiy,n∂eiy,m

= −1

1− e2iy,n

[(
∂2eiy,l

∂eiy,n∂eiy,m
eiy,n+

∂eiy,l
∂eiy,m

)
eiz,n+ s1s3

∂c0
∂eiy,n

− 2eiy,n
∂eiz,l
∂eiy,m

]
(B58)
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∂2eiz,l
∂eiy,n∂eiz,n

= −1

1− e2iy,n

(
eiy,n

∂eiy,l
∂eiy,n

+ eiy,l+ s1s3eiy,m
∂2c0

∂eiy,n∂eiz,n
+ 2eiy,n

∂eiz,l
∂eiz,n

)
(B59)

∂2eiz,l
∂e2iy,m

=−eiy,neiz,n
1− e2iy,n

∂2eiy,l
∂e2iy,m

(B60)

∂2eiz,l
∂eiy,m∂eiz,n

= 1

1− e2iy,n

(
− ∂eiy,l

∂eiy,m
eiy,n− s1s3

∂c0
∂eiz,n

)
(B61)

∂2eiz,l
∂e2iz,n

= −s1s3eiy,m
1− e2iy,n

∂2c0
∂e2iz,n

(B62)

∂2eiz,m
∂e2iy,n

=−
[

1
eiz,m

(
∂eiz,l
∂eiy,n

)2

+ eiz,l
eiz,m

∂2eiz,l
∂e2iy,n

]
− 1
eiz,m

(
∂eiz,m
∂eiy,n

)2

(B63)

∂2eiz,m
∂eiy,n∂eiy,m

=− 1
eiz,m

∂eiz,l
∂eiy,n

∂eiz,l
∂eiy,m

− eiz,l
eiz,m

∂2eiz,l
∂eiy,n∂eiy,m

− 1
eiz,m

∂eiz,m
∂eiy,n

∂eiz,m
∂eiy,m

(B64)

∂2eiz,m
∂eiy,n∂eiz,n

=− 1
eiz,m

∂eiz,l
∂eiy,n

∂eiz,l
∂eiz,n

− eiz,l
eiz,m

∂2eiz,l
∂eiy,n∂eiz,n

− 1
eiz,m

∂eiz,m
∂eiy,n

∂eiz,m
∂eiz,n

(B65)

∂2eiz,m
∂e2iy,m

=− 1
eiz,m

(
∂eiz,l
∂eiy,m

)2

− eiz,l
eiz,m

∂2eiz,l
∂e2iy,m

− 1
eiz,m

(
∂eiz,m
∂eiy,m

)2

(B66)

∂2eiz,m
∂eiy,m∂eiz,n

=− 1
eiz,m

∂eiz,l
∂eiy,m

∂eiz,l
∂eiz,n

− eiz,l
eiz,m

∂2eiz,l
∂eiy,m∂eiz,n

− 1
eiz,m

∂eiz,m
∂eiy,m

∂eiz,m
∂eiz,n

(B67)

∂2eiz,m
∂e2iz,n

=− 1
eiz,m

− eiz,l
eiz,m

∂2eiz,l
∂e2iz,n

− 1
eiz,m

(
∂eiz,l
∂eiz,n

)2

− 1
eiz,m

(
∂eiz,m
∂eiz,n

)2

(B68)

∂2c0
∂e2iy,n

=−
e2iy,n
c30

− 1
c0
,

∂2c0
∂eiy,n∂eiz,n

=−eiy,neiz,n
c30

,
∂2c0
∂e2iz,n

=−e2iz,n
c30

− 1
c0

(B69–71)


