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Abstract We prove a stochastic averaging theorem for stochastic differential equa-
tions in which the slow and the fast variables interact. The approximate Markov fast
motion is a family of Markov process with generator Lx for which we obtain a quan-
titative locally uniform law of large numbers and obtain the continuous dependence
of their invariant measures on the parameter x. These results are obtained under the
assumption that Lx satisfies Hörmander’s bracket conditions, or more generally Lx
is a family of Fredholm operators with sub-elliptic estimates. For stochastic systems
in which the slow and the fast variable are not separate, conservation laws are es-
sential ingredients for separating the scales in singular perturbation problems, we
demonstrate this by a number of motivating examples, from mathematical physics
and from geometry, where conservation laws taking values in non-linear spaces are
used to deduce slow-fast systems of stochastic differential equations.

1 Introduction

A deterministic or random system with a conservation law is often used to approxi-
mate the motion of an object that is also subjected to many other smaller determin-
istic or random influences. The latter is a perturbation of the former. To describe
the evolution of the dynamical system, we begin with these conservation laws. A
conservation law is a quantity which does not change with time, for us it is an equi-
variant map on a manifold, i.e. a map which is invariant under an action of a group.
They describe the orbit of the action. Quantities describing the perturbed systems
have their natural scales, the conservations laws can be used to determine the differ-
ent components of the system which evolve at different speeds. Some components
may move at a much faster speed than some others, in which case we either ignore
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the slow components, in other words we approximate the perturbed system by the
unperturbed one, or ignore the fast components and describe the slow components
for which the key ingredient is ergodic averaging. It is a standard assumption that
the fast variable moves so fast that its influence averaged over any time interval, of
the size comparable to the natural scale of our observables, is effectively that of an
averaged vector field. The averaging is with respect to a probability measure on the
state space of the fast variable. Depending on the object of the study, we will need
to neglect either the small perturbations or quantities too large (infinities) to fit into
the natural scale of things. To study singularly perturbation operators, we must dis-
card the infinities and at the same time retain the relevant information on the natural
scale. In Hamiltonian formulation, for example, the time evolution of an object, e.g.
the movements of celestial bodies, is governed by a Hamiltonian function. If the
magnitude of the Hamiltonian is set to be of order ‘1’, the magnitude of the per-
turbation (the collective negligible influences) is of order ε , then the perturbation
is negligible on an interval of any fixed length. This ratio in magnitudes translates
into time scales. If the original system is on scale 1, we work on a time interval of
length 1

ε
to see the deviation of the perturbed trajectories. Viewed on the time inter-

val [0,1] the perturbation is not observable. On [0, 1
ε
] the perturbation is observable,

the natural object to study is the evolution of the energies while the dynamics of the
Hamiltonian dynamics becomes too large. See [34, 4, 18].

If the state space of our dynamical system has an action by a group, the orbit
manifold is a fundamental object. We use the projection to the orbit manifold as a
conservation law and use it to separate the slow and the fast variables in the system.
The slow variables lie naturally on a quotient manifold. In many examples we can
further reduce this system of slow-fast stochastic differential equations (SDEs) to
a product manifold N ×G, which we describe later by examples. From here we
proceed to prove an averaging principle for the family of SDEs with a parameter ε .
In these SDEs the slow and the fast variables are already separate, but they interact
with each other.

This can then be applied to a local product space such as a principal bundle. In
[65, 67, 66], the slow variables in the reduced system are random ODEs, where we
study the system on the scale of [1, 1

ε2 ] to obtain results of the nature of diffusion
creation. In these studies we bypassed stochastic averaging and went straight for
the diffusion creation. In [63, 49, 39] stochastic averaging are studied, but they are
computed in local coordinates. Here the slow variables solve a genuine SDE with
a stochastic integral and the computations are global. We first prove an averaging
theorem for these SDEs and then study some examples where we deduce a slow-
fast system of SDEs from non-linear conservation laws, to which our main theorems
apply.

Throughout the article (Ω ,F ,Ft ,P) is a probability space satisfying the usual
assumptions. Let (Bt ,Wt) be a Brownian motion on Rm1 ×Rm2 where m1,m2 ∈
N . We write Bt = (B1

t , . . . ,B
m1
t ) and Wt = (W 1

t , . . . ,W
m1

t ). Let N and G be two
complete connected smooth Riemannian manifolds, let x0 ∈ N and y0 ∈ G. Let ε
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denote a small positive number and let m1 and m2 be two natural numbers. Let
X : N×G×Rm1 → T N and Y : N×G×Rm2 → T G be C3 smooth maps linear in the
last variable. Let X0 and Y0 be C2 smooth vector fields on N and on G respectively,
with a parameter taking its values in the other manifold. Let us consider the SDEs,

dxε
t =X(xε

t ,y
ε
t )◦dBt +X0(xε

t ,y
ε
t )dt, xε

0 = x0,

dyε
t =

1√
ε

Y (xε
t ,y

ε
t )◦dWt +

1
ε

Y0(xε
t ,y

ε
t )dt, yε

0 = y0.
(1)

The symbol ◦ is used to denote Stratonovich integrals. By choosing an orthonormal
basis {ei} of Rm1×Rm2 , we obtain a family of vector fields {X1, . . . ,Xm1 ,Y1, . . . ,Ym2}
as following: Xi(x) = X(x)(ei) for 1 ≤ i ≤ m1 and Yi(x) = Y (x)(ei) for i = m1 +
1, . . . ,m1 +m2. Then the system of SDEs (1) is equivalent to the following

dxε
t =

m1

∑
k=1

Xk(xε
t ,y

ε
t )◦dBk

t +X0(xε
t ,y

ε
t )dt, xε

0 = x0,

dyε
t =

1√
ε

m2

∑
k=1

Yk(xε
t ,y

ε
t )◦dW k

t +
1
ε

Y0(xε
t ,y

ε
t )dt, yε

0 = y0.

If V is a vector field, by V f we mean d f (V ) or LV f , the Lie differential of f
in the direction of V . Then (xε

t ,y
ε
t ) is a sample continuous Markov process with

generator L ε := 1
ε
L +L (1) where

L =
1
2

m2

∑
k=1

Y 2
i +Y0, L (1) =

1
2

m1

∑
k=1

X2
i +X0.

In other words if f : N×G→ R is a smooth function then

L ε f (x,y) :=
1
ε
Lx( f (·,y))(x)+L

(1)
y ( f (x, ·))(y),

where

Lx f (x, ·) =

(
1
2

m2

∑
k=1

Y 2
i (x, ·)+Y0(x, ·)

)
f (x, ·),

L
(1)

y f (·,y) =

(
1
2

m1

∑
k=1

X2
i (·,y)+X0(·,y)

)
f (·,y).

The result we seek is the weak convergence of the slow variables xε
t to a Markov

process x̄t whose Markov generator L̄ is to be described.

Let T be a positive number and let C([0,T ];N) denote the family continuous
functions from [0,T ] to N, the topology on C([0,T ];N) is given by the uniform
distance. A family of continuous stochastic processes xε

t on N is said to converge to a
continuous process x̄t if for every bounded continuous function F :C([0,T ];N)→R,
as ε converges to zero,



4 Xue-Mei Li

E[F(xε
· )]→ E[F(x̄·)].

In particular, if uε(t,x,y) is a bounded regular solution to the Cauchy problem for
the PDE ( for example C3 in space and C1 in time) ∂uε

∂ t =L ε u with the initial value
f in L∞, then uε(t,x0,y0) = E[ f (xε

t ,y
ε
t )]. Suppose that the initial value function f is

independent of the second variable so f : N→ R. Then the weak convergence will
imply that

lim
ε→0

uε(t,x0,y0) = u(t,x0)

where u(t,x) is the bounded regular solution to the Cauchy problem

∂u
∂ t

= L̄ u, u(0,x) = f (x).

Stochastic averaging is a procedure of equating time averages with space av-
erages using a form of Birkhoff’s ergodic theorem or a law of large numbers.
Birkhoff’s pointwise ergodic theorem states that if T : E→ E is a measurable trans-
formation preserving a probability measure µ on the metric space E then for any
F ∈ L1(µ),

1
n

n

∑
k=1

F(T kx)→ E(F |I )

for almost surely all x, as n→ ∞, and where I is the invariant σ -algebra of T .
Suppose that (zt) is a sample continuous ergodic stochastic process with values in
E, stationary on the space of paths C([0,1];E). Denote by µ its one time probability
distribution. Then for any real valued function f ∈ L1(µ),

1
t

∫ t

0
f (zs)ds→

∫
f (z)µ(dz).

This is simply Birkhoff’s theorem applied to the shift operator and to the function
F(ω) =

∫ 1
0 f (zs(ω))ds. If zt is not stationary, but a Markov process with initial value

a point, conditions are needed to ensure the convergence of the Markov process to
equilibrium with sufficient speed.

We explain below stochastic averaging for a random field whose randomness is
introduced by a fast diffusion. Let (xε

t ,y
ε
t ) be solution to the SDE on Rm1 ×Rm2 :

dxε
t =

m1

∑
k=1

σk(xε
t ,y

ε
t )dBk

t +b(xε
t ,y

ε
t )dt, dyε

t =
1√
ε

m2

∑
k=1

θk(xε
t ,y

ε
t )dW k

t +
1
ε

b(xε
t ,y

ε
t )dt.

with initial values xε
0 = x0, and yε

0 = y0. Here the stochastic integrations are Itô
integrals. A sample averaging theorem is as following. Let zx

t denote the solution to
the SDE

dzx
t =

m2

∑
k=1

θk(x,zx
t )dW k

t +b(x,zx
t )dt
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with initial value zx
0. Suppose that the coefficients are globally Lipschitz continuous

and bounded. Suppose that supt∈[0,T ] supε∈(0,1] E|yε
t |2 and supx supt∈[0,T ] E|zx

t |2 are
finite. Also suppose that there exist functions āi, j and b̄ such that∣∣∣∣1t E

∫ t

0
b(x,zx

s)ds− b̄(x)
∣∣∣∣≤C(t)(|x|2 + |z|2 +1),∣∣∣∣∣1t E

∫ t

0
∑
k

σ
i
kσ

j
k (x,z

x
s)ds− āi, j(x)

∣∣∣∣∣≤C(t)(|x|2 + |z|2 +1).
(2)

Then the stochastic processes xε
t converge weakly to a Markov process with gener-

ator 1
2 āi, j

∂ 2

∂xi∂x j
+ b̄k

∂ 2

∂xk
, see [81, 82, 47, 17, 90]. See also [74, 60, 54, 48, 76]. See

[46, 8, 38, 37, 24, 68, 78, 27, 18, 36, 43, 20, 52, 41] for a range of more recent
related work. We also refer to the following books [56, 77, 80, 59, 12]

Averaging of stochastic differential equations on manifolds has been studied in
the following articles [53], [63], [64], and [39]. In these studies either one restricts
to local coordinates, or has a set of convenient coordinates, or one works directly
with local coordinates. We will be using a global approach.

We will first deduce a quantitative locally uniform Birkhoff’s ergodic theorem for
Lx, then prove an averaging theorem for (1). Finally we study a number of examples
of singular perturbation problems.

The main assumptions on Lx is a Hörmander’s (bracket) condition.

Definition 1. Let X0,X1, . . . ,Xk be smooth vector fields.

1. The differential operator ∑
m
k=1(Xi)

2+X0 is said to satisfy Hörmander’s condition
if {Xk,k = 0,1, . . . ,m} and their iterated Lie brackets generate the tangent space
at each point.

2. The differential operator ∑
m
k=1(Xi)

2 +X0, is said to satisfy strong Hörmander’s
condition if {Xk,k = 1, . . . ,m} and their iterated Lie brackets generate the tangent
space at each point.

Outline of the paper. In §3 we study the regularity of invariant probability mea-
sures µx of Lx with respect to the parameter x and prove the local uniform law of
large numbers with rate. We may assume that each Lx satisfies Hörmander’s con-
dition. What we really need is that LX is a family of Fredholm operators satisfying
the sub-elliptic estimates and with zero Fredholm index. In §4 we give estimates for
SDEs on manifolds. It is worth noticing that we do not assume that the transition
probabilities have densities. We use an approximating family of distance functions
to overcome the problem that the distance function is not smooth. These estimates
lead easily to the tightness of the slow variables. In §5 we prove the convergence
of the slow variables, for which we first prove a theorem on time averaging of path
integrals of the slow variables. This is proved under a law of large numbers with
any uniform rate. In §2 we study some examples of singular perturbation problems.
Finally, we pose a number of open questions, one of which is presented in the next
section, the others are presented in §2.
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1.1 Description of results.

The following law of large numbers with a locally uniform rate is proved is section 3.

Theorem 1 (Quantitative Locally Uniform Law of Large Numbers). Let G be
a compact manifold. Suppose that Yi are bounded, C∞ with bounded derivatives.
Suppose that each

Lx =
1
2

m

∑
i=1

Y 2
i (x, ·)+Y0(x, ·)

satisfies Hörmander’s condition (Def. 1), and has a unique invariant probability
measure µx. Then the following statements hold for µx.

(a) x 7→ µx is locally Lipschitz continuous in the total variation norm.
(b) For every s > 1+ dim(G)

2 there exists a positive constant C(x), depending contin-
uously in x, such that for every smooth function f : G→ R,∣∣∣∣ 1

T

∫ t+T

t
f (zx

r) dr−
∫

G
f (y)µx(dy)

∣∣∣∣
L2(Ω)

≤C(x)‖ f‖s
1√
T
, (3)

where zr denotes an Lx-diffusion.

Remark 1. Let Px(t,y, ·) denote the transition probability of Lx. Suppose Lx satis-
fies Doeblin’s condition. Then Lx has a unique invariant probability measure. This
holds in particular if Lx satisfies the strong Hörmander’s condition and G is com-
pact. The uniqueness follows from the fact that it has a smooth strictly positive
density. ( Hörmander’s condition ensures that any invariant measure has a smooth
kernel and the kernel of its L2 adjoint L ∗ contains a non-negative function. The
density is however not necessarily positive. ) Suppose that each Lx satisfies the
strong Hörmander’s condition (c.f. Def. 1) and G is compact. It is well know that
the transition probability measures Px(t,y0, ·), with any initial value y0, converges
to the unique invariant probability measure µx with an exponential rate which we
denote by C(x)eγ(x)t . If x takes values also in a compact space N, the exponential
rate and the constant in front of the exponential rate can be taken to be independent
of x. When N is non-compact, we obviously need to make further assumptions on
Lx for a uniform estimate. There have been work on ergodicity of this type. We
refer to : [23, 10, 91, 70],

Set

X̃0(·,y) =
1
2

m1

∑
i=1

∇Xi(Xi)(y, ·)+X0(y, ·),

Ỹ0(x, ·) =
1
2

m2

∑
i=1

∇Yi(Yi)(x, ·)+Y0(x, ·).

Let O be a reference point in N and ρ is the Riemannian distance from O.

Assumption 1 (Assumptions on Xi and N) Suppose that X̃0 and Xi are C1, where
i = 1, . . . ,m. Suppose that one of the following two statements holds.
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(i) The sectional curvature of N is bounded. There exists a constant K such that

m

∑
i=1
|Xi(x,y)|2 ≤ K(1+ρ(x)), |X0(x,y)| ≤ K(1+ρ(x)), ∀x ∈ N,∀y ∈ G.

(ii) Suppose that the square of the distance function on N is smooth. Suppose that

1
2

m

∑
i=1

∇dρ
2(Xi(·,y),Xi(·,y))+dρ

2(X̃0(·,y))≤ K +Kρ
2(·), ∀y ∈ G.

Assumption 2 (Assumptions on Yi and G) We suppose that G has bounded sec-
tional curvature. Suppose that Ỹ0 and Yj are C2 and bounded with bounded first
order derivatives.

The following is extracted from Theorem 5.6.

Theorem 2 (Averaging Theorem). Suppose that there exists a family of invariant
probability measure µx on G that satisfies the conclusions of Theorem 1. Suppose
the assumptions on Xi, N, Yi and G hold (Assumptions 1 and 2). Then as ε → 0, the
stochastic processes xε

t converges weakly on C([0,T ],N) to a Markov process with
generator L̄ .

Remark 2. (i) If f is a smooth function on N with compact support then

L̄ f (x) =
∫

G

(
1
2

m1

∑
i=1

X2
i (·,y) f +X0(·,y) f

)
(x)µx(dy). (4)

See the Appendix in §5 for a sum of squares of vector fields decomposition of L̄ .
(ii) Under Assumptions 1 there exists a unique global solution xε

t for each initial
value (x,y). We also have uniform estimates on the distance ρ(xε

s ,x
ε
t ) which leads

to the conclusion that the family {xε
· ,ε > 0} is tight. Also we may conclude

that the moments of the solutions are bounded uniformly on any compact time
interval and in ε for ε ∈ (0,1]. Such estimates are given in §4.

(iii) Under Assumptions 1- 2 we may approximate the fast motion, on sub-intervals
[ti, ti+1], by freezing the slow variables and obtain a family of Markov processes
with generator Lx. The size of the sub-intervals must be of size o(ε) for the error
of the approximation to converge to zero as ε → 0, and large on the scale of 1

ε

for the ergodic average to take effect.

Problem 1. Suppose that Lx satisfies Hörmander’s condition. Then the kernel of
L ∗

x is finite dimensional. Without assuming the uniqueness of the invariant proba-
bility measures, it is possible to define a projection to the kernel of Lx, by pairing
up a basis {ui(x)} of ker(Lx) with a dual basis π i(x) of ker(L ∗

x ) and this leads to
a family of projection operators Π(x). To obtain a locally uniform version of this,
we should consider the continuity of Π with respect to x. Let us consider the sim-
ple case of a family of Fredhom operators T (x) from a Hilbert space E to a Hilbert
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space F . It is well known that the dimension of their kernels may not be a continu-
ous function of x, but the Fredholm index of T (x) is a continuous function if x in the
space of bounded linear operators [5]. See also [88, 89] for non-elliptic operators.
Given that the projection π(x) involves both the kernel and the co-kernel, it is rea-
sonable to expect that Π(x) is continuous in x. The question is whether this is true
and more importantly whether in this situation there is a local uniform Law of large
numbers.

2 Examples

We describe some motivating examples, the first being dynamical descriptions for
Brownian motions, the second being the convergence of metric spaces. The overar-
ching question concerning the second is: given a family of metric spaces converging
to another in measured Gromov Hausdorff topology, can we give a good dynamical
description for their convergence? What can one say about the associated singu-
lar operators? These will considered in terms of stochastic dynamics. See [51, 73]
and [64] concerning collapsing of Riemannian manifolds. The third example is a
model on the principal bundle. These singular perturbation models were introduced
in [63, 65, 67, 64], where the perturbations were chosen carefully for diffusion cre-
ation. The reduced systems are random ODEs for which a set of limit theorems are
available, and the perturbations are chosen so that one could bypass the stochas-
tic averaging procedure and work directly on the faster scale for diffusion creation
[0, 1

ε
]. Theorem 5.6 allows us to revisit these models to include more general pertur-

bations, in which the effective limits on [0,1] are not trivial. It also highlights from a
different angle the choice of the perturbation vector in the models which we explain
below.

2.1 A dynamical description for Brownian motions

In 1905, Einstein, while working on his atomic theory, proposed the diffusion model
for describing the density of the probability for finding a particle at time t in a
position x. A similar model was proposed by Smoluchowski with a force field. Some
years later Langevin (1908) [62] and Ornstein-Uhlenbeck (1930) [86] proposed a
dynamical model for Brownian motion for time larger than the relaxation time 1

β
:{

ẋ(t)= v(t)

v̇(t)=−βv(t)dt +
√

DβdBt +βb(x(t))dt

where Bt a one dimensional Brownian motion and b a vector field. This equation is
stated for R with β ,D constants and was studied by Kramers [58] and Nelson [72].
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The model is on the real line, there exists only one direction for the velocity field.
The magnitude of v(t) together with the sign changes rapidly.

The second order differential equations for unit speed geodesics, on a manifold
M, are equivalent to first order ODEs on the space of orthonormal frames of M, this
space will be denoted by OM. Suppose that we rotate the direction of the geodesic
uniformly, according to the probability distribution of a Brownian motion on SO(n),
while keeping its magnitude fixed to be 1, and suppose that the rotation is at the scale
of 1

ε
then the projections to M of the solutions of the equations on OM converge to

a fixed point as ε→ 0. But if we further tune up the speed of the rotation, these mo-
tions converge to a scaled Brownian motion, whose scale is given by an eigenvalue
of the fast motion on SO(n). See [65]. An extension to manifolds was first studied
[25] followed by [16]. That in [25] is different from that in Li-geodesic, which is
also followed up in [2] where the authors iremoved the geometric curvature restric-
tions in [65]. See also [14] for a local coordinate approach and more recently [26].
Assume the dimension of M is greater than 1. The equations, [65], describing this
are as following:duε

t = Huε
t
(e0)dt +

1√
ε

N

∑
k=1

A∗k(u
ε
t )◦dW k

t +A∗0(u
ε
t )dt,

uε
0 = u0.

(1)

where {A1, . . . ,AN} is an o.n.b. of so(n), and A0 ∈ so(n). The star sign denotes
the corresponding vertical fundamental vector fields and H(u)(e0) is the horizontal
vector field corresponding to a unit vector e0 in Rn. This following theorem is taken
from [65].

Theorem 2A. The position part of uε
t
ε

, which we denote by (xε
t
ε

), converges to

a Brownian motion on M with generator 4
n(n−1)∆ . Furthermore the parallel transla-

tions along these smooth paths of (xε
t
ε

) converge to stochastic parallel translations
along the Hörder continuous sample paths of the effective scaled Brownian motion.

The conservation law in this case is the projection π , taking a frame to its base
point, using which we obtain the following reduced system of slow-fast SDEs:

d
dt

x̃ε
t = Hx̃ε

t
(g t

ε
e0), x̃ε

0 = u0,

dgt =
m

∑
k=1

gtAk ◦dwk
t +gtA0 dt, g0 = Id.

The slow variable does not have a stochastic part, the averaging equation is given
by the average vector field

∫
SO(n) H(ug)(e)dg, where dg is the Haar measure, and

vanishes. Hence we may observe the slow variable on a faster scale and consider
xε

t
ε

.
In section 6.1 we use the general results obtained later to study two generalised

models.
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2.2 Collapsing of manifolds

Our overarching question is how the stochastic dynamics describe the convergence
of metric spaces. Let us consider a simple example: SU(2) which can be identified
with the sphere S3. The Lie algebra of SU(2) is given by the Pauli matrices

X1 =

(
i 0
0 −i

)
, X2 =

(
0 1
−1 0

)
, X3 =

(
0 i
i 0

)
.

By declaring { 1√
ε

X1,X2,X3} an orthonormal frame we define Berger’s metrics gε .

Thus (S3,gε) converges to S2. They are the first known family of manifolds which
collapse to a lower dimensional one, while keeping the sectional curvatures uni-
formly bounded (J. Cheeger). Then all the operators in the sum

∆
ε

S3 =
1
ε
(X1)

2 +(X2)
2 +(X3)

2 =
1
ε

∆S1 +∆H

commute, the eigenvalues satisfy the relation λ3(∆
ε

S3) =
1
ε

λ1(∆S1)+ λ2(∆H). The
non-zero eigenvalues of ∆S1 flies away and the eigenfunctions of λ1 = 0 are function
on the sphere S2( 1

2 ) of radius 1
2 , the convergence of the spectrum of ∆ ε

S3 follows.
See [85], [11] [87] for discussions on the spectrum of Laplacians on spheres, on
homogeneous Riemannian manifolds and on Riemannian submersions with totally
geodesic fibres.

We study

L ε :=
1
ε

∆S1 +Y0

in which ∆S1 and Y0 do not commute. Take for example, Y0 = aX2 + bX3 where
|Y0|= 1. Let π(z,w)= 1

2 (|w|
2−|z|2,zw̄) be the Hopf map. Let uε

t be an L ε -diffusion
with the initial value u0. Then π(uε

t
ε

) converges to a BM on S2( 1
2 ), scaled by 1

2 . See

[67]. See also [73] for related studies. It is perhaps interesting to observe that L ε

satisfies Hörmander’s condition for any Y0 6= 0. Later we see that this fact is not an
essential feature of the problem. The model on S3 in [64] is a variation of this one.

2.3 Inhomogeneous scaling of Riemannian metrics

If a manifold is given a family of Riemannian metrics depending on a small param-
eter ε > 0, the Laplacian operators ∆ ε is a family of singularly perturbed operators.
We might ask the question whether their spectra converge. More generally let us
consider a family of second order differential operators L ε = 1

ε
L0 +L1, each in

the form of a finite sum of squares of smooth vector fields with possibly a first order
term. As ε→ 0, the corresponding Markov process does not converge in general. In
the spirit of Noether’s theorem, to see a convergent slow component we expect to
see some symmetries for the system L0. On the other hand, by a theorem of S. B.
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Myers and N. E. Steenrod [71], the set of all isometries of a Riemannian manifold
M is a Lie group under composition of maps, and furthermore the isotropy subgroup
Isoo(M) is compact. See also S. Kobayashi and K. Nomizu [55]. We are led to study
homogeneous manifolds G/H, where G is a smooth Lie group and H is a compact
sub-group of G. We denote by g and h their respective Lie algebras.

Let g be endowed an Ad(H)-invariant inner product and take m = h⊥. Then
G/H is a reductive homogeneous manifold, in the sense of Nomizu, by which we
mean Ad(H)(m)⊂m. This is a different from the concept of a reductive Lie group,
where the adjoint representation of the Lie group G is completely reducible. (Bismut
studied a natural deformation of the standard Laplacian on a compact Lie group G
into a hypoelliptic operator on T G see [15].) We assume that the real Lie group
G is smooth, connected, not necessarily compact, of dimension n and H a closed
connected proper subgroup of dimension at least one. We identify elements of the
Lie algebra with left invariant vector fields.

We generate a family of Riemannian metrics on G by scaling the h directions by
ε . Let {A1, . . . ,Ap,Yp+1, . . . ,XN} be an orthonormal basis of g for an inner product
extending an orthonormal basis {A1, . . . ,Ap} of h with the remaining vectors from
m. By declaring {

1√
ε

A1, . . . ,
1√
ε

Ap,Yp+1, . . .YN

}
an orthonormal frame, we obtain a family of left invariant Riemannian metrics. Let
us consider the following second order differential operator, related to the re-scaled
metric:

L ε =
1

2ε

m2

∑
k=1

(Ak)
2 +

1
ε

A0 +Y0,

where Ak ⊂ h and Y0 ∈ m is a unit vector. This leads to the following family of
equations, where ε ∈ (0,1],

dgε
t =

1√
ε

m2

∑
k=1

Ak(gε
t )◦dBk

t +
1
ε

A0(gε
0)dt +Y0(gε

t )dt, gε
0 = g0.

These SDEs belong to the following family of equations

dgt =
m2

∑
k=1

γAk(gt)◦dBk
t + γ A0(g0)dt +δY0(gt)dt.

The solutions of the latter family of equations, with parameters γ and δ real num-
bers, interpolate between translates of a one parameter subgroups of G and diffu-
sions on H. Our study of L ε is related to the concept o ‘taking the adiabatic limit’
[13, 69].

Let (gε
t ) be a Markov processes with Markov generator L ε , and set xε

t = π(gε
t )

where π is the map taking an element of G to the coset gH. Then L ε = 1
ε
L0 +Y0

where L0 =
1
2 ∑

m2
k=1(Ak)

2 +A0. We will assume that {Ak} ⊂ h are bracket generat-
ing. Scaled by 1/ε , the Markov generator of (gε

t
ε

) is precisely 1
ε
L ε .
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The operators L ε are not necessarily hypo-elliptic in G, and they will not ex-
pected to converge in the standard sense. Our first task is to understand the nature
of the perturbation and to extract from them a family of first order random differ-
ential operators, L̃ ε , which converge and which have the same orbits as L ε , the
‘slow motions’. The reduced operators, 1

ε
L̃ ε , describe the motion of the orbits un-

der ‘perturbation’.
Their effective limit is either a one parameter sub-groups of G in which case our

study terminate, or a fixed point in which case we study the fluctuation dynamics on
the time scale [0, 1

ε
]. On the Riemmanian homogeneous manifold, if G is compact,

the effect limit on G is a geodesic at level one and a fixed point at level two. On
the scale of [0, 1

ε
] we would consider 1

ε
L0 as perturbation. It is counter intuitive to

consider the dominate part as the perturbation. But the perturbation, although very
large in magnitude, is fast oscillating. The large oscillating motion get averaged out,
leaving an effective motion corresponding to a second order differential operator
on G.

This problems breaks into three parts: separate the slow and the fast variable,
which depends on the principal bundle structure of the homogeneous space, and de-
termine the natural scales; the convergence of the solutions of the reduced equations
which is a family of random ODEs; finally the buck of the interesting study is to de-
termine the effective limit, answering the question whether it solves an autonomous
equation.

It is fairly easy to see that xε
t moves relatively slowly. The speed at which xε

t
crosses M is expected to depend on the specific vector Y0, however in the case of
{A1, . . . ,Ap} is an o.n.b. of h and A0 = 0, they depend only on the Ad(H)-invariant
component of Y0.

The separation of slow and fast variables are achieved by first projecting the
motion down to G/H and then horizontally lift the paths back (a non-Markovian
procedure), exposing the action in the fibre directions. The horizontal process thus
obtained is the ‘slow part’ of gε

t and will be denoted by uε
t . It is easy to see that the

reduced dynamic is given by

u̇ε
t = Ad(h t

ε
)(Y0)(uε

t ).

where ht has generator 1
2 ∑(Ai)

2 +A0.
If {A0,A1, . . . ,Am} generates the vector space h, the differential operator 1

2 ∑(Ai)
2+

A0 satisfies Hörmander’s condition in which case the invariant probability measure
is the normalised Haar measure. Then uε

t converges to the solution of the ODE:

d
dt

ūt =
∫

H
Ad(h)(Y0)dh.

Let us take an Ad(H) invariant decomposition of m, m= m0 +m1 where m0 is the
vector space of invariant vectors and m′ is its orthogonal complement. Then∫

H
Ad(h)(Y0)dh = Y0

m0
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where the superscript m0 denote the m0 component of Y . This means that the dy-
namics is a fixed point if and only if Ym0

0 = 0.
In [67] we take Ym0

0 = 0 and answered this question by a multi-scale analysis
and studied directly the question concerning Y0 ∈ m̃, without having to go through
stochastic averaging. Theorem 1 makes this procedure easier to understand. Then we
consider the dynamics on [0, 1

ε
]. The reduced first order random differential opera-

tors give rise to second order differential operators by the action of the Lie bracket.

2.4 Perturbed dynamical systems on Principal bundles

In the examples described earlier, we have a perturbed dynamical system on a mani-
fold P. On P there is an action by a Lie group G, and the projection to M = P/G is a
conservation law. We then study the convergence of the slow motion, the projection
to M, and their horizontal lifts. More precisely we have a principal bundle with fibre
the Lie group G. To describe these motions we consider the kernels of the differential
of the projection π: they are called the vertical tangent spaces and will be denoted by
V TuP. Any vector field taking values in the vertical tangent space is called a vertical
vector field, the Lie-bracket of any two vertical vector fields is vertical. A smooth
choice of the complements of the vertical spaces, that are right invariant, determines
a connection. These complements are called the horizontal spaces. The ensemble is
denoted by HTuP and called the horizontal bundle. From now on we assume that we
have chosen such a horizontal space. A vector field taking values in the horizon tan-
gent spaces is said to be a horizontal vector field. Right invariant horizontal vector
fields are specially interesting, they are precisely the horizontal lifts of vector fields
on M.

Let π : P→ M denote the canonical projection taking an element of the total
space P to the corresponding element of the base manifold. Also let Rg : P→ P
denote the right action by g, for simplicity we also write ug, where u ∈ P, for Rgu.
A connection on a principal bundle P is a splitting of the tangent bundle TuP =
HTuP+V TuP where V TuP is the kernel of the differential of tπ . Let g denote the
Lie algebra of G. For any A ∈ g we define

A∗(u) = lim
t→0

Rexp(tA)u.

The splitting mentioned earlier is in one to one correspondence with a connection
1-form, by which we mean a map ϖ : TuP→ g with the following properties:

(Rg)
∗
ϖ = ad(g−1)ϖ , ϖ(A∗)≡ A.

This splitting also determines a horizontal lifting map hu at u ∈ P and a family
of horizontal vector fields Hi. If {e1, . . .en} is an orthonormal basis of Rn, where
n = dim(M), we set Hi(u) = hu(uei). If {A1, . . . ,AN} is an orthonormal basis of the
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Lie algebra g, then at every point u, {H1(u), . . . ,Hn(u),A∗1(u), . . . ,A
∗
N(u)} is a basis

of TuP. We give P the Riemannian metric so that the basis is orthonormal.
Any stochastic differential equation (SDE) on P are of the following form, where

β and γ are two real positive numbers and σ k
j and θ k

j are BC3 functions on P.

dut =β

m1

∑
k=1

(
n

∑
i=1

σ
i
k(ut)Hi(ut)

)
◦dBk

t +β
2

n

∑
i=1

σ
i
0(ut)Hi(ut)dt

+ γ
2

m2

∑
k=1

(
N

∑
j=1

θ
j

k (ut)A j(ut)

)
◦dW k

t + γ

N

∑
j=1

θ
j

0 (ut)A j(ut)dt.

Set Xk = ∑
n
i=1 σ i

k Hi, and Yk = ∑
N
j=1 θ

j
k A j. Then the equation is of the form

dut = β

m1

∑
k=1

Xk(ut)◦dBk
t +β

2 X0(ut) dt + γ

m2

∑
k=1

Yk ◦dW k
t + γ

2 Y0(ut)dt.

The solutions are Markov processes with Markov generator

β
2

(
m1

∑
k=1

(Xk)
2 +X0

)
+ γ

2

(
m2

∑
k=1

(Yk)
2 +Y0

)
.

We observe that the projection of the second factor vanishes, so if β = 0, then
π(ut) = π(u0) and π is a conservation law. The equation with small β is a stochas-
tic dynamic whose orbits deviate slightly from that of the initial value u0. If on the
other hand, Xi are vector fields invariant under the action of the group, and γ = 0
then the projection π(ut) is an autonomous SDE on the manifold M.

Let us take β = 1 and γ = 1√
ε

.

duε
t =

m1

∑
k=1

(
n

∑
i=1

σ
i
k(u

ε
t )Hi(uε

t )

)
◦dBk

t +
n

∑
i=1

σ
i
0(u

ε
t )Hi(uε

t ) dt

+
1√
ε

m2

∑
k=1

(
N

∑
j=1

θ
j

k (u
ε
t )A
∗
j(u

ε
t )

)
◦dW k

t +
1
ε

N

∑
j=1

θ
j

0 (u
ε
t )A
∗
j(u

ε
t )dt,

uε
0 = u0.

We proceed to compute the equations for the slow and for the fast variables. Let
xε

t = π(uε
t ). Then xε

t has a horizontal lift, see e.g. [32, 3, 29]. See also [30] and [31].
Let T Rg denote the differential of Rg. For k = 0,1, . . . ,m1, set

Xk(ug) =
p

∑
i=1

σ
i
k(ug)T Rg−1Hi(ug).

Below we deduce an equation for xε
t which is typically not autonomous.
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Lemma 2.1 The horizontal lift processes satisfy the following system of slow-fast
SDE’s:

dx̃ε
t =

m1

∑
k=1

Xk (x̃ε
t gε

t )◦dBk
t +X0 (x̃ε

t gε
t ) dt, x̃ε

0 = g0

dgε
t =

1√
ε

m2

∑
k=1

(
N

∑
j=1

θ
j

k (x̃
ε
t gε

t )A
∗
j(g

ε
t )

)
◦dW k

t +
1
ε

N

∑
j=1

θ
j

0 (x̃
ε
t gε

t )A
∗
j(g

ε
t )dt, gε

0 = id.

(2)

Proof. Since x̃ε
t and uε

t belong to the same fibre we may define gε
t ∈G by uε

t = x̃ε
t gε

t .
If at is a C1 curve in the lie group G

d
dt
|tuat =

d
dr |r=0

uata−1
t ar+t = (a−1

t ȧt)
∗(uat).

It follows that
duε

t = T Rgε
t
dx̃ε

t +(T L(gε
t )
−1dgε

t )
∗(uε

t ).

Since right translations of horizontal vectors are horizontal,

T L(gε
t )
−1dgε

t = ϖ(duε
t ) =

1√
ε

m1

∑
k=1

(
N

∑
j=1

θ
j

k (u
ε
t )A j

)
◦dW k

t +
1
ε

N

∑
j=1

θ
j

0 (u
ε
t )A j dt

Hence, denoting by A∗ also the left invariant vector fields on G, we have an equation
for gε

t :

dgε
t =

1√
ε

m2

∑
k=1

(
N

∑
j=1

θ
j

k (u
ε
t )A
∗
j(g

ε
t )

)
◦dW k

t +
1
ε

N

∑
j=1

θ
j

0 (u
ε
t )A
∗
j(g

ε
t )dt.

Since π∗(A j) = 0 and by the definition of Hi we also have,

dxε
t =

m1

∑
k=1

(
p

∑
i=1

σ
i
k(u

ε
t )(u

ε
t ei)

)
◦dBk

t +
n

∑
i=1

σ
i
0(u

ε
t )(u

ε
t ei) dt.

Its horizontal lift is given by dx̃t = hx̃t (◦dxε
t ) and so we have the following SDE

dx̃ε
t =

m1

∑
k=1

(
p

∑
i=1

σ
i
k(u

ε
t )hx̃ε

t
(uε

t ei)

)
◦dBk

t +
n

∑
i=1

σ
i
0(u

ε
t )hx̃ε

t
(uε

t ei) dt.

Since hu(ugei) = T Rg−1hug(ugei) = T Rg−1Hi(ug), we may rewrite the above equa-
tion in the following more convenient form:

dx̃ε
t =

m1

∑
k=1

(
p

∑
i=1

σ
i
k(x̃

ε
t gε

t )T R−1
gε

t
Hi(x̃ε

t gε
t )

)
◦dBk

t +
n

∑
i=1

σ
i
0(x̃

ε
t gε

t )T R−1
gε

t
Hi(x̃ε

t gε
t ) dt.

(3)
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Finally we also rewrite the equation for the fast variable in terms of the fast and slow
splitting:

dgε
t =

1√
ε

m2

∑
k=1

(
N

∑
j=1

θ
j

k (x̃
ε
t gε

t )A
∗
j(g

ε
t )

)
◦dW k

t +
1
ε

N

∑
j=1

θ
j

0 (x̃
ε
t gε

t )A
∗
j(g

ε
t )dt. (4)

This completes the proof.

If θ
j

k are lifts of functions from M, i.e. equi-variant functions, then the system of
SDEs for gε

t do not depend on the slow variables. Define

Lu f (g) =
1
2

m1

∑
k=1

(
θ

j
k (ug)A∗j(g)

)2
f (g)+

N

∑
j=1

θ
j

0 (ug)A∗j(g) f (g).

The matrix with entries Θi, j = ∑
m1
k=1 θ

j
k θ i

k measures the ellipticity of the system.
In section 6.3 we state an averaging principle for this system of slow-fast equa-

tions.

2.5 Completely integrable stochastic Hamiltonian systems

In [63] a completely integrable Hamiltonian system (CISHS) in an 2n dimensional
symplectic manifolds is introduced, which has n Poisson commuting Hamiltonian
functions. After some preparation this reduces to a slow-fast system in the action
angle components.

We begin comparing this model with the very well studied random perturbation
problem dxt = (∇H)⊥(xt)dt + εdBt where B is a real valued Brownian motion,
H : R2 → R, and (∇H)⊥ is the skew gradient of H. In the more recent CISHS
model, the energy function is assumed to be random and of the form Ḃt so we have
the equation dxt = (∇H)⊥(xt)◦dBt . In both cases H(xt) = H(x0) for all time, so H
is a conserved quantity for the stochastic system. Suppose that the CISHS system is
perturbed by a small vector field, we have the family of equations

dxε
t = (∇H)⊥(xε

t )◦dBt + εV (xt)dt.

Given a perturbation transversal to the energy surface of the Hamiltonians, one can
show that the energies converge on [1, 1

ε
] to the solution of a system of ODEs. If

moreover the perturbation is Hamiltonian, the limit is a constant and one may rescale
time and find an effective Markov process on the scale 1/ε2. The averaging theorem
was obtained from studying a reduced system of slow and fast variables. The CISHS
reduces to a system of equations in (H,θ), the action angle coordinates, where H ∈
Rn is the slow variable and θ ∈ Sn is the fast variables.
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d
dt

H i
t = ε f (Hε

t ,θ
ε
t ),

dθ
i
t =

n

∑
i=1

Xi(Hε
t ,θ

ε
t )◦dW i

t + εX0(Hε
t ,θ

ε
t )dt.

This slow-fast system falls, essentially, into the scope of the article.

3 Ergodic theorem for Fredholm operators depending on a
parameter

Birkhoff’s theorem for a sample continuous Markov process is directly associated to
the solvability of the elliptic differential equation L u = v where L is the diffusion
operator (i.e. the Markov generator ) of the Markov process and v is a given function.
A function v for which L u = v is solvable should satisfy a number of independent
constraints. The index of the operator L is the dimension of the solutions for the
homogeneous problem minus the dimension of the independent constraints.

Definition 3.1 A linear operator T : E → F , where E and F are Hilbert spaces, is
said to be a Fredholm operator if both the dimensions of the kernel of T and the
dimension of its cokernel F/Range(T ) are finite dimensional. The Fredholm index
of a Fredholm operator T is defined to be

index(T ) = dim(ker(T ))−dim(cokernel(T )).

A Fredholm operator T has also closed range and E2/Range(T ) = ker(T ∗).
A smooth elliptic diffusion operator on a compact space is Fredholm. It also has

a unique invariant probability measure. The Poisson equation L u = v is solvable
for a function v ∈ L2 if and only if v has null average with respect to the invariant
measure, the latter is the centre condition used in diffusion creations.

If we have a family of operators {Lx : x ∈ N} satisfying Hörmander’s condition
where x is a parameter taking values in a manifold N, the parameter space is typ-
ically the state space for the slow variable, we will need a continuity theorem on
the projection operator f 7→ f̄ . We give a theorem on this in case each Lx has a
unique invariant probability measure. It is clear that for each bounded measurable
function f ,

∫
f (z)dµx(z) is a function of x. We study its smooth dependence on x.

For the remaining of the section, for i= 0,1, . . . ,m, let Yi : N×G→ T G be smooth
vector fields and let Lx =

1
2 ∑

m
i=1 Y 2

i (x, ·)+Y0(x, ·).

Definition 3.2 If Lx satisfies Hörmander’s condition, let r(x,y) denote the mini-
mum number for the vector fields and their iterated Lie brackets up to order r(x,y)
to span TyG. Let r(x) = infy∈G r(x,y). If G is compact, r(x) is a finite number and
will be called the rank of Lx.
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Let s≥ 0, let dx denote the volume measure of a Riemannian manifold G and let
∆ denote the Laplacian. If f is a C∞ function we define its Sobolev norm to be

‖ f‖s =

(∫
M

f (x)(I +∆)s/2 f (x)dx
) 1

2

and we let Hs denote the closure of C∞ functions in this norm. This can also be
defined without using a Riemannian structure. If {λi} is a partition of unity subordi-
nated to a system of coordinates {φi,ui}, then the above Sobolev norm is equivalent
to the norm ∑i ‖(λi f )◦φi‖s. For a compact manifold, the Sobolev spaces are inde-
pendent of the choice of the Riemannian metric. Let us denote by |T | the operator
norm of a linear map T .

Suppose that Lx satisfies Hörmander’s condition. Let us re-name the vector fields
Yi and their iterated Lie brackets up to order r(x) as {Zk}. Let us define the quadratic
form

Qx(y)(d f ,d f ) = ∑
i
|d f (Zi(x,y))|2.

Then Qx(y) measures the sub-ellipticity of the operator. Let

γ(x) = inf
|ξ |=1

Qx(y)(ξ ,ξ ).

Then γ(x) is locally bounded from below by a positive number.
We summarise the properties of Hörmander type operators in the proposition

below. Let L ∗
x denote the L2 adjoint of Lx. An invariant probability measure for

Lx is a probability measure such that
∫

G Lx f (y)µx(dy) = 0 for any f in the domain
of the generator.

Proposition 3.3 Suppose that each Lx satisfies Hörmander’s condition and that G
is compact. Then the following statements hold.

(1) There exists a positive number δ (x) such that for every s ∈ R there exists a con-
stant C(x) such that for all u ∈ C∞(G;R) the following sub-elliptic estimates
hold,

‖u‖s+δ ≤C(‖Lxu‖s + |u|L2), ‖u‖s+δ ≤C(‖L ∗
x u‖s + |u|L2).

We may and will choose C(x) to be continuous and δ (x) to be locally bounded
from below. If r is bounded there exists δ0 > 0 such that δ (x)≥ δ0.

(2) Lx and L ∗
x are hypo-elliptic.

(3) Lx and L ∗
x are Fredholm and index=0.

(4) If the dimension of ker(Lx) is 1, then ker(Lx) consists of constants.

Proof. It is clear that Hörmander’s condition still holds if we change the sign of the
drift Y0, or add a zero order term, or add a first order term which can be written as a
linear combination of {Y0,Y1, . . . ,Ym}. Since
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L ∗
x =

1
2

m

∑
i=1

(Yi)
2−Y0−∑

i
div(Yi)Yi +div(Y0)−

1
2 ∑

i
LYi div(Yi)+

1
2 ∑

i
[div(Yi)]

2,

Lx satisfies also Hörmander’s condition.
By a theorem of Hörmander in [50], there exists a positive number δ (x), such

that for every s ∈ R and all u ∈C∞(G;R),

‖u‖s+δ (x) ≤C(x)(‖Lxu‖s + |u|L2).

The constant C(x) may depend on s, the L∞ bounds on the vector fields and their
derivatives, and on the rank r(x), and the sub-ellipticity constant γ(x). The constant
δ (x) in the sub-elliptic estimates depend only on how many number of brackets are
needed for obtaining a basis of the tangent spaces, we can for example take δ (x)
to be 1

r(x) . The number of brackets needed to obtain a basis at TyG is upper semi-
continuous in y and is bounded for a compact manifold. Since Lx varies smoothly in
x, then for x ∈ D there is a uniform upper bound on the number of brackets needed.
Also as indicated in Hörmander’s proof [50], the constant C(x) depends smoothly
on the vector fields. If there exists a number k0 such that r(x)≤ k0 for all x, then we
can choose a positive δ that is independent of x. This proves the estimates in part (1)
for both Lx and L ∗

x . The hypo-ellipticity of Lx and L ∗
x is the celebrated theorem

of Hörmander and follows from his sub-elliptic estimates, this is part (2).
For part (3) we only need to work with Lx. We sketch a proof for Lx to be

Fredholm as a bounded operator from its domain with the graph norm to L2. From
the sub-elliptic estimates it is easy to see that Lx has compact resolvents and that
ker(Lx) and ker(L ∗

x ) are finite dimensional. Then a standard argument shows that
Lx has closed range: If Lx fn converges in L2, then either the sequence { fn} is
bounded in which case they are also bounded in Hδ the latter is compactly em-
bedded in L2, and therefore has a convergent sub-sequence. Let us denote g a limit
point. Then since Lx if closed, g satisfies that L g = limn→∞ Lx fn. If { fn} is not L2
bounded, we can find another sequence {gn} in the kernel of L such that fn− gn
is bounded to which the previous argument produces a convergent sub-sequence.
The dimension of the cokernel is the dimension of the kernel of L ∗

x , proving the
Fredholm property. That it has zero index is another consequence of the sub-elliptic
estimates and can be proved from the definition and is an elementary (using proper-
ties of the eigenvalues of the resolvents and their duals), see [92]. Part (4) is clear as
constants are always in the kernel of Lx. �

If µ1 and µ2 are two probability measures on a metric space M we denote by |µ−
ν |TV = supA∈F |µ(A)− ν(A)| their total variation norm and W1 their Wasserstein
distance:

W1(µ1,µ2) = inf
ν

∫
M×M

ρ(x,y)ν(x,y)

where ρ is the distance function and the infimum is taken over all couplings of µ1
and µ2. Suppose that Lx has an invariant probability measure µx(dy) = q(x,y)dy.
If for a constant K, |q(x1,y)− q(x2,y)| ≤ Kρ(x1,x2) for all x1 ∈M,x2 ∈M,y ∈ G,
then |µx1 −µx2 |TV ≤ Kρ(x1,x2).
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Let µx be an invariant probability measure for Lx. We study the regularity of
the densities of the invariant probability measures with respect to the parameter,
especially the continuity of the invariant probability measures in the total variation
norm. This can be more easily obtained if Lx are Fredholm operators on the same
Hilbert space and if there is a uniform estimate on the resolvent. For a family of
uniformly strict elliptic operators, these are possible.

Remark 3.4 For the existence of an invariant probability measure, we may use
Krylov-Bogoliubov theorem which is valid for a Feller semi-group: Let Pt(x, ·) be
the transition probabilities. If for some probability measure µ0 and for a sequence of
numbers Tn with Tn → ∞, {Qn(·) = 1

Tn

∫ Tn
0
∫

M Pt(x, ·)dµ0(x)dt,n ≥ 1} is tight, then
any limit point is an invariant probability measure. The existence of an invariant
probability measure is trivial for a Feller Markov process on a compact space. Oth-
erwise, a Laypunov function is another useful tool. See [28, 45, 44, 42] for relevant
existence and uniqueness theorems.

Remark 3.5 Our operators Lx are Fredholm from their domains to L2. On a com-
pact manifold Lx is a bounded operator from W 2,2 to L2 but this is only an extension
of Lx, where W 2,2 denotes the standard Sobolev space of functions, twice weakly
differentiable with derivatives in L2. We have W 2,2 ⊂ Dom(Lx) ⊂W δ (x),2. Due to
the directions of degeneracies the domain of Lx, given by its graph norm, can be
larger than W 2,2. Since the points of the degeneracies of Lx move, in general, with
x, their domain also change with x. Suppose that Lx has zero Fredholm index, then
Lx is an isometry from [ker(Lx)]

⊥ to its image and L ∗
x is invertible on N⊥, the

annihilator of the kernel of Lx. Set

A(x) =
∣∣∣(L ∗

x )
−1
N⊥x

∣∣∣
op
.

In the following proposition we consider the continuity of µx.

Proposition 3.6 Let G be compact. Suppose that Yi ∈ BC∞ and the conclusions of
Proposition 3.3. Suppose also that each Lx has a unique invariant probability mea-
sure µx(dy).

(i) Let q(x,y) denote the kernel of µx(dy). Then q and its derivatives in y are locally
bounded in x.
If the rank r is bounded from above, γ is bounded from below, then q and its
derivatives in y are bounded, i.e. supx |∇(k)ρ(x, ·)|∞ is finite for any k ∈N .

(ii) The kernel q is smooth in both variables.
(iii) Let D be a compact subset of N. There exists a number c such that for any x1,x2 ∈

D, |µx1 −µx2 |TV ≤ cρ(x1,x2).
(iv) Suppose furthermore that r is bounded from above, γ is bounded from below, and

A is bounded, then µx is globally Lipschitz continuous in x and q ∈ BC∞(N×G).

Proof. Each function q solves the equation L ∗
x q = 0 where L ∗

x is the L2 adjoint of
Lx. Since L ∗

x is hypo-elliptic, then for each x, q(x, ·) is C∞. In other words, q(x, ·) is
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a function from M to C∞(G,R). We observe that q(x, ·) are probability densities, so
bounded in L1. If we take s to be a number smaller than−n/2, n being the dimension
of the manifold, then |q(x, ·)|s ≤C|q(x, ·)|L1(G). We apply the sub-elliptic estimates
in part (1) of Proposition 3.3 to q:

‖u‖s+δ (x) ≤ c0(x)(‖L ∗
x u‖s +‖u‖s),

where δ (x) and c(x) are constants, and obtain that |q(x, ·)|s+δ (x) ≤ C(x). Iterating
this we see that for all s,

|q(x, ·)|s ≤C(δ (x),r(x),γ(x),Y ).

The function C(x) depends on the L∞ norms of the vector fields Yi and their covariant
derivatives, and also on γ(x). Also, δ can be taken to be 1

r(x)+1 and r(x) is locally
bounded. By the Sobolev embedding theorems, q and the norms of its derivatives
in y are locally bounded in x. (If furthermore r and γ are bounded, Yi and their
derivatives in x are bounded, then both δ and C can be taken as a constant, in which
case q and their derivatives in y are bounded.)

Since q is in L1, its distributional derivative in the x-variable exists and will be
denoted by ∂xq. For each x, L ∗

x q = 0, and so the distributional derivative in x of
L ∗

x q vanishes and
∂x(L

∗
x )q(x,y)+L ∗

x ∂xq(x,y) = 0.

Set
g(x,y) =−(∂x(L

∗
x ))q(x,y).

Then g is smooth in y, whose Sobolev norms in y are locally bounded in x. Since
the distributional derivative of q in x satisfies

∫
G L ∗

x (∂xq)(x,y)dy = 0 for every x,∫
G g(x,y) dy vanishes also. Since the index of Lx is zero, the invariant measure is

unique, the dimension of the kernel of Lx is 1. The kernel consists of only constants
and so g(x, ·) is an annihilator of the kernel of L . By Fredholm’s alternative, this
time applied to L ∗

x , we see that for each x we can solve the Poisson equation

L ∗
x G(x,y) = g(x,y).

Furthermore, by the sub-elliptic estimates, |G(x, ·)|L2(G) ≤ A(x)|g(x, ·)|L2(G) for
some number A(x). Since A is locally bounded, then G(x,y) has distributional
derivative in x. But ∂xq(x,y) also solves L ∗

x ∂xq(x,y) = g(x,y), by the uniqueness of
solutions we see that ∂xq(x,y) = G(x,y). Thus the distributional derivative of q in
x is a locally integrable function. Iterating this procedure and use sub-elliptic esti-
mates to pass to the supremum norm we see that q(x,y) is C∞ in x with its derivatives
in x locally bounded, in particular for a locally bounded function c1,

sup
y∈G
|∂xq(x,y)| ≤ A(x)c1(x).

Finally, let f be a measurable function with | f | ≤ 1. Then
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f (y)q(x1,y)dy−

∫
G

f (y)q(x2,y)dy
∣∣∣∣≤ sup

x∈D
A(x)sup

x∈D
c1(x) ρ(x1,x2),

where D is a relatively compact open set containing a geodesic passing through
x1 and x2. We use the fact that the total variation norm between two probability
measures µ and ν is 1

2 sup|g|≤1 |
∫

gdµ−
∫

g dν | where the supremum is taken over
the family of measurable functions with values in [−1,1] to conclude that |µx1 −
µx2 |TV ≤ supx∈D A(x) ρ(x1,x2) and conclude the proof. �

Example 3.7 An example of a fast diffusion satisfying all the conditions of the
proposition is the following on S1 and take x ∈ R:

dyt = sin(yt + x)dBt + cos(yt + x)dt.

Then Lx = cos(x+ y) ∂

∂y +
1
2 sin2(x+ y) ∂ 2

∂y2 satisfies Hörmander’s condition, has a
unique invariant probability measure and r(x) = 1. Furthermore the resolvent of Lx
is bounded in x.

Definition 3.8 The operator Lx is said to satisfy the parabolic Hörmander’s con-
dition if {Y1(x, ·), . . . ,Ym2(x, ·)} together with the brackets and iterated the brackets
of {Y0(x, ·),Y1(x, ·), . . . ,Ym2(x, ·)} spans the tangent space of N at every point. Let
Px(t,y0,y) denote the semigroup generated by L .

Remark 3. Suppose that each Lx is symmetric, satisfies the parabolic Hörmander’s
condition and the following uniform Doeblin’s condition: there exists a constant
c ∈ (0,1], t0 > 0, and a probability measure ν such that

Px
t (y0,U)≥ cν(U),

for all x ∈ N, y0 ∈ G and for every Borel set U of G, Suppose that Yj ∈ BC∞. Then
A(x) is bounded. In fact for any f with

∫
f (y)µx(dy) = 0, the function Px

t f (y0) =∫
G f (y)Px(t,y0,dy) converges to 0 as t → ∞ with a uniform exponential rate. Since

Lx satisfies the parabolic Hörmander’s condition, L − ∂

∂x satisfies Hörmander’s
condition on M×R. Then by the sub-elliptic estimates for L − ∂

∂ t , Px
t f converges

also in L2. Let Rx denote the resolvent of Lx. Since

〈Rx f , f 〉L2 =
∫

G

∫
∞

0
Px

t f (y) f (y)dt dy,

then Rx is uniformly bounded. Since Lx is symmetric, this gives a bound on A(x).
We refer to the book [6] for studies on Poincaré inequalities for Markov semi-
groups.

Corollary 3.9 Let G be compact. Then q is smooth in both variables and in
BC∞(N×G). In particular µx = q(x,y)dy is globally Lipschitz continuous.
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Just note that the semigroups Px
t converges to equilibrium with uniform rate. The

spectral gap of Lx is bounded from below by a positive number.
The following is a version of the law of large numbers.

Theorem 3.10 Let G be compact. Suppose that ∑
m2
j=1 |Yj|∞ is finite, and the conclu-

sions of Proposition 3.3. Suppose that each Lx has a unique invariant probability
measure µx.

Let s > 1+ dim(G)
2 . Then there exists a constant C(x) such that for every x ∈ N

and for every smooth real valued function f : N×G→ R with compact support in
the first variable (or independent of the first variable),√

E
(

1
T

∫ t+T

t
f (x,zx

r) dr−
∫

G
f (x,y)µx(dy)

)2

≤C(x)‖ f (x, ·)‖s
1√
T

(1)

where zx
r is an Lx diffusion and C(x) is locally bounded.

Proof. In the proof we take t = 0 for simplicity. We only need to work with a fixed
x ∈ N. We may assume that

∫
G f (x,y)µx(dy) = 0. Since Lx is hypo-elliptic and

since µx is the unique invariant probability measure then, for any smooth function
f with

∫
G f (x,y)µx(dy) = 0, Lxg(x, ·) = f (x, ·) has a smooth solution. If f is com-

pactly supported in the first variable, so is g. We may then apply Itô’s formula to the
smooth function g(x, ·), allowing us to estimate 1

T
∫ T

0 f (yx
r)dr whose L2(Ω) norm

is controlled by the norm of g in C1 and the norms |Yj(x, ·)|∞. The Lx diffusion
satisfies the equation:

1
T

∫ T

0
f (x,zx

r)dr =
1
T
(g(x,zx

T )−g(x,y0))−
1
T

(
m2

∑
k=1

∫ T

0
dg(x, ·)(Yk(x,zx

r))dW k
r

)
.

Since |Yj(x, ·)|∞ is bounded, it is sufficient to estimate the stochastic integral term
by Burkholder-Davis-Gundy inequality:

E

(
m2

∑
k=1

∫ T

0
dg(x, ·)(Yk(x,zx

r))dW k
r

)2

≤
m1

∑
k=1
|Yk|2∞

∫ T

0
E|dg(x,zx

r)|2 ds.

It remains to control the supremum norm of dg(x, ·). By the Sobolev embedding
theorem this is controlled by the L2 Sobolev norms ‖ f (x, ·)‖s where s > 1+ dim(G)

2 .
Let D be a compact set containing the supports of the functions f (·,y). We can
choose a number δ > 0, chosen according to supx∈D r(x), such that the sub-elliptic
estimates holds for every x ∈ D. There exist constants c1,c2,c3 such that for every
x ∈ D,

|dg(x, ·)|∞ ≤ c1 ‖g(x, ·)‖s+δ ≤ c2(x) (‖ f (x, ·)‖s + |g(x, ·)|L2)≤ c3(x)‖ f (x, ·)‖s.

The constant c2 may depend on s. The constant c3(x) is locally bounded. We have
used the following fact. The spectrum of Lx is discrete, the dimension of the kernel
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space of Lx is 1 and hence the only solutions to Lxh = 0 are constants. We know
that the spectral distance is continuous, which is not the right reason for c3(x) to be
locally bounded. To see that we may assume that f is not a constant and observe
that |L −1

x |op ≤ k(x) where k(x) is a finite number. This number is locally bounded
following the fact that the semi-group Px

t f converges to zero exponentially and the
kernels for the probability distributions of Lx are smooth in the parameter x. �

For the study of the limiting process in stochastic averaging we would need to
know the regularity of the average of a Lipschitz continuous function with respect
to one of its variables. The following illustrates what we might need.

Proposition 3.11 Let {µx,x ∈ M} be a family of probability measures on G. Let
f : N×G→ R be a measurable function.

(1) Let f be a bounded function, Lipschitz continuous in the first variable, i.e.
| f (x1,y)− f (x2,y)| ≤ K1(y)ρ(x1,x2) with supx∈M |K1|L1(µx) < ∞. Then∣∣∣∣∫G

f (x1,y)µ
x1(dy)−

∫
G

f (x2,y)µ
x2(dy)

∣∣∣∣≤ K2 ρ(x1,x2)+ | f |∞|µx1 −µ
x2 |TV .

(2) Suppose furthermore that µx depends continuously on x in the total variation
metric. Let f be bounded continuous such that

| f (x1,z)− f (x2,z)| ≤ K3 ρ(x1,x2), ∀z ∈ G,x1,x2 ∈M,

for a positive number K2. Then
∫ T

0
∫

G f (xs,z)µxs(dz)ds exists, and if D is the
support of f then∣∣∣∣∣N−1

∑
i=0

∆ ti
∫

G
f (xti ,z) µ

xti (dz)−
∫ T

0

∫
G

f (xs,z)µxs(dz)ds

∣∣∣∣∣
≤T K3 sup

0≤i<N−1
sup

s∈[ti,ti+1)

[ρ(xs,xti)]+ | f |∞ · sup
0≤i<N−1

sup
s∈[ti,ti+1)

(|µxs −µ
xti |TV χxs∈D) .

(3) Suppose that µx depends continuously on x in the Wasserstein 1-distance. Then
for any bi-Lipschitz continuous f ,

∫ T
0
∫

G f (xs,z)µxs(dz)ds exists and the estimate
in part (1) holds with the total variation distance replaced by W1, the Wasserstein
1-distance.

Proof. Just observe that:∣∣∣∣∫G
f (x1,y)µ

x1(dy)−
∫

G
f (x2,y)µ

x2(dy)
∣∣∣∣

≤
∫

K1(y)µx1(dy)ρ(x1,x2)+ | f |∞|µx1 −µ
x2 |TV ,

obtaining the required inequality in part (1) . For any non-negative numbers s, t,
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f (xt ,z) µ

xt (dz)−
∫

G
f (xs,z)µxs(dz)

∣∣∣∣
≤ K3 ρ(xt ,xs)+

∣∣∣∣∫G
f (xs,z)µxt (dz)−

∫
G

f (xs,z)µxs(dz)
∣∣∣∣ .

This holds pathwise. Since each function f (xs(ω, ·)) is bounded by | f |∞,∣∣∣∣∫G
f (xt ,z) µ

xt (dz)−
∫

G
f (xs,z)µxs(dz)

∣∣∣∣≤ K3 ρ(xt ,xs)+ | f |∞ |µxs −µ
xt |TV χxs∈D.

Since xs is sample continuous, x 7→ µx is continuous and f is a bounded and contin-
uous,

∫
G f (xs,z)µxs(dz) is continuous in s and so integrable in s. Consequently,∣∣∣∣∣N−1

∑
i=0

∆ ti
∫

G
f (xti ,z) µ

xti (dz)−
∫ T

0

∫
G

f (xs,z)µxs(dz)ds

∣∣∣∣∣
≤

N−1

∑
i=0

∆ tiK3[ρ(xs,xti)]+
N−1

∑
i=0

∆ ti| f |∞[χxs∈D|µxs −µ
xti |TV ]

≤ T K3 sup
s∈[ti,ti+1)

E[ρ(xs,xti)]+ | f |∞ sup
s∈[ti,ti+1)

(χxs∈D |µxs −µ
xti |TV ) .

Finally we use the fact that f is Lipschitz in the second variable and the following
dual formulation for the Wasserstein 1-distance W1(µ,ν) of two probability mea-
sures µ and ν ,

W1(µ,ν) = sup
|g|Lip=1

∣∣∣∣∫ gdµ−
∫

gdν

∣∣∣∣ ,
where |g|Lip denotes the Lipschitz constant of g. We obtain∣∣∣∣∫G

f (xt ,z) µ
xt (dz)−

∫
G

f (xs,z)µxs(dz)
∣∣∣∣≤ K3 ρ(xt ,xs)+K4 W1 (µ

xs ,µxt ) .

The required assertion and estimate now follows by the argument in part (2). �

Put Proposition 3.6 and Proposition 3.10 together we obtain Theorem 1.
Finally we would like to refer to [7] for the convergence in total variation in the

Law of large numbers for independent random variable, see also [57]. See the books
[30, 9] for stochastic flows in sub-Riemmian geometry. It would be interesting to
study problems in this section under the ‘uniformly finitely generated’ conditions,
see e.g. [22, 61]. See also [1, 19].

4 Basic Estimates for SDEs on manifolds

To obtain an averaging theorem associated to a family of stochastic processes
{xε

t ,ε > 0} on a manifold N, we first prove that the family of stochastic processes is
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pre-compact and we then proceed to identify the limiting processes. To this end we
first obtain uniform estimates on the family of slow variables, on the space of con-
tinuous functions on the manifold, and also obtain estimates on the limiting Markov
processes. In this section we obtain essential estimates for a general SDE and these
estimates will be in terms of bounds on the driving vector fields.

Throughout this section we assume that M is a connected smooth and complete
Riemannian manifold, Bt = (B1

t , . . . ,B
m
t ) is an Rm-valued Brownian motion. Let X0

be a vector field and X : M×Rm→ T M be a map linear in the second variable. For
x ∈M, let φt(x) denote the solution to the SDE

dxt =
m

∑
k=1

Xk(xt)◦dBk
t +X0(xt)dt, (1)

with initial value x. We also set xt = φt(x0).
The type of estimates we need are variation of the following E[ρ(xs,xt)]

2 ≤C|t−
s| where the constant C depends on the SDE only on specific bounds for the driving
vector fields. Since no ellipticity is assumed, it is essential to deal with the problem
that ρ(x,y) is only C1, when x and y are on the cut locus of each other, and we cannot
apply Itô’s formula to ρ directly. If we are only interested in obtaining tightness
results, this problem can be overcome by choosing an auxiliary distance function.
Otherwise, e.g. for the convergence of the stochastic processes, we work with the
Riemannian distance function ρ : M×M → R. Let M×M be given the product
Riemannian metric. Let | f |∞ denote the L∞ norm of a function f .

Lemma 4.1(1) Suppose that M is a complete Riemannian manifold with bounded
sectional curvature. Then for each δ > 0 there exists a smooth distance like func-
tion fδ : M×M→ R and a constant K1 independent of δ such that

| fδ −ρ|
∞
≤ δ , |∇ fδ | ≤ K1, |∇2 fδ | ≤ K1.

If furthermore the curvature has a bounded covariant derivative, then we may
also assume that |∇3 fδ | ≤ K1.

(2) If M is compact Riemannian manifold, there exists a smooth function f : M×
M→ R such that f agrees with ρ on a tubular neighbourhood of the diagonal
set of the product manifold M×M.

Proof. (1) For the distance function ρ(·,O), where O is a fixed point in M, this
is standard, see [79, 84, 21]. To obtain the stated theorem it is sufficient to repeat
the proof there for the distance function on the product manifold. The basic idea
is as following. By a theorem of Greene and Wu [40], every Lipschitz continuous
function with gradient less or equal to K can be approximated by C∞ functions
whose gradients are bounded by K. We apply this to the distance function ρ and
obtain for each δ a smooth function fδ : M×M→ R such that

|ρ− fδ |∞ ≤ δ , |∇ fδ |∞ ≤ 2.
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We then convolve fδ with the heat flow to obtain fδ (x,y, t), apply Li-Yau heat kernel
estimate for manifolds whose Ricci curvature is bounded from below and using
harmonic coordinates on a a small geodesic ball of radius a/K where K is the upper
bound of the sectional curvature and a is a universal constant. For part (ii), M is
compact. We take a smooth cut off function h : R+ → R+ such that h(t) = 1 for
t < a and vanishes for t > 2a where 2a is the injectivity radius of M and such that
|∇h| is bounded. The function f := h◦ρ is as required. �

Set X̃0 = 1
2 ∑

m
i=1 ∇Xi(Xi)+X0. We denote by ρ the Riemannian distance on M.

Let T be a positive number and let O ∈M. Let K′, K, ai and bi denote constants.

Lemma 4.2 Suppose that X̃0 and Xi are C1, where i = 1, . . . ,m. Suppose one of the
following two conditions hold.

(i) The sectional curvature of M is bounded by K′, and for every x ∈M,

|Xi(x)|2 ≤ K +Kρ(x,O), |X̃0(x)| ≤ K +Kρ(x,O).

(ii) Suppose that ρ2 : M×M→ R is smooth and

1
2

m

∑
i=1

∇dρ
2p(Xi,Xi)+dρ

2p(X̃0)≤ K +Kρ
2p.

Then, the following statements hold.

(a) There exists a constant c which depends only on K′, T , p, and dim(M) such that
for every pair of numbers s, t with 0≤ s≤ t ≤ T ,

Eρ
2p(xt ,O)≤ c(Kt +1+ρ

2p(x0,O))ecKt ,

E
{

ρ
2p(xs,xt)

∣∣∣Fs

}
≤ c|t− s|(1+K)ecK|t−s|.

(b) Suppose that in addition |Xi| is bounded for every i = 1, . . . ,m. Then, for every
p ≥ 1, there exists a constant C, which depends only on p, K′, m, and dim(M)
and a constant c(T ), such that for every s < t ≤ T ,

E
(

sup
s≤u≤t

ρ
2p(xs,xu)

)
≤ c+KC(T )eC(T )K .

Also, E
(
sups≤u≤t ρ2p(O,xu)

)
≤ c(ρ2p(O,x0)+Kc(T ))eKc(T ).

Proof. Let δ ∈ (0,1] and let fδ : M×M→ R be a smooth function satisfying the
estimates

| fδ −ρ|
∞
≤ δ , |∇ fδ | ≤ K1, |∇2 fδ | ≤ K1

where K1 is a constant depending on K′ and dim(M). If ρ2 is smooth we take fδ = ρ .
(a) Either hypothesis (i) or (ii) implies that the SDE (1) is conservative. For any

x ∈M fixed we apply Itô’s formula to the second variable of the function f 2
δ
(x,y) on

the time interval [s, t]:
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f 2p
δ
(x,xt) = f 2p

δ
(x,xs)+

∫ t

s
L f 2p

δ
(x,xr)dr+

∫ t

s
2 f 2p−1

δ
(x,xr)(d fδ )(Xi(xr))dBi

r,

(2)
where d and L are applied to the second variable. Let τn denote the first time after s
that fδ (x,xt)≥ n and we take the expectation of the earlier identity to obtain

E[ f 2p
δ
(x,xt∧τn)] = E[ f 2p

δ
(x,xs)]+

∫ t

s
E
[
χr<τnL f 2p

δ
(x,xr)

]
dr.

Under hypothesis (ii), we use ρ in place of fδ and conclude by Gronwall’s inequality
that Eρ2p(xt ,O)≤ (ρ2p(x,O)+Kt)eKt . The second estimate follows from Markov
property and taking O = xs.

Let us now assume hypothesis (i) and let C1,C2, . . . denote a constant depending
on p. In the formula below, ∇ denotes differentiation w.r.t. the second variable,

L [ f 2p
δ
](x,y) =p(2p−1)

m

∑
i=1

f 2p−2
δ

(x,y)|∇ fδ (Xi(y))|2

+ p
m

∑
i=1

f 2p−1
δ

(x,y)|∇2 fδ (Xi(y),Xi(y))|+2 f 2p−1
δ

(x,y)d fδ (X̃0(y)).

We first take x = O and s = 0, to see that L f 2p
δ
(O,y) ≤C1K f 2p

δ
(O,y)+C1K. We

may then apply Grownall’s inequality followed by Fatou’s lemma to obtain:

E f 2p
δ
(xt ,O)≤ ( f 2p

δ
(x0,O)+C1Kt)eC1Kt .

Take δ = 1, we conclude the first estimate from the following inequality:

E[ρ2p(xt ,O)]≤C2 +C2E f 2p
1 (xt ,O)≤C2 +C3(ρ

2p(x0,O)+1+Kt)eC1Kt .

Let s < t. Using the flow property, we see that

E{ρ2p(xs,xt)|Fs} ≤C4δ
2p +C4E{ f 2p

δ
(xs,xt)|Fs} ≤C4δ

2p +C5K(t− s)eC5K(t−s).

For any s, t > 0 we may choose δ0 such that δ
2p
0 < |t− s| and conclude that

E{ρ2p(xs,xt)|Fs} ≤C6(1+K)|t− s|eC6K|t−s|.

For part (b) we take δ = 1 and take p = 2 in (2). Then

Esup
u≤t

f 2p
1 (O,xu) =C1 f 2p

δ
(O,x0)+C1

(∫ t

0
(K +K f 2

δ
(O,xr))dr

)p

+C1 ∑
i

E
(∫ t

0
2 f 2p−1

1 (O,xr)(d f1)(Xi(xr))dr
)p

Since |Xi| is bounded for i = 1, . . . ,m, |2 f1(x,y)(d f1)(Xi(y))| ≤ 2| f1(x,y)| · |Xi(y)|.
We conclude that
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E sup
0≤u≤t

f 2p
1 (O,xu)≤C2( f 2p

δ
(O,x0)+KC(T ))eKC(T ).

This leads to the required estimates for E
[
sup0≤u≤t ρ2p(O,xu)

]
. Similarly, for some

constants c1 and c, depending on m and the bound of the sectional curvature, for
some constants c and C(T ),

E
[

sup
s≤u≤t

ρ
2p(xs,xu)

]
≤ c1 + c1KE

[
sup

s≤u≤t
( f1)

2p(xs,xu)

]
≤ c+ cKC(T )eKc(T ).

We have completed the proof for part (b). �

These estimates will be applied in the next section to both of our slow and fast
variables. For the slow variables, we have the uniform bounds on the driving vector
fields and hence we obtain a uniform moment estimate (in ε) of the distance traveled
by the solutions. For the fast variables, the vector fields are bounded by 1

ε
and we

expect that the evolution of the y-variable in an interval of size ∆ ti to be controlled

by the following quantity ∆ ti
ε

e
∆ ti
ε .

5 Proof of Theorem 2

We proceed to prove the main averaging theorem, this is Theorem 2 in section 1.1.
In this section N and G are smooth complete Riemannian manifolds and N×G

is the product manifold with the product Riemannian metric. We use ρ to denote the
Riemannian distance on N, or on G, or on N×G. This will be clear in the context
and without ambiguity. For each y ∈ G let Xi(·,y) be smooth vector fields on N and
for each x ∈ N let Yi(x, ·) be smooth vector fields on G, as given in the introduction.
Let x0 ∈ N and y0 ∈ G. We denote by (xε

t ,y
ε
t ) the solution to the equations:

dxε
t =

m1

∑
k=1

Xk(xε
t ,y

ε
t )◦dBk

t +X0(xε
t ,y

ε
t )dt, xε

0 = x0;

dyε
t =

1√
ε

m2

∑
k=1

Yk(xε
t ,y

ε
t )◦dW k

t +
1
ε

Y0(xε
t ,y

ε
t )dt, yε

0 = y0.

(1)

Let us first study the slow variables {xε
t ,ε ∈ (0,1]}. We use O to denote a reference

point in N.

Lemma 5.1 Under Assumption 1, the family of stochastic processes {xε
t ,ε ∈ (0,1]}

is tight on any interval [0,T ] where T is a positive number. Furthermore there exists
a number C such that for any p > 0,

sup
ε∈(0,1]

sup
s,t∈[0,T ]

Eρ
2(xε

s ,x
ε
t )≤C|t− s|, sup

ε∈(0,1]
sup

s,t∈[0,T ]
Eρ

2p(xε
s ,x

ε
t )< ∞.
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Any limiting process of xε
t , which we denote by x̄t , has infinite life time and satisfies

the same estimates: Eρ2(x̄s, x̄t)≤C(t− s) and sups,t∈[0,T ] Eρ2p(x̄s, x̄t) is finite.

Proof. Assumption 1 states that: the sectional curvature of N is bounded, |Xi(x,y)|2≤
K +Kρ(x,O) and |X̃0(x,y)| ≤ K +Kρ(x,O). Or ρ2 : N×N→ R is smooth, and

1
2

m

∑
i=1

∇dρ
2(Xi(·,y),Xi(·,y))+dρ

2(X̃0(·,y))≤ K +Kρ
2(·,O).

In either case, the bounds are independent of the y-variable. We apply Lemma 4.2
to each xε

t to obtain estimates that are uniform in ε: there exists a constant C such
that for all 0 ≤ s ≤ t ≤ T and for every ε > 0, Eρ2(xε

s ,x
ε
t ) ≤ C|t− s|. Then use a

chaining argument we obtain the following estimate for some positive constant α:
E
[
sup|s−t|6=0

ρ(xε
t ,x

ε
s )

|t−s|α
]
<∞, this proves the tightness. Since E[ρ(xε

t ,O)2] is uniformly

bounded, we see xt has infinite lifetime and E[ρ(xt ,O)2] is finite. From the uniform
estimates Eρ2(xε

s ,x
ε
t ) ≤ C(t − s) and Eρ4(xε

s ,x
ε
t )

2 ≤ C(t − s)2, we easily obtain
Eρ2(x̄s, x̄t)≤C(t− s) and the other required estimates for x̄s. �.

Let us fix x ∈ N. For t ≥ s, let φ x
s,t(y) denote the solution to the equation

dzt =
m2

∑
k=1

Yk(x,zt)◦dW k
t +Y0(x,zt)dt, zs = y. (2)

Write zx
t = φ x

0,t(z0), its Markov generator is L x
0 = 1

2 ∑
m1
k=1(Yi(x, ·))2 +Y0(x, ·). Let

φ
ε,x
s,t denote the solution flow to the SDE:

dyt =
1√
ε

m2

∑
k=1

Yk(x,yt)◦dW k
t +

1
ε

Y0(x,yt)dt, ys = y0 (3)

Observe that the time changed solution flow φ x
s
ε
, t

ε

(·) agrees with φ
ε,x
s,t (·). On each

sub-interval [ti, ti+1) we set

z
xε

ti
t = φ

xε
ti

ti
ε
,t
(yε

ti), y
xε

ti
t = φ

xε
ti

ti/ε, t/ε
(yε

ti). (4)

In the following locally uniform law of large numbers (LLN), any rate of conver-
gence λ (t) is allowed.

Assumption 3 (Locally Uniform LLN) Suppose that there exists a family of prob-
ability measures µx on G which is continuous in the total variation norm. Suppose
that for any smooth function g : G→ R and for any initial point z0 ∈ G and t0 ≥ 0,∣∣∣∣1t E

∫ t+t0

t0
g
(
φ

x
t0,s(z0)

)
ds−

∫
G

g(z)µx(dz)
∣∣∣∣
L2(Ω)

≤ α(x)‖g‖s λ (t).
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Here λ (t) is a constant such that limt→∞ λ (t) = 0, s is a non-negative number, and
α(x) is a real number locally bounded in x.

Remark 4. In Proposition 3.10 we proved that if each Lx satisfies Hörmander’s con-
dition and if µx is the invariant probability measure for Lx (assume uniqueness), the
locally uniform LLN holds with λ (t) = 1√

t .

Suppose that f : N×G→R is bounded measurable, we define f̄ (x)=
∫

G f (x,z) µx(dz).

Lemma 5.2 Suppose the locally uniform LLN assumption. Let f : N×G→ R be a
smooth function with compact support (it is allowed to be independent of the first
variable). Let t0 = 0 < t1 < · · · < tN = T be a partition of equal size ∆ ti. Then, for
some number c,

E
N−1

∑
i=0

∣∣∣∣∫ ti+1

ti
f
(

xε
ti ,y

xε
ti

r

)
ds−∆ ti f

(
xε

ti

)∣∣∣∣≤ cT λ (
∆ ti
ε
)sup

x∈D

∥∥ f (x, ·)− f̄ (x)
∥∥

s .

Proof. Set ᾱ = supx∈D α(x) ant C = supx∈D
∥∥ f (x, ·)− f̄ (x)

∥∥
s, both are finite num-

bers by the assumptions on f and on α(x). Firstly we observe that∣∣∣∣∣E
{

ε

∆ ti

∫ ti+1
ε

ti
ε

f (xε
ti ,y

xε
ti

r )dr− f̄ (xε
ti)
∣∣∣Fti

}∣∣∣∣∣≤ α(xε
ti)λ (

∆ ti
ε
)χxε

ti
∈D
∥∥ f (xε

ti , ·)− f̄ (xε
ti)
∥∥

s .

Summing up over i and making a time change we obtain that∣∣∣∣∣E N−1

∑
i=0

∫ ti+1

ti
f
(

xε
ti ,y

xε
ti

r

)
dr−∆ ti f̄ (xε

ti)

∣∣∣∣∣= N−1

∑
i=0

E
∣∣∣∣ε ∫ ti+1/ε

ti/ε

f
(

xε
ti ,z

xε
ti

r

)
dr−∆ ti f̄ (xε

ti)

∣∣∣∣
≤ ᾱCλ (

∆ ti
ε
)

N−1

∑
i=0

∆ ti,

and thus conclude the proof. �

For the application of the LLN, we must ensure the size of the sub-interval to
be sufficiently large and we should consider ∆ ti/ε to be of order ∞ as ε → 0. Then

we must ensure that z
xε

ti
t
ε

= y
xε

ti
r is an approximation for the fast variable yε

t on the

sub-interval [ti, ti+1]. A crude counting shows that the distance of the two, beginning
with the same initial value, is bounded above by ∆ ti

ε
. To obtain better estimates, we

must choose the size of the interval carefully and use the slower evolutions of the
slow variables on the sub-intervals and the Lipschitz continuity of the driving vector
fields Yi. We describe the intuitive idea for Rn×Rd , assuming all vector fields are
in BC∞. We use the Lipschitz continuity of the vector fields 1

ε
Yi. On [0,r], we have

a pre-factor of 1
ε

from the stochastic integrals and r
ε

from the deterministic interval
(by Holder’s inequality). Then there exists a constant C such that
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E
∣∣∣∣yε

r − y
xε

ti
r

∣∣∣∣2 ≤C(
1
ε
+

∆ ti
ε2 )

∫ r

ti
E
∣∣xε

s − xε
ti

∣∣2 ds+C(
1
ε
+

∆ ti
ε2 )

∫ r

ti
E
∣∣∣∣yε

s − y
xε

ti
s

∣∣∣∣2 ds.

By Lemma 4.2, E
∣∣xε

s − xε
ti

∣∣2 ≤ C̃∆ ti on [ti, ti+1] where C̃ is a constant and so

E
∣∣∣∣yε

r − y
xε

ti
r

∣∣∣∣2 ≤CC̃∆ ti(
∆ ti
ε

+
(∆ ti)2

ε2 )eC(
∆ ti
ε
+

(∆ ti)
2

ε2 )
.

If we take ∆ ti to be of the order ε| lnε|a for a suitable a > 0, then the above qunatity
converges to zero uniformly in r as ε → 0. See. e.g. [47, 33, 35, 90].

In the next lemma we give the statement and the details of the computation under
our standard assumptions. In particular we assume that the sectional curvature of G
is bounded. Let C,c,c′ denote constants.

Lemma 5.3 Let 0 = t0 < t1 < · · ·< tN = T and ε ∈ (0,1]. Let

α
ε
i (C) :=C

(
∆ ti
ε

+
(∆ ti)2

ε2

)
eC(

∆ ti
ε
+

(∆ ti)
2

ε2 ) sup
s∈[ti,ti+1]

Eρ
2 (xε

s ,x
ε
ti

)
.

1. Suppose Assumption 2. Then there exist constants c and C such that:

Eρ
2
(

yε
r ,y

xε
ti

r

)
≤ α

ε
i (C)+ c

√
K (αε

i (C))
1
2

∆ ti
ε

ec ∆ ti
ε

where K is the bound on the sectional curvature of G.
2. Suppose furthermore that there exists a constant c′ such that

sup
i=0,1,...N−1

sup
s,t∈[ti,ti+1]

sup
ε∈(0,1]

Eρ
2(xε

s ,x
ε
t )≤ c′ |t− s|.

Then there exists a constant C > 0 such that for every ε ∈ (0,1],

Eρ
2
(

yε
r ,y

xε
ti

r

)
≤C

√
∆ ti

(
(∆ ti)2

ε2 +
(∆ ti)3

ε3

) 1
2

eC(
∆ ti
ε
+

(∆ ti)
2

ε2 )
, ∀r ∈ [ti, ti+1],∀i.

In particular, if ∆ ti is of the order ε| lnε|a where a> 0, then supi supr∈[ti,ti+1]
Eρ2

(
yε

r ,y
xε

ti
r

)
is of order εδ where δ ∈ (0, 1

2 ).

Proof. Since the sectional curvature of G is bounded above by K, its conjugate
radius is bounded from below by π√

K
. Let us consider a distance function on N

that agrees with the Riemannian distance, which we denote by ρ , on the tubular
neighbourhood of the diagonal of N×N with radius π

2
√

K
. More precisely let τ := τε

be the first exit time when the distance between yε
r and y

xε
ti

r is greater than or equal
to A = π

2
√

K
. We use the identity
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Eρ
2
(

yε
r∧τ ,y

xε
ti

r∧τ

)
= E

[
ρ

2
(

yε
r ,y

xε
ti

r

)
χr<τ

]
+A2 P(τ ≤ r),

to obtain that

P(τ ≤ r)≤ 1
A2 E

[
ρ

2
(

yε
r∧τ ,y

xε
ti

r∧τ

)]
.

Thus,

Eρ
2
(

yε
r ,y

xε
ti

r

)
≤ E

[
ρ

2
(

yε
r ,y

xε
ti

r

)
χr<τ

]
+E

[
ρ

4
(

yε
r ,y

xε
ti

r

)
χr≥τ

] 1
2 √

P(τ ≤ r).

By the earlier argument, it is sufficient to estimate Eρ2
(

yε
r∧τ ,y

xε
ti

r∧τ

)
, and we will

show that Eρ2
(

yε
r∧τ ,y

xε
ti

r∧τ

)
converges to zero sufficiently fast as ε → 0 to compen-

sate with the possible divergence from the factor
(

Eρ4
(

yε
r ,y

xε
ti

r

)) 1
2
.

On {r < τ}, x,y are not on each other’s cut locus, we may apply Itô’s formula to

the pair of stochastic processes (yε
r ,y

xε
ti

r ) and obtain[
ρ(yε

r ,y
xε

ti
r )

]2

=
∫ r

ti
dρ

2

(
1√
ε

m2

∑
k=1

Yk(xε
s ,y

ε
s )◦dW k

s +
1
ε

Y0(xε
s ,y

ε
s )ds

)

+
∫ r

ti
dρ

2

(
1√
ε

m2

∑
k=1

Yk(xε
ti ,y

xε
ti

s )◦dW k
s +

1
ε

Y0(xε
ti ,y

xε
ti

s )ds

)
.

Here the notation d in the first dρ2 refers to differentiation w.r.t. the first vari-
able, as a gradient we use ∇(1)(ρ2), and the d in the second dρ2 is with re-
spect to the second variable whose gradient is denoted by ∇(2)(ρ2). However
∇(1)(ρ2)(x,y) = −//∇(2)(ρ2)(x,y), where // denotes the parallel translation of the
relevant gradient vector along the geodesic from y to x. In the following let us de-
note by dρ2 the differential of ρ2 w.r.t to the first variable. Using the assumption that
each Yk, k = 1, . . . ,m2, has bounded first order derivative, and the fact that ∇ρ and
∇2ρ are bounded, the latter follows from the assumption that the sectional curvature
is bounded, we see:∣∣∣∣dρ

2(Yk)(xε
s ,y

ε
s )−dρ

2(//Yk)

(
xε

ti ,y
xε

ti
s

)∣∣∣∣≤ 2ρ(yε
s ,y

xε
ti

s )

(
ρ(xε

s ,x
ε
ti)+ρ(yε

s ,y
xε

ti
s )

)
.

It is useful to observe that Yi is a vector field on G depending on x ∈ N, so the (prod-
uct) distance function on N×G is needed for the estimate. On the other hand we
only need to control the Hessian of the Riemannian distance on G and the assump-
tion on the boundedness of the sectional curvature of G suffices.

A similar estimate applies to the first order differential involving Ỹ0, the sum
of the Stratnovich correction for the stochastic integrals and Y0. Again we use the
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assumption that each Yk where k ranges from 1 to m2 is bounded, and Ỹ0 has bounded
first order covariant derivative. To summing up, for a constant C independent of ε

and i, we have

Eρ
2
(

yε
r∧τ ,y

xε
ti

r∧τ

)
≤C(

1
ε
+

∆ ti
ε2 )

(
E
∫ r∧τ

ti
ρ

2 (xε
s ,x

ε
ti

)
ds+E

∫ r∧τ

ti
ρ

2 (yε
s ,y

ε
s )ds

)
.

Use Gronwall’s inequality we obtain that,

Eρ
2
(

yε
r∧τ ,y

xε
ti

r∧τ

)
≤C

(
∆ ti
ε

+
(∆ ti)2

ε2

)
sup

s∈[ti,ti+1]

Eρ
2 (xε

s ,x
ε
ti

)
eC(

∆ ti
ε
+

(∆ ti)
2

ε2 )
. (5)

We can now plug in the uniform estimates that Eρ2
(
xε

s ,x
ε
ti

)
≤C|ti− s| we see that

Eρ
2
(

yε
r∧τ ,y

xε
ti

r∧τ

)
≤C∆ ti

(
∆ ti
ε

+
(∆ ti)2

ε2

)
eC(

∆ ti
ε
+

(∆ ti)
2

ε2 )
.

Observe that the constant here is independent of ε, i and independent of r ∈ [ti, ti+1].

A similar estimates hold for Eρ2
(

yε
r ,y

xε
ti

r

)
χτ>r.

On {r > τ} we use a more crude estimate, which we obtain without using es-
timates on the slow variables at time s and time ti. It is sufficient to estimate

Eρ4
(
yε

r ,y
ε
ti

)
and Eρ4

(
y

xε
ti

r ,yε
ti

)
. Observing that on [ti, ti+1], the processes begin with

the same initial point and the driving vector fields of the SDEs to which they are so-
lutions are 1

ε
Yi(xε

r , ·) and 1
ε
Yi(xε

ti , ·) respectively. We have assumed that ∑
m
k=1 |Yk| and

Ỹ0 are bounded. We then apply Lemma 4.2 to these SDEs. In Lemma 4.2 we take
K = c

ε
where c is a constant. Then we have

Eρ
4
(

y
xε

ti
r ,yε

ti

)
+Eρ

4 (yε
r ,y

ε
ti

)
≤ c
(

∆ ti +
∆ ti
ε

)
ec ∆ ti

ε . (6)

Again, the constant is independent of ε, i and independent of r ∈ [ti, ti+1]. We put the
two estimates together to see that

Eρ
2
(

yε
r ,y

xε
ti

r

)
≤C∆ ti

(
∆ ti
ε

+
(∆ ti)2

ε2

)
eC(

∆ ti
ε
+

(∆ ti)
2

ε2 )

+
2
√

K
π

(
C∆ ti

(
∆ ti
ε

+
(∆ ti)2

ε2

)
eC(

∆ ti
ε
+

(∆ ti)
2

ε2 )

) 1
2 √

c
(

∆ ti +
∆ ti
ε

) 1
2

e
1
2 c ∆ ti

ε .

For ε small the first term is small. The second factor in the second term on the right
hand side is large. We conclude that for another constant C̃,

Eρ
2
(

yε
r ,y

xε
ti

r

)
≤ C̃

√
∆ ti(1+ ε)

1
2

(
(∆ ti)2

ε2 +
(∆ ti)3

ε3

) 1
2

eC̃(
∆ ti
ε
+

(∆ ti)
2

ε2 )
.
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Let us suppose that ∆ ti ∼ ε| lnε|a. Then the exponent ∆ ti
ε
+ (∆ ti)2

ε2 ∼ | lnε|2a. So for
a constant C′,

Eρ
2
(

yε
r ,y

xε
ti

r

)
≤C′
√

ε | lnε|2a eC̃| lnε|2a
.

The right hand side is of order εδ for δ < 1
2 . We conclude the proof. �

The next lemma is on the convergence of Riemannian sums in the stochastic
averaging procedure and the continuity of stochastic averages of a function with
respect to a family of measures µx.

Lemma 5.4 Suppose that for a sequence of numbers εn ↓ 0, xεn· converges almost
surely in C([0,T ];N) to a stochastic process x·. Suppose that there exists a constant
p≥ 1 s.t. for |s− t| sufficiently small,

E
[

sup
0≤r≤T

ρ
2p(xε

r ,O)

]
< ∞, Eρ(xε

s ,x
ε
t )

2 ≤C|t− s|, ∀ε ∈ (0,1].

Let µx be a family of probability measures on G, continuous in x in the total variation
norm. Let f : N×G→ R be a BC1 function. Let 0 = t0 < t1 < · · ·< tN = T and let
C1 = | f |∞K2 + |∇ f |∞. Then, the following statements hold:

(i)

sup
t∈[0,T ]

E
∣∣∣∣∫G

f (xεn
t ,z) µ

xεn
t (dz)−

∫
G

f (x̄t ,z) µ
x̄t (dz)

∣∣∣∣→ 0.

In particular, the following converges in L1,∣∣∣∣∫ t

0

∫
G

f (xεn
s ,z) µ

xεn
s (dz)ds−

∫ t

0

∫
G

f (x̄s,z) µ
x̄s(dz)ds

∣∣∣∣→ 0.

(ii) The following convergence is uniform in ε:

E

∣∣∣∣∣N−1

∑
i=0

∆ ti
∫

G
f (xε

ti ,z) µ
xε

ti (dz)−
∫ T

0

∫
G

f (xε
s )µ

xε
s (dz)ds

∣∣∣∣∣→ 0.

Consequently, the Riemannian sum ∑
N−1
i=0 ∆ ti

∫
G f (x̄ti ,z) µ

x̄ti (dz) converges in L1

to
∫ T

0
∫

G f (x̄s,z)µ x̄s(dz)ds.

Proof. Suppose that xεn· converges to x̄·. We simplify the notation by assuming that
xε → x almost surely. We may assume that N is not compact, the compact case
is easier. Let Dn be a family of relatively compact open set such that Dn ⊂ Ban ⊂
Ban+2 ⊂Dn+1 where Ban is the geodesic ball centred at O of radius an where an→∞.
This exists by a theorem of Greene and Wu. For any t ∈ [0,T ] and for any ε ∈ (0,1],
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f (xε

t ,z) µ
xε

t (dz)−
∫

G
f (x̄t ,z) µ

x̄t (dz)
∣∣∣∣

≤
∫

G
| f (xε

t ,z)− f (x̄t ,z)| µ
x̄t (dz)+

∣∣∣∣∫G
f (x̄t ,z)µ x̄t (dz)−

∫
G

f (x̄t ,z)µxε
t (dz)

∣∣∣∣
≤ |∇ f |∞ ρ(xε

t , x̄t)+ | f |∞|µ x̄t −µ
xε

t |TV .

We have control over ρ(xε
t , x̄t), it is bounded by ρ(xε

t ,O) and ρ(x̄t ,O). By the as-
sumption, they are bounded in Lp, uniformly in ε ∈ (0,1] and in t ∈ [0,T ]. Similarly
we also have uniform control over P(x̄t 6∈Dn) and P(xε

t 6∈Dn), they are bounded by
c 1

n where c is a constant. We observe that

|µ x̄t −µ
xε

t |TV ≤ |µ x̄t −µ
xε

t |TV χx̄t∈Dn χx̄ε
t ∈Dn +2(χx̄t 6∈Dn +χxε

t 6∈Dn)

and there exists cn such that |µ x̄t − µxε
t |TV χx̄t∈Dn χx̄ε

t ∈Dn ≤ cnρ(xεn
t , x̄t). We take n

large, so that P(x̄t 6∈Dn) and P(xε
t 6∈Dn) are as small as we want. Then for n fixed we

see that the cnρ(xεn
t , x̄t) converges, as ε→ 0, in L1. Thus, sup0≤t≤T E|µ x̄t −µxε

t |→ 0
and

sup
0≤t≤T

E
∣∣∣∣∫G

f (xεn
t ,z) µ

xεn
t (dz)−

∫
G

f (x̄t ,z) µ
x̄t (dz)

∣∣∣∣
converges to zero. This proves part (i). Since Eρ(xε

s ,x
ε
ti)

2 ≤C|ti+1− ti|,

E

∣∣∣∣∣N−1

∑
i=0

∆ ti
∫

G
f (xε

ti ,z) µ
xε

ti (dz)−
∫ T

0

∫
G

f (xε
s )µ

xε
s (dz)ds

∣∣∣∣∣
≤ T |∇ f |∞ sup

s∈[ti,ti+1)

E[ρ(xε
s ,x

ε
ti)]+ | f |∞ T sup

s∈[ti,ti+1)

E
[
|µxε

s −µ
xε

ti |TV

]
→ 0.

The convergence can be proved, again by breaking the total variation norm into two
parts, in one part the processes are in Dn, and in the other part they are not. Since
xε

t converges to xt as a stochastic process on [0,T ], we also have that Eρ(xs,xti) ≤
C|ti+1− ti|. We apply the same argument to x̄t to obtain that

E

∣∣∣∣∣N−1

∑
i=0

∆ ti
∫

G
f (x̄ti ,z) µ

x̄ti (dz)−
∫ T

0

∫
G

f (x̄s)µ
x̄s(dz)ds

∣∣∣∣∣→ 0.

This concludes the proof. �

Suppose we assume furthermore that there exists a constant K such that

|µx1 −µ
x2 |TV ≤ K(1+ρ(x1,O)+ρ(x2,O))ρ(x1,x2).

Then explicit estimates can be made for the convergence in Lemma 5.4, e.g.
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f (xε

t ,z) µ
xε

t (dz)−
∫

G
f (x̄t ,z) µ

x̄t (dz)
∣∣∣∣

≤ |∇ f |∞ ρ(xε
t , x̄t)+ | f |∞K(1+ρ

p(x̄t ,O)+ρ
p(xε

t ,O))ρ(xε
t , x̄t).

To this we may apply Hölder’s inequality and obtain:

E
∣∣∣∣∫ T

0

∫
G

f (xεn
t ,z) µ

xεn
t (dz)dt−

∫ T

0

∫
G

f (x̄t ,z) µ
x̄t (dz)dt

∣∣∣∣
≤ |∇ f |∞ E

∫ T

0
ρ(xε

t , x̄t) dt + | f |∞KE
∣∣∣∣∫ T

0
(1+ρ

p(x̄t ,O)+ρ
p(xε

t ,O))ρ(xε
t , x̄t)dt

∣∣∣∣
≤ |∇ f |∞ T Esup

s≤t
ρ(xε

t , x̄t)+ | f |∞KT
√

Esup
t≤T

(1+ρ p(x̄t ,O)+ρ p(xε
t ,O))2

√
Esup

t≤T
ρ2(xε

t , x̄t).

In the proposition below we are interested in the time average concerning a prod-
uct function f1 f2, where f1 : N→R is C∞ with has compact support and f2 : G→R
is smooth.

Proposition 5.5 Suppose the following conditions.

(1) µx is a family of probability measures on G for which the locally uniform LLN
assumption (Assumption 3) holds.

(2) Assumption 2.
(3) There exist constants p ≥ 1 and c such that for s, t ∈ [r1,r2] where r2 − r1 is

sufficiently small,

sup
ε∈(0,1]

sup
s,t∈[r1,r2]

Eρ
2(xε

s ,x
ε
t )≤ c|t− s|, sup

0≤s≤T
sup

ε∈(0,1]
Eρ

2p(xε
s ,O)< ∞.

(4) εn is a sequence of numbers converging to 0 with supt≤T ρ(xεn
t , x̄t) converges to

zero almost surely.
(5) Let f : N×G→R be a smooth and globally Lipschitz continuous function. Sup-

pose that either f is independent of the first variable or for each y ∈ G, the
support of f (·,y) is contained in a compact set D.

Then the following random variables converge to zero in L1:∫ T

0
f (xε

s ,y
ε
s )ds−

∫ T

0

∫
G

f (x̄s,z)µ
x̄s(dz)ds.

Proof. Let 0 = t0 < t1 < · · · < tN = T and let ∆ ti = ti+1− ti. Then, recalling the
notation given in (4),
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0
f (xε

s ,y
ε
s )ds =

N−1

∑
n=0

∫ ti+1

ti
f (xε

s ,y
ε
s )ds

=
N−1

∑
n=0

∫ ti+1

ti

[
f (xε

s ,y
ε
s )− f (xε

ti ,y
ε
s )
]

ds+
N−1

∑
n=0

∫ ti+1

ti

[
f (xε

ti ,y
ε
s )− f

(
xε

ti ,y
xε

ti
r

)]
ds

+
N−1

∑
n=0

[∫ ti+1

ti
f
(

xε
ti ,y

xε
ti

r )

)
ds−∆ ti

∫
G

f (xε
ti ,z)µ

xε
ti (dz)

]

+

[
N−1

∑
n=0

∆ ti
∫

G
f (xε

ti ,z)µ
xε

ti (dz)−
∫ T

0

∫
G

f (xε
s ,z)µ

xε
s (dz)ds

]

+

[∫ T

0

∫
G

f (xε
s ,z)µ

xε
s (dz)ds−

∫ T

0

∫
G

f (x̄s,z)µ x̄s(dz)ds
]
+
∫ T

0

∫
G

f (x̄s,z)µ x̄s(dz)ds.

Using the fact that f is Lipschitz continuous in the first variable and the assumptions
on the moments of ρ(xε

t ,x
ε
s ) we see that for a constant K,

N−1

∑
i=0

E
∫ ti+1

ti

∣∣ f (xε
r ,y

ε
r )− f (xε

ti ,y
ε
r )
∣∣ dr ≤ K

N−1

∑
i=0

∫ ti+1

ti
Eρ(xε

r ,x
ε
ti)dr

≤ K T Eρ(xε
r ,x

ε
ti)≤ T Kcmax

i

√
∆ ti.

By choosing ∆ ti = o(ε) we see that the first term on the right hand side converges to
zero. The converges of the second term follows directly from Lemma 5.3 by choos-
ing ∆ ti ∼ ε| lnε|a where a > 0 and Assumption 2. By Lemma 5.2 and Assumption
3, the third term converges if we choose ε

∆ ti
= o(ε). The convergence of the fourth

and fifth terms follow respectively from part (i) and part (ii) of Lemma 5.4. �

We are now ready to prove the main averaging theorem, Theorem 2 in section 1.1.
This proof has the advantage for being concrete, from this an estimate for thew rate
of convergence is also expected.

Theorem 5.6 Suppose the following statements hold.

(a) Assumptions 1 and 2.
(b) There exists a family of probability measures µx on G for which the locally uni-

form LLN assumption (Assumption 3) holds.

Then, as ε → 0, the family of stochastic processes {xε
t ,ε > 0} converges weakly on

any compact time intervals to a Markov process with generator L̄ .

Proof. By Prohorov’s theorem, a set of probability measures is tight if and only if
its relatively weakly compact, i.e. every sequence has a sub-sequence that converges
weakly. It is therefore sufficient to prove that every limit process of the stochastic
processes xε

t is a Markov process with the same Markov generator. Every sequence
of weakly convergent stochastic processes on an interval [0,T ] can be realised on a
probability space as a sequence of stochastic processes that converge almost surely
on [0,T ] with respect to the supremum norm in time. It is sufficient to prove that
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if a subsequence {xεn
t } converges almost surely on [0,T ], the limit is a Markov

process with generator L̄ . For this we apply Stroock-Varadhan’s martingale method
[83, 75]. To ease notation we may assume that the whole family xε

t converges almost
surely. Let f be a real valued smooth function on N with compact support. Let x̄t
be the limit Markov process. We must prove that f (x̄t)− f (x0)−

∫ t
0 L̄ f (x̄r)dr is

a martingale. In other words we prove that for any bounded measurable random
variable Gs ∈Fs and for any s < t, E

(
Gs( f (x̄t)− f (x̄s)−

∫ t
s L̄ f (xr)dr)

)
= 0. On

the other hand, for each ε > 0,

f (xε
t )− f (xε

s )−
∫ t

s

(
1
2

m1

∑
i=1

(Xi(·,yε
r ))

2 f +X0(·,yε
r ) f

)
(xε

r ) dr

is a martingale. Let us introduce the notation:

F(xε
r ,y

ε
r ) =

(
1
2

m1

∑
i=1

(Xi(·,yε
r ))

2 f +X0(·,yε
r ) f

)
(xε

r ).

Since xε
t converges to x̄s it is sufficient to prove that as ε → 0,

E
[

Gs

(∫ t

s
F(xε

r ,y
ε
r )dr−

∫ t

s
L̄ f (xr)dr

)]
→ 0.

Even simpler we only need to prove that
∫ t

s F(xε
r ,y

ε
r )dr converges to

∫ t
s L̄ f (xr)dr

in L1. Under Assumption 1, we may apply Lemma 5.1 from which we see that
conditions (3) and (4) of Proposition 5.5 hold. Since f has compact support, F has
compact support in the first variable. We may apply Proposition 5.5 to the function
F to complete the proof. �

We remark that the locally uniform law of large numbers hold if G is compact, if
Lx satisfies strong Hörmander’s condition, or if Lx satisfies Hörmander’s condition
with the additional assumption that Lx has a unique invariant probability measure.

We obtain the following Corollary.

Corollary 1. Let G be compact. Suppose Assumptions 1 and 2. Suppose that Lx
satisfies Hörmander’s condition and that it has a unique invariant probability mea-
sure. Then {xε

t ,ε > 0} converges weakly, on any compact time intervals, to a Markov
process with generator L̄ .

From the proof of Theorem 5.6, the Markov generator L̄ given below.

L̄ f (x) =
∫

G

(
1
2

m1

∑
i=1

X2
i (·,y) f +X0(·,y) f

)
(x)µx(dy). (7)
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Appendix

It is possible to write the operator L̄ given by (7) as a sum of squares of vector
fields. For this we need an auxiliary family of vector fields {E1, . . . ,En1} with the
property that at each point x they span the tangent space TxN. Let us write each
vector field Xi(·,y) in this basis and denote by Xk

i (·,y) its coordinate functions, so
Xi(x,y) = ∑

n1
k=1 Xk

i (x,y)Ek(x). Set

ak,l(x,y) =
m1

∑
i=1

Xk
i (x,y)X

l
i (x,y),

bk
0(x,y) =

1
2

n1

∑
l=1

m1

∑
i=1

X l
i (x,y)

(
∇X l

k(·,y))(El(x))
)
+Xk

0 (x,y),

where ∇ denotes differentiation with respect to the first variable.We observe that

1
2

m1

∑
i=1

(Xi(·,y)2 f )(x)+(X0(·,y) f )(x)=
1
2

n1

∑
k,l=1

ak,l(x,y)(EkEl f )(x)+
n1

∑
k=1

bk
0(x,y)(Ek f )(x).

If µx is a family of probability measures on G, we set

L̄ =
1
2

n1

∑
k,l=1

(∫
G

ak,l(x,y)µx(dy)
)

EkEl +
n1

∑
k=1

(∫
G

bk
0(x,y)dy

)
Ek. (8)

The auxiliary vector fields can be easily constructed. For example, we may use
the gradient vector fields coming from an isometric embedding i : N → Rn1 . Then
they have the following properties. For e ∈ Rn1 , we define E(x)(e) = ∑

n1
i=1 Ei(x)ei

where {ei} is an orthonormal basis of Rn1 . Then Rn1 has a splitting of the form
ker[X(x)]⊥⊕X(x) and X(e) has vanishing derivative for e ∈ ker[X(x)]⊥. We may
also use a ‘moving frames’ instead of the gradient vector fields. This is particularly
useful if N is an Euclidean space, or a compact space, or a Lie group. For such
spaces and their moving frames, the assumption that X1, . . . ,Xk and their two order
derivatives, X0 and ∇X0 are bounded can be expressed by the boundedness of the
functions ak,l and bk

0 and their derivatives.

6 Re-visit the examples

6.1 A dynamical description for hypo-elliptic diffusions

Let us consider two further generalisations to the dynamical theory for Brownian
motions described in §2.1. Both cases allow degeneracy in the fast variables. One of
which has the same type of reduced random ODE and is closer to Theorem 2A. We
state this one first and will take M compact for simplicity.
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Proposition 6.1 Let M be compact. Suppose that in (1), we replace the orthonormal
basis {A1, . . . ,AN} and A0 by a vectors {A1, . . .Am2} ⊂ so(n) with the property that
these vectors together with their commutators generates so(n). (Take A0 = 0 for
simplicity. Then, as ε→ 0, the rescaled position stochastic processes, xε

t
ε

, converges
to a scaled Brownian motion. Their horizontal lifts from u0 converge also.

Proposition 6.2 The scale is determined by the eigenvalues of the symmetry matrix
∑

m2
i=1(Ai)

2.

Proof. The reduced equation is as before:
d
dt

x̃ε
t = Hx̃ε

t
(g t

ε
e0), x̃ε

0 = u0,

dgt =
m2

∑
k=1

gtAk ◦dwk
t +gtA0 dt, g0 = Id.

We observe that the operator ∑
m2
i=1(A

∗
i )

2 +A∗0 satisfies Hörmander’s condition and
has a unique invariant probability measure. It is symmetric w.r.t the bi-invariant
Haar measure dg, and the only invariant measure is dg. Then we apply Theorem 6.4
from [66] to conclude.

Suppose instead we consider the following SDE, in which the horizontal part
involves a stochastic integral

duε
t = Huε

t
(e0)dt +

m1

∑
j=1

H(uε
t )(e j)◦dB j

t +
1√
ε

m2

∑
k=1

A∗k(u
ε
t )◦dW k

t +A∗0(u
ε
t )dt,

uε
0 = u0.

(1)
where e j ∈ Rn.

Proposition 6.3 Suppose that M has bounded sectional curvature. Suppose that
{A0,A1, . . . ,Am2} and their iterated brackets (commutators) generate the vector
space so(n). Suppose that {e1, . . . ,em1} is an orthonormal set. Then as ε → 0, the
position component of uε

t , xε
t , converges to a rescaled Brownian motion, scaled by

m1
n where n = dim(M). Their horizontal lifts converge also to a horizontal Brownian

motion with the same scale.

Proof. Set xε
t = π(uε

t ), where π takes an frame to its base point. Then xε
t is the

position process. Then

dxε
t =

m1

∑
i=1

uε
t (ei)◦dBi

t +uε
t e0 dt.

Let x̃ε
t denote the stochastic horizontal lifts of xε

t . Then from the nature of the hori-
zontal vector fields and the horizontal lifts, this procedure introduces a twist to the
Euclidean vectors ei. If gt solves:



42 Xue-Mei Li

dgt =
m2

∑
k=1

gtAk ◦dwk
t +gtA0 dt

with initial value the identity, then xε
t satisfies the equation

dx̃ε
t = hx̃ε

t
dxε

t = H(x̃ε
t )(g t

ε
e0)dt +

m1

∑
i=1

H(x̃ε
t )(g t

ε
ei)◦dBi

t .

Since gt does not depend on the slow variable, the conditions of the Theorem is
satisfied provided M has bounded sectional curvature.

The limiting process, in this case, will not be a fixed point. It is a Markov process
on the orthonormal frame bundle with generator

L̄ f (u) =
m1

∑
i=1

∫
SO(n)

∇d f (H(u)(gei),H(u)(gei))dg,

where ∇ is a flat connection, ∇Hi vanishes. Let dg denote the normalised bi-
invariant Haar measure. Using this connection and an orthonormal basis {ei} of
Rn, extending our orthonormal set {e1, . . . ,em1} we see that

L̄ f (u) =
n

∑
k,l=1

∇d f (H(Ek),H(El))
m1

∑
i=1

∫
SO(n)
〈ek,gei〉〈gei,el〉dg.

It is easy to see that

m1

∑
i=1

∫
SO(n)
〈ek,gei〉〈gei,el〉dg =

m1

∑
i=1

δk,l

∫
SO(n)
〈ek,gei〉2dg =

m1

n
δk,l .

This means that

L̄ f (u) =
m1

n

n

∑
k,l=1

∇d f (H(ek),H(ek)).

Thus the L̄ diffusion has Markov generator 1
2

m1
n ∆ H where ∆ H is the horizontal

diffusion and which means that π(uε
t ) converges to a scaled Brownian motion as we

have guessed. �

Problem 2. The vertical vector fields in (1) are left invariant. Instead of left invari-
ant vertical vector fields we may take more general vector fields and consider the
following SDEs. Let f : OM→R be smooth functions, e j ∈Rn are unit vectors. Let
us consider the equation

duε
t = Huε

t
(e0)dt +

m1

∑
j=1

H(uε
t )(e j)◦dBi

t +
1√
ε

m2

∑
k=1

fk(uε
t )A
∗
k(u

ε
t )◦dW k

t +A∗0(u
ε
t )dt,

uε
0 = u0.

(2)
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Then the horizontal lift of its position processes will, in general, depend on the slow
variables. It would be interesting to determine explicit conditions on fk for which
the averaging procedure is valid and if so what is the effective limit?

6.2 Inhomogeneous scaling of Riemannian metrics

Returning to section 2.3 we pose the following problem.

Problem 3. With Theorem 5.6, we can now study a fully coupled system:

dgε
t =

1√
ε

m2

∑
k=1

(akAk)(gε
t )◦dBk

t +
1
ε
(a0A0)(gε

0)dt+(b0Y0)(gε
t )dt+

m1

∑
k=1

(bkYk)(gε
t )◦dW k

t ,

where ak,bk are smooth functions. It would be interesting to study the convergence
of the slow variables, vanishing of the averaged processes, and the nature of the
limits in terms of ak and bk.

6.3 An averaging principle on principal bundles

We return to the example in section 2.4. In the following proposition, ∇ denotes the
flat connection on the principal bundle P.

Proposition 6.4 Let G be a compact Lie group and dg its Haar measure. Assume
that M has bounded sectional curvature. Suppose that Lu satisfies Hörmander’s
condition and has a unique invariant probability measure. Suppose that θ

j
k are

bounded with bounded derivatives. Define

ai, j(u) =
∫

G

m1

∑
l=1
〈Xl(u,g),Hi(u)〉〈Xl(ug),H j(u)〉 dg,

b(u) =
∫

G

(
1
2

m1

∑
l=1

∇Xl Xl(ug)+X0(ug)

)
dg.

Then x̃ε
t
ε

converges weakly to a Markov process on P with the Markov generator

L̄ f (u) = d f (b(u))+
1
2

n

∑
i, j=1

ai, j(u)∇d f (Hi(u),H j(u)).

Proof. The convergence is a trivial consequence of Theorem 5.6. To identify the
limit let f : P→ R be any smooth function with compact support. Then
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f (x̃ε
t ) = f (g0)+

m1

∑
l=1

∫ t

0
d f (Xl((x̃ε

s gε
s ))dBl

s +
m1

∑
l=1

∫ t

0
∇d f (Xl(x̃ε

s gε
s ),Xl(x̃ε

s gε
s ))ds

+
m1

∑
l=1

∫ t

0
d f
(
∇Xl Xl(x̃ε

s gε
s )+X0(x̃ε

s gε
s )
)

ds.

Finally we take coordinates of Xl w.r.t the parallel vector fields Hi, c.f. the Appendix
of §5, to complete the proof.

Conclusions and Other Open Questions. In conclusion, the examples we stud-
ied treat some of the simplest and yet universal models, they can be studied using
the method we have just developed. Even for these simple models many questions
remain to be answered, including the questions stated in §1.1, §2.1 and §2.3. For
example we do not know the geometric nature of the limiting object. Concerning
Theorem 5.6, we expect the conditions of the theorem improved for more specific
examples of manifolds, and expect an upper bound for the rate of convergence if
the resolvents of the operators Lx is bounded in x and if the rank of the operators
and their quadratic forms are bounded, and also expect an averaging principle for
slow-fast SDEs driven by Lévy processes, c.f. [49].
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859–885, 2018.

58. H. A. Kramers. Brownian motion in a field of force and the diffusion model of chemical
reactions. Physica, 7:284–304, 1940.

59. Christian Kuehn. Multiple time scale dynamics, volume 191 of Applied Mathematical Sci-
ences. Springer, Cham, 2015.

60. Thomas G. Kurtz. A general theorem on the convergence of operator semigroups. Trans.
Amer. Math. Soc., 148:23–32, 1970.

61. S. Kusuoka and D. Stroock. Applications of the Malliavin calculus. II. J. Fac. Sci. Univ. Tokyo
Sect. IA Math., 32(1):1–76, 1985.



Perturbation of Conservation Laws and Averaging on Manifolds 47
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