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Abstract—Layering is a common feature in modern service-
based systems. The characterization of response times in a layered
system is an important but challenging analysis dimension in
Quality of Service (QoS) assessment. In this paper, we develop a
novel approach to estimate the mean and variance of response
time in systems that may be abstracted as layered queueing
networks. The core step of the method is to obtain the response
time distributions in the submodels that are used to analyze
the layered queueing networks by means of decomposition. We
model the conditional response time distribution as a mixture
of Gamma density functions for which we learn the parameters
by means of a Mixture Density Network (MDN). The scheme
recursively propagates the MDN predictions through the layers
using phase-type distributions and performs convolutions to
gain the approximation of the system delay. The experimental
results show an accurate match between simulations and MDN
predictions and also verify the effectiveness of the approach.

Index Terms—Quality of Service, response time distribution,
queueing network, mixture density network, layered system

I. INTRODUCTION

The end-to-end response time experienced by customers
is an important aspect of service quality assurance. The
response time serves as a key performance index, but in some
situations the mean value of this metric is insufficient for
system designers, who may want to know the quantile statistics
or the extent of variability in order to assess compliance to
service level objectives. Although the problem of approximat-
ing response time distributions in queueing networks (QN)
has been extensively studied during the last few decades, it
still remains a challenging task because conventional analytic
methods are inherently limited by their underpinning technical
assumptions, such as those that prescribe overtake-free job
behavior under first come first serve (FCFS) scheduling [1].
In addition, many services today such as distributed software
applications or business processes feature concurrent services
structured according to a layered structure. Such systems are
not simple to model using ordinary queueing networks since
layering is a form of simultaneous resource possession that
does not meet the product-form solution assumptions [2].
The lack of simple closed-form analytical solutions poses a
challenge for the estimation of response time distributions.

In this paper, we propose a method to provide accurate esti-
mations on variance as well as mean value of the response time
in layered systems. The method requires estimating response

time distributions in a set of closed queueing networks that are
constructed from a layered queueing network (LQN). How-
ever, the current analytic methods are not stable to use since
they are restricted by strict assumptions on service discipline,
number of servers, and Markovian networks. Fortunately, ma-
chine learning (ML) poses a number of opportunities and one
of the goals of this paper is to understand how ML can benefit
QN and LQN theory. We use a suitable ML method named
Mixture Density Network (MDN) to approximate response
time distribution conditional on the given information of a
closed queueing network. The MDN uses a mixture model to
fit probability distribution and uses a fully-connected neural
network to map the conditional relation. Armed with MDNs,
our approach is capable of estimating response times in real
complex layered systems and it shows a high accuracy in
experiments. Because our analytic method is based on the ML
technique, there is a training phase and a test phase to use the
embedded analyzer, which is not typical in conventional LQN
analysis. This approach thus offers a novel contribution to the
field of QoS assessment for layered systems.

The rest of the paper is organized as follows: Section II
conducts a brief review on response time distribution analysis
and prediction. Section III describes the concepts and related
techniques that are used in this paper. Section IV presents
how we apply MDN. Section V proposes the approach to
estimating response times in a layered system. Section VI
evaluates the performance of our MDNs and approach. Section
VII concludes the paper and gives future research directions.

II. STATE OF THE ART

In closed queueing networks, the tagged customer method
is commonly used to derive the response time distributions
[3]. A typical method introduced in [1], [3] is to derive the
Laplace–Stieltjes transform (LST) of passage time from start
to end for the tagged job and decondition the start state to
obtain the product-form LST of steady-state response time
distribution. However, this method can only be applied when
the service discipline is FCFS. In addition, its state-space anal-
ysis suffers from state explosion when the population is large.
Fluid approach has been used successfully to approximate the
response time distributions in closed queueing networks that
consist of delay and queueing stations with processor sharing



(PS) discipline [4]. The discrete number of jobs at the station
is approximated by a fluid continuous amount so that the state
explosion no longer exists. Here, the fluid method is based
on Kurtz’s theorem [5] which is hard to use in networks with
multiclass FCFS stations. All the methods discussed above
are limited to Markovian queueing networks. There are few
analytic methods for the networks with non-Markovian service
time distributions at the present moment. For what concerns
layered queueing networks, they are a type of non product-
form queueing network where the service time of one station
may depend on other stations [6]. The existing technique
approximates the variance of response time in a LQN by taking
the sum of variance estimates of associated services given by
analytic methods [7]. However, the results can be inaccurate in
real complex systems. The limitations of conventional analysis
have led to an interest in statistical learning methods which
make it possible for us to capture the pattern under more
realistic situations. Among these methods, MDN technique is
well suited for approximating unknown conditional probability
distribution. The MDN was first proposed in [8]. Recently, it
has been widely used in distinct areas [9], [10], [11], [12], [13]
and proved to be an effective predictor. In the QN area, [14],
[15] have used MDNs to predict response time distributions
in open queueing networks and service function chains.

III. BACKGROUND

A. Layered Queueing Networks

Fig. 1 shows a LQN model that contains all of the features
considered in this paper. In LQN models, resources exposing a
service are called tasks and shown as parallelograms. The tasks
are executed by hardware resources called host processors,
represented by the attached circles. The tasks and processors
usually have FCFS and PS service discipline respectively. The
stacked notation makes a task or a processor be a multiserver
and the multiplicity is indicated in brace. For instance, T5
denotes a task with five threads and runs on P5 which could
be a two-CPU multiprocessor. Distinct classes of service are
called entries and represented by smaller parallelograms con-
tained by tasks. Each entry is specified by a set of operations
called activities shown as rectangles. The host demand of each
activity is an independent exponential random variable and
the mean duration is indicated in square bracket. For ease of
presentation, we consider sequential activities in the paper. Our
method can be easily generalized to non-sequential patterns.

A key feature of layered queueing models is that a service
may include nested calls to other services. The calls model the
service requests and they are represented by directed arrows
going from one activity to an entry of another task. There are
two main types of call: synchronous and asynchronous. The
synchronous call is a blocking request during which the sender
waits for the reply (dashed arrow), while the asynchronous
call is a send-no-reply request—the execution continues after
sending the call. In this paper, we focus on synchronous call,
for example, it is the pattern of standard remote procedure
calls (RPC) that exists in most layered queueing systems. The
amount of calls indicated in parenthesis alongside the request
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Fig. 1. Example of a LQN model.

arrow is either deterministic or stochastic, both cases are
considered in our method. The amount of stochastic requests
is assumed to be geometrically distributed and the number in
parenthesis is the mean value. In Fig. 1, the tasks T1 and T2 do
not receive any calls. They are system workload generators, or
used to represent the end users, and named reference tasks. The
think time of a reference task is denoted by Z. The interested
readers are referred to the references [16], [17] for a more
detailed description of the LQN models.

In the analysis of a LQN, it is decomposed into a set of
submodels (ordinary queueing networks) that can be solved by
product-form analysis techniques, such as approximate mean
value analysis (AMVA) [18]. The solution iterates among all
submodels until meeting certain convergence criteria and then
we can obtain the mean performance metrics of the LQN [6].
SRVN-layering [19] and MOL-layering [20] are two ways to
construct submodels. In this paper, we adopt SRVN-layering
whose submodel consists of a delay and a queueing station.

B. Class Switching and Chains
In a closed queueing network with N stations and K job

classes, the routing matrix R = [riu,jv], i, j = 1, . . . , N ,
u, v = 1, . . . ,K defines a finite-state discrete-time Markov
chain (DTMC). The station-class pair (j, v) can be reached
from pair (i, u) with probability riu,jv. Jobs can switch class
in the network if there exists riu,jv 6= 0 for u 6= v. All job
classes can be divided into 0 < L ≤ K disjoint sets named
chains. Each chain is a set of classes that can switch jobs with
each other, but not with classes in other chains. This means
jobs inside a chain will never escape from it. Therefore, the
number of jobs in each chain remains constant at all times. It is
natural to think of transferring a closed queueing network with
L chains to a closed queueing network with L independent
job classes and measuring the chain performance [21]. The



methods have been developed to calculate the performance
metrics per chain and then per class in each chain [22], [23].
A brief description is as follows. We first derive the population,
number of visits at each station, and service time for each of
the L chains. Next, the performance metrics per chain can
be calculated by AMVA in the same way as for multiclass
queueing network. Then, we use the population and throughput
of each chain to derive the mean response time and throughput
per class in that chain. Based on these two measures, all other
metrics per class can be obtained in the end. We refer the
interested readers to the reference [24, §7.3.6].

C. Phase-type Distribution and Closure Property
In this paper, we cope with various response time distribu-

tions in a layered system by phase-type (PH) distributions.
PH distribution is defined as the distribution of time to
absorption in a finite continuous-time Markov chain (CTMC)
with an absorbing state. It is uniquely determined by a pair
(α, T ), where α and T are the initial probability vector and
subgenerator matrix among the transient states of the CTMC.
The PH distribution function and moments can be expressed
in terms of α and T [25] as follows

F (x) = 1− αeTx1
E
[
Xj
]

= (−1)jj!αT−j1, j = 1, 2, . . .
(1)

where x ≥ 0 and 1 is a column vector of ones.
The closure properties of PH distribution are studied in

[25]. They are important because these properties allow us to
replace numerical representations with matrix ones in complex
operations such as finite convolutions, maximum and finite
mixtures, which make it possible for us to process probability
distribution in an algebraic and tractable form. Here we cite
one property relevant to this paper:

If Xi and Xj are statistically independent random variables
with PH distributions (αi, Ti) and (αj , Tj), then Xi + Xj is
a PH random variable with (α, T ), where

α = (αi, (1− αi1)αj) , T =

(
Ti −Ti1αj
0 Tj

)
(2)

PH distribution is an effective fitting tool in matching the
first and second moments. Even the underlying distribution is
known, it is preferable to fit a PH distribution to the first two
moments instead of using the original distribution that may
make it hard to incorporate into certain algebraic operations
[26]. In summary, the PH fitting technique is always able to
return a distribution (α, T ) with the same mean and variance.
The interested readers are referred to the reference [27] for
details of the fitting procedure.

IV. MIXTURE DENSITY NETWORKS

Mixture density network (MDN) is an elegant combined
structure of a mixture model and a fully-connected neural
network. We start from introducing the mixture model—a
weighted sum of N individual probability density functions

f(y) =

N∑
i=1

πipi(y|θi) (3)

0.0 2.5 5.0 7.5 10.0 12.5 15.0
(FCFS) Response Time

0.0

0.1

0.2

0.3

0.4

De
ns

ity

Gaussian-MDN
Gamma-MDN
Simulation

(a)

0 5 10 15 20 25 30
(PS) Response Time

0.00

0.05

0.10

0.15

0.20

0.25

De
ns

ity

Gaussian-MDN
Gamma-MDN
Simulation

(b)

Fig. 2. A comparison between simulation and predicted conditional density
functions of response time given the SRVN submodel information: N = 90,
Z = 3, D = 0.6, c2 = 1.25, S = 8 with (a) FCFS and (b) PS service discipline.
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Fig. 3. The structure of Gamma-MDN.

where πi are mixing coefficients such that 0 ≤ πi ≤ 1 and∑
i πi = 1, and θi are parameters that characterize N kernel

functions. Mixture model has the potential to express arbitrary
probability distributions [8], thus we can use it to model
various response time distributions in queueing networks.

Given the LQN submodel information as an input vector x,
we wish to obtain its response time distribution expressed by
a mixture model. In other words, our purpose is to build a
conditional mixture density function of y given x

f(y|x) =

N∑
i=1

πi(x)pi(y|θi(x)) (4)

In this case, the weight and density parameters become
functions of x: πi(x) and θi(x). The input x determines
a unique mixture model through these two functions. We
therefore need to find the functional relationships πi(·) and
θi(·) respectively. The central idea of MDNs is to model both
functions by a fully-connected neural network which has the
flexible fitting capability for complicated relationships. Let O
denote the number of observed samples, a MDN is trained by
the dataset {(xj , yj) | 1 ≤ j ≤ O} and learns the weights of
the neural network through maximizing the likelihood

L =

O∏
j=1

f(yj |xj) (5)

In MDNs, there are different types of kernel functions that
can be used. The majority of applications choose Gaussian
kernels as mixture components [9], [10], [11], [12], [14], [15],



a few applications have ever used other kernels such as Gamma
or Binomial [13]. In this paper, we use Gamma-MDNs to
predict response time distributions in submodels. With the
same number of components, a MDN with Gamma kernels
provides a better performance compared to that with Gaussian
kernels, especially for the models under the PS scheduling
discipline. For instance, Fig. 2 shows a comparison between
one histogram and two density functions obtained from simu-
lation and five-component MDNs respectively. As can be seen
from Fig. 2, both MDNs provide accurate predictions for the
FCFS case, but for the PS case, the MDN with Gamma kernels
provides a more accurate approximation.

The Gamma kernel γ is a two-parameter (θ={α, β}) prob-
ability density function with α > 0, β > 0. Therefore, a
Gamma-MDN needs to model three functional relationships
αi(·), βi(·), and πi(·) to determine the conditional density
function of variable of interest

f(y|x) =
N∑
i=1

πi(x)γi(y|αi(x), βi(x)) (6)

Fig. 3 shows the structure of Gamma-MDN. The output
layer consists of three types of nodes that return the function
values πi(x), αi(x), and βi(x). The first type employs softmax
as an activation function to turn real values into mixing
coefficients that sum to one. For the second and third types,
the return values should be always positive. We employ the
following activation function [12] to ensure this condition

g(x) = 1 + ELU(ξ, x) (7)

where ELU(ξ, x) is Exponential Linear Unit proposed by
[28], and ξ is a positive hyperparameter

ELU(ξ, x) =

{
ξ (ex − 1) x < 0
x x ≥ 0

(8)

This activation function is more stable compared to exponen-
tial activation function because the growth is not fast on the
positive side. It helps to avoid instability during the training
process [12]. The training makes the neural network learn its
weights through minimizing our objective loss function that is
defined as the negative log-likelihood.

V. METHODOLOGY

In this section, we propose an approach to estimate response
time distributions in layered systems. We first study SRVN
submodels with 1-2 job classes because later we will reduce
submodels with >2 classes to this case. To illustrate the
principle, four MDNs are trained by four distinct datasets:
I. Single class, FCFS, II. Single class, PS, III. Two classes,
FCFS, IV. Two classes, PS. Therefore, the input is x = (N , Z,
D, c2, S) from I, II; and x = (N1, Z1, D1, c21, N2, Z2, D2, c22,
S) from III, IV. The definitions of input parameters are shown
in Table I. When applying our methodology to a target layered
system, we build a dataset by simulating randomly generated
pairs in which the values of parameters N , Z, D, c2, S fall
within the valid parameter ranges of the potential problems we
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Fig. 5. A submodel with multiple entries.

are trying to solve, and train the embedded MDN analyzer. In
this way, our approach possesses the generalization capabilities
to analyze real complex layered systems.

A. Mechanism

As mentioned earlier, we use SRVN-layering to construct
submodels. Each SRVN submodel can be characterized by
a closed queueing network with a delay and a queueing
station. The queueing station is either a processor or a task.
According to the type of queueing station, we define two
terms: processor-submodel or task-submodel. Our method
starts from analyzing processor-submodels (Algorithm 1) and
then performs convolution of the response time distributions
layer by layer, from bottom to top (Algorithm 2). We give
each submodel four main job classes: Task(T ), Entry(E),
Activity(A), and Call(C); the switching happens between
each other within the closed network. In a layered system, the
operations of each task are executed on the host processor.
For this reason, in a processor-submodel we let queueing
station serve A-class jobs and delay station serve the rest
of the classes. Meanwhile, a task may send requests to the
services exposed by other tasks. Therefore, in a task-submodel
we let queueing station serve C-class jobs and delay station
serve the rest. As the example shown in Fig. 4, the switching
circle for processor-submodel B is (Delay, T )→ (Delay,E)
→ (Queueing,A) → (Delay, C) → (Delay, T ), while
the switching circle for task-submodel A is (Delay, T ) →
(Delay,E)→ (Delay,A)→ (Queueing, C)→ (Delay, T ).
We first obtain mean performance metrics for each submodel

through the iterations [6]. Next we use the technique intro-
duced in Section III-B to calculate the metrics for each job
class (lines 1-3 in Algorithm 1). In this step we get think times
of classes T , A, and C named ZT , ZA, and ZC . The think



times of processor-submodel and task-submodel are ZT +ZC
and ZT + ZC + ZA (ZC is zero if there is no call sent
outside the submodel) respectively. After this we fit PH to the
service time distribution of each activity and then convolve all
associated PH distributions for each entry (line 8 in Algorithm
1). Then we feed submodel information to a Gamma-MDN
and get a mixture distribution with mean and variance

µ =

N∑
i=1

πiµi, σ2 =

N∑
i=1

πi

(
σ2
i + µ2

i − µ2
)

(9)

where πi, µi, and σ2
i are the kernel parameters which are

returned by this MDN. We therefore can calculate the mean
and variance of the obtained mixture model by (9). Next, we
begin analyzing bottom task-submodels (line 4 in Algorithm
2). We define this term as a task-submodel whose server has
a known response time distribution. For instance, in Fig. 4 the
submodel A becomes a bottom task-submodel after calculating
the processor-submodel C because Gamma-MDN gives us the
response time distribution of E2, the server of submodel A. Let
w and Φ denote the response time of server and the number of
requests to server, we define a new variable δ = Φw. Assuming
Φ and w are independent random variables, we can derive
mean and variance of δ

µδ = µΦµw, σ2
δ = σ2

Φσ
2
w + σ2

Φµ
2
w + σ2

wµ
2
Φ (10)

If the request is deterministic, Φ should be an integer with
σ2

Φ = 0. If it is stochastic, Φ will be a geometric random
variable with µΦ = (1− p)/p and σ2

Φ = (1− p)/p2. Thus

σ2
δ =


σ2
wµ

2
Φ deterministic

σ2
w

(
p2 − 3p+ 2

)
+ µ2

w

(
1− p

)
p2 stochastic

(11)
We use (µδ, σ

2
δ ) to characterize the service time distribution

in a bottom task-submodel. Then we use a Gamma-MDN
to forecast the response time distribution and fit PH to this
prediction. One entry may have several servers that execute
its requests in distinct task-submodels. Once we complete
such analysis for each of these, we convolve all of the fitted
distributions in its host processor and task-submodels and
finally get the response time distribution of this entry (lines 16-
18 in Algorithm 2). We repeat this procedure until we obtain
the response time distribution for every entry.

B. Class Aggregation

A submodel may have multiple chains. In this case, we use
a two-class MDN to predict response time distribution for each
chain. Suppose there are n+1 chains in the model and we are
interested in the response time of a certain chain, then we need
to aggregate the remaining n chains so that a two-class MDN
can be used. We employ the following aggregation method
inspired by the utilization law

Naggr =

n∑
i=1

Ni, Maggr =

n∑
i=1

XiMi

/
n∑
i=1

Xi (12)

TABLE I
SIMULATION PARAMETERS

Parameter Definition Range of Value
N Population 5-100
Z Think time 0.5-10
D Host demand mean 0.1-1
c2 Host demand SCV 0.25-2.5
S Number of servers 1-32

TABLE II
SYMBOL TABLE FOR ALGORITHM

Symbol Meaning
s submodel index
c chain index
t task index
e entry index
ε(t) The set of entries for task t
ZT (t) The mean idle time spent by task t from response

until next invocation
ZC(t) The mean delay a task t spends acquiring

services from other tasks
ZA(t) The mean delay a task t spends on its own processor
A(e) The set of activities for entry e
D(e) The set of fitted PH service time distributions for A(e)
Re Response time distribution of entry e
De The set of probability distributions that determine Re

Ee The set of servers the entry e communicates with
∆ Service time distribution in a task-submodel
P The set of processor-submodels for LQN
T The set of task-submodels for LQN
B The set of bottom task-submodels at the present
C The set of chains in a submodel
Ψ Service discipline (FCFS, PS)
| · | Number of elements in a set
x← a Assign a to x

x
f−→ y Map x onto y by f

where Ni and Xi are the population and throughput of the
i-th chain, Mi can be Z, D, or c2 that is defined in Table I.

Fig. 5 shows a special case that we need to consider. The
task T has K entries and they receive requests from the upper
layer. In this case, we model the processor-submodel by a
closed network where T switches to E1, E2, . . . , EK with
probabilities p1, p2, . . . , pK . The probability is determined by
the throughput of upper layer, that is pk = Xupper

k /Xupper
total .

As the Gamma-MDN method requires constant multiclass
populations, we need to apply the following transformation
to the model

Nk =

(
XEk

Xtotal

)
NT +NEk

(13)

where Nk is the population of the k-th chain, Xtotal, XEk
,

NT and NEk
are the mean performance metrics obtained at

the beginning of Algorithm 1.

VI. EVALUATION

In our approach, the key to estimate response times in
a layered system is to obtain response time distributions in
each closed queueing submodel. Therefore, we first evaluate
if Gamma-MDNs are capable of providing good predictions
for unknown response time distributions. We generate training



Algorithm 1
Input: A LQN model
Output: De for each e
1: construct P and T , create empty De for every e
2: derive the parameters of chains for each s
3: iterate to solve LQN, obtain the mean performance metrics

per chain in s and then per class in each chain
4: for each s ∈ P do
5: Z = ZT (t) + ZC(t)
6: create a set C such that |C| = |ε(t)|, and determine the

population of each c by (13)
7: for each e ∈ ε(t) do
8: convolve D(e) by repeated execution of (2)
9: extract mean and SCV from the convolution result

by (1), build the input x
10: end for
11: for each c ∈ C do
12: if |C| > 1 then
13: aggregate the chains by (12)
14: two-class input x with Ψ(PS)

MDN IV−→ W
15: else
16: single class input x with Ψ(PS)

MDN II−→ W
17: end if
18: extract mean and SCV from W by (9)
19: W ← fitPH(mean,SCV)
20: put W into De
21: end for
22: end for

and test pairs falling within the ranges shown in Table I and
employ the tools LINE 2.0.8 [29] with JMT 1.0.5 [30] to
simulate the pairs under FCFS and PS discipline respectively.
For each pair, we tag a particular job and measure its response
time at the queueing station. Because the network is closed,
the measurements can be made constantly so that we obtain
a steady response time distribution. The single class and two-
class training sets consist of 22000 and 14000 pairs and the
evaluations are conducted on 4400 and 2800 unseen pairs1.

We consider two performance measures: mean absolute
percentage error (MAPE) and mean KS distance (MKS). The
first measure is defined as

MAPE =
100%

Ntest

Ntest∑
n=1

∣∣∣∣Pn −GnGn

∣∣∣∣ (14)

where P and G are the predicted and ground-truth values,
Ntest is the number of test pairs. We calculate MAPE for
mean, SCV, and 95th percentile of response time respectively.

KS distance is defined as the maximum vertical distance
between two cumulative density functions (CDFs), thus our
second measure is

MKS =
1

Ntest

Ntest∑
n=1

max
x

∣∣FGn (x)− FPn (x)
∣∣ (15)

1The datasets are available at https://zenodo.org/record/5528034

Algorithm 2
Input: Output of Algorithm 1
Output: Re of LQN
1: Done ← empty set
2: while |Done| < |T | do
3: for each s ∈ T \Done do
4: if s ∈ B then
5: obtain the set C
6: for each c ∈ C do
7: Z = ZT (t) + ZC(t) + ZA(t)
8: calculate mean and SCV of ∆ by (10), (11),

build the input x
9: if |C| > 1 then

10: aggregate the chains by (12)
11: two-class input x with Ψ(FCFS)

MDN III−→ W
12: else
13: single class input x with Ψ(FCFS)

MDN I−→ W
14: end if
15: implement line 18-20 of Algorithm 1
16: if |De| = |Ee|+ 1 then
17: convolve De by repeated execution of (2)
18: Re ← convolution result
19: end if
20: end for
21: put s into Done set
22: end if
23: end for
24: end while

TABLE III
THE MAPE AND MKS RESULTS OF MDN

Model Training
pairs

Test
pairs

MAPE MKSMean SCV 95-th
MDN I 22000 4400 3.7% 5.5% 4.4% 0.038
MDN II 22000 4400 4.9% 6.5% 5.7% 0.022
MDN III 14000 2800 3.3% 7.0% 3.6% 0.045
MDN IV 14000 2800 6.0% 7.6% 5.7% 0.039

where FG(x) is the empirical CDF from observed samples
and FP (x) is the CDF of a mixture model from prediction.

Each of our MDN models consists of seven Gamma kernels
and the evaluation results are shown in Table III. As can be
observed, all MAPE values are below 10% and MKS values
are less than 0.05, the trained MDNs provide overall good
performance. Fig. 6a shows an interesting phenomenon that
the vast majority of KS distances are below 0.1, which means
the MDNs really learned some relationships and try to get
as close to the true response time distributions as they can.
Fig. 6b gives a comparison between simulations and sampling
distributions from MDN predictions. In this experiment, we
simulate the pair and obtain 1169 and 1170 response time
samples for cases FCFS and PS. Then we employ MDN I and
II to make predictions and generate 1169 and 1170 samples
from the returned Gamma mixture distributions. As can be
seen from this figure, the MDNs cope well with learning to
reproduce unknown distributions. The emulated distribution
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Fig. 6. Visualizing prediction performance with box plots (the orange line and
green triangle inside box express the median and mean values). (a): Summary
statistics on the KS distance for all test pairs of Table III. (b): Summary
statistics on the response time given x = (85, 8, 0.4, 1.5, 2). The left and
right y-axis represent the response time under FCFS and PS respectively.
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Fig. 7. A larger interconnected layered system.

captures a similar symmetric-like or right-skewed trend as
the simulation. The next experiment is to compare mean and
variance between true distributions and predictions through
varying a set of input parameters [13]. Fig. 8a to 8f show
a “what if” instance where we can observe that our MDNs
give acceptable approximations for mean and variance over
the change of distinct types of parameters. This means MDNs
are capable of discriminating variables and calculating how
each type influences the response time. Fig. 8g and 8h describe
the response time distributions in a submodel having two job
classes with different service rates. This is the situation where
conventional BCMP theorem cannot be used [2]. We can see
that the true distribution of class 1 is very well predicted by
the MDN. The prediction for class 2 is worse than class 1 (the
SCV percentage error for class 2 is greater than 10%), but the
overall trend of prediction is still reasonable.

Then, our algorithms are evaluated on the LQN model in
Fig. 1 and a larger interconnected layered system in Fig. 7.
The parameters of the second system are shown in Table V.
In this layered system, the requests made by reference tasks
R1, R2, R3, R4 are stochastic with a mean value 0.5 except
for the requests R3→T6, R4→T7, the mean for these two
is 1. The remaining requests made by non-reference tasks
are deterministic with a value 1. We calculate the end-to-end
delays for both two models and compare the results with lqsim
and lqns 6.0 [17], a simulation tool and a de facto standard
analytic tool for LQN. As shown in Table IV, the response

TABLE IV
PERCENTAGE ERROR OF MEAN AND SCV

Task T1 T2 R1 R2 R3 R4

Mean
lqns 1.073 3.135 1.492 0.485 0.658 0.909
mdn 1.145 3.221 1.502 0.494 0.667 0.917
lqsim 1.139 3.241 1.506 0.495 0.663 0.918

SCV
lqns 1.321 0.126 0.620 1.370 1.462 0.854
mdn 1.356 0.747 0.689 1.717 1.838 1.126
lqsim 1.350 0.702 0.740 1.605 1.852 1.066

PE
Mean

lqns 5.79% 3.27% 0.93% 2.02% 0.75% 0.98%
mdn 0.53% 0.62% 0.27% 0.20% 0.60% 0.11%

PE
SCV

lqns 2.15% 82.0% 16.2% 14.6% 21.0% 19.8%
mdn 0.44% 6.41% 6.89% 6.98% 0.76% 5.63%

times of entries in reference tasks are well predicted by our
approach. The MATLAB implementation of the algorithms
takes 0.96s (including 27 predictions and 9 convolutions) on
the second model after getting the mean values by AMVA. The
percentage errors (PE) for SCV and mean are less than 10%
and 1% respectively. This illustrates the effectiveness of our
methodology which serves as a potential solution to response
time distribution analysis in layered systems.

VII. CONCLUSION

In this paper, we have developed an approach to estimate
the distributions of response time in a layered system. The
approach copes with a set of carefully built submodels and
performs convolution of the response time distributions layer
by layer, from bottom to up. In this process, Gamma-MDNs
predict the conditional response time distribution for each
submodel. They have the promising potential to be used as
emulators for complex queueing studies. In the end, the mean
and variance of system delay are obtained and we employ
fitted PH as the approximated response time distribution. The
results give users a detailed QoS description upon single mean
values. It also allows us to calculate the probability that a
customer will get a response in less than a specific time, which
can be used to provide service promises in the future. In future
work we plan to extend this approach to include other details
of layered systems such as asynchronous calls.
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