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Abstract—This paper studies the ranges of acoustic and
modulation frequencies of speech most relevant for identifying
speakers and compares the speaker-specific information present
in the temporal envelope against that present in the temporal
fine structure. This study uses correlation and feature importance
measures, random forest and convolutional neural network mod-
els, and reconstructed speech signals with specific acoustic and/or
modulation frequencies removed to identify the salient points. It
is shown that the range of modulation frequencies associated with
the fundamental frequency is more important than the 1-16 Hz
range most commonly used in automatic speech recognition, and
that the 0 Hz modulation frequency band contains significant
speaker information. It is also shown that the temporal envelope
is more discriminative among speakers than the temporal fine
structure, but that the temporal fine structure still contains useful
additional information for speaker identification. This research
aims to provide a timely addition to the literature by identifying
specific aspects of speech relevant for speaker identification that
could be used to enhance the discriminant capabilities of machine
learning models.

I. INTRODUCTION

Speaker identification remains one of the most important

unsolved problems that has many crucial applications. Many

methods have been proposed and tested for generating suitable

features from speech that can be used to identify speakers,

including hearing perception tests in cognitive psychology and

physical models of human voice production. In recent years,

machine learning models have come to dominate speaker

identification research, and end-to-end systems are particularly

popular. However, a major drawback of those systems is that

they are effectively black box models, meaning that although

they produce state-of-the-art results, they provide little un-

derstanding about which specific components of speech are

important for generating specific speaker identifier outputs as

well as requiring a substantial amount of training.

This paper studies features generated from the modulation

spectrum and their application to speaker identification to

bridge the gap. This allows specific acoustic frequencies

and modulation frequencies to be tested and their effects on

speaker identification systems investigated.

A. Speaker Identification Background

Speaker recognition refers to the broad category of systems

that use voice features generated from speech to identify the

speaker [1], [2]. There are three main categories of speaker

recognition: (a) speaker identification, which is a 1-of-N

problem in that the system is trained on N specific speakers

and used to identify which speaker in the training set a

particular test recording belongs (closed-set), if any (open-

set); (b) speaker verification, which is a 1-to-1 problem in

that the system is trained to assess whether a particular test

recording belongs to one particular speaker or not; and (c)

speaker diarization, which is where speakers in a particular

test recording are distinguished and the times at which each

speaker was speaking is identified. Speaker diarization differs

from speaker identification and speaker verification in that

(i) the issue of overlapping speakers (i.e. more than one person

speaking at the same time) is more significant and (ii) it is

usually applied on an unsupervised basis in that the system

distinguishes speakers that it may not have been trained on.

All areas of speaker recognition are active areas for research

and regular challenges are held to encourage new research

in particular directions, including: (i) the National Institute

of Standards and Technology (NIST) speaker recognition

evaluation challenges on speaker identification and speaker

verification with certain challenge-specific variations [3], [4],

(ii) the VoxCeleb speaker recognition challenges on speaker

verification and speaker diarization [5]; and (iii) the DIHARD

I, II and III challenges [6] on speaker diarization.

The most commonly used single frame features for

speaker identification are mel-frequency cepstral coeffi-

cients (MFCCs), though mel filter bank cepstral coefficients

(FBANKs), linear predictive cepstral coefficients (LPCCs) and

coefficients derived using perceptual linear prediction (PLP)

are also popular [7]. These single frame features are hand-

crafted and generated in an unsupervised manner. They de-

scribe both phonetic and speaker characteristics, but the former

should ideally be avoided or ignored in speaker identification.

It has been known for some time that using features

generated across a number of frames contains useful speaker

information that is not evident in single frame based fea-

tures alone [8], [9]. Many methods have been proposed and

tested for generating segment-level features based on multiple

frames, ranging from simple delta and delta-delta features

(also called velocity and acceleration) that show the rates

of change across two or more frames to more sophisticated

models. Unsupervised methods have the advantage of not

needing substantial training, but in practice best results are

currently obtained using supervised methods. State-of-the-art

speaker identification performance is currently obtained using,
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Fig. 1: Modulation spectrum generation flowchart.

for example, an extended time delay neural network (TDNN)

based on MFCCs [10], [11] or FBANKs [12] to generate

speaker embeddings, x-vectors, from the penultimate layer

of the TDNN. Other multi-frame features include modulation

spectrum features described in Section I-B, which are the

primary focus of this paper.

The other important feature relevant for this paper that is

sometimes used in conjunction with MFCCs or FBANKs is

the fundamental frequency (F0) expressed in Hz, often referred

to as the pitch [13] (there are other distinctions between F0

and pitch that are not addressed here, but this paper will refer

to F0 only going forward). F0 varies in a range for individual

speakers, around 85-155 Hz for male speakers and 165-255 Hz

for female speakers [14], and different speakers with similar

F0 can sound completely different so it is insufficient on

its own for speaker identification. Much of the research on

F0 focuses on the shape of the F0 contour over a range of

frames (e.g. F0 of a speaker should change smoothly during

an utterance, so significant jumps could indicate a different

speaker). One drawback of F0 is that it is only available for

voiced speech, not unvoiced. Also, MFCCs and FBANKs are

known to have some intrinsic F0 information [15]. Although

this paper does not calculate F0 directly, it is relevant for,

and directly comparable to, the analysis of the fundamental

frequencies in the modulation domain in this paper.

B. Modulation Spectrum Background

The modulation spectrum describes how the acoustic fre-

quency components of a speech signal change over time [16].

There are two parts: (i) the temporal envelope, which uses

amplitude modulation (AM) principles to look at the slowly

changing temporal trajectory of specific acoustic frequency

bands in the speech spectrum; and (ii) the temporal fine

structure, which uses frequency modulation (FM) principles to

look at the rapidly changing instantaneous frequency around

the centre frequencies of those same acoustic frequency bands

in the speech spectrum. Much of the existing research into

the modulation spectrum of speech focuses on the temporal

envelope as human hearing has generally been shown to be

more sensitive to AM than to FM or phase modulation (PM),

and that most linguistic information is contained in specific

parts of the temporal envelope [17]. However, a growing

body of research shows that FM features are helpful for

distinguishing speakers, as discussed in Section I-B2 below.

The steps used to generate the modulation spectrum features

are described in Section II and the process flowchart is shown

in Fig. 1. References to “modulation frequency” without any

other qualifier mean the frequency of the temporal envelope.

1) Temporal Envelope Literature: Early research into the

intelligibility of Dutch speech when manipulating specific

parts of the modulation spectrum found that there was no effect

on speech intelligibility when (a) modulation frequencies

above 16 Hz were removed, provided all lower modulation

frequencies were present [18], and (b) modulation frequencies

below 4 Hz were removed while retaining all higher modula-

tion frequencies [19]. This does not mean only modulation

frequencies in the range 4-16 Hz are relevant for speech

intelligibility though, and subsequent research on English and

Japanese speech has identified the 1-16 Hz range as containing

most useful linguistic information about speech for automatic

speech recognition (ASR) with the 2-8 Hz range particularly

important and peaking at 4 Hz [20], [21], [22]. Several studies

investigated specific aspects of speech at specific modulation

frequencies, which [23] summarises as broadly: stress rate

1-2 Hz; syllable rate 2-8 Hz; and phoneme rate 8-40 Hz.

However, [23] notes there is some variability in these rates

across studies. Humans were shown to understand temporal

envelope frequencies up to 256 Hz in [24]. Other research

looked at temporal envelope frequencies up to 250 Hz or more

so the fundamental frequencies of adult speakers was visible

in the modulation domain [25], [26].

2) Temporal Fine Structure Literature: The importance of

AM and FM on speech recognition and speaker identifi-

cation was studied in [27] in both English and Mandarin,

finding that AM was sufficient for speech recognition in

quiet environments but that the addition of FM substantially

improved speech recognition in noisy environments, speaker

identification and tonal language recognition. Furthermore,



FM was found to be critically important in distinguishing

speech from overlapping speakers, which the paper referred

to as a “competing voice”. The test subjects comprised both

people with normal hearing and people with cochlear implants.

Similarly, [28] found that different instantaneous frequencies

within speech were significant for identifying the speaker, and

developed features based on the AM-FM representation of

speech that were shown to be robust to changes in the record-

ing channel and speaking style. Subsequently, [29] developed

an AM-FM filter bank that converted speech to a spectro-

temporal representation with less smearing or scattering, and

consequently better speaker identification performance, than a

typical discrete cosine transform (DCT) form. Another helpful

analysis comes from [30], which found that the temporal fine

structure aided speech segmentation, though that analysis was

solely based on Mandarin speakers.

In [31], the importance of temporal fine structure on mask-

ing, pitch perception and speech perception was investigated,

finding that it is important for all three. That research built

on an earlier paper by the same author that analysed the then-

prevailing view that the human ear is insensitive to phase [32].

The concept of instantaneous frequency cosine coefficients

(IFCCs) was developed in [33], and was shown to improve

speaker verification performance when used in conjunction

with MFCCs and frequency domain linear prediction (FDLP)

features. Further research on the temporal fine structure (e.g.

[34], [35]) supports the importance of retaining information

derived from it to obtain all the cues inherent in speech, which

is a particular problem in cochlear implants.

3) Modulation Spectrum in Speaker Recognition: Previ-

ous work on the application of the modulation spectrum to

speaker recognition started with [36] and analysed properties

of the modulation spectrum relevant for speaker verification in

continuous telephone speech sampled at 8 kHz using various

modulation filters on acoustic feature bands, finding that

spectral components between 0.1 and 10 Hz have the most

useful speaker information, with frequencies below 0.125 Hz

in both matched and mismatched conditions and above 8 Hz

in mismatched conditions even being detrimental to speaker

recognition (in that research, matched conditions means that

the telephone handset type was the same as the telephone

number type based on NIST labels). The 0.1 to 10 Hz range

is particularly significant as it it closely matched the bandpass

filter range used to convert PLP coefficients to relative spectral

perceptual linear prediction (RASTA-PLP) coefficients after

the speech signal was first broken up into critical bands [37].

However, both [36] and [37] were limited to applying the mod-

ulation filters to all acoustic feature bands, so [25] developed a

joint acoustic-modulation frequency representation of speech

(i.e. the modulation spectrum) that could identify important

modulation frequencies at specific acoustic frequencies, and

which highlighted that there were distinct groupings for two

overlapping speakers. This idea was further developed in [38],

before the same author investigated dimension reduction of the

modulation spectrum for speaker recognition in [39]. More

recently, [40] investigated the modulation spectrum using a

discriminability index, finding that it was important for assess-

ing “speaker individuality” and “vocal-emotion recognition”.

In speaker diarization, [41] applied modulation spectro-

gram (MSG) features in conjunction with MFCCs, finding

that together they significantly improved results. The DiarTk

speaker diarization toolkit uses the modulation spectrum with

MFCCs, time difference of arrival (TDOA) and FDLP features

to generate their best results [42], [43], [44]. The modulation

spectrum features are briefly described in [42] as “slowly

varying components”, which clearly refers to the temporal

envelope, and “critical band energy trajectories are filtered

using a low pass filter and the resulting features are de-

correlated”, but insufficient information is given about how

the modulation spectrum features are generated.

C. This Research

This research is a study of modulation spectrum features that

are most relevant for text-independent closed-set speaker iden-

tification. Section II discusses how the modulation spectrum

features are generated and the variations available. Section

III analyses how well those modulation spectrum features

identify speakers using the datasets and systems described in

Section III-A. It starts by analysing the feature correlations

in Section III-B before quantifying how well modulation

spectrum features identify speakers when used in supervised

machine learning models in Sections III-C and III-D. Section

III-E discusses modification and reconstruction of the speech

signal from parts of the modulation spectrum as that high-

lights audible contributions made in parts of the modulation

spectrum. The literature reviews in Section I investigated

applications of the modulation spectrum to speaker verification

and speaker diarization as well as to speaker identification as

there is considerable overlap in the features and methods used.

The original contributions of this paper show (a) that the

range of modulation frequencies associated with the fun-

damental frequency, rather than the 1-16 Hz range most

commonly used in ASR, are particularly important for speaker

identification, (b) that the modulation frequency band around

0 Hz modulation frequency contains significant speaker infor-

mation and (c) that although the temporal envelope is more

discriminative among speakers than the temporal fine structure,

the temporal fine structure still contains useful additional

information for speaker identification.

II. MODULATION SPECTRUM ANALYSIS

This paper employs a modified version of the method used

in [45], omitting the two-dimensional discrete cosine trans-

form (2D-DCT), to obtain the temporal envelope modulation

spectrum features Φ ∈ R
L×K×H , where L is the number of

modulation frames, K is the number of acoustic frequency

bands and H is the number of modulation frequency bands.

In Sections III-C and III-E, a comparison is made between

Φ calculated using the amplitude envelope ΦAE in both

stages 2 and 4 below and that calculated using the Hilbert

envelope ΦHE in those stages. This paper also calculates

the instantaneous frequencies (i.e. based on the temporal fine



structure) as a 3D tensor ΦIF ∈ R
(L−1)×K×H , except that for

the purpose of Section III-C a different formulation is used for

the final model that results in ΦIF ∈ R
L×K×H .

The process of generating Φ and ΦIF from the modulation

spectrum is described as a 4-stage process in this paper, with

an additional last stage to describe options not addressed in

the 3-stage process of [16]. Two of the stages involve taking

a short-time discrete Fourier transform (STFT) [46], though

other ways of producing frequency bands using some form

of filter (either perceptually motivated or otherwise) would be

equally valid [47]. The process flowchart is shown in Fig. 1.

The first stage uses the STFT to convert the acoustic speech

signal x(n) into a matrix X ∈ C
M×K with M acoustic frames

and K acoustic frequency bands. Each element of X is

X(m, k) =
1

A

Wafs−1

Σ
i=0

x(mFafs + i)wa(i)e
−j 2πki

Wafs (1)

for acoustic frame index m and acoustic frequency band k,

where i is the iterator over each sampling point in the window,

fs is the sampling frequency, Wa is the acoustic frame duration

in seconds, Fa is the acoustic frame step in seconds, wa(i) is

the acoustic window function, {m ∈ Z : 0 ≤ m ≤ M − 1},

{k ∈ Z : 0 ≤ k ≤ K}, K = Wafs
2 after applying the Nyquist

cut-off frequency in the acoustic domain, and the acoustic

window scaling factor A =
Wafs−1

Σ
i=0

wa(i).

It is common to apply mel filter banks to the first stage

STFT, and then sometimes to apply a DCT, resulting in

FBANKs and MFCCs respectively. However, the aim of this

paper is to pinpoint the salient features, so higher resolution

frequency bands are used here.

The second stage finds the spectral envelope of specific

frequency bands. One approach is to obtain Z ∈ R
M×K

where each element is given by |X(m, k)| and | · | denotes

the modulus operator. Another approach is to use the discrete

Hilbert transform denoted H[·], in which each element of Z

is Z(m, k) =
∣

∣X(m, k)
∣

∣+ jH
[

∣

∣X(m, k)
∣

∣

]

. (2)

The phase of Z(m, k) is denoted θw(m, k) for the wrapped

instantaneous phase. That is converted to the unwrapped

phase θu(m, k), so that the instantaneous frequency is then

calculated as

fi(m, k) =
1

2π

[

θu(m+ 1, k)− θu(m, k)

Fa

]

. (3)

The third stage applies a second STFT to a certain number

of acoustic frames X(m, k) in the same acoustic frequency

band k and generates a tensor Y ∈ C
L×K×H . Each element

Y (l, k, h) =
1

B

Wm
Fa

−1

Σ
i=0

Z(l
Fm

Fa

+ i, k)wm(i)e−j
2πFahi

Wm (4)

for modulation frame index l, acoustic frequency band k and

modulation frequency band h, where i is the acoustic frame

index within the modulation frame, Wm is the modulation

frame duration in seconds (assumed to be an integral multiple

of Fa, as is Fm), Fm is the modulation frame step in seconds,

wm(i) is the modulation window function, {l ∈ Z : 0 ≤ l ≤
L − 1}, {k ∈ Z : 0 ≤ k ≤ K} as before, {h ∈ Z : 0 ≤ h ≤

H}, H = Wm

2Fa
after applying the Nyquist cut-off frequency

in the modulation domain and the modulation window scaling

factor B =

Wm
Fa

−1

Σ
i=0

wm(i).

In stage 4, the modulation spectrum Φ ∈ R
L×K×H is

obtained as either |Y (l, k, h)| for each element or by applying

the Hilbert transform to find the Hilbert envelope. For the

latter, the instantaneous frequencies ΦIF ∈ R
(L−1)×K×H are

also calculated. The methodology is the same as for stage 2.

A drawback of Φ on its own is that for each modulation

frame l, Φ(l) ∈ R
K×H is a 2D matrix and usually needs to be

converted into a low-dimension vector φφφ(l) ∈ R
D×1 for use in

speaker identification systems, where D denotes the reduced

number of dimensions per modulation frame (D = K ×H if

the 2D matrix Φ(l) is simply flattened to create φφφ(l)). Deep

neural networks such as a convolutional neural network (CNN)

are a popular choice as the speaker embeddings vector from

the penultimate layer can be used. Discriminative features

can then be made generative, e.g. using probabilistic linear

discriminant analysis (PLDA) [48].

III. EXPERIMENTAL DESIGN AND RESULTS

A. Datasets and Systems Used

A rearranged version of the TIMIT dataset [49] was em-

ployed. Although TIMIT was designed for ASR research,

the data is conveniently arranged by speaker and utterance.

Although the dataset is quite small, it provides a useful starting

point for this research and enabled machine learning models

to be trained relatively quickly. Future developments of this

research will use larger datasets commonly used in modern

speaker recognition challenges (e.g. the VoxCeleb 1 and 2

datasets [5]). To use TIMIT in speaker identification, the data

was rearranged so that the training set comprises the first 7

utterances of each speaker (including SA1 and SA2) and the

test set the last 3 utterances of each speaker.

Models were obtained to identify speakers using random

forests [50] as, unlike some machine learning methods, they

are readily interpretable and generate quantifiable feature im-

portances. Using 100 constituent trees was found to be a good

compromise between reducing overfitting and memory/storage

limitations. The Gini impurity measure [50] was used with

random selection with replacement. No leaf maximum depth

or pruning was applied.

CNN models have in recent years produced good results in

image recognition. Since the modulation spectrum comprises a

2D image per modulation frame, it is natural to fit a supervised

CNN model on the training set and test how well it makes

predictions on the test set. The CNN structure shown in Table I

has also been investigated. Good experiment results were

obtained training for 100 epochs using 10% spatial dropout

after each convolution layer, 30% dropout after each dense

layer and “same” filters with stride 1 for convolutions. A

random 15% of the training data was allocated to a validation

set to monitor accuracy and loss improving as expected. This

CNN structure has over 7 million weights. While the TIMIT

dataset is adequate for identifying salient modulation spectrum
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Fig. 2: 4 TIMIT speakers (2 female, 2 male) average modulation spectra by utterance shown in each row.

features, the CNN models are undertrained and results would

be expected to improve using larger datasets.

The wideband modulation spectrum used throughout this

research was generated using Fa = 1 ms, Wa = 3 ms,

Fm = 100 ms and Wm = 1 second. The only difference

in the narrowband modulation spectrum generated in Section

III-B for comparison purposes was Wa = 30 ms.

B. Feature Properties and Correlations

Fig. 2 shows the average modulation spectrum per utterance

for 4 TIMIT speakers for 3 utterances. These plots show

clear peaks in the modulation domain around the fundamental

frequencies, which are consistent for each speaker across all

utterances by that speaker.

The next step is to analyse the correlations between each

modulation spectrum feature with each other modulation spec-

trum feature and between each modulation spectrum feature

and the output speakers. This will help identify the most rel-

evant modulation spectrum features for speaker identification.

1) Correlations With Other Features: Fig. 3 shows the cor-

relation of each modulation spectrum feature with the output

speaker using the Spearman’s rank correlation coefficient.

This illustrates how strongly correlated the modulation spec-

trum features are with each other, especially the ones in either
TABLE I

CNN STRUCTURE USED

Layer Filter Activation Output Shape

Conv2D 16, (3, 3) ReLU (L, 25, 501, 1)
Conv2D 16, (3, 3) ReLU (L, 25, 501, 16)

MaxPool2D (3, 3) - (L, 8, 167, 16)
Conv2D 16, (3, 3) ReLU (L, 8, 167, 16)
Conv2D 16, (3, 3) ReLU (L, 8, 167, 16)

MaxPool2D (2, 2) - (L, 4, 83, 16)
Flatten - ReLU (L, 5312)
Dense - ReLU (L, 1000)
Dense - ReLU (L, 1000)
Dense - ReLU (L, 512)
Dense - Softmax (L, 630)

the same acoustic frequency band or with the same modulation

frequency. It highlights that there are many redundancies in

speech and the importance of decorrelating the features for

reliable prediction models to be fitted. A similar larger graph

for all modulation features is not shown for lack of space.

2) Correlations With Outputs: As this involves finding the

correlation between numerical inputs and categorical outputs,

the one-way analysis of variance (ANOVA) method is used to

calculate the correlation between each input feature and the

outputs. The F-statistic Fs for speaker s is given by

Fs =
between-class-means covariance

intra-class covariance
= tr

(

A
−1
s B

)

, (5)

where B ∈ R
D×D is the between-class (i.e. between speakers)

Fig. 3: Correlation heatmap for 0-20 Hz modulation

frequencies flattened to 25× 21 = 525 features.
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Fig. 5: Narrowband correlations with output speaker labels.

covariance matrix of the means of each class with D as the

number of features, As ∈ R
D×D is the covariance matrix for

speaker {s ∈ Z : 0 ≤ s ≤ S − 1}, D is the total number of

features flattened to a 1D array (i.e. the number of dimensions)

and tr(·) denotes the trace of a square matrix. This correlation

between each input feature (k, h) and the categorical speaker

outputs is plotted in Fig. 4(a). The modulation spectrum

features from the original TIMIT training set most correlated

with the speakers are in acoustic frequency band 1 (indexed

from 0) of 166-500 Hz, and the top 20 are all in that band. The

most important is in modulation frequency band 107 Hz, with

the top 20 all in the range 98 to 120 Hz. Similar correlations

occur for the original TIMIT test set, peaking at 115 Hz with

all top 20 in acoustic frequency band 1.

The equivalent for the narrowband modulation spectrum is

shown in Fig. 5 (peak scaled as top values dominated the plot).

The primary peak is around acoustic frequency band 3 (83-

117 Hz) and the 0 Hz modulation frequency band; this cluster

contains all top 20 values. A secondary peak occurs in the

same acoustic frequency band at just below 100 Hz modulation

frequencies. Some harmonics in the acoustic domain are also

visible. This suggests that peaks occur at speech harmonics in

both acoustic and modulation domains.

Fig. 4(b) and (c) plot the Hilbert transform versions. The

Hilbert envelope ANOVA scores are higher than those of the

amplitude envelope and occur at similar frequencies, albeit

peaking at slightly lower modulation frequencies. The tempo-

ral fine structure has peaks at higher modulation frequencies

and shows the fundamental frequencies more strongly, but the

absolute scores are 3 orders of magnitude lower.

TABLE II

SPEAKER IDENTIFICATION PERFORMANCE (ALL IN %)

Per MF Per Utt. Ave. MF

RF ΦAE 12.34 27.63 26.20
CNN ΦAE 29.03 42.40 26.36
CNN ΦHE 27.97 48.39 32.77
CNN ΦIF 5.75 12.20 0.69

CNN ΦHE and ΦIF 31.05 49.26 32.17

C. Speaker Identification

Table II shows how well models fitted on Φ (either ΦAE or

ΦHE) and/or ΦIF identify TIMIT test speakers. Results are

obtained for (a) each individual modulation frame in the test

utterance (“Per MF”), (b) taking the modal prediction for the

entire test utterance (“Per Utt.”) and (c) making the prediction

based on the average Φ(l) for each modulation frame in the

utterance (“Ave. MF”).

Although these performance figures are low, it is not ex-

pected that modulation spectrum features alone would perform

well on a speaker identification task. Instead, it is expected

they be used in combination with other features for highest

performance. Furthermore, the small TIMIT dataset is insuf-

ficient for training large and complex models on the 630

speakers in it. Nevertheless, it is interesting to study how well

modulation spectrum features perform alone.

CNN models perform better than random forest (RF) mod-

els, and are quicker to train using less memory/storage. Φ

is shown to have significant speaker-specific information, and

results improve significantly when taking the modal prediction

over an utterance rather than looking at each modulation frame

prediction in isolation. ΦIF contains less speaker-specific

information. However, modifying (3) so the first part of the nu-

merator is θu(m+2, k) and interpolating first and last frames

gives ΦIF ∈ R
L×K×H , then changing the denominator to the

modulation frame step Fm and using with ΦHE as a second

CNN channel gives the best results shown in the last row

of Table II. This means ΦIF relating to the temporal fine

structure has additional speaker-specific information.

D. Feature Importances

Fitting the random forest described in Section III-A to

the TIMIT data results in the feature importances shown in

Fig. 6. Surprisingly, the most important feature was in acoustic

frequency band 0 and modulation frequency band 0 Hz, and

the 13 most important features were all in the 0 Hz modulation

frequency band. After that, clusters occurred at more expected

Fig. 4: Correlations of original TIMIT training set modulation spectrum features with output speakers.
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Fig. 6: Feature importances generated by random forest

model for TIMIT training set (scale capped at 2× 10−4).

places around the speaker fundamental frequencies: features in

the range 80-110 Hz modulation frequencies were important,

followed in importance by a cluster in the range 180-210 Hz.

E. Modification and Reconstruction

To test how particular parts of the modulation spectrum

affect speech, specific elements of ΦAE were set to zero

and then the signal reconstructed using two stages of inverse

STFT (ISTFT). The original speech signal was appended

with enough zeros to ensure restoration of the full speech

signal. Substantial modifications to the modulation spectrum

introduce significant transients at the start of the reconstructed

speech signal, which were eliminated by prepending the orig-

inal speech signal with a modulation frame of zeros. Periodic

Hamming windows were used to satisfy the constant overlap-

add (COLA) principle [7], [51] for perfect reconstruction.

A range of reconstructed speech signals is shown in [52]

for 2 TIMIT speakers with certain acoustic and/or modulation

frequencies removed. A formal listening analysis has yet to

be conducted on this, though it should be noted that the

signals retaining only the 0 Hz modulation frequency band

are still surprisingly understandable. Coupled with the graphs

showing the importance of the 0 Hz modulation frequency

band, it seems that it should not be excluded from speaker

identification systems in the way that it is for ASR. As no filter

banks are used in this research, the 0 Hz modulation frequency

band is the average of each of the modulation frequencies in

the range covered, which suggests that specific components

from the 0 Hz modulation frequency band should be retained

even if filter banks are used in the modulation domain.

IV. CONCLUSIONS

The correlations and feature importances presented in this

paper have shown that the modulation frequencies of speech

most relevant for distinguishing speakers lie in the fundamen-

tal frequencies of the speakers rather than the 1-16 Hz range

most commonly used in ASR, and that the 0 Hz modulation

frequency band contains significant speaker information. For

the former, the information in the fundamental frequencies

of the speakers is clearly more substantial than F0, so is

more than merely an alternative way of expressing F0. For the

latter, results from experiments using correlations and random

forest models also showed the importance of specific acoustic

frequencies in the 0 Hz modulation frequency band. Similarly,

reconstructed speech signals without the 0 Hz modulation

frequencies were considerably less clear than with them, based

on informal listening experiments. Together, this suggests that

the 0 Hz modulation frequency band should not be removed

altogether, but equally including the entire 0 Hz modulation

frequency band is not as helpful as including only acoustic

frequency components most relevant for speaker identification.

Results from the experiments with CNN models show

that the temporal envelope contains more speaker-specific

information than the temporal fine structure; the CNN model

trained on temporal envelope features alone gave speaker

identification performances of 27.97% for individual modu-

lation frames and 48.39% taking the modal prediction per

utterance, whereas the CNN model trained on temporal fine

structure features alone gave 5.75% for individual modulation

frames and 12.20% for the modal prediction per utterance.

However, the CNN trained on both temporal envelope features

and temporal fine structure features performed the best; the

speaker diarization performance was 31.05% when trained on

both, which is a 14.2% improvement on the CNN model

trained on temporal envelope features alone, and a similar

though less dramatic improvement of the modal prediction

per utterance figure to 49.26%, which is a 1.8% improvement.

This shows that the temporal fine structure still contains useful

additional information that, when used in addition to the

temporal envelope, improves speaker discrimination.

The high correlations seen between adjacent acoustic and

modulation spectrum features suggests that the use of filter

banks to combine frequency bands in both the acoustic and

modulation domains should improve performance. However,

the results show that in the modulation domain it would be

preferable to retain the parts of the 0 Hz modulation frequency

band most relevant for speaker identification in addition to

such filter banks.
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