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Abstract. We propose a novel approach to building influence-driven ex-
planations (IDXs) for (discrete) Bayesian network classifiers (BCs). IDXs
feature two main advantages wrt other commonly adopted explanation
methods. First, IDXs may be generated using the (causal) influences be-
tween intermediate, in addition to merely input and output, variables
within BCs, thus providing a deep, rather than shallow, account of the
BCs’ behaviour. Second, IDXs are generated according to a configurable
set of properties, specifying which influences between variables count to-
wards explanations. Our approach is thus flexible and can be tailored
to the requirements of particular contexts or users. Leveraging on this
flexibility, we propose novel IDX instances as well as IDX instances cap-
turing existing approaches. We demonstrate IDXs’ capability to explain
various forms of BCs, and assess the advantages of our proposed IDX
instances with both theoretical and empirical analyses.

1 Introduction

The need for explainability has been one of the fastest growing concerns in AI of
late, driven by academia, industry and governments. In response, a multitude of
explanation methods have been proposed, with diverse strengths and weaknesses.

We focus on explaining the outputs of (discrete) Bayesian classifiers (BCs)
of various kinds. BCs are a prominent method for classification (see [4] for an
overview), popular e.g. in medical diagnosis [15,17,25], owing, in particular, to
their ability to naturally extract causal influences between variables of interest.

Several bespoke explanation methods for BCs are already available in the lit-
erature, including counterfactual [1], minimum cardinality and prime implicant
[23] explanations. Further, model-agnostic attribution methods, e.g. the popular
LIME [21] and SHAP [16], can be deployed to explain BCs. However, these
(bespoke or model-agnostic) explanation methods for BCs are predominantly
shallow, by focusing on how inputs influence outputs, neglecting the causal in-
fluences between intermediate variables in BCs. Furthermore, most explanation
methods are rigid wrt the users, in the sense that they are based on a single,
hardwired, notion of explanation. This sort of one-size-fits-all approach may not
be appropriate in all contexts: different users may need different forms of expla-
nation and the same user may be interested in exploring alternative explanations.
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To overcome these limitations, we propose the novel formalism of influence-
driven explanations (IDXs), able to support a principled construction of various
forms of explanations for a variety of BCs. The two main ingredients of IDXs
are influences and explanation kits. Influences provide insights into the causal
relations between variables within BCs, thus enabling the possibility of deep
explanations, consisting of influence paths where influences are labelled with
influence types. An explanation kit consists, of a set of influence types, each
associated with a Boolean property specifying the condition an influence has to
meet to be labelled with that type. By using different influences for the same BC
and/or different explanation kits for the same BC and set of influences, a user
can thus configure explanations and adjust them to different needs. Specifically,
we propose four concrete instances of our general IDX approach: two amount
to novel notions of deep explanations, whereas the other two are shallow, corre-
sponding to LIME and SHAP. We evaluate the proposed instances theoretically,
in particular as regards satisfaction of a desirable principle of dialectical mono-
tonicity. We also conduct extensive empirical evaluation of our IDX instances.3

2 Related Work

There are a multitude of methods in the literature for providing explanations
(e.g. see the recent surveys [6,26,9]). Many are model-agnostic, including: attri-
bution methods such as LIME [21] and SHAP [16], which assign each feature an
attribution value indicating its contribution towards a prediction; and methods
relying upon symbolic representations, either to define explanations directly (e.g.
anchors [22]), or to define logic-based counterparts of the underlying models from
which explanations are drawn (e.g. [12,13]). Due to their model-agnosticism, all
these methods restrict explanations to “correlations” between inputs and outputs
and make implicit assumptions constraining the explanation [14,2]. Instead, our
focus on a specific model (BCs) allows us to define model-aware explanations
providing a deeper representation of how BCs are functioning via (selected) in-
fluences between input, output and (if present) intermediate model components.

Regarding BCs, [23] define minimum cardinality and prime implicant expla-
nations to ascertain pertinent features based on a complete set of classifications,
i.e. a decision function representing the BC [24]. These explanations are defined
for binary variables only and again explain outputs in terms of inputs. The coun-
terfactual explanations of [1] may include also intermediate model’s components,
but they are rigidly based on a single, hardwired notion of explanation, whereas
we present a flexible method for tailoring explanations to different settings. Other
works related to explaining BCs include explanation trees for causal Bayesian
networks [19] and studies linking causality and explanation [10,11]. Differently
from these works, influences included in our explanations represent causal be-
haviour in the BC rather than in the world. Finally, [27] use support graphs
as explanations showing the interplay between variables (as we do) in Bayesian
networks, but (differently from us) commit to a specific influence type.

3 An extended version (with proofs) is available at https://arxiv.org/abs/2012.05773

https://arxiv.org/abs/2012.05773
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3 Bayesian Network Classifiers and Influences

We first define (discrete) BCs and their decision functions:

Definition 1. A BC is a tuple ⟨O,C,V,D,A⟩ such that:

– O is a (finite) set of observations;
– C is a (finite) set of classifications; we call X = O ∪ C the set of variables;
– V is a set of sets such that for any x ∈ X there is a unique V ∈ V associated

to x, called values of x (V(x) for short);
– D ⊆ X ×X is a set of conditional dependencies such that ⟨X ,D⟩ is an acyclic

directed graph (we refer to this as the underlying Bayesian network); for any
x ∈ X , D(x) = {y ∈ X ∣(y, x) ∈ D} are the parents of x;

– For each x ∈ X , each xi ∈ V(x) is equipped with a prior probability P (xi) ∈
[0,1] where ∑xi∈V(x) P (xi) = 1;

– For each x ∈ X , each xi ∈ V(x) is equipped with a set of conditional proba-
bilities where if D(x) = {y, . . . , z}, for every ym, . . . , zn ∈ V(y) × . . . × V(z),
we have P (xi∣ym, . . . , zn), again with ∑xi∈V(x) P (xi∣ym, . . . , zn) = 1;

– A is the set of all possible input assignments: any a ∈ A is a (possibly partial)
mapping a ∶ X ↦ ⋃x∈X V(x) such that, for every x ∈ O, a assigns a value
a(x) ∈ V(x) to x, and for every x ∈ X , for every xi ∈ V(x), P (xi∣a) is the
posterior probability of the value of x being xi, given a.4

Then, the decision function (of the BC) is σ ∶ A×X ↦ ⋃x∈X V(x) where, for any
a ∈ A and any x ∈ X , σ(a, x) = argmaxxi∈V(x)P (xi∣a).5

We consider various concrete BCs, all special cases of Def. 1 satisfying, in addi-
tion, an independence property among the parents of each variable. For all these
BCs, the conditional probabilities can be defined, for each x ∈ X , xi ∈ V(x),y ∈
D(x),ym ∈V(y), as P (xi∣ym) with ∑xi∈V(x)P (xi∣ym)=1. For single-label classifi-
cation we use Naive Bayes Classifiers (NBCs), with C={c} and D={(c, x)∣x∈O}.
For multi-label classification we use a variant of the Bayesian network-based
Chain Classifier (BCC) [7] in which leaves of the network are observations, the
other variables classifications, and every classification c is estimated with an NBC
where the children of c are inputs. In the remainder, unless specified otherwise,
we assume as given a generic BC ⟨O,C,V,D,A⟩ satisfying independence.

For illustration, consider the play-outside BCC in Fig. 1i-ii, in which clas-
sifications play outside and raining are determined from observations wind,
temperature and pressure. Here, C={o, r}, O={w, t, p} and D is as in Figure 1ii.
Then, let V be such that V(w) = V(t) = {low,medium,high}, V(p) = {low,high}
and V(r) = V(o) = {−,+}, i.e. w and t are categorical while p, r and o are binary.
Figure 1i gives the posterior probabilities and decision function by the BCC.
Given our focus on explaining BCs, we ignore how they are obtained.

4 Posterior probabilities may be estimated from prior and conditional probabilities.
Note that, if a(x)=xi, then we assume P (xi∣a)=1 and, ∀xj ∈V(x)∖{xi}, P (xj ∣a)=0.

5 Note that if a(x) = xi then σ(a, x) = xi.
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Fig. 1: (i) Decision function (with posterior probabilities explicitly indicated) and
(ii) Bayesian network for the play-outside BC, with conditional dependencies as
dashed arrows. (iii-v) Corresponding MD-IDX, SD-IDX and SHAP-IDX (shown
as graphs, with influences given by edges labelled with their type) for input low
wind (wl), medium temperature (tm), and low pressure (pl) and output not play
outside (o−) (for the SHAP-IDX we also show the attribution values).

Our method for generating explanations relies on modelling how the vari-
ables within a BC influence one another. For this, we use two alternative sets of
influences. First, similarly to [1], we use deep influences, defined as the (acyclic)
relation Id = {(x, c) ∈ X × C∣(c, x) ∈ D}. Second, we use input-output influences,
defined as the (acyclic) relation Iio = O × Co, where Co ⊆ C are designated out-
puts. Obviously, Iio ignore the inner structure of BCs. Note that deep influences
indicate the direction of the inferences in determining classifications’ values, ne-
glecting dependencies between observations as considered in the BCs of [8].

For illustration, in Figure 1i-ii, Id={(w, o), (t, o), (r, o), (t, r), (p, r)} and Iio=
{(w, o), (t, o), (p, o)} for Co = {o}, while Iio = {(w, r), (t, r), (p, r), (w, o), (t, o),
(p, o)} for Co={o, r}. Note that in the former Iio case, r is neglected, while in the
latter, the influence (w, r) is extracted even though wind cannot influence raining
in this BC, highlighting that using Iio, instead of Id, may have drawbacks for
non-naive BCs, except when the notions coincide, i.e. when D = Co ×O.

4 Influence-Driven Explanations

Our explanations are drawn from (deep or input-output) influences by categoris-
ing (some of) them as being of different types, depending on the satisfaction of
properties. The choice of types and properties is captured in explanation kits:
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Definition 2. Given influences I, an explanation kit for I is a finite set of
pairs {⟨t1, π1⟩, . . . ⟨tn, πn⟩} with πi ∶ I ×A → {true, false}, for i ∈ {1, . . . , n}: we
say that ti is an influence type characterised by influence property πi, and that
πi is satisfied for (x, y) ∈ I and a ∈ A iff πi((x, y), a) = true.

We will focus on explanation kits {⟨t1, π1⟩, ⟨t2, π2⟩} with two mutually exclusive
“dialectical” influence types, of “attack” (t1) and “support” (t2): intuitively an
influence (x, y) is of type attack (support) if x is a “reason” against (for, resp.)
y; mutual exclusion is guaranteed for t1 and t2 iff πi((x, y), a) = true implies
πj((x, y), a) = false (for i, j = 1,2, i ≠ j). We will show that these influence types
may be characterised by different influence properties, leading to explanations
which can all be deemed “dialectical”, while differing in other respects.

In general, explanations are obtained from explanation kits as follows:

Definition 3. Given influences I and explanation kit EK = {⟨t1, π1⟩, . . . ⟨tn, πn⟩}
for I, an influence-driven explanation (IDX) drawn from EK for explanandum
e ∈ C with input assignment a ∈ A is a tuple ⟨Xr,It1 , . . . ,Itn⟩ with:
● Xr ⊆ X such that e ∈ Xr (we call Xr the set of relevant variables);
● It1 , . . .Itn ⊆ I ∩ (Xr ×Xr) such that for any i ∈ {1 . . . n}, for every (x, y) ∈ Iti ,
πi((x, y), a) = true;
● ∀x ∈ Xr there is a sequence x1, . . . , xk, k ≥ 1, such that x1 = x, xk = e, and
∀1 ≤ i < k (xi, xi+1) ∈ It1 ∪ . . . ∪ Itn .

An IDX thus consists of a set of relevant variables (Xr), including the explanan-
dum, connected to one another by influences satisfying the influence properties
specified in the explanation kit. Several choices of Xr may be possible and use-
ful: in the remainder we will restrict attention to maximal IDXs, i.e. IDXs with
⊆-maximal Xr satisfying the conditions set in the second and third bullets of
Def. 3. These may be deemed to convey in full the workings of the underlying
BC, shaped by the chosen explanation kit. We leave the study of non-maximal
IDXs to future work. Note that maximal IDXs, for mutually exclusive influence
types, are guaranteed to be unique for a given explanandum and input assign-
ment, due to the “connectedness” requirement in the third bullet of Def. 3.

We will define four instances of our notion of IDX: the first two use Id,
whereas the others use Iio. In doing so, we will make use of the following notion.

Definition 4. Given influences I, a variable x ∈ X and an input a ∈ A, the
modified input a′xk ∈ A by xk ∈ V(x) is such that, for any z ∈ X : a′xk(z) = xk if
z = x, and a′xk(z) = a(z) otherwise.

A modified input thus assigns a desired value (xk) to a specified variable (x),
keeping the preexisting input assignments unchanged. For example, if a ∈ A

amounts to low wind, medium temperature and low pressure in the running
example, then a′wh ∈ A refers to high wind, medium temperature and low pressure.

4.1 Monotonically Dialectical IDXs

Our first IDX instance draws inspiration from work in bipolar argumentation
[3] to define an instance of the explanation kit notion so as to fulfil a form of
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dialectical monotonicity : intuitively, this requires that attacks (supports) have
a negative (positive, resp.) effect on influenced variables. Concretely, we require
that an influencer is an attacker (a supporter) if its assigned value minimises
(maximises, resp.) the posterior probability of the influencee’s current value.

Definition 5. An explanation kit {⟨t1, π1⟩, ⟨t2, π2⟩} for Id is monotonically di-
alectical iff t1=− (called monotonic attack), t2 =+ ( monotonic support) and for
any (x, y)∈Id, a∈A, the influence properties π1 = π−,π2 = π+ are defined as:
● π−((x, y), a)= true iff ∀xk ∈ V(x) ∖ {σ(a, x)} P (σ(a, y)∣a) < P (σ(a, y)∣a′xk);
● π+((x, y), a)= true iff ∀xk ∈ V(x) ∖ {σ(a, x)} P (σ(a, y)∣a) > P (σ(a, y)∣a′xk).
A monotonically dialectical IDX (MD-IDX) (for given explanandum and input
assignment) is an IDX drawn from a monotonically dialectical explanation kit.

For illustration, consider the MD-IDX in Figure 1iii (for explanandum o and
input assignment a such that a(w) = l, a(t) =m, a(p) = l): here, for example, pl
monotonically supports r+ because σ(a, r) = +, P (σ(a, r)∣a) = 0.94 whereas for
a′ such that a′(p) = h (the only other possible value for p), P (σ(a, r)∣a′) = 0.01.

Even though dialectical monotonicity is a natural property, it is a strong re-
quirement that may lead to very few influences, if any, in MD-IDXs. For contexts
where this is undesirable, we introduce a weaker form of IDX next.

4.2 Stochastically Dialectical IDXs

Our second IDX instance relaxes the requirement of dialectical monotonicity
while still imposing that attacks/supports have a negative/positive, resp., effect
on their targets. Concretely, an influencer is an attacker (supporter) if the poste-
rior probability of the influencee’s current value is lower (higher, resp.) than the
average of those resulting from the influencer’s other values, weighted by their
prior probabilities (with all other influencers’ values unchanged). Formally:

Definition 6. An explanation kit {⟨t1, π1⟩, ⟨t2, π2⟩} for Id is stochastically di-
alectical iff t1 =

.
− (called stochastic attack), t2 =

.
+ ( stochastic support) and for

any (x, y) ∈ Id, a∈A, the influence properties π1 = π.−,π2 = π.+ are defined as:

● π.−((x, y), a)= true iff P (σ(a, y)∣a)<
∑

xk∈V(x)∖{σ(a,x)}
[P (xk)⋅P (σ(a,y)∣a′xk )]

∑
xk∈V(x)∖{σ(a,x)}

P (xk) ;

● π.+((x, y), a)= true iff P (σ(a, y)∣a)>
∑

xk∈V(x)∖{σ(a,x)}
[P (xk)⋅P (σ(a,y)∣a′xk )]

∑
xk∈V(x)∖{σ(a,x)}

P (xk) .

A stochastically dialectical IDX (SD-IDX) (for given explanandum and input
assignment) is an IDX drawn from a stochastically dialectical explanation kit.

For illustration, Figure 1iv gives the SD-IDX for our running example (using
uniform prior probabilities on the domains V(w), V(t), and V(p) and P (r+) =
.67, P (o+) = 0.22). Note that this SD-IDX extends the MD-IDX in Figure 1iii
by including the negative (stochastic) effect which tm has on r+.

SD-IDXs are stochastic in that they take into account the prior probabilities
of the possible changes of the influencers. This implies that attacks and supports
in SD-IDXs will not be empty except in special cases.
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4.3 Attribution Method Based Dialectical IDXs

We further show the versatility of the notion of IDX by instantiating it to inte-
grate attribution methods, notably LIME and SHAP. For our purposes, attribu-
tion methods can be thought of as mappings α ∶O×A×Co↦R, basically assigning
real values to input-output influences, given input assignments. These values
represent the importance of input features towards outputs, and are computed
differently by different attribution methods (we will use αLIME and αSHAP , omit-
ting the computation details). To reflect attribution methods’ focus on input-
output variables, these instances are defined in terms of Iio, as follows:

Definition 7. Given an attribution method α, an α-explanation kit {⟨t1, π1⟩,

⟨t2, π2⟩} for Iio is such that t1 =
α
− (α-attack), t2 =

α
+ (α-support) and for any

(x, y) ∈ Iio, a ∈ A, the influence properties π1 = πα− and π2 = πα+, are defined as:

● πα−((x, y), a) = true iff α(x, a, y) < 0;

● πα+((x, y), a) = true iff α(x, a, y) > 0.
An α-IDX is an IDX drawn from an α-explanation kit.

LIME- and SHAP-explanation kits are instances of α-explanation kits for choices,
resp., of α=αLIME and α=αSHAP . Then, LIME-IDXs and SHAP-IDXs are drawn,
resp., from LIME- and SHAP-explanation kits. For illustration, Figure 1v shows
a SHAP-IDX for our running example. Here, the restriction to input-output in-
fluences implies that the intermediate variable raining is not considered in the
IDX. Thus, IDXs based on attribution methods are suitable only when the users
prefer explanations with a simpler structure. However, in real world applications
such as medical diagnosis, where BCs are particularly prevalent, the inclusion of
intermediate information could be beneficial: we will illustrate this in Sect. 5.2.

5 Evaluation

We evaluate IDXs theoretically (by showing how different IDX instances relate
and how they differ in satisfying a desirable principle of dialectical monotonicity)
and empirically (for several BCs /datasets). Proofs are omitted for lack of space.

5.1 Theoretical Analysis

Our first two results show the relation/equivalence between MD- and SD-IDXs.6

Proposition 1. Given MD-IDX ⟨Xr,I−,I+⟩ and SD-IDX ⟨X ′
r,I.−,I.+⟩, both for e∈

Xr∩X
′
r and a∈A, it holds that Xr⊆X

′
r, I−⊆I.− and I+⊆I.+.

Thus, an MD-IDX, for given explanandum/input assignment, is always (element-
wise) a subset of the SD-IDX for the same explanandum/input assignment.

When all variables are binary, MD-IDXs and SD-IDXs are equivalent:

6 From now on the subscript io and d of influences for instantiated IDXs will be left
implicit, as it is univocally determined by the IDX instance being considered.
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Proposition 2. Given MD-IDX ⟨Xr,I−,I+⟩ and SD-IDX ⟨X ′
r,I.−,I.+⟩, both for

explanandum e ∈ Xr ∩ X
′
r and input assignment a ∈ A, if, for all x ∈ X ′

r ∖ {e},
∣V(x)∣ = 2, then Xr = X

′
r, I− = I.− and I+ = I.+.

In general, as discussed in Sect. 4.1, MD-IDXs may be much smaller (element-
wise) than SD-IDXs, due to the strong requirements imposed by the principle of
dialectical monotonicity, defined formally as follows, for generic dialectical IDXs:

Principle 1 An explanation kit {⟨a, πa⟩, ⟨s, πs⟩}
7 for I satisfies dialectical mono-

tonicity iff for any IDX ⟨Xr,Ia,Is⟩ drawn from the kit (for any explanandum
e ∈ Xr, input assignment a ∈ A), it holds that, for any (x, y)∈Ia∪Is, if a′ ∈A is
such that σ(a′,x)≠σ(a,x) and σ(a′,z)=σ(a,z) ∀z ∈ X∖{x} such that (z, y)∈I, then:
● if (x, y) ∈ Ia then P (σ(a, y)∣a′) > P (σ(a, y)∣a);
● if (x, y) ∈ Is then P (σ(a, y)∣a′) < P (σ(a, y)∣a).

Monotonically dialectical explanation kits satisfy this principle by design, while
it is worth noting that this does not hold for the other explanations kits:

Proposition 3. Monotonically dialectical explanation kits satisfy dialectical mono-
tonicity; stochastically dialectical, LIME and SHAP explanation kits do not.

5.2 Empirical Analysis

For an empirical comparison of the proposed IDX instances, we used several
datasets/Bayesian networks (see Table 1),8 for each of which we deployed an
NBC (for single-label classification dataset) or a BCC (for multi-label classifica-
tion datasets and non-shallow Bayesian networks). Two illustrative IDXs for the
same input assignment and explanandum (amounting to the output computed
by a model built from the Child dataset) are shown in Fig. 2. Note that the
MD-IDX provides a deeper account of the influences within the BC than the
SHAP-IDX, while also being selective on observations included in the explana-
tions (with two observations playing no role in the MD-IDX), to better reflect
the inner workings (Bayesian network) of the model.

The comparison is carried out by analysing the computational viability of
IDXs and two aspects linked to their effectiveness, i.e. the size of the produced
explanations and the actual amount of violations of dialectical monotonicity.

Computational cost. MD-IDXs and SD-IDXs can be computed efficiently,
in linear time in the number of variables’ values. Formally, let tp be the time
to compute a prediction and its associated posterior probabilities by the BC (in
our experiments, tp ranged from 3µs for the simplest NBC to 40ms for the most
complex BCC).9 The time complexity to compute whether an influence (x, y) ∈ I

7 Here a and s are some form of attack and support, resp., depending on the specific
explanation kit; e.g. for stochastically dialectical explanation kits a =

.
− and s =

.
+.

8 Votes/German: ML Repo [28]; COMPAS : ProRepublica Data Store [20]; Emotions:
Multi-Label Classification Dataset Repo [18]; Asia/Child : Bayesian Net Repo [5].

9 We used a machine with Intel i9-9900X at 3.5Ghz and 32GB of RAM with no GPU
acceleration. For BCCs, we did not use optimised production-ready code.
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Dataset BC† Size
Variables Types‡ Performance§

∣O∣ ∣C∣ O C Accuracy F1

Votes NBC 435 16 1 B B 90.8% 0.90
German NBC 750 20 1 C B 76.4% 0.72

COMPAS NBC 6951 12 1 C B 70.5% 0.71
Emotions BCC 593 72 6 C B 80.2% 0.70

Asia BCC 4 2 6 B B 100% 1.00
Child BCC 1080 7 13 C C 80.6% 0.66

Table 1: Characteristics of datasets/BCs used in the empirical analysis. (†) NBC
(Naive BC) or BCC (Bayesian Chain Classifier); (‡) Binary or Categorical; (§)
accuracy and macro F1 score on the test set, averaged for multi-label settings.

Fig. 2: Example MD-IDX (i) and SHAP-IDX (ii), in graphical form, for explanan-
dum Disease for the Child BCC (predicting value TGA for Disease with posterior
probability 87.9%). Each node represents a variable with the assigned/estimated
value in italics. Grey/white nodes indicate, resp., observations/classifications.

+/
SHAP

+ and −/
SHAP

− indicate, resp., supports (green arrows) and attacks (red arrows).

belongs to MD-/SD-IDXs, denoted as T1−IDX , is a function of ∣V(x)∣ because
determining membership of (x, y) in MD-/SD-IDXs requires checking how the
posterior probability of y changes when changing x. Specifically: T1−IDX((x, y))=
Θ (tp ⋅ [1+∣V(x)∣ − 1])=Θ (tp ⋅ ∣V(x)∣). Then, assuming that the cost for checking
the inequalities of Defs. 5 and 6 is negligible wrt the cost of a BC call, it turns out
that the cost to compute a full MD-/SD-IDX, denoted as TIDX , corresponds to
iterating T1−IDX((x, y)) over all variables x ∈ X : TIDX(V) = Θ (tp ⋅∑x∈X ∣V(x)∣),
showing linearity. Thus, MD-/SD-IDXs are competitive wrt attribution methods,
which rely on costly sampling of the input space. For illustration, the time taken
to generate MD-IDXs for the Child BC is at most 60 ⋅ tp while the time taken to
generate LIME explanations with default parameters is 5000 ⋅ tp.

Size of the explanations. In order to understand how many influences
contribute to IDXs, we calculated the percentage of influences (per type) in each
of the instantiated IDXs from Sect. 4: the results are reported on the left in
Table 2. We note that: (1) when non-naive BCs are used, MD- and SD-IDXs
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Dataset
% Influences in Explanations % Violating Influences

SD-IDX MD-IDX LIME-IDX SHAP-IDX SD- LIME- SHAP-

I+̇ I−̇ IC−̇+̇ I+ I− IC−+ ILIME

+
ILIME

−
ISHAP

+
ISHAP

−
IDX IDX IDX

Votes 77.1 22.9 × 77.1 22.9 × 77.1 22.9 73.2 7.3 0.0 0.2 0.1
German 59.3 40.7 × 29.6 22.0 × 55.9 44.1 46.9 36.4 18.5 20.8 19.8

COMPAS 67.0 33.0 × 45.4 20.3 × 65.7 34.3 35.6 19.1 12.3 12.5 22.7
Emotions 56.9 24.0 1.1 10.3 5.4 1.1 60.6 39.4 56.8 10.3 12.0 11.9 8.9

Child 77.5 22.5 64.0 65.4 15.1 64.0 54.0 41.3 24.4 9.7 7.1 2.5 5.6
Asia 87.5 12.5 62.5 87.5 12.5 62.5 70.8 29.2 54.2 20.8 0.0 0.0 0.0

Table 2: Average percentages of influences that are part of IDXs (on the left,
with types as shown and where, for types t, t′, ICt t′ = {(x, y) ∈ It ∪ It′ ∣x, y ∈ C})
and (on the right) of influences in IDXs violating dialectical monotonicity (all
percentages are drawn from a sample of 25,000 influences for 250 data-points).
Here, × indicates percentages that must be 0 due to the BC type. On the left,
percentages may not sum to 100 as some influences may not be part of IDXs.

include influences between classifications (see IC−+ and IC.− .+ in Table 2), as a

consequence of using Id and thus being non-shallow; this suggests that our deep
IDXs can provide better insights into models than shallow IDXs drawn from
input-output influences; (2) SD- and LIME-IDXs tend to behave similarly, and
MD-IDXs tend to include fewer influences than SD-IDXs (in line with Prop. 1);
(3) in some settings, SHAP-IDXs fail to capture the majority of attacks captured
by the other IDX instances (e.g. for Votes and Emotions).

Satisfaction of Dialectical Monotonicity. We calculated the percentage
of influences in SD-/LIME-/SHAP-IDXs which do not satisfy dialectical mono-
tonicity : the results are reported in Table 2 (right). We note that: (1) All three
forms of IDXs may violate the principle for deep and shallow BCs; (2) SM-IDXs
violate the principle significantly (p < 0.05) less for all NBCs, but the percentage
of violations by SM-IDXs increases for BCCs, possibly due to SM-IDXs being
non-shallow for BCCs (differently from LIME-/SHAP-IDXs, which are always
shallow). Note that the violation of dialectical monotonicity may give rise to
counter-intuitive results from a dialectical perspective. For illustration, consider
the (shallow) SHAP-IDX in Fig. 2ii: one would expect that for values of Age for
which this is no longer a supporter the diagnosis that Disease is TGA becomes
less likely, but this is not so here. Instead, in the MD-IDX of Fig. 2i, Age is an
attacker of the inner Sick and no misunderstandings may arise.

6 Conclusions

IDXs offer a new perspective on explanation for BCs and open numerous direc-
tions for future work, including investigating other instances and other principles,
exploring IDXs for other AI methods, as well as conducting user studies to assess
how best IDXs can be delivered to users.



Influence-Driven Explanations for Bayesian Network Classifiers 11

Acknowledgements

This research was funded in part by J.P. Morgan and by the Royal Academy of
Engineering under the Research Chairs and Senior Research Fellowships scheme.
Any views or opinions expressed herein are solely those of the authors listed, and
may differ from the views and opinions expressed by J.P. Morgan or its affili-
ates. This material is not a product of the Research Department of J.P. Morgan
Securities LLC. This material should not be construed as an individual recom-
mendation for any particular client and is not intended as a recommendation of
particular securities, financial instruments or strategies for a particular client.
This material does not constitute a solicitation or offer in any jurisdiction.

References

1. Albini, E., Rago, A., Baroni, P., Toni, F.: Relation-based counterfactual expla-
nations for bayesian network classifiers. In: Proc. of the 29th Int. Joint Conf. on
Artificial Intelligence, IJCAI. pp. 451–457 (2020)

2. Barocas, S., Selbst, A.D., Raghavan, M.: The Hidden Assumptions Behind Coun-
terfactual Explanations and Principal Reasons. In: FAT* ’20: Proc. of the 2020
Conf. on Fairness, Accountability, and Transparency. pp. 80–89 (2020)

3. Baroni, P., Rago, A., Toni, F.: How many properties do we need for gradual ar-
gumentation? In: Proc. of the 32nd AAAI Conf. on Artificial Intelligence. pp.
1736–1743 (2018)
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