
1.  Introduction
Displacement, forced migration, and other forms of human mobility have long been recognized as a poten-
tial major impact of anthropogenic climate change. Therefore, limiting climate-related human mobility has 
been important in informing the goal of capping global warming at 1.5°C above pre-industrial levels in the 
Paris Agreement (Hoffmann et al., 2020; Task Force on Displacement, 2018; UNFCCC, 2015).

The importance of addressing climate-related human mobility has further been recognized in a range of 
legal and policy frameworks (Intergovernmental Authority on Development, 2020; International Organi-
zation for Migration, 2019; United Nations Office for Disaster Risk Reduction, 2015). The Task Force on 
Displacement, established under the Warsaw International Mechanism for Loss and Damage, aims to de-
velop recommendations for integrated approaches to avert and minimize internal displacement from ex-
treme weather events and slow-onset adverse effects of climate change (Oakes et al., 2019; Task Force on 
Displacement, 2018).

Climate change will impact a wide range of sectors (Dasgupta et al., 2014) which in turn could have pro-
found implications for human mobility. The most significant sectors impacting climate-related human mo-
bility are covered by the Intergovernmental Panel on Climate Change (IPCC) Special Report on Global 
Warming of 1.5°C (SR15). While more recent IPCC reports have been released, including the Special Report 
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on the Oceans and Cryosphere in a Changing Climate and the Special Report on Climate Change and Land 
(IPCC, 2019a, 2019b), SR15 was commissioned specifically with decision-makers and policy planners in 
mind. The report scientifically assesses the implications of pursuing efforts to implement the Paris Agree-
ment by outlining sector-specific transitions and policy actions (Tokarska et al., 2019), as well as the expect-
ed societal impacts in six climate change impact sectors (Figure 1).

Human mobility in the form of migration provides a coping mechanism when facing extreme weather 
events and anomalous seasons (Geest & Warner, 2014; Harrington & Otto, 2018; A. D. King et al., 2018). 
However, without concrete climate and development action, situations of entrapment can become more 
prevalent globally (Adger et al., 2015; Ayeb-Karlsson et al., 2015). This is particularly relevant in regions 
where vulnerability and exposure are already high and even small changes in hazards amplify consequenc-
es on populations in situ (Harrington & Otto, 2018).

Here, we focus on one of the largest regions where such conditions apply. Home to over 38% of the Earth's 
population (Burrell et al., 2020; Huang et al., 2017), dryland communities are disproportionately affected 
and vulnerable to the impacts of climate change. Dryland regions are projected to experience a 3.2°C–4°C 
warming under a 2°C global warming scenario by 2050 (IPCC, 2018). This is particularly crucial for African 
dryland regions, where regional climate models further project increases in frequency and intensity of heat-
waves, droughts, and floods, and adaptation is additionally hindered by high uncertainties and poor data 
availability (Harrington & Otto, 2020; Wartenburger et al., 2017). Therefore, we seek to answer: What is the 
current understanding of the implications for human mobility in African drylands under future warming?

In this study, we provide a comprehensive discussion of the impact channels through which future warm-
ing affects human mobility (climate-related human mobility). This Commentary aims to contribute to the 
ongoing, global effort toward a better understanding of climate-related human mobility (Boas et al., 2019) 
and to offer a directly usable approach for policy-makers. To this aim, we propose a systems approach to ad-
dress the interconnectedness of climate impacts and cascading risks of future warming on human mobility 
in African drylands. Doing so, however, requires a thorough understanding of the systemic characteristics 
outlined in Figure 1 (ie., cascading risks, shocks, uncertainty, cross-sectoral interconnectedness, and the 
analysis of multiple time periods), and vulnerabilities of climate-related human mobility and the climate 

Figure 1.  Schematic illustration of the interactions between climate change effects in the six climate change impact sectors and different types of human 
mobility in a systems approach framework.
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system. Our systems approach recognizes dynamics and sectoral linkages (six impact sectors in Figure 1), 
which often-times align more closely with the realities of the complexities of climate-related human mo-
bility. Conceptually, such an approach has been applied to a diverse range of fields such as food systems 
(Gaupp,  2020; Nicholson et  al.,  2020), but has been less used in the analysis of climate-related human 
mobility issues.

2.  Climate-Related Human Mobility
Many weather and climate-related events have become more frequent and intense leading to widespread 
and disastrous impacts for populations globally (Hoegh-Guldberg et al., 2019). In extreme cases, popula-
tions have migrated away from locations frequently impacted by extreme weather events (Gray & Muel-
ler, 2012) or are projected to move toward coastlines affected by sea-level rise (Bell et al., 2021). At the same 
time, human mobility decisions are often multi-causal and rarely due to extreme weather events alone. Cli-
mate change may influence human mobility both directly and indirectly through various channels ranging 
from economic, demographic, social, political, and environmental factors (Black et al., 2011). These factors 
ultimately lead to a decision between staying or going—and where to migrate to if needed. In this context, 
there are several climatic factors and cascading risks that can enhance and reduce human mobility, or even 
entrap populations (Cattaneo et al., 2019; Hoffmann et al., 2020).

In the existing literature, climate-related human mobility is often portrayed as a key impact of anthropo-
genic climate change (e.g., Biermann & Boas, 2008; Myers, 2002; Rigaud et al., 2018). Despite the increasing 
abundance of qualitative evidence (e.g., Groth et al., 2020; Wiederkehr et al., 2018) on how and where pop-
ulations migrate due to the impacts of environmental change, surprisingly little research has linked such 
evidence to anthropogenic climate change (Borderon et al., 2019; Cattaneo et al., 2019); quantitatively or 
qualitatively. In East Africa, the confidence on attributable links regarding the climate change-human mo-
bility nexus is low with evidence from climate science being in many cases underrepresented (Thalheimer 
et al., 2021). As the impacts of anthropogenic climate change are projected to fall disproportionately upon 
African countries (Harrington & Otto, 2020; Hoegh-Guldberg et al., 2019), this study focuses on climate-re-
lated human mobility in African drylands. To do so, an understanding of climate change effects, including 
evidence from extreme event attribution, and cascading risks in this region is needed.

In recent years, several meta-analyses have been published that study the multiple links between environ-
mental change and human mobility nexus in Africa (e.g., Wiederkehr et al., 2018; Borderon et al., 2018). 
The reviewed case studies in these studies are mostly situated in Sub-Saharan African drylands. Climate 
change and extreme weather events play a central role in these studies and are found to drive different 
types of mobility, including temporary and longer-term migration over short and long distances. For ex-
ample, Wiederkehr et al. (2018) find that 23% of 9,700 rural African households that were interviewed in 
63 empirical studies, respond to environmental stressors with some form of migration. A review of African 
case studies by Borderon et al. (2019) shows how complicated it is to draw universal conclusions on the 
migration-environment nexus. However, based on their review, they do conclude that climate change will 
not generate mass migration from Africa to Europe and other continents. An important reason for this is 
that the people who are most affected by climate change in Africa do not have the financial resources and 
social networks that are needed to migrate intercontinentally. The picture is quite different for migration 
and displacement within countries, which is projected to increase sharply under more extreme climate 
change (Rigaud et al., 2018).

3.  Mapping Climate Change Effects on African Drylands
SR15 lists projected climatic changes in a variety of climatological areas. We adopt the report's regional 
structure for Western, Southern, and Eastern Africa in which drylands are the predominant land zone (Cer-
vigni & Morris, 2016), and summarize projected climatic changes (Table 1). The table updates findings from 
SR15 with recently published literature. The focus is on precipitation extremes and temperature extremes 
as they comprise the predominant natural hazards in African drylands.
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In a warmer world, drylands are expanding globally (IPCC, 2018) while high population growth in drylands 
exposes more people to climate hazards (Koutroulis, 2019). Despite sparse literature, the current evidence 
concerning African dryland regions suggests that heat extremes will become more frequent in the region 
(Perkins-Kirkpatrick & Lewis, 2020; Rohat et al., 2019). For dry and wet extremes, the influence of climate 
change is less clear and varies across the continent, with a significant signal only in observed, attributed, 
and projected drying in Southern Africa, and an increase in heavy precipitation in Western Africa. In East 
Africa, increases in temperature have been found to be linked to anthropogenic climate change, while cur-
rent rainfall deficits and subsequent droughts do not show a strong anthropogenic climate signal. Uncer-
tainties are significant though, as is vulnerability to natural climate variability (Kew et al., 2019).

African drylands regions

Western Africa Southern Africa Eastern Africa

Precipitation and related extremes SR15

Overall decrease in mean rainfall, 
stress in water availability (SR15, 

p. 197) (medium confidence).

Overall decrease annually, increased 
water stress while less water 

available (SR15, p. 197, 213) (medium 
confidence);

Increase in heavy precipitation 
events especially over Somalia 

and river flooding (SR15, p. 197, 
201) (low - medium confidence);

Increase in heavy precipitation events 
(low confidence), while region as a 

whole will experience precipitation 
decrease (SR15, p. 197, 204) (high 

confidence).

Increase in number of consecutive 
dry days (SR15, p. 199) (high 

confidence).

Post-SR15

Observed increase in heavy 
precipitation events (Barry 
et al., 2018) which is likely 

to increase in frequency and 
intensity by 2100 (Akinsanola & 
Zhou, 2019; Dosio et al., 2019).

Drying is likely to increase (Dosio 
et al., 2019; Maúre et al., 2018), 

especially under Regional Climate 
Models (RCM) (Ahmadalipour 

et al., 2019) and recent droughts have 
been attributed to climate change 
(Herring et al., 2019; Nangombe 

et al., 2020; Otto et al., 2018).

Insufficient evidence from recent 
projections of rainfall over East 
Africa (Finney et al., 2020) to 
draw confident conclusions.

Attribution studies on late onset of 
rain and heavy rain do not find 
a significant change (Gaetani 
et al., 2020; Lawal et al., 2019; 

Parker et al., 2017).

Several attribution studies suggest 
no significant attributable 
link to climate change in 

observed drying trends (Herring 
et al., 2019; Kew et al., 2019; Otto 

et al., 2018; Uhe et al., 2018).

Temperature and related extremes SR15

Increase in heatwaves and number 
of hot nights (SR15, p. 259, 261). 

Low confidence.

Rise in extreme temperature causing 
more frequent heatwaves and aridity, 
especially at +2°C (SR15, p. 177, 178, 

190, 200, 261). High confidence.

No findings for East Africa specified.

Post-SR15

Throughout Sub-Saharan Africa: Exposure to dangerous heat projected to increase (Rohat et al., 2019).

Observed frequencies of warm 
extremes are likely to increase.

Increases in frequency of warm days and 
decrease in cold days.

East Africa is a hotspot of increasing 
trends in heatwaves (Perkins-
Kirkpatrick & Lewis, 2020).

Lack of research on compound heat 
and drought events (Raymond 

et al., 2020).

Note. We distinguish between effects listed in SR15 and new research published since.

Table 1 
Summary of Regional Projected Climatic Changes and Their Effects in African Drylands (Including Confidence Levels)
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4.  Climate Change Impact Sectors and Their Relation to Human Mobility in 
African Drylands
There is growing evidence that climate change and extremes primarily affect human mobility indirectly 
(Black et al., 2011; Hoffmann et al., 2020; Romankiewicz et al., 2018). With a focus on interconnectedness 
of climate impacts and cascading risks, this section consolidates and expands on the evidence provided in 
SR15 with relevant implications for human mobility in African drylands.

We find that the effects from interacting and cascading risks could imperil migration as an adaptation or 
coping mechanism across the region. Cascading risks are spatially compounding risks that involve multiple 
interacting hazards in the same location. Cascading risks lead to increased exposure (Piontek et al., 2014). 
The amount of people exposed to cascading risks is projected to double from 1.5°C to 2°C warmer world, 
with almost the entire global population affected either directly or indirectly under a 3°C warming scenario; 
the exposure in African regions to cascading risks is amongst the highest (IPCC, 2018). Poor communities 
affected by drought and water stress, as well as political instability and growing conflicts, could find them-
selves forced to move as a response to climate thresholds (Tol, 2018; Xu et al., 2020). Cascading risks are a 
cross-cutting theme and particularly impactful on people living in poverty (IPCC, 2018), highlighting the 
urgent need for a systems approach as a bridging framework.

Accessibility, trade, and distribution of food crops and livestock form an interconnected variable between 
human mobility and climate change (Adams & Adger, 2013; Afifi et al., 2016). Drylands have already expe-
rienced lower agricultural productivity and recurring weather shocks (van der Geest & Warner, 2014; Stavi 
et al., 2021). Even a warming of +1.5°C accelerates adverse risks of reduced water and food availability 
(Betts et al., 2018; Cheung et al., 2016). Constraining warming levels to 1.5°C can substantially minimize 
risks in crop yield losses in West Africa (Schleussner et al., 2016). Dryland areas, where rainfall levels are 
already increasingly uncertain, are projected to become less suitable for agricultural production (Läderach 
et al., 2013; Sultan & Gaetani, 2016; Zommers et al., 2016).

Further, food insecurity is projected to disproportionately affect poor populations in African drylands (Byers 
et al., 2018; Puma et al., 2018; Thalheimer et al., 2019). Related increases in local, regional, and global food 
prices could put an additional 122 million people in extreme poverty by 2030 (Guldberg et al., 2018). Cli-
mate change could adversely impact the livelihood security of seasonal migrants and pastoralists (Fanzo 
et al.,  2018; Rademacher-Schulz et al., 2014). In regions with increased risk of water stress, pastoralists 
and their livestock will have to alter mobility patterns in the search for water and livestock fodder (Boone 
et al., 2018).

According to the Lancet Countdown on Health and Climate Change, current warming has already resulted 
in “profound, immediate, and rapidly worsening health effects” (Watts et al., 2021). Climate change is likely 
to impact workers' health conditions and their ability to perform labor-intensive work outdoors. Climate 
change has already increased the exposure and vulnerability to climate-related stress and related health is-
sues (Haines & Ebi, 2019). Heatwaves in particular have shown adverse effects on occupational health (Rey 
et al., 2007). Among vulnerable populations, climate change can reduce food security and labor productiv-
ity, which has adverse health outcomes, while the functioning of healthcare systems may be reduced in the 
event of weather extremes. Taken together, heatwaves and long-term climate change can limit the physi-
cal work capacity, leading to diminished agricultural productivity and causing undernutrition in drylands. 
Droughts contribute to biodiversity loss and ecosystem collapse, increasing the likelihood and occurrence 
of vector-borne diseases (Watts et al., 2017). A half-degree temperature increase to 2°C adversely impacts 
health conditions globally (Haines & Ebi, 2019). SR15 states with very high confidence that heat-related 
mortality and morbidity will be higher under 2°C than under 1.5°C.

While there is some evidence of climate-related health impacts influencing human mobility decisions, the 
extent to which out-migration will increase remains uncertain and needs further empirical research (Mc-
Michael, 2020; Schwerdtle et al., 2018). Initially, negative impacts on human health may decrease the likeli-
hood of migration due to reduced personal capacity for relocation. However, studies have demonstrated mi-
grants willing to move into sites with increased exposure to natural hazards and potentially cascading risks 
for their health (McMichael, 2020) during stages of the migration journey (Schwerdtle et al., 2018, 2019). 
The combination of various vector-borne diseases, especially malaria, and climate-induced socio-economic 
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disruption is projected to have significant regional impacts such as increased outward migration (Piontek 
et al., 2014) to areas with less exposure to extreme weather events. Systemic shocks like the COVID-19 pan-
demic show that access to health care is limited during relocation processes which may undermine global 
health goals (Schwerdtle et al., 2019).

With an increasing number of people from rural dryland areas pursuing urban migration in the search for 
alternative occupation, there is a higher vulnerability to heatwaves and poor urban air quality exacerbated 
by climate change. Even under a 1.5°C of warming, the incidence of heatwaves is projected to increase, 
doubling the number of megacities affected by heat stress and exacerbating urban heat island effects. Un-
der a 2°C warming scenario, a significant rise in heat stress-related mortality is projected, particularly for 
low-income countries in sub-Saharan Africa. Given the lack of reporting on current heat impacts, this pro-
vides particular challenges to adaptation (Harrington & Otto, 2020). Climate projections further indicate a 
decrease in the number of consecutive wet days, and an increase in consecutive dry days for sub-Saharan 
Africa. Despite large uncertainties in projections (J. King et al., 2020), if the amount of annual precipitation 
is to stay constant, it will increase the intensity of hydrological extremes in the form of floods, droughts, and 
water scarcity (IPCC, 2018).

In some cases, climate-related migration can lead to further risk accumulation in urban areas (Ayeb-Karls-
son, 2020; Wilkinson, 2016). Increased rural-urban migration accelerates rapid urbanization, which is com-
pounded by the inability of already overstretched cities and municipalities to provide affordable and safe 
housing (Williams et al.,  2019). The resulting number of people residing in environmentally precarious 
areas rises, meaning they experience higher exposure to natural hazards. Most arriving migrants lack fi-
nancial resources to relocate to areas with a significant level of access to basic services and less exposure to 
hazards (Adams & Kay, 2019; Williams et al., 2019). They are thus trapped in environmentally precarious 
areas in which the climatic risks under future warming scenarios are significantly more precarious (Adger 
et al., 2015; IPCC, 2018).

Despite limited research on the effects of a current and near-term warming, variabilities in rainfall and 
temperature extremes are associated with higher levels of internal migration in agriculture-dependent com-
munities (Cai et al., 2016; Rigaud et al., 2018) highlighting wider economic implications for affected popu-
lations. In poorly endowed communities, climate change impacts can further amplify conflict over scarce 
resources (Serdeczny et al., 2017). In some cases, a warming up to 1.5°C (expected by 2030s, independent 
of scenarios) already significantly increases the risk of inter-group conflicts, which in turn can generate 
reinforced involuntary mobility (Hsiang et al., 2013).

We deduce that climate change effects adversely impact African dryland communities and are likely to alter 
human mobility in different ways. In some cases, climate change can lead to more population displace-
ment, whereas in other cases it can lead to less human mobility for instance when people become trapped. 
Overall, climate change can shift more voluntary human mobility to more forced flows. There is consist-
ent evidence on the relationship between climate change impacts on economic development and human 
mobility through economic losses in agriculture and food insecurity from droughts (Nawrotzki & Bakht-
siyarava, 2017), changes in temperature (Gray & Wise, 2016), and precipitation (Mastrorillo et al., 2016). 
Cascading risks and compound events interlink all sectors and therefore indicate the biggest impact on hu-
man mobility under future warming. In East Africa, the ongoing locust spread and survival due to climatic 
stresses and socio-economic activities is yet another example that shows the importance of such cascading 
risks (Salih et al., 2020).

5.  Systems Approaches to Advance the Current Evidence
In this paper, we highlighted that climate change impacts on African drylands mobility are not just a result 
of potential disruptions of a single impact sector, rather showcasing shocks to multiple sectors, cascading or 
even compounding risks. Given the increasing relevance of cascading risks from connected and compound 
events (Raymond et al., 2020), it thus seems reasonable to propose a systems approach as a starting point to 
address future warming impacts on human mobility in research and policy.
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A first option to effectively respond to sectoral climate change impacts is to take a system-wide approach 
(Ratter, 2013), which requires decision-makers, policy planners, and various sectors to undertake a coordi-
nated and concerted effort. The advantage of this method is that a holistic understanding of the interface 
between climate change and human mobility can be gained. Resulting interlinked concepts, dynamic rela-
tionships, and feedback behavior can be useful for enhancing cooperation and guidance, and for identifying 
resilience-enhancing pathways. However, a systems approach deems a form of cooperation that is currently 
constrained by a lack of cross-sectoral integration and political instrumentalization prevalent across re-
gions affected by climate change (Williams et al., 2019). Further limitations lie in the governance context; 
in much of dryland Africa, fragile states are prevalent and have high poverty levels. Conversely, a systems 
approach could also be a bridging framework to address interlinked challenges.

Clearly, it is crucial to investigate and derive policy conclusions holistically, beginning with the intercon-
nectedness of climate change, impact sectors, and human mobility. Climate change policies are likely to 
have significant impacts in economic, environmental, and social domains and on a wide range of stake-
holders (Tol, 2018). It is therefore essential to take potential and unintended side-effects of the policy on 
other sectors into account. To exemplify, the livestock sector plays an important role across African drylands 
but global challenges make it difficult to navigate related policies and leverage positive impacts on the 17 
sustainable development goals (Mehrabi et al., 2020). We have highlighted the importance of accounting 
for cascading risks, shocks, and uncertainties. Various policy alternatives and their trade-offs have to be 
accounted for. Cascading risks, and ways to deal with them, as well as risk criteria, have to be included from 
a systems dependency perspective. This is crucial for managing, analyzing, and governing those sectors that 
have global links such as food security (Gaupp, 2020). Management of risk also entails to capture uncertain-
ty in the strength or in the direction of cross-sectoral interconnectedness. Short, medium, and long-term 
impacts of a policy need to be defined, for example, a trade-off between various types of proactive long-
term (ex-ante) measures and reactive short term (ex-post) measures. Uncertain futures of climate change, 
including the possible occurrence of extreme weather events affecting human mobility versus life-spans of 
adaptation measures, have to be taken into consideration.

6.  Outlook
We find ourselves at a crossroads. More research is needed on all aspects of the interface between human 
mobility and climate change, and the cascading risks associated with it. Evidence on the link between cli-
mate change and current extreme weather and slow-onset events as well as research on near-term changes 
at 1.5°C and 2°C warmings could provide ground-truthing of the above-described findings and be trans-
formative in understanding human mobility if enhanced by a deeper understanding of the cross-sectoral in-
terconnectedness of climate impacts that drive human mobility. From a research perspective, this requires 
global collaboration and truly transdisciplinary approaches that can inform policy aimed at preventing 
forced migration and facilitating safe and dignified human mobility in a changing climate.

Data Availability Statement
No additional data were used as part of this study.
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