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Abstract

Traditional machine learning algorithms require data to be centralized. In practice,

data is often generated at multiple locations. Transmitting all the data to a central lo-

cation is often impractical due to resource constraints but also privacy concerns. Fed-

erated learning addresses this problem by allowing clients to collaboratively learn a

global model, while keeping their raw data stored locally. Existing federated learn-

ing approaches face some limitations when applied to real-world systems. This thesis

aims to address some of these limitations, specifically to improve resource efficiency

and robustness of federated learning with heterogeneous and dynamic data.

In the first part of this thesis, we optimize resource efficiency and robustness of

federated learning under spatial data diversity. We propose an algorithm able to learn

systems characteristics in real-time and dynamically adapt the frequency of aggre-

gation to maximize the learning accuracy for a given resource budget. Furthermore,

most existing federated learning approaches focus on training a model using pre-

defined datasets at the client nodes. However, the spatial diversity of data collected

at each client can often affect model accuracy. To consider this data diversity but also

noisy data, we propose an approach to select only relevant data for a given machine

learning task.

In the second part of this thesis, we address temporal data heterogeneity, which

is caused by clients dropping out of the systems before completion of the learning

task due to energy or connectivity constraints at the clients. To this end, we propose

a continual learning approach that allows the global model to continuously learn on

data changing over time, without forgetting previously learned information. This

new continual learning approach is readily applicable to federated learning.
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Finally, aiming to address problems related to system heterogeneity, we propose

an approach to efficiently monitor and forecast resource utilisation in large-scale and

heterogeneous distributed systems.
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CHAPTER 1

Introduction

1.1 Overview

1.1.1 Motivation

To analyze large amounts of data and obtain useful information for the detection,

classification, and prediction of future events, machine learning techniques are often

applied. One key enabler of machine learning is the ability to learn (train) models

using a very large amount of data. Traditional machine learning algorithms require

this data to be centralized either on a single machine or within a datacenter. How-

ever, in practice, data is often generated at multiple locations (e.g., mobile devices,

Internet-of-Things (IoT) gateways or sensors). Transmitting all the data to a central

location would consume excessive communication bandwidth, storage and may also

violate user privacy regulations.

Federated learning addresses this problem by allowing clients1 (e.g., mobile de-

vices, IoT gateways or sensors, organization) to collaboratively learn a global model

while keeping their raw data stored locally [2]. By enabling analytic over multi-

ple data sources, federated learning opens the door to many promising applications:

from analytics in IoT and mobile devices, where data from billions of connected

devices is fused to build predictive systems, to collaboration between different orga-

nizations such as medical institutions that would like to combine their patient data to
1The terms clients, nodes, devices are used interchangeably in this thesis.
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improved diagnostic tools, cooperation among pharmaceutical companies for drug

discoveries, or even financial institutions that would like to collaborate to combat

frauds and money laundering.

An area related to federated learning is distributed machine learning in datacen-

ters through the use of worker machines and parameter servers [24]. The main differ-

ence between the datacenter environment and the federated learning environment is

that shared storage is usually used in datacenters. The worker machines do not keep

persistent data storage on their own, and they fetch the data from the shared storage

at the beginning of the learning process. As a result, the workers’ data samples are

usually independent and identically distributed (i.i.d.). In the section 1.1.3, we will

describe some of the challenges that make federated learning settings distinct from

other distribution optimization problem such as distributed learning in data center

settings.

1.1.2 Federated Averaging Algorithm (FedAvg)

In 2016, authors in [2] proposed the first federated learning algorithm, referred to

as the Federated Averaging Algorithm (FedAvg), which aims to fit a single global

machine learning model on data store at multiple remote clients under the constraint

that data has to remain stored and processed locally. Only intermediate model pa-

rameters can be sent to the central server. More specifically, each client performs

model training computations locally on its own dataset (i.e.,takes steps of gradient

descent on the current model using local data) and sends its local model parameter

to the central server. The central server, which is used to orchestrate the learning2,

aggregates the model parameters received from the different clients and send the

updated parameter back to the clients for the next round of iterations. The full train-
2The aggregator is a logical component that can run on the remote cloud, a network equipment, or

one of the edge nodes. Aggregator, server, central node are terms used interchangeably in this thesis
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ing process involves several rounds of exchanges between the clients and the central

server until the model is fully trained (See additional details in section 2.3.3).

1.1.3 Challenges

FedAvg applied in real-world systems faces some challenges. First, it requires ex-

pensive communication as the clients and the server need to frequently communicate

to exchange model parameters with often high dimensionality (i.e., state-of-the-art

deep neural network (DNN) model have millions of parameters), which makes the

process bandwidth consuming. Failing to communicate frequently can significantly

deteriorate the training as it might impact the convergence of the global models.

A second challenge comes from the data heterogeneity generated at different

clients (spatial data heterogeneity). In practice, the distribution of data across clients

is highly non-iid. For example, two clients may write the same letter, but with differ-

ent kinds of handwriting styles. Clients may also have different label distributions.

Some labels might be more present in some clients than others. Some clients may

share the same labels, but they correspond to different features at different clients, or

the opposite, they share the same features but are labeled in different ways in each

client. This spatial data heterogeneity may lead to some scenarios where local model

trained simply on local datasets outperforms the global model, which removes the

incentive to participate in the federated training.

Finally, system heterogeneity is another significant challenge. As participating

devices often have very different hardware (i.e., CPU, memory) and network con-

nectivity (i.e., 3G, 4G, 5G, Wi-Fi), the central server often receives updates from

clients at different times asynchronously. This device heterogeneity results in only

a subset of clients being active at the same time. Furthermore, as federated learning

relies on client status (e.g., idle, charging, or connected to an unmetered network),

it is very common for edge devices to drop out due to connectivity or energy con-
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straints. As devices drop out/join, data on which the global model is trained varies

over time. This introduces the notion of temporal data heterogeneity.

1.2 Research Objectives

This thesis aims to address some of these limitations, more specifically to improve

resource efficiency and robustness of federated learning under heterogeneous and

dynamic data (i.e., temporal data heterogeneity). In the first part of this thesis, we

propose some changes to the original federated learning algorithm (i.e., FedAvg) [2]

to make it more resource efficient and robust to spatial data diversity. In a second

part of this thesis, we address temporal data heterogeneity, which is caused by clients

dropping out the systems before completion of the learning task due to energy or

connectivity constraints. Finally, intending to address problems related to system

heterogeneity, we propose an approach to efficiently monitor and forecast resource

utilization in large scale and heterogeneous distributed systems. Note that the privacy

aspect of federated learning will remain out of the scope of this thesis.

In the following, we outline the main gaps between existing work and what we

would like to achieve in this thesis. Literature reviews on specific aspects are in-

cluded in each chapter later on.

1.2.1 Adaptive Federated Learning under Resources Constraints

In the FedAvg algorithm, the global aggregation frequency (i.e., number of local

steps between two aggregations) is set before training start and remains fixed during

training. This can result in a non-optimal usage of resources such as communica-

tion bandwidth, computation, power, available energy etc. Hence, we believe that

to use available resources efficiently, it is essential to adapt the global aggregation

frequency dynamically. To gain intuition on the relevance of this problem, one can
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consider the extreme case where all clients have identical data, then aggregation is

not necessary (i.e., local model will be identical to the global model). On the other

hand, if the data start changing and become very different across clients, one may

need to synchronize more frequently. Hence, our goal is to optimize the FedAvg

algorithm by proposing an control algorithm able to learn the system and data char-

acteristics in real time and dynamically adapt frequency of aggregation to maximize

the learning accuracy for a given set of resource constraints.

1.2.2 Federated Learning with Diverse Tasks and Data

The FedAvg mostly focuses on training a single model by using pre-defined datasets

at client devices. While such scenarios are meaningful, it can be far from other

important practical situations where each client can have a large variety of data which

may or may not be relevant to the given machine learning task. In addition, there can

be multiple learning tasks co-existing at the same time. For example, one task can be

to train a deep learning model for classifying different animals. Another task aims

to train a shallow model for classifying handwritten digits, while the third task is

to learn a linear regression model for sensor measurements, etc. To consider this,

a challenge is: How to support federated learning in such a realistic scenario with

diverse tasks and data? In this thesis, we will consider two aspects of this challenge.

The first is how a client selects relevant data in the federated learning process for a

given machine learning task. The second aspect is, with the co-existence of multiple

tasks, how to schedule these multiple federated learning tasks so that the model

training is the most efficient.

1.2.3 Continual Learning for Federated Learning Settings

In federated learning systems, local training requires clients/devices have adequate

bandwidth and energy (e.g., battery power). As a result, due to connectivity or en-



1.2. Research Objectives 6

ergy constraints, it is not uncommon for some active devices to drop out at some

point before the completion of the learning task. Clients leaving the collaboration

can have a major impact on the global model. If the data on the leaving clients is

very different from other clients, the knowledge from the missing clients will be for-

gotten over time due to catastrophic forgetting phenomenon (i.e., the global model

will be updated without taking into account parameters from the missing clients).

In other words, as devices drop out/join, data varies over time (i.e., non-stationary),

which causes the global model to forget previously acquired knowledge upon learn-

ing new information. Continual learning is a field of machine learning that addresses

the catastrophic forgetting problem. However, existing techniques are not suitable

for federated learning settings as they make assumptions impractical for federated

learning (e.g., storage of raw data at a central location). In this thesis, we aim to

develop a continual learning technique that can easily be applied to solve the catas-

trophic forgetting problem in federated learning settings.

1.2.4 Monitoring Large-Scale Federated Learning Systems

In practical federated learning, due to device heterogeneity, the server often receives

updates from clients asynchronously. Consequently, a client with few available re-

sources can significantly slow down the whole federated learning process. To miti-

gate this so-called straggler effect, it can be useful to select only a subset of devices

to participate in the training. To select the subset of devices (i.e., to minimize train-

ing latency), the central server need to assess if the clients will meet certain criteria

such as hardware characteristic and connectivity. Hence, the central server need to

monitor and predict the resource utilization and availability at each client. However,

there exist several challenges for the central node to collect and forecast resource

utilization at each client/machine in such large-scale distributed systems. First, it is

often bandwidth-consuming and unnecessary to transmit all the measurement data
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collected at local nodes to the central node. Second, predictive models for data

forecasting typically have high complexity, thus running a forecasting model for the

time-series measurement data collected at each local node would consume too much

computational resource. Third, measurements at each local node are collected in an

online manner, which form a time series; decisions related to data collection and

forecasting need to be made in an online manner as well. This thesis will address

the above challenges and propose a mechanism that efficiently collects and forecasts

the resource utilization at each client/device in a large-scale distributed system. Fed-

erated learning systems can further use the results provided by our mechanism for

system management.

1.3 Summary of Contributions

The main contributions of this thesis are summarized as follows:

• We propose a control algorithm for federated learning that learns the data dis-

tribution, system dynamics, and model characteristics, based on which it dy-

namically adapts the frequency of global aggregation in real-time to minimize

the learning loss under a fixed resource budget. We evaluate the performance

of the proposed control algorithm via extensive experiments using real datasets

both on a hardware prototype and in a simulated environment, which confirm

that our proposed approach to federated learning provides near-optimal perfor-

mance for different data distributions, various machine learning models, and

settings with different numbers of edge nodes (Chapter 2).

• We propose a novel method for identifying the relevant data at each client

for a given federated learning task. Our approach first trains a benchmark

model using the benchmark data provided by the model requester. By shar-

ing the benchmark model with clients, each client identifies a subset of data



1.3. Summary of Contributions 8

that will be involved in this specific task, where different subsets of data may

be involved in different tasks. Our proposed approach works in a distributed

manner without requiring clients to share their raw data. We evaluate the per-

formance of our proposed approach by extensive experiments. Using a variety

of real-world datasets with different types of noise, we show that our data se-

lection approach outperforms other baseline approaches even when the model

requester only provides a very small amount of benchmark data (Chapter 3).

• We formulate the problem of scheduling multiple federated learning tasks with

the goal of minimizing the completion time of every training round as a mixed-

integer linear program (MILP). We show that this problem is a variant of

the NP-hard flow-shop scheduling problem [3] and provide an approximate

solution by relaxing and rounding the binary variables. Using a combina-

tion of real-world measurements and simulations, we show that our proposed

scheduling mechanism is advantageous when compared to other methods as

well (Chapter 3).

• We introduce the first task-free continual learning approach that does not re-

quire storing training data, making it applicable to federated learning. Our

method, based on Bayesian Neural Networks (BNNs), is able to continually

learn on new data while minimally forgetting what has been learned previ-

ously. Our approach automatically detects shifts in data, which allows the

algorithm to work without assuming known task boundaries. Furthermore it

ensures that the global model remains within a maximum size so that we do not

exceed the storage capacity. We validate our approach on different continual

learning scenarios with real world datasets (Chapter 4).

• We present a novel mechanism that allows the central server to efficiently col-

lects and forecasts the resource utilization at each client/device in a large-scale
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federated learning system. Extensive experiments of our proposed mecha-

nism have been conducted using three real-world computing cluster datasets,

to show the effectiveness of our proposed approach (Chapter 5).

1.4 Organization of the Thesis

This thesis is organized as follows. Chapter 2 introduces the basic of federated

machine learning and propose an algorithm for adaptive federated learning under

resources constraints. Chapter 3 presents an approach for federated learning with

diverse tasks and data. In Chapter 4, an approach for continual learning applica-

ble to federated learning setting, is introduced. Chapter 5 presents an approach to

efficiently monitoring and forecasting resource utilization in large-scale distributed

systems. Finally, Chapter 6 draws conclusions and discusses future directions of this

work. Each chapter contains a summary of the main notation.



CHAPTER 2

Adaptive Federated Learning under

Resources Constraints

2.1 Introduction

In a distributed edge environment, training a learning model based on data spread

across nodes can be challenging. A federated learning system requires a significant

amount of resources to process distributed data and exchange updates to keep the

global model sufficiently consistent with all the local datasets. Typically, the feder-

ated learning process includes local update steps where each edge node/client1 per-

forms gradient descent to adjust the model parameter to minimize the loss function

defined on its own dataset. It also includes global aggregation steps where model

parameters obtained at different edge nodes are sent to an aggregator which averages

these parameters and sends the updated parameter back to the edge nodes for the next

iteration. Each local update consumes computation resource at the edge node, and

each global aggregation consumes communication resources. In the original fed-

erated learning algorithm [2], the global aggregation frequency (i.e., the number of

local updates between two aggregations) is set before training start and remains fixed

during training. This can result in a non-optimal use of resources, including possi-

ble waste of a significant amount of resources. In edge computing environments,

where computation and communication resources are scarce, it is necessary to limit
1Node, client, devices are used interchangeably
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Figure 2.1: System architecture.

the amount of resources used for learning the model.

We proposed here a control algorithm for distributed learning derived from the-

oretical analysis, which learns the system and data characteristics in real-time and

dynamically determines the global aggregation frequency to maximize the learning

accuracy for a given resource budget. We focus on the gradient-descent based learn-

ing algorithms, which are widely applied in many machine learning tasks, including

the training of popular deep neural networks [4]. We consider a typical edge com-

puting environment where edge nodes are interconnected with the remote cloud via

network elements (such as gateways and routers), as illustrated in Fig. 2.1.

The rest of this chapter is organized as follows. In the next section, we review

the related work. In Section 2.3 we summarize the basics of distributed machine

learning. Section 2.4 formulates the problem of federated learning with resource-

constrains and proposes a control algorithm to optimize the FedAvg. Experimenta-

tion results are shown in Section 2.5 and the conclusion is presented in Section 2.6.

A summary of notations used in this chapter is presented in Table 2.2.

2.2 Related Work

Distributed machine learning based on gradient descent has been studied from a the-

oretical angle in [5, 6, 7], where asymptotic bounds on the training convergence and

communication cost are obtained. The result was then extended to general classes
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of distributed learning approaches in [8]. To some extent, these results character-

ize the communication and computation trade-off. However, none of them consider

the adaptation of the number of local updates between two global aggregations to

achieve a balanced trade-off while considering the learning convergence. Some of

the analysis also have unrealistic assumptions such as i.i.d. data distribution at dif-

ferent nodes [5, 6], whereas the more general case involving non-i.i.d. data distri-

butions is much harder to analyze. From the practical perspective, [2] proposes a

variant of distributed gradient descent where the global aggregation is performed in

a synchronous manner. Experiments using various datasets confirmed the effective-

ness of this approach. The number of local updates before each global aggregation

is fixed in [2]. It does not provide any theoretical guarantees and the experiments

were not conducted in a network setting.

In contrast to the above research, our work addresses the problem of dynamically

deciding whether to perform local update or global aggregation based on real-time

observations during the distributed learning process. This is a non-trivial problem

due to our non-i.i.d. assumption and the complex dependency between each learning

step and its previous learning steps, both of which are hard to capture analytically.

It is also challenging due to different data distributions at different nodes and the

real-time dynamics of the system.

Our main contributions in this chapter are as follows:

1. Based on the theoretical results reported in [9], we propose a control algorithm

that learns the data distribution, system dynamics, and model characteristics,

based on which it dynamically adapts the frequency of global aggregation in

real time to minimize the learning loss under fixed resource budget.

2. We evaluate the performance of the proposed control algorithm via exten-

sive experiments using real world datasets both on a hardware prototype and

in a simulated environment, which confirm that our proposed approach pro-
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Table 2.1: Loss functions for popular machine learning models

Model Loss function f(w,xj , yj) (, fj(w))

Smooth SVM �
2 kwk

2 + 1
2 max

�
0; 1� yjwTxj

 2 (� is const.)

Linear regression 1
2kyj �wTxjk2

K-means 1
2 minl kxj �w(l)k2 where w , [wT

(1),w
T
(2), ...]

T

Convolutional neural
network

Cross-entropy on cascaded linear and non-linear transforms, see [4]

vides near-optimal performance for different data distributions, various ma-

chine learning models, and settings with different numbers of edge nodes.

2.3 Distributed Learning Overview

2.3.1 Background : Loss function

In machine learning, a training data sample j usually consists of two parts. One is

a vector xj representing the input of the machine learning model, and the other is a

scalar yj representing the target output of the model. To facilitate the learning, each

model has a loss function defined on its parameter vector w for each data sample

j. The loss function captures the error of the model on the training data, and the

model learning aims to minimise the loss function on a collection of training data

samples. For each data sample j, we define the loss function as f(w,xj, yj), which

we abbreviate as fj(w) in short. Thus, a machine learning process can be seen as an

optimization problem where the goal is to minimise the loss function. Examples of

loss functions of popular machine learning models are summarised in Table 2.1.

2.3.2 Distributed Loss function

Assume that we have N edge nodes with local datasets D1,D2, ...,Di, ...,DN . For

each dataset Di at node i, the loss function on the collection of data samples at this
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node is

Fi(w) , 1

|Di|
X

j2Di

fj(w) (2.1)

where fj(w) is the individual loss for a data sample j as defined above. We define

Di , |Di|, where | · | denotes the size of the set, and D , P
N

i=1 Di. Assuming

Di \ Di0 = ; for i 6= i0, we define the global loss function on all the distributed

datasets as

F (w) ,
P

j2[iDi
fj(w)

|[iDi|
=

P
N

i=1 DiFi(w)

D
(2.2)

which is equal to the weighted average of the local losses at each edge node i given

in (2.1).

The learning problem is to find

w⇤ = argminF (w), (2.3)

The goal is to solve the learning problem without sending the data to a central place.

2.3.3 Distributed Gradient Descent

A typical way of solving (2.3) is to use the federated averaging algorithm (FedAvg)

[2] described as follows.

To start, the synchronization node 2 sends the model parameter w(t) to all clients

(step (1) in Figure 2.2). Each client i sets its local parameter wi(t) to be w(t) and

sets the iteration index t = 0 at initialization. After that, each node i performs ⌧

steps of gradient descent on the loss function defined on the local dataset Di, and

updates the local model weight wi as

wi(t) = wi(t� 1)� ⌘rFi(wi(t� 1)). (2.4)

2The terms synchronization node, aggregator and server are used interchangeably.
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Figure 2.2: Federated Averaging (FedAvg) Algorithm

as shown in steps (2) and (3) of Figure 2.2. The resulting local parameter wi(t) from

each client is sent to the synchronization node (step (4) Figure 2.2) which compute

the weighted average/aggregate of all local parameters:

w(t) =

P
N

n=1 |Di|wi(t)

|D| (2.5)

where |D| =
P

N

n=1 |Di| (step (5) in Figure 2.2). Finally, the value of w(t) is sent

back to each node so that the local weights {wi(t) : 8n} are updated. The new value

of wi(t) is then used for the next round of local updates. This process is repeated until

a stopping condition is reached. This stopping condition can either be a maximum

number of round, a resource budget or when the decrease of the global loss function

is smaller than a predefined threshold. If we assume that the training process ends

after K synchronizations, then T = K⌧ local iterations have been performed in

total, and the final model w(T ) is obtained after the last synchronization.

It can be shown that when ⌧ = 1, i.e., when synchronization is performed after

every local iteration, distributed gradient descent provides the same mathematical

progression as centralized gradient descent [10]. When ⌧ > 1, i.e., when there are
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multiple local iterations between synchronization, distributed and centralized gradi-

ent descents are in general not equivalent. This is because starting from the second

step of local iteration after synchronization, the local gradients at different nodes are

computed at different model weights (obtained from the first step of local iteration),

thus the average of these gradients may not match with any gradient of the global

loss function.

2.4 Federated Learning with Resource Constraints

2.4.1 Problem Formulation

A federated learning system requires a significant amount of resources to run over

distributed data and exchange updates, to keep the global model sufficiently con-

sistent with all the local datasets. In the FedAvg [2] described in Section 2.3.3,

⌧ is set before training start and remain fixed during training. This can result in a

non-optimal usage of resources, which may cause significant waste. In edge comput-

ing environments, where computation and communication resources are scarce, it is

necessary to limit the amount of resources used for learning the model. Therefore, a

natural question in federated learning is how to make efficient use of a given amount

of resources for minimizing the loss function of model training. For the FedAvg

[2] learning approach presented above, the question narrows down to determining

the optimal value of T and ⌧ , so that the global loss function F (w) is minimized

without exceeding the resource budget. A possible way to reduce the consumption

of resources is to control the number of local iterations in each round (i.e., the value

of ⌧ ) in order to find the best trade-off between communication and computation

resources.

Assuming that each step of local update at all participating nodes consumes c

units of resource, and each step of global aggregation consumes b units of resource,
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where c � 0 and b � 0 are both real numbers. For given T and ⌧ , the total amount

of consumed resource is then T
�
c+ b

⌧

�
. Let R denote the total resource budget. It

is then possible to formulate a resource-constrained federated learning problem as

follows:

min
⌧,T

F (w(T )) (2.6)

s.t. T

✓
c+

b

⌧

◆
 R,

Note that we do not distinguish among different types of resource in the formulation.

The resource can be time, energy, monetary cost or a combination of them.

To solve (2.6), we need to find out how the values of ⌧ and T affect the loss

function (after T iterations), F (w(T )). It is generally impossible to find an ex-

act analytical expression to relate ⌧ and T with F (w(T )), because it depends on

the convergence property of gradient descent (for which only upper/lower bounds

are known [11]) and the impact of the global aggregation frequency. Further, the

resource consumptions c and b can be time-varying in practice, which makes the

problem even more challenging than (2.6) alone.

2.4.2 Approximate Solution to (2.6)

Before proposing our approximate solution to (2.6)), we introduce some definitions

and assumptions that are required for deriving the following results.

Assumption 1. The following is assume for all i:

1. Fi(w) is convex,

2. Fi(w) is ⇢-Lipschitz, i.e., kFi(w)� Fi(w0)k  ⇢kw �w0k for any w,w0,

3. Fi(w) is �-smooth, i.e., krFi(w)�rFi(w0)k  � kw �w0k for any w,w0.

The above assumption is satisfied for smooth-SVM and linear regression (see Ta-

ble 2.1). Even if convexity assumption is required to derive theoretical results, we
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will see that in practice this assumption can be relaxed if the loss function is locally

convex.

Lemma 1. F (w) is convex, ⇢-Lipschitz, and �-smooth.

Proof. This is straightforward from Assumption 1, the definition of F (w) in (2.2),

and triangle inequality.

Definition 1. (Gradient Divergence) For any i and w, we define �i as an upper

bound of krFi(w)�rF (w)k, i.e.,

krFi(w)�rF (w)k  �i (2.7)

We also define � ,
P

i Di�i

D
.

This metric captures the divergence between the gradient of a local loss function and

the gradient of the global loss function. This divergence is related to how the data is

distributed at different nodes.

Based on this assumption and definition, it has been shown in [9], that an ap-

proximation to solve (2.6) can be found by solving:

⌧ ⇤ = argmax
⌧

G(⌧) , argmax
⌧

⌧

⌧ + a

✓
⌘

✓
1� �⌘

2

◆
� 'h(⌧)

⌧

◆
(2.8)

where

h(⌧) , �

�
((⌘� + 1)⌧ � 1)� ⌘�⌧ (2.9)

where a , b

c
is the relative resource consumption of global aggregation normalized

by that of local update, ⌘ is the gradient-descent step size, which is pre-specified

and known, and ' defines the control parameter that is manually chosen and remains

fixed for the same machine learning model. Once ⌧ ⇤ is found, we can easily obtain

T ⇤ = R⌧
⇤

c⌧⇤+b
. Furthermore, G(⌧) has a unique maximum [9].
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The first-order derivative of G(⌧) is in transcendental form and hence there is

no closed-form expression for ⌧ ⇤. Because ⌧ takes integer values, we can solve

for ⌧ ⇤ using a binary search procedure similar to that in [12] with a complexity of

O(log ⌧max), where ⌧max is the maximum value of ⌧ in the search, which will be

discussed further in the next subsection.

2.4.3 Dynamic Control algorithm

In practice, computation of ⌧ ⇤ has to be integrated into the FedAvg algorithm. How-

ever, the expression of G(⌧) (which includes h(⌧)) has unknown parameters. Among

these parameters, c and b (and thus a) are related to the system conditions and � and

� are related to the loss function.

The values of c and b are estimated based on measurements of resource con-

sumptions at edge nodes and the aggregator. The estimation method depends on the

specific type of resource. For example, when the resource is energy, the sum energy

consumption (per local update) at all nodes is considered as c; whereas when the

resource is time, the maximum computation time (per local update) at all nodes is

considered as c. The parameters � and � are estimated by combining local estima-

tions :

�̂  
P

N

i=1 Di�̂i

D
(2.10)

where �̂i  krFi(wi(t))�rFi(w(t))k / kwi(t)�w(t)k , and

�̂  
P

N

i=1 Di�̂i
D

(2.11)

where �̂i  krFi(w(t0)) � rF (w(t0))k. Note that �̂i and rFi(w(t0)) are esti-

mated at each node i.

In the following, we describe the exchange protocol which enables the federated

learning process to adapt ⌧ to system conditions and different data distributions. The
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protocol enables the nodes and the aggregator to coordinate for adjusting the fre-

quency of aggregating local model weights, or equivalently, finding the optimal num-

ber of local updates (denoted by ⌧ ) between two global aggregations. The value of

⌧ is recomputed during each global aggregation step, based on the most updated pa-

rameter estimations. The aggregator monitors the total resource consumption based

on these estimates and compares the total resource consumption against the resource

budget R. If the consumed resource reaches the budget limit, it stops the learning

and returns the final result. The different steps for finding optimal ⌧ are illustrated

in Figure 2.3 and described as follows:

• The aggregator starts the learning process by sending an initial message to

each node. The initial message contains the initial weight w(0) and additional

information such as the step size and the batch size (Step 1 & Step 1’).

• Each node i set its local parameters to w(0) and performs ⌧ initial local up-

dates (Step 2). The local weight obtained after ⌧ iterations is sent back to the

aggregator (Step2’). Note that, at this stage, the node is not able to perform

parameter estimations (i.e., �̂i and rFi(w(t0))) which require to have access

to both local model parameters and global model parameter for the same iter-

ation. The global parameter is only available after the first global aggregation.

Hence, estimated parameters are only available starting from the following

message received from the aggregator.

• After receiving local weights wi(t) from each node, the server can aggregate

these local weights to obtain the global weight w(t) (Step 3), which is then

sent back to each node, together with a predefined value of ⌧ as the aggregator

is still not able to estimate optimal ⌧ (Step 3’).

• Each node i set its local parameters wi(t) = w(t) and perform ⌧ local up-

dates. The node estimates the resource consumption for one local update ĉi.
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Also, this time each node is able to estimate �̂i, rFi(w(t0) where t0 is the

iteration index of the last aggregation (Step 4). Then the node sends back

a message with the updated local parameter wi(t), the estimated parameters

(i.e., �̂i, rFi(w(t0)) and Di (i.e., number of data points at node i) (Step 4’).

• The aggregator can once again compute the global weight by aggregating the

local weights. Furthermore, the agggregator can now estimate �̂ and �̂ ac-

cording to Equations (2.10) and (2.11) and consequently compute the opti-

mal value of ⌧ according to equation (2.8) via binary search on integer values

within [1, ⌧max], where we set ⌧max  �⌧ (Step 5) 3. The aggregator can then

send an updated global w(t) to all node with estimated ⌧ (Step 5’).

• Steps 4, 4’, 5 and 5’ are repated in loop until s+ ĉ⌧ + b̂ � R

• When s+ ĉ⌧ + b̂ � R, the aggregator sends a last message to the nodes, with

a ⌧ that is within the ressource budget (Step 6).

• Each node performs the last round of local updates (Step 7) and sends its local

weights to the server for the last time (Step 7’).

• The aggregator does the last aggregation and output the final w(T ) (Step 8).

Note that in the exchange protocol described above, we do not explicitly talk about

the local and global loss function (Equations (2.1) and (2.2)) because their values

are not required to estimate the optimal ⌧ (i.e., only the local and global gradients

are needed). However in order to track the value of the global loss function, it is

implicitly assumed that each node will send its loss function value (i.e., Fi(w))) to

the aggregator after performing the round of updates. The aggregator averages these

local loss functions to global loss function value (i.e., F (w)).
3We search for new values of ⌧ up to � times the current value of ⌧ , and find the value that

maximizes G(⌧), where � > 0 is a fixed value. The presence of � limits the search space and also
avoids ⌧ from growing too quickly as initial parameter estimates may be inaccurate
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Figure 2.3: Protocol for finding optimal ⌧

2.5 Experimentation Results

To evaluate the performance of our proposed control algorithm, we conduct a large

number of experiments, both on a networked prototype system with 5 nodes and in

a simulated environment with the number of nodes varying from 5 to 500.
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The prototype system consists of three Raspberry Pi (version 3) devices and two

laptop computers, which are all interconnected via Wi-Fi in an office building (see

Figure 2.4). This represents an edge computing environment where the computa-

tional capabilities of edge nodes are heterogeneous. All these 5 nodes have local

datasets (described below) on which model training is conducted. The aggregator is

located on one of the laptop computers, and hence co-located with one of the local

datasets.

Figure 2.4: Prototype System

We consider time as the resource in our experiments. For the prototype system,

we train each model for a fixed amount of time budget. The values of c and b corre-

spond to the actual time used for each local update and global aggregation, respec-

tively. The simulation environment performs model training with simulated resource

consumptions, which are set to be equal to the average values of the measurements

from the prototype.

We evaluate the training of four different models on three different datasets. The

models include smooth support vector machine (SVM), linear regression, K-means,

and deep convolutional neural networks (CNN)4. See Table 2.1 for a summary of

the loss functions of these models, and see [13, 4] for more details. Among these

models, the loss functions for smooth-SVM (which we refer to as SVM in short in
4The CNN has 7 layers with the following structure: 5⇥ 5⇥ 32 Convolutional! 2⇥ 2 MaxPool

! 5 ⇥ 5 ⇥ 32 Convolutional! 2 ⇥ 2 MaxPool! 1568 ⇥ 256 Fully connected! 256 ⇥ 10 Fully
connected! Softmax.
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the following) and linear regression satisfy Assumption 1, whereas the loss functions

for K-means and CNN are not convex and thus do not satisfy Assumption 1.

When the amount of training data is large, it is usually computationally pro-

hibitive to compute the gradient of the loss function defined on the entire (local)

dataset. In such cases, stochastic gradient descent (SGD) is often used [13], which

uses the gradient computed on the loss function defined on a randomly sampled sub-

set of data to approximate the real gradient. We consider both DGD and SGD in the

experiments to evaluate the general applicability of the proposed algorithm.

SVM and CNN are trained on the MNIST dataset [14], which contains 70, 000

handwritten digits (60, 000 for training and 10, 000 for testing). For SVM, we use

even and odd digits as a binary label, and we use multi-class labels of 10 different

digits for CNN. The SVM training via DGD only uses 1, 000 training and 1, 000

testing data samples out of the entire dataset, because DGD cannot process a large

amount of data. The SGD variant of SVM and CNN uses the entire MNIST dataset.

Linear regression is performed on Facebook metrics dataset [15], which has 500

samples with multiple attributes related to posts published on a cosmetics brand.

The model finds a linear relationship between the total interaction number and all

other attributes. K-means is performed on the user knowledge modeling dataset

[16], which has 403 samples each with 5 attributes summarizing the user interaction

with a web environment. The samples can be grouped into 4 clusters representing

different knowledge levels, but we assume that we do not have prior knowledge of

such grouping.

We consider four different ways of distributing the data into different nodes.

In Case 1, each data sample is randomly assigned to a node, thus each node has

unbiased (but not full) information. In Case 2, all the data samples in each node have

the same label5. This represents the case where each node has biased information,
5When there are more labels than nodes, each node may have data with more than one label, but

the number of labels at each node is no more than the total number of labels divided by the total
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because the entire dataset has samples with multiple different labels. In Case 3, each

node has the entire dataset (thus full information). In Case 4, data samples with the

first half of the labels are distributed as in Case 1; the other samples are distributed

as in Case 2. This represents a combined biased and unbiased case.

In all our experiments, we set the search range parameter � = 10. Unless other-

wise specified, we set the control parameter ' = 0.2 for SVM, linear regression, and

K-means, and we set ' = 10�4 for CNN. The gradient descent step size is ⌘ = 0.01

for SVM, linear regression, and CNN, and ⌘ = 0.1 for K-means.

In our first set of experiments, the SVM, linear regression, and K-means models

were trained on the prototype system, where the resource (time) budget for each

model training instance is fixed to 15 seconds. Due to the resource limitation of

Raspberry Pi devices, the CNN model was trained in a simulated environment of 5

nodes, with a total budget equivalent to 200 local updates, and a global aggregation

consuming a = 5.0 times the resource for one local update. The value a = 5.0 was

obtained from the time measurements of SVM (SGD) with distributed training on

MNIST data.

We compare the loss function values of our proposed algorithm (with adaptive

⌧ ) to baseline approaches that include centralized training and distributed training

with fixed ⌧ . We also compare the classification accuracies for the SVM and CNN

classifiers. The centralized baseline is obtained in a simulated environment by run-

ning only local updates on a single node subject to the total resource budget, where

the local update resource consumption is estimated based on measurements on the

prototype system. The distributed baselines run on the prototype system (except for

CNN as discussed earlier) under the same setup but with different fixed values of ⌧

(i.e., no adaptation). This is the same as the state-of-the-art approach in [2]. When

fixing ⌧ = 1, it is also equivalent to the synchronous SGD approach in [17].

number of nodes rounded to the next integer.
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The average results of 30 different experiments (15 for CNN) are shown in

Fig. 2.5. We note that the proposed approach only has one data point (represented

by a single marker in the figure) in each case because the value of ⌧ is adaptive and

the average ⌧ is shown in the plot. The centralized case also only has one data point

but we show a flat line across different values of ⌧ for the ease of comparison.

We see that the proposed approach performs close to the optimal point in differ-

ent cases and different models, whereas the optimal value of ⌧ varies from case to

case and from model to model so a fixed value of ⌧ does not work well for all cases.

Overall, we also note that for the more heterogeneous cases (i.e., Case 2 and Case

4) the optimal value of ⌧ is smaller than for cases where data distribution is more

homogeneous (i.e., Case 1 and Case 3). Meaning that the more diverse is the data

at different nodes, the more frequently one need to aggregate to insure convergence.

We also see that the distributed approach can perform better than the centralized

approach for properly chosen values of ⌧ , because for a given amount of time bud-

get, distributed learning is able to make use of the computation resource at multiple

nodes, hence improving the training performance. For DGD approaches, Case 3

does not perform as well as Case 1, because the amount of data at each node in Case

3 is larger than that in Case 1, and DGD processes the entire amount of data so Case

3 requires more time for each local update.

Note that even if CNNs do not verify Assumption 1 as the loss function of CNNs

isn’t convex, experimental results (Fig. 2.5g and 2.5h) show good performance of

our approach. This is due to the local convexity of CNNs. Hence Assumption 1 is

required in order to theoretically derived Equation (2.8) but can be relaxed in practice

if the loss function is locally convex.

Results of SVM (SGD) for the number of nodes varying from 5 to 500 are shown

in Fig. 2.6, which are obtained in the simulated environment with a = 5.0 and the

total budget equal to 868 local updates (both parameters are obtained from mea-
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Figure 2.5: Loss function values and classification accuracy with different ⌧ . Only
SVM and CNN classifiers have accuracy values. The curves show the results from
the baseline with different fixed values of ⌧ . Our proposed solution (represented by
a single marker for each case) yields an average ⌧ and loss/accuracy that is close to
the optimum in all cases.
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Figure 2.6: Loss function values and classification accuracy with different numbers
of nodes for SVM (SGD), where the solid lines with “4” markers correspond to
fixed ⌧ = 10, and the dashed lines with “�” markers correspond to the proposed
approach with adaptive ⌧ .

surements on the prototype system). Our proposed approach outperforms the fixed

⌧ = 10 baseline in all cases. Furthermore, we observe that our approach scales well

to a larger number of nodes for most of the cases. For Case 2, we observe a drop in

accuracy when the number of nodes is larger than 10 for both the proposed approach

and the fixed ⌧ = 10 baseline . This is due to the way data is distributed; when the

number of nodes is larger than 10, each node observes only a single label.

We further study the instantaneous behavior of our system. Results for SVM

(DGD) is shown in Fig. 2.7 for a single run of 30 seconds (for each case) on the

prototype system. We see that except for Case 3 of SVM (DGD), the value of ⌧ ⇤

converges after a certain amount of time, showing that the control algorithm is stable.

The value of ⌧ ⇤ keeps increasing in Case 3 of SVM (DGD) because all nodes have

exactly the same data in this case and DGD uses all the data samples (i.e., no random

sampling). There is no gradient deviation in this case and the optimal value of ⌧ is

infinity. As expected, the gradient deviation � is larger for Cases 2 and 4 because the
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Figure 2.7: Instantaneous results of SVM (DGD) with the proposed algorithm.

data samples at different nodes are biased. The same is observed for �, indicating

that the model parameter w is at a less smooth region for Cases 2 and 4. Case 3 of

SVM (DGD) has a much larger value of c because it processes more data than in

other cases, as explained before. The value of b exhibits fluctuations because of the

randomness of the wireless channel. Further results of SVM (SGD) are shown in

2.8.

The sensitivity of the control parameter ' is shown in Fig. 2.9, where the exper-

imentation settings are the same as for Fig. 2.5. We see that the relationship among

⌧ ⇤ in different cases is mostly maintained with different values of '. The value of

⌧ ⇤ decreases approximately linearly with log', which is consistent with the fact that

there is an exponential term in h(⌧) (and thus G(⌧)). For Case 3 of SVM (DGD), ⌧ ⇤

remains the same with different ', because � = 0 (thus h(⌧) = 0) in this case and
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Figure 2.8: Instantaneous results of SVM (SGD) with the proposed algorithm.

the value of ' does not affect G(⌧) (see (2.8)). We also see that small changes of

' does not change ⌧ ⇤ much, indicating that one can take big steps when tuning ' in

practice and the tuning is not difficult.
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Figure 2.9: Impact of ' on the average value of ⌧ ⇤.
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2.6 Conclusion

In this chapter, we have focused on optimizing the original FedAvg algorithm under

resource constraints. Using theoretical results derived in [9], a control algorithm has

been proposed to achieve the desirable trade-off between local update and global ag-

gregation in order to minimize the loss function under a resource budget constraint.

Extensive experimentation results confirm the effectiveness of our proposed algo-

rithm.

Table 2.2: Summary of main notation for Chapter 2

Notation Meaning
N number of nodes/clients
(xj , yj) data sample j
fj(w) individual loss function of data sample j
Fi(w)/F (w) local loss function corresponding to node i/global loss

function
Di/D local dataset at node i/ union of all local datasets
wi/w local model parameter at node i/ global model parameter
rFi(w) /rF (w) local gradient at node i/global gradient
�i/ � Local/ Global Gradient divergence
⌧ number of local updates between two aggregations
T number of total iterations
R total amount of resources
⌘ step size
⇢ parameter related to the Lipschitzeness of the loss func-

tion
� parameter related to the smoothness of the loss function
c unit of resource for a local update
b unit of resource for a global aggregation
a , b

c relative resource consumption of global aggregation
' Control parameter



CHAPTER 3

Efficient Federated Learning with

Diverse Tasks and Data

3.1 Introduction

Federated learning approaches (including the ones discussed in Chapter 2) mostly

focus on training a single model using pre-defined datasets at client devices. While

such scenarios are meaningful, it can be far from being practical where each client

can have a large variety of data, which may or may not be relevant to the given ma-

chine learning task. For example, if the task is to classify handwritten digits, printed

digits can be considered as irrelevant data although they may be tagged with the same

set of labels (thus difficult for the system to distinguish). Including irrelevant data in

the federated learning process can reduce model accuracy and slow down training.

In addition, there can be multiple learning tasks co-existing at the same time. For

example, one task can be to train a deep learning model for classifying different ani-

mals, another task can be to train a shallow model for classifying handwritten digits,

and the third task can be to learn a linear regression model for sensor measurements,

etc. Considering this, a challenge is: how to support federated learning in such a

realistic scenario with diverse tasks and data?

In this chapter, we consider two aspects of this challenge. The first is how does

a client select relevant data for a given federated learning task ? The second aspect

is, considering the co-existence of multiple tasks, how to schedule these multiple



3.1. Introduction 33

federated learning tasks so that model training is the most efficient ?

We consider a federated learning system with a a model requester (MR), multiple

clients and a server. A federated learning task is defined by the MR through the

server. The model requester can be any user of the federated learning service and

does not need to be a client involved in federated learning. The requester provides

the model logic (such as a specific deep neural network architecture). The server

can accept and handle multiple requests/tasks at the same time. For each request,

the server first coordinates with every client to find a relevant subset of data that is

available at the client, then the federated learning process starts. When there are

multiple tasks, these tasks are scheduled in an appropriate manner.

Our main contributions in this chapter are as follows.

1. We propose a novel method for identifying relevant data at each client for

a given federated learning task. In our proposed approach, the MR has a

small set of benchmark data that is used as an example to capture a reasonably

good input-output relationship of the trained model, but insufficient to train the

model itself. The benchmark data does not need to be shared with the server or

other clients directly, only a benchmark model trained on the benchmark data

needs to be shared, thus preserving privacy. Using the benchmark model pro-

vided by the MR, each client identifies a subset of its data that will be involved

in this federated learning task. Then, federated learning proceeds, where each

client’s local computation is only performed on its selected data. In this way,

our approach works in a distributed manner without requiring clients or MR

to share raw data.

2. We formulate the problem of scheduling multiple federated learning tasks with

the goal of minimizing the completion time of every training round as a mixed-

integer linear program (MILP). We show that this problem is a variant of the

NP-hard flow-shop scheduling problem [3] and provide an approximate solu-
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tion by relaxing and rounding the binary variables.

3. We evaluate the performance of our proposed approaches with extensive ex-

periments. We use a variety of real-world datasets with different types of

noise to show that our data selection approach outperforms other baseline ap-

proaches even when the model requester only provides a very small amount of

benchmark data. By using a combination of real-world measurements and sim-

ulations, we show that our proposed scheduling mechanism is advantageous

when compared to other methods.

The remainder of this chapter is organized as follows. Section 3.2 presents the re-

lated work. Section 3.3 describes the system model and definitions for federated

learning. The data selection process and the scheduling algorithm are described in

Sections 3.4 and 3.5, respectively. Section 3.6 presents the experimentation results

and Section 3.7 draws conclusion. The summary of notations used in this chapter

are in Table 3.5.

3.2 Related Work

Approaches for optimizing federated learning for resource efficiency are proposed

in [18, 19, 20], which only focus on a single federated learning task. Recent work [21,

22] considers federated multi-task learning, which automatically determines whether

different clients train the same or different (but related) models during the model

training process. However, the tasks in [21, 22] are partitioned at the client level,

i.e., each client can participate in at most one task, while different clients can partici-

pate in either the same or different tasks. Other work studies the case with malicious

clients [23, 24, 25] and servers [26], where both defense and attacking mechanisms

are considered. All the above work focuses on a unified behavior of a client or

the server in its entirety (i.e., each client only participates in one federated learning
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task, and the entire client/server is either malicious or not). It does not allow the

more realistic settings where different subsets of data at each client can have differ-

ent properties and participate in different learning tasks, which we consider in this

chapter.

The case with both relevant and irrelevant data in the training dataset has been

considered for centralized machine learning in recent years, where irrelevant data

can be regarded as noise for a given machine learning task. Note that, however,

noise for one learning task may be useful data for another learning task. In [27],

two categories of noise are identified. Considering a supervised learning task with

a fixed number of (known) classes/labels, closed-set noise refers to the case where

a data sample in the set of known classes is labeled as another class within the set

of known classes, whereas open-set noise is the case where a data sample outside

the set of known classes is labeled as a class within the set of known classes1. In

addition, strong noise refers to the scenario where the number of noisy data samples

is arbitrary and can exceed the number of clean data samples, whereas weak noise

refers to the case where the amount of noisy data samples is limited by a maximum

number that is less than the number of clean data samples.

Among these different types of noise, approaches for training models in the weak

closed-set noise setting has been most extensively studied [28, 29, 30, 31, 32], and

the strong closed-set noise setting has been studied in [33, 34, 35, 36]. Very re-

cently, the weak open-set noise setting is studied in [27, 37, 38]. We note that all the

approaches that address the strong noise scenario require a small set of clean bench-

mark data [33, 34, 35, 36], as we do in our work. In addition, existing approaches for

the open-set setting [27, 37, 38] involve very complex models that need to be trained

on the entire dataset even though they only apply to the weak noise scenario, which
1For example, consider a multi-class classifier for classifying images of cats of dogs, an image of

a dog labeled as a cat is a closed-set noise, an image of an elephant labeled as a dog is an open-set
noise, because elephant does not belong to the set of known classes (cats and dogs).
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makes the approaches infeasible for distributed datasets in federated learning.

In summary, there is a significant gap between the above existing work and the

problem we solve in this chapter. To the best of our knowledge, none of the fol-

lowing aspects has been studied in the literature: 1) strong open-set noise, 2) data

cleansing/filtering in federated learning with decentralized datasets, 3)the optimal

scheduling of multiple federated learning tasks running simultaneously on clients.

In federated learning, strong open-set noise can frequently exist in scenarios where

only a small portion of the data at the client is relevant to the given task. In this

chapter, we propose a novel method of filtering the data in a distributed manner for

federated learning with strong open-set noise. In addition, we propose an algorithm

for scheduling multiple tasks running simultaneously on federated learning clients.

3.3 System Model and Definitions

We consider a federated learning system with multiple clients and a server. Each

client has its own local dataset with diverse types of data. As described in Sec-

tion 3.1, a learning task is initiated by a model requester sending a request to the

server. The model requester specifies what model needs to be trained, and also pro-

vides a small benchmark dataset that can be generated by the requester based on

his/her own understanding of the learning task or via other means, but are deemed to

have correct labels for all data in it. However, the amount of benchmark data is usu-

ally very small compared to the collection of local data at all clients and is therefore

insufficient for training a highly accurate model, which is why the model requester

need to make use of the federated learning collaboration.

Clients may have different amounts of relevant and irrelevant data with respect

to a specific learning task. After receiving the model (training) request, the server

initiates a distributed data selection process based on the benchmark data provided
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by the requester, which is described in details in Section 3.4. The selected relevant

subset of data is then used in the federated learning process of this task. Multiple

tasks can run at the same time, and a method for scheduling these different tasks is

given in Section 3.5.

In this work, we assume that the clients are trusted and cooperative. They vol-

untarily participate in refining the dataset for each task. The noise in the data (with

respect to the task) can be due to the following reasons: 1) irrelevance of the data

to the task, 2) unintentional data mislabeling by the client, 3) lack of proper repre-

sentation of data labels in the system (e.g., a label “0” can represent different things

depending on the context), and 4) data stored at the client is provided by an adver-

sarial third-party that intentionally provides noisy data.

We consider a set of data D (potentially including noisy data samples) distributed

over N clients such that D =
S

N

n=1 Dn, where Dn is the dataset located at client n.

We focus on supervised learning with labeled training data in this work. The loss

function of a labeled data sample (xi, yi) 2 D is defined as l(f(xi, ✓), yi), where xi

is the input to the model, yi is the desired output (label) of the model, f(xi, ✓) = ŷi is

the predicted output of the model, and ✓ is the model parameter vector. The function

f(xi, ✓) captures the model logic and can be different for different models. The loss

function l(f(xi, ✓), yi) is an error function in the form of mean squared error, cross

entropy, etc.

For a federated learning task, let F ✓ D denote the set of samples that is selected

as relevant to the given task. This set is found by finding the subset Fn ✓ Dn in each

client (node) n with F =
S

N

n=1 Fn and the details of this selection process will

be given in Section 3.4. The overall loss of relevant data at client n is defined as

Ln(✓) =
1

|Fn|
P

(xi,yi)2Fn
l(f(xi, ✓), yi), where | · | denotes the cardinality of the set,

based on which the global loss across all clients is defined as L(✓) =
PN

n=1 |Fn|Ln(✓)PN
n=1 |Fn|

.

The goal of federated learning on the selected data subset F is to find the model
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parameter vector ✓̂ that minimizes L(✓):

✓̂ = argmin
✓

L(✓). (3.1)

The minimization problem in (3.1) is solved in a distributed manner using stan-

dard federated learning procedure [2, 18] as described in Chapter 2.

3.4 Data Selection

Data selection is performed separately for each federated learning (model training)

task. The goal is to filter out noisy data samples for the specific learning task. The

filtering process is decentralized, where each client performs the filtering operation

on its own dataset and only exchanges a small amount of meta-information with the

server.

The main idea is that the server first trains a benchmark model (of the same

type as the model requested by the requester) using only a subset of the benchmark

data provided by the requester. To determine the relevance, the loss l(f(xi, ✓), yi)

is evaluated for each data sample (xi, yi) 2 D using the benchmark model. By

comparing the distribution of loss values of data samples at the clients and a held-

out set of the benchmark data (that is not used for training the benchmark model),

we determine a threshold for the loss l(f(xi, ✓), yi); data samples with a loss higher

than the threshold are regarded as noise and excluded from this federated learning

task.

Fig. 3.1 illustrates the overall data selection process done by the server and

clients, which includes the following steps:

• The server builds (trains) the benchmark model using a small benchmark dataset

without noise (Steps 1 and 2).
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Figure 3.1: Data selection procedure.

• Each client evaluates its own dataset against the benchmark model, and creates

a list of loss values from the benchmark model of all of its data samples (Step

3).

• The server merges the lists of the loss values from all clients, and compares the

distribution of these loss values against that of loss values of the benchmark

dataset, to calculate the filtering threshold (Steps 4 and 5).

• Each client filters out noisy data samples in its dataset using the filtering

threshold (Step 6).

Note that this process is performed without transmitting raw data from the clients

to the server; only a benchmark model and the losses are exchanged, hence suitable

for federated learning settings. In the following, we provide the detailed description

of this filtering process by formally establishing its objective.

3.4.1 Objective

Assume that a model requester wants to train a classifier able to recognize the classes

(labels) defined in a label set C and provides a set of benchmark data B, which
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Figure 3.2: Example of noisy data at clients (D1), benchmark dataset (B), and the
filtered dataset (F1).

contains only a small number of data samples correctly labelled from each of the

categories defined in C. Typically, |B| ⌧ |D|. For example, a model requester

focusing on recognizing images of cats and dogs will provide a few correctly labeled

examples representing cats and dogs, and C = {dog, cat} is implicitly defined.

Our overall goal of data selection is to find the subset F ✓ D where F is the

union of subset Fn identified at each client n, (i.e. F =
S

N

n=1 Fn), such that the

testing loss function evaluated on the classes defined by C is minimized:

min
F

P
(xi,yi)2T l(f(xi, ✓̂); yi) (3.2)

where the test dataset T = {(xi, yi) : yi 2 C} is a held-out dataset, separated from

the training dataset D and the benchmark dataset B (i.e., T \D = ; and T \B = ;),

and ✓̂ is the parameter vector of the model obtained from (3.1).

Fig. 3.2 shows an example of a noisy dataset D1, a benchmark dataset B provided

by the model requester, and the ideal subset F1, obtained using our proposed filtering

method.
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3.4.2 Training Benchmark Model

First, the benchmark dataset B is divided into a training set Btrain and a test set Btest

(Step 1 in Fig. 3.1) such that Btrain \Btest = ;. Then, the benchmark model is trained

using Btrain, whose parameter ✓B is obtained by minimizing the following expression

using a model training process, such as the stochastic gradient descent (Step 2):

✓B = argmin
✓

1
|Btrain|

P
(xi,yi)2Btrain

l(f(xi, ✓), yi) . (3.3)

3.4.3 Finding Loss Distribution Using Benchmark Model

The model parameter ✓B is used to find two sets of loss values (Fig. 3.1, Step 3),

evaluated on Btest and Dn respectively:

V = {l(f(xi, ✓B), yi) : 8(xi, yi) 2 Btest} (3.4)

Pn = {l(f(xi, ✓B), yi) : 8(xi, yi) 2 Dn}. (3.5)

Note that V is obtained by the server from Btest, and each Pn is obtained from Dn by

each client n. Then all Pn’s from the clients are sent to the server and combined to

obtain the loss value set of all clients’ data (Step 4), i.e., P =
S

N

n=1 Pn.

The set V provides a reference distribution of loss values, against which the

relevance of the data samples at each client n is assessed. Intuitively, we assume that

the smaller the individual loss value l(f(xi, ✓B), yi) is, the more (xi, yi) will fit to the

benchmark model defined by ✓B, hence being more likely relevant to the learning

task under consideration.
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3.4.4 Calculating Filtering Threshold in Loss Values

We use V as a benchmark distribution of acceptable range of individual loss values

for data samples in D. In other words, we assume that data samples, whose loss

values evaluated with the benchmark model are within an “acceptable” range in the

distribution of V , have a high probability to be relevant to the learning of the target

model. Inversely, if a sample has a loss value out of this acceptable range, there is

a high probability that this sample will either corrupt the model training or just be

irrelevant.

The goal is then to find a good threshold in the loss value to determine which

data samples to include in the set of relevant (not noisy) data Fn. Note that this

can be seen as an outlier detection, where the outliers are defined as the irrelevant

data samples with respect to the target model, and their detection is performed in

the 1-dimensional space of loss values mapped from the original data space via the

benchmark model. Note also that we have defined V as the set of loss function

values evaluated on Btest and not Btrain, in order to avoid loss values over-fitted to the

training dataset.

Our approach to detecting the outliers (i.e., noisy data) is to use V as a mask

to find an upper limit of acceptable loss values via a statistical test that compares

the distribution of V and P . More specifically, let us denote the empirical Cumu-

lative Distribution Function (CDF) of V and P by FV and FP , respectively; that

is, FV (x) = Pr{X  x : X 2 V } and FP (x) = Pr{X  x : X 2 P}.

We further denote by F �

P
the conditional CDF of P such that F �

P
(x) = Pr{X 

x|X  � : X 2 P}. Note that we call this conditional CDF the “truncated” CDF

as the maximum range of values is truncated to �, i.e., F �

P
(x) = 1 if x � �, and

F �

P
(x) = FP (x)/FP (�) if x < �.

Given �, we define the distance G between the two distributions FV and F �

P
by

the Kolmogorov-Smirnov (KS) distance [39], which is often used to quantify the
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(a) Original FV (x) and FP (x) (b) Distance for different �

(c) � = 4.8 (d) � = 10 (e) � = 15

Figure 3.3: KS distance computation and optimal � for FV (x) and F �

P
(x)).

distance between two CDFs. Specifically, G(FV , F �

P
) = sup

x
|FV (x)� F �

P
(x)|.

Then, we calculate our threshold in loss values, denoted by �⇤, that minimizes

G. That is:

�⇤ = argmin
�

G(FV , F
�

P
). (3.6)

Fig. 3.3 illustrates this process with an example. Given the unconditional CDFs

FV (x) and FP (x) in Fig. 3.3a, Figs. 3.3c, 3.3d, and 3.3e show the KS distance be-

tween FV (x) and the truncated CDF F �

P
(x) for different values of �. In this exam-

ple, �⇤ ⇡ 4.8 because it minimizes the KS distance between FV and F �

P
as shown in

Fig. 3.3b.
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3.4.5 Local Selection of Data by Clients

After computing �⇤ according to (3.6), the server sends �⇤ to all the clients. Then,

each client makes the selection of relevant data locally (Step 6 in Fig. 3.1):

Fn = {(xi, yi) 2 Dn : l(f(xi, ✓B), yi)  �⇤}. (3.7)

Once the selection is made locally for every client, the standard federated learn-

ing process starts, where each client n performs stochastic gradient descent on the

selected data Fn. As explained in Section 3.3, the mini-batch size is adapted ac-

cording to the size of Fn. In the extreme case where a client has no data of interest

to a model requester, the mini-batch size for this client will be 0 and this client is

excluded from the federated learning task under consideration.

3.5 Scheduling of Federated Learning Tasks

When multiple federated learning tasks co-exist in the system, the optimal schedul-

ing of these tasks is necessary to maximize the system efficiency. A naive first-come-

first-served based approach to task allocation is not suitable in this setting, because

some small models may train much faster than other large models, and it is not rea-

sonable for a model that can be trained within a few minutes to wait for a model that

needs to be trained for several weeks to complete, for instance. Considering this,

we focus on a scheduling mechanism in this work that includes multiple cycles. In

each cycle, we run every federated learning task that is currently in the system for ⌧

gradient descent steps of local iteration, before starting the next cycle.
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3.5.1 Definitions

Assume that the system currently has K tasks. We consider a cycle in the system

as the duration for all the clients n = 1, 2, ..., N to download the model parameter

vector ✓(k)n (t), compute ⌧ steps of model update according to (2.4) on filtered local

data, and upload the new ✓(k)n (t + ⌧) to the server, for all k = 1, 2, ..., K tasks

(models). Our goal of scheduling is to minimize the time of a cycle. We assume that

the communication link between the server and each client is independent from each

other, which is a reasonable assumption because the access network bandwidth of

each client is usually much lower than the bandwidth available to the server. Thus,

minimizing the time of a cycle involving all the clients is equivalent to minimizing

the time of a cycle for each client, and we focus on a single client in the following.

We assume that each client n has a separate downlink and uplink for commu-

nication, as many home Internet connections nowadays have separate downlink and

uplink that are not mixed together. Our formulation can be easily modified to the

case with shared downlink and uplink as well, but we focus on separate downlink

and uplink in this work as it is the more challenging case. Considering a client n

and a given model k, the amount of time to download, compute, and upload model

k is denoted by dk, ck, and uk, respectively, where we omit the subscript n for sim-

plicity since we focus on a single client, as explained above. A client can download,

compute, and upload only one model at a time. For a model k, the precedence rela-

tionship is required such that download has to finish before compute, and compute

has to finish before upload. However, downloading a model k can happen at the

same time with computing another model k0, where k 6= k0. Different models can

have different download and upload durations (dk and uk) depending on the sizes of

their parameter vector ✓(k)n , and different computation times ck depending on their

relevant data F (k)
n , which determines the mini-batch size (see Section 3.3). Thus, it

is useful to determine the optimal sequence of processing the K tasks at the given



3.5. Scheduling of Federated Learning Tasks 46

Figure 3.4: An example of two possible sequences to schedule three models. On
the top, model 1 is scheduled first, model 2 second, and model 3 at the end. On
the bottom, model 3 is scheduled first, then model 1, and model 2 at last. The first
scheduling sequence at the top is better than the second sequence, as the overall
completion time Tu(K) with K = 3 of the first sequence is smaller.

client n, as different processing sequences yield different completion times of the

cycle (see Fig. 3.4). Note that since the communication links between the server and

different clients are assumed to be independent, as mentioned earlier, the download

and upload of the parameter vector ✓(k)n for a given model k can occur at different

times for different clients.

3.5.2 Problem formulation

With the above setting, our problem is an instance of the flow-shop scheduling prob-

lem, where it is known that the optimal solution gives the same sequence of models

in the download, compute, and upload stages (i.e., downloading model 1 before

model 2 but computing model 2 before model 1 is not beneficial) [40, Lemma 1].

For this reason, we can consider K slots j = 1, 2, ..., K to represent the schedul-

ing sequence of models at some given client n. We define the binary variable zkj ,

which is equal to one if model k is scheduled in slot j, i.e., model k is processed

(downloaded, computed, and uploaded) at the j-th place within a cycle, and zero

otherwise. A model can be assigned to only one slot and a slot can only have one

model assigned to it, i.e.,
P

k
zkj = 1 8j and

P
j
zkj = 1 8k. Note that the slot
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assignment only defines the scheduling sequence of models; the actual completion

time of download/compute/upload for the model in the j-th slot is computed accord-

ing to

Td(j) = Td(j � 1) +
KX

k=1

dkzkj (3.8)

Tc(j) = max{Td(j), Tc(j � 1)}+
KX

k=1

ckzkj (3.9)

Tu(j) = max{Tc(j), Tu(j � 1)}+
KX

k=1

ukzkj (3.10)

where Td(j), Tc(j), and Tu(j) are the duration of the cycle starting from the begin-

ning until completion of the downloading, computing, and uploading respectively

for the model that has been scheduled in the j-th slot. The maximum operators in

(3.9) and (3.10) capture the precedence relationship among download, compute, and

upload. We define Td(0) = Tc(0) = Tu(0) = 0.

With this definition, the overall completion time of the cycle is Tu(K), i.e., the

time that the last model has been uploaded, as shown in Fig. 3.4. Different clients

may have different values of Tu(K) and the overall completion time of the cycle

with all clients is the maximum Tu(K) among all clients. We wait for the com-

pletion of all clients before starting the next cycle, because otherwise we will have

asynchronous updates from clients, which is harmful for federated learning with

non-i.i.d. data [18]. By minimizing Tu(K) for each client, we also minimize the

maximum Tu(K) among all clients.

The minimization problem of Tu(K) for each client can be formulated as an

MILP as follows:

min
{zkj}

Tu(K) (3.11a)

s.t. Td(j) = Td(j�1) +
X

k

dkzkj, 8j 2 {1, ..., K} (3.11b)
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Tc(j) � Tc(j�1) +
X

k

ckzkj, 8j 2 {1, ..., K} (3.11c)

Tu(j) � Tu(j�1) +
X

k

ukzkj, 8j 2 {1, ..., K} (3.11d)

Tc(j) � Td(j) +
X

k

ckzkj, 8j 2 {1, ..., K} (3.11e)

Tu(j) � Tc(j) +
X

k

ukzkj, 8j 2 {1, ..., K} (3.11f)

X

k

zkj = 1, 8j 2 {1, ..., K} (3.11g)

X

j

zkj = 1, 8k 2 {1, ..., K} (3.11h)

Td(j), Tc(j), Tu(j) � 0, 8j 2 {0, ..., K} (3.11i)

zkj 2 {0, 1}, 8j, k2{1, ..., K} (3.11j)

where (3.11b) is the same as (3.8). Constraints (3.11c)–(3.11f) are equivalent to

(3.9) and (3.10) but without maximum operator, since the objective of (3.11) is a

minimization. Finally, (3.11g) and (3.11h) ensure that each model is assigned to one

and only one slot.

3.5.3 Hardness

Theorem 1. The problem (3.11) is NP-hard, even if dk = �uk for all k, for some

constant � > 0.

Proof. For arbitrary values of dk and uk, the result is the same as [3, Theorem 1],

which shows that the flow-shop scheduling problem with three machines is NP-hard.

When dk = �uk, the NP-hardness can be shown using a similar procedure as the

proof of [3, Theorem 1] by reduction from the NP-complete 3-partition problem.

The 3-partition problem [3] asks: given integers M > 0, H > 0, and a set of

integers A = {a1, a2, ..., a3M}, with
P3M

m=1 am = MH and H

4 < am < H

2 (8m =
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{1, 2, ..., 3M}), does there exist a partition of A into 3-element sets A1, ..., AM such

that
P

a2Am
a = H , for all m = {1, 2, ...,M}?

We construct an instance of our problem with K = 4M + 3 models in total,

out of which M + 1 models have dk = uk = 2H and ck = H , 3M models have

dk = uk = 0 and ck = am for m = {1, 2, ..., 3M}, and two models have dk = uk = 0

and ck = 2H . Using a similar argument as in the proof of [3, Theorem 1], we can

show that if the optimal solution to our problem (3.11) gives Tu(K)  (2M + 5)H ,

then the answer to the 3-partition problem is “yes”. The reverse is also true. Since

the 3-partition problem is NP-complete, our problem is NP-hard.

We specifically consider the case of dk = �uk above, because for a given down-

link and uplink bandwidth, the ratio dk
uk

is always a constant (denoted by �) for any

k, since the size of the parameter vector of any model k remains the same in the

downlink and uplink.

3.5.4 Algorithm

We present a simple algorithm for approximately solving (3.11) in the following.

First, we relax the binary constraint (3.11j) to 0  zkj  1 (8j, k 2 {1, ..., K}),

so that the resulting problem becomes a linear program (LP) that can be efficiently

solved in polynomial time using existing solvers. Then, we sort the values of zkj

in descending order, assign zkj = 1 starting from the largest value of zkj if doing

so does not violate the constraints (3.11g) and (3.11h). The algorithm is given in

Algorithm 1. It can be easily seen that the complexity of this algorithm is bounded

by the complexity of the LP solver. When ignoring the LP solver’s complexity, the

sorting in line 2 has O(K2 logK) complexity for K2 values. The initialization in

line 3 has O(K2) complexity. The assignment in lines 4–7 has O(K3) complex-

ity where we note that line 6 has O(K) complexity. Hence, the complexity of the
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Algorithm 1: Algorithm for approximately solving (3.11)
Input: {dk}, {ck}, {uk} for all k = 1, 2, ...,K
Output: {zkj}

1 Obtain continuous values {z0kj} of the relaxed problem from LP solver;
2 Sort {z0kj} in descending order (ties are arbitrarily broken), let (k, j) = Z(p) denote the

p-th largest value of {z0kj};
3 Set zkj  0 for all j, k 2 {1, ...,K};
4 for p = 1, 2, ...,K2 do
5 (k0, j0) Z(p);
6 if not (9j such that zk0j = 1 or 9k such that zkj0 = 1) then
7 zkj  1;

rounding procedure (not including LP solver) in Algorithm 1 has a time complexity

of O(K2 logK +K2 +K3) = O(K3).

3.6 Experimentation Results

3.6.1 Set up

We conduct experiments in a federated learning system with a large number of sim-

ulated clients (N � 100). The scheduling algorithm is further evaluated based on

measurements on real Raspberry Pi Version 4 devices as clients.

3.6.1.1 Datasets

We use seven image datasets as listed in Table 3.1, which can be grouped into three

categories. The first two datasets represent digits (0–9): MNIST [14] for handwrit-

ten digits and SVHN [41] for street-view house numbers. The next two datasets

contain images of English characters and digits (‘a’-‘z’, ‘A’-‘Z’, and ‘0’-‘9’): FEM-

NIST [42] for handwritten ones, and Chars74K [43] for a mix of characters obtained

from outdoor images, hand-written characters, and computer fonts. The last three

datasets represent images of various objects: FASHION [44] for fashion items, and

CIFAR-10 and CIFAR-100 [45] for different types of objects (e.g., vehicles, ani-

mals).
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3.6.1.2 Data Partition Among Clients

We partition data into clients in a non-i.i.d. manner as in realistic federated learning

scenarios. For the FEMNIST dataset, which is already partitioned by the writers,

we consider the images from each writer as belonging to a separate client. For all

other datasets, the data are distributed into clients so that each client has only one

class (label) of data from that dataset. The clients and labels are mapped randomly,

in a way that the number of clients for each label differ by at most one. For all

the clients with the same label of data, the data with this label are partitioned into

clients randomly. When multiple datasets are mixed together (the open-set noise

setting), different clients have different proportions of samples from each dataset,

resulting in different amount of data samples in total. We have N = 370 clients in

any experiment involving FEMNIST, which is obtained using the default value in

FEMNIST for non-i.i.d. partition2. For experiments without FEMNIST, we assume

N = 100 clients.

3.6.1.3 Noisy Data

Open-set noisy data (i.e., case where a data sample outside the set of known classes is

labeled as a class within the set of known classes (See section 3.2)), are constructed

by adding data from other datasets as noise to a given “target” dataset (i.e., the clean

dataset for the model being trained in the task). We mix the noise data samples to

the target dataset, and preserve their labels in the mixed dataset3. For example, we

sample some data from SVHN (acting as noise, with labels 0–9) and add them to

MNIST (acting as the target dataset, with labels 0–9) while keeping the same label,

e.g., data with label 0 in SVHN is mixed only with data with label 0 in MNIST. Even

if the number of labels in the noise dataset is different from that of the target dataset,
2https://github.com/TalwalkarLab/leaf/tree/master/data/femnist
3This is a common practice for simulating open-set noise [27, 36].
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we apply the noise only to the labels that are common to both datasets; e.g., CIFAR-

10’s data with 10 labels are added to the corresponding first 10 classes of FEMNIST,

or CIFAR-100’s first 62 classes of data are mixed to the corresponding classes of

FEMNIST. Additionally, in order to mix different datasets and train them together,

we transform the open-set noise data such that their dimensions are the same as that

of the target dataset (e.g., when training a classifier for SVHN with MNIST as noise,

we transform MNIST data to color image, and resize it to 32⇥ 32 pixels).

In closed-set noise (i.e., case where a data sample in the set of known classes is

labeled as another class within the set of known classes (See section 3.2)) settings

where the noise and the clean data both belong to a single dataset, which can be seen

as a special case of the open-set noise setting, a subset of the dataset is mislabeled

from one class to another.

3.6.1.4 Benchmark Data

The benchmark dataset used to build the benchmark model is obtained by sampling

a certain percentage of data from the original (clean) datasets. For all datasets other

than FEMNIST, the benchmark dataset is sampled randomly from the training data.

For FEMNIST, which is pre-partitioned, the benchmark dataset only includes data

from a small subset of partitions (clients).

3.6.1.5 Model and Baseline Methods

We use a convolutional neural network (CNN) as the classifier for all experiments.

The CNN architecture is the same as the one used in [18]. We train the CNN model

using stochastic gradient descent (SGD) with ⌘ = 0.01, ⌧ = 10, and a mini-batch

size of 8% of the selected data Fn at each client n (see Section 3.3).

To evaluate our data selection method, we consider three baseline methods for

comparison: (i) model trained only on the small benchmark dataset (referred to as
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Table 3.1: Summary of Datasets used in Experiments

Dataset # training # testing Category Format
MNIST[14] 60,000 10,000 10 28⇥ 28⇥ 1
SVHN[41] 73,257 26,032 10 32⇥ 32⇥ 3
FEMNIST[42] 71,090 8,085 62 28⇥ 28⇥ 1
Chars74K[43] 58,097 17,398 62 28⇥ 28⇥ 1
FASHION [44] 60,000 10,000 10 28⇥ 28⇥ 1
CIFAR-10 [45] 50,000 10,000 10 32⇥ 32⇥ 3
CIFAR-100 [45] 50,000 10,000 100 32⇥ 32⇥ 3

Description
MNIST[14] hand-written digits
SVHN[41] cropped digits from street view
FEMNIST[42] hand-written characters (federated learning settings)
Chars74K[43] natural images, hand-written and fonts characters
FASHION [44] fashion items
CIFAR-10 [45] various object classes
CIFAR-100 [45] various object classes

the benchmark model), (ii) model trained using only the target dataset without noise,

and (iii) model trained with all the (noisy) data at clients without data selection.

To evaluate the scheduling method, the following baseline approaches are consid-

ered: (i) LP-relax (lower bound) which is the result of the relaxed problem of (3.11)

with continuous values of zkj (this gives a lower bound of the original problem), (ii)

LP-relax + rounding obtained by our Algorithm 1, (iii) Random obtained by ran-

domly selecting binary values of zk,j such that the constraints (3.11g) and (3.11h)

hold, and (iv) Round-Robin where one model is downloaded, computed (updated),

and uploaded, before the download of the next model starts. For some experiments,

we also compute the Optimal result of (3.11) with binary {zkj}. The LP and MILP

problems are solved using the PuLP solver4.
4https://pythonhosted.org/PuLP/solvers.html
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3.6.2 Results

3.6.2.1 Data Selection Performance with Different Types of Noise

We first conduct experiments with different types of noise: (i) open-set noise from

datasets in the same category, (ii) open-set noise from a different category, and (iii)

closed-set noise in the same dataset. In particular, we use FEMNIST as the target

dataset, and mix Chars74k into it as the same-category open-set noise, and CIFAR-

100 as the different-category open-set noise5. In both cases, we produce the noisy

data in a 1:1 target to noise ratio in terms of the number of samples. For the closed-

set noise, we mislabel samples that have labels from 0 to 31 by adding +2 to the true

label, in 75% of the clients, resulting in approximately 37.5% (i.e. half of 75% of the

data ) of the total dataset being mislabelled. The benchmark dataset is generated by

sampling up to 5% of FEMNIST (see Section 3.6.1.4).

Fig. 3.5 shows the accuracy achieved by the four models (obtained by our method

and the three baselines) on the test data when they are trained with the above three

noisy data settings. The performance of the benchmark model is shown as a constant

in Fig. 3.5 (and also in Fig. 3.7 later), because it is trained at the server before fed-

erated learning starts. We see that, in all cases, our approach always performs very

close to the best case baseline (“FEMINIST only”), and significantly better than the

benchmark model and the one trained with the entire noisy dataset. This shows the

robustness of our approach to both open-set and closed-set noises.

Fig. 3.6 shows the results of repeating the same experiments but with the amount

of benchmark data varied from 1% to 5% of the original dataset. The results, shown

as the accuracy on the test data when the model training has converged, clearly indi-

cate that the model built with our data selection performs very close to the best-case

baseline, while outperforming the other two baselines (benchmark model and noisy
5We observe similar results from other combinations of target and noise datasets, which are omit-

ted in this work for brevity.
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data model), for all sizes of the benchmark dataset. We also see that the perfor-

mance of the benchmark model improves with the (clean) benchmark dataset size

as expected, while the performance of our approach remains nearly constant. This

shows that our approach works well even with a very small amount of benchmark

data (such as 1% of the original data).
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Figure 3.5: Classifying FEMNIST under different types of noise, when the amount
of benchmark data is 3% of the original data.
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Figure 3.6: Varying size of benchmark data when classifying FEMNIST under dif-
ferent types of noise.

3.6.2.2 Data Selection Performance (Strong Noise)

We then conduct experiments to assess our data selection method when we further

increase the level of the noise such that 75% of the training data are noise. Fig. 3.7

shows the testing accuracy results for the cases when (i) SVHN is the target dataset
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with CIFAR-10, MNIST, and FASHION as noises (Fig. 3.7a), and (ii) FASHION is

the target dataset with CIFAR-10, SVHN, and MNIST as noises (Fig. 3.7b). The

overall trend in the performance is similar to what are observed with mild noise

levels in Figs. 3.5. Our approach achieves a model accuracy very close to the best-

case baseline, while significantly outperforming the case without data selection.
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Figure 3.7: Strong open-set noise scenario, when the amount of benchmark data is
3% of the original data.

The benchmark model in this case performs reasonably well, too, since a rela-

tively small amount of training data for these two target datasets (SVHN and FASH-

ION) is generally sufficient to train a model achieving good accuracy. Note that the

performance of the benchmark model is shown as a constant in the figures above, be-

cause it is trained at the server before federated learning starts. Fig. 3.8 and Fig. 3.9

show the loss value and the testing accuracy when training the benchmark model

with 3% of FASHION and SVHN respectively. Note that the number of iterations

for the benchmark model differs for FASHION and SVHN, this is because we stop

training when reaching convergence.
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(a) Training Loss (b) Testing Accuracy

Figure 3.8: FASHION Benchmark Model

(a) Training Loss (b) Testing Accuracy

Figure 3.9: SVHN Benchmark Model

In Table 3.2 and Table 3.3, we provide further insights about results reported in

Figure 3.7 by showing the number of samples per dataset before and after the data

selection process. Table 3.2 summarizes results where SVHN is the target dataset

and CIFAR, MNIST, and FASHION act as the noise datasets. One can observe

that approximately 96% of samples belonging to SVHN are selected by our data

selection approach. Another interesting observation is that approximately 60% of

MNIST samples were also selected. This is because majority of MNIST images

which are handwritten-digits are semantically close to printed digits (i.e., SVHN)

and thus can be relevant to classify SVHN samples. This shows that our approach

is also able to incorporate some of the "beneficial" noise. Finally, we can see that

most of CIFAR and FASHION samples, which are not semantically close to SVHN’s
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images, were not selected by our approach. Table 3.3 reports results for experiments

with FASHION as the target dataset and SVHN, CIFAR, and MNIST as the noise.

In this case, where none of the datasets acting as noise are semantically close to

FASHION’s images, 84% of the samples belonging to the dataset considered as noisy

are removed. Furthermore, 90% of FASHION samples are selected for training.

Table 3.2: Target SVHN

Dataset # Samples Before Selection # Samples After Selection

SVHN 73’257 70’336

CIFAR 50’000 8’236

MNIST 60’000 36’402

FASHION 60’000 19’036

Table 3.3: Target FASHION

Dataset # Samples Before Selection # Samples After Selection

SVHN 73’257 5’325

CIFAR 50’000 8’498

MNIST 60’000 8’807

FASHION 60’000 54’380

Additionally, Fig. 3.10 shows the results for varying sizes of the benchmark

dataset. The benchmark models still suffer when the benchmark dataset is very

small, whereas our data selection method performs well, indicating that our method

enables effective federated learning even under strong noise levels and small bench-

mark dataset.
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Figure 3.10: Varying size of benchmark data with strong noise.

3.6.2.3 Scheduling

We evaluate our scheduling algorithm in the following. We first consider the same

settings as in Section 3.6.2.2, where each client has a mix of SVHN, FASHION,

MNIST, and CIFAR-10. Futhermore, we assume four models M1, M2, M3, and M4,

targeting SVHN, FASHION, MNIST, and CIFAR-10, respectively. Table 3.4 reports

the real measurements of the computation time ck on the Raspberry Pi Version 4

devices, where bkn is the mini-batch size of task k at client n, which is different

depending on k and n. The values of dk and uk are proportional with the model sizes

by a factor of � > 0, and we assume that dk = �uk for � > 0 (see Table 3.4). Note

that 1
�

can be considered as the uplink communication bandwidth in bits-per-second,

and the downlink communication bandwidth is 1
��

.

Table 3.4: Values of dk, ck, and uk for models M1-M4 obtained from real measure-
ments.

uk (sec) ck (sec) dk (sec)

M1 � ⇥ 555, 178⇥ 32 bkn⇥555, 178⇥2.84⇥10�8 � ⇥ uk

M2 � ⇥ 430, 698⇥ 32 bkn⇥430, 698⇥2.84⇥10�8 � ⇥ uk

M3 � ⇥ 555, 178⇥ 32 bkn⇥555, 178⇥2.84⇥10�8 � ⇥ uk

M4 � ⇥ 430, 698⇥ 32 bkn⇥430, 698⇥2.84⇥10�8 � ⇥ uk
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Figure 3.11: Tu(K) under different bandwidth 1
�

, with N = 100, K = 4, and
� = 1, using real measurements in Table 3.4: (a) comparison of different scheduling
methods with data selection, (b) comparison of LP relax + rounding with and without
data selection.

Fig. 3.11 shows the completion times of one cycle (i.e., the maximum Tu(K)

among all N clients) under different bandwidth 1
�

, with N = 100, K = 4, and

� = 1, using real measurements in Table 3.4. We see in Fig. 3.11a that our proposed

LP relax + rounding approach outperforms the random and round robin baselines.

Although our approach outperforms the random scheduling approach by only a few

seconds in each cycle, the aggregated saving of running multiple cycles in the feder-

ated learning process is still significant6. In Fig. 3.11b, we compare the completion

time of each cycle with and without our data selection approach, when using our

proposed LP relax + rounding scheduling algorithm. We see that data selection also

reduces the training time, because by having only a subset of relevant data involved

in each task, the mini-batch sizes at clients are smaller than involving all the data

at clients, as we use a fixed percentage of the data size as the mini-batch size (see

Section 3.3).

Next, we consider a simulated setting with larger varieties of configurations.

For each client, we randomly generate a model size between 0 and 800, 000, a per-

parameter processing speed between 3.2⇥10�7 and 3.2⇥10�9, and a mini-batch size
6Note that more than 1000 cycles are often needed for training a good deep learning model. For

instance, see Figs. 3.5 and 3.7 and note that each cycle includes ⌧ = 10 iterations, thus 20, 000
iterations includes 2, 000 cycles.
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between 5 and 200. Similar to Table 3.4, the product of these three quantities is the

simulated value of ck, the value of uk is the model size multiplied by 32 (number of

bits per single-precision floating point number) then multiplied by �, and dk = �uk.

We set N = 100, K = 10, � = 10�5, and � = 1, unless stated otherwise. The re-

sults averaged over 10 different simulation runs are shown in Fig. 3.12. We see that

our proposed approach performs better than the baselines with different number of

clients, models, and different values of � that captures the difference between the up-

link and downlink bandwidths. Compared to solving the MILP in (3.11) optimally,

which has an exponential time complexity, our approach significantly reduces the

running time for obtaining the solution, as shown in Fig. 3.12d, while still providing

a close-to-optimal result. Note that the running time in Fig. 3.12d is for solving the

scheduling problem of a single client on Mac OS with 2.6 GHz Intel Core i7, 16 GB

2400 MHz DDR4.
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Figure 3.12: Tu(K) in simulation environment.
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3.7 Conclusion

In this chapter, we have considered a challenge in federated learning where each

client may have various types of local data with noisy labels. To overcome this

challenge, we have proposed a method for selecting the subset of relevant data to be

involved in a federated learning task. In addition, we have formulated the scheduling

of multiple federated learning tasks as an MILP, which is NP-hard, and proposed an

efficient algorithm based on LP-relaxation and rounding to find its approximate so-

lution. Through extensive experimental analysis using multiple real-world datasets,

we demonstrate the effectiveness of the data selection method in strong open-set

noise setting, as well as its advantages over multiple baseline approaches. The ef-

fectiveness and efficiency of our scheduling mechanism are further validated using

experiments based on real system measurements as well as in a simulated setting.
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Table 3.5: Summary of main notation for Chapter 3

Notation Meaning
Dn / D Dataset at client n / Union of all datasets
(xi, yi) Data sample i
N Number of clients
✓n / ✓B/ ✓ Local parameter at client n/ Benchmark parameter/ Global parameter
f(xi, ✓) Model logic
l(f(xi, ✓), yi) Individual local loss function
Ln(✓) / L(✓) Local loss function / Global loss function
B Benchmark dataset
V Reference distribution of loss values
Pn / P Loss values set clients n / Union of all clients
FP (x) Cumulative distribution function of P
FV (x) Cumulative distribution function of V
G(., .) Kolmogorov-Simrnov Distance
� Threshold in loss values
Fn / F Set of relevant samples at node n / Union of relevant samples
zk,j Binary variable equal to 1 is model k is scheduled in slot j
dk Download duration of model k
ck Computation duration of model k
uk Upload duration of model k
ck Computation duration of model k
Td(j) Duration of the cycle starting from the beginning until downloading in the

j-th slot
Tc(j) Duration of the cycle starting from the beginning until computing in the j-th

slot
Tu(j) Duration of the cycle starting from the beginning until uploading in the j-th

slot



CHAPTER 4

Efficient Continual Learning Using

Bayesian Approaches

4.1 Introduction

In federated learning systems, local training usually happens when clients/devices

have adequate bandwidth and energy (e.g., battery power), More specifically, train-

ing happens only when the device is idle, charging, and connected to an unmetered

network such as Wi-Fi [46]. As a result, it is not uncommon for some active devices

to drop out at some point before the completion of the learning task due to connec-

tivity or energy constraints. Clients leaving the learning collaboration can have a

major impact on the global model. If the data on the leaving clients is very different

from others, the knowledge from this “missing” clients will be forgotten over time

due to the catastrophic forgetting phenomenon (i.e., the global model will be up-

dated without taking into account parameters from missing clients). In other words,

as devices drop out or join, data available to train the global model varies over time

(i.e., non-stationary), which causes the global model to forget previously acquired

knowledge when learning new information.

The field of continual learning (also referred to as incremental learning or life-

long learning) addresses the catastrophic forgetting problem by enabling models to

acquire new knowledge from continuous input while preventing the latest input from

significantly interfering with existing knowledge. In recent years, many approaches
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have been proposed to trade-off between adapting to the most recent data while at

the same time retaining old knowledge.

However, most existing approaches require to be informed when data distribu-

tion changes during training (often referred to as task shifts) to take some actions.

Assuming knowledge of task boundaries is a strong assumption as this kind of setup

is rarely encountered in practical scenarios where task shift boundaries are almost

always poorly defined, and task identities are often unknown. In the federated learn-

ing setting, knowing the task shift would mean being able to predict exactly when a

client will drop out or join the system, which is also very impractical. Among the

few existing techniques for continual learning without assuming known task bound-

aries (often referred to as task free setting), they all require storing raw training

samples that violate the main property of federated learning and consequently data

privacy policies. This emphasizes the need for continual learning techniques to sup-

port continuous federated learning where clients may continuously join and leave

the collaboration over time.

This chapter introduces a task-free continual learning approach that does not re-

quire storing training data, making it applicable to federated learning. It is important

to highlight that we define a new task as a shift in the input data distribution while

the outputs (i.e., classes/labels) remain the same among the different tasks. We do

not consider class-incremental learning scenarios (i.e., where new classes are added

for each new task).

Our method uses Bayesian neural networks as the classifier model as they have

favorable properties for incremental learning. A new classifier is trained each time

when a new task is detected. Classifiers are saved in a buffer of fixed storage capacity

for the purpose of maintaining good accuracy over time. At testing time, predictions

from the stored classifiers are merged. Our main contributions in this chapter are as

follows:
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• A method based on Bayesian Neural Networks (BNNs) to continually learn on

new data while minimally forgetting what has been learned previously,

• A mechanism to automatically detect shifts in data, which allows the algorithm

to work without assuming known task boundaries

• An efficient mechanism for keeping the model within a maximum size, so that

we do not exceed the storage capacity, and

• Validation of our approach on different continual, learning scenarios with real

datasets.

The remaining of the chapter is organized as follows. In Section 4.2, we review

the related work. In Section 4.3, we introduce some preliminary definitions. Our

proposed approach is described in Section 4.4. Our experimental results are reported

in Section 4.5. Finally, in the last section, we draw our conclusion. The summary of

notations used in this chapter is presented in Table 4.9.

4.2 Related Work

Approaches for continual learning mainly use three strategies:

• Expansion strategies accommodate the new knowledge by growing the capac-

ity of the model. Authors in [47] develop an approach, referred to as pro-

gressive network that blocks/fixes the network trained on previous data, and

expands the architecture to allocate the new information.

• Rehearsal/Replay strategies [48, 49, 50, 51, 52, 53] store a few representative

training data points over time and replay them when training the model with

new data. These strategies have privacy issues as they require to store raw data

[54].



4.2. Related Work 67

• Regularization strategies [55, 56, 57, 52, 58, 48] have the main idea of adding

a term (often called a regularization term) to the loss function, to prevent the

model from varying significantly when learning on new data.

Much of existing work uses a hybrid combination of different strategies. For ex-

ample, a combination of rehearsal and regularization techniques is used in [48, 52].

Alternatively, one can also distinguish the two different settings for continual learn-

ing:

• Task-based setting, where there is a sequence of tasks with known boundaries

and identities, and at each time one task is learned; and

• Task-free setting where task shifts are poorly defined (i.e., the task shifts may

not happen abruptly but rather gradually) and task identities are unknown.

Most of existing approaches [57, 49, 52, 47, 48, 53, 55, 56, 59, 60, 50, 51, 58]

are task-based approaches as they require to be informed when data distribution is

switched during continual learning, so that the algorithm can act accordingly. As-

suming knowledge of tasks boundaries is a strong assumption as this kind of setup

is rarely encountered in practical scenarios.

Despite its importance, the task-free setting has been largely understudied, ex-

cept for a few pieces of work that we describe next. Most of the existing task-free

approaches are based on replay/rehearsal strategies [61, 62, 63, 64], where a small

buffer of data samples, often referred to as episodic memory, is used for the re-

hearsal purpose. Hybrid replay and expansion methods also exist [65], where ex-

pansion alone is not enough to avoid catastrophic forgetting and replay is required.

[66] introduced a task-free expansion method governed by Bayesian non-parametric

approaches to automatically determine when to expand, which has shown to outper-

form many other task-free approaches, such as those in [62, 64]. However, the disad-

vantage of this approach is that it is very sensitive to the choice of hyper-parameters.



4.3. Preliminaries 68

Furthermore, it also requires a short-term memory that collects some training data

during the process. Unlike these approaches that employ either a short-term mem-

ory or replay buffer to store training samples, the approach we propose here does not

require storing any data point, which is a strong advantage as storing raw training

samples causes privacy issues as emphasized by [54].

Our work also shares some similarities with the work by [60], which also uses

BNNs to perform continual learning by adapting the learning rate based on the un-

certainty of network parameters. However, this approach requires each task to be

trained until reaching a “plateau”. The learning rate adaptation may also slow down

the training process. Finally, most experiments reported in their work require task

identity knowledge during inference. We shall show that our relatively simple ap-

proach, which does not require task identity knowledge for either training or infer-

ence, is able to outperform existing task-free approaches in performance, storage,

and speed.

4.3 Preliminaries

4.3.1 Task-Free Continual Learning

We assume that there are K tasks. Each task corresponds to a specific distribution of

training and testing data, where the data distributions for different tasks are generally

different. At any point in time, only one mini-batch of data from the dataset of an

arbitrary task k 2 {1, 2, ..., K} is revealed and available to the system. We consider

the task-free setting where we do not know from which task each mini-batch of data

comes from, but the algorithm that we present later estimates the task boundary and

identity. Our system does not save any data point other than the current mini-batch

of data.

The K tasks arrive in a sequential manner and each task may appear one or
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multiple times during the training phase. The goal of training is to learn a model that

can accurately classify data from any of the K tasks. During the inference phase,

the system receives mini-batches of the testing data from arbitrary tasks. The task

identity is unknown to the system in both training and inference phases.

4.3.2 Bayesian Neural Networks (BNNs)

BNNs have useful characteristics that are beneficial for continual learning. Unlike

standard DNNs that aim to find a deterministic value of model parameters to fit

the data, BNNs aim to estimate the posterior distribution p(w|D) over the model

parameter vector w, by considering the training data D, which includes the input

data and the target output for a supervised classifier, as the evidence. This posterior

distribution can be estimated using Bayes’ rule as p(w|D) = p(D|w)p(w)
p(D) , where p(w)

is an assumed prior distribution and p(D|w) is the likelihood.

In most cases, the true posterior p(w|D) is intractable because the term p(D)

cannot be efficiently computed in practice. Variational methods are used to find a

parametric distribution q(w;�) that approximates p(w|D), i.e., p(w|D) ⇡ q(w;�).

The parametric distribution q belongs to a "well-behaved" family of distributions,

such as normal or exponential distributions that can be represented by a set of pa-

rameters � such as mean µ and variance �2 (i.e., � = (µ, �)). The goal of BNN

training is to find the parameter � that minimizes the Kullback-Leibler (KL) di-

vergence between the parametric distribution q and the true posterior distribution:

�⇤ = argmin
�
KL(q(w;�)||p(w|D)). The KL divergence is often intractable.

However, minimizing the KL divergence is equivalent to minimizing the negative

of the tractable evidential lower bound (ELBO) [67]:

L(�,D) = Ew⇠q(w;�)[log q(w;�)� log p(w)� log p(D|w)]. (4.1)
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At the end of training, q(w;�) can be used as an approximation of p(w|D). In

practice, L(�,D) is often minimized using stochastic gradient descent (SGD) on �

where each iteration is based on an approximate gradient of L(�,D) computed on a

mini-batch sampled from D.

4.3.3 Continual Learning with BNNs.

In theory, the Bayesian framework has an interesting property that when learning

from sequential tasks with training data D1,D2, ...,DK , one can estimate the poste-

rior distribution p(w|D1,D2, ...,Dk) for k 2 {2, ..., K} by using the previous poste-

rior as the new prior:

p(w|D1,D2, ...,Dk) / p(Dk|w)p(w|D1, ...,Dk�1). (4.2)

Unfortunately, as mentioned earlier, the true posterior is intractable in most practical

scenarios and performing repeated approximations accumulates errors, which causes

the algorithm to forget old tasks. This underlines the need for new approaches for

efficient and effective continual learning.

4.4 Our Approach

The main idea of our approach is that we train multiple BNN models, each of which

captures one or multiple similar tasks. These models can be regarded as experts for

such tasks. We save up to N representative models during training, which are then

used for inference, where N is a user-defined positive integer related to the desired

aggregated model size and complexity. We emphasize that our system does not know

true task boundaries or identities during either training or inference.
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Figure 4.1: Overview of training procedure.

4.4.1 Training

The training procedure of our approach has three main components: detecting task

boundaries (Section 4.4.1.1), knowledge transfer between tasks (Section 4.4.1.2) and

model management (Section 4.4.1.3). In the following, we describe these compo-

nents in detail.

4.4.1.1 Detecting Task Boundaries

As shown in Figure 4.1, during training, mini-batches of training data arrive in a se-

quential manner, where we do not know from which task the data comes from. Upon

receiving a new mini-batch, the variational parameters � is updated after each SGD

iteration on a minibatch (4.1). The task boundaries are detected based on the changes

of values of the log-likelihoods across mini-batches. In other words, we estimate that

a new task has started if the average log-likelihood on the most recent mini-batches is

sufficiently smaller than that on some previous mini-batches. To do so, we consider

the expected log-likelihood term in (4.1), lt := Ew⇠q(w;�t�1)[log p(D(t)|w)] with D(t)
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being the current mini-batch of data, which can be approximated using Monte Carlo

by sampling w from q(w;�t�1). We track the expected log-likelihood term lt over

time and if it has decreased by a significant margin we detect a new task.

More specifically, we define a time window of length T and in any iteration

t = nT (n 2 Z+) we compute Ln := 1
T

P
nT

⌧=(n�1)T+1 l⌧ . Then, we compare Ln with

Ln�1. If Ln�1 � Ln > ✓ at iteration t = nT , where ✓ is some threshold, we say

that the likelihood has decreased by a significant margin and a new task has started

at t = (n � 1)T + 1 (and the previous task ends at t = (n � 1)T ). The reason for

computing Ln on a time window T is to average out the noise that can exist in a

single mini-batch.

Our empirical finding suggests that a proper choice of ✓ is the standard deviation

of Ln over a few recent time windows starting at or after the start of the current task.

4.4.1.2 Knowledge Transfer Between Tasks

When a task switch is detected, we can use the posterior of w learned from the pre-

vious task as the prior of the current task, as in (4.2), so that we transfer knowledge

from previous tasks into the current model to some degree. Such knowledge transfer

is optional and depends on whether there may be correlation across different tasks.

Our empirical results show that knowledge transfer may benefit certain scenarios

while not in other scenarios (See Section 4.5).

4.4.1.3 Model Management

When a task ends at the tk-th iteration, we obtain �tk
that captures the variational

parameters for the model obtained for task k. We save up to N of such models that

are jointly used for inference as we will see in Section 4.4.2. In addition, at any

iteration t = nT , we save the model �nT in a buffer if a new task is not detected,

so that we can revert back to this model later if a new task is detected after the next
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window t = (n+ 1)T .

Let S denote an indexed set of stored models and we always ensure |S|  N .

We use the task index k to denote the model �tk
for simplicity. When a new task

k + 1 is detected, if |S| < N , we always save the model for the previous task k into

S . When |S| = N , i.e., we have reached the storage (aggregated model size) limit

N , we determine which models to keep in S in the following way.

Every time when a new task k + 1 is detected, we compute a distance (e.g., KL

divergence) between the softmax outputs1 of the BNN model k and all models in S ,

evaluated on the current mini-batch. Let ki denote the i-th model currently stored

in S , i.e., ki 2 S , where we note that we may have i < ki because some models

before ki may have been deleted. To avoid confusion, we write the current task (and

its corresponding model) as k• := k. Let dki,kj denote the distance between models

ki and kj computed on the current mini-batch. A small (correspondingly, large)

value of dki,kj means that models ki and kj give similar (correspondingly, different)

predictions on current mini-batch. By computing dki,k• for all i 2 S every time when

a new task k• + 1 starts, we can progressively obtain all the distances dki,kj for all

i 2 {1, ..., |S|}, j 2 {1, ..., |S|, •}, and i < j (we assume • > |S|). Hence, at any

point in time, the system keeps the following |S|-by-(|S|+ 1) distance matrix:

A =

2

666666666664

dk0,k1 dk0,k2 · · · dk0,k|S| dk0,k•

1 dk1,k2 · · · dk1,k|S| dk1,k•

1 1 . . . ...

1 1 1 dk|S|�1,k|S|) dk|S|�1,k•

1 1 1 1 dk|S|,k•

3

777777777775

(4.3)

which is an upper-triangle matrix because we cannot compute newer models on older

mini-batches as we do not save data. Note that each column of A is evaluated on
1Similar to most of existing work, we consider supervised classification problems in this work.
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different a mini-batch, however we omit mini-batch indices in order to simplify the

notation. For convenience of minimization, we set those distances that cannot be

computed as infinity. Note that if ki 2 S at the end of k•, we must have ki 2 S at the

end of kj for any j > i. Hence, the above matrix A can be computed progressively

every time when a new task is detected, without saving any data.

When |S| = N , we have N + 1 models including k•, and we need to delete a

model. To determine which model to delete, we find the smallest distance dki,kj in

A and its corresponding pair of models ki and kj . These two models are the most

similar to each other. We delete the older model ki (i < j) because newer models

can capture some information of older models when knowledge transfer is enabled.

After deleting ki, the distances related to ki are also deleted. Here, we note that when

a model km is deleted from S , it will never be added back again and we decrement

the indices i and j by one for all i, j > m. With this process, we never delete k•

because it is the newest, so we add k• to S .

4.4.2 Inference

At inference time, for each stored model k 2 S , we use Monte Carlo approximation

to estimate the probability distribution of the output (label) y for a given input data

sample x:

pk(y|x) = Ew⇠p(w|Dk)p(y|x,w) ⇡ 1

R

RX

r=1

p(y|x,w(r)
k
) (4.4)

where w(r)
k

is sampled from q(w;�⇤
tk
) and we take the average over R samples. By

computing the above for all models in S , we obtain the approximate probability

distribution pk(y|x) from each model k 2 S . Assume that the ground-truth label y

includes one-hot encoded labels, our final goal is to find the predicted label ŷ that is

equal to the ground-truth label y with high probability.
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Based on the estimated probability distributions {pk(y|x) : 8k 2 S}, we find

ŷ in the following way. We first compute an uncertainty value defined as uk =
P

d
�k([p(y|x,w)]d), where [p(y|x,w)]d is the d-th element of the probability dis-

tribution p(y|x),w) (i.e., probability assigned to the d-th class/label ) and �k(·) de-

notes the standard deviation (estimated over R samples) when sampling w from

q(w;�⇤
tk
) ⇡ p(w|Dk). Then, we find the model k⇤ with the smallest uncertainty,

i.e., k⇤ := argmink uk; and afterwards find a one-hot encoded ŷ that has the highest

probability, i.e., ŷ := argmaxy:kyk0=1 pk⇤(y|x).

The rationale behind this approach is that, as the uncertainty uk is defined as the

sum standard deviation of each element yd of y, it captures how certain each model

k is about its prediction. The most certain model most likely aligns well with the

task that generats the input data.

4.4.3 Application to federated learning

The continual learning technique proposed above can be applied to general (central-

ized) machine learning systems. Furthermore, as our continual approach does not

require to save training data samples it can be easily extend to federated learning

systems. In federated learning settings, our approach works as follows: each client

trains on its local dataset in a similar fashion as described in section 4.4 and man-

ages the storage of its own buffer where a fixed number of local BNN model can be

stored. At synchronization time, each client sends its set of stored BNN models to

the central server. The server is able to make predictions by merging model predic-

tions from the different models received from each clients, in a similar fashion as

described in Section 4.4.2. When a client leaves the collaboration, the global model

(i.e. central server) can still uses the last received BNNs in order not to forget its

contribution. Even if the BNNs are not be up to date, using them will still ensure

that what was learned before is not forgotten.
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4.5 Experiments

4.5.1 Continual Learning Scenarios

We experiment our proposed approach in various continual learning scenarios com-

mon in the literature. We consider non-class-incremental learning scenarios where

new task are defined as a shift in the input data distribution while the outputs (i.e.,

classes/labels) remain the same among the different tasks. The considered scenarios

are:

• Rotated MNIST [49], where each task is represented by digits rotated by a

fixed angle. In most of our experiments, we define 4 tasks with angles 0�,

30�, 60�, and 90�. , which is more challenging than the scenario used by [68]

with 5 tasks and smaller rotation angles 0�, 10�, 20�, 30�, and 40� (results for

this alternative setting are also reported in Table 4.4). Each task has 60,000

training data samples.

• Permuted MNIST [69], where each task is a certain random permutation of

the input pixels of MNIST images. The distribution of labels remains the

same but the distribution of input images is different. Similar as [60], we learn

a sequence of 10 random permutations. Each task has 60,000 training data

samples.

• MNIST-SVHN [53] consists of two tasks, one task with MNIST data and

the other task with SVHN data [41]. The two tasks have 60,000 and 73,000

training data samples, respectively.

4.5.2 Compared Methods

For our proposed approach, we report two sets of results: with knowledge transfer

(Ours-T) and with no knowledge transfer (Ours-NT). We compare with several
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other state-of-the-art task-free approaches:

• Reservoir [64], which is a simple experience replay method that has been

shown to outperform many other continual learning approaches. The episodic

memory can be managed in a task-free setting, which makes Reservoir a strong

baseline to compare with, in terms of both accuracy and complexity.

• CN-DPM [66], which is an expansion-based method that consists of a set of

experts that learn different subsets of the data that belong to different tasks.

The number of experts is governed by a non-parametric Bayesian framework.

We also include an extension of CN-DPM that leverages task-homogeneity

within a mini-batch (i.e., data in the same mini-batch come from the same

task, see Section 4.4.2) during inference to select the best expert, which is

referred to as CN-DPM-H.

• Fine-Tuning, which is a popular baseline used in previous works where the

model is naively trained using SGD or its accelerated variants, without paying

specific attention to avoiding catastrophic forgetting. The model is an ordinary

neural network.

4.5.3 BNN Architecture and Other Details

For our approach, we use a BNN with a single fully-connected layer containing 64

neurons. We use Adam optimizer with a mini-batch size of 64 and learning rate of

0.001 for all the experiments. Apart from the experiment related to model manage-

ment, the capacity (i.e., N ) is equal to the number of tasks. At inference time, the

number of Monte Carlo samples is set to either R = 10 (referred to as “Ours-*-10”)

and the inference batch size is set to 1 unless state otherwise. Our BNN implementa-

tion is based on the code by [70]2. For our method, we initialize the prior as a normal
2https://github.com/kumar-shridhar/PyTorch-BayesianCNN
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distribution N (0, 1) for Rotated-MNIST, and Permuted-MNIST, and N (0, 0.01) for

MNIST-SVHN. The variational distribution q is also a normal distribution N (µ, �2),

where the initial mean µ is randomly sampled from N (0, 0.01) and the initial stan-

dard deviation is chosen such that � = log(1 + e⇢) where ⇢ is sampled N (�5, 0.1),

as suggested in the code by [70]. The time window length T for task detection is

set to the number of mini-batches in one epoch3. The results of Permuted MNIST

with CN-DPM was obtained by setting the learning rates of both the generator and

discriminator to 1/4 of the original learning rates used for the MNIST dataset in the

original paper by [66]. The reason is that, without this change, the training process

with CN-DPM gets into ill-conditions that cause large fluctuations in the loss, ul-

timately generating a very large number of experts making the training excessively

slow.

For baseline approaches, we replicate the same neural network architectures and

other settings as [66]. All baselines results were reproduced using the original code4

from the paper by [66].The system receives data from each task for a consecutive

duration of 10 epochs during training as in [66], before switching to the next task.

4.5.4 Performance Evaluation

After training on tasks arriving sequentially, the model is evaluated on the test data

from the union of all tasks. We compute the task-wise accuracy ak, which is the

accuracy of task k’s test data after having sequentially learned all K tasks, and the

overall accuracy a := 1
K

P
K

k=1 ak. We also record the number of model parameters

(floating point numbers) and the number of stored training data samples for each

method. For our approach, the number of parameters is the total number of BNN
3An epoch denote the entire processing by the learning algorithm of the entire train-set. The

number of mini-batch required to complete an epoch is the size of the training dataset divided by the
size of the mini-batch.

4https://github.com/soochan-lee/CN-DPM
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parameters (mean and standard deviation values) of all models stored in S . We

further record the per-sample time of training and inference involving all K tasks,

measured on a cloud computing instance with 8 CPU cores, 8 GB memory, and a

K80 GPU.

We obtain statistics from 5 independent runs with different random seeds for

each setting, and report mean and standard deviation values.

4.5.5 Results

The results on rotated, permuted MNIST, and MNIST-SVHN are shown in Ta-

bles 4.1 to 4.3, with comparison to the Fine-Tuning, Reservoir, and CN-DPM tech-

niques. We see that our method generally outperforms the baselines in terms of

accuracy and the number of model parameters. Furthermore, our approach does not

require storing any training data samples, unlike Reservoir and CN-DPM. This is

an advantage in terms of not only privacy but also storage. To illustrate, for the

MNIST rotate dataset, saving 500 samples for Reservoir corresponds to storing 3M

floating point numbers (i.e., 28 ⇥ 28 ⇥ 1 ⇥ 500 ⇥ 10). The poor performance of

CN-DPM is possibly related to hyper-parameter tuning. Although we use the same

hyper-parameters as in the original paper for MNIST dataset, it does not seem to

perform well for rotated and permuted MNIST. As the approach is very slow (es-

pecially since each task has 60,000 training samples), it is impractical to try a wide

range of hyper-parameters. This is a shortcoming of CN-DPM requiring detailed

hyper-parameter tuning, which is often impractical.

Surprisingly, our approach without knowledge transfer (i.e., Ours-NT-10) out-

performs our approach with knowledge transfer (i.e., Ours-T-10) for all experiments.

This might be due to the fact that in practice the true posterior is intractable which

causes repeated approximation of the posterior to accumulate errors. Consequently,

setting the prior of the new task to the posterior of the previous tasks seems to add
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more noise than when just setting the prior of the new detected task as a normal

distribution.

Table 4.1: Rotated MNIST

Method Overall

Acc. (%)

#Param. #Samples Training time per

sample (ms)

Inference time

per sample (ms)

Fine-tuning 61.93±0.73 478K 0 0.454±0.007 0.272±0.002

Reservoir 88.49±0.79 478K 500⇥ 4 0.507±0.007 0.254±0.004

CN-DPM 53.15±0.92 709K 500 3.984±0.149 0.373±0.004

Ours-NT-10 89.76±0.43 407K 0 0.190±0.004 2.051±0.097

Ours-T-10 89.38±0.64 407K 0 0.153±0.006 1.722±0.036

Table 4.2: Permuted MNIST

Method Overall

Acc. (%)

#Param. #Samples Training time per

sample (ms)

Inference time

per sample (ms)

Fine-tuning 42.62±1.54 478K 0 0.448±0.003 0.189±0.006

Reservoir 87.47±0.60 478K 500⇥ 10 0.571±0.032 0.216±0005

CN-DPM 14.07±3.51 1.19M 500 6.115±0.954 0.408±0.077

Ours-NT-10 89.04 1.02M 0 0.166±0.002 0.762±0.010

Ours-T-10 83.78±0.35 1.02M 0 0.156±0002 0.69±0.017

Table 4.3: MNIST-SVHN

Method Overall

Acc. (%)

#Param. #Samples Training time per

sample (ms)

Inference time

per sample (ms)

Fine-tuning 85.78±2.83 11.2M 0 6.49±0.031 0.798±0.003

Reservoir 94.90±0.14 11.2M 1000⇥2 21.510±0.841 0.808±0.015

CN-DPM 95.38±0.12 7.8M 1000 10.179±0.073 2.776±0.018

Ours-NT-10 90.76±0.39 248K 0 0.342±0.012 2.214±0.033

Ours-T-10 89.82±1.03 248K 0 0.417±0.014 2.606±0.064

In Table 4.4, we compare our approach with some existing task-based approaches

that require knowing the task identities during training, such as Orthogonal Gra-
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Table 4.4: Comparison with task-based methods

Rotated MNIST
Method 0� 10� 20� 30� 40�

OGD 75.6±2.1 86.6 ±1.3 91.7 ±1.1 94.3± 0.8 93.4±1.1
A-GEM 72.6±1.8 84.4 ±1.6 91.70 ±1.1 93.9± 0.6 94.6±1.1
EWC 61.9±2.0 78.1 ±1.8 89.0 ±1.6 94.4± 0.7 93.9±0.6
Fine-Tuning
(SGD)

62.9±1.0 78.5 ±1.5 88.6 ±1.4 95.1± 0.5 94.1±1.1

Ours-NT 91.40±0.09 95.05±0.42 94.27±0.07 91.140±0.26 93.24±0.04
Ours-T 88.35±0.39 94.72±0.17 96.88±0.35 96.91±0.28 95.48±0.18

Permutated MNIST
Method T1 T2 T3 T4 T5
OGD 79.5±2.3 88.9 ±0.7 89.6±0.3 91.8± 0.9 92.4±1.1
A-GEM 85.5±1.7 87.0 ±1.5 89.6 ±1.1 91.2± 0.8 93.9±1.0
EWC 64.5±2.9 77.1 ±2.3 80.4 ±2.1 87.9±1.3 93.0±0.5
Fine-Tuning
(SGD)

60.6±4.3 77.6 ±1.4 79.9 ±2.1 87.7±2.9 92.4±1.1

Ours-NT 95.13±0.18 94.63±0.02 93.36±0.03 92.37±0.13 93.68±0.05
Ours-T 95.71±0.20 97.07±0.11 96.22±0.07 83.99±0.37 88.49±2.90

dient Descent [68], an approach that restricts the direction of the gradient updates

to avoid catastrophic forgetting, A-GEM that works by ensuring that the episodic

memory loss over the previous tasks does not increase [71], EWC [57] which is a

popular regularization technique using Fisher information to find the importance of

weights, and Fine-Tuning SGD which is a similar baseline as Fine-Tuning used in

the main paper, which shows what happens if nothing is done to avoid catastrophic

forgetting. For these baseline approaches, we report the original results from the

paper by [68] and run our approach for the same number of epochs (i.e., 5) as for the

baselines in order to compare fairly. Table 4.4 shows that our task-free approach is

also able to outperform the task-based baseline approaches. We emphasize here that

even in this experiment, our approach is run without knowledge of task identities,

for both training and inference, whereas all baselines have such knowledge during

training.

In Table 4.5, we consider the case where the four different angles of rotated

MNIST appear cyclically so that there are 12 tasks in total, i.e., the sequence of tasks

are 0�, 30�, 60�, 90�, 0�, 30�, 60�, .... The results are obtained using our method with
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Table 4.5: Varying capacity with cyclic Rotated MNIST (12 Tasks), per task and
overall accuracies (in %)

Capacity (i.e.,
N )

0� 30� 60� 90� Overall

2 71.55±0.71 92.44±0.09 89.55±0.98 94.01±0.14 86.69±0.14
4 86.43±0.08 92.14±0.10 93.93±0.12 91.32±0.24 90.95±0.07
8 86.56±0.10 92.17±0.21 93.97±0.23 91.35±0.07 91.01± 0.04
12 86.88±0.07 92.19±0.01 93.87±0.01 91.32±0.07 91.04±0.05

knowledge transfer (i.e., Ours-T). We consider the impact of storage capacity N .

We see that choosing N = 4 gives close to the highest accuracy, since there are only

four unique rotation degrees out of the 12 tasks. When we set N = 2, the overall

accuracy is still good. Furthermore, we observe that our algorithm saves models

for degrees 30� and 90� when N = 2, which reveals that our model management

approach is effective because the 30� and 90� models may be still good for 0� and

60�, respectively.

Tables 4.6 to 4.8 present results for different mini-batch sizes at inference time,

with R = 10. Results shows that availability of task-homogeneous mini-batch for

inference can improve our approach. One can observe that the accuracy can be im-

proved when the size of inference batch size increases for all experiments.

Table 4.6: Rotated Mnist, Varying Mini-batch Inference Size

Method Size: 1 Size: 2 Size: 4 Size: 8 Size: 16 Size: 32

Ours-NT-10 89.76±0.43 93.15±0.23 95.53±0.09 96.54±0.08 96.80±0.06 96.87±0.06

Ours-T-10 89.38±0.64 92.81±0.30 95.01±0.16 96.22±0.08 96.80±0.06 96.87±0.06

Table 4.7: Permuted Mnist, Varying Mini-batch Inference Size

Method Size: 1 Size: 2 Size: 4 Size: 8 Size: 16 Size: 32

Ours-NT-10 89.04 94.13 95.52 95.60 95.64 95.65

Ours-T-10 83.78 88.68 90.96 91.45 91.53 91.53



4.6. Conclusion 83

Table 4.8: MNIST-SVHN, Varying Mini-batch Inference Size

Method Size: 1 Size: 2 Size: 4 Size: 8 Size: 16 Size: 32

Ours-NT-10 90.76±0.39 92.17±0.22 93.18±0.15 93.60±0.19 93.64±0.17 93.66±0.18

Ours-T-10 89.82±1.03 91.61±0.56 92.91±0.31 93.49±0.16 93.60±0.17 93.61±0.16

4.6 Conclusion

In this work, we have proposed and studied a novel continual learning technique with

three characteristics: 1) low complexity and fast running time, 2) no requirement of

task identity knowledge in either training or inference (i.e., task-free), 3) no storing

of training data samples. Our results have shown that our proposed method out-

performs various state-of-the-art baselines in terms of accuracy, storage, and speed,

for a variety of continual learning settings. Since our approach works in task-free

settings and does not require storing training data samples, it can be readily applied

to solve catastrophic forgetting problem (which is caused by clients dropping out

during training) in federated learning.
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Table 4.9: Summary of main notation for Chapter 4

Notation Meaning

K Number of tasks

p(w) Prior distribution

D Data

p(w|D) Posterior distribution

p(D|w) Approximation of the posterior distribution

q(w;�) Approximation of the posterior distribution

� Variational parameter

t Iteration/mini-batch index

D Data

lt Expected log-likelihood term

N Maximum number of models that can be stored

S Indexed set of stored models

|S| Number of stored models

ki Model i

�t,k Variational parameter after t iterations of model k

dki,kj Distance between model ki and model kj

A Distance matrix

pk(y|x) Probability of the output (label) y for a given input data sample x

R Number of Monte Carlo samples



CHAPTER 5

Forecasting Resources Utilization for

Large-Scale Distributed Systems

5.1 Introduction

Federated learning systems often include thousands of clients 1 with very differ-

ent hardware (i.e., CPU, memory), network connectivity (i.e., 4G, 5G, Wi-Fi), and

battery level. Consequently, the effective management of such large-scale and het-

erogeneous distributed systems is very challenging.

In the previous chapters, we have seen that as a result of this heterogeneity, fed-

erated learning systems often have to face situations where clients drop out of the

collaboration before the completion of the learning task due to connectivity or en-

ergy issues. Another consequence of device heterogeneity is that the server often

receives updates from clients at different times asynchronously. Hence, a node with

few available resources (i.e., computation, communication) can significantly slow

down the whole federated learning process. This phenomenon is often referred to

as the straggler effect and is the main bottleneck in realizing federated learning on a

diverse network. A node with more data than others can also become the straggler

as the former node will require a longer time to update its model, unless it has better

computation resource than other clients [72].

To combat the straggler effect, some federated learning approaches use active
1The terms clients, nodes, devices are used interchangeably.
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sampling techniques, which aim to train only on a subset of clients selected based

on their ability to meet certain criteria (e.g., hardware characteristic, connectivity),

which should ensure the training latency to be minimized. For example, authors in

[73], select clients that are able to download, update, and upload ML models within

a certain a time-window. To improve active sampling in federated learning but more

generally for system management purposes such as optimizing job scheduling and

learning process, it is very beneficial for the central server 2 to monitor and predict

the resource conditions and utilization on the clients’ side [1].

Several challenges exist for the central node to collect and forecast resource uti-

lization at each client/machine in such a large-scale distributed system. First, it is

often bandwidth-consuming and unnecessary to transmit all the measurements col-

lected at local nodes to the central node. Second, predictive models for data fore-

casting typically have high complexity, thus running a forecasting model for the

time-series measurement data collected at each local node would consume too much

computational resource. Third, measurements at each local node are collected in an

online manner, which form a time series; decisions related to data collection and

forecasting need to be made in an online manner as well. Such online processing for

large scale system in real time is very demanding.

In this chapter, we address the above challenges and propose a mechanism that

efficiently collects and forecasts the resource utilization at machines/clients in a

large-scale distributed system. The results provided by our mechanism can be further

used for system management such as resource allocation. We focus on the collec-

tion and forecasting of resource utilization in this work, and leave its application

to system management for future work. Our main contributions are summarized as

follows.

1. We propose an algorithm for each local node to adaptively decide when to
2Also referred as the central node or central controller.
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transmit its latest measurement to the central node, subject to a maximum fre-

quency of transmissions that is given as a system-constraint parameter. The

algorithm adapts to the degree of changes in observations since the last trans-

mission, so that the allowed transmission bandwidth is efficiently used.

2. We propose a dynamic clustering algorithm for the central node to partition the

measurements received from local nodes into a given number of clusters. The

algorithm allows the clustering to evolve over time, and the cluster centroids

are treated as a compressed representation of the dynamic observations of the

large distributed system.

3. We propose a forecasting mechanism where the centroids of each cluster evolv-

ing over time constitute a time series that is used to train a forecasting model.

The trained model is then used to forecast the future resource utilizations of a

group of local nodes.

4. Extensive experiments of our proposed mechanism have been conducted using

three real-world computing cluster datasets, to show the effectiveness of our

proposed approach.

The clustering, model training, and forecasting are all performed in an online

manner, based on “intermittent” measurement data received at the central node.

The rest of this chapter is organized as follows. In the next section, we review

the related work. In Section 5.4, we present the system overview together with some

definitions. In Section 5.3, we present several experiments to motivate this work.

The proposed algorithms are described in Section 5.5. The experimentation settings

and results are given in Section 5.6, and Section 5.7 draws our conclusion. The

summary of notations used in this chapter is presented in Table 5.5.
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5.2 Related Work

The existing body of work that uses prediction/forecasting models to assist resource

scheduling mostly focuses on aggregated workloads or resource demands that can

be described as a single time series [74, 75, 76, 77]. While these approaches are use-

ful for predicting the future demand, they do not capture the dynamics of resource

utilization at individual physical machines, and hence cannot predict how much re-

source is utilized or available in the physical system. In this work, we focus on

resource utilization at machines in the large-scale distributed system, which is more

complex because each machine generates a time-series measurement data on its own.

Some existing approaches for efficient data collection in a distributed system in-

volve only a selected subset of local nodes that transmit data to the central node [78,

79, 80, 81, 82, 83, 84, 1]. More specifically, techniques in [83, 84, 1] select the best

set of monitors (local nodes) subject to a constraint on the number of monitors, and

infer data from the unobserved local nodes based on Gaussian models. Methods in

[78, 79, 80, 81, 82] are based on compressed sensing, where a subset of local nodes

is randomly selected to collect data, then matrix completion is applied to reconstruct

data from unobserved nodes. The approaches based on compressed sensing gener-

ally perform worse than Gaussian-based approaches [1]. All these approaches where

only some of the local nodes send data in the monitoring phase lead to unbalanced

resource consumption (such as communication bandwidth and energy).

To avoid unbalanced resource consumption, some existing approaches consider

settings where every node sends data to the central node but with a sampling rate

adapted directly at each node [85, 86, 87, 88, 89]. However, the sampling rate in

these methods is only implicitly related to the transmission frequency. None of them

allows one to specify a target transmission frequency which is proportional to the

limited, available communication bandwidth. In this work, we propose an algorithm

that decides when to transmit subject to a maximum transmission frequency. This
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allows the system to explicitly specify the communication budget.

For the clustering of local node measurements, Gaussian models are widely used,

such as in [83, 84, 1]. However, these methods require a separate training phase to

estimate the covariance matrix, during which it needs to collect all the data from all

local nodes, which can be bandwidth consuming. In addition, a sufficiently large

number of samples are required for a good estimation of the covariance matrix.

When the correlation among local nodes vary frequently, which is the case with

resource utilization at machines in distributed systems (see Section 5.3 for further

discussion), the system may not be able to collect enough samples to estimate the

covariance matrix with a reasonable accuracy. In this work, we propose a clustering

mechanism that works well with highly varying resource utilization data.

The evolution of clusters over time is related to the area of evolutionary cluster-

ing [90, 91, 92, 93], for which typical applications include community matching in

social science [92], disease diagnosis in bio-informatics [94], user preference mod-

elling in dynamic recommender systems [95], etc. To our knowledge, evolutionary

clustering techniques have not been applied to the dynamic clustering and forecast-

ing of resource utilization at multiple machines, where the objectives are different

from the above applications.

In summary, while there exist methods in the literature that are related to spe-

cific parts of our problem, they focus on different scenarios or applications and do

not directly apply to our problem, as explained above. Furthermore, to our knowl-

edge, a mechanism that efficiently collects and forecasts resource utilization of all

machines in a distributed system does not exist in the literature. This chapter over-

comes the challenge of developing such a mechanism with different components

working smoothly together, while providing good performance in practical settings.
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Figure 5.1: Empirical cumulative distribution function (CDF) of correlation values
of different datasets.

5.3 Motivational Experiment

To illustrate the challenge in the problem we study, we start with a motivational

experiment comparing the long-term spatial correlations3 in resource utilizations at

different machines in a distributed computing environment and sensor measurements

at different nodes in a sensor network.

We consider the sensor network dataset collected by Intel Research Laboratory

at Berkeley [96], which includes sensor measurements over 12 days, and the Google

cluster usage trace (version 2) [97], which includes resource utilizations at machines

over one month. The empirical cumulative distribution function (CDF) of the spatial

correlation values computed on the temperature and humidity data from the sensor

dataset and the CPU and memory utilization data (aggregated for all tasks running

on each machine) from the Google cluster dataset are plotted in Fig. 5.1, where each

type of data is considered separately.

We see that for CPU and memory utilization, most of the spatial correlation val-

ues are between �0.5 and 0.5, whereas most correlation values are above 0.5 for

temperature and humidity data. This shows that in the long term (over the entire du-

ration of the dataset), the spatial correlation in resource utilization among machines
3The (spatial) correlation of two nodes is defined as the sample covariance of measurements ob-

tained at the two nodes divided by the standard deviations of both sets of measurements (each obtained
at one of the two nodes) [77].
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in a distributed computing system is much weaker than the spatial correlation in sen-

sor measurements at different nodes in a sensor network. Therefore, we do not have

strong long-term spatial correlation in our scenario, which is required by Gaussian-

based methods for covariance matrix estimation (see also the related discussions in

Section 5.2). Hence, Gaussian models which are widely used in the clustering of

sensor network data [83, 84, 1] are not suitable for our case with resource utilization

data. This justifies the need of developing a new clustering mechanism that focuses

more on short-term spatial correlations.

More detailed comparison between our approach and the Gaussian-based ap-

proach in [1] will also be presented later in Section 5.6.5.

5.4 Definitions and System Overview

We consider a distributed system with N local nodes (machines) generating resource

utilization measurements, and a central node (controller) that receives a summary of

all the local measurements and forecasts the future. We assume that time is slotted.

For each time step t, let xt := [x1,t, x2,t, ..., xN,t] denote the N -tuple that contains the

true measurements of N local nodes and let zt := [z1,t, z2,t, ..., zN,t] be the measure-

ments stored at the central node. Here, xi,t and zi,t (1  i  N ) are d-dimensional

vectors, where d is equal to the number of resource types (e.g., CPU, memory). The

values in zt depend on the transmission frequency (i.e., how often each local node

sends its measurement to the central node). For each node i, let �i,t be an indication

variable such that �i,t = 1 if node i has sent its most recent measurement at time

step t to the central node, otherwise �i,t = 0. When �i,t = 0,the central node sets

zi,t = xi,t�p, where p � 0 is defined as the smallest p such that �i,t�p = 1. If �i,t = 1,

then p = 0 and zi,t = xi,t.

We define K as a given input parameter to the system that specifies the number
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of different forecasting models the system uses, which is related to the computa-

tional overhead. At each time step t, the central node partitions the N measurements

z1,t, z2,t, ..., zN,t into K clusters, so that one forecasting model can be used for each

cluster. Let Cj,t (1  j  K) denote the j-th cluster at time step t, which is defined

as a set of indices of local nodes whose measurements are included in this cluster,

i.e., Cj,t ✓ {1, 2, ..., N}. Each cluster j has a centroid, defined as

cj,t :=
1

|Cj,t|
X

i2Cj,t

zi,t (5.1)

where | · | denotes the cardinality (size) of the set.

At time step t, a time-series forecasting model is trained using the time series

formed by the set of historical centroids (i.e., {cj,⌧ : ⌧  t}) for each cluster j. The

model can forecast future values of the cluster centroid, i.e., for any forecasting step

h � 1, the model provides a forecasted value ĉj,t+h at the future time step t+h. The

future resource utilization at each individual local node i is predicted as the value of

its centroid plus an offset for this node, thus we define4

x̂i,t+h = ĉj,t+h + ŝi,t+h (5.2)

for i 2 Ĉj,t+h, where Ĉj,t+h is the forecasted set of nodes in cluster j at time step

t + h, and ŝi,t+h is the forecasted offset of node i with respect to the centroid of

cluster j (to which node i is forecasted to belong to) at time step t+h. In this way, the

estimation of x̂i,t+h involves both spatial estimation5 (using cluster centroid and per-

node offset as estimation of values for individual nodes) and temporal forecasting.
4For convenience (and with slight abuse of notation), we use the subscript t+ h to denote that the

current time step is t and we forecast h steps ahead. With this notation, even if t1 + h1 = t2 + h2,
we may have x̂i,t1+h1 6= x̂i,t2+h2 if t1 6= t2.

5The use of the term spatial estimation or spatial correlation is for notional convenience. We
acknowledge that the clustering behavior of the measurement data from different local nodes result
from their spatial relationship as well as non-spatial reasons such as application-driven workloads.
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Figure 5.2: System overview.

Fig. 5.2 illustrates the system with the functionalities described above.

We define the root mean square error (RMSE) of x̂t+h := [x̂1,t+h, x̂2,t+h, ..., x̂N,t+h]

for h � 0 as

RMSE(t, h) :=

vuut 1

N

NX

i=1

kx̂i,t+h � xi,t+hk2 (5.3)

where we define x̂i,t := zi,t for h = 0 for convenience. With this definition, when

h = 0, the RMSE only includes the error caused by infrequent transmission of local

node measurements to the central node. We also note that the true value xt+h cannot

be observed directly by the central node.
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We also define the time-averaged RMSE over T time steps for a given forecasting

step h as

RMSE(T, h) :=

vuut 1

T

TX

t=1

(RMSE(t, h))2 (5.4)

where the time average is over the square error and the square root is taken after-

wards.

Let Bi (0  Bi  1) denote the maximum transmission frequency (for node i).

Using the above definitions, and considering a maximum forecasting range H , the

algorithms to be introduced in the next section aim at solving the following problem:

min lim
T!1

vuut 1

H + 1

HX

h=0

(RMSE(T, h))2 (5.5)

s.t. lim
T!1

1

T

TX

t=1

�i,t  Bi, 8i

where the minimization is over all {�i,t}, {Cj,t}, {Ĉj,t+h}, {ĉj,t+h}, and {ŝi,t+h}.

Intuitively, we would like to find the transmission schedule (indicator) �i,t for each

local node i and time step t, the membership of clusters Cj,t, 8j for each time step t,

and the forecasted cluster memberships, centroids, and offsets for every forecasting

step h 2 [0, H] computed at each time step t, to minimize the average RMSE over

all forecasting steps and all time steps.

As we do not make any assumption on the characteristics of the time series con-

stituting the cluster centroids {cj,t}, we cannot hope to find the theoretically optimal

forecasting scheme due to the complex system dynamics. In addition, it is often

reasonable in the clustering step to minimize the error between the data and their

closest cluster centroids (we refer to this error as the “intermediate RMSE” later in

the chapter), which is the K-means clustering problem and is NP-hard [98]. We also

note that an online algorithm is required because measurements from local nodes

are obtained over time and decisions have to be made only based on the current and
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past information (with future information unknown to the algorithm). All the above

impose challenges in solving (5.5). Consequently, we propose online heuristics to

solve the problem (5.5) approximately in the next section. These heuristics work

well in practice as we show in Section 5.6 later.

5.5 Proposed Algorithms

5.5.1 Measurement Collection with Adaptive Transmission

In every time step t, each node i determines its transmission action �i,t, i.e., whether

it transmits its current measurement xi,t to the central node or not. To capture the

error of the measurements stored at the central node, we define a penalty function

Fi,t (�i,t) :=

8
>><

>>:

1
d
kzi,t � xi,tk2 , if �i,t = 0

0, if �i,t = 1

. (5.6)

To take into account the maximum transmission frequency Bi, we also define Yi (�i,t) :=

�i,t � Bi. We also define V0 > 0 and � 2 (0, 1) as a control parameters. The algo-

rithm that runs at each node i to determine �i,t is given as follows.

1. In the first time slot t = 1, initialize a variable Qi(t) 0. The variable Qi(t)

represents the length of a “virtual queue” at node i.

2. For every t 2 {1, 2, 3, ...}, choose �i,t according to

�i,t  arg min
�2{0,1}

VtFi,t(�) +Qi(t)Yi(�) (5.7)

where

Vt := V0 · (t+ 1)�. (5.8)
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Then, update the virtual queue length according to

Qi(t+ 1) Qi(t) + Yi(�i,t). (5.9)

The intuition behind the above algorithm is as follows. The virtual queue length

Qi(t) captures how much the Bi constraint in (5.5) has been violated up to the current

time step t. The determination of �i,t in (5.7) considers a trade-off between the

penalty (error) Fi,t(�) and constraint violation (related to Qi(t)), where the trade-off

is controlled by the parameter Vt. When Qi(t) is large, the term Qi(t)Yi(�) in (5.7)

becomes dominant, and the algorithm tends to choose � = 0 because this gives a

negative value of Qi(t)Yi(�) which is in favor of the minimization. Since � = 0

corresponds to not transmitting, this relieves the constraint violation. When Qi(t) is

small and kzi,t � xi,tk2 is relatively large, the term VtFi,t(�) in (5.7) is dominant. In

this case, the algorithm tends to choose � = 1 because this will make Fi,t(�) = 0

and reduces the error of measurements stored at the central node.

The above algorithm is a form of the drift-plus-penalty framework in Lyapunov

optimization [99]. According to Lyapunov optimization theory, as long as Fi,t(�)

has a finite upper bound6, the above algorithm can always guarantee that the Bi

constraint in (5.5) is satisfied with equality (for T ! 1 as given in the constraint,

not necessarily for finite T ), because limt!1 Qi(t)/t = 0 (see [99, Chapter 4]). Note

that satisfying the Bi constraint with equality is always not worse than satisfying it

with inequality, because more transmissions cannot hurt the RMSE performance.

For finite T , the satisfaction of the Bi constraint is related to the parameter Vt, which

can be tuned by parameters V0 and �. From (5.8), we see that Vt increases with t,

which means that we give more emphasis on minimizing the penalty function when

t is large. This is because for a larger t, we can allow a larger Qi(t) while still
6Fi,t(�) usually has a finite upper bound because measurement data is usually finite. Also note

that the lower bound of Fi,t(�) is zero thus finite.
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maintaining Qi(t)/t close to zero.

Note, however, that the penalty function Fi,t(�) depends on transmission deci-

sions in previous time steps that impact the value of zi,t. Therefore, the optimality

analysis of Lyapunov optimization theory does not hold for our algorithm, and we do

not have a theoretical bound on how optimal the result is. Nevertheless, we have ob-

served that this algorithm with the current penalty definition works well in practice

(see experimentation results in Section 5.6).

5.5.2 Dynamic Cluster Construction Over Time

We now discuss how the central node computes the clusters Cj,t, for 1  j  K,

from zt over time. The computation includes two steps. First, K-means clustering is

computed using the stored measurements zt in time step t only. Second, the clusters

computed in the first step are re-indexed so that they align the best with the clusters

computed in previous time steps. The re-indexing step is only performed for t > 1.

The first step of K-means clustering is straightforward and efficient heuristic

algorithms for K-means exist [100]. Let C 0
k,t

(1  k  K) denote the K-means

clustering result on zt in time step t. If t = 1, we let j = k, such that Cj,t = C 0
j,t
, 8j,

where we recall that {Cj,t : 8j} is the final set of clusters in time step t. If t > 1, the

cluster indices of {C 0
k,t

: 8k} need to be reassigned in order to obtain {Cj,t : 8j},

because the cluster indices resulting from the K-means algorithm is random, and

for each cluster C 0
k,t

, we need to find out which cluster among {Cj,t�1 : 8j} in the

previous time step t� 1 it evolves from.

To associate the clusters {C 0
k,t

: 8k} in time step t with the clusters in previous

time steps, we define a similarity measure between the k-th cluster from the K-means

result in time step t, i.e., C 0
k,t

, and the j-th clusters in a subset of previous time steps.
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Formally, the similarity measure is defined as

wk,j =

������
C 0

k,t
\

0

@
min{M,t�1}\

m=1

Cj,t�m

1

A

������
(5.10)

where M � 1 specifies the number of time steps to look back into the history when

computing the intersection in the similarity measure. Intuitively, the similarity mea-

sure wk,j specifies how many local nodes exist concurrently in the k-th cluster ob-

tained from the K-means algorithm in time step t and in the j-th clusters in all M

most recent time steps (excluding time step t). If wk,j is large, it means that most of

the nodes in the corresponding clusters are the same.

Now, to find Cj,t from C 0
k,t

, we find a one-to-one mapping between the indices j

and k. Let ' denote the one-to-one mapping from k to j. We would like to find the

mapping ' such that the sum similarity is maximized, i.e.,

max
'

KX

k=1

wk,'(k). (5.11)

Intuitively, with the mapping ' found from (5.11), the clusters {Cj,t : 8j} are in-

dexed in such a way that most nodes remain in the same cluster in the current time

step t and M previous time steps. In this way, the evolution of the centroids of each

cluster j represents a majority of local nodes within that cluster, and it is reasonable

to perform time-series forecasting with the centroids of clusters that are dynamically

constructed in this way.

Solution to (5.11): The problem in (5.11) is equivalent to a maximum weighted

bipartite graph matching problem, where one side of the bipartite graph has nodes

representing the values of k, the other side of the bipartite graph has nodes represent-

ing the values of j, and each k-j pair is connected with an edge with weight wk,j .

This can then be solved in polynomial time using existing algorithms for maximum
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weighted bipartite graph matching, such as the Hungarian algorithm [101].

The parameter M in the similarity measure (5.10) controls whether to consider

long or short term history when computing the similarity. The proper choice of M is

related to the temporal variation in the data correlation among different local nodes,

because each cluster contains a group of nodes that are (positively) correlated with

each other. Our experimentation results in Section 5.6 show that a fixed value of M

usually works well for a given scenario.

Our clustering approach can be extended in several ways. For example, one can

define a time window of a given length, which contains multiple time steps, and per-

form clustering on extended feature vectors that include measurements at multiple

time steps within each time window [102]. In this case, t represents the time win-

dow index, and everything else in our approach presented above works in the same

way. We mainly focus on dynamic settings where the time series and node correla-

tion can fluctuate frequently. In such settings, as we will see in the experimentation

results in Section 5.6, it is best to use a time window of length one (equivalent to no

windowing), so that the clustering can adapt to the most recent measurements. We

can also perform clustering on each type of resource (e.g., CPU, memory) indepen-

dently from other resource types, in which case the K-means step is performed on

one-dimensional vectors (equivalent to scalars). We will see in Section 5.6 that this

way of independent clustering performs better than joint clustering on the datasets

we use for evaluation.

Our dynamic clustering approach shares some similarities with the approach

in [92]. However, we define a different similarity measure that can look back multi-

ple time steps and is not normalized. This is more suitable for the RMSE objective

in (5.5) which considers the errors at all nodes. Moreover, we focus on the clustering

and forecasting of time-series data which is different from existing work.
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5.5.3 Temporal Forecasting

As discussed in Section 5.4, temporal forecasting is performed using models trained

on historical centroids of measurements stored at the central controller. The mod-

els can include Autoregressive Integrated Moving Average (ARIMA) [103], Long

Short-Term Memory (LSTM) [104], etc. Different models have different compu-

tational complexities. When the system starts for the first time, there is an initial

data collection phase where there is no forecasting model available to use. After-

wards, forecasting models are trained on the time-series constituted by the historical

centroids of clusters. After the models are trained, the system can forecast future

centroids using the models, based on the most updated measurements at the central

node. The transient state of each model gets updated whenever a new measurement

is available. The models are retrained periodically at a given time interval using all

(or a subset of) the historical cluster centroids up to the current time.

As explained in Section 5.4, at time step t, the forecasted resource utilization at

node i in the future time step t + h is computed using the forecasted centroid plus

an offset, i.e., x̂i,t+h = ĉj,t+h + ŝi,t+h where j is chosen such that i 2 Ĉj,t+h. We

explain how to find the forecasted cluster Ĉj,t+h and the offset ŝi,t+h in the following.

We define M 0 as the number of time steps to look back into the history (excluding

the current time step t). For each node i, consider the time steps within the interval

[t �M 0, t], and compute the frequency that node i belongs to the j-th cluster Cj,t

within this time interval, for all j. Let j⇤ denote the cluster that node i belongs to

for the most time within [t�M 0, t]. The algorithm then predicts that node i belongs

to the j⇤-th cluster in time step t + h. By finding j⇤ for all i, the forecasted cluster

Ĉj,t+h is obtained for all j.
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For node i 2 Ĉj,t+h, the offset ŝi,t+h is computed as

ŝi,t+h =
1

M 0 + 1

M
0X

m=0

↵t�m(zi,t�m � cj,t�m) (5.12)

where ↵t�m 2 (0, 1] is a scaling coefficient that ensures the cluster centroid plus the

offset cj,t�m+↵t�m(zi,t�m� cj,t�m) still belongs to cluster j in time step t�m, i.e.,

its value is still closest to the centroid cj,t�m of cluster j compared to the centroids

of all other clusters. If zi,t�m belongs cluster j, we choose ↵t�m = 1. Otherwise,

we choose ↵t�m as the largest value so that cj,t�m + ↵t�m(zi,t�m � cj,t�m) belongs

to cluster j. This is useful because we do not want the offset to be so large that the

resulting estimated value belongs to a different cluster (other than cluster j), as the

forecasted x̂i,t+h is still based on the forecasted centroid ĉj,t+h of cluster j.

5.6 Experimentation Results

5.6.1 Setup

5.6.1.1 Datasets

We evaluate the performance of our proposed approach on three real-world comput-

ing cluster datasets. The first dataset is the Alibaba cluster trace (version 2018) [105]

that includes CPU and memory utilizations of 4, 000 machines over a period of 8

days. The raw measurements are collected at 1 minute intervals (i.e., each local node

obtains a new measurement every minute) and the entire compressed dataset is about

48 GB. The second dataset is the Rnd trace of the GWA-T-12 Bitbrains dataset [106].

It contains 500 machines, the data is collected over a period of 3 months (we only

use data in the first month because there is a 24-hour gap between different months),

and raw measurements are sampled at 5 minute intervals. The size of the dataset

is 156 MB. The third dataset is the Google cluster usage trace (version 2) [97],
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which contains job/task usage information of approximately 12, 478 machines7 over

29 days, sampled at 5 minute intervals. The total size of the compressed dataset is

approximately 41 GB. For each dataset, we pre-processed the raw data to obtain the

normalized CPU and memory utilizations for each individual machine.

5.6.1.2 Choice of Parameters

Unless otherwise specified, we set the transmission frequency constraint Bi = B :=

0.3 for all i, the control parameters for adaptive transmission V0 = 10�12 and

� = 0.65, the number of forecasting models (which is equal to the number of clus-

ters) K = 3, the look-back durations for the similarity measure M = 1 and temporal

forecasting M 0 = 5. The clustering is performed on the scalar values of the mea-

surements of each resource type, unless noted otherwise. These parameter choices

are justified in our experiments, which will be further discussed later in this section.
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Figure 5.3: Behavior of the adaptive transmission algorithm

7We had to remove 2 machines that have error in the measurement data (unreasonably high
CPU/memory utilization).
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Figure 5.4: RMSE comparison of our proposed adaptive transmission method with
the uniform sampling method

5.6.1.3 Forecasting Models

We use ARIMA and LSTM models for temporal forecasting. For the ARIMA model,

after making some initial observations of the stationarity, auto correlation, and par-

tial auto correlation functions, we conduct a grid search over the following ranges

of parameters: the order of the auto-regressive terms p 2 [0, 5], the degree of dif-

ferencing d 2 [0, 2], the order of the moving average terms q 2 [0, 5], and for the

corresponding seasonal components: P 2 [0, 2], D 2 [0, 1], Q 2 [0, 2]. The best

model is selected from the grid search using the Akaike information criterion with

correction term (AICc) [107]. For the LSTM model, we stack two LSTM layers, and

on top of that we stack a dense layer with a rectified linear unit (ReLU) as activation

function. Due to the randomness of LSTM, we plot the average forecasting results

over 10 different simulation runs.

For both ARIMA and LSTM, the initial data collection phase includes the first

1000 time steps. Then, the models are retrained every 288 time steps, equivalent to a
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day when the raw measurements are sampled at 5 minute intervals. For each cluster

j, a separated model is trained for forecasting the centroids of this cluster. At every

time step t, forecasting is made for a given number of time steps h ahead.

We present results on different aspects of our proposed mechanism in the follow-

ing.

Remark: As mentioned in Section 5.2, to the best of our knowledge, there does

not exist work in the literature that solves the entire problem in our setting. There-

fore, we cannot compare our overall method with another existing approach. We will

compare individual parts of our method with existing work where possible.

5.6.2 Adaptive Transmission Algorithm

We first study some behavior of the algorithm presented in Section 5.5.1. Fig. 5.3

shows that the required transmission frequency B always matches closely with the

actual transmission frequency (with parameters V0 and � chosen as described in Sec-

tion 5.6.1.2). This confirms that the algorithm is able to adapt the transmission fre-

quency to remain within the Bi-constraint in (5.5).

In Fig. 5.4, we compare our proposed adaptive transmission approach with a uni-

form sampling approach, and show the time-averaged RMSE as defined in (5.4) with

h = 0 and T equal to the total number of time steps in the dataset (recall that we

defined x̂i,t := zi,t for h = 0, so the RMSE only includes error caused by infre-

quent transmission in this case). The uniform sampling baseline transmits each local

node’s measurement at a fixed interval, so that the average transmission frequency

at each node i is equal to Bi. We see that our proposed approach outperforms the

uniform sampling approach for any required transmission frequency. When the re-

quired transmission frequency is 1.0, we always have zi,t = xi,t and the RMSE is

zero for both approaches.

Even if our adaptive transmission method outperforms only slightly the uniform
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sampling approach, we believe that it boosts the performance of the forecasting al-

gorithm (later part of the framework). Indeed, by using our adaptive transmission

algorithm, we make sure that the central server is notified of major measurement’s

change. These major changes are important as they determine cluster memberships

and consequently have an influence on our forecasting algorithm. In other words, by

only sending random sampled measurements, the central servers might miss impor-

tant changes observed at a node and cluster this node in a wrong group, which can

negatively impact the final predictions.

5.6.3 Spatial Estimation without Per-node Offset

In this subsection, we evaluate the impact of using cluster centroids to represent the

group of nodes in the cluster, where we ignore the offset ŝi,t+h and choose h = 0. We

evaluate the intermediate RMSE which is the time-averaged RMSE between the data

and their closest cluster centroids. This evaluation is useful because the forecasting

models are trained on cluster centroids, so we would like the cluster centroids to be

not too far from the actual measurements at each node even if there is no per-node

offset added to the estimated value. It also provides useful insights on the clustering

mechanism.

5.6.3.1 Impact of Clustering Dimensions

We first discuss the impact of different dimensions we cluster over time and over

resource types. As mentioned in Section 5.5.2, we can cluster either on the measure-

ment obtained at a single time step or multiple time steps, i.e., over different tempo-

ral dimensions. Fig. 5.5 shows the results of intermediate RMSE when we vary the

temporal clustering dimension, where we cluster CPU and memory measurements

separately and independently. We see that using a temporal clustering dimension of

1 (i.e., clustering the measurements obtained at a single time step) always gives the
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Table 5.1: Intermediate RMSE of clustering independent scalars & full vectors
Resource type & dataset Scalar Full
CPU Alibaba 0.069 0.075
Memory Alibaba 0.066 0.072
CPU Bitbrains 0.086 0.089
Memory Bitbrains 0.096 0.098
CPU Google 0.063 0.082
Memory Google 0.055 0.067

best performance.
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Figure 5.5: Intermediate RMSE of clustering different temporal dimensions.
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Figure 5.6: Intermediate RMSE when varying the transmission frequency B and
fixing K = 3.
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Figure 5.7: Intermediate RMSE when varying the number of clusters K and fixing
B = 0.3.
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Figure 5.8: Instantaneous true and forecasted (h = 5) results of K = 3 centroids on
CPU data of Alibaba dataset.



5.6. Experimentation Results 108

Section 5.5.2 also mentions that we can either cluster different resource types in-

dependently using their scalar values, or we can jointly cluster vectors of multiple re-

source types. Table 5.1 compares the intermediate RMSEs of these two approaches,

where the intermediate RMSEs are always computed for individual resource types,

but the clustering is computed either on independent scalars or full vectors. We see

that clustering using scalar values of each resource type performs better than cluster-

ing using the full vector. This suggests that the correlation among different types of

resources in each dataset is relatively weak.

The above results show that it is beneficial to use scalar measurement values of

each resource type at a single time step for clustering. We will use this setting in all

our experiments presented next.

5.6.3.2 Different Clustering Methods

We compare our proposed dynamic clustering approach with two baselines. The first

baseline static clustering is an offine baseline, where nodes are grouped into static

clusters based on the entire time series at each node that is assumed to be known in

advance. The clusters are found using K-means on multi-dimensional vectors, where

each vector represents the entire time series at a node. With this setting, the clusters

remain fixed over all time steps. The second baseline minimum distance is obtained

by randomly selecting K nodes at each time step, treating the selected nodes as “cen-

troids” and mapping the remaining nodes to the “centroids” based on minimum Eu-

clidean distance between measurements. The minimum distance baseline represents

approaches which select monitoring nodes randomly, such as [78, 79, 80, 81, 82].

Fig. 5.6 shows the intermediate RMSE with varying B while fixing K = 3.

We can see that our proposed approach performs better than baseline approaches in

(almost) all cases. Note that the static approach is an offline baseline with stronger

assumptions than our proposed online approach. We also see that in most cases, the
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intermediate RMSE starts to converge at approximately B = 0.3. This shows that a

transmission frequency higher than 0.3 will not provide much benefit.

Fig. 5.7 shows the results with varying K while fixing B = 0.3. We see that the

intermediate RMSE of the proposed approach is close to the lowest value even with

only a few clusters (i.e., small value of K). This is a strong result because it shows

that a small number of cluster centroids is sufficient for representing a large number

of nodes. We also note that because B = 0.3, the measurements stored at the central

node are not always up-to-date, which explains why the intermediate RMSE is larger

than zero even when K = N .

The above observations explain the rationale behind choosing B = 0.3 and

K = 3 as default parameters as mentioned in Section 5.6.1.2. In general, we can

conclude that our proposed approach can provide close to optimal clustering error

by using a small transmission frequency and a very small number of clusters, which

significantly reduces the communication and computation overhead for system mon-

itoring.
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Figure 5.9: Time-averaged RMSE with different number of forecasting steps (h),
with our proposed dynamic clustering approach.
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Figure 5.10: Time-averaged RMSE with different number of forecasting steps (h)
using the sample-and-hold method.
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5.6.4 Joint Spatial Estimation and Temporal Forecasting (with

Per-node Offset)

We now consider the entire pipeline with joint spatial estimation (through dynamic

clustering) and temporal forecasting. We include the per-node offset ŝi,t+h in this

subsection and focus on the time-averaged RMSE as defined in (5.4).

5.6.4.1 Different Forecasting Models

We compare our predictions based on ARIMA and LSTM with a sample-and-hold

prediction method, which simply uses the cluster centroid values at time step t as the

predicted future values. We also compare with the standard deviation computed over

all resource utilizations over time (except for the instantaneous plot in Fig. 5.8). The

standard deviation serves as an error upper bound of an offline mechanism where

forecasting is made only based on long-term statistics (such as mean value) without

considering temporal correlation.

We first show the instantaneous true and forecasted CPU utilization values of

three different centroids for t 2 [1000, 2000] with the Alibaba dataset in Fig. 5.8,

where the forecasting is for h = 5 steps ahead. We see that with our methods, the

trajectories of the forecasted centroid values by all models follow very closely to that

of the true centroid values.

The time-averaged RMSE with different forecasting models is shown in Fig. 5.9,

where we include results for both K = 3 and K = N for the sample-and-hold

method, and use the default K = 3 for all the other methods. Also note that the

standard deviation does not depend on K. We see that although sample-and-hold

is simple enough to run on every local node (i.e., K = N ), the case with K = N

generally performs worse than cases with K = 3. This is due to the fluctuation of

resource utilization at individual nodes, which makes the forecasting model perform
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Table 5.2: Aggregated training time (in seconds) of forecasting model on one cen-
troid over the entire duration of the dataset

Dataset ARIMA LSTM
Alibaba data set
(11519 total time steps) 61.25 855.34

Bitbrains data set
(8259 total time steps) 33.4 554.97

Google data set
(8350 total time steps) 37.86 554.97

badly when running on every node. The cluster centroids are averages of data at

multiple nodes, which remove noisy fluctuations and provide better performance.

LSTM performs the best among all the models, which is expected since LSTM is

the most complex and advanced model compared to the others. We also see that the

RMSE is lower than the standard deviation for most forecasting models when the

forecasting step h  50. This shows that our forecasting mechanism, which takes

into account both spatial and temporal correlations, is beneficial over mechanisms

that are only based on long-term statistics.

Table 5.2 shows the total (aggregated) computation time used for training the

ARIMA and LSTM models for the entire duration of one centroid, on a regular

personal computer (without GPU) with Intel Core i7-6700 3.4 GHz CPU, 16 GB

memory. The model is trained or re-trained at each of the initial training and re-

training periods defined in Section 5.6.1.3, and the result shown in Table 5.2 is the

sum computation time for training at all periods. We can see that for data traces that

span over at least multiple days, the total computation time used for model training

is only a few minutes. Since we only need to train K = 3 models, the computation

overhead (time) for training forecasting models is very small compared to the entire

monitoring duration.
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Figure 5.11: Time-averaged RMSE with Jaccard Index and our proposed similarity
measure.
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Figure 5.12: RMSE for comparison with [1] with different number of clusters (K).
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Table 5.3: RMSE with Different Values of M and M 0 for the Google dataset with
CPU resource

h = 1

M 0 = 1 M 0 = 5 M 0 = 12 M 0 = 100

M = 1 0.055 0.068 0.071 0.106

M = 5 0.058 0.068 0.068 0.098

M = 12 0.059 0.048 0.046 0.050

M = 100 0.065 0.089 0.047 0.055

h = 5

M 0 = 1 M 0 = 5 M 0 = 12 M 0 = 100

M = 1 0.088 0.073 0.076 0.108

M = 5 0.105 0.081 0.074 0.099

M = 12 0.117 0.079 0.076 0.097

M = 100 0.091 0.0899 0.078 0.101

h = 10

M 0 = 1 M 0 = 5 M 0 = 12 M 0 = 100

M = 1 0.098 0.082 0.081 0.107

M = 5 0.121 0.095 0.080 0.099

M = 12 0.129 0.102 0.081 0.098

M = 100 0.104 0.112 0.084 0.101

In the remaining of this subsection, we use the sample-and-hold method (with

K = 3) for forecasting and consider the impact of other aspects on the RMSE.

5.6.4.2 Different Clustering Methods

We consider the different clustering methods as in Section 5.6.3.2 combined with

temporal forecasting. The RMSE results with different forecasting steps (h) are

shown in Fig. 5.10. We see that our proposed approach performs the best in almost

all cases. For long-term forecasting with large h, the static clustering method often

performs similar as our proposed approach, because when there are fluctuations, dy-
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namic clustering may not perform as good as static clustering for long time periods.

Note, however, that the static clustering baseline is an offline method which requires

knowledge of the entire time series beforehand, thus it is not really applicable in

practice.

5.6.4.3 Different Values of M and M 0

Table 5.3 shows the RMSE with different values of M and M 0 on the Google dataset

with CPU resource, where we recall that M and M 0 are the number of time steps to

look back into history when computing the similarity measure and forecasted cluster

(and per-node offset), respectively (see Sections 5.5.2 and 5.5.3). We observe that

the optimal choices of M and M 0 depend on the forecasting step h. Generally,

M = 1 is a reasonably good value for all cases. The optimal value of M 0 tends

to increase with h. This means that the farther-ahead we would like to forecast, the

more we should look back into the history when determining the cluster membership

and offset values of local nodes, which is intuitive because we need to rely more on

long-term (stable) characteristics when forecasting farther ahead into the future. We

choose M 0 = 5 as default in Section 5.6.1.2 which is a relatively good value for

different h.

5.6.4.4 Proposed Similarity Measure vs. Jaccard Index

As discussed in Section 5.5.2, the Jaccard index used in [92] is another possible

similarity measure that one could use. In Fig. 5.11, we compare the RMSE when

using our proposed similarity measure and Jaccard index. Our proposed similarity

measure gives a better or similar performance in all cases.



5.6. Experimentation Results 116

5.6.5 Comparison to Gaussian-based Method in [1]

Finally, we modify our setup and compare our proposed approach with the Gaussian-

based method in [1].

The method in [1] includes separate training and testing phases, both set to 500

time steps (which is the value chosen in [1]). During the training phase, the central

node receives measurements from every node (i.e., B = 1) and uses this information

to select a subset of nodes (K ⌧ N ) that will continue to send measurements during

the testing phase. This subset of K nodes is called monitors. During the testing

phase, the central node receives measurements only from the selected nodes (which

is equivalent to having a transmission frequency of B = K

N
), and the measurements

of the non-monitor nodes are inferred based on the measurements from the monitors.

There is no temporal forecasting in this mechanism.

We adapt our proposed approach to the above setting with separate training and

testing phases as follows. During training, we perform K-means clustering, where

we group nodes into clusters based on their 500 latest measurements (i.e., we perform

K-means on 500-dimensional vectors). This gives us K clusters of nodes. We select

one node in each cluster that has the smallest Euclidean distance from the centroid

of this cluster. We consider this node as a monitor. During testing, we only receive

measurements from the monitors. The resource utilizations at all nodes that belong

to the same cluster as the monitor are estimated as equal to the measurement of

the monitor. The minimum distance baseline in this setting is one that selects the

K monitors randomly, and the other nodes are assigned to clusters based on their

Euclidean distances from the monitors, where each cluster contains one monitor.

Three algorithms that are proposed in [1] are also considered as baselines: Top-W,

Top-W-Update, and Batch Selection, which are based on Gaussian models.

We only use 100 randomly selected machines in this experiment, because the

approaches in [1] are too time-consuming to run on the entire dataset. The results
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of RMSE defined on the estimation method described in this subsection above8 are

shown in Fig. 5.12 and the computational time of different approaches (on computer

with Intel Core i7-6700 3.4 GHz CPU, 16 GB memory) is shown in Table 5.4. We see

that our proposed approach provides the smallest RMSE, and it runs much faster than

the three approaches (Top-W, Top-W-Update, and Batch Selection) from [1]. This

observation is consistent with our discussions in Sections 5.2 and 5.3 that Gaussian

models do not work well in our setting.

Table 5.4: Computation time (in seconds) for each approach and dataset (100 nodes)

CPU Alibaba CPU Bitbrains CPU Google

Proposed 0.1401 0.16457 0.1370

Min.-distance 0.0231 0.0287 0.0238

Top-W 0.5987 0.6134 0.6074

Top-W-Update 29.3502 30.2132 27.4450

Batch Selection 2.8197 2.7812 2.2934

5.7 Conclusion

In this chapter, we have proposed a novel mechanism for the efficient collection and

forecasting of resource utilization at different machines in large-scale distributed

systems. The mechanism is a tight integration of algorithms for adaptive transmis-

sion, dynamic clustering, and temporal forecasting, with the goal of minimizing the

RMSE of both spatial estimation and temporal forecasting. Extensive experiments

on three real-world datasets show the effectiveness of our approach compared to

baseline methods. Future work can study the integration of our approach with re-

source allocation, federated learning and other system management mechanisms.
8Note that this RMSE definition is different from that in earlier parts of this chapter.
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Table 5.5: Summary of main notation for Chapter 5

Notation Meaning

N Number of nodes

K Number of clusters (i.e. Number of different forecasting models)

d Number of resource types (e.g., CPU, memory)

xt =

[x1,t, ..., xN,t]

True measurements of N local nodes at time t (N tuples)

xi,t True measurement of node i, at time t, d-dimensional

zt =

[z1,t, ..., zN,t]

Measurements stored at the central nodes of N local nodes at time t (N

tuples)

zi,t Measurement stored at central node of node i, at time t, d-dimensional

�i,t Indication variable, �i,t = 1 if node i sent most recent measurement at time

step t, �i,t = 0 otherwise

Cj,t j-th cluster at time step t, (i.e. set of indices of local nodes whose measure-

ments are included in the cluster)

Cj,t+h Forecasted set of nodes in cluster j at time step t+ h

cj,t Centroid of cluster j at time step t

ĉj,t+h Forecast of centroid value at future time step t+ h

h Number of forecasting step

ŝi,t+h Forecasted offset of node i with respect to the centroid of cluster j (to which

node i is forecasted to belong to) at time step t+ h

x̂i,t+h Forecasted measurement of node i at time t+ h

Bi Maximum transmission frequency (for node i)

Fi,t(�i,t) Penalty function that capture error of the measurement store at the central

node for node i at time step t

Qi(t) Length of the "virtual queue" at node i

wk,j Similarity measure between cluster k and cluster i

M Number of time steps to look back into the history when computing the

intersection in the similarity measure

M 0 Number of time steps to look back into the history when computing the

offset

' One-to-one mapping from cluster k to cluster j



CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

Federated learning allows machine learning algorithms to be trained on a broad range

of data sets located at different locations. Specifically, federated learning enables

multiple clients to collaborate on machine learning models without sharing their raw

data. By allowing analytic over various data sources, federated learning has opened

the door to many promising applications that involve sensitive data: from healthcare

to financial services, from government use cases to consumer products of all kinds.

In 2016, Google [2] formulated the first Federated learning algorithm, FedAvg, for

solving federated learning problems, which however, faces some limitations when

applied to real-world systems. These limitations are mainly related to expensive

communications, spatial/temporal data heterogeneity, and systems heterogeneity.

This thesis proposes some enhancements to the FedAvg algorithm to improve

resource efficiency and robustness of federated learning under heterogeneous and

dynamic data. In Chapter 2, a new approach is proposed to optimize the FedAvg

algorithm under resource constraints. The proposed approach learns the system and

data characteristics in real-time and dynamically adapt the frequency of aggregation

to maximize the learning accuracy for a given resource budget. Extensive exper-

imentation results confirm the effectiveness of the proposed algorithm. Chapter 3

proposes a pre-processing step to the FedAvg algorithm to overcome noisy and ir-

relevant data at clients. More specifically, a method for selecting the subset of rele-



6.2. Future Work 120

vant data to be involved in a federated learning task is proposed. The efficiency of

the proposed data selection method is demonstrated through extensive experimental

analysis using multiple real-world image datasets. In addition, Chapter 3 consid-

ers the co-existence of multiple tasks in federated learning systems and formulate a

scheduling problem of these multiple tasks as a MILP, which is proved to be NP-

hard, and proposed an efficient algorithm based on LP-relaxation and rounding to

find its approximate solution.

With the goal in mind to address temporal data heterogeneity in federated learn-

ing, Chapter 4 presents a task-free continual learning approach that does not require

storing training data, making it applicable to federated learning settings. Based on

Bayesian Neural Networks (BNNs), the approach is able to continually learn on new

data without forgetting much of what has been learned previously. The proposed

approach also detects shifts in data, which allows the algorithm to work without

knowing the task boundaries. Furthermore, it ensures that the global model remains

within a maximum size so that the storage capacity for the saved models is not ex-

ceeded. The approach is validated on different continual learning scenarios. Finally,

Chaper 5 presents a general mechanism that allows the central server to efficiently

collects and forecasts the resource utilization at each client/device in a large-scale

distributed system. Federated learning systems can further use the results provided

by our mechanism for system management purposes.

6.2 Future Work

Some possible areas of future work are summarized as follows.
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6.2.1 Adaptive Federated Learning with Heterogeneous Resources

In Chapter 2, we have proposed an algorithm able to dynamically adapt the frequency

of aggregation to maximize the learning accuracy according to a given resource bud-

get. This algorithm assumes synchronous scenario. In other words, the central server

has to wait for model updates from all clients before performing aggregation. This

means that the cost of global aggregation and local updates are defined by the slow-

est node. To avoid the whole federated learning process to be slow down by the

slowest clients, asynchronous scenario can be further investigated. Asynchronous

model updates would allow more efficient use of heterogeneous resources.

6.2.2 Exploring Potential of BNNs for Federated Learning

In Chapter 4, we have introduced a task-free continual learning approach based on

BNNs which is applicable to federated learning. An interesting direction will be

to integrate this Bayesian approach to a federated learning system and compare

Bayesian-based federated learning with the traditional federated learning (i.e., Fe-

dAvg) for different scenarios (i.e., stationary data and non-stationary data distribu-

tion). In the Bayesian framework, each client can train its own set of BNNs and

sends its selected set of BNN models to the central server. The central server would

make predictions in similarly as described in section 4.4.2.

6.2.3 System Management for Federated Learning using Resource

Utilization Forecasts

Chapter 5 focuses on the collection and forecasting of resource utilization and leave

its application to system management for future work. To extend this line of work,

one can use the resource’s availability predictions provided by our approach to select

an appropriate subset of clients to participate in the federated learning process.
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