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Abstract. Masonry arches represent the most important structural components of masonry 
arch bridges. Their response is strongly affected by material nonlinearity which is 
associated with the masonry texture. For this reason, the use of mesoscale models, 
where units and mortar joints are individually represented, enables accurate response 
predictions under different loading conditions. However, these detailed models can be 
very computationally demanding and unsuitable for practical assessments of large structures. 
In this regard, the use of macro-models, based on simplified homogenised continuum 
representations for masonry, can be preferable as it leads to a drastic reduction of the 
computational burden. On the other hand, the latter modelling approach requires accurate 
calibration of the model parameters to correctly allow for masonry bond. In the present 
paper, a simplified macro-modelling strategy, particularly suitable for nonlinear analysis 
of multi-ring brick-masonry arches, is proposed and validated. A numerical calibration 
procedure, based on genetic algorithms, is used to evaluate the macro-model parameters 
from the results of meso-scale “virtual” tests. The proposed macroscale description and the 
calibration procedure are applied to simulate the nonlinear behaviour up to collapse of two 
multi-ring arches previously tested in laboratory and then to predict the response of 
masonry arches interacting with backfill material. The numerical results confirm the ability 
of the proposed modelling strategy for masonry arches to predict the actual nonlinear 
response and complex failure mechanisms, also induced by ring separation, with a reduced 
computational cost compared to detailed mesoscale models. 

1 INTRODUCTION 
Old masonry arch bridges belong to the cultural and architectural heritage and still play a 
critical role within railway and roadway networks in Europe and worldwide. These structures 
were built following empirical rules and were not designed to resist current traffic loading and 
extreme events, such as earthquakes. An accurate assessment of the ultimate performance of 
these complex structural systems represents a crucial step to prevent future failures and 
preserve such historical masonry structures for the next generations.  
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Masonry arch barrels are the key structural components of masonry arch bridges. Their 
nonlinear behaviour is strongly influenced by the mechanical properties of the two 
constituents, masonry units and mortar joints, and their arrangement to form the brickwork of 
the arch (i.e. masonry bond). Two main categories of masonry arch bridges can be identified: 
stone masonry and brick masonry bridges. In the first group, the arches are built from large 
voussoirs organised in a single arch ring [1] (Figure 1a). Conversely, in the case of brick 
masonry bridges, a multi-ring arrangement is usually utilised, where the number of rings 
depends on the span length of the arch. The rings are typically bonded together using the 
stretcher method [2] (Figure 1b), where the connection between adjoining rings is guaranteed 
by continuous mortar joints. Numerous laboratory and in-situ tests were performed to 
investigate the failure mechanisms of masonry arches and bridges, considering also the 
influence of backfill and spandrel walls under monotonic and cyclic loading conditions [3]. 
Moreover, specific studies focused on multi-ring arches pointed out the high influence of the 
detachment and sliding along the ring joints on the ultimate strength and failure mode of the 
arch [4].  
In previous research, different numerical strategies have been proposed to simulate the 
nonlinear behaviour of masonry arches and bridge [3]. Generally, approaches based upon 
limit analysis principles can be effectively used to estimate the ultimate load capacity [5]. 
However, such strategies do not provide information about the nonlinear response before 
collapse, and they are often based upon crude assumptions, e.g. the representation of masonry 
as a no-tension material, which may lead to underestimating the ultimate resistance of 
masonry arches. Previous studies comprise also simplified 2D finite element (FE) limit-
analysis descriptions to simulate the arch-backfill interaction [6][7] and 3D nonlinear FE 
strategies with elasto-plastic solid elements [1][8][9], where masonry is assumed as a 
homogeneous isotropic material disregarding its anisotropic nature. More recent numerical 
models for masonry arched structures and bridges include the micro-model strategy proposed 
by Milani et al. [10] using triangular rigid elements and nonlinear links, the Discrete Macro-
Element method (DMEM) [11][12][13] and the Distinct Element Method (DEM) [14][15].  

  
Figure 1: (a) Roman stone-bridge over the Limia river (Portugal) and (b) Brick Rail bridge, Stapleford (UK).   

A detailed 3D mesoscale modelling strategy for masonry arch bridges has been previously 
developed at Imperial College [16][17], which is considered for the calibration of the 
macroscale approach proposed in the current paper. According to this strategy, the masonry 
parts of the bridge are simulated by using linear solid elements and 2D nonlinear interface 
elements to explicitly allow for the masonry bond [18]. The backfill is modelled by elasto-
plastic solid elements, and the connection between the masonry components and the backfill 

(a) (b) 
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is modelled through nonlinear interfaces representing the actual frictional interaction. This 
approach generally leads to accurate response predictions, including under extreme loading, 
but it is associated with significant computational cost which may prevent its use in the 
practical assessment of real large structures. 
This paper proposes a more efficient macroscale strategy for masonry arches and bridges. 
Elasto-plastic 3D continuum elements interacting with 2D nonlinear interfaces are employed 
to model a masonry arch but, as opposed to the mesoscale strategy, the mesh characteristics 
do not depend on the size of the masonry units as the masonry bond is not explicitly 
represented. The damage-plasticity model proposed in [19] and a multi-surface frictional 
model [20] are employed for solid and interface elements. The mechanical parameters of the 
two models are evaluated by solving a multi-object optimization problem by means of a 
genetic algorithm [21], considering mesoscale predictions of virtual numerical experiments on 
small masonry components. The model is validated based on the response of two multi-ring 
masonry arches also interacting with backfill.   

2 PROPOSED MACRO-MODEL  
In the proposed FE modelling strategy, the arch is discretised by a regular mesh of nonlinear 
20-noded 3D solid continuum elements. In addition, 2D nonlinear zero-thickness interface 
elements are arranged along the circumferential mid-thickness surface of the arch to simulate 
damage associated with potential ring separation (Figure 2), where each interface lumps the 
linear deformability and non-linear behaviour of n-1 ring joints (with n the number of rings 
forming the physical arch). Importantly, the characteristics of the FE mesh with solid 
elements are not directly linked to the masonry bond. Thus, an arbitrary number of solid 
elements can be employed along the length of the arch, according to the desired level of 
response detail, but at least two solid elements should be arranged along the thickness of the 
arch to accommodate the mid-thickness nonlinear interfaces. In the proposed macroscale 
representation implemented in ADAPTIC [23], the isotropic plastic-damage material model 
presented in [19] is used for the 20-noded solid elements. A standard decomposition of total 
strains (𝜺𝜺  in elastic (𝜺𝜺𝒆𝒆) and plastic (𝜺𝜺𝒑𝒑) components is considered, and the stress tensor (𝝈𝝈

from the effective stress tensor (𝝈𝝈̅ and a scalar damage variable 𝑑𝑑(𝝈̅𝝈, 𝜅𝜅𝑡𝑡,𝜅𝜅𝑐𝑐). The 
latter variable depends on the stress state and two historical variables (𝜅𝜅𝑡𝑡, 𝜅𝜅𝑐𝑐) representing the 
evolution of plastic strains in tension and in compression. 
 

 
Figure 2: Illustrative FE mesh for proposed macroscale description with solid elements and nonlinear interfaces. 
 

    3D continuum finite  element  
2D interface element 
element  
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The material relationship is expressed analytically by: 𝝈𝝈 = (1−𝑑𝑑) 𝝈̅𝝈 = (1−𝑑𝑑) 𝑲𝑲𝟎𝟎 (𝜺𝜺−𝜺𝜺𝒑𝒑) where, 
𝑲𝑲𝟎𝟎 is the fourth-order isotropic elastic tensor. The local hardening plastic problem is solved at 
each integration point to evaluate the effective stress, adopting a non-associated elasto-plastic 
constitutive law with Drucker-Prager-like plastic flow potential.  
2D 16-noded interface elements [18] are employed for the mid-thickness circumferential 
interfaces, using the plasticity-damage constitutive model proposed in [20]. According to this 
model, the stress and strain fields are composed of a normal component in the direction 
orthogonal to the interface and two tangential components on the plane of the interface. The 
effective stresses are evaluated at each Gauss point by solving a linear hardening elasto-
plastic problem considering three-surface plastic yield domain to simulate the tensile, sliding 
and compressive failures. Then, the nominal stresses are obtained by multiplying the effective 
stresses with damage matrix D, containing the damage index in traction, shear and 
compression ranging from 0 (no-damage) to 1 (complete damage).  

2.1 Model calibration  
The mechanical calibration of the proposed model requires the determination of several 
material parameters defining the linear and nonlinear behaviour of the solid elements and the 
2D interfaces, as described in [19] and [20]. For this reason, an objective and robust 
calibration procedure represents a fundamental step to guarantee the model accuracy and 
applicability. In this study, the unknown model parameters are evaluated by enforcing an 
energy equivalence between a detailed mesoscale model of the periodic cell of the arch 
(Figure 3a), subjected to specific boundary/loading conditions (also called virtual test), and its 
equivalent representation by the proposed macroscale description. An m-objective 
optimisation problem (where m is the number of virtual test employed in the calibration), 
based on Non-Dominated Sorting Genetic Algorithm [21], is solved by TOSCA-TS software 
[22] to minimise the discrepancy between the virtual test and the corresponding macro-model 
responses in terms of global strain energy.  

Figure 3: Calibration procedure: (a) elementary cell; (b) mesoscale virtual test; and (c) equivalent macromodel. 

Flexural Test 

Shear Test 
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In the following, two virtual tests are considered: i) a flexural test, in which an eccentric axial 
force (Fh) is applied with increasing amplitude; ii) a shear test, where an increasing shear 
force (Fv) is applied after an initial axial force (Fh0) which is maintained constant during the 
analyses. In both tests, two rigid plates are modelled to transfer the loads uniformly to the 
masonry specimens. One plate is fully restrained while the other is free in the flexural test and 
restrained against rotation in the shear test. The plates are connected to the masonry by elastic 
interfaces with high normal and shear stiffness, in the case of the shear test, and with high 
normal stiffness and low shear stiffness, in the case of the flexural test. Illustrations of the 
mesoscale (virtual test) and the equivalent macromodel descriptions are shown in Figure 3b 
and Figure 3c.  

3 NUMERICAL APPLICATIONS  
In this section, the proposed macromodel and the calibration procedure presented in Section 2 
are applied to simulate the response of two brick-masonry arches with stretcher bond tested 
by Melbourne et al. [24], namely Arch G and Arch T specimens. Arch G is a two-ring arch 
with 3m span, 215mm thickness, 455mm width and strong bricks. Arch T is characterised by 
three rings, 5m span, 1250mm rise, 330mm thickness, 675mm width and weak bricks. Two 
initial vertical forces, equal to 10kN for Arch G and 22.5kN for Arch T, were applied at the 
quarter and three-quarter span and kept constant during the test. Subsequently, a vertical force 
at quarter span was increased up to collapse under force control.  
 

 

   
Figure 4: Final deformed shapes with Von-Mises stress of (a) Arch G, and (b) and Arch T. 

The responses at failure of the two arches were different. While Arch G experienced a typical 
4-hinge mechanism due to the formation of four large radial cracks, Arch T showed a more 
complex ultimate response characterised also by sliding separation between adjacent rings. 
The two arches have been simulated using the detailed mesoscale model and the proposed 
calibrated macroscale description. As the available experimental material data are not 
sufficient to fully characterise the mesoscale model, the unknown mesoscale mechanical 
properties have been evaluated according to [16] to fit the experimental results. The complete 
set of parameters, adopted in the analyses, are reported in Table 1, where Eb and  are 
Young’s modulus and Poisson’s ratio of the bricks; kn and kt are the normal and tangential 
stiffness of the interfaces; ft , ft and c are the tensile, compressive strengths and cohesion of the 
interfaces; Gt , Gs , Gc are the fracture energies in traction, compression and  sliding; tg  and 
tgb are the factors governing the yield-surface and plastic potential functions. Figure 4 shows 
the deformed shapes at failure obtained by the mesoscale models for the two arches with the 
Von-Mises stress. The numerical failure modes are in good agreement with those observed 
during the experiments [24]. 

(MPa) (MPa) 

(a) (b) 
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3.1 Arch G 
The material parameters of the 3D continuum model for solid elements (Table 2) used in the 
proposed macroscale approach have been calibrated applying the procedure described in 
Section 2, adopting for the interface elements the parameters used in the mesoscale 
counterpart for the masonry joints (Table 1). The latter assumption is justified by the fact that 
in Arch G the interfaces coincide with the actual ring-to-ring mortar joints. The loading-
displacement curves of the meso- and macromodel are compared in Figures 5a and 5b for the 
flexural and shear tests, respectively. The curves are expressed in terms of relative 
displacement of the plates versus the applied shear force for the shear test, and in terms of 
relative rotation versus the external moment for the flexural test. Figure 6 shows the final 
damage patterns in the interface elements of the mesoscale model (e.g.  tension damage and 
sliding damage for the flexural and shear test, respectively) and in the solid elements of the 
macro-model (e.g. global damage). The load-displacement curves for Arch G are provided in 
Figure 7, where the results obtained by the detailed mesoscale and the proposed macroscale 
models are compared against the experimental data. The curves are expressed in terms of 
vertical (Figure 7a) and horizontal (Figure 7b) displacements at the quarter span versus the 
applied vertical load (F). A satisfactory agreement can be observed between the macro-model 
and the meso-scale response, which is very close to the experimental curve both in terms of 
initial stiffness and nonlinear response up to collapse. 

Table 1: Mechanical parameters of the meso scale model  

Masonry  
 

 
 

 
 

 
 

 
 

 

Arch T 6000 0.15 60.0 - 30.0 0.05 - 9.1 - 0.082 0.02 - 0.25 - 5.0 0.5 - 0.0 
Arch G  16000 0.15 90.0 - 40.0 0.10 - 24.0 - 0.40 0.12 - 0.12 - 0.5 0.5 - 0.0 

Table 2: Mechanical parameters of the 3D plasticity-damage model adopted in the tanalyses of Arch G 

3D plasticity-damage model 
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[-] 
 

[-] 
3800 0.15 1.12 0.4 30 0.1 0.66 0.12 24.0 0.045 0.2 1.0E-3 1.0 0.2 0.0 

2D Interface material 
 

[N/mm] 
 

[N/mm] 
 

[MPa] 
 

[MPa] 
 

[MPa] 
 

[-] 
 

[-] 
 

[N/mm] 
 

[N/mm] 
 

 
 

[-] 
100.0 100.0 0.10 24.0 0.39 0.5 0.0 0.042 0.044 5.0 1E-3 

Table 3: Mechanical parameters adopted in the analyses of Arch T  

3D plasticity-damage model 
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[-] 
 

[-] 
 

[o] 
 

[-] 
 

[-] 
 

[MPa] 
 

[MPa] 
 

[N/mm] 
 

[-] 
 

[-] 
 

[-] 
 

[-] 
 

[-] 
2571 0.15 1.23 1.0 35 0.13 0.66 0.05 1.25 0.01 0.2 1.5E-3 1.0 0.2 0.0 

2D Interface material 
 

[N/mm] 
 

[N/mm] 
 

[MPa] 
 

[MPa] 
 

[MPa] 
 

[-] 
 

[-] 
 

[N/mm] 
 

[N/mm] 
 

 
 

[-] 
60.0 30.0 0.05 9.1 0.085 0.5 0.0 0.02 0.01 5.0 1E-3 
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However, the macro-model overestimates the peak-load by 20 % approximately. The ultimate 
deformed shape of the macro-model with the Von-Mises stress and the damage index, are 
shown respectively in Figure 8a and Figure 8b. Both the stress and damage patterns predicted 
by the macro-model are compatible with the meso-scale prediction (Figure 4a), confirming 
the ability of the macromodel to predict the main features of the arch response up to failure. 
 

    
Mesoscale model      Macromodel Mesoscale model     Macromodel  

Figure 5: Damage pattern at the last step of the analysis of the flexural (a) and shear (b) virtual test.  
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Figure 6: Response of the flexural (a) and shear (b) virtual test for Arch G. 
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Figure 7: Capacity curves of Arch G: vertical (a) and horizontal (b) displacement at the left patch load. 

 

           
Figure 8: Failure mechanism of Arch G obtained by the macro-model: (a) Von-Mises stress, and (b) damage. 
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3.2 Arch T 
This section reports the results of the numerical simulations performed on the three-ring 
Arch T, whose collapse behavior is characterized by significant sliding between the rings. The 
same procedure followed for the two-ring arch in Section 3.1 is applied to estimate both the 
parameters for the triaxial constitutive law of the 3D continuum elements and for the 
nonlinear plastic-damage model used for the nonlinear interfaces. The resulting set of 
macromodel parameters is reported in Table 3. The deformed shapes and load-displacement 
curves for the flexural and shear virtual tests are reported in Figure 9 and Figure 10. It can be 
observed that the calibrated macromodel fits well the mesoscale response with a high level of 
accuracy, both in terms of nonlinear response and damage pattern. The load displacement 
curves for Arch T are shown in Figure 11. As in the previous example, the numerical curves 
obtained using the calibrated macromodel are compared against the mesoscale predictions and 
the experimental results. In this case, the macroscale model slightly overestimates the elastic 
stiffness of the arch, but it provides a good prediction of the ultimate load capacity. 

  
 

Mesoscale mode         Macromodel Mesoscale mode     Macromodel  

Figure 9: Deformed shapes and distribution of damage: flexural (a) and shear (b) virtual test. 
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Figure 10: Response of the flexural (a) and shear (b) virtual test for Arch T. 
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Figure 11: Capacity curves of the Arch T: vertical (a) and horizontal (b) displacement at the left patch load. 
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Figure 12: Failure mechanism of Arch T obtained by the macro-model: (a) Von-Mises stress, and (b) damage. 

 
The failure mechanism is depicted in Figure 12, correlated with the Von-Mises stress (Figure 
12a) and damage (Figure 12b) patterns. The activation of two plastic hinges can be observed, 
which are located approximately at the three quarter span and at the right skewback. Large 
sliding between the rings is also observed between the section where the load is applied and 
the left skewback. The latter results are substantially consistent to what is predicted by the 
mesoscale model and observed in the physical tests [24].  
To investigate the role played by the nonlinear interfaces within the macromodel, additional 
simulations have been conducted using a full 3D continuum model (FEM), which does not 
utilise 2D interface elements, with the calibrated material parameters in Table 3, where the 
results are shown in Figure 11. It can be observed, that for small displacements (up to 
0.05mm vertical and horizontal displacements) the FEM model and the proposed macromodel 
show the same response. After this point, the two responses diverge due to the sliding 
activation in the mid-thickness interfaces. The FEM model overestimates the ultimate strength 
of the arch with an ultimate load prediction 20% higher than the proposed macromodel and 
25% higher than the detailed mesoscale model, which provides a very close estimate of the 
ultimate load capacity to the value measured in the test. 

4 ARCH-BACKINFILL INTERACTION 
Further numerical simulations are carried out to explore the ability of the proposed 
macroscale modelling strategy to predict the behaviour of masonry arches interacting with 
backfill, as in real masonry bridges. The arch specimens, Arch G and Arch T, are analysed 
connecting the extrados of the two arches to a backfill domain.    
In the models for the two specimens with backfill, the backfill with density 22kN/m3 extends 
horizontally 2460mm from the two supports of the arches and 300mm vertically above the 
crown. The strip model is 2880mm wide. A uniform vertical line load is applied at the top 
surface of the backfill at the three-quarter arch span. Full support is assumed at the base of the 
arch and the backfill and on the two vertical sides of the backfill. Moreover, the horizontal 
displacements on the two lateral faces of the arch and backfill are restrained to represent a 
plane strain condition. The backfill is modelled using a FE discretization with 15-noded 
tetrahedral elements. According to [17], an elasto-plastic material model with a modified 
Drucker-Prager yield criterion is employed assuming Young’s modulus Eb=500MPa, 
cohesion cb=0.001MPa, friction and dilatancy coefficients tgb=0.95 and tgb=0.45. The 
interaction between the arch and the backfill is simulated by introducing nonlinear interfaces 
at the extrados with tensile strength ffi=0.002MPa, cohesion ci=0.0029MPa, friction 
coefficient tgi=0.6 and zero dilatancy.  

(a) (b) 

(MPa) 
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The load-displacement curves obtained using mesoscale and macroscale models are shown in 
Figure 13. A very good agreement up to collapse can be observed. Similar failure mechanisms 
are predicted by the two modelling strategies as shown by the ultimate deformed shapes and 
damage contours in Figures 14, 15 and 16. It should be noted that the masonry material 
properties for the macroscale models have been calibrated based on the virtual tests for the 
two arches (Tables 1,2 and 3). The results obtained confirm the potential of the proposed 
modelling strategy with calibrated macroelements in providing accurate predictions of the 
response of masonry arches and bridges. 
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Figure 13: Capacity curves of the arches with backfill: (a) Arch G, and (b) Arch T.   

  

 
Figure 14: Failure mode and Von-Mises stress of Arch G with backfill: (a) mesoscale model; (b) macromodel. 

 
  

 
Figure 15: Failure mode and Von-Mises stress of Arch T with backfill: (a) mesoscale model; (b) macromodel. 
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  Figure 16: Macro-model damage in (a) Arch G, and (b) Arch T. 

CONCLUSIONS  
In this study a macro-modelling strategy for brick-masonry multi-ring arches is proposed. 
This modelling approach benefits from enhanced efficiency compared to detailed mesoscale 
descriptions, since the adopted FE mesh is independent of the actual masonry bond. A hybrid 
strategy is followed in which the arch is modelled by 3D elasto-plastic continuum solid 
elements and 2D zero-thickness nonlinear interfaces arranged along the mid-thickness 
circumferential surface to simulate potential ring separation. An effective and robust 
procedure based on genetic algorithms is established to calibrate the macromodel mechanical 
parameters considering results from mesoscale simulations on virtual experiments. The 
accuracy and potential of the proposed approach is demonstrated in two numerical examples, 
based on masonry arches tested in previous research, which are characterised by different 
failure mechanisms. The results show a very good agreement between the calibrated 
macromodels and detailed mesoscale descriptions, including arches interacting with backfill 
as in real masonry bridges, thus demonstrating the potential of the proposed calibrated macro-
modelling approach in the practical assessment of masonry arch bridges. 
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