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Optimal Market Making with Competition

Abstract

Competition between market makers, which considers the impacts on trading strat-

egy of individual and liquidity of whole market resulting from multiple market mak-

ers competing for order flow and market maker incentives, was not properly studied

in the literature of optimal market making problem. This thesis is devoted to the

optimal market making problem, with competition between market makers. Three

main topics are studied in this thesis.

In the first topic, we consider the price competition between market makers. We

discuss optimal market marking with price competition and incomplete information,

which results in a looping dependence structure among market makers. We solve

the problem with the non-zero-sum stochastic differential game approach and char-

acterize the equilibrium value function with a coupled system of nonlinear ordinary

differential equations. We prove, do not assume a priori, that the Issac condition is

satisfied, which ensures the existence and uniqueness of Nash equilibrium. We also

perform some numerical tests that show our model produces tighter bid/ask spread

than a benchmark model without price competition and improves market liquidity.

In the second topic, we consider market makers competing for the market maker

incentive reward proposed by exchange, which depends on their trading volume

ranking. We model the competition as a stochastic mean field game, which can be

further reduced to a finite state mean field game, whose equilibrium is characterized

by a forward backward ODE systems. We numerically solve the equilibrium with

the deep neural network approach proposed in our third topic, and perform some
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numerical tests to compare bid/ask spread under different types market maker in-

centive reward. It is suggested that the introduction of incentive can reduce the

implicit trading cost, and rank-based reward, compared with the linear trading vol-

ume reward, can produce lower best bid/ask spread.

In the third topic, we discuss the deep neural network approach for solving the

forward backward ODE system corresponding to a more general class of finite state

mean field game, and the game in the second topic is just a special case of it. We

prove that the error between true solution and our approximation is linear to the

square root of loss function of our deep neural network.

Keywords: optimal market making, price competition, non-zero-sum stochastic

differential game, Issac condition, existence and uniqueness of Nash equilibrium,

forward backward ODE, mean field game, numerical method, deep neural network.
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1
Introduction

In the financial market, market makers play an important role in providing liquidity

for other market participants. They keep quoting bid and ask prices at which they

stand ready to buy and sell for a wide variety of assets simultaneously. Without

market makers, a buyer in the market might need to wait a long time until a seller

appears, as demand and supply usually do not appear at the same time. Market

makers act as an intermediary bridging demand and supply appearing from different

timing, and hence are crucial to financial market’s liquidity and stability. Exchanges

or some other trading venues even appoint designated market makers and set up

different market making incentive schemes for them to encourage liquidity provision

for various securities trading in their venues. Designated market makers are obliged

to quote for most of the time, but benefit from the market making incentive schemes.

Behaviours of market makers are different if they are trading in different markets,

with different trading rules and market structure. It is interesting for both market

1



makers and the trading venues to model and understand those market making be-

haviours. Market makers can find the optimal strategy to maximize their payoffs,

while exchanges or trading venues, can then design better trading rules or market

making incentive scheme to improve the liquidity.

Optimal Market Making Theory

The research that focus on market making evolves as the innovation of both trading

mechanism and technology. Before 90s in twenty century, floor trading was the most

common way of trading. Most of market makers are specialists, or dealers, hired

by exchanges, to stand in the central of exchange and trade with different people in

the market. They are considered as the traditional market makers. Their trading

frequency are low, and each trade might be of a relatively large units compared

with current trading behaviours. Market makers’ common concern is the change

of asset value, since they might inevitably have to take their positions overnight.

Ho and Stoll (1981); Avellaneda and Stoikov (2008); Guéant et al. (2013) formulate

market making for traditional market makers as a stochastic optimization problem

that maximize the expected utility of terminal wealth. On the other hand, other

research focus more on the price formation and adverse selection in market making

(See Kyle (1984, 1985, 1989); Dennert (1993); Calcagno and Lovo (2006); Loertscher

(2008); Ho and Stoll (1980); Bondarenko (2001)).

After 2000s, the innovation of technology, the appearance of more advanced com-

puter with sophisticated algorithm and electronic trading platform totally change

the landscape of market making business. Electronic trading platform becomes the

mainstream for both exchange traded and OTC traded products. Trading automa-

tion boosts the trading frequency. Following this trend, market makers also become

electronic. The old class of specialists has almost disappeared, and a modern version

of designated market makers (DMM) emerges. DMMs have contracts with exchanges

and are obliged to help provide liquidity to the market most of the trading time.

They are usually equipped with co-location facilities, high speed connections, and
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fast computers, reducing the time for each transaction to milliseconds. Nowadays,

market making is mostly controlled by these electronic market makers. There are

quite some research and articles that support this view (See the second and third

footnote at page 1 in Bellia et al. (2019)). In fact, after January 2016, all DMM

on the NYSE are electronic market makers (See ”High-frequency traders in charge

at NYSE,” Financial Times, January 26, 2016). Thanks to the boost of trading

frequency, electronic market makers tend to quote in high frequency with low trade

size per transaction, keep very low inventory and not carry overnight position, in

order to avoid the risk from variation of asset price. Market makers’ behaviours are

different. Inventory management becomes their main concern. One of the most im-

portant problems for the modern version of market makers is how to determine their

bid/ask spread optimally such that they can maximize their profits while remains

in a low inventory level.

Inspired by current market makers’ need to manage inventory, Cartea et al. (2015)

adds an terminal inventory punishment term to market maker’s payoff to extend

the model of Avellaneda and Stoikov (2008); Guéant et al. (2013). Guéant (2017)

further generalizes the model to a general intensity function and manage to reduce

the high dimensional HJB PDE to a simpler form by Ansatz under CARA utility

function. They also consider multi asset market making. Fodra and Labadie (2012)

derive an analytical solution for exponential market order intensity function when

there is no inventory punishment. With inventory punishment, they also provide

a analytical sub-solution of the original problem. In these models, the arrivals of

market order are all modelled as Poison process with controlled intensity, which

provides more tractability, but is less realistic. In contrast, Cartea and Jaimungal

(2015) extend the framework used in Cartea et al. (2014). They considered market

impact and adopted a more sophisticated method to model the fill rate of agent’s

limit order. In order to capture the cluster feature of market order arrivals, intensity

of the market order arrival is modeled as a self-excited process excited by informative

market orders and news events. The resulting HJB PDE is more comprehensive with
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solution approximated by an asymptotic method. Meanwhile, Cartea et al. (2017)

extend Avellaneda and Stoikov (2008); Guéant et al. (2013) and consider model

uncertainty. Fodra and Pham (2015) uses a different framework from Avellaneda

and Stoikov (2008). They use Markov Renewal Model to model mid price, which

can be bumped up by market orders with size that is big enough to consume all

the limit orders in the book. Abergel et al. (2020) propose a pure jump model for

optimal market making on the limit order book. Mid price dynamic is simply the

best bid/ask price that the last trade occurred at. They combine the limit order

book dynamic with the optimal market making control problem, and solve it with

Markov Decision Process technique conditioned on the jump time clock.

One common point of the existing literature mentioned above is that they only

consider the optimal market making problem for single market maker. Every market

maker in the model is independent to each other, and never get impacted by other

market makers’ strategies. However, we know in reality it is not the case. But the

impact of interaction among market makers on liquidity provision is still not well

understood.

Competition between Market Makers

Market makers face competition. There are usually multiple designated market

makers for one security. They usually have two kinds of interaction. The first is

the competitions among themselves, and the second is competition against volun-

tary market makers that make the market without signing any agreement with the

exchange, informed traders and speculative traders etc.

There have been some empirical research analyzing the competition among mar-

ket makers from data analysis view point (See Breckenfelder (2019); Bellia et al.

(2019)), which suggests that competition among market makers have considerable

impact on the market liquidity and should not be neglected. However, the ques-

tion of how the competition among market makers themselves affects the market

liquidity and market dynamic is largely unaddressed from a theoretical perspective,
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although there is mention of competition in a broad sense between market makers

and other market participants, i,e the second kind of interaction. Kyle (1984, 1985,

1989); Dennert (1993); Calcagno and Lovo (2006); Loertscher (2008) try to model

the price formation process and asymmetric competition of market makers against

other market participants e.g informed traders, low frequency market makers and

etc. But in their single period game setting, there is no need to manage inven-

tory. Ho and Stoll (1980); Bondarenko (2001) do use a multi-period setting, but

the need for inventory management is still not considered in their models. Hence

we deem their models are better fitted to traditional market makers instead of the

current electronic ones. Recently, Ait Sahalia and Saglam (2017) consider market

maker competition in a limit order book setting and introducing competition feature

into the traditional inventory control problems (See Guéant (2017)). But the two

competing market makers in Ait Sahalia and Saglam (2017) are of different trading

frequency and information advantage, while only the high frequency market maker

can take strategic move.

To the best of our knowledge, the competition among designated market makers

(which are symmetric) is largely neglected in existing literature. As the designated

market makers tend to be the most influential liquidity providers in the market, it

is crucial for both themselves and the exchanges to understand how the competition

can impact their optimal strategies, as well as their liquidity provision. Our ambition

in this thesis is to fill this gap.

Organization of the Thesis

The thesis is organized as follows. Since it is intended to be self-contained, we start

by recalling in Chapter 2 some preliminaries in stochastic calculus and game theory.

There are usually two kinds of competition among designated market makers. One

is price competition for order flows, another one is competition for market maker

incentive reward. In Chapter 3, We are to discuss the first one, i.e the competition

for order flow. Traders in the market can choose the best price to hit. Hence if a
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designated market maker quotes a price with less spread compared with others, it

will be more possible for her price to be hit by market traders. The price competition

among designated market makers is fierce since they are almost always providing

quotes near the tightest spread in the market. Most of existing literature either

fails to consider the inventory management concern of current designated market

makers, or only considers the price competition among different market participants

instead of among symmetric market makers like designated market makers. Then

there comes the question on how designated market maker to optimally decide the

bid/ask spread when other designated market makers’ strategies are considered.

To answer this question, we build a optimal market making model with price com-

petition and incomplete information, extending the market making model without

competition from Guéant (2017). The arrival of market orders to certain market

maker is modeled by jump processes with controlled intensity, but the intensity,

or the arrival rate depends not only on her own quotes, but also on quotes from

others, which results in a looping dependence structure among market makers. We

study how market makers can optimally decide their optimal strategies to maxi-

mize their terminal wealth while keeping their inventory low. We solve the problem

with the non-zero-sum stochastic differential game approach and characterize the

equilibrium value function with a coupled system of nonlinear ordinary differential

equations. The main contributions of this chapter are summarized by the following

bullet points:

• We discuss price competition between market makers in a continuous time

setting with inventory constraints and incomplete market information of com-

petitors’ inventory, and extend the classical optimal market making framework

in Guéant (2017) with the game theoretic approach. As far as we are con-

cerned, this is the first attempt to study the competition for order flow among

symmetric designated market makers.

• We prove, do not assume a prior or solve explicitly (See Hamadene et al.
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(1997); Buckdahn et al. (2004); Bensoussan et al. (2014); Lin (2015)), that

the Issac condition is satisfied, which ensures the existence and uniqueness of

Nash equilibrium.

• We perform some numerical tests to compute the equilibrium value function

and equilibrium controls (bid/ask spreads). The results show that our model

produces tighter bid/ask spread than the benchmark model without price com-

petition from Guéant (2017).

In Chapter 4, we discuss the second kind of competition, i.e the competition for the

market making incentive scheme. Designated market makers usually have contracts

with exchanges and follow the market making incentive scheme designed by the

exchanges. The purpose of appointing designated market makers and designing

market making incentives scheme for them is to stimulate liquidity provision. The

market making incentive scheme, on one hand, obliges designated market makers to

provide liquidity for most of the trading time, and on the other hand, offers them

various benefit including waives of commission fee, award of make-take fee, cash

reward depending on one’s absolute value of trading volume, or the relative rank of

trading volume among all other designated market makers. The reward structure

might vary as different exchanges offer different market making incentive schemes

for different securities. Then there comes the question on how the different reward

structures of market making incentive schemes can impact market makers’ optimal

strategies that determines their liquidity provision, and more specifically, whether

the introduction of reward related to relative rank of trading volume can improve

the liquidity provision.

To answer above question, we model market makers’ competition for trading volume

rank based reward as a mean field game problem.
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2
Preliminaries

2.1 General Notations and Abbreviations

For any real numbers x, y, x+ = max(x, 0), x− = max(−x, 0).

Rd denotes the d–dimensional Euclidian space. R = R1. For all x = (x1, . . . , xd) in

Rd, we denote by || · || the norm. Without further specification, it is the Euclidian

norm:

||x|| =

√√√√ d∑
i=1

x2
i .

We denote by Bη(x) (resp. B̄η(x)) the open (resp. closed) ball of center x ∈ Rd,

and radius η > 0, with corresponding norm in the corresponding paragraph.

C(O) is the space of all real-valued continuous functions on O ⊂ Rd+1.

C1,2,...,2 (O) is the space of all real-valued continuous functions f on O ⊂ Rd+1
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whose partial derivatives ∂f
∂t

, ∂f
∂xi

, ∂2f
∂xi∂xj

exist and are continuous on O. Note that

sometimes for notation convenience, we also denote by f ′1 the first order partial

derivative of f to its first variable, f ′′11 the second order partial derivative of f to its

first variable, f ′2 the first order partial derivative of f to its second variable, etc.

f(x) = o(g(x)) means that limx→0 f(x)/g(x) = 0.

(Ω,F ,P): probability space.

(Ω,F , (Ft)t≥0,P): filtered probability space.

Et[X]: expectation of random variable X given filtration Ft generated by the state

processes of the model.

SDE: stochastic differential equation.

ODE: ordinary differential equation.

PDE: partial differential equation.

DPP: dynamic programming principle.

HJB: Hamilton-Jacobi-Bellman.

MFG: Mean field game.

u.s.c.: upper-semicontinuous.

l.s.c.: lower-semicontinuous.

2.2 Definitions and Theorems

Definition 2.2.1. (Nash Equilibrium) A Nash equilibrium of a strategic game is

a profile of strategies (s∗1, ..., s
∗
n), where s∗i in Si (Si is the strategy set of player i),

such that for each player i, ∀si in Si, ui(s
∗
i , s
∗
−i) ≥ ui(si, s

∗
−i), where s∗−i = (s∗j)j 6=i,j /∈N

and ui :
∏n

i=1 Si → R.

9



Definition 2.2.2. (Zero Sum Game) A zero-sum game is a mathematical repre-

sentation of a situation in which each participant’s gain or loss of utility is exactly

balanced by the losses or gains of the utility of the other participants. If the total

gains of the participants are added up and the total losses are subtracted, they will

sum to zero.

Definition 2.2.3. (Non-zero Sum Game) Non-zero-sum game is the situation in

which the interacting game players’ aggregate gains and losses can be less than or

more than zero.

Definition 2.2.4. (Mean Field Game) Mean Field Games are games with a very

large number of agents interacting in a mean field manner in such a way that each

agent has a very small impact on the outcome. As a result, the game can be analyzed

in the limit of an infinite number of agents.

The following generalized Ito’s formula, Gronwall’s inequality and Lebesgue’s Dom-

inated Convergence Theorem are used throughout this thesis.

Theorem 2.2.5. (Generalized Ito’s formula) Let X be a semimartingale and let

f be a C2 real function. Then f(X) is again a semimartingale, and the following

formula holds:

f(Xt) = f(X0) +

∫ t

0

f ′(Xs−)dXC
s +

1

2

∫ t

0

f ′′(Xs−)d[X,X]Cs +
∑

0≤s≤t

∆f(Xs),

where XC is the continuous part of process X and ∆f(Xs) := f(Xs)− f(Xs−).

Lemma 2.2.6 (Gronwall’s inequality). Let I denote an interval of the real line of

the form [a,∞) or [a, b] or [a, b) with a < b. Let α, β and u be real-valued functions

defined on I. Assume that β and u are continuous and that the negative part of α

is integrable on every closed and bounded sub-interval of I. If β is non-negative and

if u satisfies the integral inequality

u(t) ≤ α(t) +

∫ t

a

β(s)u(s)ds, ∀t ∈ I,
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then

u(t) ≤ α(t) +

∫ t

a

α(s)β(s)e
∫ s
t β(r)drds, t ∈ I.

If, in addition, the function α is non-decreasing, then

u(t) ≤ α(t)e
∫ a
t β(s)ds, t ∈ I.

Theorem 2.2.7 (Lebesgue’s Dominated Convergence Theorem). Let (fn) be a se-

quence of complex-valued measurable functions on a measure space (S,Σ, µ). Sup-

pose that the sequence converges point-wise to a function f and is dominated by

some integrable function g in the sense that

|fn(x)| ≤ g(x),

for all numbers n in the index set of the sequence and all points x ∈ S. Then f is

integrable and

lim
n→∞

∫
S

|fn − f |dµ = 0,

which also implies

lim
n→∞

∫
S

fndµ =

∫
S

fdµ.

The Schauder fixed point theorem, Berge Maximum Theorem, as well as the global

implicit function theorem in (Galewski and Rădulescu, 2018, Theorem 4), are mainly

used by the proof of Generalized Issac condition in Chapter 3. The Schaefer’s fixed

point theorem on the other hand, is used by the proof in Chapter 5.

Theorem 2.2.8 (Schauder Fixed Point Theorem). If K is a nonempty convex closed

subset of a Hausdorff topological vector space V and T is a continuous mapping of

K into itself such that T (K) is contained in a compact subset of K, then T has a

fixed point.

Theorem 2.2.9 (Schaefer Fixed Point Theorem). Let T be a continuous and com-
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pact mapping of a Banach space X into itself, such that the set

{x ∈ X : x = λTx for some 0 ≤ λ ≤ 1}

is bounded. Then T has a fixed point.

Theorem 2.2.10 (Berge). Let X and Θ be metric spaces, f : X × Θ → R be a

function jointly continuous in its two arguments, and C : Θ → X be a compact-

valued correspondence. For x in X and θ in Θ, let

f ∗(θ) = max{f(x, θ)|x ∈ C(θ)},

and

x∗(θ) = arg max{f(x, θ)|x ∈ C(θ)} = {x ∈ C(θ) | f(x, θ) = f ∗(θ)}.

If C is continuous at some θ, then f ∗ is continuous at θ and x∗ is non-empty,

compact-valued, and upper hemicontinuous at θ, that is, if θn → θ and bn → b as

n→∞ with bn ∈ x∗(θn), then b ∈ x∗(θ).

Theorem 2.2.11 (Global Implicit Function Theorem). Assume F : Rn×Rm → Rn

is a locally Lipschitz mapping such that

• For every y ∈ Rm, the function φy : Rn → R, defined by φy(x) = 1
2
||F (x, y)||2,

is coercive, i.e., lim||x||→∞ φy(x) = +∞.

• The set ∂xF (x, y) is of maximal rank for all (x, y) ∈ Rn × Rm.

Then there exists a unique locally Lipschitz function f : Rm → Rn such that equa-

tions F (x, y) = 0 and x = f(y) are equivalent in the set Rn × Rm.

The next lemma shows that any single valued, bounded, upper hemicontinuous

mapping is a continuous function.

Lemma 2.2.12. Let A,B be two Euclidean spaces, Γ : A → B be a single-valued,

bounded and upper hemicontinuous mapping, then Γ is a continuous function.
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Proof. For any sequence an → a and bn = Γ(an) (Γ is a single-valued mapping), if

bn tends to a limit b, then we must have b = Γ(a) by the hemicontinuity of Γ and

we are done. Assume the sequence bn did not have a limit. Since bn is a bounded

sequence, there exist at least two subsequences bnk and bn′k that converge to two

different values b and b′. Since an → a, we must have both ank and an′k tend to a,

the hemicontinuity of Γ would imply b = Γ(a) and b′ = Γ(a), a contradiction to the

assumption that b 6= b′. Therefore, Γ is continuous.

The following Picard-Lindelof theorem (Theorem 2.2.13) in ODE theory, together

with the direct extension from its proof (Lemma 2.2.14) are used mainly in Chapter

3 to provide global existence and uniqueness of solution to ODE system.

Theorem 2.2.13 (Picard-Lindelof theorem). Consider the initial value problem in

RM :

y′(t) = F (t, y(t)), y(t0) = y0, (2.1)

where F : R × RM → RM is uniformly Lipschitz continuous in y with Lipschitz

constant L (independent of t) and continuous in t. Then, for some value ε > 0, there

exists a unique solution y(t) to the initial value problem on the interval [t0−ε, t0 +ε].

The lemma is a direct conclusion from the proof of Theorem 2.2.13, see Teschl

(2012). It helps us to extend the local existence and uniqueness of solution to the

global existence and uniqueness.

Lemma 2.2.14. Let Ca,b = [t0− a, t0 + a]×Bb(y0), where Bb(y0) is a closed ball in

RM with center y0 and radius b. Define

M = sup
(t,y)∈Ca,b

‖F (t, y)‖.

Then the solution to the ODE system (2.1) exists and is unique on interval [t0 −
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ε, t0 + ε], if ε satisfies following:

ε < min{ b
M
,

1

L
, a}.

To prove existence of fixed point, we need sometimes to verify the relatively compact-

ness like Proposition 5.4.5 in Chapter 5. Hence we introduce following Arzela-Ascoli

theorem from Dunford and Schwartz (1958).

Theorem 2.2.15 (Arzela-Ascoli theorem). Let X be a compact Hausdorff space,

and C(X) be space of real-valued continuous functions on X. Then a subset F of

C(X) is relatively compact in the topology induced by the uniform norm if and only

if it is equi-continuous and point-wise bounded.
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3
Market Making with Price

Competition

3.1 Introduction

Market makers play an important role in providing liquidity for other market par-

ticipants. They keep quoting bid and ask prices at which they stand ready to

buy and sell for a wide variety of assets simultaneously. One of the key challenges

faced by market makers is to manage inventory risk. Market makers need to decide

bid/ask prices which influence both their profit margins and accumulation of inven-

tory. Many market makers compete for market order flows as their profits come

from the bid/ask spread of each transaction. Traders choose to buy/sell at the most

competitive prices offered in the market. Hence market makers face a complex opti-

mization problem. In this chapter, we model market making for a single asset with
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price competition as a non-zero-sum stochastic differential game.

There has been active research on optimal market making in the literature with focus

on inventory risk management. Stochastic control and Hamilton-Jacobi-Bellman

(HJB) equation, a nonlinear partial differential equation (PDE), are used to derive

the optimal bid/ask spread. Ho and Stoll (1981) give the first prototype model for

the market making problem. Avellaneda and Stoikov (2008) propose a basic trading

model in which the asset mid-price follows a Brownian motion, market buy/sell order

arrivals follow a Poisson process with exponentially decreasing intensity function of

bid/ask spread, and market makers optimally set the bid/ask spread to maximize the

expected utility of the terminal wealth. Guéant et al. (2013) discuss a quote driven

market and include the inventory penalty for terminal utility maximization. Guéant

(2017) extends the model in Guéant et al. (2013) to a general intensity function

and reduces the dimensionality of the HJB equation for CARA utility. Cartea

and Jaimungal (2015) consider the market impact and capture the clustering effect

of market order arrivals with a self-exciting process driven by informative market

orders and news events, and solve the HJB equation by an asymptotic method.

Cartea et al. (2017) study the model uncertainty, similar to Avellaneda and Stoikov

(2008); Guéant et al. (2013), except for the self-exciting feature of market order

arrivals. Fodra and Pham (2015) divide the market orders depending on the size

which may bump up the mid-price that follows a Markov renewal process. Abergel

et al. (2020) discusses a pure jump model for optimal market making on the limit

order book with the Markov decision process technique conditioned on the jump

time clock.

One common feature in the aforementioned papers is that market order arrivals fol-

low a Poison process with controlled intensity. The probability that a market maker

buys/sells a security at the bid/ask price she quotes is a function of her own bid/ask

spread only. This setting provides tractability, but ignores the influence of prices

offered by other market makers. The price competition between market makers in
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practice is an important trading factor and needs to be integrated in the model. Kyle

adopts the game theoretic approach in a number of papers Kyle (1984, 1985, 1989) to

study the price competition between market participants of informed traders, noisy

traders and market makers, and finds the equilibrium explicitly and shows its impact

on price formation and market liquidity. To the best knowledge of the authors there

are no known results in the literature on price competition between market makers

who keep trading to profit from bid/ask spread while minimize inventory risk and

improve market liquidity. The primary motivation of this chapter is to fill this gap.

Market making with price competition is the key difference of our model to that of

Guéant et al. (2013) and others in the literature. The standard optimal stochastic

control is not applicable to our model due to the looping dependence structure and

the equilibrium control is used instead to solve the problem.

The main contributions of this chapter is the following: Firstly, we discuss price

competition between market makers in a continuous time setting with inventory con-

straints and incomplete market information of competitors’ inventory, and extend

the classical optimal market making framework in Avellaneda and Stoikov (2008)

with the game theoretic approach. Secondly, we prove the existence and uniqueness

of Nash equilibrium for the game under linear quadratic payoff and prove the gen-

eralized Issac’s condition is satisfied for a system of nonlinear ordinary differential

equations (ODEs), rather than assuming it to hold a priori or solving it explicitly as

in the most literature, see Hamadene et al. (1997); Buckdahn et al. (2004); Bensous-

san et al. (2014); Lin (2015). Thirdly, we perform some numerical tests to compute

the equilibrium value function and equilibrium controls (bid/ask spreads) and com-

pare results with those from a benchmark model without price competition, and we

find our model reduces the bid/ask spread and improves the asset liquidity in the

market considerably.

The rest of the chapter is organized as follows. In Section 3.2 we introduce the

model setup and notations. In Section 3.3 we state the main results on the exis-
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tence and uniqueness of Nash equilibrium, the generalized Issac’s condition, and the

verification theorem for the equilibrium value function. In Section 3.4 we perform

numerical tests to show the impact of price competition and compare the results

with a benchmark model without price competition. In Section 3.5 we prove the

main results (Theorems 3.3.3 and 3.3.4). Section 3.6 concludes.

3.2 Model Setting

Consider a market in a probability space (Ω,F , P ) with homogeneous market makers

in a set Ωmm. Choose one of them as a reference market maker, whose states include

time variable t ∈ [0, T ], asset reference price St, cash position Xt and the inventory

position qt. St is public information known to all market makers, whereas Xt and qt

are each market maker’s private information. The reference asset price St is assumed

to follow a Gaussian process

dSt = σdWt,

where W is a standard Brownian motion adapted to the filtration {Ft}t∈R+ , gen-

erated by W and augmented with all P -null sets, and σ is a constant representing

asset volatility. The terminal time T is small, normally a day, the probability that

St becomes negative is negligible and we may assume St is always positive. Market

makers do not buy/sell the asset at the reference price, but at bid and ask prices,

and make profit from the bid/ask spread. Denote by a a buying order and b a selling

order. The reference market maker’s bid price Sbt and ask price Sat are given by

Sbt = St − δbt , Sat = St + δat ,

where δbt and δat are the bid and ask spreads controlled by the reference market

maker.

At time t, other market makers also quote bid and ask prices simultaneously to
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compete with the reference market maker. Among their quotes there exist a lowest

ask price and a highest bid price, which are the most competitive prices other than

reference market maker’s prices. Denote by ka the market maker who provides the

lowest ask price Saka,t
(other than the reference market maker), and kb the market

maker who provides the highest bid price Sbkb,t
(other than the reference market

maker), in other words, δbkb,t
and δaka,t

are the lowest bid and ask spreads among the

reference market maker’s competitors.

Traders tend to sell/buy at the most competitive bid/ask price, but may accept

less competitive prices due to other factors such as liquidation of large quantities.

From the reference market maker’s perspective, the arrival timing of buying/selling

orders is unpredictable, while the intensities of them depend on reference market

maker’s bid/ask spreads as well as the most competitive spreads other than hers. On

one hand, the intensity depends on the absolute size of bid/ask spread. If bid/ask

spread are large, the quoted prices will be more away from traders’ expected fair

value, which decreases their willingness of trading. On the other hand, the intensity

also depends on the relative ranking of market maker’s spread compared to the

most competitive spread in the market. The lower her bid/ask spreads compared

relatively to that most competitive spreads, the more likely her bid/ask quotes are

to be hit by traders. Hence as a simplification of reality, we assume the arrival

intensity is decreasing in terms of reference market maker’s spread and increasing in

the most competitive spread. The number of selling market order arrival is denoted

by N b
t and that of buying market order is denoted by Na

t . Both of them are Poisson

processes with controlled intensities λbt and λat , defined by

λat = f(δat , δ
a
ka,t), λbt = f(δbt , δ

b
kb,t

),

where f is the intensity function. Denote by f ′1 the first order partial derivative of f

to its first variable, f ′′11 the second order partial derivative of f to its first variable,

etc.
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Assumption 3.2.1. Assume f is twice continuously differentiable and for all δ, x, y ∈

R, f(δ, x) > 0, f ′1(δ, x) < 0, f ′2(δ, x) ≥ 0, limδ→+∞−f ′1(δ,δ)

f(δ,δ)
> 0, and

f(δ, x)f ′′11(δ, y)− 2f ′1(δ, x)f ′1(δ, y) + |f ′1(δ, x)f ′2(δ, y)− f ′′12(δ, y)f(δ, x)| < 0. (3.1)

Furthermore, assume there exists a twice continuously differentiable function λ :

R → R such that f(δ, x) ≤ λ(δ) for all x ∈ R, limδ→+∞ λ(δ)δ = 0 and λ(δ)λ′′(δ) <

2(λ′(δ))2.

Some conditions in Assumption 3.2.1 are technical and needed in the proof. Many

functions satisfy these conditions, for example, f(δ, x) = λ(δ)g(x), where λ is the

one in Assumption 3.2.1 with negative first order derivative and limδ→+∞−λ′(δ)
λ(δ)

> 0,

and g is increasing, positive and bounded. Here is another example:

f(δ, x) :=
Λe−aδ√

1 + 3ek(δ−x)
, (3.2)

where Λ is the magnitude of market order arrival rate, a the decay rate, k the

dependence rate of the difference between reference market maker’s price and the

most competitive price in the market with a ≥
√

2
2
k > 0. It is easy to check that f

satisfies all conditions in Assumption 3.2.1. Some simple functions may not satisfy

Assumption 3.2.1. For example, a constant function is excluded, if it were allowed,

it would imply the size of bid/ask spread does not affect the arrival rate for market

makers. In this case no matter how high the market makers set their bid/ask spread,

there are always traders willing to trade with them. Then consequently every market

maker would set their bid/ask spread as large as possible, which is clearly unrealistic.

Market makers are allowed to short sell the asset. It means the inventory can be

negative. We assume there is an inventory position constraint for all market makers.

Let Q = {−Q, · · · , Q} be a finite set of integers with Q and −Q the maximum and

minimum positions a market maker may hold. Denote qt by the reference market

maker’s inventory process and qt ∈ Q. When qt = Q (or −Q), market maker can
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not buy (or sell) any more. Denote by Ib and Ia the indicator functions of market

maker’s buying or selling capability:

Ib(q) := 1{q+1∈Q}, Ia(q) := 1{q−1∈Q},

where 1A is an indicator that equals 1 if A is true and 0 if A is false. When market

maker’s bid price is hit by a market order (N b
t increases by 1), her inventory qt

increases by 1 and she pays Sbt for buying the asset. Similarly, when market maker’s

ask price is hit by a market order (Na
t increases by 1), her inventory qt decreases by

1 and she receives Sat for selling the asset. Market makers have inventory limit, due

to reasons like desk risk limit. We assume when their inventory reach −Q or Q, they

can no longer increase their exposure, but only trade in opposite direction to decrease

the exposure. It is equivalent to they will quote infinity for the corresponding ask

(for −Q inventory) or bid (for Q inventory) spread, which induces 0 intensity of

order arrival. The dynamics of cash Xt and inventory qt are given by

dXt = Sat I
a(qt)dN

a
t − Sbt Ib(qt)dN b

t

dqt = Ib(qt)dN
b
t − Ia(qt)dNa

t

with the initial condition (X0, q0) = (x, q) ∈ R×Q.

The reference market maker does not have complete information on the whole mar-

ket. Denote by (xkb ,qkb) and (xka ,qka) the states (cash and inventory) of market

makers kb and ka, respectively. They are random variables from the reference

market maker’s perspective, as her competitors’ states are not public information.

The reference market maker can only deduce the probability distribution for both

(xkb ,qkb) and (xka ,qka) based on available public information. We assume their

probability distributions are known and time-invariant. They are Pb for (xkb ,qkb)

and Pa for (xka ,qka). This incomplete information assumption is a reasonable ap-

proximation of real market. We next use a heuristic example to illustrate the in-

complete information setting and Pa and Pb.
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Example 3.2.1. Consider at time t there are 3 market makers quoting in the market

including the reference market maker. They are independent and may have different

states (cash and inventory). For each of them, all possible states and corresponding

probability, bid/ask spread are assumed by following table.

x q Probability Bid spread Ask spread

0 −1 1
3

10 bps +∞

0 0 1
3

30 bps 30 bps

0 1 1
3

+∞ 10 bps

For simplicity we assume they all have same cash position x = 0 and there are only

three inventory possibilities q = −1, 0, 1. When market maker’s inventory achieves

maximum capacity, they simply quote +∞ bid/ask spread to stop buying/selling

(limδ→+∞ f(δ, x) = 0 for any x). Assume uniform probability on q = −1, 0, 1.

When q = −1, market maker will prefer to buy than sell. Hence they will quote bid

spread 10bps lower than their ask spread. For q = 1, it is the opposite. Denote the

inventory of the reference market maker’s two competitors as q1 and q2. We can

derive Pa as following. Pa(0,−1) is the probability that one of the two other market

makers (other than reference market maker) who quotes the lowest ask spread has

inventory −1. It implies both market makers have inventory q1 = q2 = −1, otherwise

a lower ask spread 30 bps or 10 bps would be quoted if one of them had inventory 0

or 1.

Pa(0,−1) = P (q1 = −1)P (q2 = −1) =
1

9
.

Similarly, we can calculate Pa(0, 0) and Pa(0, 1) as following.

Pa(0, 0) = P (q1 = −1)P (q2 = 0) + P (q1 = 0)P (q2 = −1) + P (q1 = 0)P (q2 = 0) =
1

3

Pa(0, 1) = 1− (Pa(0,−1) + Pa(0, 0)) =
5

9
.

Note that above is just a extremely heuristic example to illustrate why usually Pa

has higher density on states with positive inventory (For simplicity we even assume
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there is only one cash value x = 0). Market makers with positive inventory are

more prone to sell than buy, hence they are more likely to be the one that quotes

the lowest ask spread among all reference market maker’s competitors. In reality, it

might not be possible to calculate Pa and Pb as above example since the equilibrium

bid/asks spread strategies have not yet been solved. But we assume market makers

can still get Pa and Pb by empirical analysis on all public information.

Note that Pa and Pb can also be time dependent. It would not affect our results

as the same proof still applies. For notation simplicity we only discuss the time

invariant case. Moreover, after solving the equilibrium, one can also deduce the

probability distributions for market makers’ states at each time t under equilibrium.

From our setting, they don’t necessarily equal to Pa and Pb, since we assume market

makers might quit or return to the market due to some unexpected interruption,

like risk limit touched, trading system or algorithm upgrade, etc. These different

factors all might make the states’ distribution in reality differ from the one we solve

from the equilibrium.

We assume market makers take closed loop feedback strategies that are deterministic

functions of state variables at time t, that is, there exist functions δa and δb such

that bid/ask spreads of market maker are given by

δat = δa(t, S, x, q), δbt = δb(t, S, x, q).

Definition 3.2.2. Denote by Aa and Ab the admissible strategy set. They are the

sets of all δa and δb that are lower bounded square integrable measurable functions

of t, S and x for all possible q.

δ := (δb, δa) ∈ Ab × Aa reference market maker’s strategy, ~δΩ := {δm,m ∈ Ωmm}

the collection of all market makers’ strategies, so reference market maker’s strategy

δ ∈ ~δΩ. Using the game theory convention, we may label the reference market

maker as 0 and ~δ−0 the set of strategies of all other market makers in Ωmm except
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the reference market maker, i.e., ~δ−0 := {δm,m 6= 0,m ∈ Ωmm}.

All strategies in ~δΩ can influence reference market maker’s expected intensity of

market order arrival, as everyone else in Ωmm can be reference market maker’s

competitor when a market order arrives. Hence reference market maker’s cash Xt

and inventory qt are determined by her own strategy δ as well as implicitly by those

in the set ~δ−0. Starting at time t ∈ [0, T ] with initial asset price S, cash x and

inventory q, the reference market maker wants to maximize the following payoff

function:

J(δ, ~δ−0, t, S, x, q) = Et[XT + qTST − l(|qT |)−
1

2
γσ2

∫ T

t

(qs)
2ds], (3.3)

where Et is the conditional expectation operator given St = S, Xt = x and qt =

q. The reference market maker wants to maximize the expected value of terminal

wealth, but holding inventory is penalized both at terminal time T (denote by l, an

increasing convex function on R+ with l(0) = 0), and throughout the time interval

[0, T ] (denoted by the integral term in (3.3) with γ a positive constant representing

the risk adverse level).

Market makers’ payoffs depend on each other’s strategy, which again depend on

each other’s payoff. Due to the circular dependence nature among market makers’

strategies and payoffs, we use a game theoretic approach to solve the problem. We

next define the Nash equilibrium.

Definition 3.2.3. We call the Nash equilibrium exists for a game Gmm if there exists

an equilibrium control profile ~δ∗Ω = {δ∗m,m ∈ Ωmm}, such that for every reference

player 0 in Ωmm, given her strategy δ∗ ∈ ~δ∗Ω and other players’ strategy set ~δ∗−0, her

payoff satisfies the following equilibrium condition:

J(δ∗, ~δ∗−0, t, S, x, q) = max
δ∈Ab×Aa

J(δ, ~δ∗−0, t, S, x, q). (3.4)

Moreover, the reference market maker’s equilibrium control is δ∗ and the equilibrium
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value function is

V (t, S, x, q) := J(δ∗, ~δ∗−0, t, S, x, q). (3.5)

3.3 Existence and Uniqueness of Dynamic Equi-

librium

In this section, we prove the existence and uniqueness of Nash equilibrium for Gmm

when price competition is in place. We first reduce the model’s dimension by ansatz,

then characterize the equilibrium value function by a system of nonlinear ODEs, and

prove the verification theorem, finally show the existence and uniqueness of Nash

equilibrium by an equivalent ODE system.

Writing the integral form of XT and qT in payoff function (3.3) with Ito’s lemma,

we can simplify the equilibrium value function V as

V (t, S, x, q) = x+ qS + θq(t), (3.6)

where θq : [0, T ]→ R is defined by

θq(t) = sup
δ∈Ab×Aa

Et[
∫ T

t

[δasf(δas , δ
a
ka,s) + δbsf(δbs, δ

b
kb,s

)− 1

2
γσ2q2

s ]ds− l(|qT |)] (3.7)

with Et being the conditional expectation operator given qt = q. The reason why θ

is independent on x and S is because each reference market maker is only optimizing

against an expected intensity function that does not depend on other market makers’

state, but only on their distributions, which are assumed to be known and given.

Assume there is equilibrium such that market makers with same inventory have

different value function (dependent on their x and S), then given the equilibrium

strategies which are function of t, S, x and q, let’s consider the optimization problem

for certain reference market maker. In this case, it is simply equivalent to that the
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reference market maker is solving her own market making optimization problem

similar to the one in (Guéant (2017)), but with a time dependent intensity function.

In this case, the same dimension reduction techniques in (Guéant (2017)) can be

applied and the unique optimal solution can be found. As suggested by (Guéant

(2017)), the optimal bid/ask spread would not depend on x and S. It contradicts

our assumption that equilibrium strategies depend on x and S. Hence we know both

equilibrium strategies and θ defined in above are independent on x and S.

Since process qt takes value in a finite set Q, it is a Markov chain with M = 2Q+ 1

states. Hence game Gmm is reduced to a continuous time finite state stochastic

game. Define a function θ : [0, T ]→ RM as

θ(t) = (θ−Q(t), · · · , θQ(t)). (3.8)

The equilibrium bid/ask spreads only depend on state qt at time t. As market makers

are homogeneous, under equilibrium at time t, any two market makers with the same

state q quote the same bid/ask spread, denoted by πbq(t) and πaq (t) respectively. Note

that πbq(t) exists for every q ∈ Q except q = Q when market maker reaches the

maximum inventory and stops quoting bid price. πaq (t) is similarly defined. We can

define the equilibrium control as

πa(t) = (πa−Q+1(t), · · · , πaQ(t)), πb(t) = (πb−Q(t), · · · , πbQ−1(t)).

The market maker’s equilibrium control δ∗ = ((δa)∗, (δb)∗) is given by

(δa)∗(t, S, x, q) = πaq (t), (δb)∗(t, S, x, q) = πbq(t). (3.9)

When market order arrives at time t, the reference market maker expects her most

competitive market maker in bid side to have inventory q with probability P b
q and in

ask side P a
q . As there are only finite number of states, the most competitive market
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maker’s state probability is given by:

P a = (P a
−Q+1, · · · , P a

Q), P b = (P b
−Q, · · · , P b

Q−1).

Market makers with inventory on boundary values do not quote in the market, so

P a
−Q = P b

Q = 0.

We next provide a characterization for the value function θ and the equilibrium

controls πa, πb. Applying the dynamic programming principle, we get the following

Hamilton Jacobi ODE system:

θ′q(t) =
1

2
γσ2q2 − sup

δ
ηa(θ(t), δ, πa(t), q)Ia(q)− sup

δ
ηb(θ(t), δ, πb(t), q)Ib(q)

θq(T ) = −l(|q|)

πaq (t) ∈ argsup
δ

ηa(θ(t), δ, πa(t), q), ∀q ∈ {−Q+ 1, · · · , Q}

πbq(t) ∈ argsup
δ

ηb(θ(t), δ, πb(t), q), ∀q ∈ {−Q, · · · , Q− 1},

(3.10)

where ηa, ηb : RM ×R×RM−1×Q→ R are defined by vectors θ = (θ−Q, · · · , θQ) ∈

RM , πa = (πa−Q+1, · · · , πaQ) or πb = (πb−Q, · · · , πbQ−1) as

ηa(θ, δ, πa, q) :=

Q∑
j=−Q+1

P a
j f(δ, πaj )(δ + θq−1 − θq)

ηb(θ, δ, πb, q) :=

Q−1∑
j=−Q

P b
j f(δ, πbj)(δ + θq+1 − θq).

(3.11)

Note that
∑Q

j=−Q+1 P
a
j f(δ, πaj (t)) and

∑Q−1
j=−Q P

b
j f(δ, πbj(t)) are market maker’s ex-

pected intensity of buying/selling market order arrival when her spread is δ and

other market makers take the equilibrium control. We can now characterize the

Nash equilibrium.

Theorem 3.3.1. Assume the Nash equilibrium of the game Gmm exists. Then the

equilibrium value function V can be decomposed as (3.6) with function θ. Equilibrium
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control δ∗ can be written as (3.9) with two vectors πa(t) and πb(t). Moreover, θ,

πa(t) and πb(t) satisfy the ODE system in (3.10).

The optimality condition that πa(t) and πb(t) satisfy in (3.10) leads to the following

generalized Issac condition, which is also defined in Cohen and Fedyashov (2017) to

guarantee the existence of Nash equilibrium for non-zero-sum stochastic differential

game. It is a natural extension of the standard assumptions (Issac condition) used

in the zero-sum game to the non-zero-sum game.

Definition 3.3.2. We call the generalized Issac condition holds if there exist func-

tions wa, wb : RM → RM−1 such that for any vector µ ∈ RM ,

ηa(µ,waq (µ), wa(µ), q) = sup
δ
ηa(µ, δ, wa(µ), q), ∀q ∈ {−Q+ 1, · · · , Q}

ηb(µ,wbq(µ), wb(µ), q) = sup
δ
ηb(µ, δ, wb(µ), q), ∀q ∈ {−Q, · · · , Q− 1},

(3.12)

where waq , w
b
q : RM → R and wa, wb are defined by

wa(µ) := (wa−Q+1(µ), · · · , waQ(µ)), wb(µ) := (wb−Q(µ), · · · , wbQ−1(µ)).

If the generalized Issac condition is satisfied, we can substitute the function wa, wb

into operators ηa, ηb, and the system (3.10) is reduced to the following ODE system:

θ′q(t) =
1

2
γσ2q2 − ηa(θ(t), waq (θ(t)), wa(θ(t)), q)Ia(q)

− ηb(θ(t), wbq(θ(t)), wb(θ(t)), q)Ib(q)

θq(T ) = −l(|q|).

(3.13)

We next state the verification theorem.

Theorem 3.3.3. Assume that f satisfies Assumption 3.2.1, that there exist bounded

strategies πa, πb and function θ on [0, T ] satisfying the system (3.10). Then the Nash

equilibrium of the game Gmm exists. The equilibrium value function is given by (3.6)
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and the equilibrium control by (3.9).

From Theorems 3.3.1 and 3.3.3 we know the existence and uniqueness of Nash equi-

librium for game Gmm are equivalent to the existence and uniqueness of equilibrium

controls πa, πb and function θ that satisfy the ODE system (3.10). We now state

the main result of this chapter.

Theorem 3.3.4. Assume f satisfies Assumption 3.2.1. Then there exists a unique

Nash equilibrium for game Gmm. Specifically, there exist unique locally Lipschitz

continuous functions wa, wb that satisfy generalized Issac condition in Definition

3.3.2, and there exists unique classical solution θ to the ODE system (3.13), such

that the equilibrium value function is given by (3.6) and the equilibrium controls by

πa(t) = wa(θ(t)), πb(t) = wb(θ(t)), t ∈ [0, T ]. (3.14)

3.4 Numerical Test

In this section, we numerically find the Nash equilibrium value function and bid/ask

spread when there is price competition with the intensity f defined in (3.2) and com-

pare the numerical results with those derived using a benchmark model in Guéant

(2017) without price competition and with the intensity f̃(δ) := 0.5Λe−aδ and the

liquidity penalty l(q) := 0.1q2. To make two models comparable, we define parame-

ters for f and f̃ in a way that when every market maker provides the same bid/ask

spread, the intensity of market order arrivals is the same in both cases, which gives

0.5Λ in the definition of f̃ . The parameters of both models are set as follows:

S σ (daily) γ k a Λ T (day) N Q

20.0 0.01 1.0 2.0 2.0 60.0 1.0 100 10

Here S is the initial asset value, N the number of time steps in discretization, T

the period of one day, σ the daily volatility, a and Λ used in intensity functions, γ
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inventory penalty coefficient, and Q the inventory maximum capacity. Furthermore,

probabilities of the most competitive market makers’ state P a and P b are assumed

to be given by (see Example 3.2.1 for explanation of P a and P b)

P a
−10 = P b

10 = 0

P a
0 = P b

0 = 0.2

P a
1 = P b

−1 = 0.4

P a
2 = P b

−2 = 0.3

P a
q = 1/170, q 6= −10, 0, 1, 2

P b
q = 1/170, q 6= 10, 0,−1,−2.

The rationale of designing above probability is given as following. Market makers

tend to have neutral position. When they have positive position, they are more

prone to sell them than buy further. That is why most market makers’ position

would focus on −1, 0, 1, with decreasing values for probability of larger size of

(positive or negative) inventory.

Figures 3.1 and 3.2 plot the optimal bid/ask spreads of both models at time 0.5.

We note that higher inventory leads to lower ask spread but higher bid spread,

indicating the preference of market makers to sell rather than to buy in order to

remain inventory neutral, and that the equilibrium bid/ask spreads of our model are

tighter than those of the benchmark model, indicating improved market liquidity.
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Figure 3.1: Ask spread strategy profile at time
0.5

Figure 3.2: Bid spread strategy profile at time
0.5

Figure 3.3 plots the equilibrium ask spreads with different inventory levels on [0, T ].

Market makers with positive inventory are more willing to sell and clear their po-

sitions due to the liquidity punishment at terminal time T , and this willingness

increases as time nears T as the equilibrium ask spread is decreasing when t tends

to T . They might even be willing to quote a negative ask spread, which means

selling the asset under its fair value, in order to return to neutral position. That is

because they deem they would suffer more if they hold the position and are forced to

liquidate their position at time T , which incurs a liquidity punishment. For market

makers with negative inventory, it is opposite. This explains empirical facts that

trading volume increases at the end of the day.

Figure 3.3: Optimal Ask Spread for Competi-
tion Model

Figure 3.4: Intensity v.s ask quote at time 0.5
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Figure 3.4 plots the expected intensity functions in terms of bid/ask spread at

time 0.5, which are given by Gb(δ) = f̃(δ) for the benchmark model and G(δ) =∑Q
j=−Q+1 P

a
j f(δ, πaj (t)) for our model, respectively. The one from our model is de-

rived endogenously from equilibrium (note that though the state distribution Pa and

Pb are still exogenous, equilibrium strategies profile πa and πb are derived endoge-

nously). But the one assumed by the benchmark model comes from Avellaneda and

Stoikov (2008) in which the distribution of of market order size and the statistics of

the market impact are used. When price competition is in place, the market order

arrival intensity decays faster, indicating that when price competition is in place but

market maker assumes there were not, they would tend to overestimate the market

order arrival intensity and quote higher bid/ask spreads.

Figure 3.5: Value function θ at time 0.1 Figure 3.6: Value function θ at time 0.9

Figures 3.5 and 3.6 plot the equilibrium value function θ near the starting time 0

and the terminal time T , respectively. We notice that θ with price competition

takes lower value than the one without at time 0.1 but performs better at time 0.9,

especially when there are still large inventories to be liquidated. The reason is given

following. Intuitively, the value function mainly depends on two factors. One is the

profit from bid/ask spread, while the other one is the liquidity punishment at termi-

nal time. At time 0.9 which is close to terminal time, the profit from bid/ask spread

is less important since not much time left to collect profit from the spread. Market
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makers with non-zero inventory have larger chances to liquidate their positions than

those in benchmark model, as their spreads are aggressive and lower than most of

other market makers, as well as market makers with same inventory in benchmark

model (see Figures 3.3 and 3.4). Comparing intensity functions from competition

model and benchmark model, Λe−aδ1√
1+3ek(δ1−x)

> 0.5Λe−aδ2 when δ1 is smaller than x

and δ2. Hence the order flow intensity that enable market makers in competition

model with non-zero inventory to liquidate their positions are generally larger than

those in benchmark model. Then they are exposed to less potential liquidity pun-

ishment, and higher value functions. On the other hand, when it is at time 0.1, the

profit from bid/ask spread is more important, and market makers in competition

model has lower value function since their bid/ask spreads are generally lower than

the benchmark model (see Figures 3.3).

In summary, when price competition between market makers is in place, market

maker tends to quote tighter bid/ask spreads and the market has better liquidity

and lower transaction cost. However, the profit of market maker is reduced. The

value function is lower when there is competition between market makers.

3.5 Proofs of Theorems 3.3.3 and 3.3.4

3.5.1 Proof of Theorem 3.3.3

Proof. To verify that (~δΩ)∗ is the equilibrium control profile and V is the equilibrium

value function, it is sufficient to check that they satisfy the equilibrium condition in

(3.4). For any market maker in Ωmm, given other market makers’ strategies in (~δΩ)∗

and any admissible strategy δ defined in Definition 3.2.2 we should prove:

J(δ, (~δ−0)∗, t, S, x, q) ≤ J((δ)∗, (~δ−0)∗, t, S, x, q) = V (t, S, x, q).
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Let the reference market maker takes the arbitrary admissible strategy δ, while

every other market maker decide their bid/ask spread by

(δa)∗(t, St, Xt, qt) = πaqt(t), (δb)∗(t, St, Xt, qt) = πbqt(t).

As πa and πb are bounded, they are also square integrable and hence admissible.

Denote reference market maker’s cash position at any time t as X∗,δt , while their

inventory is q∗,δt . We want to prove V defined by (3.6) via the solution θ to the ODE

system (3.13) is indeed the equilibrium value function. For any time t ∈ [0, T ], by

the terminal condition of V and θ, as well as the Ito lemma with respect to function

θ, we get following.

V (T, ST , X
∗,δ
T , q∗,δT ) = X∗,δT + q∗,δT ST + θq∗,δT

(T ) = x+ qS + θq(t)

+

∫ T

t

δbuI
b(q∗,δu )dN b

u +

∫ T

t

δauI
a(q∗,δu )dNa

u +

∫ T

t

q∗,δu dSu +

∫ T

t

θ′
q∗,δu

(u)du

+

∫ T

t

(θq∗,δu +1(u)− θq∗,δu (u))Ib(q∗,δu )dN b
u +

∫ T

t

(θq∗,δu −1(u)− θq∗,δu (u))Ia(q∗,δu )dNa
u .

(3.15)

The first equality in (3.15) holds as V in this case is defined by (3.6) via θ. As q∗,δu

takes value in finite set Q, and the solution for ODE exists on compact set [0, T ],

we know both θq(u) and θ′q(u) is uniformly bounded on [0, T ] for all q ∈ Q and:

E[

∫ T

t

(q∗,δu )2du] < +∞, E[

∫ T

t

(θ′
q∗,δu

(u))2du] < +∞.

Moreover, as θ is the unique solution to ODE system (3.13), it is bounded and hence

integrable over [0, T ]. From assumption of f and we assume admissible control, using
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similar argument to the verification theorem in Guéant (2017), we have,

E[

Q∑
j=−Q+1

P a
j

∫ T

t

f(δau, π
a
j (t))I

a(q∗,δu )|δau + θq∗,δu −1(u)− θq∗,δu (u)|du] < +∞

E[

Q−1∑
j=−Q

P b
j

∫ T

t

f(δbu, π
b
j(t))I

b(q∗,δu )|δbu + θq∗,δu +1(u)− θq∗,δu (u)|du] < +∞.

Take expectation on both side of (3.15), we have:

E[V (T, ST , X
∗,δ
T , q∗,δT )] = V (t, S, x, q) + E[

∫ T

t

ηa(θ(u), δau, π
a(u), q∗,δu )Ia(q∗,δu )du]

+ E[

∫ T

t

ηb(θ(u), δbu, π
b(u), q∗,δu )Ib(q∗,δu )du] + E[

∫ T

t

θ′
q∗,δu

(u)du].

where ηa and ηb are defined in (3.11). Hence we have:

E[V (T, ST , X
∗,δ
T , q∗,δT )] ≤ V (t, S, x, q) + E[

∫ T

t

sup
δau

ηa(θ(u), δau, π
a(u), q∗,δu )Ia(q∗,δu )du]

+ E[

∫ T

t

sup
δbu

ηb(θ(u), δbu, π
b(u), q∗,δu )Ib(q∗,δu )du] + E[

∫ T

t

θ′
q∗,δu

(u)du].

(3.16)

As θ satisfies ODE system (3.10) for every u ∈ [0, T ]. We substitute it into the

corresponding part in (3.16) and have following.

J(δ, (~δ−0)∗, t, S, x, q) = E[V (T, ST , X
∗,δ
T , q∗,δT )− 1

2
γσ2

∫ T

t

(q∗,δu )2du] ≤ V (t, S, x, q).

On the other hand, if the reference market maker also take equilibrium control, her

cash position and inventory are denoted by X∗t and q∗t respectively. And we have

following.

ηa(θ(t), πaq (t), π
a(t), q) = sup

δ
ηa(θ(t), δ, πa(t), q)

ηb(θ(t), πbq(t), π
b(t), q) = sup

δ
ηb(θ(t), δ, πb(t), q).

Substituting the equilibrium control defined in (3.9) to (3.16) can conclude the proof
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as following:

J((δ)∗, (~δ−0)∗, t, S, x, q) = E[V (T, ST , X
∗
T , q

∗
T )− 1

2
γσ2

∫ T

t

(q∗u)
2du]

= V (t, S, x, q) ≥ J(δ, (~δ−0)∗, t, S, x, q).

3.5.2 Proof of Theorem 3.3.4

The proof of Theorem 3.3.4 is made of three steps:

1. There exist functions wa, wb such that for any vector µ ∈ RM , wa(µ) and

wb(µ) satisfy equation (3.12).

2. wa and wb are unique and locally Lipschitz continuous, which guarantees RHS

of the ODE system (3.13) are also locally Lipschitz continuous.

3. There exists unique classical solution to ODE system (3.13).

The key step for proving Steps 1 and 2 is to characterize the vectors wa(µ) and wb(µ)

by the first order condition of Hamiltonian. They are the solution to some equation

system. Then we can prove step 1 and 2 by discussing the zero point for the equation

system. The key step for proving Step 3 is to obtain upper bound estimation for

θ. It can be done by showing θ is also a solution to another system of ODE, which

admits the comparison principle, and hence upper bound for its solution. Without

confusion of notations, we write wa(µ) and wb(µ) as,

wa(µ) = wa = (wa−Q+1, · · · , waQ), wb(µ) = wb = (wb−Q, · · · , wbQ−1).
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Proof of Step 1

We first show that wa and wb satisfy the optimal condition of the Hamiltonian. We

provide some preliminary results for the existence and uniqueness of the maximum

point for Hamiltonian ηa(µ, δ, w, q) given any vector µ ∈ RM and w ∈ RM−1. We

can prove the same result similarly for ηb(µ, δ, w, q).

Lemma 3.5.1. Assume intensity function f satisfies all the assumptions in Theorem

3.2.1. Then given any vectors w = (w−Q+1, · · · , wQ) ∈ RM−1 and µ, the maximum

point w.r.t δ exists and is unique for function ηa(µ, δ, w, q) when q = −Q+1, · · · , Q.

Furthermore, the maximum point of ηa(µ, δ, w, q) satisfies the first order condition:

dηa

dδ
(µ, δ, w, q) = 0.

Proof. Given any vector µ and w, the expected intensity function d is defined by

d(δ) :=

Q∑
j=−Q+1

P a
j2f(δ, wj).

From Assumption 3.2.1, we know for any δ, x and y:

f(δ, x)f ′′11(δ, y) + f(δ, y)f ′′11(δ, x) < 4f ′1(δ, x)f ′1(δ, y). (3.17)

Simple calculation shows

d(δ)d′′(δ) < 2(d′(δ))2,

which implies δ + µq−1 − µq + d(δ)/d′(δ) is a strictly increasing function of δ. It

means dηa

dδ
(µ, δ, w, q) = 0 at most has one root. Assume it has no root, which

means either ηa(µ, δ, w, q) is strictly increasing or strictly decreasing w.r.t δ. As

it can be easily deduced that limδ→+∞ η
a(µ, δ, w, q) = 0 and for certain δ > −µ,

ηa(µ, δ, w, q) > 0, ηa(µ, δ, w, q) can only be decreasing function w.r.t δ. However,

when δ < −µ, ηa(µ, δ, w, q) < 0. It suggests ηa(µ, δ, w, q) can not be decreasing
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either. Therefore there is unique root for dηa

dδ
(µ, δ, w, q) = 0. There exists a unique

δ∗ such that dηa

dδ
(µ, δ, w, q) = 0 and ηa(µ, δ, w, q) is strictly increasing for δ < δ∗ and

strictly decreasing for δ > δ∗, that is, δ∗ is the unique global maximum point of

ηa(µ, δ, w, q).

Step 1 is equivalent to following theorem, which proves that generalized Issac con-

dition in Definition 3.3.2 holds for any vector µ ∈ RM . We only focus on wa, as the

proof of wb is similar.

Theorem 3.5.2. Assume the intensity function f satisfies Assumption 3.2.1. Then

for any fixed vector µ = (µ−Q, · · · , µQ) ∈ RM , there is vector wa = (wa−Q+1, · · · , waQ)

such that for q = −Q+ 1, · · · , Q,

waq = argmax
δ
{ηa(µ, δ, wa, q)}. (3.18)

Define a mapping T : RM−1 → RM−1 as

Tq(w) = argmax
δ∈R

{ηa(µ, δ, w, q)}, ∀q ∈ {−Q+ 1, · · · , Q}

T (w) := (T−Q+1(w), · · · , TQ(w)),

(3.19)

(3.18) is equivalent to wa = T (wa), namely, wa is a fixed point of mapping T . We

need the Schauder Fixed Point Theorem 2.2.8 to prove the existence of wa. To apply

Theorem 2.2.8, we need to show the existence of K and the continuity of T . The

next lemma confirms the first requirement.

Lemma 3.5.3. Given any vector µ = (µ−Q · · · , µQ) ∈ RM and mapping T defined in

(3.19), there exists a nonempty convex compact set K ⊂ RM−1 such that T (K) ⊂ K.

Proof. Firstly, for any vector w ∈ RM−1, define ~y = (y−Q+1, · · · , yQ) = T (w). There

exist a uniform δmin ∈ R such that for every q,

yq ≥ δmin. (3.20)
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We can prove by contradiction. Assume there were no lower bound for yq. Define

Ga
q(δ) = ηa(µ, δ, y, q) for q = −Q+ 1, · · · , Q, we know

yq = argmax
δ
{Ga

q(δ)}.

Denote the uniform upper bound and lower bound of µq−1 − µq among all q ∈ Q as

Md and md. We have

yq > −Md.

Otherwise, Ga
q(yq) < 0 and contradicts with the fact that yq = argmaxδ{Ga

q(δ)},

and Ga
q(δ) > 0 as long as δ > −(µq−1 − µq). Hence we can conclude that

yq ≥ δmin := −Md.

Secondly, for any vector w ∈ [δmin,+∞)M−1, define ~y = (y−Q+1, · · · , yQ) = T (w).

There exists a uniform δmax ∈ R such that for every q,

yq ≤ δmax. (3.21)

Define δ0 := −md + 1. By definition of md, for every q we have

δ0 + µq−1 − µq ≥ 1 > 0.

Hence for every q ∈ Q, Ga
q(δ0) > 0. Moreover, as f is increasing to its second

argument, for any vector w ∈ [δmin,+∞)M−1, we have:

Ga
q(δ0) ≥

Q∑
j=−Q+1

P a
j f(δ0, δmin). (3.22)
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By assumption limδ→+∞ λ(δ)δ = 0, there exists δmax > δ0 such that

max
q
{

Q∑
j=−Q+1

P a
j λ(δmax)(δmax + µq−1 − µq)} <

Q∑
j=−Q+1

P a
j f(δ0, δmin). (3.23)

As f(δmax, ·) is bounded by λ(δmax) uniformly, (3.22) and (3.23) imply that for any

vector w ∈ [δmin,+∞)M−1,

max
q
Ga
q(δmax) < Ga

q(δ0).

Since δmax > δ0 and Ga
q(δmax) < Ga

q(δ0), we know that the maximum point δ∗ of

Ga
q cannot be in the interval (δmax,∞) as it would otherwise be a contradiction to

Ga
q(δ) being a strictly increasing function of δ for δ < δ∗. Hence for any q ∈ Q,

yq ∈ [δmin, δmax],

which shows T (K) ⊂ K, where K = [δmin, δmax]
M−1.

With the help of Berge Maximum Theorem (Theorem 2.2.10), we now can prove

the mapping T defined in (3.19) is continuous on K.

Lemma 3.5.4 (Continuious Mapping T in RM). Given any vector µ and bounded

set K defined in Lemma 3.5.3, mapping T defined in (3.19) is continuous on K.

Proof. We prove that given vector µ, each element Tq(w) of mapping T is continuous

respect to each wq. As the maximum point of ηa(µ, ·, w, q) exists and is unique for

every q ∈ {−Q + 1, · · · , Q}, Tq is a well defined single value mapping. Moreover,

ηa(µ, δ, w, q) is jointly continuous w.r.t δ and w. By Berge’s maximum theorem, Tq

is upper hemicontinuous function of w on bounded set K. Therefore, by Lemma

2.2.12, for q ∈ {−Q+ 1, · · · , Q}, Tq is also continuous w,r,t every wq. We conclude

that given vector µ, the mapping T is a continuous mapping from K → K.
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Finally we can prove theorem 3.5.2, which concludes the proof of step 1.

Proof of Theorem 3.5.2. As the intensity function f satisfies Assumption 3.2.1, from

the Lemma 3.5.1, the maximum point of Ga
q(δ) exists and is unique for every q. Fixed

vector µ ∈ RM , define mapping T : RM−1 → RM−1 as in (3.19). wa is the fixed

point of mapping T . To show the existence of fixed point to the mapping, Schauder

fixed-point theorem is applied to T by following steps.

Firstly, by Lemma 3.5.3, there exists a bounded closed set K ⊂ RM−1 which is

equivalently a compact set, such that T (K) ⊂ K. From the proof of Lemma 3.5.3,

the compact set K is convex.

Secondly, from Lemma 3.5.1 and 3.5.4, T is a single value continuous mapping from

K to K. By Theorem 2.2.8, T has a fixed point for every given µ, denoted by wa,

and

waq = T (wa) ∈ K. (3.24)

This concludes the proof of Step 1.

Proof of Step 2

With the help of global implicit function theorem (Theorem 2.2.11), we can show

the local Lipschitz continuity of functions wa and wb.

Theorem 3.5.5. Assume the intensity function f satisfies Assumption 3.2.1. Then

there are single valued and locally Lipschitz continuous functions wa, wb : RM →

RM−1, such that they satisfy the generalized Issac condition (3.12) in Definition

3.3.2 for any given vector µ ∈ RM .

Proof. We provide the proof for wa only. The proof for wb is similar.

To begin with, from Assumption 3.2.1, we have (3.17) for all δ, x and y. From Lemma

3.5.1, the maximum point of Ga
q(δ) = ηa(µ, δ, wa, q) is unique. From Remark 3.5.1,
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given any vector µ, wa that satisfies the generalized Issac condition in Definition

3.3.2 is also the solution to the following first order condition for every q,

Q∑
j=−Q+1

P a
j [f(waq , w

a
j ) + f ′1(waq , w

a
j )(w

a
q + µq−1 − µq)] = 0.

For any vector µ and δ = (δ−Q+1, · · · , δQ), define function Fq : RM−1×RM → R for

every q ∈ {−Q+ 1, · · ·Q} as following:

Fq(δ, µ) := −
∑Q

j=−Q+1 P
a
j f(δq, δj)∑Q

j=−Q+1 P
a
j f
′
1(δq, δj)

− δq − (µq−1 − µq).

Define mapping F : RM−1 × RM → RM−1 as

F (δ, µ) := (F−Q+1(δ, µ), · · · , FQ(δ, µ)).

F is continuously differentiable and wa is determined implicitly by F (wa, µ) = 0.

From the proof of step 1, there exists a function wa : RM → RM−1 such that

F (wa(µ), µ) = 0 for any vector µ. If we can verify Theorem 2.2.11 holds in this

case, the function wa satisfying F (wa(µ), µ) = 0 must be unique and continuously

differentiable, which concludes our proof. Hence the next step is to verify Theorem

2.2.11.

Firstly, we prove that the Jacobian matrix of F never vanish. Denote Jacobian

matrix of F with respect to δ as ∂δF , a 2Q × 2Q matrix, and its component at
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(i,m) is ∂Fi
∂δm

(δ, µ) for i,m = −Q+ 1, . . . , Q. Denote by, for i ∈ {−Q+ 1, · · · , Q},

Di := (

Q∑
m=−Q+1

P a
mf
′
1(δq, δm))2 > 0

Ai =
1

Di

Q∑
m=−Q+1

Q∑
j=−Q+1

P a
mP

a
j [f ′′11(δi, δm)f(δi, δj)− f ′1(δi, δm)f ′1(δi, δj)]

Iim :=
1

Di

P a
m

Q∑
j=−Q+1

P a
j [f(δi, δj)f

′′
12(δi, δm)− f ′1(δi, δj)f

′
2(δi, δm)].

For m = i, we have:
∂Fi
∂δi

(δ, µ) = −1 + Ai + Iii.

From Assumption 3.2.1 we have (3.17), and simple calculation shows:

− 1 + Ai =
1

Di

Q∑
m,j=−Q+1

P a
mP

a
j [f ′′11(δi, δm)f(δi, δj)− 2f ′1(δi, δm)f ′1(δi, δj)] < 0.

Hence

|∂Fi
∂δi

(δ, µ)| ≥ 1− Ai − |Ii,i|.

For i 6= m, the non-diagonal element of the Jacobian matrix ∂δF is given by:

∂Fi
∂δm

(δ, µ) = Iim.

To compare the diagonal element with the sum of non-diagonal elements, we have:

|∂Fi
∂δi

(δ, µ)| −
∑
m6=i

| ∂Fi
∂δm

(δ, µ)| ≥ 1− Ai −
Q∑

m=−Q+1

|Iim|. (3.25)
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From the definition of Ai and Iim,

1− Ai −
Q∑

m=−Q+1

|Iim|

=
1

Di

Q∑
m=−Q+1

P a
m{

Q∑
j=−Q

P a
j [2f ′1(δi, δm)f ′1(δi, δj)− f ′′11(δi, δm)f(δi, δj)]

− |
Q∑

j=−Q+1

P a
j [f(δi, δj)f

′′
12(δi, δm)− f ′1(δi, δj)f

′
2(δi, δm)]|}.

(3.26)

By the assumption of f in (3.1), we have

Q∑
j=−Q+1

P a
j [2f ′1(δi, δm)f ′1(δi, δj)− f ′′11(δi, δm)f(δi, δj)]

± [

Q∑
j=−Q+1

P a
j [−f ′2(δi, δm)f ′1(δi, δj) + f ′′12(δi, δm)f(δi, δj)]] > 0.

(3.27)

Therefore, as Di > 0, from (3.25), (3.26) and (3.27), we conclude that

|∂Fi
∂δi

(δ, µ)| −
∑
m6=i

| ∂Fi
∂δm

(δ, µ)| > 0.

The Jacobian matrix ∂δF (δ, µ) is strictly diagonally dominant, and is therefore a

nonsingular matrix.

Secondly, we show that given any fixed vector µ, whenever ||δ|| → ∞, ||F (δ, µ)|| →

∞. For any vector sequence ~δk, k = 1, 2 · · · , ||~δk|| → ∞. Then there exists sequence

nk ∈ {−Q+ 1, · · · , Q}, k = 1, 2 · · · , such that |δknk | → ∞. δknk is the nkth element of

vector ~δk. In the case that δknk → −∞, as we have

Lnk(
~δk) :=

∑Q
m=−Q+1 P

a
mf(δknk , δ

k
m)∑Q

m=−Q+1 P
a
mf
′
1(δknk , δ

k
m)

< 0.
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Hence we know following when k → +∞:

Fnk(
~δk, µ) = −Lnk(~δk)− δknk − (µnk−1 − µnk) > −δknk − (µnk−1 − µnk)→ +∞.

It means when δknk → −∞, ||F (~δk, µ)|| → ∞.

On the other hand, in the case that δknk → +∞, we can always assume δknk =

max{δki }i∈Q,i>−Q. As f ′1 < 0, f > 0 and f is increasing function to its second

variable, we have the following estimation on Fnk(
~δk, µ):

Fnk(
~δk, µ) = −

∑Q
m=−Q+1 P

a
mf(δknk , δ

k
m)∑Q

m=−Q+1 P
a
mf
′
1(δknk , δ

k
m)
− δknk − (µnk−1 − µnk)

≤ −
∑Q

m=−Q+1 P
a
mf(δknk , δ

k
nk

)

P a
nk
f ′1(δknk , δ

k
nk

)
− δknk − (µnk−1 − µnk).

From the assumption that limδ→+∞−f ′1(δ,δ)

f(δ,δ)
> 0, we have:

0 < − lim
δknk
→+∞

∑Q
m=−Q+1 P

a
mf(δknk , δ

k
nk

)

P a
nk
f ′1(δknk , δ

k
nk

)
< +∞.

Then by taking δknk → +∞, we finally have:

lim
δknk
→+∞

Fnk(
~δk, µ) = −∞.

Hence when fixed µ and δknk → +∞, we also get ||F (~δk, µ)|| → ∞. Moreover, if δknk

is consisted of two sub-sequences such that one converges to +∞, another to −∞,

by combining above, we can still get ||F (~δk, µ)|| → ∞. We conclude that whenever

||δ|| → ∞, ||F (δ, µ)|| → ∞.

Theorem 2.2.11 implies that there exists a function wa : RM → RM−1 such that

F (wa(µ), µ) = 0 and wa is unique and locally Lipschitz continuous, which concludes

the proof of Step 2.
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Proof of Step 3

We next prove there exists a unique classical solution θ to ODE system (3.13) on

[0, T ]. The proof is divided by two parts. Firstly, we show the solution to ODE

system (3.13) is bounded if it exists. Secondly, we provide the proof for existence

and uniqueness of the classical solution to ODE system (3.13).

Lemma 3.5.6. Assume the intensity function f satisfies Assumption 3.2.1. If θ :

[0, T ]→ RM is a solution to the ODE system (3.13), then for all q ∈ Q we have

−1

2
γσ2Q2T − l(Q) ≤ θq(t) ≤ 2 sup

δ
λ(δ)δT.

Proof. We first prove the upper bound. From the assumption on f and the proof

for the steps 1 and 2, the ODE system (3.13) is well defined. Since θ is assumed to

be a solution, define functions d0 and d1 twice continuously differentiable w.r.t δ as

d0(t, δ) :=

Q−1∑
j=−Q

P b
j f(δ, wbj(θ(t))) ≤ λ(δ)

d1(t, δ) :=

Q∑
j=−Q+1

P a
j f(δ, waj (θ(t))) ≤ λ(δ).

From Assumption 3.2.1, we have (3.17) for all δ, x and y. Simple calculation shows

that d0 and d1 satisfy

dζ(t, δ) ≤ λ(δ),
∂2dζ

∂δ2
(t, δ)dζ(t, δ) < 2(

∂dζ

∂δ
(t, δ))2, ζ = 0, 1.

On the other hand, θ is also the solution to ODE system for all q ∈ Q:

θ′q(t) =
1

2
γσ2q2 − sup

δ
{d0(t, δ)(δ + θq+1(t)− θq(t))}Ib(q)

− sup
δ
{d1(t, δ)(δ + θq−1(t)− θq(t))}Ia(q)

θq(T ) = −l(|q|).

(3.28)
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The comparison principle for ODE system (3.28) can be proved easily with similar

argument in the proof of comparison principle in Guéant (2017). Define operator

Hζ : [0, T ]× R→ R for both ζ = 0, 1 as

Hζ(t,∆µ) := sup
δ
{dζ(t, δ)(δ + ∆µ)}.

Then from Guéant (2017), we know Hζ is an increasing and non-negative function

in ∆µ.

max
t∈[0,T ],ζ=0,1

Hζ(t, 0) ≤ sup
δ
{λ(δ)δ}.

Define θ̄ : [0, T ]→ RM as following:

θ̄q(t) = 2 sup
δ
λ(δ)δ(T − t).

Substituting θ̄ into ODE system (3.28), we have

− θ̄′q(t) +
1

2
γσ2q2 −H0(t, θ̄q+1(t)− θ̄q(t))Ib(q)−H1(t, θ̄q−1(t)− θ̄q(t))Ia(q)

=
1∑
ζ=0

(sup
δ
λ(δ)δ −Hζ(t, 0)) +

1

2
γσ2q2 ≥ 0

θ̄q(T ) = 0 ≥ θq(T ) = −l(|q|).

Then by the comparison principle from Guéant (2017), we know for every q ∈ Q,

θq(t) ≤ θ̄q(t) ≤ 2 sup
δ
λ(δ)δT.

We next prove the lower bound. Let θ̃ : [0, T ] → RM satisfy the following ODE

system for all q ∈ Q:

θ̃′q(t)−
1

2
γσ2q2 = 0

θ̃q(T ) = −l(|q|).
(3.29)
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The closed-form solution is given by

θ̃q(t) =
1

2
γσ2q2(t− T )− l(|q|).

Note we have estimation that for every vector µ ∈ RM and every q ∈ Q,

ηa(µ,waq (µ), wa(µ), q) ≥ 0, ηb(µ,wbq(µ), wb(µ), q) ≥ 0.

Since θ̃q(T ) ≤ θq(T ), θ̃
′
q(t) ≥ θ

′
q(t), then it can be proved similarly as the proof of

the upper solution that for every q ∈ Q:

θq(t) ≥ θ̃q(t) ≥ −
1

2
γσ2Q2T − l(Q).

Then with the help of Picard-Lindelof theorem (Theorem 2.2.13) and its extension

(Lemma 2.2.14), we can prove the existence of a classical solution to the coupled

ODE system (3.13).

Theorem 3.5.7. Consider the terminal value ODE problem on [0, T ]:

θ′(t) = F (t, θ(t)), θ(T ) = θ0, (3.30)

where F : [0, T ] × RM → RM is a jointly locally Lipschitz continuous function.

Assume that there exists a constant K such that if solution θ exists on any sub-

interval of [0, T ], θ(t) ∈ [−K,K]M . Then there exists a unique solution to (3.30) on

[0, T ].

Proof. Define AT,2
√
MK := [0, T ]×[−2

√
MK, 2

√
MK]M . F is a continuous function.
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Hence there exists uniform constant C > 0 such that

C := sup
(t,y)∈AT,2√MK

‖F (t, y)‖. (3.31)

Since F is jointly locally Lipschitz continuous, there exists a series of open set

Ai such that F is Lipschitz continuous in Ai with Lipschitz coefficient Li, and

AT,2
√
MK ⊂ ∪iAi. By Heine Borel theorem, there are finite set I of i such that

AT,2
√
MK ⊂ ∪i∈IAi. Define L := maxi∈I Li, we know F is Lipschitz continuous on

the compact set AT,2
√
MK with uniform Lipschitz coefficient L.

As terminal value θ0 ∈ [−K,K]M , we define C0
T,
√
MK

:= [0, T ] × B√MK(θ0). Then

C0
T,
√
MK
⊂ AT,2

√
MK . For ε := min{

√
MK
C

, 1
L
, T}, the solution θ to ODE system

(3.30) exists and is unique on [T − ε, T ]. If ε = T , then we are done, otherwise,

update the new terminal time as T̃ := T−ε. Since θ(T̃ ) ∈ [−K,K]M by assumption,

we can update a new terminal value θ0 := θ(T̃ ). Define a new C1
T̃ ,
√
MK

:= [0, T̃ ] ×

B√MK(θ(T̃ )) ⊂ AT,2
√
MK . For ε := min{

√
MK
C

, 1
L
, T̃}, solution θ to ODE system

(3.30) exists and is unique on [T̃ − ε, T̃ ], and hence exists and is unique also on

[T̃ − ε, T ]. Repeat this process and we can reach ε = T̃ after finite number of steps,

in which case we have proved the existence and uniqueness of solution θ to ODE

system (3.30) on the whole time interval [0, T ].

Combining Lemma 3.5.6, Theorem 3.5.5, and Theorem 3.5.7, we can finally proceed

to show that the ODE system (3.13) has a unique classical solution.

Theorem 3.5.8. There exists unique classical solution θ to ODE system (3.13) on

[0, T ].

Proof. According to Lemma 3.5.6, we know if the solution θ exists on any sub-

interval of [0, T ], there exists constant K ≥ 0 such that

−K ≤ θq(t) ≤ K.
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Define F : [0, T ]× RM → RM as

Fq(t, θ(t)) :=
1

2
γσ2q2 − ηa(θ(t), waq (θ(t)), wa(θ(t)), q)Ia(q)

− ηb(θ(t), wbq(θ(t)), wb(θ(t)), q)Ib(q)

F (t, θ(t)) := (F−Q(t, θ(t)), · · · , FQ(t, θ(t))).

As q is finite, the original ODE system (3.13) can be rewritten in a vector form

with F as in (3.30). Then F is a jointly locally Lipschitz continuous function, and if

solution θ exists on any sub-interval of [0, T ], θ(t) ∈ [−K,K]M . By Theorem 3.5.7,

the ODE system has unique solution on [0, T ]. This concludes the proof of step

3.

Completion of Proof of Theorem 3.3.4

From Steps 1, 2 and 3, we know there exist unique locally Lipschitz continuous

functions wa, wb that satisfy generalized Issac condition in Definition 3.3.2, the ODE

system (3.13) is well defined and equivalent to the ODE system (3.10).There exists

a unique classical solution to ODE system (3.13). Define the equilibrium value

function for Gmm by (3.6), and the equilibrium controls by (3.14). As θ is the

classical solution to the ODE system (3.13), it is a continuous function on [0, T ] and

hence bounded. Then both πa(t) = wa(θ(t)) and πb(t) = wb(θ(t)) are bounded on

[0, T ]. θ, πa(t) and πb(t) satisfy the ODE system (3.10). Hence from the verification

Theorem 3.3.3, the equilibrium for game Gmm exists. On the other hand, as the

solution to ODE system (3.10) is unique, by Theorem 3.3.1 we know the equilibrium

point is also unique.
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3.5.3 Proof of example intensity function (3.2) satisfy-

ing Assumption 3.2.1

Proof. Define function g as following.

g(δ, x) :=
Λ√

1 + 3ek(δ−x)

f(δ, x) = e−aδg(δ, x)

(3.32)

By simple calculation, we have following.

f ′1(δ, x) = e−aδ(g′1(δ, x)− ag(δ, x))

f ′2(δ, x) = e−aδg′2(δ, x)

f ′′11(δ, x) = e−aδ(g′′11(δ, x)− 2ag′1(δ, x) + a2g(δ, x))

f ′′12(δ, x) = e−aδ(g′′12(δ, x)− ag′2(δ, x))

(3.33)

Moreover, for the derivatives of g we have following.

g′1(δ, x) = −3Λk

2

ek(δ−x)

(1 + 3ek(δ−x))
3
2

g′2(δ, x) = −g′1(δ, x)

g′′11(δ, x) = −3Λk2

2

ek(δ−x)(1− 3
2
ek(δ−x))

(1 + 3ek(δ−x))
5
2

g′′12(δ, x) = −g′′11(δ, x)

(3.34)

To check the conditions above, we maker some change of variables as below.

x̄ := 3ek(δ−x) > 0, ȳ := 3ek(δ−y) > 0 (3.35)
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Define A1 and A2 as following.

A1 := f(δ, x)f ′′11(δ, y)− 2f ′1(δ, x)f ′1(δ, y) + (f ′1(δ, x)f ′2(δ, y)− f ′′12(δ, y)f(δ, x))

A2 := f(δ, x)f ′′11(δ, y)− 2f ′1(δ, x)f ′1(δ, y)− (f ′1(δ, x)f ′2(δ, y)− f ′′12(δ, y)f(δ, x))
(3.36)

Then we only need to show both A1 and A2 are negative. By simple calculation, we

have the simplification of A1 and A2.

A1 =
Λ2e−2aδ

(1 + x̄)
3
2 (1 + ȳ)

5
2

{[(k
2

2
− a2)ȳ2 − (k2 + 2a2)ȳ − a2]

+ x̄[−(
1

2
k + a)2ȳ2 − (

7

4
k2 + 2ak + 2a2)ȳ − (a2 + ak)]}

(3.37)

Since k2

2
< a2, we know A1 < 0. On the other hand, for A2 we have following

representation.

A2 = e−2aδ(−a2g(δ, x)g(δ, y)− g′1(δ, x)(g′1(δ, y)− 2ag(δ, y))) (3.38)

Since both g(δ, x) and g(δ, y) are positive, while both g′1(δ, x) and g′1(δ, y) are neg-

ative. Hence we can also know A2 < 0. Therefore we have verified the following

holds for any δ, x and y.

f(δ, x)f ′′11(δ, y)− 2f ′1(δ, x)f ′1(δ, y) + |f ′1(δ, x)f ′2(δ, y)− f ′′12(δ, y)f(δ, x)| < 0 (3.39)

Furthermore, it is easy to check that

f(δ, x) > 0, f ′1(δ, x) < 0, f ′2(δ, x) ≥ 0

lim
δ→+∞

f(δ, x)δ = 0, lim
δ→+∞

−f
′
1(δ, δ)

f(δ, δ)
> 0

(3.40)

To conclude, f satisfies all the conditions mentioned.
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3.6 Conclusions

In this chapter we have modeled the price competition between market makers,

proved the generalized Issac condition, which ensures the existence and uniqueness

of Nash equilibrium for market making with price competition, and derived the

equilibrium strategies and the equilibrium value function. We have also performed

numerical tests to compare our model with a benchmark model in existing literature

without price competition and found that the introduction of price competition

reduces bid/ask spreads and improves market liquidity.
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4
Market Making with Rank-based

Trading Volume Reward

Competition

4.1 Introduction

For market makers in exchange market, they can profit not only from the bid/ask

spread, but also from exchange’s market making incentive program if their business

is large enough to be appointed as the designated market maker by the exchange.

Exchange’s purpose of appointing designated market maker is to stimulate stable

liquidity provision for certain products, which can attract more trading on these

products in its venue, and ultimately increase exchange’s revenue, as commission

fee income is the main source of exchanges’ profit. In order to do so, exchange
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sets up contract known as market making incentive scheme with the designated

market makers. This is quite common nowadays. Different market making incentive

schemes can be found in different exchanges for different products (see the ones for

LSE, ICE, Euronext and etc), though they may be called with a different name.

In these schemes, designated market makers are obliged to keep providing bid and

ask quotes in the market for certain percentage of the day. In some exchanges,

designated market makers might also need to satisfy certain requirements on their

trading volume, speed to respond request for quote, their size of bid/ask spreads,

and etc. In return, they can receive various kinds of incentive reward, depending on

the fee structure of the market making incentive scheme.

The detailed fee structures of market making inventive schemes from different ex-

changes might differ quite a lot (see different market makers incentive programs

of LSE, ICE, Euronext etc), but we can still summarize two most commonly seen

incentive types:

1. Make take fees: cash reward proportional to the absolute value of designated

market makers’ total trading volume.

2. Profit sharing pool: cash reward related to the relative ranking of designated

market makers’ total trading volume among all designated market makers.

To be more specific, make take fee is the commission waive or further cash reward

provided by exchange every time when designated market maker’s bid/ask quote is

hit. It is a quite general approach and can be seen in the market incentive program

from different exchanges. The purpose is to motivate designated market makers to

lower their bid/ask spread in order to increase their trading volume and earn more

make take fee. As a result, exchange’s profit coming from the commission fee from

the other side of the trade gets increased. On the other hand, certain exchange also

tend to introduce trading volume competition among designated market makers to

provide further trading motivation for designated market makers. One example of
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exchanges using this approach is the London Stock Exchange Derivatives Market (see

London Stock Exchange Derivatives Market, market making obligations, version 6.4,

19 April 2018). Like in the IOB market in London Stock Exchange, at the beginning

of certain period of time (month, quarter, etc), certain percentage of the revenue,

called revenue sharing pool is set aside, and at the end of that period, designated

market makers will be ranked in terms of their total trading volume during this

period of time. Their ranking then will determine the amount of reward they could

get. Most of the market making incentive schemes are mainly just the mixture of

the two incentive types.

Understanding and comparing both incentive types are crucial for exchanges to

design a more efficient market making incentive scheme. However, there is still not

much existing literature discussing the impact of different market making incentive

scheme. For the first type of incentive, i.e make take fee, there are some relevant

studies that focus on the make take fee structure and its impact on the market

welfare. However, they are either empirical, or adopting stylized models that might

be too simple to characterize the market reality (See Foucault et al. (2013); Anand

et al. (2016); Laruelle and Lehalle (2018); Colliard and Foucault (2012); Angel et al.

(2011)). Recently, El Euch et al. (2018) adopt a more realistic model for market

making from Cartea et al. (2015); Guéant (2017), and discuss the optimal make-take

fee structure design by extending the optimal market making model to a principal-

agent problem between market makers and exchange. But the assumption on make-

take fee in El Euch et al. (2018) is not very practical. Their commission fee schedule

is exchange’s stochastic feed back control, while in reality it should be a constant

stated in the contract between market makers and exchange at the initial time.

On the other hand, for the second type of incentive, to the best of our knowledge,

there is still no existing relevant literature, while it is actually commonly seen in the

contracts of market making incentive scheme from various exchanges and products.

Hence our work is to fill this gap and include both the two types of incentive reward

into the optimal market making problem.
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We extend the optimal market making model from Cartea et al. (2015); Guéant

(2017). Similar to El Euch et al. (2018), we can easily include make take fee into

our model, except that the our make take fee is a given constant parameter, not

a stochastic control of exchange. The main obstacle is to model market makers’

competition for the profit sharing pool. As far as we know, we are the first to model

market making with reward related to trading volume ranking. We will show that

market making with both make take fee and trading volume ranking related reward

can be modelled as a mean field game problem, which can further be simplified to

a finite state mean field game in continuous time. The existence, uniqueness, and

convergence property of the game can be proved using results of Cecchin and Pelino

(2019). As the equilibrium value function is characterized by a forward backward

ODE system, which is generally difficult to solve even numerically. We apply a deep

neural network approach from Sirignano and Spiliopoulos (2018) to numerically solve

the ODE system. Then we compare and analyze market makers’ different behaviour

and the market liquidity under incentive schemes with and without make take fee

or trading volume ranking competition.

We also find that our model belongs to a more general class of finite state mean field

game, which can also be numerically solved by our deep neural network approach.

We will provide a error estimation for this deep neural network numerical solution

to the general finite state mean field game in the next section.

4.2 Model Setting

The model setting is similar to Guéant (2017), except that exchange provides incen-

tive reward for market making. In this case the terminal payoffs of market makers

also depend on their trading volume sizes and rankings among other market makers.

Consider a family of market makers Ωmm in the market who keep quoting bid/ask

limit orders in order to profit from the bid/ask spread. Select one of them as our
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reference market maker. Asset reference price St follows a simple Brownian motion

with initial value S,

dSt = σdWt,

where Wt is a standard Brownian adapted to a standard filtration {FWt }t∈R+ . And

reference market maker’s bid price Sbt and ask price Sat are defined by following:

Sbt = St − δbt , Sat = St + δat ,

where δbt and δat are the bid and ask spreads respectively, and we use a and b to

denote the type of limit order (bid or ask). Define N b
t and Na

t two Poisson processes,

modelling the sell/buy market orders arrival to the reference market maker. The

intensities of N b
t , N

a
t are Λ(δbt ), Λ(δat ) respectively. Similar to Guéant (2017), we

assume Λ : R→ R is a decreasing, continuously differentiable function satisfying:

∂2Λ

∂δ2
(δ)Λ(δ) < 2(

∂Λ

∂δ
(δ))2. (4.1)

Market maker has state variables (Xt, qt, vt). qt is her inventory with initial value q.

We assume qt can only take values in a finite set Q = {−Q, · · · , Q}. It means when

q = Q, market maker achieves their maximal inventory capacity and can not buy

anymore. It is similar when q = −Q. We use Ib and Ia to denote market maker’s

buying or selling capability.

Ib(q) := 1q+1∈Q, Ia(q) := 1q−1∈Q.

Then the dynamic of qt is

dqt = Ib(qt)dN
b
t − Ia(qt)dNa

t .

Xt is the cash account of the reference market maker with initial value x. Its dynamic
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is as following:

dXt = (Sat − c)Ia(qt)dNa
t − (Sbt + c)Ib(qt)dN

b
t ,

where c is the commission fee charged by the exchanges. When c is positive, exchange

charges market maker commission fee, and when c is negative, exchange pays market

maker for market making. We assume c is a constant determined by exchange at

time 0. Meanwhile, as market maker’s terminal payoff depend on her trading volume

ranking, we use vt to record the accumulated trading volume for the reference market

maker. We assume vt ∈ V := {0, · · · , vmax}, i.e trading volume above vmax is not

counted in the reward calculation. This is simply a assumption needed by technical

perspective of the proof. In reality, one can always set vmax high enough such that

it can never be touched.

dvt = (Ib(qt)dN
b
t + Ia(qt)dN

a
t )1{vt<vmax}.

Every market maker wants to maximize the expected value of terminal wealth while

being penalized for holding inventory at terminal time T and throughout the time

interval [0, T ] with γ, a positive constant representing the risk adverse level and

with l an increasing convex function on R+ with l(0) = 0, denoting the liquidity

penalty for holding inventory at T . Also, market maker is rewarded according to

their trading volume at T by the market making incentive schemes set by exchange,

denoted by R, an increasing function on Z+.

sup
δa,δb

E0[XT + qTST − l(|qT |) +R(vT )− 1

2
γσ2

∫ T

0

q2
t dt], (4.2)

In this chapter, We focus on the rank based trading volume reward. So R(vT ) is

proportional to the number of market makers with trading volume less than vT .

If reference market maker’s ranking of accumulated trading volume vT among all

market makers is higher, the reward R(vT ) will also be higher. The optimization
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problems of different market makers are coupled. In reality, the total number of

market makers participating in this competition is finite. So it is a stochastic game

with finite number of players. However, since the total number of market makers

is not small, the game problem is of high dimension. The equilibrium is difficult to

solve even numerically due to the curse of dimension. To tackle it, we use a limiting

case when there is infinitely many market makers to approximate the reality when

there are only finite number of players. By taking the limit, it becomes a mean field

game with finite states.

In the limiting mean field game, denote the probability measure on the mean

field of discrete states (qt, vt) as p(t, qt, vt). Then given p, if the reference mar-

ket maker’s accumulated trading volume is v, then the percentage of market makers

in the market that the reference market maker exceeds w.r.t trading volume is

1−
∑vmax

j=v

∑Q
i=−Q p(T, i, j). At terminal time T , exchange will reward every market

maker according to this percentage. Given the maximum reward R, a constant set

by the exchange, R(·) is defined by:

R(vT ) := R(1−
vmax∑
j=vT

Q∑
i=−Q

p(T, i, j)). (4.3)

We have the convergence between finite players game to the mean field game from

following remark according to Theorem 6 in Cecchin and Pelino (2019). It will be

explained in details by Remark 4.3.2 later.

Remark 4.3.2 suggests that mean field game is a good approximation of reality when

there are finite number of players. We can use a mean field game to approximate

the game between finite number of players.
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4.3 Dimension reduction and Main Results

Using the martingale property, (4.2) can be reduced to

x+ qS + sup
δa,δb

E[

∫ T

0

[(δat − c)Λ(δat ) + (δbt − c)Λ(δbt )−
1

2
γσ2q2

t ]dt

− l(|qT |) +R(1−
vmax∑
j=vT

Q∑
i=−Q

p(T, i, j))].

We can notice what market maker is actually maximizing does not depend on state

Xt. We assume market maker takes closed loop feed back control, i.e when market

maker has state (q, v),

δat = δa(t, q, v), δbt = δb(t, q, v). (4.4)

Then given any p, the value function θ for market maker is defined as

θ(t, q, v) := sup
δa,δb

Et[
∫ T

t

[(δas − c)Λ(δas ) + (δbs − c)Λ(δbs)−
1

2
γσ2q2

s ]ds

− l(|qT |) +R(1−
vmax∑
j=vT

Q∑
i=−Q

p(T, i, j))|qt = q, vt = v].

(4.5)

As the only relevant states are qt and vt that both take values in finite sets, the

problem can be reduced to a continuous time finite state mean field game discussed

in Cecchin and Pelino (2019) by reformulating some notations as following. Define

K := (2Q + 1)(vmax + 1) and Σ := {1, · · · , K}. There is a one to one mapping

Z : Q×V→ Σ. For every (q, v) ∈ Q×V, there exists z ∈ Σ such that

z = Z(q, v). (4.6)

61



And for every z ∈ Σ, there exists (q, v) ∈ Q×V such that

(q, v) = Z−1(z)

We further define inverse Z−1
1 and Z−1

2 as

q = Z−1
1 (z), v = Z−1

2 (z). (4.7)

The state (q, v) is then reformulated by state z. The value function θ and probability

measure on mean field of state p are reformulated as θ, p : [0, T ]→ RK , where

θ(t) := (θ1(t), · · · , θK(t)), θz(t) = θ(t, Z−1
1 (z), Z−1

2 (z))

p(t) := (p1(t), · · · , pK(t)), pz(t) = p(t, Z−1
1 (z), Z−1

2 (z))

Define λ as

λ(t, z) := (λ1(t, z), · · · , λK(t, z)),

where λ satisfy

λβa(z)(t, z) := Λ(δat ) > 0; λβb(z)(t, z) := Λ(δbt ) > 0;

λz(t, z) := −
∑
y 6=z

λy(t, z); λy(t, z) := 0 y 6= βa(z), βb(z), z.
(4.8)

Note that

λβa(z)(t, z) = Λ(δat ) = Λ(δa(t, q, v)) = Λ(δa(t, Z−1
1 (z), Z−1

2 (z))).

62



βa(z) and βb(z) are defined as the two accessible states from state z,

βa(z) =


Z(Z−1

1 (z)− 1, Z−1
2 (z) + 1) Z−1

1 (z) > −Q,Z−1
2 (z) < vmax

Z(Z−1
1 (z)− 1, vmax) Z−1

1 (z) > −Q,Z−1
2 (z) = vmax

z Z−1
1 (z) = −Q

βb(z) =


Z(Z−1

1 (z) + 1, Z−1
2 (z) + 1) Z−1

1 (z) < Q,Z−1
2 (z) < vmax

Z(Z−1
1 (z) + 1, vmax) Z−1

1 (z) < Q,Z−1
2 (z) = vmax

z Z−1
1 (z) = Q

(4.9)

Define F and G as

F (t, z, λ(t, z)) := (Λ−1(λβa(z)(t, z))− c)λβa(z)(t, z)

+ (Λ−1(λβb(z)(t, z))− c)λβb(z)(t, z)−
1

2
γσ2Z−1

1 (z)2

G(z, p) := −l(|Z−1
1 (z)|) +R(1−

vmax∑
j=v

Q∑
i=−Q

pZ(i,j)).

(4.10)

Fixed c and R, the optimal market making problem is reduced to a continuous time

finite state mean field game discussed in both Cecchin and Pelino (2019) and section

2 of this chapter. Denote the game as Gc,R.

Proposition 4.3.1. Gc,R satisfies both Assumption 5.2.1.

The detailed proof can be found in our proof section. Then according to Cecchin

and Pelino (2019), both the Nash equilibrium of mean field game Gc,R and that of

game with finite number of players exist and are unique for every given c and R.

Moreover, the game with N players converges to the limiting mean field game case

in O( 1
N

) speed. It is given as following remark.

Remark 4.3.2. As for different initial condition p(t0), we will solve different solution

θ. Hence we define U(t0, z, p(t0)) := θ(t0, z) for corresponding to any given p(t0).

When there are N players as mentioned in the Section 3 in Gomes et al. (2013) and

characterized by (HJB) in Cecchin and Fischer (2018), the game also has unique
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Nash equilibrium point. Denote the equilibrium value function for N players game

as θ(N)(t, z, pN) for pN ∈ PN(Σ) = {(n1

N
, · · · , nK

N
),

∑K
z=0 nz = N, nz ≥ 0}. Then

there exists constant C such that

K∑
z=1

pNz |θ(N)(t, z, pN)− U(t, z, pN)| ≤ C

N
.

Moreover, both θ and θ(N) are bounded.

We can numerically solve the mean field game Gc,R by solving the corresponding

forward backward ODE system for the value function and probability of mean field.

4.4 Numerical Test

In this section, with deep neural network technique, we numerically solve forward

backward ODE system corresponding to the finite state mean field game defined

in (4.10). The market order arrival intensity function is defined as Λ(δ) := Ae−kδ

and the liquidity penalty l(q) := aq2. We assume that initial mean field of state p0

is 0 for all components except p0(0, 0) = 1. It means all market makers start at 0

inventory and 0 trading volume.

4.4.1 Rank based trading volume reward v.s No reward

The value function θ and optimal bid ask spread are solved with neural network,

and compared with those derived from benchmark model in Avellaneda and Stoikov

(2008) where R = 0 and there is no trading volume reward. When R = 0, the

forward backward ODE system is decoupled and we can numerically solve the equa-

tion in a standard approach. The terminal value of value function in this case does

not depend on the mean field of state. Hence we can first solve the backward ODE

of value function by Euler scheme, and substitute the value function and optimal
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bid/ask spread solved to the forward ODE system to solve the mean field of state.

The parameters used are defined by Table 4.1.

S σ (hours) γ T (hours) Q vmax k a A R c

20.0 0.01 1.0 10.0 1 10 2.0 2.0 0.5 2.0 0.0

Table 4.1: Parameters

The training result for the deep neural network is fairly satisfactory and the average

loss is lower than 0.003. We then present the value function θ comparison with

different initial v and the same q.

Figure 4.1: θ(t, 0, v) Path Figure 4.2: θ(t, 1, v) Path

By comparing our model (R = 2) and the benchmark model (R = 0) in Figure 4.1

and 4.2, we notice that the introduction of market incentive R increases the value

functions for market makers. And the higher is the initial trading volume v (with

same inventory q), the higher is the value function. Even for market makers with

initial trading volume v = 0, their value functions are still higher than the one from

benchmark as they benefit from their potential capacity of trading in the future and

the corresponding potential market incentive gains. That is also why their value

functions converge to the benchmark’s one when t → T . At the mean time, value

functions for different initial q but the same v are presented in Figure 4.3 and 4.4.
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Figure 4.3: θ(t, q, 0) Path Figure 4.4: θ(t, q, 4) Path

The value functions for q = 1 and q = −1 in Figure 4.3 and 4.4 coincide because

of symmetry. Moreover, we present the comparison of optimal ask spread for our

model and the benchmark model in Figure 4.5 and 4.6.

Figure 4.5: Ask Spread Comparison (q = 0) Figure 4.6: Ask Spread Comparison (q = 1)

Figure 4.5 and 4.6 suggest that when the rank based trading volume market incentive

is in place (R > 0), the lowest ask spread among all market makers is generally lower.

However, the optimal ask spread is not monotone decreasing w.r.t the initial trading

volume v. It is due to the nature of the rank based competition. Take the ask spread

of v = 0 case as an example. At the beginning when most of market makers have

not received any order flow yet, they have total trading volume v = 0. One market
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maker with v = 0 can easily get higher trading volume ranking if she succeeds to

trade one unit of asset making her total trading volume to 1, which is higher than the

total trading volume of most market makers at that time. Hence in this case market

makers have stronger motivation to quote a lower ask spread to attract order flow.

However, as time goes by and closed to T , most of other market makers already

have trading volume v above 3 (See Figure 4.8), far above 0. In this case, for a

market maker with v = 0, even if they are able to trade one more time, they can

still not be able to improve their trading volume ranking, as it can only make their

total trading volume equal to 1, but the relative ranking remains unchanged. And

as time is quite closed to T , the market maker is quite unlikely to trade more than

one unit. Hence they lack the motivation to reduce their ask spread and sacrifice

their profit. That is why the ask spread for v = 0 is quite low at the beginning

of time compared with others, while becomes relatively higher than others as time

closed to T .

We plot the total probability paths among different q for trading volume v, i.e

p(t, v) =
∑

q∈Q p(t, q, v).

Figure 4.7: p(2.5, v) Figure 4.8: p(7.5, v)

From Figures 4.7 and 4.8, we can conclude that the introduction of trading volume

rank based market making incentive increases the market trading volume, which in

turn improves the market liquidity.
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4.4.2 Rank based trading volume reward v.s Linear trad-

ing volume reward

It is suggested in last section that exchange can increase their market liquidity and

reduce the implicit trading cost by introducing trading volume related reward for

market makers. Different exchanges have proposed different forms of trading volume

related reward in their market making incentive programs. There are two typical

schemes of trading volume reward, and most of exchanges’ incentive programs are

just mixture of the two. One is the rank based trading volume reward, which is the

focus of this chapter and market makers try to maximize their expected payoff in

(4.2). Another is the linear trading volume reward. R(vT ) in this case is defined

below:

R(vT ) := R
vT
vmax

. (4.11)

Since R(vT ) under linear trading volume reward scheme does not depend on the

mean field of state, the forward backward ODE system that its value function and

mean field of state satisfy is also decoupled. Similar to the case when R = 0, we

can again apply the standard numerical scheme like Euler scheme, to solve its value

function and mean field of state numerically. Then we can compare the value func-

tion, optimal bid/ask spread as well as the mean field of states under two different

design of trading volume reward scheme.

To be comparable, the maximum reward constant R are set the same for the two

schemes, and all parameters are the same as Table 4.1. But the rank based trading

volume reward scheme introduces competition between market makers, while the

linear trading volume reward scheme does not. The value function and optimal

bid/ask spread for market makers with rank based trading volume reward scheme

can be numerically solved by the MFG deep neural network scheme introduced by

Chapter 5 in this thesis, while the one with linear trading volume reward can be

68



obtained by solving the corresponding HJB equation numerically with Euler scheme,

as it is a stochastic optimal control problem similar to the one in Avellaneda and

Stoikov (2008). We will compare market makers’ value functions, optimal bid/ask

spreads as well as the probability distribution of their trading volumes between these

two schemes.

We first present the value function θ comparison with different initial v and the

same q.

Figure 4.9: θ(t, 0, v) Path for two schemes Figure 4.10: θ(t, 1, v) Path for two schemes

The ’v = 0 lin’ corresponds to the path of value function under linear trading volume

reward scheme with initial trading volume v = 0, while ’v = 0’ corresponds to the

one under rank based trading volume reward scheme. The benchmark model is still

the one when R = 0. Other legends of this figure and the following figures are all

defined similarly. There is not large gap between market makers’ value functions

under two scheme for different initial states. Depending on different initial state,

value function under rank based trading volume reward scheme can be larger or

lower than the one under linear trading volume reward scheme. But they are all

larger than the benchmark one.

At each trade, traders need to pay implicit trading cost, the ask spread quoted by

market makers. To compare the implicit trading cost under the two schemes, we
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compare market makers’ optimal ask spreads for both schemes.

Figure 4.11: Schemes Ask Spread Comparison
(q = 0)

Figure 4.12: Schemes Ask Spread Comparison
(q = 1)

From Figures 4.11 and 4.12, market makers with different states quote different

optimal ask spreads under the two models. Nowadays, traders tend to use algorithm

to split their large order into small pieces for lower market impact. Each time, they

will only trade small unit. Hence when traders want to buy with market order, they

will usually buy at the best ask price offered in the market, which corresponds to

the lowest ask spread at each time shown in Figures 4.11 and 4.12. It is a proxy of

the implicit trading cost under equilibrium of different models. From Figures 4.11

and 4.12 we find the lowest optimal ask spreads under rank based trading volume

reward scheme are lower than the corresponding one under the linear scheme. In

fact, the rank based reward scheme serves to diverge the difference between optimal

ask spreads quoted by market makers with different trading volume.

Meanwhile, traders sometime might fail to trade at the best price in the market

when they are asked to executed the trade in short time horizon. In this case, a

better proxy of the implicit trading cost is the bid/ask spreads weighted by the

market order arrival intensity on those spreads.
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Figure 4.13: Weighted Ask Spread Comparison

For both proxies, we can conclude that rank based trading volume reward scheme

is better in terms of reducing implicit trading cost.

Furthermore, market liquidity means the ease of buying or selling assets when

needed. It can be evaluated by the trading volume of the whole market, which

can be derived from the average trading volume for each market maker in the mar-

ket. As exchanges profit from the commission fees that traders pay to trade in their

venues, the average trading volume for each market maker also affects exchanges’

revenue. To compare the liquidity in markets under the two schemes, we plot the

total probability paths for trading volume v, i.e p(t, v) =
∑

q∈Q p(t, q, v) similar to

last section.

Figure 4.14: p(2.5, v) Figure 4.15: p(7.5, v)
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From Figures 4.14 and 4.15, the trading volume distribution under rank based trad-

ing volume reward scheme has higher weights on higher trading volume.

Moreover, we also provide the expected trading volume path as following.

Figure 4.16: Expected Trading Volume Com-
parison

From Figures 4.16, the expected trading volume is higher under rank base trading

volume reward scheme. It suggests that rank based trading volume reward scheme

performs better in terms of providing liquidity to the market and increasing revenue

for exchanges.

The numerical result suggests that introducing trading volume reward can increase

market liquidity and reduce implicit trading cost. Among the two most frequently

seen trading volume reward scheme, rank based trading volume reward scheme,

which introduces competition among market makers, performs better in liquidity

provision and trading cost reduction than the linear trading volume reward.

4.5 Conclusion

In this chapter, we discuss market makers’ competition for the market making in-

centive reward scheme when it depends on market makers’ trading volume ranking
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in the market. We use a mean field game approach to approximate the reality that

is difficult to tackle due to curse of dimensionality. We numerically solve the equi-

librium with deep neural network approach, and compare market makers’ strategies

under equilibrium with different types of market making incentive scheme. We find

that introducing trading volume reward serves to increase market liquidity and re-

duce implicit trading cost. Among the two most frequently seen trading volume

reward scheme, rank based trading volume reward scheme is better in terms of low-

ering the best spread in the market, comparing with no reward or linear trading

volume reward.

4.6 Proof of Proposition 4.3.1

Proof. The proof is divided to several steps to prove the conditions for H and G

respectively.

Step 1: proof of λ∗ for Assumption 5.2.1.

Let’s first write out the Hamilton operator H for Gc,R. Define A as the admissible

control set for all λ that satisfy (4.8). Define δa := Λ−1(λβa(z)(t, z)) and δb :=

Λ−1(λβb(z)(t, z)), then we have

H(z, µ) = sup
λ∈A
{g(Λ−1(λβa(z)(t, z)), µβa(z)) + g(Λ−1(λβb(z)(t, z)), µβb(z))

− 1

2
γσ2Z−1

1 (z)2} = sup
δa∈R
{g(δa, µβa(z))}+ sup

δb∈R
{g(δb, µβb(z))} −

1

2
γσ2Z−1

1 (z)2,

where

g(δ, µ) := Λ(δ)(δ − c+ µ).

From (4.1) and according to the proof of Lemma 3.1 in Guéant (2017), ζ(µ) :=

supδ{g(δ, µ)} is increasing w.r.t µ. Moreover, the optimal δ∗ exists and is unique,

which is a continuously differentiable function of µ.
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Step 2: proof of H satisfying Assumption 5.2.1.

We only need to prove that the second order derivative ζ ′′(µ) is positive. From the

proof of Lemma 3.1 in Guéant (2017), ζ is C2, ζ ′(µ) = Λ(δ∗), and δ∗ is strictly

decreasing w.r.t µ. Hence Λ(δ∗) is strictly increasing w.r.t µ, which implies ζ ′′(µ) >

0. Then there exists constant C such that ζ ′′(µ) > C when µ is bounded.

Step 3: proof of G satisfying Assumption 5.2.1.

From (4.10), the differentiablity and (5.7) of G are trivial. We then only need to

prove (5.8). Notice that

∑
z∈Σ

(G(z, pz)−G(z, p̄z))(pz − p̄z)

=
vmax∑
v=0

Q∑
q=−Q

vmax∑
i=v

(p̄(T, i)− p(T, i))(p(T, q, v)− p̄(T, q, v))R,

(4.12)

where

p(t, v) :=

Q∑
q=−Q

p(t, q, v), p̄(t, v) :=

Q∑
q=−Q

p̄(t, q, v).

Define further

xi := p(T, i)− p̄(T, i)

~x = (x0, · · · , xvmax),

and reorganize the term in (4.12), we have

∑
z∈Σ

(G(z, pz)−G(z, p̄z))(pz − p̄z) = −
vmax∑
v=0

vmax∑
i=v

xvxiR.

We have following:

2
vmax∑
v=0

vmax∑
i=v

xvxi = (
vmax∑
v=0

xv)
2 +

vmax∑
v=0

x2
v ≥ 0.

This conclude the proof.
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5
Continuous Time Finite State

Mean Field Game: A Deep

Learning Approach

5.1 Introduction

Mean field game is introduced by Larsry and Lions in Lasry and Lions (2007) and by

Huang in Huang et al. (2006) as a limit of symmetric non-zero sum non-cooperative

N -player dynamic games when the number of players N → +∞. More detailed

introduction to the topic can be seen in Carmona and Delarue (2013). Though there

has been literature on different classes of mean field game, in this paper we focus

on continuous time finite state mean field game, i.e mean field game in finite time

horizon, with continuous time state dynamic of each agent taking values in a finite
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set under fully symmetric payoff and complete information. This finite state mean

field game is first studied by Gomes, Mohr and Souza in Gomes et al. (2013). They

prove both the existence and uniqueness of Nash equilibrium by looking into the

coupled forward backward ODE system which characterizes the equilibrium. When

the time horizon is small, they also prove the convergence of N -player game’s Nash

equilibrium to that of the limiting mean field game when N → +∞. In Cecchin

and Fischer (2018), they analyze the mean field game with a probabilistic approach,

which is also used by Carmona and Wang in Carmona and Wang (2018). Carmona

and Wang use BSDE approach to prove the existence of equilibrium when both

mean field of states and mean field of controls are in the model. They further prove

uniqueness of equilibrium when the Hamiltonian does not depend on mean field of

control. In Carmona and Wang (2016), they also analyze finite state mean field game

between one major player and infinite number of minor players. Besides the existence

and uniqueness of Nash equilibrium, the convergence result sees the breakthrough

in Cardaliaguet et al. (2015), where Cardaliaguet et al studies mean field game

in the diffusion case with common noise. They characterize the equilibrium with

Master equation, and the convergence argument is based on the regularity of Master

equation’s solution. Cecchin and Pelino follow his approach and apply the Master

equation to obtain the convergence of feedback Nash equilibrium in the finite state

space scenario. It extends the convergence result in Gomes et al. (2013) without the

need to assume time horizon is small.

However, though we can prove the existence, uniqueness and convergence for Nash

equilibrium of the finite state mean field game, there is still obstacle in our way to

approximate the N -player game (with curse of high dimension) with a simpler mean

field game. The Nash equilibrium of finite state mean field game is characterized by

a forward backward ODE system, half number of which only has initial conditions,

and the other half has only terminal conditions. This initial-terminal value problem

generally has no analytical solution. It is also difficult to solve it numerically, as
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the finite difference methods frequently used in solving single direction ODE system

fails due to the non-classical forward backward feature and non-regular boundary

conditions. One frequent used method for solving general forward backward ODE is

the shooting method, but there is no guarantee for convergence. In Gomes and Saude

(2017), Gomes proposes a numerical scheme to solve finite state mean field game.

However, they need to assume the differential operators in the forward backward

ODE system to satisfy some monotone conditions, which does not hold for many

cases in application.

In light of the recent fast-growing research interest in applying deep neural network

(DNN for short) to solve PDE, and given that the feature of forward backward ODE

system is similar to a PDE, we are motivated to use DNN to numerically solve the

forward backward ODE system that appears in the finite state mean field game prob-

lem. Quite some existing literature is about how to solve high dimensional PDEs

by DNN. Lee and Kang (1990), Lagaris et al. (1998), Lagaris et al. (2000), Malek

and Beidokhti (2006) and Rudd (2013) use neural networks to solve different kinds

of PDEs and ODEs with different boundary conditions. Sirignano and Spiliopou-

los (2018) focus on solving high dimensional PDEs with a mesh-free DNN. Their

approach is similar in spirit to Galerkin methods, except that the solution is approx-

imated by a neural network instead of a linear combination of basis functions. They

also prove the convergence of approximation to the true solution of certain type of

PDEs. However, to our best knowledge, there is still no result in existing literature

that let us infer the error between the approximation and the true solution by the

loss function. It means the approximation might not be accurate enough even if the

loss function is already small. The approach in this chapter is similar to Sirignano

and Spiliopoulos (2018), but we provide a error bound estimation to fill this gap.

The main contribution of this chapter is to provide a deep neural network approach

to solve the forward backward ODE system arising from the finite state mean field

game problem in Gomes et al. (2013) and Cecchin and Pelino (2019). We provide an
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estimation of error between true solution and our DNN approximation by inferring

the loss function. It is crucial for us to estimate the accuracy of our numerical

solution, without which, even when we have trained the DNN such that the loss

function is very small, we are still not sure how close is our DNN approximation to

the true solution.

The chapter is organized as follows. Our finite state mean field game model is pre-

sented in Section 5.2. Then in Section 5.3, we present the main results: convergence

and error estimation of our deep neural network approach. And all detailed proof

is in Section 5.4.

5.2 Model Setting

Define a finite state mean field game in continuous time with same setting as the

one in Cecchin and Pelino (2019). The finite state space is Σ = {1, · · · , K}, and

the reference game player’s state is denoted by z, which is a Markov chain. Game

player at state z only can control the switching intensities of their own state process.

Their controls λ : [0, T ]× Σ→ (R+)K are feedback in Σ, and take values in (R+)K

as from z there are K possible directions to switch. However if there are some states

that state z can not access, then we can simply force the corresponding components

in the intensity vector to 0. The probability measure on mean field of state is a

function p : [0, T ]→ P (Σ), where

P (Σ) = {(p1, · · · , pK), s.t
K∑
z=1

pz = 1, pz ≥ 0}.

Starting at time t ∈ [0, T ], given any probability measure p on the mean field of

state, game player with controlled state process Zt that starts at state z solves the
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following optimization problem.

θz(t) := sup
λ∈A

Et[
∫ T

t

F (Zt, λ(t, Zt))dt+G(ZT , p(T ))], (5.1)

where Et is the conditional expectation operator given the initial state Zt = z at

time t. And F is the running profit. We assume for any z ∈ Σ, F (z, λ) is a upper

bounded function which does not depend on λz, the zth component of λ. G is the

terminal payoff, andA is admissible control set that contains all measurable function

λ : [0, T ]× Σ→ (R+)K . Define θ : [0, T ]→ RK by

θ(t) = (θ1(t), · · · , θK(t)).

According to Cecchin and Pelino (2019), in the equilibrium, value function θ and

mean field probability p satisfy a forward backward ODE system. The backward

equations come from the optimization problem (5.1) given p, while the forward

equations come from the consistent condition for probability measure p on mean

field of state when everyone follows equilibrium strategy.

dθz(t)

dt
= −H(z,∆zθ(t)), θz(T ) = G(z, p(T )),

dpz(t)

dt
=

∑
y

py(t)λ
∗
z(y,∆

yθ(t)), pz(t0) = pz,0,
(5.2)

where operator ∆z is defined as:

∆zθ(t) := (θ1(t)− θz(t), · · · , θK(t)− θz(t)).

And the Hamilton operator H : Σ×RK → R is defined for any µ ∈ RK with µz = 0

as:

H(z, µ) := sup
λ∈(R+)K

{λ · µ+ F (z, λ)}.
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And λ∗(z, µ) = (λ∗1(z, µ), · · · , λ∗K(z, µ)) is the optimizer of Hamiltonian H(z, µ)

except for λ∗z(z, µ), which can be any value since in the proof of our main result we

always let µz = [∆zθ(t)]z = θz(t)− θz(t) = 0 and F (z, λ) is independent to λz. For

notation convenience, we define

λ∗z(z, µ) := −
∑
y 6=z

λ∗y(z, µ). (5.3)

According to (Gomes et al., 2013, Propostition 1), if H is differentiable and λ∗(z, µ)

is positive except the zth element, for y 6= z, we have

λ∗y(z, µ) = [DµH(z, µ)]y,

where λ∗y(z, µ) is the intensity from state z to state y, and [DµH(z, µ)]y denotes the

yth component of gradient DµH(z, µ). As in the following proof of main results,

we always have µz = 0 when we use H(z, µ), DµH(z, µ) or D2
µµH(z, µ), for proof

simplicity, with a little abuse of notation we can follow Cecchin and Pelino (2019)

to define artificially that

[DµH(z, µ)]z = λ∗z(z, µ). (5.4)

Then we can conclude that

λ∗(z, µ) = DµH(z, µ), (5.5)

and the feed back control λ(t, z) = λ∗(z,∆zθ(t)) under equilibrium.

We next assume H, G and λ∗ satisfy following assumptions.

Assumption 5.2.1. Assume under (5.3), H(z, µ) has unique optimizer λ∗(z, µ) for

every µ. H is C2 w.r.t µ on bounded set; H, DµH and D2
µµH are locally Lipschitz

in µ, where DµH denotes the gradient of H w.r.t µ and D2
µµH denotes its Hessian
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matrix; the second derivatives is bounded away from 0 on bounded set, i.e. there

exists a constant C such that for any µ in that bounded set satisfying µz = 0, we

have

µ ·D2
µµH(z, µ) · µ ≥ C−1‖µ‖2

µ ·D2
µµH(z, µ) · µ ≤ C‖µ‖2

(5.6)

Moreover, we assume the cost function G is differentiable, and its directional deriva-

tive w.r.t any vector w is Lipschitz in p when p is bounded, i.e there exists constant

C such that

|∂G
∂w

(z, p+ ∆p)− ∂G

∂w
(z, p)| ≤ C‖∆p‖‖w‖. (5.7)

Assume that G is monotone decreasing in p, i.e. for every p, p̄ ∈ RK ,

∑
z∈Σ

(G(z, p)−G(z, p̄))(pz − p̄z) ≤ 0. (5.8)

Note that the assumptions are very similar to the assumptions in Cecchin and Pelino

(2019) that guarantees not only the equilibrium’s existence, uniqueness, and conver-

gence, but also that it satisfies a well-posed Master equation. The only differences

is that we assume G satisfies (5.7) and (5.8) for p in any bounded set, while in

Cecchin and Pelino (2019) it is only for p that is probability measure on the state.

Nevertheless, Cecchin and Pelino (2019) only assumes the first inequality in (5.6),

while we assume both. But as we both assume D2
µµH(z, µ) is Lipschitz continuous

to µ when µ is bounded, the second inequality in (5.6) can actually be deduced from

the Lipschitz continuity of D2
µµH(z, µ) and the fact that µ is bounded. We will show

in (5.9) that µ in our paper is indeed bounded.

Remark 5.2.2. For proof simplicity, we will only discuss the case when every state

can be accessed from state z, but the proof will be very similar if state y is not

accessible from state z. In this case, the running profit F (z, λ) does not depend on

λy either. We can always modify the definition of operator ∆z such that the yth

element of ∆zθ(t) always equals 0. Then in the proof for our main results, we will
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have µy = 0 when we need to use H(z, µ), DµH(z, µ) or D2
µµH(z, µ). With a little

abuse of notation, we can always artificially set the values of yth element of λ∗(z, µ)

and DµH(z, µ), the yth column and yth row of D2
µµH(z, µ) to 0. We require H to

satisfy (5.6) in Assumption 5.2.1 only when µ satisfies µy = 0. Then every step in

the proof for our main results is still applicable. Note that it applies similar to the

case when there are multiple states that are not accessible from state z.

As λ is always non-negative, besides assumptions above, H also satisfies following

property.

Remark 5.2.3. H satisfies H(z, µ) ≥ H(z, µ̄) for any z ∈ Σ if two vectors µ =

(µ1, · · · , µK) and µ̄ = (µ̄1, · · · , µ̄K) satisfy

µi ≥ µ̄i, i ∈ Σ,

Then from (Gomes et al., 2013, Proposition 2), solution to (5.2) has a prior bound

CGH as long as H satisfies Remark 5.2.3 and G is bounded for all p(T ) in compact

set [0, 1]K . CGH is defined as,

‖θ‖ ≤ CGH := max
z∈Σ,p∈[0,1]K

{G(z, p)}+ 2 max
z∈Σ

H(z, 0)T, (5.9)

where the norm ‖ · ‖ is the ∞ norm. G is bounded because it is continuous and

defined on a compact set. For given H and G, as θ satisfies ODE system (5.2), and

both H is Lipschitz continuous in Assumption 5.2.1, dθz(t)
dt

is also bounded. Similarly,

as DµH and dθz(t)
dt

are bounded, we can further see that d2θz(t)
dt2

is bounded. From

similar argument on p and λ∗, dpz(t)
dt

and d2pz(t)
dt2

are also bounded. It means for given

H and G, there exists constants CθGH and CpGH , such that

‖dθz(t)
dt
‖ ≤ CθGH , ‖d

2θz(t)

dt2
‖ ≤ CθGH ,

‖dpz(t)
dt
‖ ≤ CpGH , ‖d

2pz(t)

dt2
‖ ≤ CpGH .

(5.10)
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We further summarize Theorem 2 in Gomes et al. (2013), Theorem 1 in Cecchin and

Pelino (2019), and provide following theorem without proof.

Theorem 5.2.4. Under Assumption 5.2.1, ODE system (5.2) has unique solution

(θ, p) for any initial value p(t0) ∈ P (Σ). The mean field game has an unique Nash

equilibrium point.

In the following sections, we always assume Assumption 5.2.1, which guarantees the

existence, uniqueness and convergence of the finite state mean field game. How-

ever, to find the equilibrium, we need to solve (5.2), which generally does not have

analytical solution. As (5.2) is a forward backward ODE system, we can not solve

it numerically by discretization. Hence we provide a deep learning approach to

numerically solve (5.2).

5.3 Main Results

To solve (5.2) numerically, we apply the deep neural network approach in Sirignano

and Spiliopoulos (2018). Define two sets of neural network functions as

Θn(ν1, ν) := {θ̃ : [0, T ]→ RK ; θ̃(t)

= (ν1(
n∑
i=1

β1,iν(αit+ ci))), · · · , ν1(
n∑
i=1

βK,iν(αit+ ci)))},

Pn(ν2, ν) := {p̃ : [0, T ]→ RK−1; p̃(t)

= (ν2(
2n∑

i=n+1

β1,iν(αit+ ci))), · · · , ν2(
2n∑

i=n+1

βK−1,iν(αit+ ci)))},

where ν : R → R is the triple continuously differentiable activation function, and

two strictly increasing triple continuously differentiable activation functions ν1, ν2 :

R → R have twice continuously differentiable inverse functions ν−1
1 and ν−1

2 . They

satisfy

sup |ν1| = CGH + e, inf ν2 = −e, sup ν2 = 1 + e, (5.11)
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where e is a small enough constant. Moreover, we assume the bounds on above

inequalities are strict. We approximate the solution (θ, p) to (5.2) numerically by

(θ̃(N), p̃(N)), which satisfy

(θ̃
(N)
1 , · · · , θ̃(N)

K ) ∈ ΘN(ν1, ν)

(p̃
(N)
1 , · · · , p̃(N)

K−1) ∈ PN(ν2, ν)

p̃
(N)
K = 1−

∑
i6=K

p̃
(N)
i .

(5.12)

For fixed n = N , the structure of the neural network is determined, and it remains

to train the neural network. By considering both the differential operator and

boundary condition in (5.2), we define the loss function Ψ w.r.t any approximated

solution (θ̃, p̃) as

Ψ(θ̃, p̃) :=
∑
z∈Σ

{
∫ T

t0

(
dθ̃z(t)

dt
+H(z,∆z θ̃(t)))2dt

+

∫ T

t0

(
dp̃z(t)

dt
−

∑
y

p̃y(t)λ
∗
z(y,∆

yθ̃(t)))2dt+

∫ T

t0

(
∑
z

(p̃z(t))
−)2dt

+ (p̃z(t0)− p̃z,0)2 + (θ̃z(T )−G(z, p̃(T )))2

+
∑
z∈Σ

(Bθ − max
t∈[0,T ]

|d
2θ̃z(t)

dt2
|)− +

∑
z∈Σ

(Bp − max
t∈[0,T ]

|d
2p̃z(t)

dt2
|)−}.

(5.13)

where (p̃K(t))− := −p̃K(t)1{pK(t)≤0} and Bθ, Bp can be any constants that satisfy

Bθ > CθGH ≥ max
t∈[0,T ]

|d
2θz(t)

dt2
|,

Bp > CpGH ≥ max
t∈[0,T ]

|d
2pz(t)

dt2
|.

where constants CθGH and CpGH are from (5.10). Then it follows

∑
z∈Σ

(Bθ − max
t∈[0,T ]

|d
2θz(t)

dt2
|)− +

∑
z∈Σ

(Bp − max
t∈[0,T ]

|d
2pz(t)

dt2
|)− = 0.
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Both the integral term and maximum term in (5.13) can be calculated via Monte

Carlo simulation. Practically, we use similar approach as in Sirignano and Spiliopou-

los (2018) to calculate these two to increase the robustness of training. Given N ,

the structure of the neural network has been determined. We train the network

by finding the optimal values of {βj,i}2K−1,2n
i,j=1 , {αi}2n

i=1 and {ci}2n
i=1 that determine

(θ̃(N), p̃(N)) such that they minimize Ψ. For the true solution (θ, p), Ψ(θ, p) = 0.

Since (θ, p) exists and is unique, Ψ has unique minimal point Ψ(θ, p) = 0. We pro-

vide the convergence result Theorem 5.3.1 similar to the Theorem 7.1 in Sirignano

and Spiliopoulos (2018).

Theorem 5.3.1. There exists a sequence of (θ̃(N), p̃(N)) defined in (5.12) such that

lim
N→+∞

Ψ(θ̃(N), p̃(N)) = 0.

The proof is given later. When the Loss function Ψ is smaller than certain value,

because of the uniform bounds on the approximation function’s first and second

derivative, the maximum error on the time interval is also smaller than certain value.

Hence besides the convergence, we also provide our main result as the following error

estimation on the DNN approximation.

Theorem 5.3.2. For every t ∈ [t0, T ] and z ∈ Σ, assume θ̃(t) and p̃(t) satisfy:

dθ̃z(t)

dt
= −H(z,∆z θ̃(t)) + ε1(t, z)

θ̃z(T ) = G(z, p̃(T )) + ε3(z),

dp̃z(t)

dt
=

∑
y

p̃y(t)λ
∗
z(y,∆

yθ̃(t)) + ε2(t, z)

p̃z(t0) = pz,0 + ε4(z),

(5.14)

where p0 ∈ P (Σ), p̃K(t) = 1−
∑

z 6=K p̃z(t) and p̃z(t) ∈ [0, 1] for z < K. Then there
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exists uniform constant B and N0, such that when N > N0 and

2∑
i=1

|εi(t, z)|+
4∑
i=3

|εi(z)|+
∑
z

(p̃z(t))
− ≤ 1

N
, ∀(t, z) ∈ [t0, T ]× Σ,

we have for all t ∈ [t0, T ] and z ∈ Σ,

|θz(t)− θ̃z(t)|+ |pz(t)− p̃z(t)| ≤
B

N
.

It suggests that when loss function Ψ is smaller than certain value, which implies

the maximum error on the ODE system is also smaller than certain value, the error

between DNN approximation (θ̃, p̃) and the true solution (θ, p) to (5.2) is linear to

the maximum error on the ODE system. Note that the condition that all components

of p̃(t) sum up to 1 implicitly sets
∑

z∈Σ ε2(t, z) = 0 for all t ∈ [t0, T ]. The detailed

proof is given in the proof section in the end of this chapter.

Theorem 5.3.3. Sequences θ̃(N) and p̃(N) in Theorem 5.3.1 converge uniformly for

t ∈ [0, T ]:

lim
N→+∞

θ̃(N)(t) = θ(t), lim
N→+∞

p̃(N)(t) = p(t).

As when Ψ converges to 0, the derivative of θ̃(N) and p̃(N) are uniform bounded.

Hence Ψ converge to 0 in Theorem 5.3.3 will guarantee that all the εi and (p̃K(t))−

also converge to 0 uniformly. Then the proof of Theorem 5.3.3 is trivial by combining

Theorems 5.3.1 and 5.3.2.

Remark 5.3.4. Note that though we only prove Theorems 5.3.1 and 5.3.3 for a two

layers neural network structure characterized by Θn(ν1, ν) and Pn(ν2, ν), which is

one of the simplest neural network structure, Theorems 5.3.1 and 5.3.3 can actually

be applicable to other more sophisticated neural network structures (more layers,

LSTM, etc) since this simple structure is just a special case of those more advanced

network. By taking a certain set of parameter values, those advanced network can

be reduced to a structure like Θn(ν1, ν) and Pn(ν2, ν).
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5.4 Proofs

5.4.1 Proof of Theorem 5.3.1

Proof. According to Theorem 5.2.4, there exists unique solution (θ, p) to ODE sys-

tem (5.2), which is also the unique minimal point for Ψ such that

Ψ(θ, p) = 0.

We use (ν−1
i )′ to denote the first order derivative of ν−1

i for i = 1, 2. From (5.9)

we know θ is bounded by CGH . Hence d
dt
θz(t) is also bounded uniformly for t and

z. Moreover, p(t) ∈ P (Σ) for any t ∈ [0, T ] and hence is also bounded. From the

assumption on ν1, ν2, we know

θz(t) < sup ‖ν1‖,

inf ν2 < pz(t) < sup ν2.

It means θz’s image is bounded and a strict subset of ν−1
1 ’s domain. Similar for pz and

ν−1
2 . Combining with the continuously differentialability of ν−1

1 and ν−1
2 , we know

ν−1
1 (θz(t)), (ν−1

1 )′(θz(t)), ν
−1
2 (pz(t)) and (ν−1

2 )′(pz(t)) are bounded by some constant

C uniformly for t and z. (νi)
′ and (νi)

′′ are Lipschitz continuous on [−2C, 2C] with

coefficient L for i = 1, 2. Define CN(ν) := {ζ : [0, T ]→ R; ζ(t) =
∑N

i=1 βiν(αit +

ci)}. According to the proof of Theorem 7.1 in Sirignano and Spiliopoulos (2018),

for any 0 < ε < C, there exists N > 0 and yz ∈ CN(ν) such that

‖yz(t)− ν−1
1 (θz(t))‖+ ‖ d

dt
yz(t)−

d

dt
ν−1

1 (θz(t))‖+ ‖ d
2

dt2
yz(t)−

d2

dt2
ν−1

1 (θz(t))‖ ≤ ε.

(5.15)

Hence we have

‖ν1(yz(t))− θz(t)‖ ≤ C‖yz(t)− ν−1
1 (θz(t))‖ ≤ Cε.
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On the other hand,

d

dt
ν1(yz(t))−

d

dt
θz(t) =

d

dt
ν1(yz(t))−

d

dt
ν1(ν−1

1 (θz(t)))

= (ν1)′(yz(t))
d

dt
yz(t)− (ν1)′(ν−1

1 (θz(t)))
d

dt
ν−1

1 (θz(t))

= (ν1)′(yz(t))[
d

dt
yz(t)−

d

dt
ν−1

1 (θz(t))]

+
d

dt
ν−1

1 (θz(t))[(ν1)′(yz(t))− (ν1)′(ν−1
1 (θz(t)))].

As yz(t) ∈ [−2C, 2C], there exists constant C1 such that (ν1)′(yz(t)) is bounded by

it uniformly. Moreover, we have

‖ d
dt
ν−1

1 (θz(t))‖ ≤ ‖(ν−1
1 )′(θz(t))‖‖

d

dt
θz(t)‖ ≤ C2.

Hence we have

‖ d
dt
ν1(yz(t))−

d

dt
θz(t)‖ ≤ ‖

d

dt
yz(t)−

d

dt
ν−1

1 (θz(t))‖‖ν ′1(yz(t))‖

+ ‖ν ′1(yz(t))− ν ′1(ν−1
1 (θz(t)))‖‖(ν−1

1 )′(θz(t))‖‖
d

dt
θz(t)‖

≤ C1‖
d

dt
yz(t)−

d

dt
ν−1

1 (θz(t))‖

+ C2L‖yz(t)− ν−1
1 (θz(t))‖ ≤ (C1 + C2L)ε.

The first inequality above comes from the boundness and Lipshitz continuity of ν ′1,

as well as the boundness of (ν−1
1 )′(θz(t)). Moreover, for second order derivatives, we

have

‖ d
2

dt2
ν−1

1 (θz(t))‖ = ‖(ν−1
1 )′′(θz(t))

d

dt
θz(t) + (ν−1

1 )′(θz(t))(
d

dt
θz(t))

2‖.

As θz(t) and d
dt
θz(t) are bounded and (ν−1

1 ) is twice continuously differentiable,

d2

dt2
ν−1

1 (θz(t)) is bounded. To estimate the difference of second order derivatives
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between approximation function and true function, we have

d2

dt2
ν1(yz(t))−

d2

dt2
θz(t) = (

d

dt
yz(t))

2ν ′′1 (yz(t)) + ν ′1(yz(t))
d2

dt2
yz(t)

− (
d

dt
ν−1

1 (θz(t)))
2ν ′′1 (ν−1

1 (θz(t)))− ν ′1(ν−1
1 (θz(t)))

d2

dt2
ν−1

1 (θz(t)).

Define

a := ‖( d
dt
yz(t))

2 − (
d

dt
ν−1

1 (θz(t)))
2‖‖ν ′′1 (yz(t))‖

b := ‖ν ′′1 (yz(t))− ν ′′1 (ν−1
1 (θz(t)))‖‖(

d

dt
ν−1

1 (θz(t)))
2‖

c := ‖ d
2

dt2
yz(t)−

d2

dt2
ν−1

1 (θz(t))‖‖ν ′1(yz(t))‖

d := ‖ν ′1(yz(t))− ν ′1(ν−1
1 (θz(t)))‖‖

d2

dt2
ν−1

1 (θz(t))‖,

and we have

‖ d
2

dt2
ν1(yz(t))−

d2

dt2
θz(t)‖ ≤ a+ b+ c+ d.

As yz(t) and d
dt
ν−1

1 (θz(t)) are bounded from previous proof, and ν1 is triple contin-

uously diferentiable function by definition, ν ′′1 (yz(t)), ν
′
1(yz(t)), ( d

dt
ν−1

1 (θz(t)))
2 and

d2

dt2
ν−1

1 (θz(t)) are also bounded. Moreover, ‖ d
dt
yz(t)‖ ≤ ‖ ddtν

−1
1 (θz(t))‖ + ε, hence

bounded. According to the Lipschitz continuity of ν ′1 and ν ′′1 , as well as (5.15), we

know there exists constants C2, such that

‖ d
2

dt2
ν1(yz(t))−

d2

dt2
θz(t)‖ ≤ a+ b+ c+ d ≤ C2ε.

By making transformation on ε in above proof, we know for any 0 < ε < C, there

exists N > 0 and yz ∈ CN(ν) such that

‖ν1(yz(t))− θz(t)‖+ ‖ d
dt
ν1(yz(t))−

d

dt
θz(t)‖+ ‖ d

2

dt2
ν1(yz(t))−

d2

dt2
θz(t)‖ ≤ ε.

Hence we know there exists N > 0 and yz ∈ CN(ν) such that

‖ d
2

dt2
ν1(yz(t))‖ ≤ ε+ ‖ d

2

dt2
θz(t)‖ ≤ ε+ CθGH < Bθ.

89



Similarly, we know ‖ d
dt
ν2(yz(t))‖ ≤ CpGH < Bp. Then we get

(Bθ − max
t∈[0,T ]

|dθ̃z(t)
dt
|)− = 0,

(Bp − max
t∈[0,T ]

|dp̃z(t)
dt
|)− = 0

If we define

Θ̂N(ν1, ν) := {ζ : [0, T ]→ RK ; ζ(t) =

(ν1(
N∑
i=1

β1,iν(α1,it+ c1,i))), · · · , ν1(
n∑
i=1

βK,iν(αK,it+ cK,i)))}

Then from proof above we know for any 0 < ε < C, there exists N > 0 and

θ̃(N) ∈ Θ̂N(ν1, ν) such that

‖θ̃(N)
z (t)− θz(t)‖+ ‖ d

dt
θ̃(N)
z (t)− d

dt
θz(t)‖ ≤ ε.

On the other hand, notice that any function fN ∈ Θ̂N(ν1, ν), there should ex-

ists fKN ∈ ΘKN(ν1, ν) such that fKN = fN , by letting some βj,i = 0. It means

Θ̂N(ν1, ν) ⊂ ΘKN(ν1, ν), and θ̃(N) ∈ ΘKN(ν1, ν). For p and Pn(ν2, ν), we can have

similar argument. Hence we conclude that for any 0 < ε < C, there exists N > 0

and θ̃(N) ∈ ΘN(ν1, ν), p̃(N) ∈ PN(ν2, ν) such that

‖θ̃(N)
z (t)− θz(t)‖+ ‖ d

dt
θ̃(N)
z (t)− d

dt
θz(t)‖ ≤ ε

‖p̃(N)
z (t)− pz(t)‖+ ‖ d

dt
p̃(N)
z (t)− d

dt
pz(t)‖ ≤ ε.

Then similar to the proof for Theorem 7.1 in Sirignano and Spiliopoulos (2018), we

know there exists a uniform constant M which only depends on boundedness of θ,

λ∗ and Lipshcitz coefficient of λ∗ and H, such that

Ψ(θ̃(N), p̃(N)) ≤Mε.
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It concludes the proof.

5.4.2 Proof of Theorem 5.3.2

To bridge θ and θ̃, we use the Master equation for θ in Cecchin and Pelino (2019), and

prove that θ̃ also satisfy a similar equation. The general idea of the proof is similar

to that of (Cecchin and Pelino, 2019, Theorem 6), while our purpose is different from

Cecchin and Pelino (2019). Cecchin and Pelino (2019) want to prove the equilibrium

of finite players finite state game converges to the one of corresponding mean field

game. It is difficult to directly compare the two ODE systems characterizing the

two equilibrium of finite players game and mean field game respectively, as one is

backward ODE system, and one is forward backward ODE system. Hence Cecchin

and Pelino (2019) prove that the forward backward ODE system is equivalent to a

backward PDE (Master equation), which can then be compared with the backward

ODE system. In contrast, we want to estimate the error between true solution and

the DNN approximation to mean field game. Both of them satisfy forward backward

ODE systems, while the one characterizing the DNN approximation having extra

error term compared with the one for true solution. And we leverage the Master

equations to bridge the two forward backward ODE systems. However, due to the

perturbation term in the ODE system 5.14, p̃ can be negative. One of our key

contribution is finding a new way to bypass the non-negative requirement which is

required in the proof for (Cecchin and Pelino, 2019, Theorem 6).

Note that the general structure and idea of the proof might look similar to that in

(Cecchin and Pelino, 2019, Proposition 5, 6, Theorem 7, Section 5.3.1 and 5.3.3).

However, in Cecchin and Pelino (2019), their p satisfies a non-perturbed Kolmogorov

forward equation, with initial value always sits in P (Σ), hence each component of

their p is always non-negative. In contrast, the Kolmogorov forward equation in

our model in (5.14) is perturbed, and its initial value does not necessarily locates in

P (Σ) due to the perturbation term. Hence the p̃ in our proof can be negative. The
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key difference between our proof and theirs is due to this fact which makes some

prior estimations proof in Cecchin and Pelino (2019) not applicable for our case.

We need to provide extra modifications in the prior estimations stage in our proof,

by adding and subtracting an extra term M1 simultaneously such that p̃(t) + M1

is non-negative. Moreover, we also need to modify every later step in the proof to

estimate the extra terms introduced by M1. As these modifications appear in most

details of the proof, for the ease of readers’ understanding, we still keep the whole

proof in this chapter, though its idea might seem similar to that in Cecchin and

Pelino (2019).

The proof is organized as following. Notice that the solution pair (θ̃, p̃) to (5.14) is

determined only by initial time t0 and initial value p̃(t0). We first prove in Proposi-

tion 5.4.1 and 5.4.2 that θ̃ when considered as function of t0 and p̃(t0) is well defined

and continuous w.r.t p̃(t0) on some neighbourhood. With the help of Proposition

5.4.5 and 5.4.6, we also prove that θ̃ is continuously differentiable w.r.t p̃(t0) in

Theorem 5.4.7 by discussing the linearized system (5.25). Then we finally prove in

Theorem 5.4.8 that θ̃, when considered as a function of t0 and p̃(t0), satisfy a PDE

similar to the Master equation in Cecchin and Pelino (2019). In order to compare

the two Master equations, we prove in Proposition 5.4.9 that Master equation on

some discrete grids of P (Σ) can be approximated by a backward ODE with extra

error term. By comparing the two backward ODE systems, we can finally estimate

the difference between θ and θ̃.

We first define norm ‖f‖ for f in RK or C0([0, T ];RK), where C0([0, T ];RK) contains

all continuous functions with domain [0, T ] and images in RK .

‖f‖ :=

 max1≤z≤K |fz|, f ∈ RK

maxt∈[0,T ] max1≤z≤K |fz(t)|, f ∈ C0([0, T ];RK)

Due to the introduction of perturbation terms in ODE system (5.14), the existence
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and uniqueness of its solution can no longer be guaranteed for every initial value

p̃(t0). However, under certain conditions on (5.14), we can have the existence and

prior bound estimation of solution to (5.14).

Proposition 5.4.1. Given constant M > 0, define Ip,M := [−M, 1 +M ]K and

CG(M) := max
z∈Σ,p∈Ip,M

|G(z, p)|+ ‖ε3‖+ 2‖ε1‖T + 2 max
z∈Σ

H(z, 0)T,

AG(M) := [−2CG(M), 2CG(M)]K , Λ(M) := max
y,z∈Σ,µ∈AG(M)

|λ∗y(z, µ)|.

If functions εi, i = 2, 4 satisfy

‖ε2‖+ ‖ε4‖ <
1

N0

, (5.16)

where 1
N0

:= 1
3
Me−Λ(M)T . Then for any initial time t0 ∈ [0, T ] and p̃(t0) ∈ B̄(P (Σ), 1

N0
),

ODE system (5.14) has solution (θ̃, p̃), where

B̄(P (Σ),
1

N0

) = {p̃ ∈ RK , s.t min
p∈P (Σ)

‖p̃− p‖ ≤ 1

N0

}.

Moreover, (θ̃, p̃) satisfy following on [t0, T ] uniformly for any initial time t0 ∈ [0, T ]

and initial value p̃(t0).

θ̃z(t) ∈ [−CG(M), CG(M)], p̃z(t) ∈ [−M, 1 +M ].

The main idea of the proof is to find a fixed point of the mapping that maps a given

prior p̃ to a new p̃. The mapping is constructed by following. With prior p̃, we solve

the backward equation in (5.14) to get θ̃, and solve again the forward equation in

(5.14) to get the solution p̃, the image of the mapping. The key step is to show the

mapping is self contained in a compact set, then the existence of fixed point can be

guaranteed by showing that the mapping is continuous.

Proof. Given a prior p̄ such that p̄(t) ∈ [−M, 1 + M ]K for all t ∈ [t0, T ], Lipschitz
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continuous with Lipschitz coefficient bounded by L(M), where

‖dp̃
dt
‖ ≤ L(M) = K(2M + 1)Λ(M) +

1

N0

,

and starts with the same p̄(t0) = p̃(t0) ∈ B̄(P (Σ), 1
N0

), with which we solve the

backward ODE in (5.14):

dθ̃z(t)

dt
= −H(z,∆z θ̃(t)) + ε1(t, z), θ̃z(T ) = G(z, p̄(T )) + ε3(z).

We know function θ̃(t) is bounded by constant CG(M) following a similar proof

as (Gomes et al., 2013, Proposition 2). Note that CG(M) is monotonically non-

decreasing w.r.t M , hence Λ(M) is also non-decreasing w.r.t M . Since p̄(t0) ∈

B̄(P (Σ), 1
N0

), there exists p0 ∈ P (Σ) such that p̄(t0) − p0 = ε4 where ‖ε4‖ ≤ 1
N0

.

Consider two functions p̃ and p satisfying

dp̃z(t)

dt
=

∑
y

p̃y(t)λ
∗
z(y,∆

yθ̃(t)) + ε2(t, z), p̃z(t0) = pz,0 + ε4(z),

dpz(t)

dt
=

∑
y

py(t)λ
∗
z(y,∆

yθ̃(t)), pz(t0) = pz,0

Integrating both side and subtracting p̃ and p, we get

‖p̃(t)− p(t)‖ ≤ Λ(M)

∫ t

t0

‖p̃(s)− p(s)‖ds+ ‖ε2‖+ ‖ε4‖.

By Gronwall inequality, we have

‖p̃(t)− p(t)‖ ≤ (‖ε2‖+ ‖ε4‖)eΛ(M)T < M. (5.17)

As p is the solution to a Kolmogorov equation, p(t) ∈ P (Σ). Hence the solution

p̃(t) ∈ [−M, 1+M ]K for all t ∈ [t0, T ], and p̃ is also Lipshitz continuous with Lipshitz

coefficient bounded by L(M), as ‖dp̃
dt
‖ ≤ L(M).
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Let F([t0, T ]) be the set of Lipshitz continuous functions defined on [t0, T ], with

Lipshitz coefficient bounded by L(M), taking values in [−M, 1+M ]K and starting at

the same initial value p̃(t0) at t0. We can define mapping ξ : F([t0, T ])→ F([t0, T ])

in the following way: given p̃ ∈ F([t0, T ]), let θ̃ be the solution of terminal value

problem in (5.14). Then θ̃(t) is bounded by CG(M). Let ξ(p̃) be the solution to

the initial value problem in (5.14). ξ(p̃) ∈ F([t0, T ]) from the above argument.

Following the proof of (Gomes et al., 2013, Proposition 4), F([t0, T ]) is a set of

uniformly bounded and equicontinuous functions. Thus, by Arzela-Ascoli theorem,

it is a relatively compact set. It is also clear that it is a convex set. Hence, by

Brouwer fixed point Theorem, we know there exists fixed point for ξ, which proves

the existence of solution to (5.14).

From Proposition 5.4.1, for every t0 and p̃0 ∈ B̄(P (Σ), 1
N0

), the ODE system (5.14)

has at least one solution (θ̃, p̃), bounded by constants that only depends on the

given constant M . Note that both these bounds are monotonically increasing w.r.t

M . Also, both θ̃ and p̃ are Lipshitz continuous functions with Lipshitz coefficients

uniformly bounded. Define the bound as L(M), since their Lipshitz coefficients only

depend on the bounds on θ̃ and p̃, which again only depend on the constant M . We

next prove that under certain condition, (θ̃, p̃) is unique and continuous w.r.t initial

condition.

Proposition 5.4.2. There exist positive constants N0 and C, such that if we have

condition (5.16), then for any t0 ∈ [0, T ] and initial condition p̃(t0) ∈ B̄(P (Σ), 1
N0

),

the solution to (5.14) is unique. Moreover, let (θ̃, p̃) and (θ̂, p̂) be two solutions to

ODE system (5.14) with different initial conditions p̃(t0), p̂(t0) ∈ B̄(P (Σ), 1
N0

), then

‖θ̃ − θ̂‖ ≤ C‖p̃(t0)− p̂(t0)‖

‖p̃− p̂‖ ≤ C‖p̃(t0)− p̂(t0)‖.
(5.18)

The general idea of the proof is similar to that in (Cecchin and Pelino, 2019, Propo-
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sition 5). But in (Cecchin and Pelino, 2019, Proposition 5), only the system’s

continuity to initial value in P (Σ) is proved, while in our model our initial value

does not necessarily locates in P (Σ) due to the perturbation term. We apply Gron-

wall inequality to the forward ODE and backward ODE that p̃− p̂ and θ̃− θ̂ satisfy

respectively, with the help of Lipschitz continuity of H and λ∗. And to combine

the two coupled inequalities, we start with some prior estimations by differentiating

(p̃ − p̂)(θ̃ − θ̂). The key difference between our proof and theirs lies in this prior

estimation, where we need to make some modifications and deal with some extra

terms, since p̃ and p̂ can potentially be negative due to the perturbation terms in

(5.14).

Proof. Start with any M and the corresponding N0 defined in Proposition 5.4.1.

Then both θ̃ and θ̂ uniform bounded by CG(M). Let’s first assume p̃z(t), p̂z(t) ≥

−M1 uniformly, and we will decide later the value for M1 and prove the condition for

it. Similarly to the proof for (Cecchin and Pelino, 2019, Proposition 5), we first try

to obtain estimation on LHS of (5.21) given later. Define φ := θ̃− θ̂ and π := p̃− p̂.

Then the couple (φ, π) solves

dφz(t)

dt
= −H(z,∆z θ̃(t)) +H(z,∆z θ̂(t))

φz(T ) = G(z, p̃(T ))−G(z, p̂(T )),

dπz(t)

dt
=

∑
y

{p̃y(t)λ∗z(y,∆yθ̃(t))− p̂y(t)λ∗z(y,∆yθ̂(t))}

πz(t0) = p̃z(t0)− p̂z(t0),

(5.19)
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Integrating d
dt

∑
z∈Σ φz(t)πz(t), we have

∑
z∈Σ

[φz(T )πz(T )− φz(t0)πz(t0)]

= −
∫ T

t0

∑
z∈Σ

[H(z,∆z θ̃(t))−H(z,∆z θ̂(t))](p̃z(t)− p̂z(t))dt

+

∫ T

t0

∑
z,y∈Σ

{p̃y(t)λ∗z(y,∆yθ̃(t))− p̂y(t)λ∗z(y,∆yθ̂(t))}(θ̃z(t)− θ̂z(t))dt.

As
∑

z λ
∗
z = 0, we have

∑
z λ
∗
z(y,∆

yθ̃(t))φy(t) = 0, and

∫ T

t0

∑
z,y∈Σ

{p̃y(t)λ∗z(y,∆yθ̃(t))− p̂y(t)λ∗z(y,∆yθ̂(t))}(θ̃z(t)− θ̂z(t))dt

=

∫ T

t0

∑
z,y∈Σ

{p̃y(t)λ∗z(y,∆yθ̃(t))− p̂y(t)λ∗z(y,∆yθ̂(t))}(φz(t)− φy(t))dt

=

∫ T

t0

∑
y∈Σ

∆yφ(t) · {p̃y(t)λ∗(y,∆yθ̃(t))− p̂y(t)λ∗(y,∆yθ̂(t))}.

Substituting it back, we have equation:

∑
z∈Σ

φz(t0)πz(t0) =
∑
z∈Σ

φz(T )πz(T )

+

∫ T

t0

∑
z∈Σ

[H(z,∆z θ̃(t))−H(z,∆z θ̂(t))−∆zφ(t) · λ∗(z,∆z θ̃(t))]p̃z(t)dt

+

∫ T

t0

∑
z∈Σ

[H(z,∆z θ̂(t))−H(z,∆z θ̃(t)) + ∆zφ(t) · λ∗(z,∆z θ̂(t))]p̂z(t)dt.

As λ∗(z, µ) = DµH(z, µ), by Taylor theorem, there exists point a on the line between

∆z θ̃(t) and ∆z θ̂(t) such that

H(z,∆z θ̃(t))−H(z,∆z θ̂(t))−∆zφ(t) · λ∗(z,∆z θ̃(t))

= −∆zφ(t) ·D2
µµH(z, a) ·∆zφ(t).

Then from assumption (5.6), and do above similar on another way round, we have
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following estimations:

H(z,∆z θ̃(t))−H(z,∆z θ̂(t))−∆zφ(t) · λ∗(z,∆z θ̃(t)) ≤ −C−1‖∆zφ(t)‖2

H(z,∆z θ̂(t))−H(z,∆z θ̃(t)) + ∆zφ(t) · λ∗(z,∆z θ̂(t)) ≤ −C−1‖∆zφ(t)‖2.

However, unlike the proof for (Cecchin and Pelino, 2019, Proposition 5), both p̃z

and p̂z can be negative in our setting. The same technique in (Cecchin and Pelino,

2019, Proposition 5) that substitutes the inequality above back to obtain estimation

of (5.21) is no longer applicable. Hence we rewrite the equation as following to cope

with the possible negativeness of p̃z and p̂z:

∑
z∈Σ

φz(t0)πz(t0) =
∑
z∈Σ

φz(T )πz(T )

+

∫ T

t0

∑
z∈Σ

[H(z,∆z θ̃(t))−H(z,∆z θ̂(t))−∆zφ(t) · λ∗(z,∆z θ̃(t))](p̃z(t) +M1)dt

+

∫ T

t0

∑
z∈Σ

[H(z,∆z θ̂(t))−H(z,∆z θ̃(t)) + ∆zφ(t) · λ∗(z,∆z θ̂(t))](p̂z(t) +M1)dt

+M1

∫ T

t0

∑
z∈Σ

∆zφ(t) · [λ∗(z,∆z θ̃(t))− λ∗(z,∆z θ̂(t))]dt.

(5.20)

The following proof will be also similar to that in (Cecchin and Pelino, 2019, Propo-

sition 5) except we need to pay extra effort to deal with the appearance of M1. From

(5.8),
∑

z∈Σ φz(T )πz(T ) ≤ 0. As p̃z(t), p̂z(t) > −M1, we have

∫ T

t0

∑
z∈Σ

‖∆zφ(t)‖2(p̃z(t) + p̂z(t) + 2M1)dt ≤ −C(p̃(t0)− p̂(t0)) · (θ̃(t0)− θ̂(t0))

+ CM1

∫ T

t0

∑
z∈Σ

∆zφ(t) · [λ∗(z,∆z θ̃(t))− λ∗(z,∆z θ̂(t))]dt

By Lipschitz continuity of λ∗, there exists C such that

|
∫ T

t0

∑
z∈Σ

‖∆zφ(t)‖2(p̃z(t) + p̂z(t) + 2M1)dt| ≤ C(‖π(t0)‖‖φ‖+M1‖φ‖2). (5.21)
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We next derive the bound for π. Integrating the second equation in (5.19) over

[t0, t], we have

πz(t) = πz(t0) +

∫ t

t0

∑
y

{p̃y(s)λ∗z(y,∆yθ̃(s))− p̂y(s)λ∗z(y,∆yθ̂(s))}ds.

As λ∗ is both bounded and Lipschiz continuous, there exists C such that

max
z∈Σ
|πz(t)| ≤ max

z∈Σ
|πz(t0)|+ C

∫ t

t0

max
z∈Σ
|πz(s)|ds+ C

∫ t

t0

∑
z∈Σ

‖∆zφ(s)‖|p̃z(s)|ds

≤ max
z∈Σ
|πz(t0)|+ C

∫ t

t0

max
z∈Σ
|πz(s)|ds+ C

∫ t

t0

∑
z∈Σ

‖∆zφ(s)‖(p̃z(s) +M1)ds

+M1C

∫ t

t0

∑
z∈Σ

‖∆zφ(s)‖ds,

where the second line holds because p̃z(s) +M1 > 0. Moreover, we have

∫ t

t0

∑
z∈Σ

‖∆zφ(s)‖(p̃z(s) +M1)ds

=

∫ t

t0

∑
z∈Σ

√
‖∆zφ(s)‖2(p̃z(s) +M1)

√
p̃z(s) +M1ds

≤

√√√√∫ t

t0

∑
z∈Σ

‖∆zφ(s)‖2(p̃z(s) +M1)ds

√√√√∫ t

t0

∑
z∈Σ

(p̃z(s) +M1)ds

Applying Gronwall inequality, as p̃z(s) ∈ [−M, 1 +M ], there exists C such that

‖π‖ ≤ C‖π(t0)‖+ C

√√√√∫ T

t0

∑
z∈Σ

‖∆zφ(t)‖2(p̃z(t) +M1)dt+M1C‖φ‖

≤ C‖π(t0)‖+ C
√
‖π(t0)‖‖φ‖+M1‖φ‖2 + CM1‖φ‖

≤ C‖π(t0)‖+ C‖π(t0)‖
1
2‖φ‖

1
2 + C(M1 +

√
M1)‖φ‖,

(5.22)

where C also only depends on M in Proposition 5.4.1.

We next derive the bound for φ. Integrating the first equation in (5.19) over [t0, t],
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from the Lipschitz continuity of G, H, there exists C such that

max
z∈Σ

φz(t) ≤ C max
z∈Σ
|πz(T )|+ C

∫ T

t

max
z∈Σ
|φz(s)|ds.

Applying Gronwall inequality, there exists constant C such that

‖φ‖ ≤ C‖π‖ (5.23)

By combining (5.22) and (5.23), using AB ≤ εA2 + 1
ε
B2 for A,B > 0, there exists

C such that

‖π‖ ≤ C‖π(t0)‖+ [
1

4
+ C2(M1 +

√
M1)]‖π‖.

As C only depend on the boundedness and Lipschitz coefficient of H, G, λ∗ and the

bound of D2
µµH, θ̃, θ̂, which depend on the M in Proposition 5.4.1. We only need

to select M1 such that

C2(M1 +
√
M1) <

1

4
,

and we can have (5.18). Then it remains to decide the new N0 such that we have

p̃z(t), p̂(t) > −M1 uniformly as we assumed. From Proposition 5.4.1, N1 := 3eΛ(M1)

M1

and we can simply define our new N0 as maxN0, N1. On the other hand, the

uniqueness of solution comes directly from (5.18).

According to Proposition 5.4.1 and 5.4.2, take any t ∈ [t0, T ] and p̄0 ∈ B̄(P (Σ), 1
N0

)

as the initial value for ODE system (5.14), there exists an unique solution (θ̄(s), p̄(s))

on [t, T ]. Note that θ̄(s) might not equal θ̃(s) stated as the solution to (5.14) in

Theorem 5.3.2, since θ̄ depends on the values of initial time t and initial condition

p̄0 chosen above. And we can define a function Ũ on t ∈ [t0, T ] and p̃0 ∈ B̄(P (Σ), 1
N0

)

by the corresponding θ̄(t) explained above.

Ũ(t, z, p̃0) := θ̄(t, z). (5.24)
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According to Proposition 5.4.1 and 5.4.2, Ũ is well defined and continuous w.r.t p̃0.

Moreover, for (θ̃, p̃), the solution to (5.14) in Theorem 5.3.2 on [t0, T ], which is the

approximated solution we got from DNN and want to estimate error on, we have

for all t ∈ [t0, T ] that:

Ũ(t, z, p̃(t)) := θ̃(t, z).

It suggests Ũ has all information of θ̃. If we can compare Ũ with the U defined

similar in Cecchin and Pelino (2019) corresponding to the true solution to (5.2), we

can estimate the error of θ̃. To compare Ũ with the U , we need to prove that Ũ also

satisfy the Master equation similar to U in Cecchin and Pelino (2019). To achieve

this goal, we are to prove the continuously differentiability of Ũ in the following

steps. We first define the derivative of Ũ w.r.t vector p̃0 in a similar way to in

Cecchin and Pelino (2019), Define operator Dy
p as following.

Definition 5.4.3. Define operator of a function U : RK → R as DyU : RK → RK

for y ∈ Σ.

[DyU(p)]z := lim
s→0

U(p+ s(δz − δy))− U(p)

s
,

where DyU(p) = ([DyU(p)]1, · · · , [DyU(p)]K), and δz ∈ RK such that all elements

are 0 except the z element is 1.

By noticing that µ =
∑

z 6=1 µz(δz − δ1) + (
∑K

z=1 µz)δ1, if Ũ is differentiable, we have

following lemma from the linearity of directional derivative.

Lemma 5.4.4. Define the derivative of function U(p) along the direction µ ∈ RK

as a map ∂
∂µ
U : RK → R,

∂

∂µ
U(p) := lim

s→0

U(p+ sµ)− U(p)

s
.

It satisfies

∂

∂µ
U(p) = D1U(p) · µ+

∂

∂δ1

U(p)(
K∑
z=1

µz),

101



where ∂
∂δ1

is in fact the first component of the gradient of Ũ , and DU(p) := D1U(p)

for notation simplicity. When
∑K

z=1 µz = 0, for any y ∈ Σ, we have

DyU(p) · µ = DU(p) · µ =
∂

∂µ
U(p).

In order to characterize the directional derivative of Ũ w.r.t p̃0, given θ̃ and p̃,

let’s define a linear system of ODE for (u, ρ) similar to (Cecchin and Pelino, 2019,

Equation (80)), which will be used quite a few times in the following.

duz(t)

dt
= −λ∗(z,∆z θ̃(t)) ·∆zu(t)− b(t, z)

dρz(t)

dt
=

∑
y

ρy(t)λ
∗
z(y,∆

yθ̃(t)) +
∑
y

p̃y(t)Dµλ
∗
z(y,∆

yθ̃(t)) ·∆yu(t) + c(t, z)

uz(T ) =
∂G

∂ρ(T )
(z, p̃(T )) + uT,z = ∇G(z, p̃(T )) · ρ(T ) + uT,z

ρz(t0) = ρz,0.

(5.25)

Similar to (Cecchin and Pelino, 2019, Equation (80)), Dµλ
∗
z(y,∆

yθ̃(t)) is the gradient

of λ∗z w.r.t its second variable in RK . The unknowns are u and ρ, while b, c, uT , ρ0

are given measurable functions, with c satisfying
∑K

z=1 c(t, z) = 0. In fact, (5.25) is

generalization of (Cecchin and Pelino, 2019, Equation (80)). In (5.25), it is a general

directional derivatives of any direction in the terminal condition of uz(T ), while in

(Cecchin and Pelino, 2019, Equation (80)), it is directional derivatives of specific

directions.

We first prove in following Proposition 5.4.5 that the linear system (5.25) has a

unique solution, which is linear bounded by its initial and boundary conditions.

Proposition 5.4.5. There exist positive constants N0 and C, such that if we have

(5.16) and p̃(t0) ∈ B̄(P (Σ), 1
N0

), then for any measurable function b, c and vector
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uT , the linear system (5.25) has a unique solution (u, ρ). Moreover it satisfies

‖u‖ ≤ C[‖uT‖+ ‖ρ0‖+ ‖b‖+ ‖c‖]

‖ρ‖ ≤ C[‖uT‖+ ‖ρ0‖+ ‖b‖+ ‖c‖].
(5.26)

The proof shares similar idea to (Cecchin and Pelino, 2019, Proposition 6), except

we need to make extra effort on dealing with the possible negativeness of p̃, p̂ and the

generalized terminal condition in (5.25). We use Schaefer’s Fixed Point Theorem

to prove the existence of solution. In order to verify one condition in Schaefer’s

Fixed Point Theorem, we provide the prior estimation on the solution following a

similar trick as Proposition 5.4.2, i.e differentiating uρ before applying Gronwall

inequality on the ODEs of u and ρ respectively. Then the uniqueness of solution

comes naturally from the prior estimation.

Proof. We only discuss the case when t0 = 0, as it can be extended to any t0 ∈ [0, T ]

by the same argument.

We first let N0 bigger than the one in Proposition 5.4.2. And similar to the proof for

Proposition 5.4.2, to cope with the potential negativeness, we first assume p̃z(t) ≥

−M1 uniformly and M1 ≤ M , and we will decide later the value for M1 small

enough and find the N0 such that it holds. As
∑

z∈Σ λ
∗
z(y,∆

yθ̃(t)) = 0, we have∑
z,y∈Σ p̃y(t)Dµλ

∗
z(y,∆

yθ̃(t)) · ∆yu(t) = 0, and
∑

z∈Σ
dρz(t)
dt

= 0. Hence for any

t ∈ [0, T ], we have

η :=
∑
z∈Σ

ρz(t) =
∑
z∈Σ

ρz,0. (5.27)

Define set Pη(Σ) as

Pη(Σ) := {p ∈ RK , s.t

K∑
z=1

pz = η}.

We define map ξ from C0([0, T ];Pη(Σ)) to itself as following: for a fixed ρ ∈

C0([0, T ];Pη(Σ)), we consider the solution u = u(ρ) to the backward ODE for u
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in (5.25), and define ξ(ρ) to be the solution to the forward ODE for ρ in (5.25) with

u = u(ρ). From (5.27), ξ(ρ) is well defined as ξ(ρ)(t) ∈ Pη(Σ) for any t.

Similar to the proof for (Cecchin and Pelino, 2019, Proposition 6), the solution to

(5.25) is the fixed point of mapping ξ, and we prove its existence by Schaefer’s

Fixed Point Theorem, which asserts that a continuous and compact mapping ξ of a

Banach space X into itself has fixed point if the set {ρ ∈ X : ρ = ωξ(ρ), ω ∈ [0, 1]}

is bounded. Firstly, ξ is continuous as the system (5.25) is linear in u and ρ.

C0([0, T ];Pη(Σ)) is a convex subset of Banach space C0([0, T ];RK). Moreover, from

the linearity and bounded coefficients of system (5.25), ξ maps any bounded set of

C0([0, T ];Pη(Σ)) into set of bounded and Lipshitz continuous functions with uniform

Lipshitz coefficient in C1([0, T ];Pη(Σ)), which by Arzela–Ascoli theorem, is relatively

compact. By compact map definition, ξ is a compact map. Hence to apply Schaefer’s

Fixed Point Theorem, it remains to prove that the set {ρ : ρ = ωξ(ρ)} is uniform

bounded for ∀ω ∈ [0, 1]. We can restrict to ω > 0 since otherwise ρ = 0. Fix a ρ such

that ρ = ωξ(ρ), which means the couple (u(ρ), ξ(ρ)) solves (for notation simplicity

we neglect their dependency on ρ)

duz(t)

dt
= −λ∗(z,∆z θ̃(t)) ·∆zu(t)− b(t, z)

dξz(t)

dt
=

∑
y

ξy(t)λ
∗
z(y,∆

yθ̃(t)) +
∑
y

p̃y(t)Dµλ
∗
z(y,∆

yθ̃(t)) ·∆yu(t) + c(t, z)

uz(T ) = ∇G(z, p̃(T )) · ωξ(T ) + uT,z

ξz(t0) = ρz,0.

(5.28)

We need to prove the solution (u, ξ) if existed, are bounded uniformly for any ω ∈

(0, 1]. For notation simplicity, we omit the dependence of λ∗ on the second variable.
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From (5.28),

∑
z∈Σ

d

dt
(uz(t)ξz(t)) = −

∑
z,y∈Σ

ξz(t)λ
∗
y(z)(uy(t)− uz(t)) +

∑
z,y∈Σ

ξy(t)λ
∗
z(y)uz(t)

+
∑
z,y∈Σ

uz(t)p̃y(t)Dµλ
∗
z(y) ·∆yu(t) +

∑
z∈Σ

c(t, z)uz(t)−
∑
z∈Σ

ξz(t)b(t, z).

The first line is 0 by exchanging z and y in the second double sum and using (5.3).

Integrating over [0, T ] and using the expression of uz(T ) we have

∑
z∈Σ

ξz(T )[∇G(z, p̃(T )) · ωξ(T ) + uT,z]− u(0) · ρ0

=

∫ T

0

∑
z∈Σ

c(t, z)uz(t)dt−
∫ T

0

∑
z∈Σ

ξz(t)b(t, z)dt

+

∫ T

0

∑
z,y∈Σ

p̃y(t)Dµλ
∗
z(y) ·∆yu(t)(uz(t)− uy(t))dt

Reorganize the terms and we get

∫ T

0

∑
z,y∈Σ

p̃y(t)Dµλ
∗
z(y) ·∆yu(t)(uz(t)− uy(t))dt− ω

∑
z∈Σ

ξz(T )∇G(z, p̃(T )) · ξ(T )

=

∫ T

0

∑
z∈Σ

ξz(t)b(t, z)dt−
∫ T

0

∑
z∈Σ

c(t, z)uz(t)dt+
∑
z∈Σ

ξz(T )uT,z − u(0) · ρ0.

From assumption on G in (5.8) and definition of directional derivative, we have

− ω
∑
z∈Σ

ξz(T )∇G(z, p̃(T )) · ξ(T ) = −ω
∑
z∈Σ

ξz(T )
∂G

∂ξ(T )
(z, p̃(T )) ≥ 0.

Moreover, as λ∗(y) = DµH(y) (we also neglect the dependence of H on the second

variable), ∫ T

0

∑
z,y∈Σ

p̃y(t)Dµλ
∗
z(y) ·∆yu(t)(uz(t)− uy(t))dt

=

∫ T

0

∑
y∈Σ

p̃y(t)∆
yu(t) ·D2

µµH(y) ·∆yu(t)dt.
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Since p̃ and p̂ can be negative, the same step in (Cecchin and Pelino, 2019, Propo-

sition 6) to obtain estimation on RHS of above is not applicable. However, as

p̃y(t) + M1 ≥ 0 for all y ∈ Σ, from (5.6), we can rewrite the RHS of the equation

and get following estimation instead.

∫ T

0

∑
y∈Σ

p̃y(t)∆
yu(t) ·D2

µµH(y) ·∆yu(t)dt

=

∫ T

0

∑
y∈Σ

(p̃y(t) +M1)∆yu(t) ·D2
µµH(y) ·∆yu(t)dt

−M1

∫ T

0

∑
y∈Σ

∆yu(t) ·D2
µµH(y) ·∆yu(t)dt

≥ C−1

∫ T

0

∑
z∈Σ

(p̃y(t) +M1)‖∆zu(t)‖2dt−M1C

∫ T

0

∑
z∈Σ

‖∆zu(t)‖2dt.

So there exists constant C and C1 (C1 only depends on the dimension of u) such

that∫ T

0

∑
z∈Σ

(p̃z(t) +M1)‖∆zu(t)‖2dt ≤ C(

∫ T

0

|c(t) · u(t)|dt+

∫ T

0

|ξ(t) · b(t)|dt

+ ‖ξ(T )‖‖uT‖+ ‖u(0)‖‖ρ0‖+M1C1‖u‖2),

(5.29)

where b(t) := (b(t, 1), · · · , b(t,K)), and c(t) is defined similarly. As λ∗ and Dµλ
∗ is

bounded by constant C, from ODE for ξ in (5.28) we have

|ξz(t)| ≤ |ρ0,z|+ C

∫ t

0

∑
y∈Σ

|ξy(s)|ds+ C

∫ t

0

[
∑
y∈Σ

(p̃y(s) +M1)‖∆yu(s)‖+ |c(s, z)|]ds

+ CM1

∫ t

0

∑
y∈Σ

‖∆yu(s)‖ds.
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So that by Gronwall’s inequality, there exists constant C such that

‖ξ‖ ≤ C(‖ρ0‖+ ‖c‖) + C

∫ T

0

∑
y∈Σ

(p̃y(t) +M1)‖∆yu(t)‖dt

+ CM1

∫ T

0

∑
y∈Σ

‖∆yu(t)‖dt,

where there exists C such that
∑

y∈Σ(p̃y(t) +M1) ≤= K(M + 1) +KM1 ≤ K(2M +

1) ≤ C2 and

∫ T

0

∑
y∈Σ

(p̃y(t) +M1)‖∆yu(t)‖dt =

∫ T

0

∑
y∈Σ

√
p̃y(t) +M1

√
p̃y(t) +M1‖∆yu(t)‖dt

≤
∫ T

0

√∑
y∈Σ

(p̃y(t) +M1)

√∑
y∈Σ

(p̃y(t) +M1)‖∆yu(t)‖2dt

≤ C

∫ T

0

√∑
y∈Σ

(p̃y(t) +M1)‖∆yu(t)‖2dt ≤ C

√√√√∫ T

0

∑
y∈Σ

(p̃y(t) +M1)‖∆yu(t)‖2dt.

From (5.29), there exist different constants C at each line such that

‖ξ‖ ≤ C(‖ρ0‖+ ‖c‖) + C

∫ T

0

∑
y∈Σ

(p̃y(t) +M1)‖∆yu(t)‖dt

+ CM1

∫ T

0

∑
y∈Σ

‖∆yu(t)‖dt

≤ C(‖ρ0‖+ ‖c‖) + CM1‖u‖+ C

∫ T

0

|c(t) · u(t)|+ |ξ(t) · b(t)|dt

+ C(‖ξ(T )‖‖uT‖+ ‖u(0)‖‖ρ0‖+M1C1‖u‖2)
1
2

≤ C(‖ρ0‖+ ‖c‖) + C(M1 +
√
M1)‖u‖

+ C(‖c‖
1
2‖u‖

1
2 + ‖ξ‖

1
2‖b‖

1
2 + ‖ξ(T )‖

1
2‖uT‖

1
2 + ‖u(0)‖

1
2‖ρ0‖

1
2 ),

Moreover, using Gronwall inequality on the backward ODE in (5.28) for function u,

there exists C such that

‖u‖ ≤ C[‖uT‖+ ω‖ξ(T )‖+ ‖b‖] ≤ C[‖uT‖+ ‖ξ(T )‖+ ‖b‖].
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Then there exists C such that

‖ξ‖ ≤ C(‖ρ0‖+ ‖c‖)

+ C(M1 +
√
M1)(‖uT‖+ ‖ξ(T )‖+ ‖b‖) + C‖c‖

1
2 (‖uT‖+ ‖ξ(T )‖+ ‖b‖)

1
2

+ C(‖ξ‖
1
2‖b‖

1
2 + ‖ξ(T )‖

1
2‖uT‖

1
2 + (‖uT‖

1
2 + ‖ξ(T )‖

1
2 + ‖b‖

1
2 )‖ρ0‖

1
2 )

As ‖ξ(T )‖ ≤ ‖ξ‖, using the inequality AB ≤ εA2 + 1
4ε
B2 for A,B ≥ 0, there exists

C such that

‖ξ‖ ≤ C(‖c‖+ ‖b‖+ ‖ρ0‖+ ‖uT‖) + (C(M1 +
√
M1) +

1

4
)‖ξ‖.

Note that the constant C only depends on the boundedness of θ̃, which depends on

M in Proposition 5.4.1. If

C(M1 +
√
M1) ≤ 1

4
.

Then we have

‖ξ‖ ≤ 2C(‖c‖+ ‖b‖+ ‖ρ0‖+ ‖uT‖),

Hence the solution pair (u, ξ) are bounded for all ω ∈ [0, 1], which means ρ = ωξ(ρ)

are also uniform bounded, and hence proves the existence of solution to (5.25).

Meanwhile, let ω = 1 leads to the uniform bound estimation for solution (u, ρ)

to (5.25), and the uniqueness of it comes directly from (5.26). If N0 > 3eΛ(M1)

M1
,

from Proposition 5.4.1, we have p̃y(t) > −M1 uniformly, which concludes our proof.

Hence we can just update our N0 set before to satisfy the inequality.

Then we can prove the differentiablity of Ũ w.r.t p̃0 in Proposition 5.4.6.

Proposition 5.4.6. Let (θ̃, p̃) and (θ̂, p̂) be the solutions to ODE system (5.14)

respectively starting from (t0, p̃(t0)) and (t0, p̂(t0)), and (v, ζ) be the solution to (5.25)

starting from ρ0 := p̂(t0)− p̃(t0). There exist positive constants N0 and C, such that
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if we have (5.16), then for any t0 ∈ [0, T ] and p̃(t0), p̂(t0) ∈ B̄(P (Σ), 1
N0

), we have

‖θ̂ − θ̃ − v‖+ ‖p̂− p̃− ζ‖ ≤ C‖p̂(t0)− p̃(t0)‖2.

The proof is straightforward as we already prove Proposition 5.4.5. (v.ζ) is charac-

terized by a linear forward backward ODE system similar to (5.25), with b, c = 0.

On the other hand, (θ̂− θ̃−v, p̂− p̃−ζ) also satisfies the same kind of linear forward

backward ODE system with different b and c. Hence we can get the conclusion of

Proposition 5.4.6 by applying the Proposition 5.4.5 on (θ̂ − θ̃ − v, p̂− p̃− ζ).

Proof. Without loss of generality, we assume t0 = 0. Similar to the proof of (Cecchin

and Pelino, 2019, Theorem 7), we can use results from Proposition 5.4.5 to prove

our conclusion. Define N0 as the one in Proposition 5.4.5. Then p̃y(t), p̂y(t) > −M1

uniformly on (t, y) ∈ [0, T ]× Σ. Define linearized system with w := p̂(0)− p̃(0):

dvz(t)

dt
= −λ∗(z,∆z θ̃(t)) ·∆zv(t)

dζz(t)

dt
=

∑
y

ζy(t)λ
∗
z(y,∆

yθ̃(t)) +
∑
y

p̃y(t)Dµλ
∗
z(y,∆

yθ̃(t)) ·∆yv(t)

vz(T ) =
∂G

∂ζ(T )
(z, p̃(T )) = D1G(z, p̃(T )) · ζ(T ) +

∂G

δ1

(z, p̃(T ))
K∑
z=1

wz

ζz(0) = wz.

(5.30)

From condition in Theorem 5.3.2, the sum of every component of p̃ equals 1 for all

t ∈ [0, T ]. Hence we know
∑

z∈Σ ε2(t, z) = 0, and define

S(p̂, p̃) :=
∑
z∈Σ

(p̂z(0)− p̃z(0)) =
∑
z∈Σ

(p̂z(T )− p̃z(T ))

We know there exists C such that |S(p̂, p̃)| ≤ C‖p̂(T ) − p̃(T )‖. Set u := θ̂ − θ̃ − v
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and ρ := p̂− p̃− ζ, they solve (5.25), where

b(t, z) := H(z,∆z θ̂(t))−H(z,∆z θ̃(t))− λ∗(z,∆z θ̃(t)) · (∆z θ̂(t)−∆z θ̃(t))

c(t, z) :=
∑
y

p̂y(t)[λ
∗
z(y,∆

yθ̂(t))− λ∗z(y,∆yθ̃(t))]

−
∑
y

p̃y(t)Dµλ
∗
z(y,∆

yθ̃(t)) · (∆yθ̂(t)−∆yθ̃(t)))

uT,z := G(z, p̂(T ))−G(z, p̃(T ))−D1G(z, p̃(T ))(p̂(T )− p̃(T ))

− ∂G

δ1

(z, p̃(T ))S(p̂, p̃).

From (5.3),
∑

z∈Σ c(t, z) = 0. The existence and uniqueness of solution to (5.30) is

guaranteed by Proposition 5.4.5. We can simplify b and c as

b(t, z) =

∫ 1

0

[DµH(z,∆z θ̃(t) + s(∆z θ̂(t)−∆z θ̃(t)))−DµH(z,∆z θ̃(t))]

· (∆z θ̂(t)−∆z θ̃(t))ds

c(t, z) =
∑
y

p̂y(t)

∫ 1

0

[Dµλ
∗
z(y,∆

yθ̃(t) + s(θ̂(t)−∆yθ̃(t)))−Dµλ
∗
z(y,∆

yθ̃(t))]

· (∆z θ̂(t)−∆z θ̃(t))ds+
∑
y

(p̂y(t)− p̃y(t))Dµλ
∗
z(y,∆

yθ̃(t)) · (∆yθ̂(t)−∆yθ̃(t))).

(5.31)

Moreover, since

G(z, p̂(T ))−G(z, p̃(T )) =

∫ 1

0

∂G

∂(p̂(T )− p̃(T ))
(z, p̃(T ) + s(p̂(T )− p̃(T )))ds

=

∫ 1

0

D1G(z, p̃(T ) + s(p̂(T )− p̃(T ))) · ((p̂(T )− p̃(T ))))ds

+

∫ 1

0

∂G

∂δ1

(z, p̃(T ) + s(p̂(T )− p̃(T )))S(p̂, p̃)ds
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we have

uT,z =

∫ 1

0

(D1G(z, p̃(T ) + s(p̂(T )− p̃(T )))−D1G(z, p̃(T ))) · ((p̂(T )− p̃(T ))))ds

+

∫ 1

0

(
∂G

∂δ1

(z, p̃(T ) + s(p̂(T )− p̃(T )))− ∂G

δ1

(z, p̃(T )))S(p̂, p̃)ds

(5.32)

From Proposition 5.4.1, θ̃, p̃, θ̂ and p̂ are bounded. From the Assumption 5.2.1,

namely the Lipschitz continuity of DµH, Dµλ
∗, ∂G

δ1
and D1G in their second variable,

there exists constant C such that

‖b‖ ≤ C‖θ̃ − θ̂‖2

‖uT,z‖ ≤ C‖p̃(T )− p̂(T )‖2

‖c‖ ≤ C(‖θ̃ − θ̂‖2 + ‖θ̃ − θ̂‖ · ‖p̃− p̂‖).

Applying Proposition 5.4.5 and then Proposition 5.4.2, we have there exists C such

that

‖u‖+ ‖ρ‖ ≤ C‖p̂(0)− p̃(0)‖2,

which concludes the proof.

As (5.30) is a linear system. v and ζ in (5.30) can be viewed as a linear map of w.

Hence by definition of differentiability for multivariate function, Proposition 5.4.6

suggests that Ũ is differntiable w.r.t p̃0 and the directional derivative ∂
∂w
Ũ(t, z, p̃) is

the solution to ODE system (5.30), with θ̃z(t) = Ũ(t, z, p̃(t)).

Theorem 5.4.7. There exist positive constants N0 and C large enough. If the error

terms in our FBODE system (5.14) satisfy (5.16), i.e

‖ε2‖+ ‖ε4‖ <
1

N0

,

Then Ũ defined in (5.24) is differntiable on B(P (Σ), 1
N0

), and for any vector w,

∂
∂w
Ũ(t, z, p̃(t)) exists and is Lipschitz continuous w.r.t p̃, uniformly in t, z. ∂

∂w
Ũ(t, z, p̃(t))
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is also continuous w.r.t t.

The proof is divided into two parts. The first part we prove ∂
∂w
Ũ(t, z, p̃(t)) is Lipshitz

continuous. The main idea is similar to the regularity proof for Master equation’s so-

lution in (Cecchin and Pelino, 2019, Section 5.3.3), except for some special treatment

due to the generalization of directional derivative. From Proposition 5.4.6, the direc-

tional derivatives of Ũ on different p̃, i.e ∂
∂w
Ũ(t, z, p̃(t)) and ∂

∂w
Ũ(t, z, p̂(t)), can both

be characterized by linear forward backward ODE systems similar to (5.30). Hence

their difference also satisfies linear system like (5.30) with initial value equaling to

0. Then from Proposition 5.4.5 we can prove the continuity of ∂
∂w
Ũ(t, z, p̃(t)) w.r.t

p̃. On the other hand, the second part of our proof focus on proving ∂
∂w
Ũ(t, z, p̃(t))

is continuous w.r.t t. It is not discussed in (Cecchin and Pelino, 2019, Section 5.3.3),

and we think it is worth providing the proof as it is not as trivial as it is suggested.

Proof. Define N0 as the one in Proposition 5.4.5. Let (θ̃, p̃) and (θ̂, p̂) be two solu-

tions to (5.14), with initial conditions p̃(t0), p̂(t0) ∈ B(P (Σ), 1
N0

). Let also (ṽ, ζ̃) and

(v̂, ζ̂) characterize ∂
∂w
Ũ(t0, z, p̃(t0)) and ∂

∂w
Ũ(t0, z, p̂(t0)) respectively. Then (ṽ, ζ̃)

satisfies following.

dṽz(t)

dt
= −λ∗(z,∆z θ̃(t)) ·∆zṽ(t)

dζ̃z(t)

dt
=

∑
y

ζ̃y(t)λ
∗
z(y,∆

yθ̃(t)) +
∑
y

p̃y(t)Dµλ
∗
z(y,∆

yθ̃(t)) ·∆yṽ(t)

ṽz(T ) =
∂G

∂ζ̃(T )
(z, p̃(T ))

ζ̃z(t0) = wz.

(5.33)

From Proposition 5.4.5, we know the uniform bound of both ṽ and ζ̃ depend linearly

on norm of w. Similar is for (v̂, ζ̂), except for replacing (θ̃, p̃) by (θ̂, p̂). Set u := ṽ−v̂,
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ρ := ζ̃ − ζ̂. They solve the linear system (5.25) with ρ(t0) = 0 and

b(t, z) := (λ∗(z,∆z θ̃(t))− λ∗(z,∆z θ̂(t))) ·∆zv̂(t)

c(t, z) :=
∑
y∈Σ

ζ̂y(t)(λ
∗
z(y,∆

yθ̃(t))− λ∗z(y,∆yθ̂(t)))

+
∑
y∈Σ

[p̃y(t)Dµλ
∗
z(y,∆

yθ̃(t))− p̂y(t)Dµλ
∗
z(y,∆

yθ̂(t))] ·∆zv̂(t)

uT,z :=
∂G

∂ζ̂(T )
(z, p̃(T ))− ∂G

∂ζ̂(T )
(z, p̂(T ))

Using the Lipschitz continuity of λ∗, Dµλ
∗ and directional derivatives of G, applying

the bounds (5.26) to v̂ and ζ̂, and the estimation on ‖θ̃−θ̂‖, ‖p̃−p̂‖ from Proposition

5.4.2, there exists C such that

‖b‖ ≤ C‖θ̃ − θ̂‖‖v̂‖ ≤ C‖p̃(t0)− p̂(t0)‖‖w‖

‖c‖ ≤ C‖θ̃ − θ̂‖‖ζ̂‖+ C‖θ̃ − θ̂‖‖v̂‖+ C‖p̃− p̂‖‖v̂‖

≤ C‖p̃(t0)− p̂(t0)‖‖w‖

‖uT‖ ≤ C‖p̃− p̂‖‖ζ̂‖ ≤ C‖p̃(t0)− p̂(t0)‖‖w‖

From Proposition 5.4.5, we have

‖u‖ ≤ C(‖b‖+ ‖c‖+ ‖uT‖) ≤ C‖p̃(t0)− p̂(t0)‖‖w‖.

From Proposition 5.4.6, we have

ṽz(t0) =
∂Ũ

∂w
(t0, z, p̃(t0)), v̂z(t0) =

∂Ũ

∂w
(t0, z, p̂(t0)).

Therefore, ∂Ũ
∂w

is Lipschitz continuous, uniform w.r.t t and z.

On the other hand, for another initial time t1 > t0, we first compare ∂
∂w
Ũ(t0, z, p̃(t0))

and ∂
∂w
Ũ(t1, z, p̃(t1)), where (t1, p̃(t1)) is on the path (t, p̃(t)) start from t0 to T . They

are both characterized by system like (5.33), though we need to replace t0 with t1
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for ∂
∂w
Ũ(t1, z, p̃(t1)). Let (ṽ, ζ̃) satisfy (5.33). Then we know

ṽ(t0) =
∂

∂w
Ũ(t0, z, p̃(t0)), ṽ(t1) =

∂

∂ζ̃(t1)
Ũ(t1, z, p̃(t1)).

∂
∂ζ̃(t1)

Ũ(t1, z, p̃(t1)) is also characterized by (5.33), except that t0 and initial value

need to be replaced by t1 and ζ̃(t1). It means ∂
∂ζ̃(t1)

Ũ(t1, z, p̃(t1))− ∂
∂w
Ũ(t1, z, p̃(t1))

can also be characterized by (5.33) except that t0 and initial value need to be replaced

by t1 and ζ̃(t1)− w. From Proposition 5.4.5, we have there exists constant C such

that

| ∂

∂ζ̃(t1)
Ũ(t1, z, p̃(t1))− ∂

∂w
Ũ(t1, z, p̃(t1))| ≤ C|ζ̃z(t1)− wz|.

As λ∗, Dµλ
∗ and the directional derivative of G are Lipschitz continuous and uniform

bounded, as well as that both ṽ and ζ̃ are uniformly bounded, we know hence both

dṽz(t)
dt

and dζ̃z(t)
dt

are also uniformly bounded by some constant C. We have

‖ζ̃(t1)− w‖ = ‖ζ̃(t1)− ζ̃(t0)‖ ≤ C|t1 − t0|,

| ∂
∂w

Ũ(t0, z, p̃(t0))− ∂

∂ζ̃(t1)
Ũ(t1, z, p̃(t1))| = |ṽz(t0)− ṽz(t1)| ≤ C|t1 − t0|.

Combine above, we know there exists constant C such that

| ∂
∂w

Ũ(t0, z, p̃(t0))− ∂

∂w
Ũ(t1, z, p̃(t1))| ≤ C|t1 − t0|.

Then by the continuity of ∂
∂w
Ũ w.r.t its third argument, as well as the continuity of

p̃, we can also conclude that ∂
∂w
Ũ is continuous w.r.t t, its first argument.

From Proposition 5.4.6 and Theorem 5.4.7, Ũ is C1 on compact set B̄(P (Σ), 1
N0

).

Hence both DŨ and the directional derivative of Ũ along any direction are well-

defined, bounded, and Lipschitz continuous, uniformly for t ∈ [0, T ]. Theorem 5.4.7

also suggests that the directional derivative of Ũ along any direction is continuous

w.r.t t. Thanks to these properties, we can use similar idea of the proof for existence

of solution to Master’s equation in (Cecchin and Pelino, 2019, Section 5.3.1), to show
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that Ũ also satisfies the Master equation with some extra error terms.

Theorem 5.4.8. Let (θ̃, p̃) be the solution to ODE system (5.14). Define Ũ as

(5.24). There exist positive constants N0 and C, such that if we have condition

(5.16) in Theorem 5.3.2, then Ũ satisfies following Master equation along the path

(t, p̃(t)) on [t0, T ], as long as p̃(t) ∈ B(P (Σ), 1
N0

).

∂Ũ(t, z, p̃(t))

∂t
+H(z,∆zŨ) +

∑
y∈Σ

p̃y(t)λ
∗(y,∆yŨ) ·DŨ(t, z, p̃(t)) = ε(t, z)

Ũ(T, z, p̃(T )) = G(z, p̃(T )) + ε3(z),

(5.34)

where ∆zŨ := (Ũ(t, 1, p̃(t))−Ũ(t, z, p̃(t)), · · · , Ũ(t,K, p̃(t))−Ũ(t, z, p̃(t))) and ‖ε‖ <
C+1
N

, where N > N0 and C comes from the uniform bound coefficient in Proposition

5.4.2.

The main idea of the proof is similar to (Cecchin and Pelino, 2019, Section 5.3.1).

We decompose ∂Ũ(t,z,p̃(t))
∂t

into two different limits. We reformulate them into other

equivalent forms before taking the limits, such that after taking limit they can be

represented by some terms in (5.34). We also prove the convergence, hence we can

substitute them back to get (5.34).

Proof. From condition in Theorem 5.3.2, p̃(t) ∈ B(P (Σ), 1
N0

) for every t ∈ [t0, T ]

where B(P (Σ), 1
N0

) being the open neighbourhood of P (Σ). Hence from Proposition

5.4.1, 5.4.2 and Theorem 5.4.7, Ũ , DŨ and ∂
∂δ1
Ũ are well-defined on (t, p̃(t)). Take

t as initial time and p̃(t) as initial value, there exists an unique solution to (5.14),

and we can always choose h small enough such that this solution taking value on

t + h, i.e p̃(t + h) ∈ B(P (Σ), 1
N0

). Note that as
∑

z∈Σ ε2(t, z) = 0 for all t ∈ [t0, T ],

we have ∑
z∈Σ

p̃z(t) =
∑
z∈Σ

p̃z(t+ h).
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Let’s first compute limit of following when h tends to 0.

Ũ(t+ h, z, p̃(t))− Ũ(t, z, p̃(t))

h
=

Ũ(t+ h, z, p̃(t))− Ũ(t+ h, z, p̃(t+ h))

h
+
Ũ(t+ h, z, p̃(t+ h))− Ũ(t, z, p̃(t))

h
(5.35)

For the first term in (5.35), we first define

W (s) := Ũ(t+ h, z, p̃(t) + s(p̃(t+ h)− p̃(t))).

By definition, we derive the derivative of W as

W ′(s) =
∂

∂(p̃(t+ h)− p̃(t))
Ũ(t+ h, z, p̃(t) + s(p̃(t+ h)− p̃(t)))

Then the first term in (5.35) can be reformulated as

Ũ(t+ h, z, p̃(t))− Ũ(t+ h, z, p̃(t+ h))

h
=
W (0)−W (1)

h
= −1

h

∫ 1

0

W ′(s)ds.

From Lemma 5.4.4 and c(h) =
∑K

z=1(p̃z(t+ h)− p̃z(t)) = 0. We know

W ′(s) = DŨ(t+ h, z, p̃(t) + s(p̃(t+ h)− p̃(t))) · (p̃(t+ h)− p̃(t))

Substitute above to the first term in (5.35), we get

Ũ(t+ h, z, p̃(t))− Ũ(t+ h, z, p̃(t+ h))

h

= −1

h

∫ 1

0

DŨ(t+ h, z, p̃(t) + s(p̃(t+ h)− p̃(t))) · (p̃(t+ h)− p̃(t))ds

= −1

h

∫ 1

0

Ũ(t+ h, z, p̃(t) + s(p̃(t+ h)− p̃(t)))ds

·
∫ t+h

t

(
∑
y

p̃y(u)λ∗(y,∆yθ̃(u)) + ε2(u))du,

(5.36)
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where ε2(t) := (ε2(t, 1), · · · , ε2(t, z)). From Theorem 5.4.7, we know for any y ∈ Σ,

lim
h→0

[DŨ(t+ h, z, p̃(t) + s(p̃(t+ h)− p̃(t)))]y = [DŨ(t, z, p̃(t))]y.

As DŨ is uniform bounded, we have following with dominated convergence theorem:

lim
h→0

∫ 1

0

DŨ(t+ h, z, p̃(t) + s(p̃(t+ h)− p̃(t)))ds = DŨ(t, z, p̃(t)).

On the other hand, dividing h and letting h→ 0, we have following:

lim
h→0

∫ t+h
t

(
∑

y p̃y(u)λ∗(y,∆yθ̃(u)) + ε2(u))du

h

=
∑
y

p̃y(t)λ
∗(y,∆yθ̃(t)) + ε2(t) =

∑
y

p̃y(t)λ
∗(y,∆yŨ) + ε2(t).

The last equation comes from Definition of Ũ , which suggests ∆yŨ = ∆yθ̃(t).

For the second term in (5.35), from definition of Ũ , we know

Ũ(t+ h, z, p̃(t+ h))− Ũ(t, z, p̃) =
dθ̃z(t)

dt
h+ o(h).

and hence

lim
h→0

Ũ(t+ h, z, p̃(t+ h))− Ũ(t, z, p̃(t))

h
=
dθ̃z(t)

dt
= −H(z,∆zŨ) + ε1(t, z).

Combining both the results from first and second term in (5.35), taking h→ 0, we

have

∂Ũ(t, z, p̃(t))

∂t
= −H(z,∆zŨ)−DŨ(t, z, p̃(t)) · (

∑
y∈Σ

p̃y(t)λ
∗(y,∆yŨ) + ε2(t))

+ ε1(t, z),
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As ‖DŨ(t, z, p̃(t))‖ ≤ C uniformly and ‖ε2(t)‖ ≤ 1
N

, we know

|DŨ(t, z, p̃(t)) · ε2(t)| ≤ C

N

Hence defining ε(t, z) := ε1(t, z)−DŨ(t, z, p̃(t)) · ε2(t) concludes the proof.

Then the DNN approximation (θ̃, p̃) is characterized by (5.34), while the true so-

lution (θ, p) of the MFG is characterized by similar one, except ε and ε3 are 0.

Although the two Master equations are now backward PDE, it is still difficult to

directly compare their solutions. Hence we would like to approximate the two PDEs

by two ODE systems on some discrete grids of P (Σ).

Define PN(Σ) = {(n1

N
, · · · , nK

N
),

∑K
z=0 nz = N, nz ∈ Z+}. Then PN(Σ) is a dis-

crete grid of P (Σ). For any pN ∈ PN(Σ), define operators:

αN,i,j(pN) :=

 pN + 1
N

(δj − δi) pNi > 0, pNj < 1

pN else

∆N,yŨ(t, z, pN) := (Ũ(t, z, αN,y,1(pN))− Ũ(t, z, pN),

· · · , Ũ(t, z, αN,y,K(pN))− Ũ(t, z, pN))

∆N,z,zŨ(t, z, pN) := (Ũ(t, 1, αN,z,1(pN))− Ũ(t, z, pN),

· · · , Ũ(t,K, αN,z,K(pN))− Ũ(t, z, pN)).

(5.37)

With the discrete grid and discrete operators defined above, we next show in Propo-

sition 5.4.9 that the Master equation can be approximate by a backward ODE

system.

Proposition 5.4.9. There exists N0 such that for N > N0, every pN ∈ PN(Σ) and
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z ∈ Σ, Ũ solves

∂Ũ

∂t
(t, z, pN) = ε̃N(t, z, pN)−H(z,∆N,z,zŨ(t, z, pN))

−
∑
y∈Σ

(pNy −
1y=z

N
)λ∗(y,∆N,y,yŨ(t, y, pN)) ·∆N,yŨ(t, z, pN)

Ũ(T, z, pN) = G(z, pN) + ε3(z),

(5.38)

where ε̃N ∈ C0([0, T ]× Σ× PN(Σ)), ‖ε̃N‖ ≤ C
N

.

Note that when only limiting Ũ on grid points in PN(Σ), Ũ(t, z, pN) satisfies ODE

system. But we still use ∂Ũ
∂t

(t, z, pN) instead of dŨ
dt

(t, z, pN) to stay consistent with

above. The key step of the proof is to estimate the difference between the discrete

operator ∆N,y and the differential operator Dy, which is obtained by the uniform

continuity of Ũ ’s directional derivatives. With the estimation it is straight forward

to estimate the difference between the Master equation and the backward ODE

system on those discrete grid points.

Proof. From Theorem 5.4.8, there exists constant N0, such that when N > N0 and

(5.16), Ũ satisfies (5.34) when taking value on point (t, z, pN).

∂Ũ(t, z, pN)

∂t
= −H(z,∆zŨ)−

∑
y∈Σ

pNy λ
∗(y,∆yŨ) ·DŨ(t, z, pN) + ε(t, z).

It looks similar to (5.38), except for the discrete operator ∆N,y and the differen-

tial operator Dy. Hence we next compare the two operators similar to (Cecchin

and Pelino, 2019, Proposition 3). We first discuss the first component δ1 − δy of

119



∆N,yŨ(t, z, pN) defined in (5.37),

Ũ(t, z, pN +
1

N
(δ1 − δy))− Ũ(t, z, pN) =

∫ 1
N

0

[DyŨ(t, z, pN + s(δ1 − δy))]1ds

= [DyŨ(t, z, pN)]1 +

∫ 1
N

0

([DyŨ(t, z, pN + s(δ1 − δy))]1 − [DyŨ(t, z, pN)]1)ds

= [DyŨ(t, z, pN)]1 +O(
1

N2
).

where the last equality is derived by the Lipschitz continuity in pN ∈ P (Σ) of DyŨ .

As above can be applied to every component in ∆N,yŨ(t, z, pN), we conclude that

there exists N0 such that for N > N0,

∆N,yŨ(t, z, pN) = DyŨ(t, z, pN) + εN,y(t, z, pN),

where εN,y ∈ C0([0, T ]× Σ× PN(Σ);RK), ‖εN,y‖ ≤ C
N2 .

Hence we have

∂Ũ

∂t
(t, z, pN) = −

∑
y∈Σ

(pNy −
1y=z

N
)λ∗(y,∆N,y,yŨ(t, y, pN)) ·∆N,yŨ(t, z, pN)

−H(z,∆N,z,zŨ(t, z, pN)) +
4∑
i=1

ei(t, z),

where

e1(t, z) := H(z,∆N,z,zŨ(t, z, pN))−H(z,∆zŨ)

e2(t, z) :=
∑
y∈Σ

pNy ∆N,yŨ(t, z, pN) · (λ∗(y,∆N,y,yŨ(t, y, pN))− λ∗(y,∆yŨ))

e3(t, z) :=
∑
y∈Σ

pNy (∆N,yŨ(t, z, pN)−DŨ(t, z, pN)) · λ∗(y,∆yŨ)

e4(t, z) := −1y=z

N
λ∗(y,∆N,y,yŨ(t, y, pN)) ·∆N,yŨ(t, z, pN) + ε(t, z).

From the Lipschitz continuity of H and λ∗, as well as that Ũ is bounded, there exists

120



constant C such that

|e1(t, z)| ≤ C‖∆N,z,zŨ(t, z, pN)−∆zŨ‖

|e2(t, z)| ≤ C max
z∈Σ
‖∆N,z,zŨ(t, z, pN)−∆zŨ‖.

From Proposition 5.4.2, we know there exists constant C such that

|e1(t, z)|+ |e2(t, z)| ≤ C

2N
.

From Lemma 5.4.4 and
∑

z∈Σ λ
∗
z(y,∆

yŨ) = 0 for every y ∈ Σ, we have

DyŨ(t, z, pN)) · λ∗(y,∆yŨ) = DŨ(t, z, pN)) · λ∗(y,∆yŨ).

It follows that

e3(t, z) =
∑
y∈Σ

pNy (∆N,yŨ(t, z, pN)−DyŨ(t, z, pN)) · λ∗(y,∆yŨ).

From the boundedness of λ∗ and ε, there is constant C such that

|e3(t, z)| ≤
∑
y∈Σ

pNy (
∑
i∈Σ

C

N2
) ≤ C

4N

|e4(t, z)| ≤ C

4N
.

We can conclude the proof by defining

ε̃N(t, z, pN) :=
4∑
i=1

ei(t, z) <
C

N
.

Finally we can proceed to the proof of our main result. The main idea of the proof

is to characterize both the DNN approximation (θ̃, p̃) and the true solution (θ, p)

by their corresponding Master equations, which are further approximated by two
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backward ODE systems on certain discrete grid points. Then the error of the two

can be directly estimated on these grid points using Gronwall inequality. As both

of (θ̃, p̃) and (θ, p) are uniformly Lipschitz continuous w.r.t their initial conditions,

the error between the grid points can also be estimated.

Proof of Theorem 5.3.2. As ODE system (5.2) admits solution to any initial value

p0 ∈ P (Σ), we can define

U(t, z, p) := θ(t, z).

Then from Cecchin and Pelino (2019), U satisfy the Master equation for any p ∈

P (Σ).

∂U(t, z, p)

∂t
+H(z,∆zU) +

∑
y∈Σ

pyDŨ(t, z, p) · λ∗(y,∆yU) = 0

U(T, z, p) = G(z, p).

(5.39)

Similar to the proof of Proposition 5.4.9, we know U(t, z, pN) satisfy ODE

∂U

∂t
(t, z, pN) = εN(t, z, pN)−H(z,∆N,z,zU(t, z, pN))

−
∑
y∈Σ

(pNy −
1y=z

N
)λ∗(y,∆N,y,yU(t, y, pN)) ·∆N,yU(t, z, pN)

U(T, z, pN) = G(z, pN),

(5.40)

where εN ∈ C0([0, T ]× Σ× PN(Σ)), ‖εN‖ ≤ C
N

.

From (5.38) and (5.40), There exists N0 such that when N > N0 and (5.16) holds,
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we have

Ũ(t, z, pN)− U(t, z, pN) = ε3(z) + e+ A+
∑
y∈Σ

(pNy −
1y=z

N
)(By + Cy)

e :=

∫ T

t

(ε̃N(s, z, pN)− εN(s, z, pN))ds

A :=

∫ T

t

(H(z,∆N,z,zŨ(s, z, pN))−H(z,∆N,z,zU(s, z, pN)))ds

By :=

∫ T

t

[λ∗(y,∆N,y,yŨ(s, y, pN))− λ∗(y,∆N,y,yU(s, y, pN))] ·∆N,yŨ(s, z, pN)ds

Cy :=

∫ T

t

λ∗(y,∆N,y,yU(s, y, pN)) · [∆N,yŨ(s, z, pN)−∆N,yU(s, z, pN)]ds.

From Proposition 5.4.1, both U and Ũ are bounded. Hence H and λ∗ are Lipschitz

continuous w.r.t their second variable. Define

d(t) := max
z∈Σ,pN∈PN (Σ)

|Ũ(t, z, pN)− U(t, z, pN)|.

There exists a constant C such that

|A|+ |By|+ |Cy| ≤ C

∫ T

t

d(s)ds.

As pN ∈ PN(Σ), there exists constant C such that

d(t) ≤ max
z∈Σ,pN∈PN (Σ)

{
∫ T

t

|ε̃N(s, z, pN)− εN(s, z, pN)|ds+ ε3(z)}+ C

∫ T

t

d(s)ds

≤ C

N
+ C

∫ T

t

d(s)ds.

By applying Gronwall inequality, there is constant C such that for every t ∈ [0, T ],

z ∈ Σ and pN ∈ PN(Σ) we have

|Ũ(t, z, pN)− U(t, z, pN)| ≤ C

N
. (5.41)

For N > 2N0 where N0 is defined in Proposition 5.4.9 above, if p̃ ∈ B(P (Σ), 1
N

),

123



there is p ∈ P (Σ) such that p̃ = p + ε4 and ε4 <
1
N

. And there exists pN ∈ PN(Σ)

such that

‖p− pN‖ < 1

N

‖p̃− pN‖ ≤ ‖p̃− p‖+ ‖p− pN‖ < 2

N
<

1

N0

.

Hence from Proposition 5.4.1, Ũ(t, z, p̃) is well defined. From Proposition 5.4.2,

there exists constant C independent to N and p, such that for every t ∈ [0, T ] and

z ∈ Σ,

|U(t, z, p)− U(t, z, pN)| ≤ C

N
, |Ũ(t, z, p̃)− Ũ(t, z, pN)| ≤ 2C

N
.

Hence combining above with (5.41), there is constant C independent to N and p,

such that

|Ũ(t, z, p̃)− U(t, z, p)| ≤ C

N
.

It is equivalent to

‖θ̃ − θ‖ ≤ C

N
.

By using the uniform boundedness and Lipschitz continuity of λ∗, we can prove p

and p̃ are Lipschitz continuous w.r.t θ and θ̃ respectively, with the help of Gronwall

inequality and technique similar to the proof of Proposition 5.4.2. Note also that

the Lipschitz coefficient only depends on the the uniform bound and Lipschitz con-

tinuous coefficient of λ∗, which again only depend on the preliminary M given in

Proposition 5.4.1. Hence we know there exists a uniform constant C independent

on N such that

‖p̃− p‖ ≤ C

N
,

which concludes our proof.
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5.5 Conclusion

In this chapter, we discuss numerically solving a general finite state mean field game

with deep neural network. The equilibrium of mean field game is characterized by a

forward backward ODE system, which is generally difficult to tackle using traditional

ODE numerical scheme. We provide a deep neural network approach to numerically

solve the forward backward ODE system. Moreover, by using the Master equation

techniques, we provide a error estimation on the numerical solution. We prove that

the error between numerical solution and true solution is linear to the square root

of neural network’s loss, given that the loss is smaller than certain threshold.
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6
Conclusions

In this thesis we discuss the impact of different kind of competition on market

makers’ behaviour and strategy, which in turn, changes the implicit transaction cost

of the market.

In Chapter 3, we consider a optimal market making problem when price competition

is in place between market makers. We assume market maker’s order flow arrival

intensity depend on bid/ask spreads of both their own and the competitors. We

model the problem as a non-zero sum stochastic differential game in a continuous

time setting, because of the looping dependence structure among market makers.

We characterize the equilibrium by a coupled system of HJB PDE, which could

be further reduced to an ODE system. Verification theorem is proved, and without

assuming a priori, the Issac condition is shown satisfied. It ensures the existence and

uniqueness of solution to the ODE system, and hence that of the equilibrium. Then

we numerically solve the ODE system to get market makers’ optimal bid/ask spreads
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under equilibrium. It is shown that the best optimal bid/ask spreads derived from

our model, is tighter than those from a comparable benchmark model without price

competition in place. Hence it is suggested that price competition tends to tighten

the best spreads in the market, and consequently lower the implicit transaction cost.

In Chapter 4, we consider market makers’ competition for the market making in-

centive reward, especially when the reward is based on their trading volume ranking

that measures their liquidity provision contributions. By considering the limiting

case when the number of market makers tends to infinity, We simplify the original

high dimension stochastic differential game, suffering from the curse of dimension,

to a finite state mean field game. With the existence, uniqueness and convergence

of the equilibrium guaranteed, we design a neural network approach to numerically

solve the forward backward ODE system that characterizes the mean field game

equilibrium. By comparing best equilibrium bid/ask spread under different types

market making incentive reward, we find that the introduction of incentive can re-

duce the implicit trading cost. Rank-based reward, compared with the linear reward,

tends to produce lower best spread in the market.

In Chapter 5, we estimate the theoretical error bound for the deep neural network

numerical method in Chapter 4. We show that the deep neural network approach

can be adapted to solve the forward backward ODE system generated from a more

general type of finite state mean field game. We proved that the numerical solution,

which itself is the true solution to a perturbed forward backward ODE system,

satisfies a Master equation with some extra perturbed terms. And by comparing

the corresponding Master equations, we prove that the error between true solution

and the numerical solution is bounded linearly by the loss of the deep neural network.

There are some open questions in this thesis. For example, how to consider mixed

strategy, instead of pure strategy when solving the equilibrium in both types of com-

petition, or how to integrate the models of both competition, remains unexplored.

We would like to leave these questions into future research.
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A
Numerical Method Based on

Deep Neural Network

In this section, we will present the detailed algorithm for the deep neural network

in Chapter 5.

Consider the forward backward ODE system.

dθz(t)

dt
= −H(z,∆zθ(t)), θz(T ) = G(z, p(T )),

dpz(t)

dt
=

∑
y

py(t)λ
∗
z(y,∆

yθ(t)), pz(t0) = pz,0,

We use a LSTM (long short term memory) neural network to approximate the solu-

tion (θ, p). Denote the function constructed by LSTM neural network as (θ̃(t, β), p̃(t, β)),

where β is the parameters set for neural network. Neural network is designed by

following. Layer 0 is the input t ∈ [0, T ]. Then for layer k with output denoted by
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hk, it is designed as:

fk = σg(Wf t+ Ufhk−1 + bf )

ik = σg(Wit+ Uihk−1 + bi)

ok = σg(Wot+ Uohk−1 + bo)

c̃t = σc(Wct+ Uchk−1 + bc)

ck = fk ◦ ck−1 + ik ◦ c̃k

hk = ok ◦ σh(ck).

Note that the initial values c0 = h0 = 0 and the operator ◦ is the element-wise

product. The detailed notation is explained following:

• t ∈ [0, T ]: input to the LSTM network

• fk ∈ Rh: forget gate’s activation vector

• ik ∈ Rh: input/update gate’s activation vector

• ok ∈ Rh: output gate’s activation vector

• hk ∈ Rh: hidden state vector also known as output vector of the LSTM unit

• c̃k ∈ Rh: cell input activation vector

• ck ∈ Rh: cell state vector

• W ∈ Rh×1, U ∈ Rh×h, b ∈ Rh: weight matrices and bias vector parameters

which need to be learned during training

where h is the number of hidden units.

The advantage of this specific structure, compared with the traditional neural net-

work is that it provides better approximation ability for more complicated functions.

For our model, this specific structure performs better than traditional neural net-

work. We use a LSTM type network as above with total 3 layers and 32 nodes per

layer.
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The network is trained by stochastic gradient approach. We train the network mesh-

free by randomly sampling points in [0, T ]. This randomness actually adds to the

robustness of the network. The detailed training procedure is similar to that in

Sirignano and Spiliopoulos (2018).
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