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Time-dependent systems do not in general conserve energy, invalidating much of the theory developed for static
systems and turning our intuition on its head. This is particularly acute in luminal space-time crystals, where the
structure moves at or close to the velocity of light. Conventional Bloch wave theory no longer applies, energy grows
exponentially with time, and a new perspective is required to understand the phenomenology. In this paper, we
identify a new mechanism for amplification: the compression of lines of force that are nevertheless conserved in
number.
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1. INTRODUCTION

Energy can be added to electromagnetic waves in several
different fashions. We identify a mechanism, distinct from
conventional ones, in which compression of lines of force is the
active ingredient. There are instances of this in other contexts:
a superconductor repels magnets because the magnetic lines of
forces are compressed as they are rejected by the superconductor.
A more dramatic example is the generation of thousand Tesla
magnetic fields by explosive collapse of a copper cylinder enclos-
ing magnetic lines of force [1]. Here we invoke the concept in
the context of amplifying electromagnetic waves. We show that
in some circumstances the number of lines of force, electric
and magnetic, in a time-dependent system is conserved, and
amplification occurs when these lines of force are squeezed
closer together. A short summary of this work can be found as a
“Memorandum” published in Optica [2].

In this paper we use a simple model of a time-dependent grat-
ing synthetically moving with a uniform velocity c g =�/g :

ε(x − c g t)= ε1 [1+ 2αε cos(g x −�t)] ,

µ(x − c g t)=µ1
[
1+ 2αµ cos(g x −�t)

]
, (1)

where g and � are spatial and temporal modulation frequen-
cies, and αε, αµ are the strengths of the electric and magnetic
modulations, respectively. The model has been extensively
deployed in other studies of time-dependent systems, and a
recent review is to be had in [3]. We assume that ε, µ are both
real. Complications arising when the medium is dispersive and
lacking in periodicity are discussed later in the paper. We stress
that the medium itself does not move, so there is no restriction

from relativity on the magnitude of c g , which may take any
value 0< c g <∞.

Similar traveling-wave media have been investigated theo-
retically in the past [4–8]. More recently, they gained renewed
interest thanks to their ability to break Lorentz reciprocity with-
out need for an applied magnetic bias, which can be exploited
for use as isolators [9–11], as well as their topological [10],
non-Hermitian [12], and cloaking [13] features. They have
also recently been analyzed and homogenized as effective media
[14,15]. The luminal modulation regime considered here
has recently been proposed for pulse formation [16,17] and
broadband, nonreciprocal amplification [17].

However, a fundamental explanation of the physical
mechanism responsible for this amplification has never been
developed.

When waves interact with static structures, we have many
tools not only for calculating but also for understanding the
processes and for conceptualizing a problem before we even
begin to calculate. In periodic structures the Bloch wave vector
is conserved and, together with frequency, the other conserved
quantity, gives a wealth of understanding. Its dispersion with
frequency tells us where the bandgaps are and where we are likely
to find surface states. Bloch waves are the basis for understand-
ing the topology of the states through such quantities as the
Berry phase [18] and Chern number [19]. We stress that these
concepts are not merely computational devices but central to
our thought processes as tools for understanding and creating
such systems.

In this paper we seek to provide a set of tools for understand-
ing time-dependent structures for which the traditional static
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concepts fail, by identifying a conserved quantity in the form of
the number of lines of force contained in the system.

At first sight Eq. (1) would imply a straightforward generali-
zation of Bloch’s theorem, mixing together waves differing by a
space-time reciprocal lattice vector,

k′, ω′ = k + ng , ω+ n�, (2)

so that as well as a Bloch wave vector k, there is also a Bloch
frequency ω, both conserved modulo (g , �). This is a good
description of the problem for c g � c 0/

√
ε1µ1, where

c 0/
√
ε1µ1 is the velocity of light in the background medium.

Figure 1(A) shows dispersion of light in the background
medium, and Fig. 1(B) shows what happens when the grating
is turned on: bandgaps open in the normal way, but now there
is asymmetry about k = 0 due to the breaking of time-reversal
symmetry.

In the other extreme, c g � c 0/
√
ε1µ1, shown in Fig. 1(C),

we may still cling onto the Bloch wave picture, except that the
bandgaps are regions of complexω rather than of complex k. In
these gaps waves can lose or gain energy, a process of parametric
amplification [20,21].

The focus of our interest will be in the middle of these
extremes: the luminal region in which the speed of the grating
approaches that of light in the medium. Figure 1(D) shows
the catastrophe that occurs when c g = c 0/

√
ε1µ1: all the

forward-traveling waves become degenerate. Whereas the
bandgaps formed between forward- and backward-traveling
waves dominate scattering outside this regime, it is forward-
forward scattering that dominates here. There is a clearly
defined range of c g within which the band picture is invalid
as already shown in earlier works [8]. In this range, light is
not scattered by the structure but is captured and localized,
carried along with the structure with velocity c g , amplified,
and ejected from the medium as a series of pulses as described
in our Memorandum [2], a figure from which is shown in
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Fig. 1. Sketch of dispersion relation of light traveling through
(A) a uniform dielectric, (B) a grating modulated as shown in Eq. (1)
where c g < c 0/

√
ε1µ1, (C) a grating modulated as shown in Eq. (1)

where c g > c 0/
√
ε1µ1, (D) the case of c g = c 0/

√
ε1µ1 where all the

forward-traveling states are degenerate and therefore strongly coupled.
Red lines originate at positive frequencies; cyan lines at negative ones.
The arrows show displacement of the bands by a space-time reciprocal
lattice vector (g , �), and their slope is the grating velocity.

lu
m

in
al

gr
at

in
g

output: amplified 
pulsed, high frequency

input: continuous, 
low frequency

output: amplified,
pulsed, high frequency

x

Fig. 2. Schematic figure of the effect of a luminal grating, traveling
to the right, on a plane wave incident from the left. The grating has
little effect on waves incident from the right. Note the compression
of phase, which mirrors the compression of lines of force shown
schematically as grey lines. Figure taken from Ref. [2].

Fig. 2. Here a picture in terms of freely propagating waves
is meaningless. Instead we look to the basic elements of the
electromagnetic field: the lines of force embodied in the D
and B fields. Because their velocity varies with position in the
structure, there will be a point toward which they migrate, an
accumulation point [17,20,21], and here they are compressed,
and our new mechanism of amplification comes into play.

The parameters ε(x − c g t) and µ(x − c g t) define the
impedance,

µ(x − c g t)/ε(x − c g t)= Z2, (3)

and refractive index,

µ(x − c g t)ε(x − c g t)= n2. (4)

Variations in the impedance are responsible for backscat-
tering and hence for the bandgaps. A constant Z eliminates
back scattering, removing all gaps so that there is no parametric
amplification. Conversely, the refractive index is responsible
for forward scattering. Because of degeneracy of the forward-
traveling waves in a near-luminal system, forward scattering
is of central importance, and backscattering a distraction that
we shall neglect. This is an exact statement if Z is constant but
approximately true ifαε� 1,αµ� 1. Eliminating all bandgaps
and hence all parametric mechanisms allows us to identify our
new mechanism in its purest form.

When backscattering is negligible, the lines of force are
conserved. Therefore, any gain in energy can only come from
compression of the lines into a sharp pulse. If their local den-
sity is increased by a factor of f , then the local energy density
increases by f 2, and hence there is not only a local increase in
energy but also a net increase.

Here we stress that this is an entirely novel insight into an
amplification process. We have already identified parametric
amplification that occurs when bandgaps open and give rise
to complex values of ω and wave fields that grow in time. No
conservation is at work here, simply a uniform addition of lines
of force. Next consider a slab of uniform gain medium charac-
terized by a complex refractive index n = nr − ini so that a wave
of frequencyω injected into the system acquires a complex wave
vector,

k = (nr − ini ) ω/c 0, (5)
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and as a result the wave amplitude increases exponentially with
penetration into the medium. Cleary there is no conservation of
lines of force here. Many more are ejected from the far side of the
medium than enter.

2. EQUATION OF MOTION IN THE ABSENCE OF
BACKSCATTERING

We start from Maxwell’s equations,

∇ × E=−
∂B
∂t
=−

∂µ̂µ0H
∂t

, ∇ ×H=+
∂D
∂t
=+

∂ε̂ε0E
∂t

,

(6)
where µ̂ and ε̂ are operators that depend upon space and
time and may be nonlocal and dispersive. We impose the
no-backscattering condition

µ̂µ0 = Z2ε̂ε0, (7)

where Z is the impedance of the medium and is a constant real
number. If we assume that the fields depend only on (x , t), then
at normal incidence Maxwell’s equations become

1

Z
∂E y

∂x
=−

∂ε̂ε0 (Z Hz)

∂t
,

1

Z
∂(Z Hz)

∂x
=−

∂ε̂ε0 E y

∂t
. (8)

These equations are symmetric under exchange of
(E y , Z Hz), and therefore solutions factorize into the symmetric
and antisymmetric:

E y =±Z Hz. (9)

The plus sign corresponds to forward-traveling, and the
minus sign to backward-traveling waves obeying a first-order
partial differential equation,

+
∂Dy

∂t
=−

∂Hz

∂x
=∓

1

Z
∂E y

∂x
. (10)

If we assume that Z, ε are both real, and that ε is independent
of frequency and a local operator, then D and E have the same
phase, and there is a further factorization of Eq. (10) into real
and imaginary parts:

+
∂
∣∣Dy

∣∣
∂t
=∓

1

Z

∂
∣∣E y

∣∣
∂x

, +
∣∣Dy

∣∣ ∂φ
∂t
=∓

1

Z

∣∣E y

∣∣ ∂φ
∂x
,

(11)
whereφ is the phase of Dy and, in consequence of Eq. (9), that of
all four fields.

3. CONSERVATION OF LINES OF FORCE

Suppose that

µ= Z2ε= Z2ε1, t < 0, (12)

where ε1 is independent of time. At t = 0 we turn on the space-
time dependence and ask how the total number of lines of force
in the system changes:

∂

∂t

+∞∫
−∞

∣∣Dy

∣∣ dx =

+∞∫
−∞

∓
1

Z

∂
∣∣E y

∣∣
∂x

dx = 0, (13)

where we have substituted from Eq. (11). We assume that the
fields have finite spatial extent and vanish at infinity, which
of course leaves the possibility of taking the limit of infinitely
extended fields and so encompasses all situations considered
here.

This proves the weak form of the theorem, showing that the
only way energy can be added to the system is by rearranging the
lines of force.

If we make some further assumptions about ε, a stronger form
of the theorem can be found. We now assume that ε has the form

ε(x − c g t); (14)

in other words, it has a fixed profile moving with uniform veloc-
ity c g . We work with new variables defined by

X = x − c g t, t ′ = t, (15)

where upon Eq. (11) becomes

− c g
∂
∣∣Dy

∣∣
∂X

+
∂
∣∣Dy

∣∣
∂t ′

=∓
1

Z

∂
∣∣E y

∣∣
∂X

,

− c g εε0
∂φ

∂X
+ εε0

∂φ

∂t ′
=∓

1

Z
∂φ

∂X
. (16)

The fields remain unchanged as they correspond to the origi-
nal fields observed in the stationary frame. We ask if the number
of field lines contained between two points

x − c g t = X 1, x − c g t = X 2 (17)

is constant:

∂

∂t

X2∫
X1

∣∣Dy

∣∣ dx =

X2∫
X1

[
∓

1

Z

∂
∣∣E y

∣∣
∂X

+ c g
∂
∣∣Dy

∣∣
∂X

]
dX

=

[
∓

1

Z

∣∣E y

∣∣+ c g

∣∣Dy

∣∣]X2

X1

=
[(
∓c l (X )+ c g

) ∣∣Dy

∣∣]X2

X1
, (18)

where c l (X )= c 0/(Zε(X )) is the local velocity of light. Thus,
the number of lines of force between X 1, X 2 is conserved if we
are concerned with waves traveling in the same direction as the
profile where the “−” sign applies in Eq. (18) and the two points
specified meet the condition

c l (X 1)= c l (X 2)= c g . (19)

Hence, the region between these points constitutes a trap in
which, depending on the detailed variation of the profile, the
lines of force may be continuously squeezed together, and in the
process energy is pumped into the system. This local form of
the theorem does not apply to waves traveling in the opposite
direction to the profile where the “+” sign applies in Eq. (18),
and they are not trapped.

4. ENERGY DENSITY

Remembering our assumption that µ̂µ0 = Z2ε̂ε0, the energy
density is given by
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U(X , t)= ε0ε(X )
∣∣E y (X , t)

∣∣2 (20)

and obeys the following equation:

∂ ln U
∂t ′
=
[
c g − c l (X )

] ∂ ln U
∂X

+
[
c g + c l (X )

] ∂ ln ε(X )
∂X

,

(21)
which follows from Eq. (11). The second term on the right-hand
side (rhs) pumps energy into the system, but equally important
is the first term, which derives from the Poynting vector. The
system gains energy whenever the second term is positive, but
energy is mobile if the local velocity of light is different from
that of the grating: energy will flow away from the point of its
creation. We discuss this flow below in the context of a periodic
structure and its role in producing highly focused pulses of
radiation.

In the case of a periodic grating,

ε= ε1 [1+ 2α cos(g x −�t)], (22)

we can give some physical insight into energy growth.
Figure 3 shows the profile of the grating in the moving frame,

where X 1, X 2 are points where the local velocity of light equals
that of the grating. As explained above, the last term in Eq. (21)
is responsible for pumping energy into the system and is a maxi-
mum where the derivative of ε is a maximum; in half the cycle
this term is negative and takes energy from the system. The
penultimate term in Eq. (21) arises from the Poynting vector
and redistributes energy within the confines of X 1 < X < X 2.
When the c g = c l line coincides with the X axis, the two terms
work together to give peak energy density at the point of maxi-
mum gain, otherwise the point of peak energy density drifts
away from this point. Ultimately, if the grating moves much
quicker or much slower than any of the light within, no valid X 1,
X 2 points can be found, the strong form of our theorem fails,
and lines of force can now escape from one period of the grating
to another, though still with overall conservation.

We can find an approximate but accurate solution to Eq. (21)
for the case of the periodic grating. Here we give a derivation for
the case of a weak modulation of ε, which approximately satisfies
the no-backscattering condition. Results for modulating both ε
andµ can easily be found by modifying Eqs. (23) and (24).

Making the substitution

τ = t ′
c 0
√
ε1

(23)

Fig. 3. Profile of the variation of ε as a function of X = x − c g t
shown oscillating about ε= ε1. The red portion of the curve shows
where time variation is pumping energy into the system, and the cyan
portion where energy is being extracted. The dashed line indicates the
value of ε at which the local velocity is the same as that of the grating.

and assuming thatα is small, Eq. (21) can be written

∂L
∂τ
=−g (2+ δ)α sin(g X )+ [δ + α cos(g X )]

∂L
∂X

, (24)

where

L = ln U ′, c g = (1+ δ) c 0/ε1, (25)

and we solve Eq. (24) by successive approximations. To the
zeroth order we neglect the second term on the rhs of (24):

L0 =−g (2+ δ)α sin(g X )τ . (26)

This implies that the weight of the gain occurs in the close
vicinity of

sin(g X )=−1, g X = 3π/2, cos(g X )≈ (g X − 3π/2) .
(27)

To calculate the first order, we substitute the zeroth order into
the missing term:

∂L1

∂τ
=−g (2+ δ)α sin(g X )+ [δ + α cos(g X )]

∂L0

∂X

=−g (2+ δ)α sin(g X )− [δ + α cos(g X )]

× cos(g X )g (2+ δ)αg τ . (28)

Hence,

L1 = L0 +11 =−g (2+ δ)α sin(g X )τ

− [δ + α cos(g X )] cos(g X )g (2+ δ)αg
τ 2

2
. (29)

Proceeding in this manner, we find

1n =−[δ + α cos(g X )]2 1

2α2
(2αg )n+1 τ n+1

(n + 1)!

+ δ [δ + α cos(g X )]
2

α2
(αg )n+1 τ n+1

(n + 1)!
. (30)

Summing the terms to infinity,

L =−g (2+ δ)α sin(g X )τ +
∞∑

n=1

1n

=−g (2+ δ)α sin(g X )τ

− [δ + α cos(g X )]2 1

2α2

[
−1− 2αg τ + e 2αg τ ]

+ δ [δ + α cos(g X )]
2

α2

[
−1− αg τ + eαg τ ] (31)

and

U(X , t)= exp


−g (2+ δ)α sin(g X )τ
−[δ + α cos(g X )]2 1

2α2

[
−1− 2αg τ + e 2αg τ

]
+δ [δ + α cos(g X )] 2

α2 [−1− αg τ + e αg τ ]

 .

(32)
Note that the expression is an exact solution of Eq. (24) if

δ = 0, g X = 0, 3π/2. The expression describes formation of a
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pulse contained within a period of the grating whose position
shifts as the grating velocity deviates from the average speed
of light as described by δ. The result is independent of the fre-
quency of incident radiation ω, and the modulation frequency
� appears only through g =�/c g as a scaling variable for
length.

The first term in brackets in Eq. (32) arises from the rate of
change of ε and is a maximum when that rate is a maximum.
It gives rise to exponential growth in amplitude. Also, there is
a point in the grating where sin(g X )= 0 and gain switches to
loss. The other terms arise from the flow of energy and substan-
tially change the shape of the pulse that forms and where the
pulse forms. Narrowing of the pulses is also exponential as our
theory requires to be the case.

If the grating travels at the average velocity of light δ = 0,
our approximations are rather accurate, and in fact are exact at
g X = π/2 and at g X = 3π/2, the maximum loss and maxi-
mum gain points in the medium, where only the first term
matters. When δ 6= 0, energy drifts away from the point of maxi-
mum creation toward the point where the velocity of light is the
same as that of the grating. Peak energy density lies between the
two. We give a further discussion of accuracy later in the paper
when comparing to transfer matrix simulations.

Here is the origin of trapping lines of force to which we
alluded earlier. If there is no point within the grating where
the local velocity of light is the same as that of the grating, then
lines of force escape into the next period and the growth mecha-
nism collapses, and we revert to a Bloch wave description. The
condition for the growth mechanism to operate is [3]

1/
√

1+ 2α <
√
ε1c g /c 0 < 1/

√
1− 2α. (33)

In Fig. 4 we show the effect of the three contributions to
U(X , t). When c g = c 0/

√
ε1, δ = 0, energy accumulates at the

point of maximum growth, and the role of the second term is
to sharpen the peak as energy migrates inwards. The third term
makes no contribution in this case. In contrast, when the grating
is moving faster, c g > c 0/

√
ε1, δ = 0.02, the third and second

terms play a role both in sharpening the peak and in moving it
back along the grating.

We recognize that Eq. (32) implies the following density of
lines of force:

Fig. 4. Evaluation of Eq. (32) for transmission through a finite
luminal medium for δ = 0 (left) and δ =+0.02 (right), thickness
τ = t ′c 0/

√
ε1 = 600, and α = 0.05, at the exit surface, as a function

of g X . In each case we include successively the first term in Eq. (32):
outer curve; plus the second: full inner curve; and plus the second and
third: dashed inner curve.

|D(X , t)| =
√
εε0U(X , t)

≈
√
εε0 exp


−

g
2 (2+ δ)α sin(g X )τ
−[δ + α cos(g X )]2 1

4α2

[
−1− 2αg τ + e 2αg τ

]
+δ [δ + α cos(g X )] 1

α2 [−1− αg τ + e αg τ ]

.

(34)

This is a very curious time evolution containing a double
exponential, the function of which is to narrow the width of the
pulse and ensure conformity to the flux conservation law.

5. DEPENDENCE OF THE PHASE ON TIME

From Eqs. (16), (22), and (23),

∂φ

∂t ′
=+c g

∂φ

∂X
−

c 0
√
ε

∂φ

∂X
=+ (1+ δ)

c 0
√
ε1

∂φ

∂X
−

c 0
√
ε

∂φ

∂X

≈+δ
c 0
√
ε1

∂φ

∂X
+ α cos(g X )

c 0
√
ε1

∂φ

∂X
,

(35)

and hence

∂ lnψ

∂τ
=−αg sin(g X )+ [δ + α cos(g X )]

∂ lnψ

∂X
, (36)

where

∂φ/∂X =ψ . (37)

We can retrace the steps taken in deriving U . We concentrate
not on the maximum rate of growth of φ but rather that of ψ ,
and find to first order,

L ′0 =−αg sin(g X )τ . (38)

Back substituting and making successive approximations,
we have

1L ′n =− [δ + α cos(g X )] αng n+1 cos(g X )
τ n+1

(n + 1)!

+ [δ + α cos(g X )]2αn−1g n+1 τ n+1

(n + 1)!

− [δ + α cos(g X )]22n−1αn−1g n+1 τ n+1

(n + 1)!
, (39)

following through to

∂φ

∂X
=ψ ≈ k1

× exp


−gα sin(g X )τ
− [δ + α cos(g X )] α−1 cos(g X ) (−1− αg τ + e αg τ )

+[δ + α cos(g X )]2α−2
(
−

3
4 −

1
2αg τ + e αg τ

−
1
4 e 2αg τ

)
.

(40)

The prefactor k1 = k0/
√
ε1 is the wave vector in the back-

ground medium and gives the rate of change of φ at τ = 0.
Compare this equation to our expression for the flux density,
Eq. (34), which to the accuracy of our approximations shows
that the phase is compressed in the same manner as the lines of
force.
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Integrating Eq. (40), we find the phase

φ(X , τ )≈ k1e−gα sin(g X )τ

√
π

2g
b(τ )

[
1+ erf (x0(τ ))

]
, (41)

where

b(τ )=
1√

−
1
4 −

1
2αg τ + 1

4 e 2αg τ
, x0(τ )=

(g X − 3π/2)

b(τ )
.

(42)
The phase depends on the modulation frequency g =�/c g

as a scaling variable for the length; however, the number of
oscillations in one cycle is given by k1/g and so does depend on
the input frequency.

6. COMPARING THEORY TO TRANSFER
MATRIX CALCULATIONS

In Fig. 5 we compare the analytic result with transfer-matrix-
based simulations [17]. The first two figures show transmission
through slabs of grating of two different thicknesses while
the grating travels at the average velocity of light, δ = 0. The
choice the input frequency, ω= 1, does not affect transmission
intensities, but �= 0.07 the modulation frequency dictates
the number of oscillations of phase per cycle. The choice of
a small ratio �/ω both serves to provide a rich population of
phase oscillations and to demonstrate that modulations can be
effective while of a much lower frequency than the waves acted
upon.

In Fig. 5(A) the light has been in the grating for a short time
τ = 150, and in Fig. 5(B) for a longer time τ = 600, resulting
in a higher narrower pulse. Our compression of lines of force
theory predicts that the pulse height scales inversely as the square
of the pulse width, which it does. Note the agreement with
the transfer matrix calculations. In Fig. 5(C) we add the phase

A B

C D

Fig. 5. Intensity transmitted through a finite luminal medium
δ = 0 at the exit surface, as a function of g X (A) after a short time
propagating along the medium, α = 0.05, �= 0.07, τ = 150 and
(B) after a longer time, τ = 600. The dashed black line is calculated
from the transfer matrix, and the red line from the present approximate
theory. (C) Same parameters as for (B), but here we plot the real part
of the amplitude, which includes a calculation of the phase where the
incident wave has frequency ω= 1. (D) Same parameters as for (B)
except for δ 6= 0.

calculated analytically and compare the real part of the electric
field with that calculated using the transfer matrix. Derivation
of the phase formula follows closely that for the field amplitude.
The formula is accurate where the linearization assumption
holds good.

Finally, in Fig. 5(D) the calculation in Fig. 5(B) is extended
to other grating velocities. Here the analytic result is less accu-
rate [it depends on linearization of ε(X ) about g X = 3π/2].
The amplification mechanism is on the point of breakdown at
δ =±0.05, beyond which values a Bloch wave picture reasserts
itself. Note how the peak lags behind the point of maximum
gain when δ > 0 and conversely when δ < 0.

7. DISCUSSION

Our idealized model, which assumes no loss and no dispersion,
will inevitably be compromised to some extent by the materials
available to us.

First let us consider the problem of loss. Adjusting Eq. (10) to
include uniform loss,

+
∂Dy

∂t
=+

∂(εr + iεi ) E y

∂t
=+εr

∂E y

∂t
+ iεi

∂E y

∂t
+ E y

∂εr

∂t

=∓
1

Z
∂E y

∂x
, (43)

we see that the loss term represented by εi competes directly
with the time dependence of εr . Within the luminal region,
∂εr /∂t results in excitations of higher frequencies of the form
ω+ n�, which add coherently to form the pulse. Clearly, from
Eq. (43), the higher frequencies will be more susceptible to loss
than the lower ones, and we can expect a cutoff in the spectrum
approximately when

εi (ω+ ncut�)≈
∂εr

∂t
(44)

and the pulse saturates at a finite width. In addition, loss will
result in attrition of the number of lines of force, which are no
longer conserved. The gain process as a whole will cease for
higher values of loss,

εi (ω+�)≈
∂εr

∂t
, (45)

which implies a minimum value of ∂εr /∂t for these effects to
materialize.

Another consideration is the practicality of modulating
material properties at very high frequencies. At RF, where a
rich variety of material properties is available, there will be no
problem, and several schemes involving varactors have been
proposed [14], but at higher frequencies only weak modulation
can be expected. However, there is a let out clause in that only
the speed of the modulation need keep pace with the radiation;
the modulation frequency � can in principle be much lower
provided that c g =�/g is fast enough. In lossy systems, limits
are imposed by Eq. (45) because a small value of� implies a low
rate of modulation.

We take the opportunity to note that we can use Eq. (43)
to illustrate what happens in a gain medium by reversing the
sign of εi . Instead of loss we now have amplification, but this
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term contributes uniform amplification and invalidates the flux
conserving theorem.

Choosing a value of��ω helps sidestep the issue of disper-
sion. When ε is a function of frequency, each frequency excited
has a different velocity and therefore a different accumulation
point within the cycle (see Fig. 3), and as a result it does not
contribute to give a perfectly coherent peak. In fact, if dispersion
is so severe that some frequencies escape the trap entirely, they
no longer contribute to amplification. This has been demon-
strated computationally in an earlier publication [17] by means
of transfer matrix calculations. Most materials have a range of
frequencies over which dispersion is small so that by choosing
��ω the system can stay within the gain regime to all practical
purposes, provided that losses are modest.

Apart from RF systems, graphene is a promising candidate for
terahertz (THz) frequencies. It is known that the conductivity of
graphene can be modulated at rates exceeding 100 GHz via both
electro-optic [22,23] and all-optical mechanisms [24], and the
THz surface plasmons of graphene may be the first excitations
to be amplified in this fashion. We have previously suggested
double-layer graphene as a possible candidate, since the linearity
of the acoustic plasmon mode in this configuration enables the
circumvention of the aforementioned dispersion effects [17].

Seemingly related but well-distinct light-amplification mech-
anisms have recently been proposed, which exploit the use of
DC currents in graphene, where the velocity of the carriers can
be uncommonly high, and the mechanism has been associated
with the phenomenon of Landau damping [25], suggesting
a possible common underlying origin, although no charge
motion is present in our case.

Although our discussion has been entirely in terms of electro-
magnetic waves, similar processes will apply to other waves: to
water waves and particularly to acoustic waves. In many ways
acoustic systems could be much more amenable to realization:
frequencies are much lower, removing the problem of modula-
tion speed and introducing the possibility of electronic control
[26]. Also, many acoustic systems have extremely low loss and
low dispersion, alleviating other difficulties.
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