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We study solutions in the Plebański–Demiański family which describe an accelerating, rotating, and
dyonically charged black hole in AdS4. These are solutions of D ¼ 4 Einstein-Maxwell theory with a
negative cosmological constant and hence minimalD ¼ 4 gauged supergravity. It is well known that when
the acceleration is nonvanishing the D ¼ 4 black hole metrics have conical singularities. By uplifting the
solutions to D ¼ 11 supergravity using a regular Sasaki-Einstein seven-manifold, SE7, we show how the
free parameters can be chosen to eliminate the conical singularities. Topologically, the D ¼ 11 solutions
incorporate an SE7 fibration over a two-dimensional weighted projective space,WCP1

½n−;nþ�, also known as

a spindle, which is labeled by two integers that determine the conical singularities of the D ¼ 4 metrics.
We also discuss the supersymmetric and extremal limit and show that the near horizon limit gives rise to a
new family of regular supersymmetric AdS2 × Y9 solutions of D ¼ 11 supergravity, which generalize a
known family by the addition of a rotation parameter. We calculate the entropy of these black holes and
argue that it should be possible to derive this from certainN ¼ 2, d ¼ 3 quiver gauge theories compactified
on a spinning spindle with the appropriate magnetic flux.
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I. INTRODUCTION

The C-metrics of D ¼ 4 Einstein-Maxwell theory [1]
describe two charged black holes undergoing uniform
acceleration. The force for the acceleration is provided
by a conical angle excess (a strut) between the two black
holes, a conical angle deficit (a string) attached to the black
holes and extending out to infinity, or a combination of the
two. By extending the model to include additional matter
fields that allow for cosmic strings, the conical singularity
can be smoothed out by having two cosmic strings pull the
black holes apart [2,3]. Another approach for removing the
conical singularities, in the case of electrically or magneti-
cally charged black holes, is provided by the Ernst metric in
which the black holes are being accelerated by a back-
ground electric or magnetic field, respectively [4].
Generalizations of the Ernst metric were found for

Einstein-Maxwell-dilaton gravity in [5]. For the particular

case associated with D ¼ 5 Kaluza-Klein theory, it was
shown in [6] that the accelerating D ¼ 4 extremal, mag-
netically charged black hole solutions can be obtained by a
dimensional reduction of a double Wick rotation of the
D ¼ 5 generalization of the Kerr solution [7]. Recall that
the extremal magnetically charged black holes in Kaluza-
Klein theory are Kaluza-Klein monopoles [8,9], which are,
in fact, naked singularities from the four-dimensional point
of view. A key ingredient in the construction of [6] is that
the Kaluza-Klein circle action associated with the reduction
has two fixed points which precisely correspond to a
Kaluza-Klein monopole, antimonopole pair.
In this paper we provide a new way of desingularizing

the conical deficits for a specific class of accelerating,
rotating, and dyonically charged black holes in AdS4:
by embedding them in D ¼ 11 supergravity. We study
the Plebański–Demiański (PD) solutions [10] of D ¼ 4
Einstein-Maxwell theory, generalizing the C-metrics of [1],
which in particular allow for a cosmological constant,
which we take to be negative. Such accelerating AdS4 black
holes have been extensively studied (e.g., [11–13]) and here
we will only be interested in the case of small acceleration
for which there is just a single black hole. From a D ¼ 4
perspective we will consider a single accelerating black

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 046007 (2021)
Editors' Suggestion

2470-0010=2021=104(4)=046007(37) 046007-1 Published by the American Physical Society

https://orcid.org/0000-0002-6619-339X
https://orcid.org/0000-0001-6622-7812
https://orcid.org/0000-0003-3780-6000
https://orcid.org/0000-0002-9877-2222
https://orcid.org/0000-0003-3699-5225
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.046007&domain=pdf&date_stamp=2021-08-04
https://doi.org/10.1103/PhysRevD.104.046007
https://doi.org/10.1103/PhysRevD.104.046007
https://doi.org/10.1103/PhysRevD.104.046007
https://doi.org/10.1103/PhysRevD.104.046007
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


hole with a two-dimensional horizon given by a “spindle,”
a weighted projective space, WCP1

½n−;nþ�, which is topo-
logically a sphere with conical deficits at both poles
specified by n� ∈ N, which stretch out to the AdS4
boundary. The net acceleration of the black hole is due
to the mismatch of the conical deficits on either side of
the black hole. Interestingly, the same mismatch also leads
to a nonzero magnetic flux though the horizon, given
by Gð4ÞQm ¼ n−−nþ

4nþn−
.

We can embed these solutions in D ¼ 11 supergravity
locally, using an arbitrary seven-dimensional Sasaki-
Einstein manifold, SE7. Indeed, it has been shown [14]
that there is a consistent Kaluza-Klein truncation ofD ¼ 11
supergravity on any SE7 down to minimal gauged super-
gravity in D ¼ 4, whose bosonic content is Einstein-
Maxwell theory (with a negative cosmological constant).
By definition, this means that any solution of D ¼ 4
Einstein-Maxwell theory can be uplifted on an arbitrary
SE7 manifold to obtain a solution of D ¼ 11 supergravity.
Furthermore, if the D ¼ 4 solution preserves supersym-
metry, then so does the uplifted solution. For example, the
vacuum AdS4 solution, which preserves all of the D ¼ 4
supersymmetry, uplifts to the AdS4 × SE7 solution which,
in general, preserves 1=4 of the supersymmetry and is dual
to anN ¼ 2 super conformal field theory (SCFT) in d ¼ 3.
In our construction it is only the regular class of SE7 that

plays a role in obtaining smooth D ¼ 11 solutions. These
have the property that the SE7 manifold is a circle bundle
over KE6, a six-dimensional Kähler-Einstein manifold with
positive curvature. It will also be important to recall that
this includes the generic class where the circle bundle is the
canonical bundle of the Kähler-Einstein manifold, but it is
also possible, depending on the choice of KE6, to enlarge
the period of the circle to get other Sasaki-Einstein
manifolds. The simplest example is for the case of CP3.
For this case, S7=Z4 is the canonical circle bundle overCP3

and is a smooth Sasaki-Einstein manifold, but so too are
S7=Z2 and S7.
After uplifting the PD black hole solutions with horizon

WCP1
½n−;nþ� on a regular SE7, we will show, somewhat

miraculously, that by choosing the parameters in the PD

metric appropriately the D ¼ 11 solution is free from any
conical deficit singularities.1 Importantly, precisely which
regular Sasaki-Einsteinmanifold one can uplift upon depends
on the integers n� ∈ N. For example, for the case ofCP3, for
a given n� ∈ N we can uplift on precisely one of the three
cases:S7,S7=Z2, or S7=Z4. It is also important to note that for
the Kaluza-Klein reduction on the SE7 the fibered circle
action does not have any fixed points and hence there are no
Kaluza-Klein monopoles as in the construction of [6]. On the
other hand, the circle action is not free and this leads to the
conical deficits of the spindle WCP1

½n−;nþ�.
Of particular interest is that our construction also

includes accelerating black holes that preserve supersym-
metry, as considered in a general context in [15], and,
moreover, have regular extremal horizons. From the
D ¼ 4 perspective, the near horizon limit of these super-
symmetric, extremal, rotating black holes are of the form
AdS2 ×WCP1

½n−;nþ�, with nonvanishing magnetic flux

through the horizon WCP1
½n−;nþ�. The way that supersym-

metry is preserved for these AdS2 solutions is nonstandard;
the magnetic flux is not describing a topological twist
[16,17] and the Killing spinors are then correspondingly
not simply constant, even when the rotation is turned off.
Indeed, they are sections of nontrivial bundles over the
spindle WCP1

½n−;nþ�. The uplifted supersymmetric D ¼ 11

solutions have a near horizon limit of the form AdS2 × Y9.
In the special case that we set the rotation parameter of the
PD metrics to zero, we find an AdS2 × Y9 geometry in
the general class of [18], where Y9 is a nine-dimensional
Gauntlett-Kim (GK) geometry [19]. In fact, remarkably,
when the rotation parameter vanishes we find exactly the
same class of supersymmetric AdS2 × Y9 solutions first
constructed in [20] from a quite different perspective. When
the rotation parameter of the PD metrics is nonzero, we find
a new class of supersymmetric AdS2 × Y9 solutions that lie
outside the class considered in [18], and generalize those of
[20] with an extra rotation parameter.2

We calculate the entropy SBH for the PD black hole
solutions. In particular, for the “supersymmetric spinning
spindles” that in addition have extremal horizons, we find

SBH ¼ π

Gð4Þ

J
Qe

¼ π

Gð4Þ

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2− þ n2þ þ 8n2−n2þðGð4ÞQeÞ2

q
− ðn− þ nþÞ

4n−nþ
; ð1:1Þ

where J is the angular momentum of the black hole, andQe

is its electric charge. Notice how this gives a relation
between J and Qe for extremal solutions. We also note that
with nonzero acceleration, we can still have supersym-
metric extremal black holes with J ¼ Qe ¼ 0; for these
black holes the second expression in (1.1) is the valid

1Of course, the black hole curvature singularity remains behind
the black hole horizon.

2These should arise within the recent classification of rotating
D ¼ 11 AdS2 solutions in [21], and it would be interesting to
investigate this further.
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expression. We also recall that π
2Gð4Þ

¼ F S3 is the free energy

of the d ¼ 3 SCFT dual to the AdS4 × SE7 solution.
We define the angular momentum J of the black hole,

appearing in (1.1), to be a conserved quantity that can be
equally evaluated either at the conformal boundary or at the
black hole horizon (see, e.g., [22]). As a consequence, it is a
type of Page charge that depends on the gauge used for the
gauge field. However, there is a different natural angular
momentum defined in the near horizon limit which has a
gauge field that is invariant under the AdS2 symmetries,
that we denote JAdS2 . We find

JAdS2 − J ¼ Qe

4
χðΣÞ; ð1:2Þ

where χðΣÞ ¼ n−þnþ
nþn−

is the Euler number of the spindle

horizon Σ ¼ WCP1
½n−;nþ�.

It would be very interesting to be able to derive this
entropy from the d ¼ 3 SCFT dual to the corresponding
AdS4 × SE7 vacuum solution. In the context of the topo-
logical twist, there has been considerable progress in
obtaining such derivations for supersymmetric AdS4 black
holes with magnetic flux through a Riemann surface
horizon using the principle of I-extremization [23–30].
The relevant black hole solutions approach AdS4 × SE7 in
the UVand AdS2 × Y9 in the near horizon, with Y9 being a
SE7 fibration over the Riemann surface, Σg. The black hole
entropy can be obtained from the d ¼ 3 field theory by
extremizing a certain twisted topological index [31] asso-
ciated with the d ¼ 3 SCFT compactified on Σg. This index
can be calculated using localization techniques and then
evaluated in the large N limit for many different examples
[32,33]. A geometric dual of I-extremization was proposed
in [34,35] and later shown to agree with the I-extremization
procedure in field theory for infinite classes of examples of
such AdS2 × Y9 solutions as in [27–30].
The family of black holes that we consider includes

the well-known Kerr-Newman-AdS spacetime [36] in
the nonaccelerating case, whose Bogomolnyi-Prasad-
Sommerfield (BPS), i.e. supersymmetric, and extremal
limits have been extensively discussed both from the
gravitational and dual field theory points of view (see,
e.g., [37–40] and [41,42], respectively). Interestingly, the
entropy of the BPS and extremal Kerr-Newman-AdS black
hole can be immediately recovered from (1.1) by setting
nþ¼n−¼1. In addition, the expression (1.2) is also valid
for the Kerr-Newman-AdS black holes, a point that seems
to have been overlooked in the literature.
The results of this paper lead to the challenge of

recovering the entropy of the rotating and accelerating
black hole by evaluating a suitable index. This index will be
an appropriately defined localized partition function of the
dual d ¼ 3 SCFT compactified on S1 ×WCP1

½n−;nþ�, with
electric flux and magnetic flux through WCP1

½n−;nþ� and
with additional rotation. There are a number of subtleties

related to this computation, which will need to be further
developed in future work. Here we will make a number of
particularly interesting observations concerning the BPS
extremal black holes with acceleration but without rotation
or electric charge, i.e., J ¼ Qe ¼ 0. One feature is that these
solutions have an acceleration horizon that intersects the
conformal boundary, effectively dividing the spindle in half.
Moreover, we find that the Killing spinor on this conformal
boundary is given by a topological twist, so that the spinor is
constant, but it is a different constant spinor on each half of
the space. We also explain how these unusual features are
“regulated” by keeping, for example, supersymmetry, but
relaxing the extremality condition (although this class with
J ¼ 0 then has a naked singularity in the bulk).
The plan of the rest of this paper is as follows. In Sec. II

we briefly review D ¼ 4 minimal gauged supergravity,
and its uplift to D ¼ 11 supergravity on Sasaki-Einstein
seven-manifolds. Section III introduces the class of
Plebański–Demiański solutions of interest, showing that
the parameters can be chosen so that the black hole horizon
is topologically a spindle, WCP1

½n−;nþ�. In Sec. IV, we show

that on uplifting to D ¼ 11 supergravity, the PD solutions
become completely smooth with properly quantized flux.
Supersymmetric and extremal solutions are studied in
Sec. V, where we focus on the near horizon AdS2 geometries
and the associated Killing spinors. In Sec. VI we discuss
some global properties of the accelerating but nonrotating
extremal supersymmetric black hole, discussing the con-
formal boundary and the acceleration horizon. We conclude
with a discussion of open problems in Sec. VII.
We have also included a number of appendixes.

Appendix A has some general comments on circle bundles
over spindles. Appendix B briefly discusses some aspects of
the well-known nonaccelerating class of Kerr-Newman-AdS
black holes. Appendix C contains some technical details
concerning the near horizon limit, while Appendix D shows
that the resulting supersymmetric AdS2 × Y9 solutions
generalize those of [20] by the addition of an angular
momentum parameter. In Appendix E we discuss how we
define the angular momentum of the black holes, clarify
various aspects of the gauge dependence, and also derive
(1.2). Appendix F discusses conventions for Killing spinors,
while Appendix G contains some details of how to obtain the
bulk Killing spinor, as well as how to obtain the associated
Killing spinor on the three-dimensional conformal boundary.

II. GENERAL SETTING

We will be interested in solutions of D ¼ 4 Einstein-
Maxwell theory with action given by

S ¼ 1

16πGð4Þ

Z
d4x

ffiffiffiffiffiffi
−g

p ðRþ 6 − F2Þ; ð2:1Þ

where F ¼ dA. This is the action for the bosonic fields of
D ¼ 4, N ¼ 2 minimal gauged supergravity. A solution to
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the equations of motion will preserve supersymmetry
provided that it admits appropriate Killing spinors which
we define later. Note that we have performed a scaling to
set the cosmological constant as Λ ¼ −3 so that a unit
radius AdS4 vacuum solution with a vanishing gauge field
solves the equations of motion. This vacuum solution
preserves all of the D ¼ 4 supersymmetry.
Any (supersymmetric) solution of this theory automati-

cally uplifts to a (supersymmetric) solution of D ¼ 11
supergravity on an arbitrary Sasaki-Einstein seven-
manifold, SE7 [14]. The general uplifting ansatz is3

ds211 ¼ L2

�
1

4
ds24 þ

�
ηþ 1

2
A

�
2

þ ds2T

�
;

G ¼ L3

�
3

8
vol4 −

1

2
�4 F ∧ J

�
; ð2:2Þ

where L > 0 is a constant which is eventually fixed by flux
quantization. Here, η is the contact one-form of the Sasaki-
Einstein manifold, with the transverse Kähler two-form4 J
and the associated transverse metric ds2T , with dη ¼ 2J.
The vacuum AdS4 solution, with ds24 being a unit radius
AdS4 and A ¼ 0, uplifts to the supersymmetric AdS4×SE7

solution, which is dual to an N ¼ 2 SCFT in d ¼ 3. For
later use we note that

�11G ¼ L6

�
J3 ∧

�
ηþ 1

2
A

�
þ 1

24
F ∧ J2 ∧

�
ηþ 1

2
A

��
:

ð2:3Þ

In this paper we will be interested in the case that the
Sasaki-Einstein manifold is in the regular class, for which
ds2T ¼ ds2KE6

is a metric on KE6, a Kähler-Einstein mani-
fold. Necessarily, KE6 has positive curvature and ds2T is
normalized so that RicðKE6Þ ¼ 8gðKE6Þ and hence
ρ ¼ 8J, where ρ is the Ricci form. Introducing local
coordinates, we can write

η ¼ 1

4
dψ þ σ; dσ ¼ 2J: ð2:4Þ

The Sasaki-Einstein manifold admits a Killing spinor
which has a charge of 1=2 under ∂ψ (see Appendix F).
That is, in a frame invariant under ∂ψ , there is an explicit
phase eiψ=2 in the spinor. This gives rise to a phase eiψ in the
holomorphic (4,0)-form on the cone over the SE7, which is
a bilinear in the Killing spinor.
In the sequel it will be important to recall that the KE6

has a Fano index I ∈ N. If L is the canonical line bundle

over the KE6 then I is the largest integer for which there is a
line bundleN with L ¼ N I, i.e., we are able to take the Ith
root of the canonical bundle. In general, we may then take
the period of ψ to be

Δψ ¼ 2πI
k

; ð2:5Þ

where k is a positive integer that divides I. The fundamental
group is then π1ðSE7Þ ≅ Zk, so that, in particular, when
k ¼ 1 the resulting manifold is simply connected. For
example, if KE6 ¼ CP3, then I ¼ 4 and the associated SE7

manifolds with k ¼ 1, 2, and 4 are, respectively, S7, S7=Z2,
and S7=Z4. Note that I=k ∈ N ensures that the Killing
spinor and holomorphic (4,0)-form mentioned above are
well defined. Some other well-known examples of regular
SE7 are summarized in Table I, with the associated values
of I (see, e.g., Theorem 3.1 of [43]).
Another integer quantity associated with the KE6 that

will frequently appear is defined by

M ≡
Z
KE6

�
ρ

2π

�
3

¼
Z
KE6

c31; ð2:6Þ

where ρ is the Ricci form for the KE6. Values of M for
examples of SE7 can also be found in Table I. We note that
the volume of the KE6 and the SE7 can be expressed in
terms of M as follows:

volðKE6Þ ¼
π3M
3 × 27

; volðSE7Þ ¼
π4MI
3 × 28k

: ð2:7Þ

Our conventions for D ¼ 11 supergravity are as in,
e.g., [44,45]. We define NSE > 0 to be the quantized flux
through the SE7 manifold:

NSE ≡ 1

ð2πlpÞ6
Z
SE7

�11G ¼ 3L6volðSE7Þ
π625l6

p
: ð2:8Þ

Here, lp is the D ¼ 11 Planck length with the D ¼ 11

Newton constant defined by 1=ð16πGð11ÞÞ ¼ 1=ð2πÞ8l9
p.

TABLE I. Some examples of simply connected (k ¼ 1) SE7

manifolds obtained as circle bundles over a KE6 manifold. The
integer I is the Fano index for the KE6 and M is defined in (2.6).
Note that dPn are del-Pezzo surfaces with n ¼ 3;…; 8 and the
associated SE7 do not have a name.

KE6 I M SE7 (with k ¼ 1)

CP3 4 26 S7

CP1 × CP1 × CP1 2 24 × 3 Q1;1;1

CP2 × CP1 1 2 × 33 M3;2

SUð3Þ=T2 2 24 × 3 N1;1

Gr5;2 3 2 × 33 V5;2

dPn × CP1 1 6 × ð9 − nÞ ⋆

3Note that in [14] Athere ¼ 2Ahere.
4We have used the letter J to denote both the Kähler two-form

and the angular momentum of the black holes; the context should
make it clear which one we are referring to.
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Carrying out the dimensional reduction to D ¼ 4, we can
now express the D ¼ 4 Newton constant in the following
useful form:

1

Gð4Þ
¼ 23=2π2

33=2volðSE7Þ1=2
N3=2

SE7
¼ 211=2k1=2

3M1=2I1=2
N3=2

SE7
: ð2:9Þ

We also recall that the free energy of the d ¼ 3 SCFT dual
to the AdS4 × SE7 solution is given by

F S3 ¼
π

2Gð4Þ
: ð2:10Þ

III. AdS4 PD BLACK HOLES IN D= 4

We start with a subclass of the class of PD solutions [10]
of Einstein-Maxwell theory, as presented in [46]. The
metric is given by

ds2 ¼ 1

H2

�
−
Q
Σ
½dt − asin2θdϕ�2 þ Σ

Q
dr2 þ Σ

P
dθ2

þ P
Σ
sin2θ½adt − ðr2 þ a2Þdϕ�2

�
; ð3:1Þ

where

H ¼ 1 − αr cos θ;

Σ ¼ r2 þ a2cos2θ;

P ¼ 1 − 2αm cos θ þ ðα2ða2 þ e2 þ g2Þ − a2Þcos2θ;
Q ¼ ðr2 − 2mrþ a2 þ e2 þ g2Þð1 − α2r2Þ þ ða2 þ r2Þr2;

ð3:2Þ

and we note that P ¼ PðθÞ and Q ¼ QðrÞ while H and Σ
depend on both r and θ. The gauge field is given by

A ¼ −e
r
Σ
ðdt − asin2θdϕÞ þ g

cos θ
Σ

ðadt − ðr2 þ a2ÞdϕÞ:
ð3:3Þ

The solution depends on five free parameters, m, e, g, a,
and α, which we can loosely associate with mass, electric
charge, magnetic charge, rotation, and acceleration, respec-
tively. We note that we have set a possible NUT (Newman-
Unti-Tamburino) parameter in the PD metrics to zero, since
we want to avoid closed timelike curves. We have fixed the
cosmological constant to beΛ ¼ −3, as in (2.1), and finally
we note that we have changed the sign of g compared
with [46].
We will assume m > 0. Note that there are various

coordinate changes: θ → π − θ, t → −t, ϕ → −ϕ, as well
as A → −A, which change the signs of the pairs ðα; gÞ,
ða; eÞ, ða; gÞ, and ðe; gÞ, respectively. If α ¼ 0, we can thus

choose e, g, a ≥ 0 without loss of generality. If α ≠ 0 we
can choose m, α > 0 and e, g ≥ 0 with either a ≥ 0 or
a ≤ 0. However, in order to get supersymmetric extremal
black holes, one should take a ≥ 0. Thus, in the sequel we
focus on

m > 0; α; e; g; a ≥ 0: ð3:4Þ
The range of the θ coordinate is taken to be 0 ≤ θ ≤ π.

We will assume that PðθÞ > 0 in this range.5 It will be
convenient to define

θ− ¼ 0 and θþ ¼ π: ð3:5Þ
On slices of constant t, r, we can examine the behavior of
the metric as we approach θ ¼ θ�, and we find

ds2θ;ϕ ≈
�

Σ
PH2

�
θ¼θ�

½dθ2 þ P2
�ðθ − θ�Þ2dϕ2�; ð3:6Þ

where

P� ≡ Pðθ�Þ ¼ 1� 2αmþ α2ða2 þ e2 þ g2Þ − a2 ð3:7Þ

are constants. With αm ≠ 0 it is not possible to choose a
period for ϕ so that we obtain a smooth metric on a round
two sphere, as there will always be conical deficits at one or
both of the poles. Thus, as is well known, the mismatch of
these conical deficits at the two poles is directly connected
with the nonvanishing of the acceleration parameter.
A simple observation, which will turn out to be impor-

tant in obtaining regular solutions inD ¼ 11, is that we can
suitably constrain the parameters in the metric and choose a
corresponding period for ϕ, so that the conical defects give
rise to an orbifold known as a spindle or, equivalently, a
weighted projective space. We can demand that the ratio
Pþ=P− is a rational number, which we write as

Pþ
P−

¼ n−
nþ

ð3:8Þ

with n� ∈ N, and we then choose the period of ϕ to be

Δϕ ¼ 2π

nþPþ
¼ 2π

n−P−
; ð3:9Þ

and hence from (3.7) we can write Δϕ ¼ π
2mα

n−−nþ
n−nþ

. The

two-dimensional space parametrized by θ and ϕ is then the
weighted projective space WCP1

½n−;nþ� (for some further

discussion on WCP1
½n−;nþ�, see Appendix A). We will see

that we are always able to desingularize the singularities
of this spindle after uplifting toD ¼ 11. As we will see, our

5As in [13], this can be achieved if mα< 1
2
Ξ for Ξ ∈ ð0; 2� and

mα< 1
2
ðΞ−1Þ1=2 for Ξ > 2, where Ξ≡1þα2ða2þe2þg2Þ−a2.
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procedure will require that we impose the condition mα¼ g;
we will also find that mα ¼ g is implied by supersymmetry.
It will also be useful in the sequel to introduce a coordinate φ
on the spindle that has period 2π:

φ≡
�
2π

Δϕ

�
ϕ: ð3:10Þ

In order to have a spacetime with a black hole horizon,
located at r ¼ rþ, we demand that QðrþÞ ¼ 0 and the
region exterior to the black hole has r ≥ rþ. We also require
H > 0, and hence the radial coordinate is constrained via

αr cos θ < 1; ð3:11Þ

and so, in particular, αrþ < 1. The conformal boundary is
approached when αr cos θ → 1 and one finds that the
conical defects are still present when α ≠ 0. There can also
be an acceleration horizon. We discuss this in Sec. VI, where
we study the global structure of the nonrotating black holes
in more detail. In particular, although Q has no other roots
for r > rþ, one can continue the radial coordinate r past
r ¼ ∞, and there can effectively be another root beyond this,
corresponding to an acceleration horizon. A detailed analysis
of the various cases and their Penrose diagrams may be
found in [12]. Some further discussion of these black holes
may also be found in [13], which calculates various
thermodynamic quantities (when g ¼ 0). Here we record
that the entropy of the black holes is given by

SBH ¼ 1

4Gð4Þ
A ¼ ðr2þ þ a2ÞΔϕ

2Gð4Þð1 − α2r2þÞ
: ð3:12Þ

In the next section, we show how the PD metrics can be
desingularized by uplifting on certain SE7 manifolds
described in the previous section. This analysis will fix
Δϕ and, furthermore, the entropy can then be expressed
in terms of either NSE7

using (2.9), or the free energy of
the d ¼ 3 SCFT using (2.10). For the special class of
supersymmetric extremal black holes we then obtain the
expression (1.1).
We record that the magnetic flux through the horizon,

Qm, is defined by

Gð4ÞQm ≡ 1

4π

Z
r¼rþ

F ¼ g
Δϕ
2π

; ð3:13Þ

and the electric flux, Qe, is defined by

Gð4ÞQe ≡ 1

4π

Z
r¼rþ

�F ¼ e
Δϕ
2π

: ð3:14Þ

Finally, we can introduce the angular momentum of the
black hole. Rather than a simple Komar integral, as is often
used, we define the angular momentum as a conserved

quantity that can be equally evaluated either at the
conformal boundary or at the black hole horizon (see,
e.g., [22]). Associated with the Killing vector k ¼ ∂φ,
where φ ∈ ½0; 2πÞ was introduced in (3.10), we introduce
the two-form

Z ¼ dkþ 4ðA · kÞF; ð3:15Þ
and then define the angular momentum via

JðAÞ ¼ 1

16πGð4Þ

Z
r¼rþ

�Z: ð3:16Þ

The angular momentum is then a kind of Page charge
that depends on the gauge.6 We explore this gauge
dependence in Appendix E, where we also highlight a
subtle difference with a natural definition of the angular
momentum of the near horizon AdS2 × Y9 limit for the
supersymmetric and extremal black holes. Using the gauge
as in (3.3), we obtain

Gð4ÞJ ¼ ma

�
Δϕ
2π

�
2

; ð3:17Þ

which agrees with formulas in the literature for the non-
accelerating limit.

IV. DESINGULARIZING VIA THE
UPLIFT TO D= 11

We now consider the PD metrics uplifted toD ¼ 11 on a
Sasaki-Einstein manifold as in (2.2). In this section we will
assume that we have nonzero acceleration in D ¼ 4:

α ≠ 0: ð4:1Þ
In Sec. IVA we will first analyze the regularity of the
metric. As this is somewhat involved, we have included a
summary section at the end. We then analyze flux quan-
tization in Sec. IV B.

A. Metric

In analyzing the regularity of the D ¼ 11 supergravity
solution, it is convenient to first perform7 a local
gauge transformation on the gauge field of the form
A → Aþ cdϕ, where c is a constant which will be fixed
shortly. In the associated D ¼ 11 metric, we can focus on
the metric on a constant r, t slice which is given by

6Note that when α ¼ 0 one can explicitly check that the
expression for the angular momentum, in the gauge we are using,
agrees with a Komar integral (E1) evaluated at the conformal
boundary, which is an expression that is often used to define the
angular momentum. We have not verified whether or not this is
also the case when α ≠ 0.

7Notice that the same thing is effectively achieved by shifting
the ψ coordinate via ψ → ψ þ 2cϕ.
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ds2θ;ϕ;KE6;ψ
¼ 1

4
½gθθdθ2 þ gϕϕdϕ2�

þ
�
1

4
dψ þ σ þ 1

2
Ãϕdϕ

�
2

þ ds2ðKE6Þ;

ð4:2Þ

where

Ãϕ ¼ 1

Σ
½erasin2θ − g cos θðr2 þ a2Þ� þ c;

gϕϕ ¼ sin2θ
H2Σ

½−Qa2sin2θ þ Pðr2 þ a2Þ2�;

gθθ ¼
Σ

H2P
; ð4:3Þ

with Ãϕ ¼ Aϕ þ c. The most general construction will
show that the ðθ;ϕ;ψÞ part of the metric can be taken to
parametrize a smooth S3 or, more generally, a Lens space
S3=Zq that is then fibered over the KE6.
This S3 can be embedded as S3 ⊂ C2, and we would like

to find the Uð1Þ generators that rotate the two copies of C.
That is, we introduce l� ¼ ∂α� , where α� are ð2πÞ-period
polar coordinates for each copy of C. By definition,
klþk2ðθþÞ ¼ 0 and kl−k2ðθ−Þ ¼ 0 and, moreover, the
surface gravity for l� satisfies κ2� ¼ 1 at θ ¼ θ�. Choosing
the constant c appearing in the gauge field to be

c ¼ g
4mα

ðPþ þ P−Þ ð4:4Þ

implies that l� have the same coefficient of ∂ψ , with

∂α� ¼ l� ¼ g
mα

∂ψ −
1

P�
∂ϕ: ð4:5Þ

Equivalently,

ψ ¼ g
mα

ðαþ þ α−Þ; ϕ ¼ −
1

Pþ
αþ −

1

P−
α−: ð4:6Þ

Using the comments in Sec. II, we then conclude that
the D ¼ 11 Killing spinor will have charge g=2mα under
both ∂α� . Furthermore, later we will see that one of the BPS
equations which ensures that the D ¼ 4 or D ¼ 11 solu-
tions preserve supersymmetry is precisely g=mα ¼ 1.
To proceed, we next define the functions

A� ¼ 1

4P2
�
gϕϕ þ

�
g

4mα
−

1

2P�
Ãϕ

�
2

;

B ¼ 1

4PþP−
gϕϕ þ

�
g

4mα
−

1

2Pþ
Ãϕ

��
g

4mα
−

1

2P−
Ãϕ

�
;

ð4:7Þ

and the connection one-forms,

Dα� ¼ dα� � P�
g

σ; ð4:8Þ

to find that the metric can be written

ds2θ;ϕ;KE6;ψ
¼ gθθ

4
dθ2 þ AþðDαþÞ2 þ A−ðDα−Þ2

þ 2BðDαþÞðDα−Þ þ ds2ðKE6Þ: ð4:9Þ

Here AþðθþÞ ¼ 0 ¼ A−ðθ−Þ and Bðθ�Þ ¼ 0.
It is next convenient to introduce the coordinates

γ ¼ αþ þ α−; β ¼ αþ − α−; ð4:10Þ

so that ∂γ ¼ 1
2
ð∂αþ þ ∂α−Þ, ∂β ¼ 1

2
ð∂αþ − ∂α−Þ. We then

make the periodic identifications

Δγ ¼ 2π; Δβ ¼ 4π=q: ð4:11Þ

This leads to a smooth S3 fiber when q ¼ 1 and, more
generally, a Lens space S3=Zq. Here we are using the fact
that a Lens space S3=Zq may be viewed as the total space of
a circle fibration, here with circle fiber coordinate β, over
a two-sphere. Specifically, in the construction above, the
two-sphere has standard spherical polar coordinates ðθ; γÞ.
Notice from our comments above that the spinors are
charged under ∂γ but not under ∂β, so we may quotient the
period of β by q and preserve supersymmetry. For bosonic
solutions more generally we could, in principle, take
further/different quotients, but we will not investigate this
further here.
Having established that the fiber is a Lens space, we now

examine the fibration over the KE6. We will do this in two
steps, first discussing an S2 bundle over the KE6, with the
S2 parametrized by ðθ; γÞ, and then discussing the circle
bundle over this, with the circle parametrized by β. After
writing Dα� ≡ 1

2
Dγ � 1

2
Dβ, the connection forms are

given by

Dγ ¼ dγ þ 1

g
ðPþ − P−Þσ; Dβ ¼ dβ þ 1

g
ðPþ þ P−Þσ:

ð4:12Þ

Focusing onDγ, we recall from (2.4) that dσ ¼ ρ=4, where
ρ is the Ricci form for the KE6. We can also compute

1

4g
ðPþ − P−Þ ¼ mα

g
: ð4:13Þ

Thus, since γ has period 2π, we will obtain an S2 bundle
over the KE6 with the fiber parametrized by ðθ; γÞ being the
Riemann sphere compactification of a well-defined line
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bundle, provided that mα=g ¼ n=I, where I is the Fano
index of the KE6 and n is an integer. The line bundle is then
Ln=I. However, recall we also commented earlier that
g=2mα is precisely the charge of the D ¼ 11 Killing
spinors under ∂α�, and hence ∂γ, and we shall later find
that one of the BPS equations is precisely g=mα ¼ 1, so
these charges are all 1=2. Thus, we will impose

1

4g
ðPþ − P−Þ ¼

mα

g
¼ 1; ð4:14Þ

and this implies that the ðθ; γÞS2 bundle over the KE6 is
necessarily that associated to the canonical bundle. For the
bosonic solutions more generally, we could instead take
powers of the canonical bundle with different n above, but
here we do not.
It remains to ensure that we have a well-defined circle

bundle, with a circle fiber coordinate β over the above S2

bundle, over the KE6. As described in [47], a necessary and
sufficient condition for this is to verify that the correspond-
ing curvature two-form has appropriately quantized periods
over a basis of two-cycles. One such two-cycle is a copy of
the fiber S2 at a fixed point on the KE6, and this has already
fixed the period Δβ ¼ 4π=q in (4.11) to obtain a Lens
space fiber S3=Zq over the KE6. The remaining two-cycles
may be taken to be two-cycles in the copy of the KE6 base
at either θ ¼ θþ or θ ¼ θ−. For example, in the former
case the corresponding circle bundle over the KE6 has the
connection term Dα−, and quantizing the periods of the
associated curvature two-form leads to setting

P−

4g
¼ p

qI
; ð4:15Þ

where p ∈ N. Specifically, setting θ ¼ θþ ¼ π then gives a
circle, parametrized by α−, inside the Lens space fiber.
Since on this circle α− has period 2π=q, the choice (4.15)
implies that we obtain the circle bundle associated to Lp=I.
It then follows that

Pþ
4g

¼ 1þ p
qI

¼ qI þ p
qI

; ð4:16Þ

so that the αþ circle bundle at θ ¼ θ− ¼ 0 is that associated
with LðqIþpÞ=I. We also deduce that

Pþ
P−

¼ qI þ p
p

: ð4:17Þ

With these choices we have thus constructed a regular Lens
space S3=Zq fibration over the KE6, where the positive
integer parameter p determines the twisting. The total space
Y9 of this fibration is simply connected if we further require
hcfðp;qÞ ¼ 1. We shall henceforth also assume this con-
dition, but note that more generally the topology is simply a

free Zhcfðp;qÞ quotient of the solution with parameters
ðp;qÞ=hcfðp;qÞ, so there is essentially no loss of
generality.
Recall that as originally presented in (4.2), the space Y9

is a fibration of an SE7 over the two-dimensional space
parametrized by ðθ;ϕÞ. It will be important to understand
this fibration structure also. In particular, the Reeb vector
∂ψ that rotates the SE7 Uð1Þ fiber over the KE6 may be
computed to be

∂ψ ¼ ∂αþ þ p
I
·
1

q
ð∂αþ − ∂α−Þ: ð4:18Þ

Note that moving 2π along the orbits of both ∂αþ and
1
q ð∂αþ − ∂α−Þ returns to the same point on the Lens space
fiber, in the latter case precisely because we took a Zq

quotient of S3 along the Uð1Þ generated by ∂αþ − ∂α−. To
determine the period of ψ it is useful to rewrite (4.18) as

I
k
∂ψ ¼ I

k
∂þ þ p

k
·
1

q
ð∂þ − ∂−Þ; ð4:19Þ

where we have defined

k ¼ hcfðI;pÞ: ð4:20Þ

This ensures that moving 2π along the orbit of the vector
field on the right hand side of (4.19) closes, and moreover
this is the minimal period. However, this shows that on the
Lens space ψ has period 2πI=k, where

Δψ ¼ 2πI
k

; ð4:21Þ

precisely as in (2.5) where, specifically, k is fixed
via (4.20).
Recalling that

ψ ¼ αþ þ α−; ϕ ¼ −
1

Pþ
αþ −

1

P−
α−; ð4:22Þ

and that the torus made up of αþ, α− has volume ð2πÞ2=q,
we deduce from the Jacobian of this transformation that ϕ
has period

Δϕ ¼
�

1

P−
−

1

Pþ

�
2π

q
k
I
: ð4:23Þ

From the discussion below (3.6), and specifically (3.9), we
see that ðθ;ϕÞ on the base of the ψ fibration at a fixed point
on the KE6 will be a spindle/weighted projective space
WCP1

½n−;nþ�, where we may identify

n− ¼ qI þ p
k

; nþ ¼ p
k
: ð4:24Þ
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Notice that these are indeed integers due to the definition
(4.20) of k and, moreover, since hcfðp;qÞ ¼ 1we also note
that hcfðnþ; n−Þ ¼ 1.
To complete the viewpoint of the SE7 as the fiber, we

may also look directly at the ψ circle fibration over the
weighted projective space. Recalling that ψ has period
2πI=k and using Aϕðθ�Þ ¼ �g, we calculate the Chern
number of this fibration as

1

πI=2k

Z
WCP1

1

2
dðÃϕdϕÞ ¼

k2q
p2 þ pqI

¼ k
I
n− − nþ
nþn−

¼ q
nþn−

:

ð4:25Þ

Here we have used the fact that

q ¼ k
I
ðn− − nþÞ: ð4:26Þ

Since q is an integer, notice that the difference of the
weights n− − nþ is necessarily divisible by the integer I=k.
The orbifold line bundle over WCP1

½n−;nþ� with the Chern

number (4.25), denoted OðqÞ, is discussed in Appendix A.
In that appendix, it is shown that the total space of the
associated circle bundle is indeed a Lens space, S3=Zq,
completing the circle of arguments.
Summary: We can summarize the results of this section

as follows. The D ¼ 4 PD metrics of interest depend on
five parameters: m, a, e, g, α. We uplift to D ¼ 11 using an
SE7 manifold in the regular class, which is a circle bundle
over a KE6 manifold. We then obtain a regular D ¼ 11
solution after imposing the following two constraints on the
five parameters:

Pþ
4g

¼ 1þ p
Iq

;
P−

4g
¼ p

Iq
; ð4:27Þ

where q ∈ N and p ∈ N, and we take hcfðp;qÞ ¼ 1 so that
the total space is simply connected. Here, I is the Fano
index for the KE6 associated with the regular SE7, and P�
are given in (3.7). Defining

k ¼ hcfðI;pÞ; ð4:28Þ

we then choose the periods of ψ and ϕ to be

Δψ ¼ 2πI
k

; Δϕ ¼
�

1

P−
−

1

Pþ

�
2π

q
k
I
: ð4:29Þ

The nine-dimensional manifold, Y9, at fixed t, r is then a
Lens space S3=Zq bundle over the KE6, while the SE7 at a
fixed point in D ¼ 4 spacetime has the fundamental group
Zk and is the circle bundle over the KE6 associated to the
line bundle Lk=I, where L is the canonical bundle over
the KE6. Moreover, the base space of the SE7 fibration at
fixed t, r is parametrized by θ, ϕ of the D ¼ 4 metric,

which is topologically a spindle, a weighted projective
space WCP1

½n−;nþ�. Here,

n− ¼ qI þ p
k

; nþ ¼ p
k

ð4:30Þ

are relatively prime integers, where θ ¼ θ− ¼ 0 is an
R2=Zn− orbifold singularity while θ ¼ θþ ¼ π is an
R2=Znþ orbifold singularity. The magnetic flux in (3.13)
through the spindle horizon in theD ¼ 4 spacetime is given
by the rational number

Gð4ÞQm ¼ n− − nþ
4nþn−

: ð4:31Þ

Conversely, we can begin with a weighted projective
spaceWCP1

½n−;nþ�, with arbitrary coprime integers n−>nþ.
We then set

q ¼ n− − nþ
I=k

; p ¼ knþ: ð4:32Þ

Here we choose the integer

k ¼ I
hcfðI; n− − nþÞ

: ð4:33Þ

With this definition of k we have that I=k is an integer that
divides n− − nþ, which ensures that p and q in (4.32) are
integers. Moreover, note that we also have k ¼ hcfðI;pÞ, as
in (4.28).8 The above construction then leads to a Lens
space fibration over the KE6.
Since we have imposed two conditions (4.27), we are left

with a three-parameter family of nonsingular, rotating, and
accelerating black hole solutions with a spindle horizon.
The three parameters correspond to the three independent
physical conserved quantities, namely mass, electric
chargeQe, and angular momentum J. The above conditions
are consistent9 with the preservation of supersymmetry
as discussed in the next section. The entropy of the black
holes is given by (3.12) after using (2.9). In particular
from (3.7), the conditions (4.27) imply

mα

g
¼ 1: ð4:34Þ

Finally, we further illustrate with a concrete example. We
take KE6 ¼ CP3 and there are then three cases. First, we

8To see this, write f ¼ hcfðI; n− − nþÞ, so that k ¼ I=f. Then
compute hcfðI;pÞ¼hcfððI=fÞf;ðI=fÞnþÞ¼ðI=fÞhcfðf;nþÞ¼
I=f¼k, where in the penultimate step we have used
hcfðn− − nþ; nþÞ ¼ hcfðn−; nþÞ ¼ 1.

9As we noted just below (4.14), if one is just interested in a
purely bosonic solution, then one can relax the conditions a little
and still maintain regularity.
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have an S7 fibration overWCP1
½n−;nþ� for p ¼ 1; 3; 5;… and

a relatively prime q, with nþ ¼ p and n− ¼ 4qþ p.
Second, we have an S7=Z2 fibration for p ¼ 2; 6; 10;…
and a relatively prime q, with nþ ¼ p=2 and
n− ¼ 2qþ p=2. Finally, we have an S7=Z4 fibration for
p ¼ 4; 8; 12;… and a relatively prime q, with nþ ¼ p=4
and n− ¼ qþ p=4.

B. Flux quantization

We can also quantize the flux in the D ¼ 11 solution
(2.2). There is no quantization condition on the four-formG
as there are no nontrivial four-cycles. We therefore consider
the dual seven-form �11G as given in (2.3). We have already
seen in (2.8) that the flux through the SE7 fiber over a point
in the D ¼ 4 spacetime gives NSE. In this section we
present a general analysis for ensuring the fluxes through
an appropriate basis of seven-cycles are quantized: by
determining the constant L in (2.2).
Note first that, as for the previous subsection, we may

restrict to a constant r, t slice, since these directions span
R2 and hence don’t contribute to any nontrivial cycles. The
resulting nine-manifold Y9 is a Lens space S3=Zq fibered
over the KE6. This is the same topology as the solutions
discussed in Appendix D.2 of [48] and, indeed, later in the
paper we shall see that those solutions are precisely the near
horizon limit of the black holes we are discussing when the
rotation parameter is set to zero.
Setting θ ¼ θ� gives rise to two seven-cycles that we

call D�.
10 There are also seven-cycles Da that arise as the

Lens space is fibered over four-cycles Σa ∈ H4ðKE6;ZÞ,
where by definition these form a basis for the free part of
the latter homology group. We may then write

c1 ¼ c1ðKE6Þ ¼ IsaΣa; ð4:35Þ
where we recall that I is the Fano index and the sa are then
coprime integers, and we have identified H2ðKE6;ZÞ ≅
H4ðKE6;ZÞ using Poincaré duality. As discussed in [48],
we then have the homology relation

D− ¼ Dþ − IsaDa: ð4:36Þ
Writing

NðDÞ≡ 1

ð2πlpÞ6
Z
D
�11G ð4:37Þ

as the flux through the seven-cycle D, from (2.3) we
compute

NðD�Þ ¼
L6

ð2πlpÞ6
6volðKE6Þ

Z
S1θ¼θ�

η; ð4:38Þ

where we recall that η is the contact one-form of the Sasaki-
Einstein manifold. A short computation shows that

ηjθ¼θ� ¼ 1

4
dψ þ 1

2
Ãϕðθ�Þdϕ ¼∓ Iq

4kn�
dα∓; ð4:39Þ

where α� are the coordinates introduced in the previous
subsection in (4.6), and recall that n� are defined in terms
of q, p, I, and k via (4.30). Since α� have period 2π=q
through their respective circles S1 ⊂ S3=Zq, we deduce that
(choosing orientations to give a positive flux)

NðD�Þ ¼
L6

ð2πlpÞ6
IMπ4

128kn�
; ð4:40Þ

where we used (2.7). Similarly, we compute

NðDaÞ ¼
L6

ð2πlpÞ6
1

4
gΔϕΔψ

1

2!

Z
Σa

J2: ð4:41Þ

Using

1

2!

Z
Σa

J2 ¼ π2

25
I2na; ð4:42Þ

where na ≡
R
Σa
ðc1=IÞ2 are coprime integers, and inserting

the periods Δϕ ¼ 2π=ðnþPþÞ, Δψ ¼ 2πI=k from the
previous section, we find

NðDaÞ ¼
L6

ð2πlpÞ6
I4qπ4

128k2nþn−
na: ð4:43Þ

Using sana ¼ M=I3, one can check that the fluxes (4.40),
(4.43) satisfy the homology relation (4.36).
Since the cycles we have introduced form a basis of

seven-cycles, we can now introduce a minimal flux number
which we callN, such that all fluxes are integer multiples of
N. Specifically, this fixes L via11

L6

ð2πlpÞ6
¼ 128k2nþn−

I4hπ4
N; ð4:44Þ

where we have introduced h ¼ hcfðM=I3;qÞ and where
we recall that q ¼ ðk=IÞðn− − nþÞ is an integer. We then
find

NðD�Þ ¼
M
I3h

kn∓N; NðDaÞ ¼
q
h
naN; ð4:45Þ

10These were called D̃0 and D0 in [48], respectively.

11Note that this is consistent with (D.18) of [48] after taking
into account a difference of 32=3 in the L2 between here and
there, as a result of this factor in (D4).
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where the factors are all integers. Moreover, the expression
for NSE given in (2.8) can then be written as

NSE ¼ n−NðD−Þ ¼ nþNðDþÞ ¼
M
I3h

knþn−N: ð4:46Þ

Notice that this is indeed an integer.
We have thus shown that the D ¼ 4 PD black hole

metrics of interest uplift to smooth D ¼ 11 solutions
with properly quantized flux, provided that we impose
(4.27)–(4.30) and fix L via (4.44).

V. SUPERSYMMETRIC AND EXTREMAL LIMITS

In this section we analyze the additional conditions for
supersymmetry, as well as the conditions required to have
an extremal black hole horizon with vanishing surface
gravity. In general, the extremality condition is not implied
by supersymmetry. We also derive the black hole entropy
formulae (1.1).

By definition, the supersymmetric (BPS) limit occurs
when the solutions admit solutions to the D ¼ 4 Killing
spinor equation of minimal gauged supergravity given by

∇μϵ ¼
�
iAμ −

1

2
γμ −

i
4
Fαβγ

αβγμ

�
ϵ; ð5:1Þ

where ϵ is a D ¼ 4 Dirac spinor (see Appendix F). The
conditions for the PD solutions to admit Killing spinors
were determined in [15]. Our primary interest in this paper
is when α ≠ 0, and we will continue with this, but for
reference in Appendix B we briefly discuss the PD black
holes when α ¼ 0 where the supersymmetry analysis is
different. The nonrotating solutions with a ¼ 0 are dis-
cussed in more detail in Sec. VI A.
By examining the integrability conditions for (5.1),

as in [15,38] we find that supersymmetry implies that
the five parameters are constrained by the following two
conditions:

0 ¼ 2aegαþ g4α4 þ g2ð−1þ α2 þ ða2 þ 2e2Þα4Þ þ e2α2ð1þ e2α2 þ a2ð−1þ α2ÞÞ;
0 ¼ 2a2g2αþ 2e4α3 þ 2g4α3 − 2aegð−1þ a2α2Þ − 2e2αða2 − 2g2α2Þ

− αðmþ a2mα2Þ2 − ðe2 þ g2Þαð1þ a2α2Þð−1þ e2α2 þ g2α2 þ a2ð−1þ α2ÞÞ: ð5:2Þ

With α ≠ 0 andm > 0, we must have g > 0. With the signs
of the parameters as in (3.4), we can solve these conditions
to obtain

m¼ g
α
;

a¼ −egαþ ðe2 þ g2Þα2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð−1þ e2Þα2 − ðe2 þ g2Þα4

p
g2α4 þ e2α2ð−1þ α2Þ :

ð5:3Þ

Recall that we imposed the first of these two conditions in
our construction of regular uplifted D ¼ 11 solutions [it is
implied by (4.27)].
We now consider the additional conditions imposed

by extremality when r ¼ rþ becomes a double root of
QðrÞ. Assuming that both equations in (5.2) are satisfied,
we find

a3α2eg3þa2αg2ðe−gÞðeþgÞ−aeg3þα3e2ðe2þg2Þ2¼0:

ð5:4Þ

In principle, one could solve these three constraints in
terms of two independent parameters, and then solve (3.8)
to find the relation between these and n�. However, this is a
little cumbersome to do in practice and it is clearer to keep
all the parameters in our expressions, where it is then
understood that they must solve the constraints given

by (5.2) and (5.4). For example, a simple expression for
the horizon radius of the supersymmetric and extremal
black hole is given by

rþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðm − aeÞ
eþ amα2

s
; ð5:5Þ

which would not be so simple if one were to use the explicit
solutions of the constraints above. However, for the special
case when we set the rotation parameter a ¼ 0, we will find
simple and explicit expressions as we discuss in Sec. VI A.
For supersymmetric and extremal black holes with a ¼ 0
we also have e ¼ 0, and the expression (5.5) doesn’t apply
directly.
Notice that substituting (5.5) into the general black hole

entropy formula (3.12) immediately gives

SBH ¼ am
2Gð4Þe

Δϕ; ð5:6Þ

as long as the parameter e ≠ 0. Further using the expres-
sions for the black hole electric charge Qe in (3.14) and
angular momentum J in (3.17) then leads to

SBH ¼ J
Qe

π

Gð4Þ
; ð5:7Þ
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which is the first expression in (1.1). This formula for the
entropy holds for the subfamily of supersymmetric
extremal Kerr-Newman black holes, as discussed in
Appendix B [see Eq. (B12)]. We have shown that,
remarkably, exactly the same formula also holds when
we turn on acceleration. On the other hand, as we discuss in
Sec. VI, for the supersymmetric extremal black holes with
J ¼ Qe ¼ 0, or equivalently a ¼ e ¼ 0, neither (5.6) nor
(5.7) apply directly, although we shall see later in Sec. VI
that the second expression in (1.1) is valid in this limit.

A. Near horizon limit: AdS2 ×WCP1
½n−;n+ �

We now elucidate the near horizon limit of these
supersymmetric extremal black holes. The result is a
new class of supersymmetric AdS2 ×WCP1

½n−;nþ� solutions
of D ¼ 4 gauged supergravity. These uplift to regular
AdS2 × Y9 solutions, which generalize those of [20] by
an extra rotation parameter.
A convenient way to find the near horizon solution is to

implement the following coordinate transformation:

r → rþ þ λsρ; t → λ−1sτ; ϕ → ϕ0 þ λ−1sW
Δϕ
2π

τ;

ð5:8Þ

where s is a constant, and then take the λ → 0 limit. HereW
is given by

W ¼ a
r2þ þ a2

2π

Δϕ
; ð5:9Þ

with ∂t þW Δϕ
2π ∂ϕ ¼ ∂t þW∂φ being a null generator of

the horizon.
Some details of the limiting procedure are given in

Appendix C. After carrying out various coordinate and
gauge transformations, as well as redefining the parame-
ters, we eventually end up with the following class of
AdS2 ×WCP1

½n−;nþ� solutions:

ds2 ¼ 1

4
ðy2 þ j2Þ

�
−ρ2dτ2 þ dρ2

ρ2

�
þ y2 þ j2

qðyÞ dy2

þ qðyÞ
4ðy2 þ j2Þ ðdzþ jρdτÞ2;

A ¼ hðyÞðdzþ jρdτÞ; ð5:10Þ

where we have defined

qðyÞ ¼ ðy2 þ j2Þ2 − 4ð1 − j2Þy2 þ 4a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p
y − a2;

hðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p
2

−
1

2ðy2 þ j2Þ
	
ayþ 2j2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p 

:

ð5:11Þ

The solutions depend on two free parameters j, a, which
are functions of the original m, α, e, g, a that are given
implicitly in Appendix C. Indeed, it is remarkable how
simple the solution is in the above parametrization. The
parameter j is a rotation parameter and j ¼ 0 is the
nonrotating limit. In fact, if we set j ¼ 0 then we precisely
recover the AdS2 × Y9 solutions of [20] after dimensional
reduction on an SE7, as we explain in Appendix D.
Continuing12 with j ≥ 0, we need j ∈ ½0; 1� in order

to get a real solution. We next analyze the roots of qðyÞ,
which are given by y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a − 2j2

p
and

y ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a − 2j2

p
. Given that qðyÞ is a

quartic in y with a positive coefficient of y4, in order for
qðyÞ ≥ 0 we need to choose y to lie in between the middle
two roots of the quartic with all roots real, which fixes
y ∈ ½y2; y3� with

y2 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a − 2j2

p
;

y3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a − 2j2

p
: ð5:12Þ

For these to be real we need to take

j ∈
�
0;

1ffiffiffi
2

p
�
: ð5:13Þ

By analyzing how the metric behaves at the roots,
we demand that the ðy; zÞ part of the metric becomes
WCP1

½n−;nþ�, which fixes

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a − 2j2

p
· Δz ¼ 2π

nþ
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − a − 2j2

p
· Δz ¼ 2π

n−
;

ð5:14Þ

where we have identified y ¼ y2, y3 with θþ, θ− of previous
sections, respectively, which have solutions

a ¼ ð1 − 2j2Þðn2− − n2þÞ
n2þ þ n2−

; Δz ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þ þ n2−

p
nþn−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2j2

p π:

ð5:15Þ

We may now compute the magnetic flux (3.13) of the
gauge field and find

Gð4ÞQm ¼ 1

4π

Z
Σ
dA ¼ n− − nþ

4nþn−
; ð5:16Þ

where Σ ¼ WCP1
½n−;nþ� is the spindle horizon, precisely as

we had for the general PD black holes. In particular, notice
that this result is independent of the continuous rotation

12Note that we can change the sign of j by changing the sign of
τ, z and also the gauge field A.
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parameter j. We can also derive a very useful expression
for the electric chargeQe (3.14) by calculating it directly in
the near horizon solution. Doing so, we find

Gð4ÞQe ¼
1

4π

Z
Σ
�F ¼ j

Δz
4π

: ð5:17Þ

Given the expression (5.15) forΔz, we may now solve for j
in terms of the physical black hole parameter Qe:

j ¼ 2
ffiffiffi
2

p
n−nþðGð4ÞQeÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

16n2−n2þðGð4ÞQeÞ2 þ n2− þ n2þ
q : ð5:18Þ

The area of the horizon is then: Area ¼ 1
2
ðy3 − y2ÞΔz.

Substituting for j in terms of Qe using (5.18), we find the
entropy is

SBH ¼ 1

4Gð4Þ
Area ¼

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n2−n2þðGð4ÞQeÞ2 þ n2− þ n2þ

q
− ðn− þ nþÞ

n−nþ

π

4Gð4Þ
: ð5:19Þ

This is precisely the second expression in (1.1). Notice that setting j ¼ 0 is equivalent to setting Qe ¼ 0, which gives the
nonrotating limit. The expression (5.19) with Qe ¼ 0 gives the entropy of the nonrotating but accelerating extremal
supersymmetric black holes, studied in more detail in Sec. VI. We also note that the angular momentum J and electric
charge Qe are related by

J ¼ Qe

ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n2−n2þðGð4ÞQeÞ2 þ n2− þ n2þ

q
− ðn− þ nþÞ

4n−nþ
ð5:20Þ

for these extremal solutions. Formally setting n− ¼ nþ ¼ 1 into the relation (5.20) gives the corresponding relation for the
supersymmetric extremal Kerr-Newman-AdS black holes, discussed in Appendix B [see Eq. (B11)].
We may also rewrite (5.19) using Eqs. (2.9), (4.24), and (4.46), which give

SBH ¼
27=2πM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðIqþ pÞp h ffiffiffiffiffiffiffiffiffiffiffiffi

ð1−j2Þ
ð1−2j2Þ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðIqþ 2pÞ2 þ I2q2

p
− ðIqþ 2pÞ

i
3I5h3=2

N3=2: ð5:21Þ

Notice that all quantities appearing, except for j, are
integers. We also note that if we set j ¼ 0 then we
precisely recover the expression for the entropy of the
AdS2 × Y9 solutions as given in (D.21) of [48].
We note that we can express the black hole entropy in yet

another way, namely as

SBH ¼
�
JAdS2
Qe

−
1

4
χðΣÞ

�
π

Gð4Þ
: ð5:22Þ

Here χðΣÞ is the Euler number of the spindle horizon
Σ ¼ WCP1

½n−;nþ� given by

χðΣÞ ¼ 1

4π

Z
Σ
R2vol2 ¼

n− þ nþ
nþn−

; ð5:23Þ

where R2 denotes the Ricci scalar of the spindle, and JAdS2
is the angular momentum that is defined naturally for the
near horizon AdS2 solutions described in this subsection.
Specifically, JAdS2 is invariant under the AdS2 symmetries.
We refer the reader to Appendix E for further details, as
well as a derivation of the formula we gave in (1.2):

JAdS2 − J ¼ Qe

4
χðΣÞ: ð5:24Þ

This formula, as well as (5.22), is also valid for non-
accelerating Kerr-Newman-AdS black holes upon setting
n− ¼ nþ ¼ 1.
We can also express the entropy in another form13 by

replacing the orbifold parameters n� with the magnetic flux
Qm, given in (5.16), and the Euler number (5.23):

SBH ¼ π

4Gð4Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ 16½ðGð4ÞQeÞ2 þ ðGð4ÞQmÞ2�

q
− χ

�
:

ð5:25Þ

13It is interesting to consider if this formula can also be used for
supersymmetric black holes with no acceleration, electric charge,
or rotation. The answer is no. However, we note that for the so-
called universal twist black holes, with a horizon consisting of a
Riemann surface with genus g > 1, one obtains the correct
entropy formula (as in, e.g., [26]) after setting Qe ¼ 0 and
formally taking Gð4ÞQm → iχ=4 with χ ¼ 2ð1 − gÞ.
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Correspondingly, this implies that the near horizon angular
momentum can be written in the form

JAdS2 ¼
Qe

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 þ 16½ðGð4ÞQeÞ2 þ ðGð4ÞQmÞ2�

q
: ð5:26Þ

Finally, we point out that the local metric appearing in
(5.10) was also used in [49] in a completely different
context of constructing supersymmetric wormholes in
AdS4. To do this, the authors used ranges of the parameters
and the coordinates so that, in particular, qðyÞ > 0, in
contrast to what we have done here.

B. Killing spinors for AdS2 ×WCP1
½n−;n+ �

We now construct the D ¼ 4 Killing spinors associated
with the rotating, magnetically charged AdS2 ×WCP1

½n−;nþ�
solutions given in (5.10) with (5.15) and j ∈ ½0; 1ffiffi

2
p Þ. The

fact that these solutions describe M2-branes wrapped on a
surface Σ ¼ WCP1

½n−;nþ�, with a magnetic flux (5.16)
through the surface, looks similar to a topological twist.
However, in the latter case one instead needs the flux to
be proportional to the Euler number χðΣÞ of the spindle
Σ ¼ WCP1

½n−;nþ� given in (5.23). The flux (5.16) instead
leads to spinors that are sections of nontrivial line bundles
over WCP1

½n−;nþ�, which we shall describe explicitly, rather
than the constant spinor solutions one obtains for the
topological twist.
We first introduce the following orthonormal frame for

the near horizon metric (5.10):

e0 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ j2

q
ρdτ; e1 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ j2

q
dρ
ρ
;

e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 þ j2

qðyÞ

s
dy; e3 ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qðyÞ

y2 þ j2

s
ðdzþ jρdτÞ:

ð5:27Þ

For this frame, we then take the four-dimensional gamma
matrices14 to be

γa ¼ βa ⊗ 12; a ¼ 0; 1;

γ2 ¼ β3 ⊗ σ1; γ3 ¼ β3 ⊗ σ2; ð5:28Þ

where the two-dimensional gamma-matrices, βa, are
defined by

β0 ¼ iσ2; β1 ¼ σ1; β3 ≡ β0β1 ¼ σ3; ð5:29Þ

and the σi are Pauli matrices.
We next recall that the Killing spinor equation for

AdS2 is

∇aθ ¼ i
2
nβaβ3θ; ð5:30Þ

with n ¼ �1. This is solved by Majorana spinors that can

be decomposed as θ1;2 ¼ θðþÞ
1;2 þ θð−Þ1;2 , with the Majorana-

Weyl spinors θð�Þ
1;2 of chirality β3θ

ð�Þ
1;2 ¼ �θð�Þ

1;2 , given by

θðþÞ
1 ¼

� ffiffiffi
ρ

p
0

�
; θð−Þ1 ¼

�
0

in
ffiffiffi
ρ

p
�
;

θðþÞ
2 ¼

� ffiffiffi
ρ

p
τ − 1ffiffi

ρ
p

0

�
; θð−Þ2 ¼

�
0

inð ffiffiffi
ρ

p
τ þ 1ffiffi

ρ
p Þ
�
:

ð5:31Þ

After a lengthy calculation we find that the D ¼ 4 Killing
spinors for the near horizon limit of the supersymmetric,
extremal PD black hole, satisfying (5.1), can be expressed
in the remarkably simple form

ϵ1 ¼ θðþÞ
1 ⊗ χ1 þ θð−Þ1 ⊗ χ2;

ϵ2 ¼ θðþÞ
2 ⊗ χ1 þ θð−Þ2 ⊗ χ2; ð5:32Þ

where χ1;2 are two two-dimensional spinors, given by

χ1 ¼

0
BB@

Y1=2
1

ðyÞffiffiffiffiffiffiffi
y−ij

p

− Y1=2
2

ðyÞffiffiffiffiffiffiffiffi
yþij

p

1
CCA; χ2 ¼ −neiξ

0
BB@

Y1=2
1

ðyÞffiffiffiffiffiffiffiffi
yþij

p
Y1=2

2
ðyÞffiffiffiffiffiffiffi

y−ij
p

1
CCA:

Here,

Y1ðyÞ ¼ y2 − 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p
yþ j2 þ a;

Y2ðyÞ ¼ y2 þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p
yþ j2 − a; ð5:33Þ

which satisfy Y1ðyÞY2ðyÞ ¼ qðyÞ, and the phase ξ appear-
ing in the Killing spinor is given by

ξ ¼ arccosj: ð5:34Þ

Let us look more carefully at the global structure of the

Killing spinors ϵi in (5.32). The spinors, θð�Þ
i , are simply

the standard Killing spinors on AdS2, where i ¼ 1, 2, so
our focus will be on the two-dimensional spinors χi (5.33)
on WCP1

½n−;nþ�. Note first that the two components of χi
have chiralities �1 under σ3, which is the two-dimensional
chirality operator on WCP1

½n−;nþ�. Thus we can write

χi ¼ χðþÞ
i þ χð−Þi , i ¼ 1, 2, where14Explicitly, γ0 ¼ ð 0

−1
1
0
Þ, γ1 ¼ ð0

1
1
0
Þ, γ2 ¼ ðσ1

0
0

−σ1Þ, γ3 ¼ ðσ2
0

0
−σ2Þ.
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χðþÞ
1 ¼

 
Y1=2

1
ðyÞffiffiffiffiffiffiffi

y−ij
p
0

!
; χð−Þ1 ¼

 
0

− Y1=2
2

ðyÞffiffiffiffiffiffiffiffi
yþij

p

!
;

χðþÞ
2 ¼ −neiξ

 
Y1=2

1
ðyÞffiffiffiffiffiffiffiffi

yþij
p
0

!
; χð−Þ2 ¼ −neiξ

 
0

Y1=2
2

ðyÞffiffiffiffiffiffiffi
y−ij

p

!
:

ð5:35Þ

We also note that Y1ðy3Þ ¼ 0 ¼ Y2ðy2Þ, where y2, y3 are
the roots (5.12), so that the positive chirality components

χðþÞ
i are zero at y ¼ y3, while the negative chirality compo-

nents χð−Þi are zero at y ¼ y2.
Both the frame (5.27) and the R-symmetry Uð1Þ gauge

field A in (5.10) are singular at the roots y ¼ y2, y3. Let us
first look at the gauge field. The four-dimensional Killing
spinors ϵi have charge þ1 under A, as we see from the
Killing spinor equation, (5.1). A gauge transformation,
A → Aþ dγ, then leads to a Uð1Þ rotation, ϵi → eiγϵi. The
magnetic flux of this gauge field through WCP1

½n−;nþ� is
given by (5.16). As explained further in Appendix A,
this identifies 2A as a connection on the complex line
bundle Oðn− − nþÞ. When n− − nþ is not divisible by 2,
this is a spinc gauge field on the weighted projective space
WCP1

½n−;nþ�. We shall comment on this further below when

we describe the spin structure more explicitly.
Note that we may write the gauge field in (5.10)

restricted to WCP1
½n−;nþ�, as

AjWCP1
½n− ;nþ�

¼ hðyÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þ þ n2−

p
ffiffiffi
2

p
nþn−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2j2

p dφ ð5:36Þ

where we have defined

φ ¼
ffiffiffi
2

p
nþn−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2j2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2þ þ n2−

p z: ð5:37Þ

Here, φ is the same as the coordinate introduced in (3.10),
and it has the canonical period of 2π. However, dφ is not
defined at the roots y ¼ y3, y ¼ y2, and thus the gauge
field (5.36) is singular at the roots. We may then introduce
open sets U− and Uþ on WCP1

½n−;nþ� that cover hemi-

spheres containing the roots y ¼ y3 and y ¼ y2, respec-
tively. Here y ¼ y3 is a C=Zn− orbifold singularity, while
y ¼ y2 is a C=Znþ orbifold singularity. One can then check
that to obtain a well-defined connection in each patch we
need to make the local gauge transformations:

U−∶ A → Aþ 1

2n−
dφ≡ A−;

Uþ∶ A → Aþ 1

2nþ
dφ≡ Aþ: ð5:38Þ

The gauge fields A� are now smooth one-forms in their
respective patches U�, and on the overlap U− ∩ Uþ they
are related by

Aþ ¼ A− þ n− − nþ
2nþn−

dφ: ð5:39Þ

This again identifies the complex line bundle onwhich 2A is a
connection asOðn− − nþÞwhere, bydefinition, the transition
function defining this line bundle overWCP1

½n−;nþ� is given by
thegauge transformation in (5.39) [cf. (5.16)].Wediscuss this
further towards the end of this subsection.
Next let us look at the two-dimensional frame fe2; e3g

for WCP1
½n−;nþ� in (5.27), which is again singular at the

roots. Specifically,

U−; near y ¼ y3∶ e2 ∼ −dϱ− e3 ∼ ϱ−
dφ
n−

;

Uþ; near y ¼ y2∶ e2 ∼þdϱþ e3 ∼ ϱþ
dφ
nþ

; ð5:40Þ

where ϱ� is the geodesic distance measured from each
root to leading order. Note here that y is increasing
as one approaches y ¼ y3 > y2, while ϱ− is decreasing,
hence the minus sign. We may then introduce a complex
coordinate z− ≡ −ϱ−e−iφ=n− in the patch U−, which
defines a smooth one-form dz− on the orbifold; that is,
dz− is a smooth one-form on the covering space C in
which φ has period 2πn−. We may then write z−≡
x− þ iy− ¼ −ϱ− cos

φ
n−
þ iϱ− sin

φ
n−
, and rotate the frame

�
e2

e3

�
→

 
cos φ

n−
sin φ

n−

− sin φ
n−

cos φ
n−

!�
e2

e3

�
∼
�
dx−
dy−

�
: ð5:41Þ

This is an SOð2Þ ≅ Uð1Þ rotation of the frame on the patch
U−, which leads to a corresponding spinor Uð1Þ rotation
expð�iφ=2n−Þ where the sign is correlated with the two-
dimensional chirality of the spinor. This follows from
exponentiating the spinor representation of the infinitesimal
version of the above SOð2Þ rotation, namely

exp

�
−
1

2
σ2σ1φ=n−

�
¼
�
eiφ=2n− 0

0 e−iφ=2n−

�
: ð5:42Þ

We may then rotate the spinors χi, i ¼ 1, 2 in the patch U−,
noting that there is both a spinor rotation and an
R-symmetry rotation (5.38):

U−; near y3∶ χi ¼ χðþÞ
i þ χð−Þi

→
	
eiφ=2n−χðþÞ

i þ e−iφ=2n−χð−Þi



eiφ=2n−

¼ eiφ=n−χðþÞ
i þ χð−Þi : ð5:43Þ
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The coordinate φ is not defined at the root y ¼ y3, but on

the other hand χðþÞ
i ðy3Þ ¼ 0. Thus the above spinor is

smooth and well defined near to y ¼ y3, in the patch U−.
Note in particular that the spinor rotation and R-symmetry
rotation cancel each other for the nonvanishing negative

chirality component χð−Þi .
A similar calculation goes through at the other root,

y ¼ y2, in the patch Uþ. We introduce a coordinate
zþ ≡ ϱþeiφ=nþ ¼ xþ þ iyþ ¼ ϱþ cos φ

nþ
þ iϱþ sin φ

nþ
. The

rotation is now in the opposite direction,

�
e2

e3

�
→

 
cos φ

nþ
− sin φ

nþ

sin φ
nþ

cos φ
nþ

!�
e2

e3

�
∼
�
dxþ
dyþ

�
: ð5:44Þ

The corresponding spinor rotation and R-symmetry rota-
tion are thus

Uþ; near y2∶ χi ¼ χðþÞ
i þ χð−Þi

→
	
e−iφ=2nþχðþÞ

i þ eiφ=2nþχð−Þi



eiφ=2nþ

¼ χðþÞ
i þ eiφ=nþχð−Þi : ð5:45Þ

Now, χð−Þi ðy2Þ ¼ 0 and we see the spinor is smooth and
well defined near the root.
The above analysis shows that the two-dimensional

spinors χi on WCP1
½n−;nþ� are smooth and well defined,

in the appropriate orbifold sense. Notice that the above
computations show that the spinor transition function, in
going from the patch U− to the patch Uþ, is, similarly to
(5.39), given by

�
e−iφ=2nþ 0

0 eiφ=2nþ

�
·

�
e−iφ=2n− 0

0 eiφ=2n−

�

¼
�
e−iφ

nþþn−
2nþn− 0

0 eiφ
nþþn−
2nþn−

�
: ð5:46Þ

Here the original spinor rotation (5.42) is inverted, since we
begin with the smooth spinor in the patch U−. This
identifies the positive and negative chirality spin bundles
Sð�Þ on WCP1

½n−;nþ� as Oð∓ ðnþ þ n−Þ=2Þ. Notice these
are well defined as line bundles when nþ þ n− is divisible
by 2, which is the case if and only if nþ − n− is divisible
by 2, when the gauge field A is a connection on a well-
defined line bundle. We may understand this more
abstractly as follows. On any oriented two-manifold (or
orbifold) the spinor bundles are

SðþÞ ¼ K1=2; Sð−Þ ¼ K−1=2 ¼ Λð0;1Þ ⊗ K1=2; ð5:47Þ

where K ≅ Λð1;0Þ is the canonical bundle, namely the
cotangent bundle, and Λð0;1Þ denote (0,1)-forms with

respect to the canonical complex structure. Again, the
above computations explicitly show that the cotangent
bundle is K ¼ Oð−ðnþ þ n−ÞÞ. Instead, our spinors χi
are spinc spinors that are also charged under the gauge
field A. Denoting the line bundle on which 2A is a

connection as L, the spinors χð�Þ
i are hence sections of

χðþÞ
i ∶ SðþÞ ⊗ L1=2 ¼ O

�
−
1

2
ðnþ þ n−Þ

�

⊗ O

�
1

2
ðn− − nþÞ

�
¼ Oð−nþÞ;

χð−Þi ∶ Sð−Þ ⊗ L1=2 ¼ O

�
1

2
ðnþ þ n−Þ

�

⊗ O

�
1

2
ðn− − nþÞ

�
¼ Oðn−Þ:

ð5:48Þ

Again, these also follow directly from composing the
transition functions we worked out explicitly above.
Notice that these chiral spinc bundles, Oð−nþÞ and
Oðn−Þ, are always well defined as line bundles, irrespective
of whether nþ � n− is divisible by two.

C. R-symmetry Killing vector

The supersymmetric AdS2 × Y9 solutions we have con-
structed should have a holographic dual description in
terms of a d ¼ 1 superconformal quantum mechanics
(SCQM). This has an Abelian R-symmetry, which is
realized in the supergravity solution as a canonically
defined Killing vector field under which the Killing spinors
are charged. As usual, this R-symmetry Killing vector R
may be constructed as a bilinear in the Killing spinors as we
explain below. For the solutions in this paper we find

R ¼ R3d þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p ∂z

¼ R3d þ 2
ffiffiffi
2

p nþn−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n2−n2þðGð4ÞQeÞ2 þ n2− þ n2þ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16n2−n2þðGð4ÞQeÞ2 þ n2− þ n2þ

q ∂φ;

ð5:49Þ

where in the second expression we have used (5.18), and
we have also defined R3d ¼ 2∂ψ . The latter is precisely
the R-symmetry Killing vector for the corresponding
AdS4 × SE7 solutions, normalized so that the Killing
spinor on the SE7 has a unit charge under R3d (see
Appendix F). This is the geometric counterpart to the
superconformal R-symmetry of the dual d ¼ 3, N ¼ 2
SCFT. We note that (5.49) reduces to (D12) on setting
j ¼ 0, and that ∂φ generates the Uð1Þ isometry of the
spindleWCP1

½n−;nþ�, normalized so that φ has a period of 2π
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[see (3.10)]. We discuss the physical interpretation of (5.49)
in the discussion in Sec. VII.
One way to identify the R-symmetry Killing vector is to

construct bilinears of the Killing spinors on Y9, as was
essentially done in [20] for the case of j ¼ 0. Instead, here
we will construct bilinears of the D ¼ 11 Killing spinors
for the AdS2 × Y9 solution. With the conventions of
Appendix F, we can obtain the D ¼ 11 Killing spinors
as a tensor product of theD ¼ 4 Killing spinors (5.32) with
the Killing spinor χ on SE7. The solution preserves four
D ¼ 11 Majorana spinors which we can package into two
complex D ¼ 11 spinors via

ε1 ¼ ϵ1 ⊗ χ; ε2 ¼ ϵ2 ⊗ χ: ð5:50Þ

We then obtain the following bilinears:

iε̄1ΓMε1 ¼ PM;

iε̄2ΓMε2 ¼ −KM;

iε̄1ΓMε2 ¼ DM þ i
2
RM; ð5:51Þ

where

P ¼ ∂τ;

D ¼ τ∂τ − ρ∂ρ;

K ¼ −ðτ2 þ ρ−2Þ∂τ þ 2τρ∂ρ þ 2jρ−1∂z;

R ¼ 2∂ψ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p ∂z: ð5:52Þ

The Killing vectors P, D, and K generate the slð2Þ
symmetry algebra of AdS2:

½D;P� ¼ −P; ½D;K� ¼ K; ½P;K� ¼ −2D; ð5:53Þ

and hence we can identify the Killing vector R to be the
R-symmetry Killing vector, as claimed above.

VI. THE CONFORMAL BOUNDARY FOR
NONROTATING SOLUTIONS: a= 0

An ultimate goal for holography would be to reproduce
the black hole entropy (1.1) for the extremal supersym-
metric solutions via a dual field theory computation. The
dual theory lives on the conformal boundary three-manifold
of the full black hole solution. In this section we therefore
turn to looking at this conformal boundary and, for
simplicity, we will now set the rotation parameter a ¼ 0.
We will see that for the supersymmetric extremal black
holes we must have e ¼ 0, hence J ¼ Qe ¼ 0, and the near
horizon solutions can be obtained by setting j ¼ 0 in the
near horizon metric of Sec. VA.
We shall see that the global black hole geometry of the

solutions with a ¼ 0 have some interesting features,
including an acceleration horizon beyond r ¼ ∞. For the

supersymmetric and extremal solution, this acceleration
horizon intersects the conformal boundary, effectively
dividing the latter in half. Moreover, we shall find that
the Killing spinor on this conformal boundary is given by a
topological twist, so that the spinor is constant, but it is a
different constant spinor on each half of the space.
These exotic features will make a dual field theory

calculation more challenging, but in the remaining sub-
sections we show that the features arise as a limit of more
well-behaved solutions, still with a ¼ 0. In particular,
in Sec. VI B we relax the extremality condition, while
preserving supersymmetry. The boundary three-manifold is
now a smooth product of the time direction with a spindle,
with a single component, and has a smooth boundary
Killing spinor. It is therefore natural to perform any field
theory localization calculation in this setting. One could
then take the extremal limit. However, in the bulk of this
solution there is a naked curvature singularity. In Sec. VI C
we discuss a simple way of regulating this feature by also
relaxing the requirement of supersymmetry, to obtain
completely regular accelerating black holes with a smooth
conformal boundary.

A. Supersymmetric and extremal solutions

In this section we focus on the solutions in (3.1) with
a ¼ 0, which depend on four free parameters, m, e, g, and
α. Explicitly, we then have

ds2 ¼ 1

H2

�
−
Q
r2

dt2 þ r2

Q
dr2 þ r2

P
dθ2 þ Pr2sin2θdϕ2

�
;

ð6:1Þ

with

H ¼ 1 − αr cos θ;

P ¼ 1 − 2αm cos θ þ α2ðe2 þ g2Þ cos2 θ;
Q ¼ ðr2 − 2mrþ e2 þ g2Þð1 − α2r2Þ þ r4: ð6:2Þ

The gauge field is given by

A ¼ −
e
r
dt − g cos θdϕ: ð6:3Þ

By directly examining the integrability conditions for the
Killing spinor equations when a ¼ 0, we find that super-
symmetry requires

0 ¼ m2 − ðe2 þ g2Þð1þ ðe2 þ g2Þα2Þ;
0 ¼ m4 −m2ðe2 þ g2Þ − g2ðe2 þ g2Þ2: ð6:4Þ

In fact, we get the same system of equations from (5.2) after
setting a ¼ 0 and assuming that α ≠ 0 as well as one of e, g
to be nonvanishing. These can be solved to give
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m2 ¼ 1 − α2 − 2α4e2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − α2Þ2 − 4α4e2

p
2α6

;

g2 ¼ 1 − α2 − 2α4e2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − α2Þ2 − 4α4e2

p
2α4

; ð6:5Þ

where we have taken the positive square roots in order to
continuously connect with the extremal solution below.
Note that (6.5) implies that m ¼ g=α.
The extremal limit is given by setting e ¼ 0. Everything

may then be expressed in terms of one parameter (for
example, α) via

e ¼ 0; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p

α2
; m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p

α3
: ð6:6Þ

The black hole horizon radius is given by the largest double
root rþ > 0 of QðrÞ, where

r� ¼ −1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − 4α2

p

2α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p : ð6:7Þ

We require the function P ≥ 0 and so we should restrict the
range of α to be

ffiffiffi
3

p

2
< α < 1; ð6:8Þ

and we also observe that in this range rþ is positive and r−
is negative. Recall that regularity of the uplifted solution
requires that the conditions in (4.27) are also imposed,
and this fixes the parameter α in terms of the integers n−,
nþ so that there are no remaining free parameters. In
particular, we note that in terms of the integers n− > nþ
specifying the orbifold singularities at the poles θ ¼ 0,
θ ¼ π, we have

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3n− þ nþÞð3nþ þ n−Þ

p
2ðn− þ nþÞ

: ð6:9Þ

Thus, the lower limit
ffiffiffi
3

p
=2 for α in (6.8) is the limit

n− → ∞, holding nþ fixed, while the upper limit of 1
corresponds15 to n− − nþ → 0.
Next, we look in more detail at the global structure of this

extremal solution. We take r ≥ rþ, where we recall that the
conformal boundary is at αr cos θ ¼ 1. Notice immediately
that for θ > π=2 this requires r negative. Globally, r is not a
good coordinate, and we instead put y ¼ 1=r. The black
hole metric (6.1) now reads

ds2 ¼ 1

ðy− αcosθÞ2
�
−Ydt2 þ dy2

Y
þ 1

P
dθ2 þPsin2θdϕ2

�
;

ð6:10Þ

where for the extremal supersymmetric solution we have
introduced

Y ¼ YðyÞ ¼ ð1 − α2Þð1 − r−yÞ2ð1 − rþyÞ2: ð6:11Þ

For the original r coordinate we have r > rþ > 0, which
implies

y ≤
1

rþ
≡ yþ; ð6:12Þ

and we may then continue y past zero to negative values
(effectively extending beyond r ¼ ∞). The y coordinate
decreases as one moves away from the horizon at y ¼ yþ,
eventually hitting the conformal boundary at y ¼ α cos θ,
with y − α cos θ > 0 in the interior of the spacetime.
However, although 1 − rþy > 0 for y < yþ, for negative
y one can reach the double root of the metric function Y at
y ¼ 1=r−, where we recall that r− < 0 as given in (6.8).
One can show that this is an acceleration horizon. To
emphasize this, we write r− ≡ rA, and then the acceleration
horizon is located at

y ¼ 1

rA
≡ yA; rA ≡ r−: ð6:13Þ

One can ask when the acceleration horizon at y ¼ yA
intersects the conformal boundary. This is determined by
the equation

yA ¼ 1

rA
¼ α cos θ; ð6:14Þ

which can be solved to give

θ ¼ θ0 ≡ arccos
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − 4α2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
�

¼ arccos
n− þ nþ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2− þ 2n2þ

p
n− − nþ

: ð6:15Þ

On the other hand, for given α and fixed θ > θ0, note
yA > α cos θ, which means that as one approaches from
the black hole one hits the acceleration horizon before the
conformal boundary. On the conformal boundary itself, the
lower half of the spindle with θ ∈ ðθ0; π� effectively lies
behind the acceleration horizon. Interestingly, the accel-
eration horizon is also extremal, and there is an asymptotic
AdS2 region as one approaches y → yA from above.
An extensive analysis of the causal structure of the AdS

C-metrics is presented in [12], for general values of the

15Note that in this limit we have α ¼ 1, g ¼ m ¼ 0 and hence,
in particular, the vanishing gauge field and the metric is locally
that of AdS4.
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parameters. The Penrose diagram for the extremal super-
symmetric black hole solution is shown in Fig. 1. In
particular, we note that the lower half of the spindle
boundary, with θ > θ0, lies behind the acceleration
horizon r ¼ rA.
Next, let us look more closely at the conformal boundary

itself. Starting from the general nonrotating black hole
metric (6.1), the conformal boundary is located at H ¼ 0.
Choosing the conformal factor so that the timelike Killing
vector ∂t has unit norm on the boundary, we find that the
general form of the conformal boundary metric is

ds23d ¼ −dt2 þ ds2Σ

¼ −dt2 þ dθ2

Pð1 − α2 sin2 θPÞ2 þ
P sin2 θ

1 − α2 sin2 θP
dϕ2:

ð6:16Þ

That is, the conformal boundary is a static product
metric, where the induced metric on a constant time slice
is ds2Σ.
We have seen that for the extremal supersymmetric black

hole the acceleration horizon intersects the conformal
boundary at θ ¼ θ0, and in fact the boundary actually
splits in half along this slice. Indeed, although P¼PðθÞ>0
for all θ ∈ ½0; π�, we find that for the extremal solution
1 − α2 sin2 θPðθÞ ≥ 0, with equality if and only if θ ¼ θ0.
The metric on Σ in (6.16) is then singular for θ ¼ θ0.
Introducing the new coordinate

ρ ¼ α
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − 4α2

pp
ffiffiffi
2

p ð5 − 4α2Þ
1

θ − θ0
; ð6:17Þ

we find that near to θ ¼ θ0 (which is ρ ¼ ∞), the metric on
Σ takes the form

ds2Σ ≃ dρ2 þ 5 − 4α2

α4
ρ2dϕ2: ð6:18Þ

Thus, each side of θ ¼ θ0 opens out into a noncompact
asymptotically local Euclidean end, with each of the poles,
θ ¼ 0 and θ ¼ π, being an infinite distance from θ ¼ θ0.
The conformal boundary effectively has two halves, with
the lower half, θ ∈ ðθ0; π�, lying behind the acceleration
horizon.
We can now discuss the behavior of the Killing spinor on

the conformal boundary. The bulk Killing spinor equation
for minimal d ¼ 4,N ¼ 2 gauged supergravity induces the
following conformal Killing spinor equation (CKSE) on
the conformal boundary [50]:

∇aζ ¼ 1

3
γa=∇ζ; ð6:19Þ

where we have introduced the covariant derivative
∇a ¼ ∂a þ 1

4
ωbc
a γbc − iAa. Here, a ¼ 0, 1, 2 is a tangent

space index, and we may take the gamma matrices to be
γ0 ¼ iσ1, γ1 ¼ σ2, γ2 ¼ σ3 in terms of Pauli matrices. To
solve this equation, we begin by introducing the obvious
orthonormal frame:

e0 ¼ dt; e1 ¼ dθffiffiffiffi
P

p ð1 − α2sin2θPÞ ;

e2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P
1 − α2sin2θP

r
sin θdϕ: ð6:20Þ

For the extremal solution with e ¼ 0, the gauge field is

A ¼ −g cos θdϕ ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p

α2
cos θdϕ: ð6:21Þ

(a) (b) (c)

FIG. 1. Penrose diagram for the nonrotating supersymmetric extremal black hole, for different slices of constant θ. The black hole
horizon is denoted by rþ. The left panel is associated with a conformal boundary, consisting of the product of the time direction with half
a spindle with θ < θ0. In the right panel, one reaches the other half of the spindle with θ > θ0 at the conformal boundary after passing
through the extremal acceleration horizon, denoted by rA. For θ ¼ θ0, in the middle panel, a null infinity appears.
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It is convenient to define the gauge-equivalent gauge
field as

A0 ≡ Aþ 1

2α2
dϕ: ð6:22Þ

Then, remarkably, we find that this gauge field is equal to
plus or minus 1

2
ω12, where ω12 is the nonzero spin

connection component for Σ, with the sign depending on
which half of Σ the expressions are compared in:

1

2
ω12 ¼

�−A0 θ ∈ ½0; θ0Þ;
þA0 θ ∈ ðθ0; π�:

ð6:23Þ

We find that the solution to (6.19) is in fact covariantly
constant, so ∇aζ ¼ 0, and, moreover, due to (6.23) in the
gauge (6.22), the solution for ζ is, in fact, constant:

ζ ¼

8>>><
>>>:

�−i
i

�
θ ∈ ½0; θ0Þ;�

1

1

�
θ ∈ ðθ0; π�:

ð6:24Þ

There is thus a topological twist on each half of the
conformal boundary, with the gauge field effectively

cancelling the spin connection and leading to a constant
spinor, but with a discontinuity in the spinor as one moves
across the slice θ ¼ θ0 that intersects the acceleration
horizon of the bulk black hole. Of course, we may multiply
each spinor in (6.24) by any constant, and this will still be a
solution. The reason for normalizing the spinors in the way
that we have, in particular taking a purely imaginary spinor
in θ ∈ ½0; θ0Þ, will become apparent in the next subsection.
Finally, in this subsection we note that it is possible to

derive an explicit expression for the entropy of the non-
rotating extremal supersymmetric solution directly from
(3.12). In terms of n�, we find

g ¼ 2ðn2− − n2þÞ
ð3n− þ nþÞðn− þ 3nþÞ

;

Δϕ ¼ ð3n− þ nþÞðn− þ 3nþÞπ
4n−nþðn− þ nþÞ

: ð6:25Þ

The horizon radii, r ¼ r�, are given by

r�¼
2ðn−þnþÞ

	
� ffiffiffi

2
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2−þn2þ
p

−ðn−þnþÞ



ðn−−nþÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3n−þnþÞðn−þ3nþÞ

p : ð6:26Þ

Using (3.12), we then find that the entropy is given by

SBH ¼
ffiffiffi
2

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2− þ n2þ

p
− ðn− þ nþÞ

n−nþ

π

4Gð4Þ

¼
27=2πM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðIqþ pÞp h ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðIqþ 2pÞ2 þ I2q2
p

− ðIqþ 2pÞ
i

3I5h3=2
N3=2: ð6:27Þ

The first expression agrees with (5.19) after settingQe ¼ 0,
where we recall that (5.19) was instead computed using the
near horizon metric for the general supersymmetric ex-
tremal solution. The second expression agrees with (5.21)
after correspondingly setting j ¼ 0, and is the same as the
expression for the entropy of the AdS2 × Y9 solutions as
given in Eq. (D.21) of [48].

B. Supersymmetric and nonextremal solutions

The nonrotating, extremal, supersymmetric black hole has
some slightly exotic features, especially the behavior of the
conformal boundary and its Killing spinor. In this section,
we relax the extremality condition e ¼ 0, instead imposing
the BPS relations (6.5) on the conformal boundary geometry
with e ≠ 0. We shall find that the conformal boundary has
the same form as (6.16), but now with a completely regular
metric on the spindle Σ, apart from the usual orbifold
singularities at θ ¼ 0 and θ ¼ π, so that Σ ≅ WCP1

½n−;nþ�
has the same topology as the black hole horizon in the

extremal limit. The circumference of Σ near to θ ¼ θ0 grows
as e → 0, as does the distance between the poles and θ ¼ θ0,
with the spindle effectively completely splitting in half in the
extremal limit e ¼ 0. There is correspondingly a smooth
solution ζ to the d ¼ 3 Killing spinor equation for e ≠ 0 that
approaches the piecewise constant solution (6.24) in the
extremal limit. As we discuss, the nonrotating BPS and
nonextremal solutions no longer have a smooth black
horizon but a naked singularity.
We first note that with a ¼ 0, the BPS conditions (6.5)

and the regularity conditions (3.8) imply that

m ¼ g
α
; α ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3n− þ nþÞð3nþ þ n−Þ
p

2ðn− þ nþÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2ð3n−þnþÞ2ð3nþþn−Þ2

4ðn2−−n2þÞ2
q ;

g ¼ 2ðn2− − n2þÞ
ð3n− þ nþÞðn− þ 3nþÞ

;

Δϕ ¼ ð3n− þ nþÞðn− þ 3nþÞ
4n−nþðn− þ nþÞ

π: ð6:28Þ
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These expressions can be obtained by solving the regularity
condition (3.8) for e and then substituting this into the first
line of (5.2) to derive the expression for g. Then, substitut-
ing this expression for g into (3.8), we get the expression
for α. We also note that if we set e ¼ 0 then we recover the
same conditions for the BPS and extremal solutions that we
considered in the previous subsection.
To analyze the conformal boundary and the Killing

spinors both on the boundary and in the bulk, it is
convenient to change to PD-type coordinates via

t ¼ ατ; cos θ ¼ p; ϕ ¼ α2σ; r ¼ −1=ðαqÞ;
ð6:29Þ

where p ∈ ½−1; 1�. We also change parameters by
introducing

g ¼ P
α2

; e ¼ Q
α2

; C ¼ P2 þQ2: ð6:30Þ

The BPS conditions (6.5) imply m ¼ g=α, as usual, and
α ¼ ðP2=C − CÞ1=2. Using these relations, we can then
write the full nonrotating solution (6.1) in these coordinates:

ds2 ¼ 1

ðpþ qÞ2
�
−QðqÞdτ2 þ dq2

QðqÞ þ
dp2

PðpÞ þPðpÞdσ2
�
;

A¼Qqdτ−Ppdσ; ð6:31Þ

where the metric functions are

PðpÞ ¼ C−1P1ðpÞP2ðpÞ; QðqÞ ¼ C−1Q1ðqÞQ2ðqÞ;
ð6:32Þ

and we have introduced

P1ðpÞ ¼ −ð1 − pÞðCpþ C − PÞ;
Q1ðqÞ ¼ Cq2 − Cþ Pqþ iQ;

P2ðpÞ ¼ −ð1þ pÞðCp − C − PÞ;
Q2ðqÞ ¼ Cq2 − Cþ Pq − iQ: ð6:33Þ

The regularity conditions on the metric imply that

P¼n−−nþþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−−nþÞ2−16ðn−þnþÞ2Q2

p
4ðn−þnþÞ

; ð6:34Þ

with P < 1
2
, while the period of σ can be expressed as

Δσ¼2π
n2−−n2þ

n−nþðn−−nþþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn−−nþÞ2−16ðn−þnþÞ2Q2

p
Þ:

ð6:35Þ

Notice that we can parametrize this class of solutions in
terms of n� and Q, with the extremal limit obtained when
Q → 0. The reality of P in (6.34) requires that we impose

Q ≤
n− − nþ

4ðn− þ nþÞ
: ð6:36Þ

The conformal boundary metric (6.16), obtained at
p ¼ −q, is then (after a rescaling by the constant α2)
given by

ds23d ¼ −dτ2 þ ds2Σ

¼ −dτ2 þ dp2

PðpÞð1 − PðpÞÞ2 þ
PðpÞ

1 − PðpÞ dσ
2:

ð6:37Þ

Notice that PðpÞ > 0 for p ∈ ½−1; 1� is implied by (6.36).
The circumference C of the spindle, at fixed p ∈ ½−1; 1�, is
given by the function

C ¼ CðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðpÞ

1 − PðpÞ

s
Δσ: ð6:38Þ

We have plotted this in Fig. 2 for the spindle Σ ¼ WCP1
½3;1�,

with progressively smaller values of Q, tending to the
extremal solution with Q ¼ 0. The circumference at
p ¼ p0 is infinite for Q ¼ 0, where p0 ¼ cos θ0, with θ0
given by (6.15):

p0 ¼
n− þ nþ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2n2− þ 2n2þ

p
n− − nþ

: ð6:39Þ

In the Q ¼ 0 limit the spindle has then effectively split
in half.

FIG. 2. Circumference C of the metric on the spindle Σ ¼
WCP1

½3;1� on the conformal boundary as a function of p ∈ ½−1; 1�,
for the supersymmetric nonextremal black holes. The blue,
orange, and green curves have progressively smaller values of
Q, namely Q ¼ 0.04, Q ¼ 0.01, and Q ¼ 0.0002, respectively,
tending to the extremal solution with Q ¼ 0. The same values of
Q are plotted also in Figs. 4 and 5.
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At this point, one might picture the geometry as breaking
up into two “pancakes,” as Q → 0. However, this is not
correct and is clarified by calculating the proper distance
from p ¼ �1 to p ¼ p0, both of which diverge as Q → 0.
It is illuminating to present the geometry of the spindle as
an embedding in three-dimensional Euclidean space, as in
Fig. 3. As Q → 0, while the circumference at p0 is
diverging so too is the height of the figures.
Introducing the orthonormal frame16 for the conformal

boundary metric (6.37),

e0¼dτ; e1¼−
dpffiffiffiffiffiffiffiffiffiffiffi

PðpÞp ð1−PðpÞÞ ; e2¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðpÞ

1−PðpÞ

s
dσ;

ð6:40Þ

we may solve the conformal Killing spinor, Eq. (6.19),
using the same basis of gamma matrices as the previous
subsection [see below (6.19)]. We find that

ζ ¼ e−iðκ1τþκ2σÞ
�
ζ1ðpÞ
ζ2ðpÞ

�
; ð6:41Þ

where we have introduced the constants

κ1 ¼
PQ

2ðP2 þQ2Þ ; κ2 ¼
P2

2ðP2 þQ2Þ : ð6:42Þ

Notice that in the extremal limit Q ¼ 0 the phase in (6.41)
is e−iσ=2 ¼ e−iϕ=2α

2

, which was compensated for in the
previous subsection by making the gauge transformation
(6.22). The components ζ1ðpÞ, ζ2ðpÞ satisfy the equations

ζ01 ¼
iðpQ − κ1Þffiffiffiffiffiffiffiffiffiffiffi

PðpÞp ð1 − PðpÞÞ ζ1;

ζ2 ¼
4iðpQ − κ1ÞPðpÞ −

ffiffiffiffiffiffiffiffiffiffiffi
PðpÞp

P0ðpÞ
4ðpP − κ2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðpÞð1 − PðpÞÞp ζ1: ð6:43Þ

After some effort, one finds the solution

ζ1ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ðpÞ − P2ðpÞ − 2iQ

ffiffiffiffiffiffiffiffiffiffiffi
PðpÞp

2P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − PðpÞp

s
;

ζ2ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P1ðpÞ − P2ðpÞ þ 2iQ

ffiffiffiffiffiffiffiffiffiffiffi
PðpÞp

2P
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − PðpÞp

s
: ð6:44Þ

Notice that ζ�1 ¼ ζ2 and jζ1j ¼ jζ2j. In fact, we have chosen
the overall normalization constant of the spinor so that the
components lie on the unit circle in the complex plane,
namely jζ1j ¼ jζ2j ¼ 1.
In Fig. 4 we have plotted the arguments arg ζ1ðpÞ,

arg ζ2ðpÞ for the spindle Σ ¼ WCP1
½3;1� with progressively

smaller values of Q, tending to the extremal solution with
Q ¼ 0. In the latter case, notice that in the Q → 0 limit
we have

forQ¼ 0∶
�
argζ2ðpÞ¼−argζ1ðpÞ¼ π

2
; p∈ ðp0;1�;

argζ2ðpÞ¼ argζ1ðpÞ¼ 0; p∈ ½−1;p0Þ:
ð6:45Þ

This precisely corresponds to the extremal solution (6.24).
We can also display the way in which the two different

topological twists for the extremal case arise in the limit
that Q → 0. In Fig. 5 we have plotted the spin connection
and gauge field for the conformal boundary geometries
corresponding to Fig. 4. More precisely, the nontrivial spin
connection component is ω12, and we define its holonomy
around a circle in the spindle Σ at constant p, parametrized
by σ, via

ωðpÞ ¼ 1

2π

Z
S1
ω12: ð6:46Þ

The solid curves in Fig. 5 are then 1
2
ωðpÞ, while the dashed

lines are � the corresponding holonomy of the gauge field
Aþ κ2dσ [cf. Eq. (6.23)].
Although the conformal boundary of this nonextremal

supersymmetric solution is perfectly regular, in the bulk the
black hole horizon has disappeared and there is a naked
curvature singularity. To see this, we return to the black

FIG. 3. Embedding of two spindles on the conformal boundary
for the supersymmetric nonextremal black holes in three-
dimensional Euclidean space. The left plot is for Σ ¼
WCP1

½3;1� and Q ¼ 0.04 and the right plot is for Σ ¼ WCP1
½3;2�

and Q ¼ 0.025.

16Notice the overall minus sign in e1 is so as to match
the orientation in the corresponding frame (6.20), where
dp ¼ − sin θdθ.
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hole metric given in (6.1) in PD-type coordinates and
observe that the function QðqÞ has no real roots for Q ≠ 0.
There is then a naked curvature singularity at q ¼ ∞, with a
Penrose diagram given by Fig. 6.

C. A one-parameter family of nonsupersymmetric
and nonextremal solutions

In the previous two subsections we have discussed
special cases that lie inside the more general class of
nonrotating PD black holes. While interesting because they
preserve supersymmetry, as discussed they both have some
pathologies: either an acceleration horizon that cuts the
conformal boundary, or a naked singularity. These pathol-
ogies arise because of the specific restrictions we have
imposed on the parameters in those cases. According to the
number and value of the roots of the functions Q and P,
there are many other possibilities. A detailed analysis of the
causal structure in various cases can be found in [12]. In
this subsection we will consider another special case that,
while allowing some degree of analytic control over the
roots of the metric functions, gives a black hole with a
completely regular conformal boundary and two ordinary
horizons. This configuration is also smoothly connected
with the extremal and BPS black hole, thus providing a
kind of “regulator” of the latter solution, while staying
within17 the nonrotating family of solutions.
We start again with the general metric (3.1) with a ¼ 0,

and we further restrict the parameters to satisfy

m ¼ g
α
; e ¼ 0: ð6:47Þ

FIG. 5. Spin connection and gauge field holonomies around a
circle in the spindle Σ for the supersymmetric nonextremal black
holes as a function of p ∈ ½−1; 1� and plotted for the spindle
Σ ¼ WCP1

½3;1�. The dashed lines are� the holonomy of the gauge

field, while the solid blue, orange, and green lines are the
corresponding holonomy of the spin connection for progressively
smaller values of Q, as given in Fig. 2, tending to the extremal
solution with Q ¼ 0. For Q ≠ 0 we do not have a topological
twist, but in the extremal limit Q → 0 we get a different
topological twist on each half of the spindle.

FIG. 6. Penrose diagram for the nonextremal supersymmetric
black holes, with e ≠ 0. The black hole horizon has disappeared,
leaving a naked singularity. There is now a smooth conformal
boundary which consists of the product of the time direction with
a spindle.

(a) (b)

FIG. 4. Arguments of ζ1ðpÞ, ζ2ðpÞ, appearing in the conformal Killing spinors on the conformal boundary for the supersymmetric
nonextremal black holes, as a function of p ∈ ½−1; 1� and plotted for the spindle Σ ¼ WCP1

½3;1�. The blue, orange, and green curves

have progressively smaller values of Q, as given in Fig. 2, tending to the extremal solution with Q ¼ 0. For Q ≠ 0 we have a smooth
conformal Killing spinor on the spindle that approaches two different constant values on each half of the spindle in the extremal
limit Q → 0.

17We can also regulate the solutions in Secs. VI A and VI B by
turning on the rotation parameter a as considered in Secs. IV
and V. In particular, the supersymmetric and extremal rotating
black holes have no acceleration horizons.

ACCELERATING BLACK HOLES AND SPINNING SPINDLES PHYS. REV. D 104, 046007 (2021)

046007-23



Hence, in particular, we have J ¼ Qe ¼ 0. The first of the
conditions in (6.47) is satisfied when both BPS conditions
(6.4) are met, so it amounts to imposing only one of the
two conditions. In addition, we recall that we imposed this
condition in constructing regular uplifted solutions, as we
discussed in Sec. IV. The second is the extremality
condition in the BPS case. It follows that the black hole
that we obtain with these restrictions is neither BPS nor
extremal, but that it is continuously connected with the case
discussed in Sec. VI A by taking the limit

g → gBPS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p

α2
: ð6:48Þ

Since we are taking a ¼ e ¼ 0 in (3.3), we note that the
gauge field is simply

A ¼ −g cos θdϕ: ð6:49Þ

We continue to take
ffiffiffi
3

p
=2 < α < 1 as in Sec. VI A, or

equivalently 0 < P < 1=2 as in Sec. VI B. For fixed α, the
roots of QðrÞ depend on g in a very simple way, as
illustrated in Fig. 7. In particular, we find:

(i) When g > gBPS,QðrÞ has two real roots for negative
r which correspond to acceleration horizons, and no
black hole horizon. As in Sec. VI A, the former
intersect the conformal boundary, which causes
pathologies; this can be seen from the fact that in
this case the combination 1 − α2 sin2 θPðθÞ appear-
ing in the boundary metric (6.16) has two real roots,
and is negative between the two.

(ii) When g < gBPS, QðrÞ has two real roots for positive
r, which give two black hole horizons (an inner and
an outer horizon) with no acceleration horizons. For
this case, 1 − α2 sin2 θPðθÞ has no roots for
0 ≤ θ ≤ π, which means the conformal boundary
is a smooth spindle, as in Sec. VI B.

(iii) Finally, when g ¼ gBPS then QðrÞ has two pairs of
coincident real roots, which is the case discussed in
Sec. VI A.

Since the main point of this section is showing that we
can have an ordinary black hole with no acceleration
horizons, we shall focus on the case

g < gBPS: ð6:50Þ

Furthermore, note that while so far we have focused on the
roots of QðrÞ, the restrictions we have put on α and g are
also such as to guarantee PðθÞ > 0 for 0 ≤ θ ≤ π. Hence,
this case indeed corresponds to a completely regular black
hole, whose Penrose diagram is given in Fig. 8, where we
have denoted by r1;2 the two positive roots of QðrÞ, with
r1 < r2. In the supersymmetric and extremal limit g ¼ gBPS
we have r1 ¼ r2 ¼ rþ.
We can then require that the topology in the θ;ϕ

directions is that of a spindle Σ ¼ WCP1
½n−;nþ�, by

(a) (b) (c)

FIG. 7. The function QðrÞ for three different cases in the class of nonsupersymmetric and nonextremal black holes with m ¼ g=α and
a ¼ e ¼ 0. We focus on the cases g < gBPS and g ¼ gBPS. When g < gBPS the two positive roots, r1, r2, correspond to an inner and outer
black hole horizon. When g ¼ gBPS, these two horizons coalesce to give an extremal horizon, rþ, and, in addition, an acceleration
horizon, rA, also appears. For g > gBPS there are no positive roots of Q, and hence no black hole horizon, but instead two negative roots
which correspond to two acceleration horizons.

FIG. 8. Penrose diagram for the nonsupersymmetric and non-
extremal black holes with m ¼ g=α and a ¼ e ¼ 0 and g < gBPS.
In addition to the black hole event horizon, denoted by r2, there
is also an inner horizon, denoted by r1. There is a smooth
conformal boundary which consists of the product of the time
direction with a spindle.
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appropriately quantizing the conical deficits at θ ¼ 0; π.
This gives

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4n−
gðn− − nþÞ

−
2gþ 1

g2

s
; ð6:51Þ

while the periodicity of ϕ is given by

Δϕ ¼ π

2g
n− − nþ
n−nþ

: ð6:52Þ

As discussed above, in this case the black hole is com-
pletely smooth, the spindle topology at fixed t, and r
persists to the conformal boundary, where the metric is
again given by (6.16) and has the topologyR×WCP1

½n−;nþ�.
This is regular for any 0 < g < gBPS, but degenerates as
described in Sec. VI A when g approaches the BPS value.
The behavior of the circumference of the spindle at the
boundary and of the spin connection of the boundary metric
are very similar to those given in Figs. 2 and 5, respectively.
Namely, when g → gBPS, the spindle splits in half at

θ ¼ θ0 ≡ arccos
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − 4α2

p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
�
; ð6:53Þ

while the spin connection approaches � the gauge field,
up to the pure gauge term discussed in Sec. VI A.

VII. DISCUSSION

In this paper we have studied a very general class of
four-dimensional dyonically charged, rotating, and accel-
erating black holes in four-dimensional anti-de Sitter
space. The acceleration leads to conical deficit singularities
at the horizon which can be taken to stretch out to the
conformal boundary. When these conical deficits are
appropriately “quantized,” so that the deficit angles are
2πð1 − 1=n∓Þ with positive coprime integers n�, the
resulting space is known in the mathematics literature as
a spindle, or equivalently, a weighted projective space
Σ ¼ WCP1

½n−;nþ�. Remarkably, when uplifted to D ¼ 11 on

a regular Sasaki-Einstein seven-manifold SE7, the solutions
become completely regular, free from any conical deficit
singularities whatsoever. We have also quantized the flux of
these D ¼ 11 solutions, thus showing that they give good
M-theory backgrounds.
We have shown that there is a subfamily of both

supersymmetric and extremal black hole solutions, which
interpolate between AdS4 in the UV and AdS2 × Σ in the
near horizon IR limit. These are characterized by the
integers n�, which determine the spindle horizon geometry
Σ ¼ WCP1

½n−;nþ�, and a continuous parameter, which para-

metrizes both the electric charge, Qe, and the angular
momentum, J. The entropy of these black holes, which also

carry magnetic charge [given in (4.31)], can be expressed
simply in terms of n� and Qe. We have shown that
the entropy can be expressed in a number of equivalent
ways, generalizing previous expressions applicable for
nonaccelerating supersymmetric AdS4 black holes. In
particular, (5.25) reduces to the entropy of the extremal
Kerr-Newman-AdS black hole upon setting Qm ¼ 0 and
χ ¼ 2 [equivalently setting n− ¼ nþ ¼ 1 in (1.1)]. The
formula (5.22), which applies also to the Kerr-Newman-
AdS black hole, highlights the dependence of the entropy
on the angular momentum computed at the horizon.
When uplifted, the near horizon limit gives a new class
of rotating AdS2 × Y9 solutions, where we have shown that
Y9 may be viewed as either a regular SE7 fibration over
Σ ¼ WCP1

½n−;nþ�, or equivalently as a Lens space S3=Zq

fibered over the KE6 base of the SE7. Remarkably, setting
Qe ¼ 0, which also sets J ¼ 0, these reduce to a known
class of supersymmetric AdS2 × Y9 solutions first con-
structed in [20]. We have thus provided a new physical
interpretation of those solutions: they are the near horizon
limits of the accelerating (but nonrotating) black holes
described in Sec. VI, and we have generalized those
solutions by adding angular momentum, preserving super-
symmetry and extremality. It would be interesting to
understand in more generality what kind of singularities
in lower-dimensional supergravity theories can be uplifted
to obtain regular solutions in higher dimensions. For
example, it would be interesting to explore this for the
D ¼ 4 black holes of [51,52] which have noncompact
horizons, but with finite entropy.
In this paper we have restricted our attention to solutions

of minimal D ¼ 4 gauged supergravity. However, it is very
likely that our constructions can be generalized to more
general gauged supergravity theories with various matter
content. More specifically, we expect to be able to construct
supersymmetric spinning spindles which would generalize
the constructions of [53]; for example, where it was
assumed that the horizon has spherical topology. We note
the similarity of our formula for the black hole entropy
(5.25) with Eq. (54) of [53].
We now return to the holographic interpretation of the

supersymmetric extremal black holes. The D ¼ 11 black
hole solutions interpolate between AdS4 × SE7 in the UV
and AdS2 × Y9 in the IR, where Y9 is a SE7 fibration over
the spindle Σ ¼ WCP1

½n−;nþ�. The AdS4 × SE7 vacuum
solution describes NSE M2-branes at the Calabi-Yau four-
fold singularity with the conical metric dr2 þ r2ds2ðSE7Þ,
and these typically have dual field theory descriptions as
Chern-Simons quiver gauge theories, with the integer NSE
determining the ranks of the gauge groups. Physically,
we are then wrapping the world-volume of the M2-branes
over Σ. We have studied this conformal boundary geometry
in some detail in Sec. VI for the nonrotating solutions with
Qe ¼ J ¼ 0. An important subtlety in this case is that in the
UV the conformal boundary is such that the spindle is split
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into two components. Moreover, in this limit supersym-
metry is preserved via a different topological twist on each
component. However, we have also shown that this split
can be regulated in a family of nonrotating supersym-
metric but nonextremal black holes (or by further relaxing
the supersymmetry condition). Moreover, we do not
expect the generic supersymmetric extremal rotating black
holes, with Qe ≠ 0, to have this pathology. Indeed, in
Sec. V we have shown that the formula for the entropy
of these black holes (5.7) is identical to that for the
supersymmetric extremal Kerr-Newman family, obtained
formally by setting n− ¼ nþ ¼ 1. On the other hand, the
Qe ¼ 0 solutions studied in Sec. VI are a somewhat
degenerate limit.
With the above holographic interpretation, it should be

possible to reproduce the black hole entropy formulae (1.1)
by studying the dual M2-brane field theories. Indeed, there
has been considerable progress on this topic for various
classes of supersymmetric AdS4 black holes. In particular,
the first class of black holes for which a dual field theory
interpretation has been found have just magnetic flux
through a Riemann surface horizon Σ. The field theory
calculation utilizes I-extremization, where the index can be
identified with the localized partition function of the dual
field theory on S1 × Σ [23–30]. More recently, following
the approach put forward in [54], progress has also been
made in understanding the class of electrically charged and
rotating AdS4 black holes from the dual field theory point
of view [39–42]. For the accelerating black hole solutions
that we discussed in this paper, it should be straightforward
to now compute the suitably regularized on-shell action of
the corresponding Euclidean solutions and reproduce the
entropy by extremizing the corresponding entropy func-
tion. From the field theory side, we should then focus on
the Euclidean version of the conformal boundary geometry
of the charged, rotating, and accelerating black holes, and
compute a certain twisted topological index associated with
the d ¼ 3, N ¼ 2 SCFTs on the M2-branes, wrapped on
the spinning spindle Σ. While some care may be required in
taking the BPS and extremal limit, it seems possible that we
can get agreement between these computations using
localization techniques in the large N limit.
The wrapped M2-brane theories flow to a d ¼ 1 super-

conformal quantum mechanics in the IR that is dual to the
AdS2 × Y9 solutions that arise as the near horizon limit
of the black holes. Equation (5.49) says that the d ¼ 3
superconformal R-symmetry mixes with the Uð1Þ isometry
of the internal space Σ in flowing to the d ¼ 1 super-
conformal R-symmetry in the IR. It should similarly be
possible to reproduce this formula via a dual field theory/
SCQM calculation by computing and then extremizing a
suitable index. Indeed, in a companion paper [55] we study
an analogous class of supersymmetric D ¼ 5 AdS3 × Σ
solutions, with Σ ¼ WCP1

½n−;nþ� again a spindle, that uplift

on a regular Sasaki-Einstein five-manifold to smooth
solutions of type IIB supergravity. These are the holo-
graphic duals to D3-branes wrapping the spindle, and in
this case we are able to reproduce both the central charge
and the mixing of d ¼ 4 and d ¼ 2 superconformal
R-symmetries in the supergravity solution, where in the
field theory dual we make use of anomaly polynomials and
c-extremization [56].
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APPENDIX A: CIRCLE FIBRATIONS
OVER SPINDLES

In Sec. IVA, we showed that the D ¼ 4 PD black hole
metrics uplift to regular D ¼ 11 solutions that on a fixed t,
r slice are topologically Lens space S3=Zq bundles over the
KE6. On the other hand, we explained that this same space
may also be viewed as an SE7 fibration over a spindle/
weighted projective space WCP1

½n−;nþ�. Fixing a point on

the KE6 implies that the Lens space fiber S3=Zq is a circle
bundle over the weighted projective space, where we recall
q ¼ ðk=IÞðn− − nþÞ. In this appendix we spell this out in a
little more detail, discussing circle bundles over spindles
more generally.
We begin with S3, embedded inside C2 as the unit sphere

S3 ¼ fjz1j2 þ jz2j2 ¼ 1g ⊂ C2, with z1, z2 standard com-
plex coordinates. We may then consider the weighted
circle action

ðz1; z2Þ → ðλnþz1; λn−z2Þ; ðA1Þ

where λ ¼ eiθ ∈ Uð1Þ, n� ∈ N, and note that for the action
to be effective we need hcfðnþ; n−Þ ¼ 1. The quotient
S3=Uð1Þ ¼ WCP1

½n−;nþ� is by definition a weighted projec-

tive space. This is a complex orbifold which is topologi-
cally a two-sphere with conical angles 2π=n� at the poles.
This is also known as a spindle. In terms of the action (A1),
the poles arise from z2 ¼ 0 and z1 ¼ 0, respectively, where
in the first case all powers of the primitive nþ−th root of
unity, λ ¼ e2πi=nþ , act trivially, while in the second case this
is true for λ ¼ e2πi=n−.
It is a straightforward exercise to compute the Chern

number of this fibration. That is, introduce a ð2πÞ-period
coordinate, ν, along the weighted Uð1Þ action and corre-
sponding connection one-form, A. This can be done
starting from the round metric on S3, with the
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corresponding term, ðdνþAÞ2, for the metric on the circle
fiber. The result18 is

Z
WCP1

½n− ;nþ�

dA
2π

¼ 1

nþn−
; ðA2Þ

where we notice the overall sign is a matter of convention.
By construction, the total space of this circle fibration over
WCP1

½n−;nþ� is S
3.

We may now consider a more general fibration with

Z
WCP1

½n− ;nþ�

dA
2π

¼ r
nþn−

; ðA3Þ

and r ∈ Z, and we will take r > 0 in what follows. We
shall denote the corresponding complex line bundle, on
which A is a connection, by OðrÞ. In terms of the original
construction of WCP1

½n−;nþ� as a quotient, notice that ν has

period 2π=r. The total space of this circle fibration is then
S3=Zr, where the Zr action is generated by

ðz1; z2Þ → ðωnþ
r z1;ω

n−
r z2Þ; ðA4Þ

where ωr ≡ e2πi=r is a primitive rth root of unity. In
general, the action (A4) is not free. Specifically, the circle
S1 ¼ fz2 ¼ 0g is fixed by Zhcfðr;nþÞ, while the circle
S1 ¼ fz1 ¼ 0g is fixed by Zhcfðr;n−Þ. Thus, the total space
is a smooth manifold (rather than an orbifold) if and only
if r has no common factor with either nþ or n−.
The main case of interest in the main text is when

r ¼ q ¼ k
I
ðn− − nþÞ: ðA5Þ

Recall here that I=k is an integer that divides n− − nþ.
The gauged supergravity connection 2A is a connection
on OðqÞ, as one sees, for example, in Eq. (5.16).
Since hcfðnþ; n−Þ ¼ 1, it immediately follows that
hcfðq; n�Þ ¼ 1, and the total space of the circle fibration
is smooth. In fact the construction in Sec. IVA indirectly
implies that this is diffeomorphic to the Lens space
S3=Zq ¼ Lðq; 1Þ. We may see this directly as follows.
Since hcfðq; nþÞ ¼ 1, we can find integers a; b ∈ Z such
that anþ þ bq ¼ 1. It follows that a nþ

q ¼ −bþ 1
q, and

hence

ðωnþ
q Þa ¼ e2πianþ=q ¼ ωq: ðA6Þ

Thus the Zq action (A4) is equivalent to

ðz1; z2Þ → ðωqz1;ω
an−
q z2Þ; ðA7Þ

which is the definition of the Lens space Lðq; an−Þ. On the
other hand, we have an−¼aðnþþ I

kqÞ¼1þqðIka−bÞ≅1

mod q. Thus Lðq; an−Þ ≅ Lðq; 1Þ ¼ S3=Zq, as we wanted
to show.

APPENDIX B: NONACCELERATING CASE: α= 0

The principal focus of this paper is to study accelerating
black holes with α ≠ 0. However, for completeness
we discuss here the case when α ¼ 0, also known as the
Kerr-Newman-AdS spacetime [36].
We set α ¼ 0 in (3.1) and then rescale

ϕ ¼ φΞ−1; ðB1Þ

where Ξ ¼ 1 − a2, to ensure that the metric is well defined
at θ ¼ 0 and θ ¼ π, with φ ∈ ½0; 2πÞ. The metric now
reads19

ds2 ¼ −
Q
Σ

�
dt −

asin2θ
Ξ

dφ

�
2

þ Σ
Q
dr2 þ Σ

P
dθ2

þ P
Σ
sin2θ

�
adt −

r2 þ a2

Ξ
dφ

�
2

; ðB2Þ

with

Σ ¼ r2 þ a2cos2θ;

P ¼ 1 − a2cos2θ;

Q ¼ ðr2 þ a2Þð1þ r2Þ − 2mrþ e2 þ g2; ðB3Þ

and a gauge field given by

A¼ −e
r
Σ

�
dt−

asin2θ
Ξ

dφ

�
þ g

cosθ
Σ

�
adt−

r2 þ a2

Ξ
dφ

�
:

ðB4Þ

When α ¼ 0, the conditions for the preservation of
supersymmetry need to be carried out again. We find that
the integrability conditions now give the BPS constraints

0 ¼ mg; ðB5Þ
18Write the metric on S3 as ds2 ¼ dθ2 þ cos2 ϑdϕ2

1 þ
sin2 ϑdϕ2

2 with ϑ ∈ ½0; π=2� and Δϕi ¼ 2π. The weighted Uð1Þ
action is V ¼ nþ∂ϕ1

þ n−∂ϕ2
. Introduce new coordinates ϕ1 ¼

nþν and ϕ2 ¼ n−νþ ðnþÞ−1μ with Δν ¼ Δμ ¼ 2π. In the new
coordinates V ¼ ∂ν, and the metric can be written as a Uð1Þ
fibration overWCP1

½n−;nþ� as follows:ds
2¼ΛðdνþAdμÞ2þdϑ2þ

cos2ϑsin2ϑ
Λ dμ2, where A¼ n−

nþ
sin2ϑ
Λ and Λ¼n2þ cos2ϑþn2− sin2ϑ.

19We can compare with the metric as given in [41],
which has g ¼ 0. We should make the identification
mthereð1þ 2 sinh2 δÞ ¼ m, mthere sinh 2δ ¼ e, and r̃ ¼ r, as well
as Athere ¼ −2A.
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0 ¼ e4 − 2a2e4 þ a4e4 þ 2e2g2 − 4a2e2g2 þ 2a4e2g2

− 4e4g2 þ g4 − 2a2g4 þ a4g4 − 8e2g4 − 4g6 − 2e2m2

− 2a2e2m2 − 2g2m2 − 2a2g2m2 þm4: ðB6Þ

With m > 0 we therefore20 take g ¼ 0. The second equa-
tion can then be solved and with a, e ≥ 0 we conclude that
for BPS black holes we should take

g ¼ 0; m ¼ ð1þ aÞe: ðB7Þ

By studying the roots of Q we can determine that we
have an extremal BPS black hole provided that

e ¼ ffiffiffi
a

p ð1þ aÞ; ðB8Þ

and hence

m ¼ ffiffiffi
a

p ð1þ aÞ2; ðB9Þ

with the horizon at rþ ¼ ffiffiffi
a

p
. From (3.14) we can then

write the total electric charge as

Gð4ÞQe ¼
ffiffiffi
a

p
1 − a

; ðB10Þ

and from (E6) the total angular momentum is

Gð4ÞJ ¼ a
ffiffiffi
a

p
ð1 − aÞ2 ¼

Gð4ÞQe

2

	 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðGð4ÞQeÞ2

q
− 1


:

ðB11Þ

Note that when α ¼ 0, this expression for the angular
momentum, in the gauge we are using, can also be obtained
from a Komar integral (E1), as is often used in the literature.
Finally, from (3.12) the entropy of these black holes is
given by

SBH ¼ π

Gð4Þ

a
1 − a

¼ π

2Gð4Þ

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4ðGð4ÞQeÞ2

q
− 1

�

¼ π

Gð4Þ

J
Qe

; ðB12Þ

in agreement with the literature.

APPENDIX C: NEAR HORIZON LIMIT

In this appendix we shall consider the near horizon limit
of the PD solution [(3.1)–(3.3)] in the BPS and extremal
case. To this end, we first write the function QðrÞ as

QðrÞ ¼ ðr − rþÞ2ðx0 þ x1rþ x2r2Þ; ðC1Þ

where the constants, xi, are defined by

x0 ¼ −α2ða2 þ e2 þ g2Þ þ a2 þ 4αgrþ − 3ðα2 − 1Þr2þ þ 1;

x1 ¼ 2αg− 2ðα2 − 1Þrþ;
x2 ¼ 1− α2: ðC2Þ

The horizon radius, rþ, is subject to the following condition:

− 4αða2 þ e2Þ þ 4α3ða2 þ e2 þ g2Þ − 5αg2

þ gðða2 − 5Þα2 þ α4ð−ða2 þ e2 þ g2ÞÞ þ 6Þrþ
þ αð−2a2ðα2 − 1Þ2 − 2α4ðe2 þ g2Þ
þ α2ð2e2 þ 5g2 þ 2Þ − 2Þr2þ ¼ 0; ðC3Þ

with the parameters obeying the BPS constraints.21

A convenient way to find the near horizon solution is to
implement the following coordinate transformation,

r → rþ þ λsρ; t → λ−1sτ; ϕ → ϕ0 þ λ−1sW
Δϕ
2π

τ;

ðC4Þ

where s is a constant, and then take the λ → 0 limit. Here,
W is given by

W ¼ a
r2þ þ a2

2π

Δϕ
; ðC5Þ

with ∂t þW Δϕ
2π ∂ϕ ¼ ∂t þW∂φ being a null generator of

the horizon. It is convenient to choose

s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2þ þ a2

x0 þ x1rþ þ x2r2þ

s
; ðC6Þ

and we then find that the near horizon metric reads, after
dropping the primes from the new coordinates,

ds24 ¼ λðθÞ
�
−r2dt2 þ dr2

r2

�
þ dθ2

P̃ðθÞ

þ ðr2þ þ a2Þ2 sin2 θP̃ðθÞ
ð1 − αrþ cos θÞ4 ðdϕþ vrdtÞ2; ðC7Þ

where

20As in [15], setting m ¼ 0 is a solution to the BPS equations,
but it gives no real positive roots toQ and hence no event horizon.

21In the nonaccelerating case, with α ¼ g ¼ 0, this condition
degenerates and one instead has rþ ¼ ffiffiffi

a
p

.
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λ̃ðθÞ ¼ a2cos2θ þ r2þ
ð1 − αrþ cos θÞ2ðx0 þ x1rþ þ x2r2þÞ

;

P̃ðθÞ ¼ ð1 − αrþ cos θÞ2
a2cos2θ þ r2þ

PðθÞ;

v ¼ 2arþ
ða2 þ r2þÞðx0 þ x1rþ þ x2r2þÞ

: ðC8Þ

For the gauge field, we find that there is a piece that is
singular in the λ → 0 limit, but it can be removed by a
gauge transformation. We thus implement the gauge
transformation

A → A −
srþe

λða2 þ r2þÞ
dt −

eða2 − r2þÞ
2arþ

dϕ; ðC9Þ

where the second term is included for convenience. Taking
the λ → 0 limit we then obtain the near horizon gauge field,

A ¼ −
ða2 þ r2þÞða2ecos2θ þ 2agrþ cos θ − er2þÞ

2arþða2cos2θ þ r2þÞ
× ðdϕþ vrdtÞ: ðC10Þ

We can now show that the near horizon metric (C7) and
gauge field (C10) are equivalent to the solution (5.10). The
easiest way to see this is to start from (C7) and perform the
following coordinate transformations:

τ→−t; ρ→ r; y→
c1þc2cosθ
1−αrþcosθ

; z→−κϕ; ðC11Þ

where

c1 ¼
2αr3þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0 þ x1rþ þ x2r2þÞða2 þ α2r4þÞ
p ;

c2 ¼
2a2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx0 þ x1rþ þ x2r2þÞða2 þ α2r4þÞ
p ;

κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0 þ x1rþ þ x2r2þ

a2 þ α2r4þ

s
ðr2þ þ a2Þ: ðC12Þ

The parameters are then identified as follows:

j ¼ 2arþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx0 þ x1rþ þ x2r2þÞða2 þ α2r4þÞ

p ;

a ¼ 4
−a2gþ 2aeαr2þ þ gα2r4þ

ðx0 þ x1rþ þ x2r2þÞða2 þ α2r4þÞ
: ðC13Þ

Let us now turn to the nonrotating case, a ¼ 0. As
discussed in Sec. VI A, in the BPS and extremal limit
we can express all parameters and horizon radii in terms
of α via

e ¼ 0; g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p

α2
; m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p

α3
;

rþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − 4α2

p
− 1

2α
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p : ðC14Þ

With QðrÞ ¼ ðr − rþÞ2ðx0 þ x1rþ þ x2r2þÞ, we can now
obtain simple expressions for x0, x1, x2:

x0¼
−2α2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5−4α2

p
þ3

2α2
; x1¼

ffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5−4α2

p
þ1Þ

α
;

x2¼1−α2: ðC15Þ

We then take the near horizon limit with the coordinate
transformation (C4), where we note that now, since a ¼ 0,
we have W ¼ 0 as expected, since we have switched off
rotation. Taking the limit λ → 0, and again dropping the
primes from the new coordinates, we get the near horizon
metric,

ds2 ¼ r2þ
ð1− αrþ cosθÞ2

�
1

x0 þ x1rþ þ x2r2þ

�
−r2dt2 þ dr2

r2

�

þ dθ2

PðθÞ þPðθÞsin2θdϕ2

�
; ðC16Þ

and gauge field,

A ¼ −g cos θdϕ; ðC17Þ

where we recall that all parameters are constrained by the
BPS and extremality conditions (C14). It can be shown that
this solution is equivalent to the nonrotating case (j ¼ 0)
of the metric (5.10). To see this, starting from (5.10) with
j ¼ 0, one needs to change coordinates and identify the
parameters as follows:

τ → −t; ρ → r;

y →
2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − 4α2

p
− 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5 − 4α2
p 	

ð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − 4α2

p
Þ cos θ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p 
 ;

z → −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5 − 4α2

p

α2
ϕ; a →

4
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p

5 − 4α2
: ðC18Þ

Recall that
ffiffiffi
3

p
=2 < α < 1, which corresponds to the

range: 0 < a < 1.

APPENDIX D: THE AdS2 × Y9
SOLUTIONS OF [20]

We briefly outline how the D ¼ 11 AdS2 × Y9 solutions
found in [20] and further discussed in Appendix D of [48]
can also be viewed as solutions of D ¼ 4 minimal gauged
supergravity. The analysis of regularity and flux quantiza-
tion which was carried out in [48] is different to what
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we have done in this paper, and we explain how they
are related.
Consider the metric ds2ðY9Þ given in (3.36) of [20]:

ds2ðY9Þ ¼ wðyÞDz2 þ qðyÞ
y6wðyÞDψ2 þ 4

qðyÞ dy
2 þ 16

y2
ds2KE6

;

ðD1Þ

where Dz¼dz−gðyÞDψ , Dψ ¼ dψ þ 4B, with dB ¼ 2J,
and

qðyÞ ¼ y4 − 4y2 þ 4ay − a2;

gðyÞ ¼ a − y
y3 − 3yþ 2a

;

wðyÞ ¼ y3 − 3yþ 2a
y3

: ðD2Þ

If we complete the square using the ψ coordinate, we
immediately find

ds2ðY9Þ ¼
1

y2

�
Dψ þ

�
1 −

a
y

�
dz

�
2

þ 4

q
dy2

þ q
y4

dz2 þ 16

y2
ds2KE6

: ðD3Þ

Assembling the D ¼ 11 metric, as described in [20], we
obtain

ds211 ¼
2

3

�
y2ds2ðAdS2Þ þ

4y2

q
dy2 þ q

y2
dz2

þ
�
Dψ þ

�
1 −

a
y

�
dz

�
2

þ 16ds2KE6

�
;

¼ 32

3

�
1

4

�
y2

4
ds2ðAdS2Þ þ

y2

q
dy2 þ q

4y2
dz2
�

þ
��

1

4
dψ þ Bþ 1

4

�
1 −

a
y

�
dz

�
2

þ ds2KE6

��
:

ðD4Þ

Comparing this with (2.2), we see this is precisely of the
form to give a solution of minimal D ¼ 4 gauged super-
gravity with

ds24 ¼
y2

4
ds2ðAdS2Þ þ

y2

q
dy2 þ q

4y2
dz2;

A ¼ 1

2

�
1 −

a
y

�
dz; ðD5Þ

after choosing L ¼ ð32=3Þ1=2. Finally, as a check, the four-
form flux in [20] can be written as

G ¼
�
32

3

�
3=2
�
3

8
vol4 −

1

2
�4 F ∧ J

�
; ðD6Þ

in agreement with (2.2).
We now return to the metric as written in (D1) and recall

the analysis demonstrating regularity, as discussed in [20].
The analysis of [20] begins by showing that after taking
Δψ ¼ 2π, we see ψ , y parametrize a smooth two-sphere.
Then one shows that this two-sphere can be fibered over the
KE6 space to give an eight-dimensional manifold. Next, by
choosing the period of z to be 2πl, for suitably defined l, we
obtain a good circle fibration over the eight-dimensional
manifold. To implement the latter, one shows that the
periods over a basis of two-cycles on the eight-dimensional
space are suitably quantized. A basis can be taken to be the
S2 fiber at a fixed point on the KE6 together with a basis of
two-cycles on KE6 sitting at the one of two poles on the S2,
say y ¼ y2. The conditions are satisfied if and only if

gðy3Þ − gðy2Þ ¼ lq; gðy2Þ ¼ lp=I; ðD7Þ

with integers p;q. If p;q have no common factor, then the
nine-dimensional space Y9 is simply connected. As shown
in [20], these conditions imply

a ¼ Iqð2pþ IqÞ
2p2 þ 2Ipqþ I2q2

;

l2 ¼ I2ð2p2 þ 2Ipqþ I2q2

2p2ðpþ IqÞ2 : ðD8Þ

This construction can also be viewed as a fibration of a
Lens space S3=Zq over the KE6. To see this more explicitly,
we can use canonical coordinates on S3=Zq, with the Zq
identification acting on a Hopf fiber coordinate. We
consider22 ψ ¼ γ and z ¼ ᾱþ λγ and we fix the constant
λ momentarily. Observe that this implies ∂ψ ¼ ∂γ − λ∂ ᾱ

and ∂z ¼ ∂ ᾱ. In the new coordinates the metric reads

ds2Y9
¼ wðyÞðdᾱ − g̃Dγ − 4λBÞ2 þ q

y6wðyÞDγ2

þ 4

q
dy2 þ 16

y2
ds2KE6

; ðD9Þ

withDγ¼dγþ4B and g̃ðyÞ≡gðyÞ−λ. If we takeΔγ ¼ 2π,
then γ, y again parametrize an S2, which is fibered over the
KE6 manifold. We now consider the ᾱ circle fibered over
this eight-dimensional base. To see the Lens space struc-
ture, we fix a point on the KE6 base and fix the constant λ
by demanding g̃ðy3Þ þ g̃ðy2Þ ¼ 0, which ensures that ᾱ is a
Hopf fiber coordinate on the resulting S3=Zq. More
specifically, we choose λ ¼ l

2
ðqþ 2p=IÞ and then we have

22To compare with [20] we should identify ᾱ ¼ αthere.
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g̃ðy3Þ ¼ −g̃ðy2Þ ¼
lq
2
: ðD10Þ

Taking Δγ ¼ 2π and Δᾱ ¼ 2πl then implies that we have
an S3=Zq fiber. That the S3=Zq is suitably fibered over the
KE6 base is easily demonstrated: taking a basis of two-
cycles, Σaðy2Þ, to be again located at y ¼ y2, for example,
we calculate

1

2πl

Z
Σaðy2Þ

d½dᾱ − g̃Dγ − 4λB� ¼ −
1

2πl
ðg̃ðy2Þ þ λÞ

Z
Σaðy2Þ

ρ

¼ −psa; ðD11Þ

for integers sa.
We can also introduce coordinates on S3=Zq via ᾱ� ¼

γ ∓ 1
lq ᾱ. In these coordinates we can write the vectors in

the original ψ , z coordinates as ∂z ¼ − 1
lq ð∂þ − ∂−Þ and

∂ψ ¼ ∂þ þ p
Iq ð∂þ − ∂−Þ, with the latter directly analogous

to (4.18). This underscores that while in the regularity
construction, using the z, ψ coordinates Δψ ¼ 2π was
required to ensure that y, ψ formed an S2. It is not the case,
in general, that ψ is a periodic coordinate on the three-
dimensional Lens space, i.e., under the motion of ∂ψ by 2π
one does not return to the same point.23

A final point is that the R-symmetry Killing vector can
be obtained from [20], and we find that it is given by

R ¼ 2∂ψ þ 2∂z: ðD12Þ

This agrees with our general formula (5.49) in the
j ¼ 0 limit.

APPENDIX E: ANGULAR MOMENTUM

In this appendix we discuss the angular momentum of
the PD black holes [(3.1)–(3.3)]. We will also calculate the
angular momentum of the near horizon AdS2 solutions that
we constructed in Appendix C, and explain how these two
quantities differ in general. Finally, we shall derive the
formula (1.2).
A common way of defining the angular momentum is via

a Komar integral associated to the spacelike Killing vector
k ¼ ∂φ, where φ is the angular coordinate on the spindle
with period 2π [see (3.10)]. For the associated one-form, k,
one takes

JKðrÞ≡ 1

16πGð4Þ

Z
Σr

�dk; ðE1Þ

where the integral is over the surface Σr, parametrized by
θ;ϕ at fixed r and t. While this integral is gauge invariant,
it clearly depends on the radial coordinate r since, in
general, d � dk ≠ 0.
Instead we will adopt a different definition which does

not depend on the radial position where the integral is
done, and hence it can equally be evaluated at the black
hole horizon. While this an attractive feature, and is the
definition that is expected to appear in the First Law [22],
the price we pay is that the integral changes under gauge
transformations. We first define the two-form

Z ¼ dkþ 4ðA · kÞF ðE2Þ

for an arbitrary Killing vector, k, which satisfies, on-shell,

∇μZμν ¼ −kνL; ðE3Þ

where L is the Lagrangian. For k ¼ ∂φ, we can then define
the angular momentum via the horizon integral

JðAÞ ¼ 1

16πGð4Þ

Z
Σrþ

�Z: ðE4Þ

With the gauge field as in (3.3), we obtain

J ≡ JðAÞ ¼ 1

Gð4Þ
ma

�
Δϕ
2π

�
2

: ðE5Þ

For the simpler case of the Kerr-Newman-AdS black holes
with α ¼ 0 as in (B2), we then have

Gð4ÞJ ¼ ma
ð1 − a2Þ2 ; ðE6Þ

in agreement with the results given in [22,41], for
example. Note also that for the case of α ¼ 0, the
expressions (E5) and (E6) can also be obtained from
the Komar integral (E1); we have not checked whether
this also happens to be true when α ≠ 0 (and one should
be aware that the conformal boundary is not obtained
simply by taking r → ∞).
We would also like to calculate the angular momentum

using the near horizon AdS2 solution (5.10). However, (E4)
is not gauge invariant and since in the derivation of (5.10)
we performed some gauge transformations [see in particu-
lar Eq. (C9)], some care is required. We first note that if we
consider gauge transformations of the form

Ã ¼ Aþ α1dtþ α2dϕ; ðE7Þ

for constant αi, then

JðÃÞ ¼ JðAÞ þ α2Qe
Δϕ
2π

: ðE8Þ

23This simple, but potentially confusing, point can be made
even more explicit. If we forget about the KE6, we note that for
any value of λ we still obtain a Lens space parametrized by ᾱ, γ
with Δγ ¼ 2π and Δᾱ ¼ 2πl. However, since ∂ψ ¼ ∂γ − λ∂ ᾱ it is
clear that the orbits of ∂ψ will not close in general.
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Notice, in particular, that this does not depend on α1.
Demanding that the gauge field of the full black hole
solution is regular on the horizon effectively fixes α1, as we
explain in Appendix E 1. However, the freedom in choos-
ing α2 is associated with how one defines the electric
potential, as we discuss in Appendix E 2. In Appendix E 3
we then calculate the angular momentum for the near
horizon AdS2 solution (5.10) and explain how it is related
to that of the black hole (E5). Finally, in Appendix E 4 we
briefly make some comments concerning the dual con-
formal field theory (CFT).

1. Regularity of the gauge field on the horizon

We now investigate the gauge transformation that is
required in order to ensure that the full black hole solution
[(3.1), (3.3)] is well defined on the horizon of the black
hole. To do so, we Wick rotate t → itE, as well as a → iaE,
e → ieE, and define the Euclidean angular velocity:

ΩE ≡ iW ≡ −
aE

r2þ − a2E

2π

Δϕ
: ðE9Þ

We next change the coordinates tE → t̃E and ϕ →
ϕ̃þ Δϕ

2π ΩEtE, and consider the metric near the horizon
r ∼ rþ, where rþ is the outer horizon, defined by the largest
positive root of QðrÞ. We find

ds2 ≃ ðr − rþÞfðθÞdt̃2E þ fðθÞ
4κ2ðr − rþÞ

dr2

þ hðθÞdϕ̃2 þ ðr − rþÞgðθÞdϕ̃dt̃E; ðE10Þ

with κ being the surface gravity. Changing variables via

x ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
r − rþ

p
cosðκt̃EÞ; y ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

r − rþ
p

sinðκt̃EÞ; ðE11Þ

with ðx; yÞ parametrizing R2, we get

ds2 ≃
fðθÞ
κ2

ðdx2 þ dy2Þ þ gðθÞ
κ

ðxdy − ydxÞdϕ̃þ hðθÞdϕ̃2;

ðE12Þ

which is clearly regular near the origin x ¼ y ¼ 0.
For the gauge field given in (3.3), we find

A ¼ f1ðr; θÞdt̃E þ f2ðr; θÞdϕ̃;

¼ f1ðr; θÞ
κ

xdy − ydx
x2 þ y2

þ f2ðr; θÞdϕ̃: ðE13Þ

Since f2ðrþ; θÞ is finite, the last term is well behaved at the
horizon. However, in the gauge (3.3) we find that f1ðr; θÞ
does not vanish fast enough as r → rþ to ensure regularity.
Let us consider the gauge transformation given in (E7)
and choose

α1 ¼
rþe

r2þ þ a2
−
Δϕ
2π

Wα2; ðE14Þ

with α2 being arbitrary. We then find

Ã ¼ f̃1ðr; θÞ
κ

xdy − ydx
x2 þ y2

þ ðf2ðr; θÞ þ α2Þdϕ̃; ðE15Þ

with f̃1ðr; θÞ≡ f1ðr; θÞ − rþeE
r2þ−a

2
E
and, as r → rþ,

f̃1ðr; θÞ ∼ ðr − rþÞFðθÞ ¼ ðx2 þ y2ÞFðθÞ: ðE16Þ

Thus, this gauge field Ã is regular on the horizon, for any
value of α2. As we discussed above, the choice of α1 does
not affect the value of the angular momentum of the black
hole, JðAÞ as defined in (E4), but the choice of α2 will.
Notice that the value of α1 in (E14) with α2, given by

α2 ¼
eða2 − r2þÞ

2arþ
; ðE17Þ

exactly matches the gauge transformation that we per-
formed in (C9). That the value of α1 agrees is exactly as
expected, since this is the gauge transformation which was
required in that analysis in order to have a regular gauge
field in the near horizon limit. The last term in (C9)
corresponds to the specific choice of α2 given in (E17) and,
as noted below (C9), was added for convenience, a point we
return to in Appendix E 3.

2. The electric potential

To further illuminate the role of gauge transformations
parametrized by α2, we discuss the electric potential, Φ.
We define Φ ¼ Φ∞ −ΦH, where [13]

Φ∞ ¼ 1

4πGð4ÞQeβ

Z
∂M

ffiffiffiffiffiffi
−h

p
naFabAb ðE18Þ

is the potential as r → ∞. Here, hab is the induced metric
and na is the normal vector to the hypersurface r → ∞,
while β ¼ 1=T is the inverse temperature. On the other
hand, we define

ΦH ¼ l · Ajr→rþ ðE19Þ

to be the potential on the horizon r ¼ rþ, where l ¼
∂t þ Δϕ

2π W∂ϕ ¼ ∂t þW∂φ is the null generator of the
horizon and W was defined in (E9). In general, Φ depends
on the choice of gauge for the gauge field.
For the black hole solutions in the gauge (3.3) we find

Φ∞ðAÞ ¼ 0, ΦHðAÞ ¼ − rþe
r2þþa2, and hence
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ΦðAÞ ¼ rþe
r2þ þ a2

: ðE20Þ

On the other hand, after a general gauge transformation
of the form (E7), with general α1 and α2, we find
Φ∞ðÃÞ ¼ α1, ΦHðÃÞ ¼ α1 þ Δϕ

2π Wα2 −
erþ

a2þr2þ
, with

ΦðÃÞ ¼ rþe
r2þ þ a2

−
a

r2þ þ a2
α2: ðE21Þ

Thus, ΦðÃÞ depends on α2 but not α1. We also observe
that the choice of α1 that makes the gauge field regular
on the horizon given in (E14) has the feature that
ΦHðÃÞ ¼ 0.
It is interesting to observe that whileΦðAÞ and JðAÞ both

depend on the choice of gauge transformations parame-
trized by α2, the combination WJ þΦQe does not. This
will similarly be true for the first law, which necessarily
should be gauge invariant.

3. The angular momentum from
the near horizon solution

Let us now consider computing the angular momentum
for the near horizon solution (5.10). Suppose that in taking
the near horizon limit in Appendix C, we had instead
started with the regular gauge field given by (E7), with α1
given by (E14) and α2 ¼ 0. Then there would be no need to
perform the singular gauge transformation in (C9), and we
would arrive at a gauge field for the near horizon solution
which we will call A1, which we give below. On the other
hand, in the expression for the gauge field given in (C9),
which we will call A2, we did an additional gauge trans-
formation associated with α2 as given in (E17).
Specifically, we have

A2 ¼ −
ða2 þ r2þÞða2ecos2θ þ 2agrþ cos θ − er2þÞ

2arþða2cos2θ þ r2þÞ
× ðdϕþ vrdtÞ;

¼ hðyÞðdzþ jρdτÞ;

A1 ¼ A2 þ
eða2 − r2þÞ

2arþ
dϕ: ðE22Þ

Notice that A2 [as in (C10)] has the appealing feature
that it is clearly AdS2 invariant24; indeed this was the
motivation for carrying out the additional gauge trans-
formation in (C9).

Now from the discussion in this appendix we know that
JðA1Þ will be the angular momentum that agrees with that
of the black hole solution in (E5). Indeed we find

J ≡ JðA1Þ ¼
1

Gð4Þ
ma

�
Δϕ
2π

�
2

: ðE23Þ

However, this differs from the angular momentum calcu-
lated in the AdS2 invariant gauge A2. Specifically, if we
denote this by JAdS2 we have

JAdS2 ≡ JðA2Þ ¼
1

Gð4Þ

1

4
j

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p �
Δz
2π

�
2

;

¼ 1

Gð4Þ

j
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − j2

p
ðn2− þ n2þÞ

8ð1 − 2j2Þn2−n2þ
; ðE24Þ

where Δz is given in (5.15). Using this, together with
(5.18), we find that

JAdS2 ¼ Qe

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8n2−n2þðGð4ÞQeÞ2 þ n2− þ n2þ

q
2
ffiffiffi
2

p
n−nþ

: ðE25Þ

Comparing this to the similar expression (5.20) for J, we
deduce that

JAdS2 − J ¼ Qe

4

n− þ nþ
n−nþ

; ðE26Þ

which is precisely (1.2).

4. Dual field theory point of view

We conclude this appendix by briefly noting that in the
context of AdS=CFT, the gauge ambiguity in defining the
angular momentum of the black holes has an analogue in
the dual CFT. We consider the dual CFT, which has a global
Uð1Þ symmetry dual to the bulk gauge field, to be defined
on a background with metric gab and a background gauge
field strength Fab ¼ 2∂ ½aAb�. The CFTwill satisfy the Ward
identities given by

DaTab ¼ FbaJa; DaJa ¼ 0; ðE27Þ

where Tab is the stress tensor and Ja is the global Uð1Þ
current of the CFT, whileDa is the covariant derivative with
respect to the background metric gab. Now for an arbitrary
vector field ka on the boundary we have

Da½ðTa
b þ JaAbÞkb� ¼

1

2
LkgabTab þ LkAaJa: ðE28Þ

Thus, when the background metric has a Killing vector k
that also preserves the background gauge field, LkA ¼ 0,
the right hand side vanishes and there is an extra conserved

24Let P ¼ ∂t, D ¼ t∂t − r∂r, and K ¼ − 1
2
ðt2 þ r−2Þ∂t þ tr∂r

be the standard generators for the isometries of AdS2. We can lift
this to an action on AdS2 × S1 using P, D, and K̃ ≡ K þ 1

vr ∂ϕ,
which satisfy the same algebra. We then notice that the one-form
Dϕ ¼ dϕþ vrdt, which appears in (E22), is invariant, satisfying
LP;D;K̃Dϕ ¼ 0.
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current in the boundary theory given by Ta
bkb þ ðA · kÞJa.

The non-gauge-invariance of this current mirrors that of
the bulk using (E2)–(E4). Note also that if we have,
more generally, LkA ¼ dΛ, then the current is given by
Ta

bkb þ JaðA · k − ΛÞ.

APPENDIX F: KILLING SPINOR EQUATIONS

We first recall the Killing spinors on a SE7. The metric is
given by

ds2 ¼ ds2ðKE6Þ þ
�
1

4
dψ þ σ

�
2

: ðF1Þ

We take purely imaginary D ¼ 7 gamma matrices with
ρ1234567 ¼ −i. The Killing spinor equation for the SE7 is
taken to be

DAχ ¼ i
2
ρAχ: ðF2Þ

After introducing the obvious orthonormal frame, we can
solve this equation as in, e.g., [57]. We impose the
following projections on the Killing spinor:

ρ12χ ¼ ρ34χ ¼ ρ56χ ¼ iχ; ⇒ ρ7χ ¼ χ; ðF3Þ

and find that

χ ¼ eiψ=2χ0; ðF4Þ

where χ0 is a spinor on KE6 satisfying

Dmχ0 ¼ 2iσmχ0; ðF5Þ

where here Dm is the covariant derivative on the KE6,
which always has a solution. Notice, in particular, that the
spinor has the dependence eiψ=2 mentioned in Sec. II.
We turn now to theD ¼ 11 Killing spinor (KS) equation

as given in [44]:

∇Mεþ
1

12 × 4!
ΓM

N1N2N3N4GN1N2N3N4
ε

−
1

6 × 3!
ΓN1N2N3GMN1N2N3

ε ¼ 0: ðF6Þ

We decompose the D ¼ 11 Clifford algebra via

Γa ¼ −iγaγ5 ⊗ 18; a ¼ 0; 1; 2; 3;

ΓAþ3 ¼ γ5 ⊗ ρA; A ¼ 1;…; 7; ðF7Þ

where γ5 ≡ −iγ0γ1γ2γ3. We then substitute the D ¼ 11
uplift of the D ¼ 4 solution, given (2.2) into (F6). The
directions of the equation tangent to the SE7 are satisfied
with χ solving (F2), as above. For the remaining directions,
using a frame adapted to ds24, we find

�
∇a − iAa þ

1

2
γa þ

i
4
Fbcγ

bcγa

�
ϵ ¼ 0; ðF8Þ

in agreement with, e.g., (2.1) of [15] (with a different sign
choice in the definition of γ5).
In order to construct spinor bilinears in Sec. V C, it is

helpful to identify various intertwiners. In D ¼ 7 we take
A7 ¼ C7 ¼ 18, and hence ρi ¼ ρ†i ¼ −ρTi . For D ¼ 4, for
the gamma matrices as in (5.28), we can take

A4 ¼ σ1 ⊗ σ3; A4γaA−1
4 ¼ γ†a; A†

4 ¼ A4;

C4 ¼ σ2 ⊗ σ1; C−1
4 γaC4 ¼ −γTa ; CT

4 ¼ −C4:

ðF9Þ

We can also define D4 ¼ C4AT
4 ¼ −σ3 ⊗ σ2 and D̃4 ¼

γ5D4 ¼ i1 ⊗ σ1. Notice thatD4D�
4 ¼ −1, so this cannot be

used for a Majorana condition. However, D̃4D̃�
4 ¼ þ1, so

we can define a four-dimensional Majorana spinor as one
satisfying ϵ ¼ D̃4ϵ

�. We can define the barred D ¼ 4

spinor as ϵ̄ ¼ ϵ†A4.
For the D ¼ 11 intertwiners we then have

A11 ¼ A4 ⊗ C7 → A11ΓMA−1
11 ¼ −Γ†

M; A†
11 ¼ A11;

C11 ¼ γ5C4 ⊗ C7 → C−1
11ΓMC11 ¼ −ΓT

M; CT
11 ¼ −C11;

ðF10Þ

where γ5C4 ¼ σ1 ⊗ σ2. We also have D11 ¼ C11AT
11 ¼

D̃4 ⊗ 18, and we note thatD11D�
11 ¼ þ1 so that theD¼11

Majorana condition is ε ¼ D11ε
�. We can also define the

barred D ¼ 11 spinor as ε̄ ¼ ε†A11. Thus, if we have a
D ¼ 11 spinor ε ¼ ϵ ⊗ χ, which is possibly complex (i.e.,
constructed from two D ¼ 11 Majorana spinors), we have

ε ¼ ϵ ⊗ χ; ε̄ ¼ ϵ̄ ⊗ χ†: ðF11Þ

APPENDIX G: BULK KILLING SPINOR
AND BOUNDARY LIMIT

In this appendix we show how the conformal Killing
spinor (CKS) (6.41), arises as a limit of a bulk KS. After
finding the bulk Killing spinor of the BPS and nonextremal
black hole, we derive the boundary metric with a suitable
change of variables. Then we introduce a rotation that
connects the bulk frame with the boundary frame, and
rotate the spinor accordingly. Finally, we change our basis
of gamma matrices to one that is suitable to interpret the
boundary limit of the bulk KS as a tensor product of the
CKS with some constant 2d spinor.
In the PD-type coordinates of Sec. VI B, the full non-

rotating solution is given in (6.31):

PIETRO FERRERO et al. PHYS. REV. D 104, 046007 (2021)

046007-34



ds2 ¼ 1

ðpþ qÞ2
�
−QðqÞdτ2 þ dq2

QðqÞ þ
dp2

PðpÞ þPðpÞdσ2
�
;

A¼Qqdτ−Ppdσ; ðG1Þ

where

PðpÞ ¼ C−1P1ðpÞP2ðpÞ; QðqÞ ¼ C−1Q1ðqÞQ2ðqÞ;
ðG2Þ

and

P1ðpÞ ¼ −ð1 − pÞðCpþ C − PÞ;
Q1ðqÞ ¼ Cq2 − Cþ Pqþ iQ;

P2ðpÞ ¼ −ð1þ pÞðCp − C − PÞ;
Q2ðqÞ ¼ Cq2 − Cþ Pq − iQ: ðG3Þ

Using the frame

Eτ ¼
ffiffiffiffiffiffiffiffiffiffiffi
QðqÞp

pþ q
dτ; Eq ¼ dq

ðpþ qÞ ffiffiffiffiffiffiffiffiffiffiffi
QðqÞp ;

Ep ¼ −
dp

ðpþ qÞ ffiffiffiffiffiffiffiffiffiffiffi
PðpÞp ; Eσ ¼

ffiffiffiffiffiffiffiffiffiffiffi
PðpÞp

pþ q
dσ; ðG4Þ

and the 4d gamma matrices γa introduced in (5.28), we find
the bulk Killing spinor (up to an overall normalization)

ψ ¼ e−iðκ1τþκ2σÞffiffiffiffiffiffiffiffiffiffiffiffi
pþ q

p

0
BBBBBB@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1ðqÞP1ðpÞ

p
− PþiQ

P2þQ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q1ðqÞP2ðpÞ

p
PþiQ
P2þQ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ðqÞP1ðpÞ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2ðqÞP2ðpÞ

p

1
CCCCCCA
: ðG5Þ

Here, κ1 and κ2 are the same constants introduced in (6.42),
and we note that the dependence on τ and σ could be simply
removed with a gauge transformation.
Next, we derive the boundary metric (6.37) starting

from (G1). Recalling that the conformal boundary is given
by q ¼ −p, we introduce new coordinates q̄; p̄ via

q ¼ −p̄þ f1ðp̄Þq̄þ � � � ; p ¼ p̄þ g1ðp̄Þq̄þ � � � ;
ðG6Þ

where the boundary is approached in the limit q̄ ¼ 0. We
find that for

f1ðp̄Þ ¼ ð1 − Pðp̄ÞÞ3=2; g1ðp̄Þ ¼ Pðp̄Þð1 − Pðp̄ÞÞ1=2;
ðG7Þ

at leading order in the small q̄ expansion the metric reads

ds2 ≃
1

q̄2
ðdq̄2 þ ds23dÞ; ðG8Þ

where ds23d is the boundary metric given in (6.37) (dropping
the bars).25 We notice that the CKS (6.41) was computed
using the frame (6.40), which is adapted to the boundary
metric. This differs from the boundary limit of the frame
(G4), and therefore, in order to compare the CKS to the
bulk KS of Eq. (G5), one should first find the rotation that
connects the two frames. We can define

Ẽq ¼ cos βEq − sin βEp; Ẽp ¼ sin βEq þ cos βEp;

ðG9Þ

with Eτ and Eσ unchanged, where we have introduced

cos β ¼
ffiffiffiffiffiffiffiffiffiffiffi
QðqÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðpÞ þQðqÞp ; sin β ¼

ffiffiffiffiffiffiffiffiffiffiffi
PðpÞp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðpÞ þQðqÞp :

ðG10Þ

Note that this is a suitable frame for our purposes because
when pþ q ¼ 0, then

Eτ¼ð1−Pðp̄ÞÞ1=2
q̄

e0; Ẽq¼0;

Ẽp¼ð1−Pðp̄ÞÞ1=2
q̄

e1; Eσ ¼ð1−Pðp̄ÞÞ1=2
q̄

e2; ðG11Þ

where ei (i ¼ 0, 1, 2) is precisely the frame introduced in
(6.40) to study the CKSE. The overall conformal factor is
irrelevant because the CKSE is invariant under rescalings
by a conformal factor. We can then define the rotated spinor

ψ̃ ¼ e−
1
2
βγ12ψ ; ðG12Þ

where we have used that 1
2
γ12, generates rotations in the

ðq; pÞ plane, in the spin 1=2 representation. We can now
take the boundary limit of ψ̃ , which is implemented by
changing coordinates as in (G6) and retaining only the
leading order term in the small q̄ expansion. We find:

ψ̃ ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðPþ iQÞ

2

r
e−iðκ1τþκ2σÞffiffiffī

q
p χ þ…; ðG13Þ

where κ1;2 are those introduced in (6.42), and we have
introduced

25In Sec. VI B we use p to denote the angular variable of the
boundary metric. In this appendix, we reserve q and p for the
bulk coordinates, while denoting with barred quantities the new
coordinates. In comparing quantities computed here for the
boundary with those of Sec. VI B, one should then simply set
p̄here ¼ pthere.
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χ ¼

0
BBB@

ζ1ðp̄Þ þ ζ2ðp̄Þ
ζ1ðp̄Þ − ζ2ðp̄Þ
ζ1ðp̄Þ þ ζ2ðp̄Þ
ζ1ðp̄Þ − ζ2ðp̄Þ

1
CCCA: ðG14Þ

Here, ζ1 and ζ2 are precisely the functions introduced
in (6.44). Ideally, we would like to interpret this as the
tensor product between the CKS (6.41) and some con-
stant 2d spinor. However, this is not quite the case, and
the reason for this is that the set of gamma matrices that
we have used is not suitable for the decomposition of the
4d spacetime in three boundary directions and a radial
one. This can be easily fixed by introducing a new set of
gamma matrices,

γ̃0 ¼ γ0 ⊗ σ3; γ̃1 ¼ 12 ⊗ σ1;

γ̃2 ¼ γ1 ⊗ σ3; γ̃3 ¼ γ2 ⊗ σ3; ðG15Þ

where γi are the 3d gamma matrices used in Sec. VI. They
are related to the γa of (5.28) by the similarity transformation

γ̃a ¼ MγaM†; ðG16Þ
with M being the unitary matrix

M ¼ 1þ i

2
ffiffiffi
2

p

0
BBB@

1 −i −i 1

−i 1 1 −i
1 i −i −1
−i −1 1 i

1
CCCA: ðG17Þ

Expressing the spinor χ in this new basis, we find

Mχ ¼ 1ffiffiffi
2

p
�
ζ1ðp̄Þ
ζ2ðp̄Þ

�
⊗
�
1

1

�
; ðG18Þ

which completes our derivation of the CKS (6.41) from the
bulk KS (G5).
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