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Introduction

Traditional solid-state physics is based on the concept of the perfect crystalline
solid, sometimes with a relatively low density of defects. This perfect crystallinity
has played a crucial role in the development of the subject, with Bloch’s theorem
providing the central conceptual base. Concepts that arise from this theorem,
such as bands, Brillouin zones, vertical transitions, effective mass and heavy
and light holes, are really only well-defined in a perfect infinite crystal. In the
absence of crystallinity none of these concepts is strictly valid, though in some
cases it provides a useful starting point. In general, however, a new approach is
required to characterize electrons and phonons in disordered solids.

When we consider low-dimensional structures Bloch’s theorem may or may not
be valid. There is nothing intrinsic to low dimensionality which invalidates it.
Many of the simple examples in quantum mechanics and solid-state physics text-
books are, in fact, one-dimensional (e.g. the particle in a box, the Kronig—Penney
model). Indeed, in a quantum well prepared by any of the standard growth
methods (Chapter 1), much of the physics can be understood by using first-year
undergraduate quantum mechanics and the effective mass approximation
(Chapter 2). This is because a region of adjacent GaAs layers in Al,Ga;_,As
can, for many purposes, be regarded as a perfect potential well. By doping the
AlGaAs, the electrons in the well can be spatially separated from the scattering
due to the ionized donor atoms (Chapter 3). Thus, in many respects, the electrons
in this system can be treated as particles in a one-dimensional box.

The quantum well is, however, a very special quasi-two-dimensional system,
albeit a very important one. As discussed in Chapter 1, it is very difficult to
prepare low-dimensional samples of high quality for other than lattice-matched
planar heterostructures. Thus, most heterojunctions, such as those with a significant
lattice mismatch, metal-oxide-semiconductor field-effect transistors (MOSFETS),
narrow quantum wells and quantum wires, etc., are in practice highly disordered
with an effective density of scatterers which can approach the density of atoms.
Clearly, in such systems, it cannot be valid to treat the effect of scatterers with
perturbation theory using the perfect crystalline case as a starting point.

As we shall see later, there is one sense in which low-dimensional systems are
intrinsically different from three-dimensional systems. The amount of scattering
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Figure 5.1. Percolation diagrams,
with (a) low water level with a few
lakes, (b) high water level with a few
islands, (c) intermediate (critical) water
level.
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required to produce dramatic changes in the behaviour can sometimes be so small
that perturbation theory may never be valid.

Localization

Percolation

Let us start with a simple classical problem. How does a fluid flow through a
random medium? This is a problem of considerable practical importance in its
own right: the extraction of oil from porous rock strata.

Consider a random landscape which is being slowly filled with water. At first
there will be a continuous land mass with a few lakes (Fig. 5.1(a)). When the water
level is very high we have islands in a sea (Fig. 5.1(b)). Let us now suppose there is
a dam at the edge of the area which requires large quantities of water to drive a
power station. When the water level is low only the lake next to the dam can be
used and it will soon run out. As the level is raised this lake becomes larger but
still finite. The power station will run longer but will still eventually drain the lake
and have to stop. At a critical water level (Fig. 5.1(c)) the system changes from a
lake district to an archipelago. This is analogous to the percolation transition
(Stauffer and Aharony, 1994), where the water first forms a continuous network
through the landscape. After this the power station can run indefinitely without
fear of running out of water.

This phenomenon has much in common with more conventional phase transi-
tions. There is a characteristic length scale which diverges at the transition: the
size of the lakes or islands. There is a well-defined critical water level, rather like
the critical temperature of the freezing transition or the ferromagnetic-to-para-
magnetic transition in iron. If we think in terms of the density of blockages rather
than the water level we see that there is a critical density above which the flow of
water stops.

The one-dimensional version of this problem is special. Any blockage of the
channel is enough to prevent the flow of water. The critical density is zero. This is
an example of a problem which cannot be solved by perturbation theory. There is
a discontinuous jump in the behaviour between a system with no blockages and
one with a single blockage. In higher dimensions, in contrast, water can flow
around the blockage.

The Anderson Transition and the Mobility Edge

The concept of the localization of electrons caused by disorder is due to Anderson
(1958). He argued that an electron which starts at a particular site cannot
completely diffuse away from that site if the disorder is greater than some critical
value. Anderson thus introduced the concept of localized and extended states. The
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Figure 5.2. Schematic diagrams of (a) extended and (b) localized states, showing the
correlation length, ¢, and the localization length, &.

characteristics of these states can be summarized as follows (Fig. 5.2):

a) extended i spread over the entire sample
p p

(i) not normalizable

(iii) contributes to transport
b) localized 1 confined to a finite region

g
(i) normalizable
(iii) does not contribute to transport

It is worth noting at this point that the phenomenon of localization is not con-
fined to electrons, but can also be observed in other wave phenomena in random
media, such as acoustic and optical waves (Section 4.2.2), as well as water waves
(Fig. 5.3).

Mott (1968) later introduced the concept of a mobility edge (Fig. 5.4). He
argued that it is meaningless to consider localized and extended states which
are degenerate since any linear combination of a localized and an extended
state must be extended. Thus, the concept of localization can only be meaningful
if there are separate energy regions of localized and extended states, rather like
bands and gaps. These regions are separated by a mobility edge. Mott further
argued that the states close to a band edge are more likely to be localized than
those in the middle of a band. Since the localized states do not take part in
conduction, electrons in a disordered semiconductor must be activated to beyond
the mobility edge rather than simply to the band edge to contribute to the con-
ductivity. This activated process would be manifested in a conductivity o of the
form

E,—F
g =0y eXp(#kBT‘F> (51)

where E, and Ey are the mobility edge and Fermi energy, respectively. This form
should reveal itself as the slope in an Arrhenius plot of the conductivity, i.e. a plot
of lno vs. 1/T:

E,— Ep

Inoc=1Inogy — T
B

(5.2)
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Figure 5.3.  Three photographs of a water bath exposed to an audio-frequency oscillation
(not stroboscopic). (a) shows a situation where the obstacles sit in a regular quadratic
lattice (frequency 76 Hz). We see strong Bragg reflection corresponding to standing
waves. (b) and (c) show randomly spaced obstacles exposed to two different audio frequen-
cies (105Hz and 76 Hz). Both (b) and (c) show standing wave patterns, but localized in
different areas. (With the permission of the authors from Lindelof et al. (1986).)
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Figure 5.4. Schematic illustration of the density of states and the conductivity near a band
edge in a disordered system. The regions of localized states (no conductivity) and extended
states (finite conductivity) are indicated.
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Variable Range Hopping

At very low temperatures, when activated conductivity is not significant and the
Fermi level is in a region of localized states (e.g. an amorphous semiconductor),
transport takes place by hopping between localized states. The electrons can gain
or lose energy of order kg7 from interactions with phonons and other excitations.
In more than one dimension the electron is more likely to find a state in this
energy range the further it hops.

On the other hand, the exponential envelopes of the localized states must over-
lap for the phonon to couple them. In this way Mott (Mott and Davis, 1979)
found the famous 7'/ law. More precisely, Mott’s law is written as

T\ V/(d+D)
o = 0y exp {— (7()) } (5.3)

where d is the number of spatial dimensions. This result has been verified many
times in different systems. Or has it? To make an accurate measurement of the
exponent, 1/(d + 1), the conductivity must be measured over several decades of
temperature while still remaining below the onset of activated transport. Thus, the
exponent cannot be determined very precisely. In addition, the measured value of
the pre-exponential factor, o, often disagrees with that obtained from theory by
several orders of magnitude.

Minimum Metallic Conductivity

Yet another idea from Nevill Mott: the semi-classical conductivity can be written
in the form
2 2 2

g=leT_net_net (5.4)

m mvp  hkg
where n is the density of conduction electrons, m and e are the electron mass and
charge, respectively, 7 is a scattering time, £ is the mean free path, and vg and kg
are the Fermi velocity and wave vector. The density 7 of electrons is proportional
to kﬁ (Ashcroft and Mermin, 1976). The Ioffe—Regel (Ioffe and Regel, 1960)
criterion states that the de Broglie wavelength of an electron cannot be greater
than the mean free path ¢ (essentially, this is the Heisenberg uncertainty principle)
and, in any case, neither can be less than the interatomic distance, a. Hence, the
conductivity cannot be less than

2 2 2
e € d2¢ 2.d

— —kt © > —a 5.5
h BE =T (5.5)
In two dimensions, the material-dependent quantities k and @ do not appear and
Omin May be a universal quantity: oy, = & /h. There have been many experiments
which purported to measure a value for o, corresponding to 25813 Q in

Omin X —k& 10>
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Figure 5.5. Arrhenius plot on a Silicon MOSFET, for various gate voltages V,/V. Note
the common intercept of the lines (Pepper, 1978). (Courtesy SUSSP Publications)

two-dimensional (2D) systems. By plotting equation (5.1) for several different
systems there appears to be a common value of In oy (see, e.g. Fig. 5.5). This is
now believed to be characteristic of an intermediate regime and not a proof of the
existence of op;,.

Scaling Theory and Quantum Interference

The Gang of Four

A decisive breakthrough in the theory of the metal-insulator transition was made
when Abrahams, Anderson, Licciardello and Ramakrishnan (1979) — the ‘gang of
four’ — published their scaling theory. The essence of their idea is that the trans-
port properties of a disordered system can be expressed in terms of a single
extensive variable, which can be chosen to be the conductance G (i.e. the inverse
of the resistance, not the conductivity, which is the inverse of the resistivity).
In particular, consider a block of disordered d-dimensional material. What is
the change in the conductance when we join 27 such blocks together to form a
new block with all d of its dimensions doubled? The assumption (which can be
justified) is that we can write

G(2L) =f(G(L)) (5.6)
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or, as a differential equation,

ding
dinL

B(lng) (5.7)

where g = (h/¢?)G is the dimensionless conductance, L is the length of an edge of
a d-dimensional hypercube and g is some function of Ing.

What are the properties of the function 3(In g)? For strong disorder, the states
are highly localized and we expect g to fall exponentially with the size of the
system:

g = goexp(—al) (5.8)
where « is an inverse decay length. Substituting this relation into (5.7) yields
B(lng) =Ing —Ingy (5.9)

Thus, for g < 1, B(Ing) is always negative.
In the case of weak disorder the classical behaviour of the conductance
(Exercise 7) should be valid:
h
g=—aL"? (5.10)
e

and we obtain
B(lng)=d -2 (5.11)

Thus, for g > 1, B(Ing) is positive for d = 3, negative for d = 1 and zero for
d = 2. Since g and [ should be smooth functions of disorder, energy, etc., 5 must
change sign for d = 3, may change sign for d = 2 and probably does not change
sign for d =1 (Fig. 5.6).

B
d=3
Ing* 1 1T—
l d=2 I
ng
XV

Critical
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g ] s d = 1

Figure 5.6. The 3 function (5.7) for the conductance g in 1, 2 and 3 dimensions.
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What then is the meaning of the sign of 57 If 3 is negative, then according to
(5.7), g is decreasing with increasing L, so 3 becomes even more negative, and so
on until g vanishes. That is, there is no conductance. When [ is positive, by
contrast, g is increasing with increasing L and will eventually approach the clas-
sical behaviour in (5.10) and (5.11). Thus, there is no metal-insulator transition
for d = 1. All states are localized, just as in the percolation example discussed in
Section 5.2.1. For d = 3, there is always a metal-insulator transition, which corre-
sponds to the point § = 0.

What about d = 2? This is the marginal case. The existence of a transition
depends on whether S(Ing) approaches zero from above or from below as
g — oo. Abrahams et al. (1979) were able to show that the leading term in an
expansion of (5.7) in 1/g has the form

B(lng) = —g (5.12)

Thus, g is always negative and all states are localized. In other words, there is no
true metallic conductivity in two dimensions.

While it is true in a strict mathematical sense that all states are localized in two
dimensions, this result requires some interpretation. After all, there is no shortage
of experimental evidence that there is considerable conductivity in some 2D
systems (e.g. HEMTs, as discussed in Chapter 10). Moreover, there have been
very few attempts to calculate the actual numerical value of the localization length
for a real 2D system. Results of computer simulations (MacKinnon and Kramer,
1983a) suggest that it can be of the order of centimetres, even when the fluctua-
tions in the potential are of the same order of magnitude as the band width. If we
ask for the localization length in a very pure sample, then numbers larger than the
length scale of the universe (e.g. 101030) tend to emerge (MacKinnon and Kramer,
1983b). Is it meaningful then to talk about localization in this case, when the
localization length is often much larger than the sample size?

Experiments on Weak Localization

In practice, although localization often cannot be observed directly there are
various precursor effects which can be observed fairly easily. These are collectively
referred to as weak localization. By substituting (5.12) into (5.7) and integrating,
we obtain a formula for the conductivity in two dimensions:

oc=0y—alnL (5.13)

This is still not of much use to us. The sample size is not an easily varied quantity.
However, the discussion so far has been only in terms of disorder effects or elastic
scattering. Inelastic effects such as scattering by phonons and by other electrons
must also be considered. There is one important distinction between elastic and
inelastic scattering. In elastic scattering there is a well-defined phase relationship
between an incident and a scattered wave, whereas inelastic scattering destroys
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such phase coherence. Since localization is really an interference phenomenon, it
can be destroyed by inelastic scattering. This can be built into our picture in a
simple way. Equation (5.13) is valid until the electron is scattered inelastically, so
we can identify the length L with the inelastic scattering length ;. In general,
the inelastic scattering length scales with the temperature as L;, o< T~ “, so that
by substituting this into (5.13) we obtain

oc=o0p+aalnT (5.14)

This logarithmic temperature dependence of the conductivity has been observed
in a number of systems (MOSFETs, thin films, etc.) and was considered a con-
firmation of the concept of weak localization in two dimensions.

Quantum Interference

What is the origin of the negative coefficient in equation (5.12)? In order to
understand this we first consider a simpler problem: that of quantum interference
between two waves travelling in opposite directions around a ring. Our bulk
system will then be treated as an ensemble of such rings.

Consider a disordered ring with contacts at two points diagonally opposite each
other. We assume that the circumference of the ring is large compared to the
electronic mean free path but small compared to the localization length. There are
many scattering events but no localization. An electron which starts at one con-
tact can travel to the other contact by one of two routes (Fig. 5.7(a)). The two
waves which arrive at the other side have been scattered differently. There is,
therefore, no particular phase relationship between them. On the other hand, if
we follow the two waves all the way around the ring and consider the effect back
at the origin, then the two waves have been scattered identically (Fig. 5.7(b)). One
is the time-reversed case of the other. They thus arrive back at the origin with the
same phase. The probability of returning to the origin is twice what it would have

(a) (b)

Figure 5.7. Scattering paths round a ring. (a) Waves round opposite sides of the ring
interfere randomly on the other side as the paths travelled are different. (b) Waves round
the whole ring but in opposite directions interfere constructively back at the origin as the
paths travelled are the same.
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been had we ignored the interference between the waves and simply added their
intensities.

If we consider the probability that a particle in a general disordered system will
eventually return to the origin, then the expression we obtain will contain terms
which refer to pairs of waves which go around rings in opposite directions, in
addition to lots of other terms. These other terms, at least for weak scattering, do
not produce any non-classical effects, but the ring interference terms still give an
enhanced probability of returning to the origin, and thus a tendency towards
localization.

The same interference phenomenon can also be described in k-space. In this
case a wave which starts with a wavevector k has a higher probability of being
scattered to —k than to any other direction. This correlated backscattering has
given rise to a number of experiments that have looked for optical analogies of
weak localization. To avoid any misunderstanding it should perhaps be pointed
out that backscattering is different from specular reflection. In the latter case only
the component of k perpendicular to the surface is reversed, whereas in the weak
localization effect all the components of the wavevector are reversed.

Negative Magnetoresistance

What happens when we introduce a magnetic field into this system? Consider
again a single ring of radius R. When a magnetic flux, ® = 7R>B, is fed through
this ring the momentum term in the Schrédinger equation’ is changed in the usual
way (Goldstein, 1950) according to the replacement
P’ — (p—eA)’

= (p — LeBRO)’ (5.15)
where A = %BR@ is the magnetic vector potential. This breaks the symmetry
between +k and —k. Thus, the two opposite paths around the ring are no longer
equivalent, the probability of a particle returning to the origin is no longer
enhanced and there is no enhanced backscattering. Translated into the language
of a solid rather than a single ring, we see that the chief mechanism which leads to
weak localization is no longer active. Hence, the resistance decreases in a magnetic
field, i.e. negative magnetoresistance (Fig. 5.8).

Returning though to the single ring, it so happens that it is now possible to
make small rings or cylinders with dimensions such that these phenomena can be
observed directly. Firstly, consider again the interference between two waves
which cross to the opposite side of the ring by different routes. The phase differ-
ence between the two waves will be

eBR e

T Strictly speaking, we are referring here to the tangential component of the momentum, which is the
only important component in a simple ring.
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Figure 5.8. The magnetoresistance AR of thin Mg—films. The clean film shows a negative

magnetoresistance indicating localization. When the film is covered with a small number of
gold atoms the magnetoresistance becomes positive due to increasing spin-orbit scattering.
The right scale shows the magnetoconductance AL. On the left, the ratio of the inelastic
scattering time and the spin-orbit scattering time is indicated (Adapted from G. Bergmann
(1984), Phys. Rep. 107, with permission of Elsevier Science.

This has the value 6 = 6, + 2nm whenever ® = n(h/e). Therefore, we expect the
current through the ring to vary with a period of one flux quantum.” This is one
variant of the well known Aharonov—Bohm effect (Aharonov and Bohm, 1959).
In fact, when Sharvin and Sharvin (1981) performed the experiment on a hollow
magnesium cylinder the period was found to be 2/4/e (Fig. 5.9). Why? It certainly
does not indicate pairing of electrons as might be suspected by anyone familiar
with flux quantization in superconducting rings.

In fact, Altshuler, Aronov and Spivak (1981) showed that there is an alternative
interference process with precisely this period. As before, we must consider inter-
ference back at the origin. In this case the total flux enclosed is doubled and
the period is, therefore, 2/1/e. However, since the two paths are identical in the
absence of a magnetic field, the term 6, vanishes. By contrast, in the Aharonov—
Bohm effect, 6, is non-zero with a random value from sample to sample. Since
Sharvin and Sharvin’s cylinder may be considered as an ensemble of such rings,
the phase is randomized between samples and no oscillation of the resistance with
period //e is observed.

single Rings and Non-local Transport

More recently, it has become possible to etch very fine patterns on metal films,
leaving very fine wires. An example is shown in Fig. 5.10. Note the periodic

" The flux quantum is h/e rather than i/2e, as we are dealing with a single electron effect rather than
one due to pairs of electrons, such as superconductivity.
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Figure 5.9. Aharonov—Bohm like magnetoconductance oscillations observed in normally
conducting Mg cylinders of diameter 1.5 pm by Sharvin and Sharvin (1981). Left and right
resistance scales correspond to samples 1 and 2, respectively. The periodicity of the oscilla-
tions corresponds to A® = /i/2e. (Courtesy V. Gantmakher)

oscillations of the current as a function of the magnetic fields with the period of a
single flux quantum (//e), in contrast with the Sharvin and Sharvin experiment
discussed in the preceding section.

An even more dramatic example of quantum interference effects on transport in
microstructures can be seen in Fig. 5.11. Here the figure without the ring (or head)
shows universal conductance fluctuations (Section 9.2.3) whereas, in the second
figure, with a ring, a periodic oscillation is superimposed. Note that, classically,
the ring is irrelevant, as it constitutes a dead end for the current, but that quantum
interference between different paths around the ring can still contribute, leading to
the oscillations. This is the first of a range of phenomena involving non-local
transport, in which classically irrelevant interference paths can contribute to
transport.

Consider a sample with several different leads in which a current is sent between
leads k& and / and a potential difference is measured between leads i and j. The
result may be defined in terms of a generalized resistance Rj;;; such that

Vii = Rijilii (5.17)

y

This is a very general notation for describing most common transport measure-
ments, and is often used to represent non-local effects.
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Figure 5.10. Aharonov-Bohm oscillations in a small ring. The period of the oscillations is
one flux quantum (i.e. A® = i/e) (Umbach et al., 1987). (Courtesy C. Van Haesendonck)
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Figure 5.11. Non-local transport in thin wires. In (a) only random fluctuations are
observed. In (b), however, interference round the ‘head’ contributes a periodic oscillation
(Umbach et al., 1987). (Courtesy C. Van Haesendonck)
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spin-orbit Coupling, Magnetic Impurities, etc.

Soon after the discovery of weak localization the quantum Hall effect (Section
5.5) was discovered. It rapidly became clear that equation (5.12) is not universally
valid. In fact, there are three important exceptions. Besides high magnetic fields
(see below), spin-orbit coupling and magnetic impurities will also give deviations.

In the case of spin-orbit coupling the deviation from the classical behaviour is
positive. In fact, it has not been shown analytically that there can be any localized
states for purely spin-orbit scattering. In a beautiful set of experiments on Au
doped Mg, Bergmann (1984) was able to demonstrate the validity of the pertur-
bation theory for such systems (Fig. 5.8) (note that spin-orbit scattering rises as
Z*). The spin-orbit effect is sometimes termed weak anti-localization.

Magnetic impurities destroy the weak localization effect by destroying the time
reversal symmetry. The g-function has a leading term of —a/ ¢, and the localiza-
tion is even weaker than before. Magnetic impurities can also give rise to a
divergence of resistance at low temperatures known as the Kondo (1964) effect.

Universal Conductance Fluctuations

So far in our discussion of the conductivity of disordered systems, we have impli-
citly assumed that the transport properties are self-averaging. As is usual in
statistical mechanics, we have assumed that the sample is so big that the distribu-
tion of possible values of the resistance is very narrow, essentially a é-function in
the case of a large enough sample. In fact, this assumption is invalid. As long as
we are working in a regime where the inelastic scattering length is larger than the
sample size, the sample cannot be considered as made up of a large number of
statistically independent systems. A small change in one place may have conse-
quences for the entire sample. In the regime discussed earlier in this section, the
conductance is a number of order ¢*/A. In fact, as T — 0 the standard deviation
(8g)* is also of order ¢?/h. Note that this behaviour is exactly what would be
expected if the conductance takes the values ¢’ /h or zero randomly.

Experimentally this can be measured not by comparing different samples, but
by looking at the way the conductance depends on such quantities as gate voltage
or magnetic field. In the former case the Fermi level is moved through the
spectrum, alternately seeing regions of allowed states and gaps. In the latter the
spectrum is moved in a systematic way. The results look like noise (Fig. 5.11(a)).
Unlike noise, however, the structure is reproducible. Different samples behave
qualitatively similarly but differ in details. These universal conductance fluctuations
are discussed at length in Section 9.2.3.

Ballistic Transport

By using a so-called split gate it is possible to study the transition from 2D to one-
dimensional behaviour. If the scattering is weak and the one-dimensional channel
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short enough, it is possible to measure the remarkable phenomenon discussed in
Section 3.4.1. When the conductance of such a channel is measured as a function
of electron density (i.e. conventional gate voltage) it is found to be quantized as
(Section 3.4.1)

2¢%
G = — inax

h

Interaction Effects

The In T Correction

Although the In T term in equation (5.14) seems to constitute a proof of weak
localization, there is unfortunately another effect which gives rise to a similar
term. If we consider interacting free electrons and treat the disorder with pertur-
bation theory, the term « in (5.14) becomes 1 — F, where F depends on the details
of the particle—particle scattering. F is difficult to estimate, but is probably of order
unity. Given the uncertainties in the coefficients it is impossible to distinguish
between the two effects on the simple basis of resistance measurements alone.
However, the interaction effect leads to a conventional positive magnetoresis-
tance. Thus the two effects can be distinguished by studying the influence of a
magnetic field on the resistance. In fact, the interaction effect depends on the
electron density, such that Uren et al. (1980) were able to measure a change in
the sign of the magnetoresistance as the gate voltage is varied on a MOSFET.

Wigner Crystallization

A gas of electrons behaves very differently from a gas composed of neutral weakly
interacting particles. One of the most striking differences is the behaviour of these
two types of gases as a function of the density. At large densities, interactions
between the particles in atomic and polyatomic gases become increasingly impor-
tant. But for an electron gas, the phenomenon of screening leads to behaviour that
for many purposes may be regarded as that of free electrons. Thus, a high-density
electron gas behaves essentially like an ideal gas of fermions. As the density of an
atomic or polyatomic gas is lowered, the interactions diminish in importance and
the gas approaches ideal behaviour. For an electron gas, however, decreasing the
density increases the effect of the Coulomb potential because the screening effect
becomes much less effective.

These observations led Eugene Wigner (Wigner, 1934, 1938) to propose the
existence of a lattice of electrons as the ground state of an interacting gas —
what is now called a Wigner crystal (Mellor, 1992). Wigner argued that below a
certain critical density the kinetic energy will be negligible in comparison to the
potential energy. Thus, at low enough temperatures the energy of a system of
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electrons would be dominated by the pair-wise Coulomb potential between the
particles and the behaviour of the gas will be determined by the configuration that
minimizes this potential energy. Since the potential of a random array is higher
than that of an ordered array, electrons in this regime will form a crystal. In three
dimensions, the case that Wigner considered, the lowest potential energy is
obtained for a body-centred cubic crystal.

In two dimensions there are two regimes to consider: the quantum regime,
where kg T < Ef, and the classical regime, where kg T > Ep. The classical regime
of Wigner crystallization is relatively easy to achieve when the density n; of
electrons is small, since Er  ny. The potential energy V' per electron can then
be estimated by V ~ ¢’ J4megr o n‘l/ % The average kinetic energy can be obtained
from the equipartition theorem, so the cross-over temperature where the kinetic
and potential energies are of comparable magnitude is T nl/%. The first obser-
vation of a Wigner crystal was, in fact, in the classical regime for electrons on the
surface of liquid helium (Grimes and Adams, 1979).

The higher densities n, (and lower effective masses) of 2DEGs in semiconduc-
tors means that Eg > kgT. In this (quantum) regime, the kinetic energy of the
electrons remains non-zero down to the lowest temperatures, being of order Ef,
which leads to the kinetic and potential energies being of comparable magnitude.
Thus, electrons in most semiconductors remain in a ‘liquid’ state even at the
lowest temperatures. Achieving lower densities is technically very demanding,
so an alternative approach has been to apply a large (~10T) magnetic field
perpendicular to the 2DEG which has the effect of confining electrons to small
(~ 5nm) orbits. This makes the 2DEG easier to solidify and there have been a
number of experiments carried out that support the notion that 2DEGs in GaAs
crystallize in very high magnetic fields and low temperatures (Goldman et al.,
1990).

The Quantum Hall Effect

General

The classical picture of carrier mobility in a magnetic field is modified sub-
stantially for the corresponding measurement on a 2DEG. For a 2DEG in the
(x,y)-plane in a uniform magnetic field along the z-direction, B = Bk, the
Schrédinger equation may be written in the form

1
P Pa+ (py —eBx)* | = Ey (5.18)

where A = Bxj is the magnetic vector potential. By using the substitution

P(x, ) = @(x) exp(iky) (5.19)
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this equation can be transformed into the Schrédinger equation for a harmonic
oscillator,

2 ZBZ 2
{l’xﬁ (x hk) }/J—Ew (5.20)

2m  2m "~ eB

where w, = eB/m is the cyclotron frequency. If we focus only on the orbital
motion of the electrons, then the allowed energies are those of a quantum har-
monic oscillator:

E, = (n+ Yhw, (5.21)

The states corresponding to different n are called Landau levels. The transforma-
tion (5.19) shows that the effect of the magnetic field is to change only the motion
along the x-direction; the motion along the y-direction corresponds to free
electrons. The solutions ¢ of the Schréodinger equation (5.20) are harmonic
oscillator wavefunctions centred at x,, which is given by

hk

where k is the wavevector associated with the motion of the electron along the y-
direction. Thus, X, is seen to be a good quantum number.

The energy spectrum of this system is thus a regularly spaced sequence of
Landau levels, each separated by an energy hw,. To distribute the original density
of states among these discrete levels requires each level to have an enormous
degeneracy. This degeneracy can be calculated from the number of centre co-
ordinates x, that can be accommodated within the sample subject to the Pauli
exclusion principle. For a sample of dimensions L, x L,, the centre coordinates
are separated along the y-direction by

h h 2m h
Axg=—Nk=—x—= 5.23
BT T eB L, eBL, (523)
which corresponds to a degeneracy N, of
L L.L.eB
Ny=—"> =2~ 5.24
0= Axg 7 (5.24)
The degeneracy N per unit area is therefore given by
NO BB
N = =— 5.25
L.L, h ( )

Note that this degeneracy depends on two fundamental constants (e and /) and on
an experimentally controllable quantity (B). In particular, there is no dependence
on any parameters associated with the particular material, such as the effective
mass of the electrons. When disorder or impurities are included this degeneracy is
broken, but as long as the cyclotron energy is large compared with the potential
fluctuations the basic structure remains.
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Let us now consider the behaviour of the conductivity as the electron density is
varied (e.g. in a MOSFET, as discussed in Chapter 10). Whenever the 2D electron
density n, is varied by more than the degeneracy of a Landau level, the Fermi level
jumps from one Landau level to another. When the Landau level is broadened we
expect the conductivity roughly to follow the density of states, with a maximum in
the longitudinal conductivity o, when each level is half-filled. The conductivity
will therefore vary periodically as the density is varied. The Fermi level Eg is in a
Landau level when

B
Ep = (n+ Yo, = (n+%)h£ﬁ (5.26)

In the middle of the Landau level the index n can be related to n, by using the
degeneracy N. To do so we must ignore the contribution to the energy due to the
interaction of electron spin with the magnetic field, in effect doubling the de-
generacy. Thus

eB

ng=2N(n+1%) :27(n+%) (5.27)

Alternatively we can use the filling factor i = 2n + 1 to obtain

ng = iN = ie—: (5.28)

It is instructive to relate this to the Fermi energy Ep by using (5.26) and (5.27):

N — 2€B % EF o EFm
" " h " heB/m  h?

(5.29)

which is exactly the relationship one obtains from the density of states in (2.14) in
the absence of the magnetic field. If the density of states at the Fermi energy of the
2DEG is zero, i.e. if the Fermi lies between filled and unfilled Landau levels, the
carriers cannot be scattered and the cyclotron orbit drifts in a direction perpen-
dicular to the electric and magnetic fields. In this case, the conductivity oy,
(current flow in the direction of the electric field) becomes zero, since the electrons
are moving like free particles perpendicular to the electric field with no diffusion
(originating from scattering) in the direction of the field. Experimentally, o, is
never precisely zero, but becomes unmeasurably small at high magnetic fields and
low temperatures.

In the Shubnikov—de Haas effect we measure the longitudinal resistivity o, of
the sample as the magnetic field is varied. At low temperatures, kg7 < hw,, where
hw, is the Landau level separation, o, — 0 and p,, — 0 whenever the Landau
levels are full, i.e. equation (5.28) holds. By plotting ¢,, against 1/B and looking
for the periodicity it is possible to measure the electron density. Complications
occur in real systems due to the additional spin splitting and to valley effects in
semiconductors. The reason why both o, and o, vanish for full Landau levels
can be appreciated from Exercise 9.
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The Quantum Hall Effect Measurements

Probably the most remarkable effect observed in low-dimensional systems was
first discovered by von Klitzing, Dorda and Pepper in 1979 (von Klitzing et al.,
1980). Their results are illustrated in Fig. 5.12. A constant current /, is imposed
on the 2DEG between source and drain (see inset Fig. 5.12), the longitudinal
voltage U,, measured between two probes along the sample and the Hall voltage
Uy measured between two probes across the sample, as the magnetic field B
perpendicular to the 2DEG is varied. The voltage measurements are usually
interpreted in terms of the component of a resistivity tensor g with

U,
and o, :f% (5.30)

X

Un
Q," =
Xy Ix
where f is a geometrical factor. The components of the conductivity tensor
o= o ! are then related to those of o by (Exercise 9)

W p-substrate

Un/mV | U,/mV Hall probe

Drain
2512.5 I% Iz/J q

Surface channel

Source

2072.0 W Potential probes

15+1.5

I

Figure 5.12. Normal U,, and Hall Uy potential versus gate voltage, V,, in a silicon
MOSFET at T = 1.5 K with a magnetic field of 18 T and a source drain current of 1 pA
(von Klitzing et al., 1980). The inset shows a diagram of the sample. (Courtesy K. von
Klitzing)
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Figure 5.13. Close up of a single plateau for two samples of different geometry. Note the
scale and the similarity between the plateau values for the two samples (von Klitzing et al.,
1980). (Courtesy K. von Klitzing)

O xx Oxy

Oxy = —0py = (5.31)

Oxx = Oyy

=3 2 ) p)
Oyx T Oxy Oyx + Oxy

For a 2DEG with electron density per unit area n, given by (5.28), one expects
(Exercise 10)

But the real surprise comes on closer inspection of the plateau, as in Fig. 5.13. The
value of p,,, the Hall resistivity, for this plateau is h/4¢* (1 +107°). The measure-
ment can now be almost routinely carried out with an accuracy of around 1 part
in 10%. This accuracy is astonishing. Typically, agreement between theory and
experiment of 1% or even 10% is considered good in condensed matter physics.
The only other phenomenon which comes anywhere close to this accuracy is the
AC Josephson effect in superconductors. In fact, the accuracy is such that the
quantum Hall effect has now been internationally adopted as the standard of
resistance.

169
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The Semiclassical Theory

In order to gain some understanding of the effect we consider a simple approx-

imate picture. It should be borne in mind, however, that a full explanation may

not contain any significant approximations as the result appears to be exact.
The equation of motion for a classical particle in a magnetic field is

m%:eva—i-eE (5.33)

where v is the velocity of the particle and B and E the magnetic and electric fields,
respectively. The solution of this equation has the form

1
v =w.(A4,cosw,.t, A, sinw.t) +5 BxE (5.34a)
t
r=ry+ (A, sinw.t, —A, cosw,i) +? B x E (5.34b)

This behaviour consists of two parts: a circular motion with radius A4 and fre-
quency w. = eB/m (the cyclotron frequency), and a drift velocity perpendicular to
both fields with magnitude vy = E/B:

1
vy = ?B x E (5.34¢)

In our case, where we define the magnetic field to be perpendicular to the 2D
plane and the electric field to be in this plane, it is important that vy is perpendi-
cular to the electric field.

If we return to the general problem of an electron in a disordered system in a
magnetic field and assume now that the radius 4 is small compared with the rate
at which the potential changes, then the clectron sees a constant local potential
gradient. This is of course indistinguishable from an electric field. With this idea in
mind we substitute the local potential gradient for the electric field in the drift
velocity to obtain

1
va =3B X Vo (5.35)

Hence, the drift velocity is always perpendicular to the local potential gradient,
V.

Let us return now to our analogy with a random landscape. The drift velocity
follows the contour lines rather than going up or down the mountains. It is as
though it had misread its map and mistaken the contour lines for paths. Using
Fig. 5.1 again, we see that most contours are around the tops of mountains or the
bottoms of valleys. In fact, for a random landscape there is only one level where a
contour crosses the whole system. This is the situation depicted in Fig. 5.1(c).
Using our previous picture of varying water levels, the electron is now constrained
to follow the shoreline. It is only at this one level that it can manage to cross.
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Translating this result into the language of localized and extended states we
have the result that all states are localized except for those at a single level. Thus,
almost none of the states can contribute to the current. Clearly this gives us a
simple mechanism by which it is possible to vary the number of electrons in the
system while the current remains unchanged.

Now let us consider the current through a cross-section of the system, as
illustrated in Fig. 5.14. Firstly, consider a system with a uniform charge density,
nge corresponding to a full Landau level. This condition will be relaxed later. The
current density through the cross-section is

nge O
Jx = nyevy = ?a (536)
and the total current is given by the integral from one side to the other
nge [ Op nse
. = —= - _ 5 .
=7 | o dx B A¢ (5.37)

Hence, the total current is independent of the details of the potential but only
depends on the potential difference, A¢, across the sample. Since, however, we
already know that only the electrons at a particular level can contribute to the
current, it must be possible to remove the electrons from the localized states at the
tops of mountains or the bottoms of valleys without altering the total current.

Since we have a well-defined current which does not change when electrons are
added or removed, we have a mechanism for the plateaux in the quantum Hall
effect. Note, however, that we do not yet have a value for the Hall conductivity
associated with each plateau. For that we need quantum mechanics. The result
¢*/h contains Planck’s constant, after all.

We return therefore to (5.34) and look at the part describing circular motion.
The root mean square (rms) deviation of the electron from the orbit centre is

V(x)

AV

X

Figure 5.14. Cross-section through a random potential with a net potential difference AV
between the two sides.
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Ax= A4/ V2. Since the motion is circular, this immediately gives us the rms devia-
tion of the momentum, namely Ap = mw,Ax, where w. = eB/m, the cyclotron
frequency. Using the Heisenberg uncertainty principle, AxAp, = h, gives us a
formula for the radius of the orbit:

oo

A==
mw eB

(5.38)

The Pauli exclusion principle reserves the area of a circle of radius 4 for each
electron, so that the maximum uniform charge density must be

1 B &
—  ——_—_-"3B .39
e7rA2 2wh  h (5.39)

Substituting this in (5.37) gives us the result we have been seeking:

nge =

e
I, =200 (5.40a)
or
I, = oy Ey (5.40b)

which serves as a definition of the Hall conductivity, o,,. Our analysis in terms of

a semiclassical picture of electron motion in a magnetic field and a slowly varying

potential illustrates several important aspects of the physics of the quantum Hall

effect.

e The presence of disorder and, hence, of localized states is vital to the explana-
tion of the effect and its precision.

e The density corresponding to a full Landau level and, hence, the quantized state
corresponds to that of an incompressible fluid. The Pauli exclusion principle
forbids us to compress the system.

e Higher Landau levels contain the same density of electrons, so a full Landau
level corresponds to a Hall conductivity of o, = ie* /h.

e The number of open contours in the above semiclassical argument is pro-
portional to the potential difference across the sample. In fact, that number
is independent of the disorder. Hence, there is no reason to worry that a
macroscopic current is being carried by a single state.

The Fractional Quantum Hall Effect

Just as the quantum Hall effect seemed to be understood, at least at a basic level,

Tsui, Stormer and Gossard (1982) of Bell Laboratories in Murray Hill, New Jersey

published some remarkable experiments on GaAs/Aly3Gag;As prepared by

MBE. The experiment produced the startling result that the Hall conductivity

not only has steps in integer multiples of o, = n(e?/h), where n is an integer,

but they also observed steps at n :% and n = % Since then features have been
1 223 3 445 43

observed at n=3, 5, %, %, % 7 3 @ 3 3 and many more rational fractions,
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all with odd denominators (Chang et al., 1984). Typically, these have an
accuracy of 107> for the % feature and lower accuracy on the others. For some
fractions the feature is only observed as a peak in o,,. Fig. 5.15 shows a typical
spectrum.

There have been many attempts to explain these results. Some of the theories
rely on some very exotic mathematics and many are still controversial. Here, we
will try to give a simple explanation based on those aspects on which there is
general agreement.

Consider first the wavefunction for 2D electrons in a perpendicular magnetic
field expressed in the so-called symmetric gauge, where the magnetic vector poten-
tial in (5.19) takes the form A = % (—=By, Bx,0). The wavefunctions in the lowest
Landau level are

2
P(z) o< 2" exp (— 42]|2> (5.41)

where z = x +1iy and [/, is the cyclotron radius. Laughlin (1983) proposed the
following generalization of this to N electrons

2
U, (21,22, ..., Zy) X H(Zf — z,c)mHexp (— |i’1|2 > (5.42)

i<k i

A useful insight into the meaning of this wavefunction can be obtained by think-
ing of |\Il\2 as a probability distribution of a classical plasma, obeying a partition

-
-
4

1/3

!

30

B(T)

Figure 5.15. A recent example of the Hall resistivity, py,, and normal resistivity, py, as
a function of magnetic field, in Tesla (Willet er al., 1987). Note the large number of
fractional features marked. (Courtesy A. C. Gossard)
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function Z = exp(—4®) in which 8 = 1/m and

2
|zi]
Iz

(5.43)

o = —ZmZZ In(z; — z) +%mz
Jk i

This corresponds to a system of particles which repel each other logarithmically
and a uniform background density p,, oc 1/m."

Laughlin’s wavefunction has several properties which are useful for under-
standing the effect.

e U, corresponds to 1/mth occupation of the lowest Landau level.

e When m is odd, the wavefunction is odd under exchange of electrons.

e This restriction to odd m explains why fractional densities with odd denomi-
nators are special.

e At the special densities it can be shown that the system has an energy gap
(Laughlin, 1983): more energy is required to add an electron than is gained
by removing one. As with the gap in a semiconductor, or, more accurately in
this case, a superconductor, the state is stable unless excitations are possible
across the gap, due to finite temperature, radiation, etc.

Interesting though Laughlin’s wavefunction certainly is, in its simplest form it is
restricted to fractions of the form 1/m. How can we understand the occurrence of
other fractions and the order in which they appear? A very simple semiclassical
picture is illustrated in Fig. 5.16. Here, we see a ring of states with one-third of the
states occupied (Fig. 5.16(a)). When one particle is added we find a situation as in
Fig. 5.16(b). This is not the ground state, however. If the particles mutually repel
one another the ground state will be one in which their density is most uniform, as
shown in Fig. 5.16(c). Note the peculiar feature of the relaxed system: instead of a
single defect due to the additional particle there are now three defects which are as
far apart as possible. Thus, the additional particle is behaving as if it is three
quasi-particles, each with charge of % A similar result, with one particle removed,
is shown in Figs. 5.16(d,e). Again there are three defects.

To a semiconductor physicist there should be no difficulty in understanding the
concept of quasi-particles illustrated here. We are all well used to the concept of a
hole, which is used to describe an almost full band of electrons. Indeed we often
tend to forget that it is not a true particle.

We now require a leap of the imagination. It has been shown that a % charged
Landau level behaves as if it is full of particles of charge % Similarly for all 1 /mth full
levels. Consider now a level which is 1/mth full of % charged quasi-particles. These
could now form a special state in which a new generation of quasi-quasi-particles is
formed. These can then condense into another special state and form quasi-quasi-

 The solution of Poisson’s equation in two dimensions is logarithmic, so that fruly 2D particles would
repel each other logarithmically. Alternatively, a system of charged rods in three-dimensional space
also interacts logarithmically.
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07000,

Figure 5.16. Mutually repulsive classical particles restricted to specific ordered sites on a
ring. (a) Density is %; (b) density % with one additional particle (unrelaxed); (c) as (b)
(relaxed); (d) density % with one particle removed (unrelaxed); (e) as (d) (relaxed).

quasi-particles, and so on. A whole hierarchy of different states involving different
generations of quasi-particles can arise, each corresponding to a different fractional
density and each giving rise to a feature in the transport measurements.

EXERCISES

1. The quantity ez/h is sometimes called the quantum of conductance because
it arises as the unit of quantization in, e.g., the quantum Hall effect, ballistic
transport and universal conductance fluctuations.

(a) Show that the quantum conductance has the correct units for a conduc-
tance (i.e. inverse ohms).

(b) Show that a single quasi-1D channel in a crystalline system carries a
current I = (62 /h)AV, where AV is the voltage drop along the length of
the channel.
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(c) Use the Ioffe-Regel criterion to show that in two dimensions the minimum
metallic conductivity is oy o €*/h.

2. Define the terms ‘localized,” extended’ and ‘mobility edge’ as used to describe
the behaviour of electrons in a non-crystalline solid.

3. Describe briefly the two main modes of electronic transport in a disordered
system at low temperatures when the chemical potential lies in an energy range in
which the states are localized.

4. A measurement of the conductivity of a silicon MOSFET gives a straight line
when the conductivity is plotted against the logarithm of the temperature.
Describe the physical process which gives rise to the logarithmic temperature
dependence and explain how this is related to the behaviour of electrons in
small rings.

5. The result of a 4-probe measurement of resistivity is often written in the
form

Vii= Ryl

where the voltage difference, Vj;, between probes i and j is associated with the
current, I;;, between probes k and /.

(a) Two samples of wires of submicron dimensions are prepared as in Fig. 5.17.
Explain (quantitatively where possible) the behaviour you would expect for
the temperature and magnetic field dependence of R;; 34 and Ry3 54 in these
samples.

(b) A third sample is prepared in which many rings, like the one in Fig. 5.17(a)
and nominally all of the same diameter, are arranged in parallel between
the two horizontal wires. What differences would you expect to observe in
this sample compared with the sample in Fig. 5.17(b)?

6. The metal-insulator transition is often described in terms of a § function

ding
qmz = Plng)
(a) (b)
1 3 1 3
In 0.51
J i
2 4 2 4

Figure 5.17. Figure for Exercise 5.
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where g is the dimensionless conductance, g = (¢’/h)G, and L is the length of a
side of a cubic sample.

(a) By assuming that g is a smooth, i.e. differentiable, function of the Fermi
energy, Er for all finite L, show that g depends on L as g(L/§), where £ is
independent of L.

(b) Close to the transition g can be written in the form

Ing=Ing,+ A(Egp — E,)L°
where o = d3/dIn L when 3 = 0. Hence, show that £ < |Ep — E.|".

7. Verify equation (5.10) in the form

G=oL"?

for the particular cases d = 3 and d = 2 starting from Ohm’s law:
J=0E

(a) In d = 3, consider a conductor of rectangular cross-section ac with the
current flow parallel to a side of length b.

(b) In d = 2, consider a planar conductor of width ¢ and current flow parallel
to a side of length b.

8. The Schrédinger equation for electrons in the (x, y)-plane subject to a mag-
netic field B in the z-direction and an electric field E in the x-direction may be
written, in the Landau gauge, as

oty 1 (h B

2
= — eBx) Y+ eExy = ey
10y

2mox: ' 2m
(a) Using the substitution ) — ¢(x) exp(iky), show that the Schrodinger equa-
tion may be transformed into that of a harmonic oscillator centred around
_ ik _mek:
~eB  ¢*B?
with a spring constant K = ¢* B> /m, plus some additional constants.

(b) Using your knowledge of the harmonic oscillator, confirm that the eigen-
energies are given by

eB .
€, = (n+1)h— + additional terms
m
and give an interpretation of the additional terms.

9. The relationship between the conductivity tensor ¢ and the resistivity tensor p
iso=p".
(a) Derive the expressions for g, and g, in equation (5.30) starting from the
conductivity tensor
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Uxx O-XV
o= i
_ny Oxx

(b) At high B-field in a high-mobility 2DEG, o, > o,.. In this limit, what is

the relationship between g,, and o.,?
(¢) In the limit in (b), what happens to o, if o, — 0?

10. Assuming that the Hall bar in the inset to Fig. 5.12 has width « and that the
distance between the longitudinal probes is b, show that if

U
Oxx :f% :fRL

in the Hall condition (J, = 0), then f = a/b. Furthermore, show that if
Un
Oxy = Tvc

in the Hall condition, then

Ry = E _ oy
J.B.” B.

Hence, using equations (5.34¢) and (5.36), show that if (5.39) holds, then
h

Oxy =75

11. Shubnikov—de Haas oscillations were studied in a high-mobility 2DEG in a
heterostructure at 4.2 K. Minima were observed in the longitudinal resistance at
certain values of the perpendicular B-field and the filling factors i at the various
minima were identified. A graph of i against 1/B was plotted and the data gave a
straight line of gradient 8 T. Use this information to find n,, the electron density
per unit area in the 2DEG.

In the same experiment the longitudinal resistance at zero B-field was measured
to be 100 2. The distance between the potential probes along the length of the
Hall bar (b) was found to be 7.5 times the width of the bar (a). Use this informa-
tion and the value of n, calculated above to estimate the mobility of the 2DEG.
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