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Abstract— We present a numerical method for
the minimization of objectives that are augmented
with linear inequality constraints and large quadratic
penalties of over-determined inconsistent equality
constraints. Such objectives arise from quadratic in-
tegral penalty methods for the direct transcription
of optimal control problems. The Augmented La-
grangian Method (ALM) has a number of advantages
over the Quadratic Penalty Method (QPM) for solv-
ing this class of problems. However, if the equality
constraints are inconsistent, then ALM might not
converge to a point that minimizes the bias of the
objective and penalty term. Therefore, in this paper
we show a modification of ALM that fits our purpose.
We prove convergence of the modified method and
prove under local uniqueness assumptions that the
local rate of convergence of the modified method in
general exceeds the one of the unmodified method.
Numerical experiments demonstrate that the mod-
ified ALM can minimize certain quadratic penalty-
augmented functions faster than QPM, whereas the
unmodified ALM converges to a minimizer of a sig-
nificantly different problem.

I. Motivation in the Optimal Control Context
The method of choice for the numerical solution of

optimal control problems is direct transcription. Typ-
ical direct transcriptions methods use orthogonal col-
location [2]. It is known that the latter can struggle
with singular arc and high-index differential algebraic
equalities (DAEs); the former arising in the example

min
y,u

J =
∫ 5

0

(
y(t)2 + t u(t)

)
dt,

s.t. y(0) = 0.5, ẏ(t) = 1
2y(t)2 + u(t) ,

y(t), u(t) ∈ [−1, 1] ∀t ∈ [0, 5] .

(OCP)

which has the analytic solution y?(t) = 1
2−t at t ≤ 1 and

J? = − 51
16 −

log(2)
2 −

√
32 tanh

√
25
32 ≈ −7.5 .

Quadratic integral penalty methods [1], [6], [10] are
an alternative to collocation methods, where the squared
path equality constraint residual is integrated and added
as a penalty into the objective. In [8] the authors present
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such a method with a proof of convergence under mild
assumptions, including convergence for singular arcs and
high-index DAEs. This is verified in [8] in comparison to
collocation methods via numerical experiments.

Before proceeding, we guide the reader through
the solution of (OCP) via the quadratic integral
penalty method: let y be represented with contin-
uous and u with discontinuous piecewise linear fi-
nite element functions yh, uh on a uniform mesh of
N ∈ N elements, h := 5

N ; represented with x :=
[yh(h), . . . , yh(Nh), u+

h (0), u−h (h), u+
h (h) . . . , u−h (Nh)]T ∈

Rn, n := 3N . yh(0) = 0.5 is fixed and removed from x.
We minimize

min
x∈R2N+1

Φω(x) :=
∫ π

2

0

(
yh(t)2 + t uh(t)

)
dt

+ 1
2ω

∫ 5

0

∥∥∥∥−ẏh(t) + 1
2yh(t)2 + uh(t)

∥∥∥∥2

2
dt

s.t.
[
−x

x

]
≥
[
−1
−1

]
.

(1)

The integrals are evaluated with Gauss-Legendre quadra-
ture of q = 8 points per element. Writing τ, α for
abscissae and weights, m := Nq, and

f(x) :=
Nq∑
j=1

αj
(
yh(τj)2 + τj uh(τj)

)
(2a)

c(x) :=


...√

αj
(
−ẏh(τj)2 + 1

2yh(τj)2 + uh(τj)
)

...

 ∈ Rm

(2b)

allows us to express (1) as a quadratic penalty program:

min
x∈Rn

Φω(x) = f(x) + 1
2ω ‖c(x)‖2

2

s.t. Ax ≥ b
(QPP)

ω ∈ R+ \ {0} controls the quadratic penalty and should
be chosen on the order of approximation of the finite
element space [6], [8]. A ∈ Rp×n,b ∈ Rp are p ∈ N0
optional inequality constraints that span a non-empty
polyhedral B := {x ∈ Rn|Ax ≥ b}.

A sometimes related problem is the equality con-
strained program:

min
x∈Rn

f(x)

s.t. c(x) = 0 , Ax ≥ b
(ECP)
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with Lagrangian L(x,λ,η) := f(x)−λTc(x)−ATη and
Lagrange multipliers λ ∈ Rm, η ∈ Rp≥0, where R≥0 are
the non-negative real numbers.

Recall that nonlinear inequality constraints can be
incorporated into (QPP) and (ECP) via slack variables.

The Karush-Kuhn Tucker optimality system of (QPP)
and (ECP) is

∇xL(x,λ,η) = 0
c(x) + ωλ = 0

(KKT1)

and
Aix = bi and ηi ≥ 0 ∀i ∈ A
Aix > bi and ηi = 0 ∀i /∈ A ,

(KKT2)

where A ⊆ {1, . . . , p} is the active set, Ai,bi,ηi the
ith row of A,b,η, and where ω = 0 for (ECP). The
multiplier λ in (QPP) is a substitution trick such that
∇L(x,λ,η) = ∇Φω(x)−ATη.

We recommend the use of the above penalty finite
element method when numerically solving optimal con-
trol problems, because penalty methods have favourable
convergence properties over collocation methods [8].

A remaining difficulty is with solving (QPP). This can
be more challenging than solving a problem of the form
(ECP). Below we describe important details.

A. Problems (QPP) and (ECP) have different solutions
It holds m = Nq ≡ 8N and n = 3N � m in our

discretization (2), hence (ECP) is over-determined. In
contrast, problem (QPP) cannot be over-determined.

Considering (ECP) in the context of over-
determination poses the risk of inconsistency. For
instance, suppose (OCP) had the additional constraint
y(5) = −1. Then c(x) 6= 0 ∀x ∈ Rn would follow,
i.e. (ECP) would be infeasible due to inconsistent
over-determination, whereas (QPP) remains feasible.

In the example, (ECP) is over-determined but feasible.
Namely, regardless of the mesh size h > 0, c(x) = 0
is achieved (only) when yh(t) = 0.5, uh(t) = −0.125,
because the differential equation has no non-trivial piece-
wise linear solution. This is far away from y?,u?, to which
solutions of (QPP) converge as h, ω ↘ 0. In conclusion,
solutions to (ECP) and (QPP) can be very different.

The Modified Augmented Lagrangian Method
(MALM), discussed in Section II, converges to
minimizers of (QPP) instead of (ECP).

B. Solutions of (QPP) depend on the value of ω
As experimentally verified in [6] and outlined in the

analysis in [8], the discretization (1)–(2) converges when
both h, ω ↘ 0. That is, for fixed h, too large values of ω
result in bad feasibility of the numerical optimal control
solution, whereas too small values of ω result in feasible,
yet far-from-optimal solutions.

Fig. 1 demonstrates this. Our discretization of (OCP)
with N = 50 is solved ∀ω ∈ {101, 10−3, 10−9}. The
value ω determines the bias between minimization of
J := f(x) and r := ‖c(x)‖2 ≡ ‖− ẏh+ 1

2yh+uh‖L2(0,π/2);
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Fig. 1. Numerical solution to (OCP) for N = 50 and different ω.

note that the latter ≡ is accurate due to the order
of quadrature. For ω = 10−1 the solution achieves a
good trade-off between feasibility and optimality on that
coarse mesh.

In conclusion, the value of ω has a significant influence
on the solution of (QPP). Hence, it is important that
(QPP) be minimized for the specified value of ω. The
value ω appears in the dual update formula of MALM.
This is important and ensures that MALM converges to
minimizers of (QPP) for the specific value of ω.

C. Direct minimization of (QPP) is inefficient
To the unprejudiced it appears natural to minimize

the objective Φω directly. However, (unless c is an affine
function) this will result in very many iterations. This
is so because the nonlinear penalties result in curved
valleys through which iterative minimization methods
make slow progress.



To demonstrate this inefficiency, consider the instance

f(x) := −x1 − x2 (3a)

c(x) :=
[
(x1 + ε)2 + x2

2 − 2
(x1 − ε)2 + x2

2 − 2

]
∈ Rm (3b)

A :=
[
0 1
1 −1

]
, b :=

[
0
0

]
∈ Rp (3c)

with primal and dual initial guesses x0 := [2 1]T and
λ0 := 0, for ε = 0. We discuss later with Table II that
minimization of (QPP) of (3) with a direct minimization
method takes 134 iterations when ω = 10−6. This is
inefficient when compared to MALM, which solves the
same instance in only 31 iterations.

The Augmented Lagrangian Method (ALM) uses a
local minimization method (typically a quasi-Newton
variant) for the primal variables, then updates the duals.
Since ALM eventually solves (ECP), the quasi-Newton
system must solve (KKT1) with ω = 0. In contrast,
MALM converges to minimizers of (QPP), i.e. solves
(KKT1) with ω > 0. This yields a dual regularization,
which keeps the magnitude of ‖λ‖2 bounded and locally
unique, which improves the convergence of the Newton
iteration.

D. Contributions

A modified augmented Lagrangian method for convex
quadratic objectives with linear equality constraints is
presented in [14]. In [9] we generalize this method from
equality-constrained convex linear-quadratic to non-
convex nonlinear optimization problems with nonlinear
equality constraints. In the present paper, we generalize
it further by adding linear inequality constraints.

The authors in [14] show convergence of their method
for equality-constrained convex linear-quadratic pro-
grams. In the present paper, we show convergence of our
generalized method for non-convex nonlinear programs
with additional linear inequality constraints under the
following assumptions: twice continuous differentiability
of f, c, boundedness of B, and boundedness of Φω over B.
In addition, we derive an improved local convergence re-
sult that is valid even for our generalized method, under
these additional assumptions: local primal uniqueness,
local Lipschitz continuity of first and second derivatives,
and strict complementarity. Our analysis draws connec-
tions between the rate of convergence for a modified and
non-modified augmented Lagrangian method.

E. Structure of the Paper

Section II derives the proposed generalized modified
augmented Lagrangian method. Section III presents nu-
merical experiments. This section also elaborates on the
numerical difficulties of solving either (QPP) or (ECP)
and suitable values of ω for a given instance x0,λ0, f, c.

II. Derivation of MALM
MALM is a solution method for (QPP). MALM has

been presented in [14] for the special case when f is
quadratic, c is linear, and Φω is convex. Here, we derive
MALM for general nonlinear non-convex programs, and
in a stronger relation to its origins in ALM [7], [12].
This will later allow us to show global convergence
not only for convex linear-quadratic problems, but also
for non-convex nonlinear problems with additional in-
equality constraints. Furthermore, we will give a rate-of-
convergence result in the appendix, which shows that in
the limit MALM converges generally faster than ALM
for the same problem instance.

We derive MALM for (QPP) from ALM for (ECP).
To apply ALM, we need an auxiliary problem of the
form (ECP) instead. Our approach to achieving this
works by temporarily using an auxiliary variable ξ ∈
Rm. This variable will be eliminated in the augmented
optimality system.

A. Auxiliary Problem
Consider the following equivalent problem to (QPP):

min
x̂:=(x,ξ)∈R(n+m)

f̂(x̂) := f(x) + ω

2 ‖ξ‖
2
2 (4a)

s.t. ĉ(x̂) := c(x) + ωξ = 0 , (4b)

Âx̂ ≥ b , (4c)

where Â := [A 0]. Introducing λ ∈ Rm,η ∈ Rp≥0, the
optimality conditions of (4) are (KKT2) and[

∇f(x)
ωξ

]
−
[
∇c(x)
ωI

]
λ− Â

T
η = 0 (5a)

c(x) + ωξ = 0 . (5b)

B. Augmented Optimality System
Since (4) is of form (ECP), we can apply ALM [11,

Alg. 17.3]. There are different ways for doing this: Rock-
afellar uses a method with augmented Lagrangians for
inequalities [13], whereas typical codes like LANCELOT
[4] use augmented Lagrangians only for the equality
constraints. LANCELOT proceeds as such for mainly
two reasons: First, Rockafellar’s approach results in a
non-smooth gradient of the unconstrained problem. Sec-
ond, convergence theory for augmented Lagrangians to
inequality constraints is less understood and requires
further assumptions. For these two reasons, we also use
augmented Lagrangians only for the equality constraints.
To this end, we augment (5) with an auxiliary vector
z ∈ Rm and a moderate penalty parameter ρ > 0:[

∇f(x)
ωξ

]
−
[
∇c(x)
ωI

]
(λ + z)− Â

T
η = 0 (6a)

c(x) + ωξ + ρz = 0 . (6b)

The intuition for doing so in ALM is similar to what we
did in (KKT1) for (QPP), where the Lagrange multipli-
ers were used as a penalty substitute to ensure that the



Algorithm 1 Modified Augmented Lagrangian Method
1: procedure MALM(f, c, ω,x0,λ0,A,b, tol)
2: ρ← ρ0
3: for k = 1, 2, 3, . . . , kmax do
4: Compute xk and optionally ηk by solving

min
x∈Rn

Ψk(x) s.t. Ax ≥ b . (9)

5: Update λk ← λk−1 − 1
ω+ρ (c(xk) + ωλk−1)

6: if ‖c(xk) + ωλk‖∞ ≤ tol then
7: return xk,λk and optionally ηk
8: else
9: Decrease ρ← cρρ to promote convergence.

10: end if
11: end for
12: end procedure

gradient of L matches that of Φω. Likewise, here z works
as a penalty substitute for (5b).

We could use (6) directly in order to form an ALM
iteration. That iteration would consist of alternately
solving the optimality system (6) together with (KKT2)
for (x, ξ, z,η,A) where λ is fixed and updating λ ←
λ + z, this being equivalent to λ← λ− 1

ρ (c(x) + ωξ).

C. Elimination of the Auxiliary Vector
Instead, we propose to eliminate ξ = λ + z to obtain

∇f(x)−∇c(x)(λ + z)−ATη = 0 (7a)
c(x) + ωλ + (ω + ρ)z = 0 . (7b)

As in ALM, we solve (7) and (KKT2) with an iteration
of two alternating steps:

1) Keep the value of λ fixed, and solve (7) and (KKT2)
for (x, z,η,A).

2) Update λ as λ← λ + z .
Analogous to ALM, the first step can be realized by
minimizing an augmented Lagrangian function for x at
fixed λ subject to x ∈ B, whereas in the second step z
can be expressed in terms of x from (7b). Using this, the
method can be expressed in Algorithm 1, where

Ψk+1(x) := L(x,λk,0) + 0.5
ω + ρ

‖c(x) + ωλk‖2
2 (8)

is the augmented Lagrangian function, with L(x,λ,0) ≡
f(x)− λT · c(x) from (KKT1).

Practical values are tol = 10−8, cρ = 0.1, ρ0 = 0.1.
Care must be taken that Ψk in (9) attains a lower bound
on the feasible set. To this end, practical methods use box
constraints [4, eq. 3.2.2] or a trust-region [4, eq. 3.2.4].

In order to minimize (9), one can use any numerical
method for linear inequality constrained nonlinear mini-
mization; e.g. an interior-point method like IPOPT [15]
or an active set method like SNOPT [5].

We refer to [11, eq. 17.21] for details on how the quasi-
Newton direction for the quadratic penalty function can

be computed in a more numerically stable fashion from
a saddle-point linear equation system.

D. Discussion
1) True Generalization of ALM: MALM is a true

generalization of ALM, because they differ only by the
parameter ω. If ω = 0 then MALM is identical to ALM.
Both methods enjoy the same convergence properties and
approach the same limit point. In contrast to ALM, by
selecting ω > 0, we show below that MALM converges
to critical points of (QPP) with the given ω.

2) Benefit: MALM solves the penalty function Φω in
(QPP) by minimizing a sequence of penalty functions Ψk.
When does this make sense? If we select ρ� ω. Thereby,
the penalty functions Ψk have less steep valleys and
hence can often be minimized more efficiently in com-
parison to a single minimization of Φω. The numerical
experiments below verify this claim.

E. Global and Local Convergence
We prove convergence by showing that the iterates of

MALM are the same as those of ALM applied to (4).
The analysis is unfortunately awkward due to notation
for f, c,x and f̂ , ĉ, x̂.

The below theorem assumes that all sub-problems (9)
are solved exactly, and that computations are performed
in exact arithmetic. Throughout this subsection, MALM
means the callback-function in Algorithm 1, wherein any
black-box method can be used to solve (9).

Theorem 1 (Global Convergence): Let ω > 0, choose
Ω ⊂ Rn bounded, c bounded in Ω, and let f, c be
twice continuously differentiable in Ω. Consider the call
C := MALM(f, c, ω,x0,λ0,A,b). Suppose all iterates
{xk}k∈N0 of C live in Ω. If ρ0 is sufficiently small then
{xk}k∈N0 converges to a critical point of (QPP).

See Appendix I for the proof. The theorem text defines
the instance I := (f, c, ω,x0,λ0,A,b). The proof works
by identifying the iterates of C with iterates of a different
call D. Before that, convergence of D is asserted by a
result from the literature. Section 4 in [3] discusses how
the assumption {xk}k∈N0 ⊂ Ω is not strong but can be
ensured; e.g. by construction such that B ⊆ Ω.

The global convergence analysis of MALM shows that
MALM converges like ALM on a different problem.
However, when applying both methods onto the same in-
stance, then MALM converges locally faster than ALM,
assuming the primal solution is locally unique, first and
second derivatives of f, c are Lipschitz continuous, and
strict complementarity. This is shown in Appendix II.

III. Numerical Experiments
We present two numerical test problems with nonlinear

equality constraints and linear inequalities. The first is
instructional, the second is(2). The sub-problems in (9)
are solved with IPOPT. This is a line-search primal-
dual interior-point method. For cost comparison, we
compare the number of IPOPT iterations. Since MALM



Fig. 2. Geometry of the Circle Problem, with level sets of f, c1, c2.

solves a sequence of problems (9), sub-solvers with better
warm-starting capabilities would likely converge in fewer
iterations. For examples with equality constraints only,
we refer to our experiments in [9].

A. Circle Problem
1) Setting: This problem considers the instance (3) for

various values of ε, with initial guess x0 = [2 1]T, λ0 = 0.
Fig. 2 shows the geometry of the instance: Level sets of
f, c1, c2 are blue, dotted, and dashed, respectively. The
feasible region to the inequaltiy constraints is indicated
in red. The figure shows two points xA := [0

√
2]T, xB :=

[1 1]T as white and black star, respectively.
The instance can be interpreted in either of two ways:

(A) Either we meant c in a precise sense, meaning we
wish to find a solution to c(x) = 0 and, if non-
unique, select the point that minimizes f(x).

(B) Or we actually meant c in a rough sense, meaning
we wish to minimize f subject to ‖x‖2

2 = 2 +O(ε).
Both problems are reasonable in their own right: For

example, (A) makes sense when we have to solve a
complicated equation system and want to find a desirable
solution. On the other hand, (B) makes sense when our
constraints suffer from errors, e.g. measurement errors
or consistency errors, such as by discretization. For ex-
ample, imagine a discretized optimal control problem,
where c inherits consistency errors that have the size of ε.

Crucially, both solutions xA,xB can be characterized
sharply with a suitable problem statement: xA is the
solution of (ECP). Less obvious, xB can be computed
as the solution of (QPP) when choosing ω suitable with
respect to ε. Here, a suitable choice is ω = O(ε).
To see this, notice that (KKT1) admits a well-scaled
solution ‖x‖2, ‖λ‖2 = O(1) and ‖c(x)‖ = O(ε) when
this selection for ω is made.

Lastly, we stress that for this instance the solution xA
has an ill-conditioned KKT system with a dual solution
‖λ‖ = O(1/ε2), whereas xB is well-behaved, i.e, its KKT
equations are well-conditioned.

2) Computational Results: We solve the instance with
MALM and QPM, for various values of ε, ω, including 0.
We implement QPM by solving (QPP) directly in IPOPT
with objective Φω. Recall that MALM=ALM for ω = 0

TABLE I
Solution of the Circle Problem with respect to ε, ω.

Smaller values mean closer convergence to either point.
Cells in the lower left converge to xA, cells in the upper

right to xB .

ε
eA

eB
1.0e–1 1.0e–2 1.0e–4 1.0e–6 0.0

ω

1.0e–1 1.1e–0
2.6e–3

1.1e+0
4.3e–3

1.1e+0
4.4e–3

1.1e+0
4.4e–3

1.1e+0
4.4e–3

1.0e–2 1.2e–1
9.6e–1

1.1e+0
3.7e–4

1.1e+0
4.4e–4

1.1e+0
4.4e–4

1.1e+0
4.4e–4

1.0e–4 3.8e–3
1.1e+0

1.2e–1
9.6e–1

1.1e+0
4.4e–6

1.1e+0
4.4e–6

1.1e+0
4.4e–6

1.0e–6 3.5e–3
1.1e+0

1.3e–3
1.1e+0

1.1e+0
3.7e–8

1.1e+0
4.4e–8

1.1e+0
4.4e–8

1.0e–8 3.5e–3
1.1e+0

3.7e–5
1.1e+0

1.2e–1
9.6e–1

1.3+0
7.1e–9

1.3e+0
7.1e–9

0.0 3.5e–3
1.1e+0

3.7e–5
1.1e+0

1.2e–1
9.6e–1

1.3+0
7.1e–9

1.3e+0
0.0

and that QPM is not applicable (n.a.) when ω = 0, since
Φω is undefined.

We also analyze the limit points x∞ (which are iden-
tical for both tested methods throughout all tests) for
each ε, ω, by measuring the quantities

eA := ‖x∞ − xA‖2 , eB := ‖x∞ − xB‖2 .

Table I shows the quantities eA, eB for respective ε, ω.
Dividing the table into a lower left and an upper right
triangle, we see that solutions in the lower triangle rather
converge to xA while those on the diagonal and in the
upper right converge to xB .

Table II shows the sum of the number of all inner
iterations of QPM and MALM for respective ε, ω. We see
a trend for each of the two methods: QPM converges in
a few iterations when ω is moderate. However, when ε, ω
both decrease, the iteration count blows up. The trend
for MALM is different. MALM converges reliably for all
ε, ω in the upper right triangle, including those where ε, ω
are very small. The last row shows ALM. ALM converges
quickly when ε = 0, but its iteration count blows up for
positive decreasing values of ε. In two instances ALM did
not converge (n.c.) within 1000 iterations.

3) Interpretation of Results: Table I confirms that,
depending on parameters ε, ω, we either solve for xA
or xB . Table II indicates that xA cannot be computed
numerically efficiently, as expected due to the almost
linearly dependent constraints. In this regard we find
that ALM does not converge in the last row when ε =
10−4.

In the optimal control context we are interested in
solving problems in the sense of (B), hence we now
investigate the upper right triangle in Table II. We see
that both methods converge for all of these instances.
Yet, when ε, ω are small, but strictly positive, MALM
outperforms QPM. This is relevant because there are
problems from optimal control discretizations with in-
consistencies from discretization errors. The present test



TABLE II
Total number of IPOPT iterations for MALM and QPM

for the Circle Problem with respect to ε, ω. Fewer
iterations mean better computational efficiency.

ε
#MALM
#QPM

1.0e–1 1.0e–2 1.0e–4 1.0e–6 0.0

ω

1.0e–1 28
14

22
13

22
13

19
13

19
13

1.0e–2 36
12

28
16

16
16

23
16

20
16

1.0e–4 21
16

56
36

32
43

29
43

23
43

1.0e–6 29
16

68
35

45
138

39
134

31
134

1.0e–8 34
n. c.

60
n. c.

n. c.
n. c.

52
429

40
374

0.0 34
n. a.

60
n. a.

n. c.
n. a.

52
n. a.

40
n. a.

problem models these inconsistencies quantitatively with
the parameter ε. In the case of discretizations, we wish
to drive ω, h ↘ 0 to decrease the discretization error,
which brings us into the lower right region of the table.

B. Optimal Control Problem
1) Setting: We solve the instance (2) for various values

of N,ω for x0 = 0,λ0 = 0. Recall that an instance
represents the discretization (1) with mesh size h = 5

N ,
which only converges to the analytical solution when
h, ω ↘ 0 together, as was discussed along Fig. 1.

As for the former experiment, we solve the instance
with MALM and QPM, for various values of N,ω. We
also analyze the limit points x∞ (which we confirmed
to be identical for both tested methods throughout all
tests) for each N,ω, by computing the quantities

δJ := f(x)− J? ≡ J(yh, uh)− J? ,

r := ‖c(x)‖2 ≡
∥∥∥∥−ẏh + 1

2y
2
h + uh

∥∥∥∥
L2(0,π/2)

.

Recall from the circle test problem that there are two
interpretations (A) and (B) for the instance. As is clear
from the context, we wish to compute a solution of kind
(B). However, if we choose ω very small on a coarse mesh
then the iteration will converge to a solution of kind (A).

2) Computational Results: Table III shows the quan-
tities δJ, r for respective N,ω. Dividing the table into
a lower left and an upper right triangle, we see that
solutions in the lower left achieve good feasibility but at
the sacrifice of optimality, whereas solutions in the upper
right are not sufficiently feasible. When being limited by
computation time to solve on a moderately sized mesh,
then accordingly ω should not be chosen too small. In
contrast to ALM, which always sets ω = 0, then MALM
allows for choosing ω of moderate size.

Table IV shows the sum of the number of all inner
iterations of MALM and QPM for respective N,ω. We
see the same trend as for the circle problem: QPM
converges in a few iterations when ω is moderate. In

TABLE III
Solution of the Optimal Control Problem with respect to
N,ω. For a given mesh size N , the value for ω is suitable

when δJ (optimality gap) and r (feasibility residual) have
similar magnitude.

N
δJ
r

50 250 500 1000 2000

ω

1.0e–2 -1.7e–1
9.2e–2

-1.7e–1
4.3e–2

-1.7e–1
4.3e–2

-1.7e–1
4.2e–2

-1.7e–1
4.3e–2

1.0e–3 4.3e–2
2.7e–2

-8.6e–3
5.3e–3

-9.6e–3
4.6e–3

-9.8e–3
4.4e–3

-9.9e–3
4.4e–3

1.0e–4 7.6e–2
8.8e–3

1.9e–2
6.1e–4

1.2e–2
6.1e–4

-8.7e–3
6.0e–4

-7.2e–3
5.7e–4

1.0e–5 7.9e–2
2.5e–3

2.3e–2
6.4e–5

1.6e–2
6.2e–5

1.2e–2
6.3e–5

1.0e–2
6.6e–5

1.0e–6 8.0e–2
6.5e–4

2.3e–2
1.8e–5

1.6e–2
7.5e–6

1.2e–2
1.1e–5

1.0e–2
1.5e–5

0.0 7.2e+0
0.0

7.2e+0
0.0

7.2e+0
0.0

7.2e+0
0.0

7.2e+0
0.0

TABLE IV
Total number of IPOPT iterations for MALM and QPM
for the Optimal Control Problem with respect to N,ω.
Fewer iterations mean better computational efficiency.

N
#MALM
#QPM

50 250 500 1000 2000

ω

1.0e–2 39
17

53
24

64
23

69
26

69
44

1.0e–3 47
38

63
44

74
43

90
44

89
68

1.0e–4 61
57

66
92

80
85

93
133

121
124

1.0e–5 64
102

78
161

80
266

93
242

113
252

1.0e–6 81
163

78
222

110
328

97
278

126
224

0.0 n. c.
n. a.

n. c.
n. a.

n. c.
n. a.

n. c.
n. a.

n. c.
n. a.

contrast, when h, ω both decrease then the iteration
count of QPM increases. In contrast, MALM converges
reliably for all N,ω in the upper right triangle, including
those where N is very large and ω very small. The last
row shows that ALM does not convergence (n.c.) within
500 iterations for any mesh size.

C. Interpretation of the Results
For this test problem, Table III demonstrates that

the numerical solution converges to the optimal control
solution when h, ω ↘ 0 together.

Table IV shows that QPM converges fast when N is
small and ω is moderate. In contrast to this, for large N
and small ω, MALM is clearly more efficient in terms of
total IPOPT iteration count. However, Table III reveals
that large N and small ω are a necessity for the numerical
computation of accurate optimal control solutions.

Importantly, both experiments make clear that ALM
is unsuitable for solving applications with inconsistent
constraints: For the experiment depicted in Fig. 2, ALM
converges to xA (white star) whenever ε > 0. For optimal



control problems, the magnitude of ε models consistency
errors of discretizations, in which case xB is the sought
solution of a well-conditioned KKT equation system,
whereas xA has ill-conditioned KKT equations (due to
unboundedness of λ as ε ↘ 0). Table IV shows that
ALM fails to converge for the discretized control problem
because it attempts to solve an ill-conditioned problem.
Table III shows further that the exact minimizer is
undesired here anyways because ω = 0 results in a bad
balance between the goals of minimizing both r and δJ ,
illustrated in Fig. 1.

IV. Conclusions
We presented a modified augmented Lagrangian

method (MALM), generalized to nonlinear non-convex
optimization problems with additional linear inequality
constraints. We proved global convergence for our gener-
alized method for non-convex nonlinear programs. A lo-
cal rate-of-convergence result was given in the appendix.
The result shows that MALM inherits all the local
convergence results of ALM while the regularization in
ω > 0 also yields a slight local convergence improvement.

Our numerical experiments demonstrate that MALM
outperforms QPM when minimizing quadratic penalty
programs (QPP) in those situations where ω is very
small, in a similar manner as when ALM outper-
forms QPM when solving equality-constrained pro-
grams (ECP). The experiments further show that there
are problem instances where it is beneficial to solve a
problem of type (QPP) rather than (ECP), one impor-
tant class arising from integral penalty discretizations of
optimal control problems.

In this paper we have assumed that the sub-problems
(9) are solved to high accuracy. Future work could extend
the approach to inexact iterations and sub-iterations to
mild tolerances. This could reduce computations at sub-
iterations where the dual is far from converged.

Appendix I
Proof of Theorem 1

From I, construct the instance J :=
(f̂ , ĉ, 0, x̂0,λ0, Â,b) from (4) with ξ0 arbitrary.

Define the call D :=MALM(J ), which means solving
instance J with ALM; cf. Section II-D.1. To understand
the proof, notice that due to differing call arguments
of MALM the notation differs with respect to line 4 in
Algorithm 1: C computes xk, whereas D computes x̂k.

We first show that any limit point x̂∞ of D converges
to a critical point of (4). We use [3, Thm 4.6], which
requires [3, AS1] feasibility of (4), [3, AS2] twice con-
tinuous differentiability of f̂ , ĉ, [3, AS3] x̂k ∈ Ω × c(Ω)
bounded, and [3, AS4] a technical condition discussed
below. All requirements are satisfied: AS1 follows from
the requirement that B be non-empty. AS2 is stated in
the theorem text. AS3 follows from boundedness of Ω and
from boundedness of c over Ω. AS4 requires ∇ĉ(x̂) · Z
to be of column rank ≥ m, where Z is a matrix of

orthonormal columns that span the null-space of ÂA,
i.e. the matrix of sub-rows of Â of the active constraints
at x̂. Due to the special structure of Â, we see that Z
has a structure like

Z =
[
0
I

. . .

. . .

]
.

Since ∇x̂(x̂)T = [∇c(x̂)T I] has full row rank, the rank of
∇ĉ(x̂)T · Z is bounded below by the number of columns
of Z, i.e. bounded below by m.

Since any inner method for minimization of (9) can
be used, the sequence of iterates xk,λk of calls C,D
are actually non-unique, depending on whether Ψk has
multiple local minima.

We show by induction that for each iterate xk,λk of C
there exists an identical sequence of iterates for call D.
Base: For k = 0 the proposition holds by construction
of the initial guesses. Step: Let the proposition hold
for k − 1. We now show that the proposition holds for
k. The iterate x̂k from D in line 4 necessarily satisfies
∇x̂Ψk(x̂k) − Â

T
· ηk = 0, which is equivalent to (6)

after elimination of z by means of (6b). From the second
component of (6a) it follows that

ξk = ξ(xk,λk−1) := 1
ω + ρ

(
ρλk−1 − c(xk)

)
. (10)

I.e. ξk is uniquely determined in D, hence x̂k takes on the
form x̂k = (xk, ξ(xk,λk−1)) for some xk. Substituting
(10) into the first component of (6a) yields ∇xΨk(xk) =
0, which is indeed identical to what xk in line 4 of C
satisfies. Thus, x̂k = (xk, ξ(xk)) with xk from C is a
valid kth iterate of D. Finally, notice that λk in C,D are
identical because

−1
ρ

(
c(xk) + ωξ(xk,λk−1)

)
= − 1

ρ+ ω

(
c(xk) + ωλk−1

)
.

Appendix II
Faster Local Convergence than ALM

Theorem 2 (Local Convergence): Consider (ECP) and
(QPP), the latter for a given ω > 0, locally around the
same initial iterate xk. Let ∇xf,∇xc,∇2

xxL be locally
Lipschitz-continuous and let both problems have a locally
unique primal-dual solution x,λ,η in that region, which
satisfies strict complementarity. Apply ALM and MALM
with fixed penalty parameter ρ to solve either problem,
each starting from xk. If both methods converge and if
xk is sufficiently close to the local minimizer of (QPP),
then the linear rates of convergence of MALM and ALM
satisfy the relation CMALM = ρ

ρ+ω · CALM < CALM.
Proof: We use the Taylor series

∇Ψk(xk,λk)

= Hxk + g− 1
ω + ρ

JT (ρλk−1 + c) +RL(xk,λk−1)

with JT := ∇c(x∞), H := ∇2
x,xL(x∞,λ∞) + 1

ω+ρJTJ,
c := Jx∞ − c(x∞) and g := ∇f(x∞) has the Lagrange



remainder ‖RL(xk,λk)‖2 ≤ L
ρ+ω (‖xk − x∞‖2 + ‖λk−1 −

λ∞‖2)2, where L is the Lipschitz constant.
We now first consider the case where p = 0, i.e.

where there are no inequality constraints. Since xk is
convergent by requirement, H must be positive semi-
definite and, if x∞ is locally unique, H must be positive
definite. Clearly, local convergence to a unique point
depends quantitatively on uniqueness, hence we imply
λmin(H) ≥ µ > 0. For the induced 2-norm it follows that
‖H−1‖2 ≤ µ, hence∥∥∥∥xk −H−1

(
g− 1

ω + ρ
JT(ρλk−1 + c)

)∥∥∥∥
2

≤ L

µ(ρ+ ω)‖λk−1 − λ∞‖2
2.

Inserting the estimate for xk into line 5 in Algorithm 1
gives a formula for λk that only depends on λk−1:

λk = M · λk−1 + f +Rλ(λk) (11)

with M ∈ Rm×m below, some f ∈ Rm, and ‖Rλ(λk)‖2 ≤
1
µ

(
L
ρ+ω

)2
‖λk − λ∞‖2

2. Rearranging reveals

M = ρ

ω + ρ

(
I− 1

ω + ρ
JH−1JT

)
.

Since Theorem 1 asserts convergence of λk, the second
order terms become negligible compared to the first-order
terms and can hence be ignored in the limit. Then, (11)
is a Banach iteration. Thus, in the limit, the rate of
convergence for λk is linear with contraction ‖M‖2 < 1.
The analysis holds regardless of whether ω = 0 or > 0.

We see that in the limit MALM converges faster
than ALM because ρ

ω+ρ < 1 when ω > 0, whereas
ρ

ω+ρ = 1 when ω = 0. Hence, MALM yields a stronger
contraction for the errors per iteration than ALM. This
is in particular an advantage in cases where ALM would
converge slowly. For instance, choosing ρ = 10ω guar-
antees convergence in the limit with at least a rate of
contraction of ρ

ω+ρ < 0.91 .
From the above, when dropping the Lagrange remain-

der terms, we can identify the local rate of convergence
by that of the following quadratic model iteration: 1)
Solve

min
x

1
2xTHx +

(
g + 1

ω + ρ
JT(Jxk−1 − c− ωλk−1)

)T
x .

2) Update λk := λk−1 − 1
ω+ρ (Jxk − c− ωλk−1).

We discuss the case when p > 0, i.e. when inequality
constraints are present. We use our assumption on strict
complementarity, i.e. i ∈ A ⇔ ηi > β for some real
β > 0. Since xk converges by requirement, λk−1 con-
verges and thus also ∇Ψk(xk) converges. Hence, ηk must
converge in order to yield ∇Ψk(xk) −ATηk = 0. Once
ηk changes less than β at some finite k0 ∈ N, the active
set Ak will remain unchanged A∞ for all subsequent
iterations k ≥ k0. We use A∞ := AA∞ ,b∞ := bA∞ .

Given the above intermezzo, the appropriate model
iteration in the limit becomes obvious: 1) Solve

min
x

1
2xTHx +

(
g + 1

ω + ρ
JT(Jxk−1 − c− ωλk−1)

)T
x

s.t. A∞x = b∞ .

2) Update λk := λk−1 − 1
ω+ρ (Jxk − c− ωλk−1).

This is just a projection of the iteration above. Thus,
we can project the iteration for xk onto the nullspace of
A∞, identifying xk = xr + Nx̃k ∀k ≥ k0, where xr ∈ Rn
has active set A∞, x̃k ∈ Rn−dim(A∞) and N is a matrix
of orthogonal columns that span the nullspace of A∞.
Defining H̃ := NTHN, J̃ := JN, and g̃, c̃ appropri-
ately, we arrive at the former unconstrained quadratic
model iteration form, but with H,g,J, c,xk replaced by
the tilded quantities. Accordingly, the Banach iteration
matrix M is replaced with the matrix

M̃ = ρ

ω + ρ

(
I− 1

ω + ρ
J̃H̃−1J̃T

)
.

The resulting contraction matrix M̃ for the Banach
iteration of the inequality constrained case has a factor
ρ

ω+ρ in front, just like for the case when p = 0. Thus, for
ρ > 0 the method converges locally faster.
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