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Starting with twisted bilayer graphene, graphene-based moiré materials have recently been estab-
lished as a new platform for studying strong electron correlations. In this paper, we study twisted
graphene monolayers on trilayer graphene and demonstrate that this system can host flat bands
when the twist angle is close to the magic-angle of 1.16°. When monolayer graphene is twisted on
ABA trilayer graphene (denoted AtABA), the flat bands are not isolated, but are intersected by a
dispersive Dirac cone. In contrast, graphene twisted on ABC trilayer graphene (denoted AtABC)
exhibits a gap between flat and remote bands. Since ABC trilayer graphene and twisted bilayer
graphene are known to host broken symmetry phases, we further investigate magic-angle AtABC.
We study the effect of electron-electron interactions in AtABC using both Hartree theory, and an
atomic Hubbard theory to calculate the magnetic phase diagram as a function of doping, twist angle
and perpendicular electric field. Our analysis reveals a rich variety of magnetic orderings, includ-
ing ferromagnetism and ferrimagnetism, and demonstrates that a perpendicular electric field makes
AtABC more susceptible to magnetic ordering.

INTRODUCTION

The observation of strong correlation phenomena in
graphene-based moiré materials [1–5] has driven efforts
to understand their electronic structure and behaviour.
A key prerequisite for the emergence of correlated states
are flat electronic bands that give rise to a high density of
states (DOS) at the Fermi level. The total energy of elec-
trons in flat bands is dominated by the contribution from
electron-electron interactions [6–8], which favors states
that break symmetries of the Hamiltonian, opening gaps
at the Fermi level to lower the total energy of the elec-
trons. In moiré materials, it is possible to “engineer” a
high DOS at the Fermi energy through tuning the rela-
tive twist angle to values where very flat electronic bands
emerge.

The total number of potential graphene-based moiré
materials is extremely large. Consider a system consist-
ing of N graphene layers. Neighboring graphene sheets
could either be twisted or not giving rise to 2N−1 distinct
structures. In principle, this number is further increased
when different stacking configurations between the un-
twisted layers are considered, but in practice the lowest-
energy AB-stacking is of most experimental relevance.
Finally, these graphitic structures are typically placed
on a hexagonal boron nitride (hBN) substrate which can
induce an additional moiré pattern [9–11]. Therefore, the
space of possible graphitic moiré multilayer structures is
vast (even for relatively small values of N) and this space
has not yet been fully explored.

Experimental studies on graphene-based moiré mate-
rials have focussed thus far on five different systems:
twisted bilayer graphene (tBLG) [12–33], twisted double
bilayer graphene (tDBLG) comprised of two AB stacked
bilayers [34–40], ABC trilayer graphene aligned with
hBN (ABC-hBN) [41–43], twisted mono-bilayer graphene
(AtAB) [44–46], and different twisted trilayer graphene
structures (tTLG) [47–50]. Experimentally, all these
systems have been found to exhibit correlated insulator
states. Of particular interest are tBLG and tTLG (with
an alternating twist angle between each sheet) because -
in addition to correlated insulator states - robust super-
conductivity has been observed in these systems.

All of these systems have been predicted to feature
flat electronic bands, which is a good indicator for possi-
ble strong correlations (tBLG [51–68], tDBLG [69–75],
AtAB [76–79], tTLG [78–83], ABC-hBN [41–43]). In
both tBLG [84–88] and tTLG [83] long-ranged electron-
electron interactions lead to an additional enhancement
of the DOS which increases the robustness of electronic
correlations, and could be one reason why robust super-
conductivity is observed in these materials [89, 90]. In
contrast, in tDBLG and mono-bilayer graphene, electric
fields are required to further flatten the electronic bands
and increase the DOS [34, 35, 37, 38, 44, 45]. Therefore,
when investigating new graphitic moiré systems, it is im-
portant to investigate both the effect of electron-electron
interactions on the band structure in the normal state
and the response to external fields.

In this article, we study the properties of twisted mono-
trilayer graphene which consists of an untwisted graphene
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FIG. 1. Tight-binding band structure of AtABA and AtABC at three twist angles: 2.0°, 1.47° and the magic-angle of 1.16°.
Additional band structures for other twist angles are shown in Sec. II. of the SM.

trilayer and a graphene monolayer that are twisted rel-
ative to each other. For the trilayer, we investigate
both ABC and ABA stacking orders, which are both ex-
perimentally accessible. For twisted mono-ABC trilayer
graphene (denoted AtABC, following the naming conven-
tion of Ref. 91), a set of four isolated flat bands emerges
at the Fermi level, while in twisted mono-ABA trilayer
graphene (denoted AtABA) the four flat bands are not
isolated, but are intersected by a dispersive Dirac cone.
In contrast to tBLG [84–88] and tTLG [10], long-ranged
Hartree interactions have little effect on the band struc-
ture. We find that short-ranged Hubbard interactions
give rise to a rich magnetic phase diagram as a function
of twist angle, doping level and perpendicular electric
field that features competing anti-ferromagnetic and fer-
rimagnetic orderings.

RESULTS AND DISCUSSION

Atomic structure

As AtABC and AtABA only contain a single twist an-
gle, the same approach as for tBLG [54] can be used
to generate commensurate moiré unit cells [see Sec. I of
the Supplementary Material (SM) for details]. We relax
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FIG. 2. Density of states (DOS) as a function of energy for
AtABC, AtAB and tBLG at a twist angle of 2.0°. The zero
of energy is set to the Fermi level at charge neutrality for
each system, and the zero in the DOS is at the bottom of the
y-axis.

these structures using classical force fields to determine
the equilibrium positions of the atoms [92–96]. Specif-
ically, we employ the AIREBO-Morse [97] potential for
intralayer interactions and the Kolmogorov–Crespi [98]
potential for interlayer interactions, as implemented in
LAMMPS [99]. Further details can be found in Sec. I.
SM and in Ref. 75.
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Electronic Structure

We first calculate the electronic band structure of
AtABC and AtABA at different twist angles using an
atomistic tight-binding approach, see Fig. 1 and Sec. II.
SM for details of the calculation. For both systems,
we find that a set of extremely flat electronic bands
emerges as the twist angle approaches the magic-angle
of 1.16° [100].

At twist angles larger than the magic angle (2.0° and
1.47° in Fig. 1) (top panels), the band structure of
AtABA exhibits a set of four flat bands. Two of these
form a Dirac cone at the K-point while the other two
have a parabolic dispersion near K. At the magic-angle
of 1.16° (and also at smaller twist angles) the flat bands
no longer form a Dirac cone. The flat bands in AtABA
are not isolated in energy from the remote bands because
they are intersected by a pair of bands that form a sec-
ond Dirac cone at K with a larger Fermi velocity, similar
to that of monolayer graphene.

Additional insight can be gained by comparing the
band structure of AtABA to that of the constituent ABA
trilayer. The latter system features a set of parabolic
bands which are also intersected by a Dirac cone [101].
This suggests that the addition of the twisted graphene
monolayer on top of the ABA trilayer induces the flat
Dirac cone (whose Dirac point lies is slightly higher in
energy than that of the dispersive Dirac cone) and also
modifies the band width of the parabolic bands. Fi-
nally, it is also interesting to note that the band struc-
ture of AtABA is quite similar to that of twisted tri-
layer graphene in which the middle layer of an AAA-
stacked trilayer is twisted relative to the outer lay-
ers [78, 79, 81, 83].

Figure 1 (bottom panels) also shows the band structure
of AtABC as a function of twist angle. For this system
we also find a set of four flat bands near the Fermi level.
Whilst these bands look qualitatively similar to those
of AtABA, there are some important differences. As in
AtABA, one pair of flat bands form a Dirac cone at K at
twist angles larger than the magic angle. The other pair
of flat bands, however, now has a cubic dispersion near K,
and there is no additional Dirac cone that intersects the
flat bands, which are entirely separated from the remote
bands in this system near the magic angle.

Again, it is instructive to compare the band structure
of AtABC to that of the constituent parts. In ABC tri-
layer graphene, there is a set of cubic bands near the
Fermi level [102], which AtABC retains in the the low-
energy dispersion of the isolated flat bands with the twist
angle controlling their width. Finally, it is worth not-
ing that the band structure of AtABC is similar to that
of twisted monolayer-AB bilayer graphene (AtAB), with
the important difference that the dispersion in AtAB is
parabolic [45] instead of cubic at the K point, as shown

in Sec. II. of the SM. This difference in the power law of
the dispersion has important consequences for the DOS.
In Fig. 2, we show the DOS of the flat bands of AtABC,
AtAB and tBLG at an angle of 2.0°. All systems have a
pair of van Hove singularities at an energy corresponding
to a doping level of ±2 electrons (relative to charge neu-
trality) per moiré unit cell. The linear dispersion of the
tBLG bands close to charge neutrality gives rise to a lin-
ear DOS close to the Dirac point where the DOS vanishes.
In contrast, for AtAB, the DOS is always finite and ex-
hibits a step-like feature at approximately −5 meV where
the parabolic bands touch. Importantly, the AtABC sys-
tem has an additional van Hove peak arising from the
flat bands with a cubic dispersion.

Electron-electron interactions

Based on the tight-binding calculations, we have iden-
tified AtABC as a promising candidate for hosting
strongly correlated electrons in isolated flat bands. We
therefore study the effect of electron-electron interactions
in this system. To capture the effect of long-ranged
Coulomb interactions, we carry out self-consistent atom-
istic Hartree theory calculations at integer doping levels
per moiré unit cell. However, in contrast to tBLG and
tTLG, we find that such interactions only have a negli-
gible effect on the electronic band structure of AtABC,
see Sec. III. of the SM for details.

In the absence of Hartree interactions, we consider
the effect of exchange interactions. In materials, the ex-
change is screened by the internal dielectric response of
the system [103] and any external screening, for example
arising from the presence of nearby metallic gates [104].
As a consequence of screening, the range of the exchange
interaction is significantly reduced and we therefore an
atomic Hubbard interaction for electrons in the carbon
pz-orbitals [64–68, 83, 105] and calculate the interacting
spin susceptibility using the random-phase approxima-
tion (RPA) as function of doping, twist angle and value
of the Hubbard U parameter. From these results, we
identify the critical value of the Hubbard parameter Uc

at which the susceptibility diverges [65, 105]. If Uc is
smaller than the physical value of the Hubbard parame-
ter, we expect the system to undergo a phase transition
into a magnetically ordered state whose spatial structure
is determined by the leading eigenvector of the spin re-
sponse function. In this work, we use a Hubbard value of
U = 4 eV, which has been shown to be a realistic value
of the onsite Hubbard interaction of graphene [106, 107].
Moreover, in Ref. 105, it was shown that U = 4 eV for
tBLG yields good agreement with the available experi-
mental data. For additional details about the method,
see Sec. IV. of the SM and Ref. 65.

Figure 3 shows the structure of various low-energy
magnetic states of AtABC at the magic-angle of 1.16°.
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FIG. 3. Line-cut of different layer-resolved magnetic orderings in AtABC along the diagonal of the moiré unit cell at the
magic-angle of θ = 1.16°. The local stacking sequence is shown at the bottom of each panel, where DW stands for the domain
wall region of the moiré pattern. (a) Anti-ferromagnetic state with mild modulations on the moiré scale. (b) A state with
ferromagnetic order in the twisted layers and ferrimagnetic order in the lower layers. (c) A state with modulated ferrimagnetic
order in the twisted layers and relatively uniform anti-ferromagnetic order in the lower layers. (d) A state with modulated
ferrimagnetic order in all layers.

In each of the plots, we display a normalised eigenvector
from the magnetic susceptibility calculations as a func-
tion of position along the diagonal of the moiré unit cell
(different stacking regions are indicated on the x-axis).
Other instabilities are possible, but they are either vari-
ations of the ones shown in Fig. 3 with a different nodal
structure or mixtures of these orderings.

Figure 3(a) shows an antiferromagnetic (AFM) state
which is mostly uniform over the whole AtABC structure
and only exhibits a mild modulation on the moiré scale.
The magnetization differs slightly in each layer with the
largest variations occurring in the graphene sheet that
is twisted on top of the ABC trilayer. This layer also
exhibits a somewhat smaller magnitude of the magneti-
zation than in the other layers, suggesting that this AFM
state is inherited from the AFM state of the ABC trilayer
which “spills” into the top layer.

Figure 3(b) shows a state with a modulated ferromag-
netic (FM) structure in the top two layers and ferrimag-

netic structure in the bottom two layers. We refer to
this ordering as tFM (for twisted FM, as the FM order
is found in the twisted layers). In the upper layers the
magnetization has peaks in the AABC regions which are
separated by a node. A similar state has been found in
tBLG [65, 105]. Finally, Figs. 3(c) and (d) show two
examples of ferrimagnetic (FIM) states. The state in
Fig. 3(c) is mostly AFM with some FIM character and
exhibits nodes in the top two layers. We shall refer to
this ordering as tFIM (for twisted FIM, as the FIM order
is mainly in the twisted layers). The state in Fig. 3(d)
is mainly FIM and has significant modulations in each
layer. We refer to this state as mFIM (for modulated
FIM).

Having described in detail the different types of mag-
netic states in AtABC, we now discuss the magnetic
phase diagram as function of twist angle and doping, de-
noted by ν for the number of additional electrons/holes
per moiré unit cell, shown in Fig. 4(a). Magnetic states
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FIG. 4. (a) - Magnetic phase diagram of AtABC as a function of twist angle θ and integer doping level ν per moiré unit cell.
Blue corresponds to ferromagnetic order, orange corresponds to ferrimagnetic order, and red corresponds to anti-ferromagnetic
order. Regions where the critical value of the Hubbard parameter is smaller than its physical value are hatched. (b) - Critical
interaction strength Uc required for the onset of magnetic instabilities in AtABC as a function of twist angle θ and integer
doping levels in the flat bands ν.

with Uc < U = 4 eV are found for a range of doping
levels and twist angles. When Uc > U = 4 eV, we hatch
over the magnetic order to indicate that we do not expect
it to occur. In Fig. 4(b) we plot the corresponding value
of Uc for each θ − ν combination and if Uc > U = 4 eV
we use a grey scale. The FM state is only found at the
magic angle at charge neutrality or at slightly smaller
twist angles for ν = −1 (i.e., when one hole is added per
moiré unit cell). Interestingly, the character of the FM
state for ν = −1 slowly transitions from purely FM to a
mixture of FM and FIM as a function of the twist angle.

The other broken symmetry states in the phase dia-
gram are of FIM type and occur at ν = −1 at and very
close to the magic-angle, but also for the electron doped
systems (ν = 1 or ν = 2) over a range of twist angles.
In contrast, AFM order is never found in the phase dia-
gram. While this type of order is the leading instability
for a range of θ−ν values, the corresponding critical val-
ues of the Hubbard parameter are always larger than the
physical value (Uc > U = 4 eV) and therefore this order
is not realized. This can be attributed to the fact that
the AFM order is inherited from the parent ABC trilayer
system which has a high value of Uc [108].

Having presented the band structure, effects of
electron-electron interactions and magnetic order of
AtABC, a natural question to ask is: how promising
is AtABC for the observation of strong correlation phe-
nomena in comparison to other graphitic moiré mate-
rials? Among the graphene-based moiré materials that
have been studied experimentally to date, only tBLG and
tTLG exhibit both correlated insulator states and robust
superconductivity [13, 50]. In contrast to AtABC, the
long-ranged Coulomb interaction plays an important role
in these systems and enlarges the size of the region in the
θ − ν phase diagram where broken symmetry states oc-
cur [89, 105]. Based on this empirical evidence, one could
argue that moiré systems that do not contain any un-
twisted pairs of neighboring layers [80] are more promis-

ing candidates for the observation of strongly correlated
phases than moiré materials that contain untwisted lay-
ers [109]. While this might be true in the absence of
electric fields, recent reports suggest that magic-angle
mono-bilayer (AtAB) graphene exhibits both correlated
insulating states as well as signatures of superconductiv-
ity when an electric field is applied perpendicular to the
layers [44]. For comparison against AtABC, we have also
calculated the phase diagram of AtAB, see Sec. IV. of
the SM. Our analysis reveals that these systems exhibit
qualitatively similar types of magnetic order, which sug-
gests that AtABC may also be a promising candidate for
the observation of strong correlation phenomena in the
presence of applied electric fields.

To put this prediction on a stronger footing, we cal-
culated the interacting spin susceptibility of magic-angle
(1.16°) AtABC as a function of applied electric field and
doping, as shown in Fig. 5. A perpendicular electric field
introduces an additional onsite potential, which is ap-
proximately constant within a layer, but that varies lin-
early between the layer. We define ∆ as the potential
difference between two adjacent layers, such that the on-
site potential of layer l (where l = 1, 2, 3, 4 with 1 cor-
responding to the twisted monolayer) is given by −∆ · l.
Negative values of ∆ mean that the potential energy of
the electrons is lowest in the twisted monolayer. This po-
tential difference is directly proportional to the applied
electric field, with values of |∆| = 30 meV being well
within experimental reach [83].

In the absence of a field, we only expect magnetic or-
der to occur at charge neutrality or ν = −1 at 1.16° [see
Fig. 4(a)]. Upon applying an electric field which lowers
the energy of electrons in the twisted layers (∆ < 0),
we find that the system is more susceptible to mag-
netic ordering. Overall, we find mainly FIM order in
electron-doped systems, but the hole-doped systems do
not generally become more susceptible to magnetic or-
dering, with the exception of ν = −1 at ∆ = −5 meV
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FIG. 5. (a) Magnetic phase diagram of 1.16° AtABC as a function of potential difference between adjacent layers ∆ (which is
proportional to a perpendicular electric field) and integer doping level ν per moiré unit cell. Blue corresponds to ferromagnetic
order, orange corresponds to ferrimagnetic order, and red corresponds to anti-ferromagnetic order. Regions where the critical
value of the Hubbard parameter is smaller than its physical value are hatched. (b) Critical interaction strength Uc required for
the onset of magnetic instabilities in 1.16° AtABC as a function of layer-dependent onsite potential difference ∆ and integer
doping levels in the flat bands ν.

[see Fig. 5(b)]. Therefore, the electron-hole asymmetry of
the magnetic phase diagram becomes more pronounced
in an electric field which lowers the energy of the elec-
trons in the twisted layers relative to the other layers. On
the other hand, electric fields which increase the energy
of the electrons in the twisted layers (∆ > 0) generally
cause the system to be less susceptible to magnetic order-
ing. For electron-doped ∆ > 0 systems in a small field,
we find that FIM occurs at ν = 1, 2, but for larger field
strengths this magnetic order disappears. In experiments
on magic-angle AtAB performed by Chen et al. [44], there
were similar trends in terms of where the correlated insu-
lating states occur in the space of doping level and elec-
tric field. For an electric field which lowers the energy
of the monolayer (relative to the AB bilayer), correlated
insulating states were found at all integer electron dop-
ing levels, similar to tBLG [44]. Whereas, for an electric
field which lowers the energy of the AB stacked bilayer
(relative to the monolayer), a correlated insulating state
was only observed at ν = 2, similar to tDBLG [44]. As
we have found that AtABC has a similar electronic struc-
ture and electron interactions to AtAB, this also suggests
similarities in their broken symmetry phases.

In summary, we have established magic-angle AtABC
as a highly promising candidate for the observation of
broken symmetry phases, such as magnetic order. To
test our predictions, we propose that transport experi-
ments on magic-angle AtABC should be carried out to
measure the phase diagram as function of doping. Addi-
tionally, scanning tunnelling microscopy can be used to
verify the presence of an additional van Hove singular-
ity in AtABC. These measurement techniques can also
identify correlated insulating states and superconductiv-
ity. Promising future directions for theoretical work on
AtABC is to study its topological properties, possible
superconductivity mechanisms, and nematic ordering.
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I. ATOMIC STRUCTURE

We study commensurate moiré unit cells of monolayer graphene twisted on trilayer

graphene comprising of ABA or ABC stacking. The monolayer and trilayer are initially

stacked directly on top of each other, and the top monolayer is rotated anticlockwise

about an axis normal layers that passes through a carbon atom in the monolayer and (at

least) the top layer of the trilayer. The moiré lattice vectors are R1 = na1 + ma2 and

R2 = −ma1 + (n+m)a2 [1], where n and m are integers that specify the moiré unit cell in

terms of the graphene lattice vectors a1 and a2 with the lattice constant of graphene being

a0 = 2.42 Å.

In Figs. 1 and 2, we display the structure of the studied graphene twisted on tri-

layer graphene systems. These structures are obtained from minimising the energy of the

AIREBO-morse [2] and KC [3] potential for graphene, as implemented in LAMMPS [4]. As

mentioned in the main text, we find the relaxations of the graphene on trilayer graphene

systems have some resemblance to twisted bilayer graphene (tBLG) and also twisted double

bilayer graphene (tDBLG).

Both AtABC (graphene twisted on a ABC stacked trilayer graphene) and AtABA

(graphene twisted on a ABA stacked trilayer graphene) exhibit similar lattice reconstruc-

tion, as shown in Figs. 1 and 2, with the relaxation features being analogous to tBLG and

tDBLG with AB bilayers [5]. In both of these structures, the twisted graphene layer (layer

1) and the graphene layer that is in contact with the twisted layer (layer 2) undergo the most

significant relaxations. These two layers form a “tBLG unit”, and the relaxation effects of

these layers in AtABC and AtABA can be seen to be analogous. Namely, there are peaks

in the z-displacement in the AA regions of these layers, owing to the unfavourable stacking

order; and the in-plane displacements have an opposite sense in each layer, such that the

AB stacking order is increased relative to AA.

In layer 3 of both structures, there are similar magnitudes of the z-displacements as

layer 2. However, the in-plane displacements on layer 3 are significantly less pronounced

than layers 1/2. This indicates that the ABC and ABA stacking is not perfectly retained

throughout the whole moiré unit cell. In layer 4 there are similar in-plane and out-of-plane

relaxations as layer 3, but the magnitudes of the displacements are even smaller.

∗ These authors contributed equally
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FIG. 1. Out-of-plane and in-plane relaxations of AtABC for a twist angle of θ = 0.73◦. [(a)-(d)]

Out-of-plane displacements for layers 1 to 4, respectively; [(e)-(h)] In-plane displacements for layers

1 to 4, respectively.
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FIG. 2. Out-of-plane and in-plane relaxations of AtABA for a twist angle of θ = 0.73◦. [(a)-(d)]

Out-of-plane displacements for layers 1 to 4, respectively; [(e)-(h)] In-plane displacements for layers

1 to 4, respectively.

4



II. ELECTRONIC STRUCTURE FROM TIGHT-BINDING

The electronic structure was investigated with an atomistic tight-binding model, which is

a reliable method for determining the electronic structure of graphene-based moiré materials.

In the atomistic tight-binding formalism, the Hamiltonian is given by

Ĥ =
∑

i

εiĉ
†
i ĉi +

∑

ij

[t(ti − tj)ĉ
†
j ĉi + H.c.]. (1)

Here ĉ†i and ĉi are, respectively, the electron creation and annihilation operators associated

with the pz-orbital on atom i. The εi is the on-site energy of the pz-orbitals, which is used

to fix the Fermi energy at 0 eV. The hopping parameters t(ti − tj) between atoms i and j

(located at ti/j) are determined using the Slater-Koster rules

t(r) = γ1 exp{−(|r| − d)/δ0} cos2 ϕ+ γ0 exp{−(|r| − a)/δ0} sin2 ϕ. (2)

Here γ1 = 0.48 eV and γ0 = −2.70 eV correspond to σ and π hopping between pz-orbitals,

respectively. The carbon-carbon bond length is a = 1.397 Å and the interlayer separation

parameter is taken to be d = 3.2912 Å. The decay parameter of the hoppings is set to

δ0 = 0.184a0. The angle-dependence of hoppings are captured through ϕ, which is the

angle corresponding between the z-axis and the vector connecting atoms i and j. Hoppings

between carbon atoms whose distance is larger than the cutoff 10 Å are neglected.

In Fig. 3 we display additional band structures for AtABC, AtABA, AtAB and AtAtA

as a function of twist angle. There are similarities between the AtAB and AtABC band

structures, as discussed in the main text. An analogy can also be drawn between AtABA

and AtAtA, from the fact that both systems have a Dirac cone intersecting the flat moiré

bands.
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FIG. 3. Band structures from the atomistic tight-binding model along the high symmetry path.

Relaxed atomic positions were used in each case.
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III. HARTREE INTERACTIONS

The long-ranged electron-electron interaction contribution to the Hamiltonian can be

included through

εi =

∫
drφ2

z(r− τ i)VH(r), (3)

where φz(r) is the pz orbital of the carbon atoms and VH(r) is the Hartree potential. The

Hartree potential is determined from the electron density n(r) and the screened electron-

electron interaction W (r), as seen by

VH(r) =

∫
dr′W (r− r′)[n(r′)− n0(r

′)], (4)

where n0(r) is a reference electron density of the uniform system. The electron density is

determined through

n(r) =
∑

nk

fnk|ψnk(r)|2 (5)

where ψnk(r) is the Bloch eigenstate of the atomistic tight-binding model, with subscripts

n and k denoting the band index and crystal momentum, respectively; Nk is the number

of k-points in the summation of the electron density, and fnk = 2Θ(εF − εnk) is the spin-

degenerate occupancy of state ψnk with eigenvalue εnk (where εF is the Fermi energy).

Inserting the Bloch states in Eq. (5) gives

n(r) =
∑

j

njχj(r), (6)

where χj(r) =
∑

R φ
2
z(r − τ j − R) (with R denoting the moiré lattice vectors) and the

total number of electrons on the j-th pz-orbital in the unit cell being determined by nj =
∑

nk fnk|cnkj|2/Nk, with cnkj denoting the coefficients of the eigenvectors of the tight-binding

model.

The reference density is taken to be that of a uniform system, n0(r) = n̄
∑

j χj(r), where

n̄ is the average of nj over all atoms in the unit cell, which is related to the filling per

moiré unit cell ν through n̄ = 1 + ν/N , where N is the total number of atoms in a moiré

unit cell [6]. This reference density is taken to prevent overcounting the intrinsic graphene

Hartree contribution which should be included in the hopping parameters of Eq. (1).

In experiments, there is often a metallic gates above and below the moireé material, with

a hexagonal boron nitride (hBN) substrate separating the gates from moiré materials. These
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metallic gates add/remove electrons from moiré material and can also create electric fields

across the system. These gates also screen the electron interactions in moiré material, and

taking this effect into account has been shown to be important in tBLG [7]. Therefore, we

utilise a double metallic gate screened interaction

W (r) =
e2

4πε0εbg

∞∑

m=−∞

(−1)m√
|r|2 + (2mξ)2

, (7)

where ξ is the thickness of the hBN dielectric substrate, with dielectric constant εbg, sepa-

rating tDBLG from the metallic gate on each side [7–9]. We set ξ = 10 nm and the value of

εbg = 4 for all calculations.

In our atomistic model, we neglect contributions to the electron density from overlapping

pz-orbitals that do not belong to the same carbon atom, which is equivalent to treating

φ2
z(r) as a delta-function. Therefore, we calculate the Hartree on-site energies using

εi =
∑

jR

(nj − n̄)WRij, (8)

where WRij = W (R+τ j−τ i). If R = 0 and i = j, we set W0,ii = U/εbg with U = 17 eV [10].

To obtain a self-consistent solution of the equations, we use a 8×8 k-point grid to sample

the first Brillouin zone to converge the density in Eq. (5) and we sum over a 11×11 supercell

of moiré unit cells to converge the on-site energy of Eq. (8). Linear mixing of the electron

density is performed with a mixing parameter of 0.1 or less (i.e., the addition of 10 percent

of the new potential to 90 percent of the potential from the previous iteration). Typically,

the Hartree potential converges to an accuracy of better than 0.1 meV per atom within 100

iterations. For doping levels where the moiré material is metallic, smaller mixing values

and more iterations are sometimes needed to reach this convergence threshold as the lack of

smearing causes states very close in energy to flick between being occupied and un-occupied

in consecutive iterations.

In Fig. 4 we show the quasiparticle band structure for AtAB and AtABC for a number

of doping levels and twist angles. Overall, we find that the electronic structure is rather

insensitive to the long-ranged electron-electron interactions. We do observe some trends,

albeit with small magnitudes. Upon electron doping, we find that the Dirac cone of the

flat bands increases in energy relative to the quadratic/cubic bands. This is because the

Dirac cone is predominantly from the upper twisted layers, and upon filling these states

electrons are put into these layers, which in turn causes the Hartree potential to increase

8



on these layers and shift up the energy of these stats. The changes in the band structure

predominately come from layer-dependent differences, rather than in-plane variations. The

scale of the Hartree potential is quite small, and there is not a clean localisation of states

which can give rise to significant band distortions that are observed in tBLG. Therefore, we

can safely neglect the long-ranged Hartree interactions and just use the tight-binding model

for magnetic calculations.

FIG. 4. Band structures from the atomistic tight-binding model along the high symmetry path

with Hartree interactions at integer doping levels per moiré unit cell.
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IV. MAGNETIC STRUCTURE

This section shows the Random Phase Approximation (RPA) used to analyze the mag-

netic ordering tendencies of both AtABC and AtAB graphene (which are presented here).
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FIG. 5. Linecut of different magnetic ordering through the long diagonal of the moiré unit cell

for the three layers of AtAB graphene at various angles and fillings. The local stacking sequence

is shown at the bottom of each panel, where DW stands for the domain wall region of the moiré

pattern. (a): θ = 1.20◦, ν = 2 – ordering tendency that is strongly anti-ferromagnetic in each layer

with more pronounced localization in the twisted two layers. (b): θ = 1.20◦, ν = −3 – ordering ten-

dency that is mainly ferromagnetic in the twisted layers with reminiscent anit-ferromagnetic order,

with ferrimagnetic order in the lower layer. (c): θ = 1.25◦, ν = 3 – ordering where there is modu-

lated ferrimagnetic order in the layers with a relative twist angle, and uniform anti-ferromagnetic

order in the lower untwisted layer. (d): θ = 1.16◦, ν = 1 – order that has strongly modulated

ferrimagnetic order in all layers.
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FIG. 6. Magnetic phase diagram of AtAB graphene for twist angles (θ) around the first magic angle

and integer fillings (ν, where negative values are hole doped, 0 is charge neutrality and positive

values are electron doped). (a): Types of magnetic order: Blue corresponds to ferromagnetic order,

orange corresponds to ferrimagnetic order, and red corresponds to anti-ferromagnetic order. We

have hatched out the where the values of Uc are lower than 4 eV. (b): Critical interaction strength

Uc required for the onset of magnetic instabilities.

A. Random Phase Approximation

Following Refs. 11 and 12 to analyze the magnetic ordering tendencies of graphitic moiré

systems, we calculate the spin susceptibility χij(q, q0) in its long-wavelength, static limit

q = q0 = 0:

χ̂ = χ̂(q = 0, q0 = 0) =
T

Nk

∑

k,k0

Ĝ(k, k0) ◦ ĜT (k, k0). (9)

The Matsubara Green’s function reads Ĝ(k, k0) = (ik0 − Ĥ(k))−1 with the non-interacting

part of the Hamiltonian Ĥ(k). Since we approximate the interacting part of the Hamiltonian

by a local Hubbard interaction, the renormalized interaction reads

Ŵ =
U2χ̂

1 + Uχ̂
. (10)

Employing Stoner’s criterion, we find an ordered state if the smallest eigenvalue χ0 of the

matrix χ̂ reaches −1/U , or, vice versa, we can investigate the critical interaction strength

Uc = −1/χ0 below which the system will go into an ordered state. The eigenvector corre-

sponding to the eigenvalue χ0 is proportional to the system’s magnetization in its ordered

state. The numerical evaluation procedure is identical to the one presented in Ref. 12 – we

use Nk0 = 500 Matsubara frequencies and Nk = 24 momentum points at a temperature of

T = 10−4 eV.
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B. Results for AtAB

Similarly to the AtABC system, the magnetic orderings found in AtAB graphene can be

classified as modulated AFM order [Fig. 5 (a)], modulated FM in the top two layers and

FIM in the bottom layer [Fig. 5 (b)] and two types of FIM order [Fig. 5 (c), (d)]. Compared

to AtABC graphene, the Uc is low mostly at ν = 0 and ν = −3 [Fig. 6 (b)] with FM orders

being more prominent in the magnetic phase diagram [Fig. 6 (a)].
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