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ABSTRACT

We propose a new direct coupling scheme based on the overset technique to tackle moving boundary problems within the lattice Boltzmann
framework. The scheme is based on the interpolation of distribution functions rather than moments, that is, macroscopic variables, and
includes an additional hypothesis ensuring mass and momentum conservation at the interface nodes between fixed and moving grids. The
method is assessed considering four test cases and considering both the vortical and the acoustic fields. It is shown that the direct coupling
method results are in very good agreement with reference results on a configuration without any moving subdomain. Moreover, it is
demonstrated that the direct coupling method provides an improvement of the accuracy of the lattice Boltzmann overset algorithm for
aeroacoustics. In particular, a convected vortex test case is studied and reveals that the direct coupling approach leads to a better ability to
conserve the vortex structure over time, as well as a reduction in spurious acoustic distorsions at the fixed/moving interface.
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I. INTRODUCTION

Fluid flows around rotating systems are nowadays found in
numerous industrial applications, for example, fans, pumps, propel-
lers, turbomachinery components, wind turbines, and blades. To bet-
ter understand the physical phenomena involved in this type of flows,
experiments may fail at providing enough data for a precise analysis of
the induced complex flow field because of technological limitations of
the measurements techniques. Consequently, the use of computational
methods to tackle the modeling of flows around moving and/or
deformable geometries has increasingly grown into a popular research
topic.

In the past few decades, the ever-increasing advancements in
computational technology have enabled the regular use of computa-
tional fluid dynamics for numerous types of flows. Most commonly,
Navier–Stokes solvers using classical finite differences, finite volume,
or finite element methods are used. However, in recent years, the lat-
tice Boltzmann (LB) method has also emerged as a powerful alterna-
tive to solve the weakly compressible Navier–Stokes equations. Rather
than solving the macroscopic conservation equations, the LB method
is a statistical approach that describes a given fluid flow through the
projection of the Boltzmann equation over a Hermite polynomial

family, which provides a discrete equation based on particle distribu-
tion functions. The LB method is easily parallelizable and can deal
with complex geometries and, on that account, is now widely used to
model and simulate a large variety of phenomena [multiphase flows,
combustion, turbulence, compressible, and thermal flows, see, e.g.,
Shan and Chen (1993), Filippova and H€anel (2000), Succi (2001),
Sagaut (2010), Shan et al. (2006), Feng et al. (2019), Ma et al. (2020),
Guo et al. (2020), Zhao et al. (2020), and Zhan et al. (2021)].

However, while many problems are now solved using classical
fixed grids, the case of fluid flows involving moving or deformable
bodies brings out additional complexity. Such flows, as opposed to the
ones involving stationary bodies only, indeed naturally generate signif-
icant computational costs when fixed grids are used, due to the con-
stant re-meshing needed every time the body displaces in space.

Some strategies were therefore proposed over the past to tackle
this issue. One of them is the well-known immersed boundary method
(IBM), introduced by Peskin (1972) and (2002), that consists in repre-
senting the fluid–structure interactions by the construction of a series
of Lagrangian marker points that exactly follow the fluid and for each
of which a judiciously chosen force is imposed. Originally developed
within the Navier–Stokes framework, the IBM has been extended to

Phys. Fluids 33, 053607 (2021); doi: 10.1063/5.0044994 33, 053607-1

Published under an exclusive license by AIP Publishing

Physics of Fluids ARTICLE scitation.org/journal/phf

https://doi.org/10.1063/5.0044994
https://doi.org/10.1063/5.0044994
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0044994
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0044994&domain=pdf&date_stamp=2021-05-14
https://orcid.org/0000-0002-6852-2839
https://orcid.org/0000-0001-8234-6096
https://orcid.org/0000-0002-5397-1324
https://orcid.org/0000-0002-3785-120X
mailto:meissambahlali@gmail.com
https://doi.org/10.1063/5.0044994
https://scitation.org/journal/phf


LB methods in several papers, for example, Feng and Michaelides
(2004), Zhu et al. (2011), and Favier et al. (2014). Another popular
method is the Arbitrary Lagrangian–Eulerian (ALE) approach, which
combines the Eulerian approach (far from the body), and the
Lagrangian viewpoint (in the vicinity of the body). Thus, the equations
are written on a mesh that moves in an arbitrary fashion in the vicinity
of the body. The ALE approach has also been extended in several
works to LB methods, see, for example, Meldi et al. (2013) for the sim-
ulation of immersed moving solids in low-speed incompressible flows,
or more recently Saadat and Karlin (2020) for LB compressible flow
simulations on unstructured moving meshes. In addition to this non-
exhaustive list of methods, one can mention the so-called overset tech-
nique, on which the present paper is based. The overset method con-
sists in decomposing the domain into one fixed grid and one moving
grid, the rotating body being tied to the moving one. Both grids share
an overlapping region and communicate through their common inter-
faces thanks to some interpolations. The overset method has recently
been used in several LB studies of flows around moving bodies, among
which Li (2011), Zhang et al. (2011), Far et al. (2020), and Lallemand
and Luo (2020).

In particular, in the present work, we propose two different
ways of communicating the information at the interface between
moving and fixed grids, within the same computational framework.
The first one consists in a classical interpolation of macroscopic
values, which further leads to the reconstruction of the distribution
functions at the interface. This method is referred to in the present
paper as the “original overset” method. The second approach is
based on the interpolation of distribution functions rather than
moments, as opposed to the previous overset methods reported in
the literature. Additionally, hypotheses ensuring mass and momen-
tum conservation at the interface nodes between fixed and moving
grids are drawn. In the present paper, this second approach is
referred to as the “direct coupling (DC) overset” method. Even
though the present work does not entirely address this issue in the
sense that it still makes use of an overset framework, it is worth not-
ing that one of the final aims of the direct coupling approach is to
completely eliminate the existent overlapping area, thereby helping
minimize the effort for parallelization as duplication of points
would then be prevented. In this regard, the present work can be
seen as a first step toward this objective by providing a tighter link
between moving and fixed grids, as will be further detailed over
Secs. II and III.

The direct coupling method is inspired by the work of Astoul
et al. (2020), which deals with the modeling of abrupt resolution tran-
sitions of non-uniform grids and was shown to outstandingly improve
the accuracy of the grid interface for aeroacoustic applications. The
objective of the present work is to propose an extension of this method
to the moving subdomain boundary problem and to assess its capabili-
ties both for aerodynamic and aeroacoustic applications, in compari-
son to the original overset method developed within the same
framework. In particular, one of the main motivations is to improve
the ability of lattice Boltzmann methods (LBM) to capture acoustic
properties in the context of moving boundaries, given the above-
mentioned outstanding improvements observed in Astoul et al.
(2020)’s work on grid refinement. Aeroacoustic applications are of
particular interest because of the existing significant gap in research on
this topic when moving boundaries are involved.

More precisely, the extension to overset rotating/fixed grid transi-
tions puts forward different physical and mathematical elements from
the ones exposed in Astoul et al. (2020), for example,

• There is no re-scaling of quantities since the mesh resolution is
constant.

• The transition from fixed to moving and moving to fixed grids
must properly take into account both the geometrical rotation of
the grid and the non-inertial/inertial grid transition.

In this context, the present work describes a new algorithm
capable of handling this type of transition, thus allowing us to sim-
ulate fluid flows involving rotating subdomains with a direct cou-
pling approach.

This paper is organized as follows. In Sec. II, we briefly describe
the concepts of the lattice Boltzmann method. The hybrid recursive
regularized (HRR) collision model and the overset scheme as well as
their coupling in the present methodology are presented. Section III
discusses in detail the theoretical and numerical aspects of the direct
coupling overset method developed in our work. Finally, Sec. IV
presents a numerical validation of the direct coupling overset method
with three aerodynamic test cases (an uniform flow, a Poiseuille flow,
and an uniform flow past a rotating cylinder) and two aeroacoustic
test cases (an acoustic pulse and a convected vortex).

II. THE LATTICE BOLTZMANNMETHOD USING AN
OVERSET TECHNIQUE AND A HYBRID RECURSIVE
REGULARIZED COLLISIONMODEL
A. The hybrid recursive regularized collision model

Only the basic concepts of the lattice Boltzmann method
will be presented here. For further details, the reader is referred
to Kr€uger et al. (2017), Succi (2001), and Aidun and Clausen
(2010).

The lattice Boltzmann equation can be used to describe the evo-
lution in time and space of the discrete particle distribution function
fiðx; tÞ, which stands for the probability to observe a particle at posi-
tion x and at time t with discrete velocity ci. With no external force,
the lattice Boltzmann equation reads

fiðx þ ci; t þ 1Þ � fiðx; tÞ ¼ Xiðx; tÞDt; (1)

where Xiðx; tÞ is the collision operator and Dt is the time step, which
is taken equal to one hereafter.

The collision model that has been adopted in this work is the
hybrid recursive regularized (HRR) model (Latt and Chopard,
2006; Malaspinas, 2015; Coreixas, 2018; Jacob et al., 2018), for its
overall increased stability and accuracy in comparison with the
classical Bhatnagar–Gross–Krook (BGK) collision model
(Bhatnagar et al., 1954). In particular, the HRR model has been val-
idated across our investigations in different configurations involv-
ing moving subdomains and a clear enhancement in stability has
been observed.

The LB method scheme for the HRR model is given by

fi ¼ f ð0Þi þ f ð1Þi ; (2)

where f ð0Þi and f ð1Þi are respectively the equilibrium and off-
equilibrium distribution functions, which are expressed as
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where wi and cs are, respectively, the lattice weights and the speed of
sound of the lattice, the HðnÞ

i are the discrete Hermite polynomials of
order n, and aðnÞ0 and aðnÞ1 are the Hermite coefficients of the equilib-
rium and off-equilibrium distribution, respectively,

aðnÞ0 ¼
Xq�1

i¼0

H
ðnÞ
i f ð0Þi ; (5)

aðnÞ1 ¼
Xq�1

i¼0

H
ðnÞ
i f ð1Þi ; (6)

where q is the number of discrete lattice velocities.
In addition,Pð1Þ is the deviatoric stress tensor, defined as

Pð1Þ ¼ að2Þ1 ¼
Xq�1

i¼0

H
ðnÞ
i f ð1Þi : (7)

Equations (3) and (4) involve macroscopic quantities, namely the
density q and the velocity u, which are defined as the zeroth and first
moments of the distribution functions, respectively,

q ¼
X
i

fi; (8)

qu ¼
X
i

cifi: (9)

In the framework of the HRR collision model, the equilibrium
Hermite coefficients write (Jacob et al., 2018)

aðnÞ0 ¼ aðn�1Þ
0 u; (10)

with

að0Þ0 ¼ q; (11)

and the off-equilibrium Hermite coefficients write

að2Þ1;ab ¼
X
i

H
ð2Þ
i;abðfi � f ð0Þi Þ; (12)

að3Þ1;abc ¼ uaa
ð2Þ
1;bc þ uba

ð2Þ
1;ca þ uca

ð2Þ
1;ab: (13)

B. The lattice Boltzmann overset method

In order to model the motion of moving or deformable bodies
within a given flow field, the method adopted in this work relies on
the overset technique.

To illustrate of this technique, let us take the example of a flow
past a rotating (square) cylinder (see Fig. 1).

Two grids along with their two respective coordinate systems are
used: a fixed one and a moving one. The solid body is tied to the mov-
ing grid, and the red area in Fig. 1 is an overlapping region shared by
the two grids. The lattice Boltzmann equation is solved on each grid:
on the fixed grid, it is done through Eq. (1), but as the moving grid is
non-inertial, inertial forces have to be taken into account through an
external forcing term Fiðx; tÞ as

fiðx þ ci; t þ 1Þ � fiðx; tÞ ¼ Xiðx; tÞ þ 1� 1
2s

� �
Fiðx; tÞ: (14)

FIG. 1. Flow past a rotating square cylinder: representation of the interaction
between fixed and moving grids.
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The inertial forces included in the forcing term Fiðx; tÞ are,
namely, the Coriolis and centrifugal forces. They are expressed as

F ¼ q �x� ðx� rÞ � 2x� uc � dx
dt

� r

� �
; (15)

where x is the angular velocity of the moving grid, r is the distance
vector from the origin point of the moving grid to the fluid position,
and uc is the velocity containing the so-called half-force correction
(Kr€uger et al., 2017)

uc ¼ uþ F
2q

: (16)

Thus, uc is equal to the velocity u shifted by F=ð2qÞ, which allows
to obtain second-order accuracy (Zhang et al., 2011; Far et al., 2016;
Kr€uger et al., 2017). This velocity is used at the collision step to calcu-
late the equilibrium distribution functions.

More precisely, the external forcing term Fiðx; tÞ uses the scheme
introduced by Guo et al. (2002), leading to

Fiðx; tÞ ¼ wi
ðci � ucÞ � F

c2s
þ ðci � ucÞðci � FÞ

c4s

 !
; (17)

where the discrete lattice velocities ci are the ones related to the mov-
ing grid as the source term is always computed in the moving grid in
its own reference frame.

C. The border condition problem in the lattice
Boltzmann overset framework

In this section, we present the border condition problem in the
lattice Boltzmann overset framework. As previously mentioned, there
are two grids along with their two respective coordinate systems: a
fixed one and a moving one. The solid body, if there is one, is tied to
the moving grid. The two grids share an overlapping region, which is
represented in red in Fig. 1. Information between the two grids is
exchanged at the borders as shown in Fig. 1 and act as somewhat
boundary conditions for the two grids. We refer to this issue as the
“border condition problem.”

Let us consider the D2Q9 lattice for the sake of simplicity and
zoom in at the fixed to moving border (Fig. 2). In Fig. 2, the dashed
arrows represent the unknown distribution functions fi after a collision
step, while the continuous arrows stand for the known distribution
functions. The border condition problem can be rephrased as: How to
reconstruct the unknown distribution functions?

As mentioned in Sec. I, we propose two ways of addressing this
issue. The first one, referred to as the original overset method, is widely
used in the literature and consists in a classical interpolation of macro-
scopic values further leading to the reconstruction of the distribution
functions at the mesh interface. On the other hand, the second
approach, referred to as the direct coupling method, is based on the
interpolation of distribution functions rather than moments and addi-
tionally draws complying hypotheses on mass and momentum
conservation.

The detailed theoretical and numerical steps involved in both
these methods are now exposed in the following.

D. The original overset-HRRmethod

In the following, any quantity related to the fixed grid or moving
one will be referred to with a f orm superscript, respectively.

1. Fixed to moving border

Let xm be the position of a border node of the moving grid.
In the original overset-HRR algorithm, the macroscopic variables

(q, u,Pð1Þ) on the fixed grid are interpolated onto the border nodes of
the moving grid through a bilinear interpolation using k¼ 8 interpo-
lating nodes as

qfI ðxmÞ ¼ /ðqf ðxfkÞÞ; k 2 1::8½ �; (18a)

ufI ðxmÞ ¼ /ðuf ðxfkÞÞ; k 2 1::8½ �; (18b)

Pf ;ð1Þ
I ðxmÞ ¼ /ðPf ;ð1ÞðxfkÞÞ; k 2 1::8½ �; (18c)

where / is the bilinear interpolation operator and the I index means
that it is an interpolated value.

The newly interpolated velocities have then to be modified to
take into account (i) the geometrical rotation of the grid and (ii) the
acceleration of the non-inertial moving frame of reference.

Point (i) involves a classical rotation matrix:

ufI;RðxmÞ ¼ R ufI ; (19)

Pf ;ð1Þ
I;R ðxmÞ ¼ RPf ;ð1Þ

I ; (20)

where the R index means that it is a geometrically rotated value.
Point (ii) implies the removal of the relative velocity of the mov-

ing grid with respect to the fixed grid vr ¼ r � x, where x is the
angular velocity of the moving grid and r is the distance vector from
the origin point of the moving grid to the fluid position

ufI;R;P ¼ ufI;R � vr ; (21)

where the P index means that it is a value taking into account the tran-
sition to a non-inertial moving reference frame.

FIG. 2. Representation of the fixed to moving border. The black dashed arrows
represent the unknown distribution functions after a streaming step, while the black
continuous arrows stand for the known distribution functions. On the right part of
the figure, a graphical representation of the interpolation process from the fixed to
the moving grid is also shown, where the red circle stands for the interface moving
node to be interpolated and the four blue squares stand for the four surrounding
fixed interpolating nodes.
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In conclusion, the macroscopic variables on the moving grid
interface nodes are reconstructed as

qmðxmÞ ¼ qfI ðxmÞ; (22)

umðxmÞ ¼ ufI;R;PðxmÞ; (23)

Pm;ð1ÞðxmÞ ¼ Pf ;ð1Þ
I;R ðxmÞ: (24)

The distribution functions at location x ¼ xm can be recon-
structed using Eqs. (3) and (4) and the newly interpolated and trans-
formed qm and um as follows:

f mi;reg ¼ gð0Þðqm; umÞ þ gð1Þðqm; um;Pm;ð1ÞÞ; (25)

where gð0Þðqm; umÞ ¼ f ð0Þi and gð1Þðqm; um;Pm;ð1ÞÞ ¼ f ð1Þi of Eqs. (3)
and (4).

Finally, at this stage, the transition to a non-inertial moving
frame must also be taken into account in the distribution functions as

f mi ¼ f mi;reg �
1
2
Siðqm; umÞ ¼ f̂i

f
; (26)

where Si is the source term standing for the Coriolis and centrifugal
forces related to the non-inertial rotating frame, namely,

Si ¼ wi
ðci � ucÞ � F

c2s
þ ðci � ucÞðci � FÞ

c4s

 !
: (27)

Also, the^symbol means that f̂
f

i is the final value of the distribu-
tion function using the macroscopic data coming from the fixed grid
at the very end of the algorithm, meaning after all transformations
have been performed (interpolation, geometrical rotation, change of
reference frame).

2. Moving to fixed border

The same rationale may be used for the moving to fixed border,
except that:

• instead of removing vr ¼ r � x from the velocity, it is added.
This is done at the very beginning of the algorithm, when extract-
ing the eight interpolating velocities from the moving grid, since
this is where vr is exactly known (i.e., in the moving region)

8k 2 1::8½ �; umP ðxmk Þ ¼ umðxmk Þ þ vrðxmk Þ; (28)

• the fixed frame being the inertial reference frame, there is no
source term Si and

f fi ¼ f fi;reg ¼ gð0Þðqf ; uf Þ þ gð1Þðqf ; uf ;Pf ;ð1ÞÞ ¼ f̂i
m
: (29)

III. A NEW LATTICE BOLTZMANN DIRECT COUPLING
OVERSET METHOD FOR THE MOVING SUBDOMAIN
BOUNDARY PROBLEM

As mentioned above, the direct coupling method sets its starting
point on the interpolation of distribution functions rather than
moments, as opposed to the previous overset methods reported in the
literature. This raises a number of issues, which are now detailed in the
following paragraph.

A. Rotation and interpolation of distribution functions
in the context of the overset technique

1. Fixed to moving border

In order to interpolate the distribution functions from one grid
to the other, the first step is to geometrically rotate the set of distribu-
tion functions through the rotation of their Hermite polynomial basis,
yielding

f fi;R ¼
XN
n¼0

Xq�1

j¼0

1
n!

f fj H
ðnÞðcfj Þ �HðnÞðcmi Þ; (30)

where the R index means that it is a geometrically rotated value and
cmi is obtained through the rotation matrixR

cmi ¼ R cfi : (31)

Then, f fi;R can be interpolated onto the moving border nodes with
a bilinear interpolation method using k¼ 8 interpolating nodes as

f mi;R;IðxmÞ ¼ /ðf fi;RðxfkÞÞ; k 2 1::8½ �; (32)

where / is the bilinear interpolation operator and the I index means
that it is an interpolated value.

The macroscopic variables can then be reconstructed as

qm ¼
Xq�1

i¼0

f mi;R;I ; (33)

um ¼
Xq�1

i¼0

cif
m
i;R;I : (34)

It should be noted that the deviatoric stress tensor is reconstructed
by interpolation and rotation, exactly as in the original method, that is,
Pm;ð1ÞðxmÞ ¼ Pf ;ð1Þ

I;R ðxmÞ following Eqs. (18c), (20), and (24).
The ultimate step is to take into account the transition from a

fixed frame to a non-inertial moving frame. This is done by removing
the relative velocity of the moving grid with respect to the fixed grid vr
from the newly calculated velocity um. Then, the equilibrium and non-
equilibrium functions are reconstructed as

f f ;ð0Þi;R;I;PðxmÞ ¼ gð0Þðxm;qm; um � vrÞ; (35)

f f ;ð1Þi;R;I;PðxmÞ ¼ gð1Þðxm;qm; um � vr ;P
m;ð1ÞÞ; (36)

where the P index means that it is a value taking into account the tran-
sition to a non-inertial moving reference frame.

Finally, the source term Si standing for the Coriolis and centrifu-
gal forces related to the non-inertial rotating frame can be calculated
and removed from the distribution functions, so that the transition to
a non-inertial moving frame is also taken into account in the distribu-
tion functions

f mi ¼ f f ;ð0Þi;R;I;P þ f f ;ð1Þi;R;I;P �
1
2
Siðqm; umÞ ¼ f̂

f

i : (37)

Also, the^symbol means that f̂
f

i is the final value of the distribu-
tion function initially coming from the fixed grid at the very end of the
algorithm, meaning after it has gone through all transformations (geo-
metrical rotation, interpolation, change of reference frame).
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2. Moving to fixed border

The same rationale may be used for the moving to fixed border,
except that:

• instead of removing vr ¼ r � x from the interpolating velocities
umk , it is added. This is done at the very beginning of the algo-
rithm, prior to the geometrical rotation and interpolation of the
distribution functions, since this is where vr is exactly known (i.
e., in the moving region)

f m;ð0Þ
i;P ¼ gð0Þðxmk ;qmk ; umk þ vrÞ; (38)

f m;ð1Þ
i;P ¼ gð1Þðxmk ;qmk ; umk Þ; (39)

• the fixed frame being the inertial reference frame, there is no
source term Si and

f fi ¼ f f ;ð0Þi;P;R;I þ f f ;ð1Þi;P;R;I ¼ f̂
m

i : (40)

B. Description of the direct coupling overset method

For the sake of synthesis, in the following, the whole approach is
detailed for the fixed to moving border but is easily transferrable to the
moving to fixed border by interverting the f andm superscripts.

Let us first recall what was done in Astoul et al. (2020) in terms
of direct coupling for grid refinement, in order to compare and iden-
tify the developments to perform in our case to elaborate our extension
of the method to moving subdomains.

Firstly, as explained by Astoul et al. (2020), mesh refinement
implies rescaling of physical quantities. In particular, viscosity and,
consequently, relaxation time were modified in their work. This pro-
vided the following rescaling relation for the non-equilibrium part of
the distribution functions on the co-located fine/coarse nodes of the
interface between fine and coarse grids

f fine;ð1Þi ¼ R f coarse;ð1Þi ; (41)

where f fine;ð1Þi and f coarse;ð1Þi are the distribution functions at the
interface related, respectively, to the fine and coarse grids, and
R ¼ 0:5 sfine=scoarse is the rescaling factor.

In our case, there is no mesh refinement between fixed and moving
frames; therefore, R¼ 1. However, additional complexity is introduced
by the presence of two different reference frames. Geometrical rotation
and transition from a fixed frame to a non-inertial moving frame of ref-
erence (and vice versa) must therefore be addressed properly.

Second, in the work of Astoul et al. (2020), the interface shows
some co-located coarse and fine nodes, which are used to reconstruct
the missing populations on both coarse and fine grids. In the case of
moving subdomains, we do not necessarily have co-located fixed and
moving nodes as the moving grid moves freely independently from the
fixed grid (see Fig. 2). Consequently, considering the case of the fixed to
moving border, we assume at the interface the following relation:

f m;ð1Þ
i ðxmÞ ¼ gð1Þðqm; um;Pm;ð1Þ

I Þ; (42)

where Pm;ð1Þ
I is the deviatoric stress tensor that has been interpolated

from the fixed region (with the same bilinear interpolation method

with k¼ 8 interpolating nodes as for the previously exposed interpola-
tion of density or velocity)

Pm;ð1Þ
I ðxmÞ ¼ / ðPf ;ð1ÞðxfkÞÞ; k 2 1::8½ �; (43)

where / is the bilinear interpolation operator and the I index means
that it is an interpolated value. In Eq. (43),Pf ;ð1Þ ðxfkÞ is defined as

Pf ;ð1ÞðxfkÞ ¼
Xq�1

i¼0

H
ðnÞ
i ðf fi ðxfkÞ � f f ;ð0Þi ðxfkÞÞ: (44)

The idea behind Astoul et al. (2020)’s work on grid refinement
was to reconstruct the missing populations based on the following
hypothesis ensuring mass and momentum conservation at the co-
located fine/coarse nodesX

i

Uif
coarse; 1ð Þ
i ¼

X
i
Uif

fine; 1ð Þ
i ¼ 0; (45)

where Ui ¼ ð1; cx;i; cy;i; cz;iÞT:
As previously mentioned, in our case, there are no co-located

fixed and moving nodes. Therefore, we propose to re-write Eq. (45) at
each of the interface moving nodes xm (red circles in Fig. 2)X

i

Uif
m; 1ð Þ
i ¼ 0: (46)

Using the relation f ð1Þi ¼ fi � f ð0Þi ðXÞ, where X ¼ ðq; ux; uy; uzÞ
is the vector of relevant macroscopic variables, it yields

X
i

Ui f mi � f m; 0ð Þ
i Xð Þ

� �
¼ 0: (47)

The populations f mi are computed following the whole procedure
of (i) geometrical rotation (ii) interpolation (iii) change of reference
frame, exposed in Subsection IIIA, meaning that f mi of Eq. (47) is
equal to final f̂

f

i of Subsection IIIA. This readsX
i

Ui f̂
f

i � f m; 0ð Þ
i Xð Þ

� �
¼ 0: (48)

The equilibrium function being non-linear on X, Eq. (48), is a
four-dimensional non-linear system on X.

In this system, all distribution functions f̂
f

i are known. The only
unknown is X. Thus, solving Eq. (47) allows to obtain all macroscopic
variables X ¼ ðq; ux; uy; uzÞ at the interface moving nodes xm.
Consequently, the equilibrium f m;ð0Þ

i and off-equilibrium f m;ð1Þ
i popu-

lations can be reconstructed, leading to the reconstruction of the total
moving populations at the interface through the relation

f mi ¼ f m;ð0Þ
i þ f m;ð1Þ

i ; (49)

where f m;ð1Þ
i ðxmÞ ¼ gð1Þð�qm; �um;Pm;ð1Þ

I Þ as assumed in Eq. (42) and
�qm; �um are, respectively, the newly obtained density and velocity after
solving the non-linear system Eq. (47).

C. Resolution of the non-linear system

The four-dimensional non-linear system on X of Eq. (48) can be
re-written as follows:

G Xð Þ ¼ 0; (50)

where GðXÞ ¼Pi Ui ðf̂ fi � f m;ð0Þ
i ðXÞÞ.
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Equation (50) is solved using an iterative Newton–Raphson
method. This method is detailed in Astoul et al. (2020) and is recalled
here for the sake of completeness.

The Newton–Raphson method is a root-finding method, which
produces successively better approximations to the roots of a real-
valued set of equations, in this case Eq. (50), GðXÞ ¼ 0.

Let X0 be an initial guess for a root of G, and dX a small variation
around the root X0. Then, the Newton–Raphson method provides a
good approximation for the root as

X0 þ dX ¼ X0 � J�1
G ðX0ÞGðX0Þ; (51)

where JGðX0Þ ¼ dGðX0Þ=dX is the Jacobian matrix of G evaluated at
X0.

This algorithm can then be applied iteratively to obtain

8n � 0; Xnþ1 ¼ Xn � J�1
G ðXnÞGðXnÞ: (52)

The convergence criteria are set at the user’s convenience; here,
we consider the method as converged when jjdXjj < 10�10.

In Eq. (52), the Jacobian matrix is obtained thanks to the formal
computation software Maxima, which provides an analytical expres-
sion for it. Then, the inversion of the Jacobian matrix as well as the
Newton–Raphson algorithm is implemented in the LB method code,
namely the ProLB solver (www.prolb-cfd.com), which has been used
to carry out this research.

Let us summarize the present direct coupling overset methodol-
ogy. The method is composed of two parts.

The first part is the interpolation of distribution functions rather
than macroscopic variables, which is believed to be more versatile and
adequate to replace the current method with the conventional macro-
scopic value-based interpolations, as it is easier to couple it to other
distribution function-based techniques based on the computation of
high-order moments of the distribution functions. Additionally, it can
lead to better conservation properties as all macroscopic variables are
reconstructed based on the same distribution functions.

The second part is the solving of the non-linear system through
the Newton–Raphson method to filter out the undesired zeroth- and
first-order moments of the non-equilibrium distribution functions.
This second part is responsible for the major improvements observed
on the convected vortex test case as will be seen later on. On that
account, the DC method would be especially recommended for prob-
lems where, at the fixed/moving grid interface, non-nullity of the
zeroth- and first-order moments of the non-equilibrium populations
is observed.

IV. NUMERICAL VALIDATION OF THE NEW DIRECT
COUPLING OVERSET-HRR ALGORITHM

As for any new model, we have made the choice to validate the
direct coupling overset-HRR algorithm first with academic test cases.
The objective in this section is to show the numerical validations and
the associated methodology, covering and separating different physical
effects, from the simplest case to more complex configurations.

In this context, the three following aerodynamic test cases are
first considered: an uniform flow (free shear-flow), a Poiseuille flow
(wall-bounded flow), and an uniform flow past a rotating cylinder
(complex flow including a moving object). Then, we address two aero-
acoustic test cases: an acoustic pulse and a convected vortex. It should
be noted here that the aerodynamic test cases serve a validation

purpose, while the major improvements brought out by the present
research are obtained for aeroacoustic applications (see the convected
vortex test case below).

In this entire section, the results provided by the direct coupling
approach are compared to ones obtained with the original method
and to a reference simulation using a single fixed grid with no moving
subdomain.

A. Aerodynamic test cases

1. Uniform flow

A pseudo-2D uniform flow including an empty moving subdo-
main is considered to investigate the capability of the method to preserve
uniform flows, with density qref ¼ 1 and velocity uref ¼ ð0:1; 0:0Þ,
leading to a Mach number Ma¼ 0.17. A Dirichlet velocity boundary
condition is imposed at the inlet (uinlet ¼ uref ) and a Dirichlet density
boundary condition at the outlet (qoutlet ¼ qref ). The Reynolds number
is Re¼ 90. The computational domain is a box of dimensions
Lx ¼ 100� Ly ¼ 100. It contains a fixed grid of the same dimensions
and a moving grid of dimensions Lmx ¼ 14� Lmy ¼ 14. The origin and
center of rotation are, respectively, located at points (0, 0) and (50, 50).
The moving grid rotates at the angular velocity xz ¼ 0:01. Both fixed
and moving grids within the computational domain along with a repre-
sentation of the uniform velocity field are sketched on Fig. 3.

The L1 norm and the L1 norm error of a given field X are
defined, respectively, as

jjXjj1 ¼
1
N

XN
i¼1

jX xið Þj (53)

and

jjEX jj1 ¼
1
N

XN
i¼1

jXref ðxiÞ � XðxiÞj
jXref ðxiÞj ; (54)

where N is the number of nodes in the fixed grid.
The temporal evolution of the spatial L1 norm over the whole

computational domain of the density field jjqjj1 and the longitudinal
velocity field jjuxjj1 is plotted in Fig. 4. This L1 norm is computed in
the fixed grid relative to the overset computation so that comparisons

FIG. 3. Sketch of the computational domain for the uniform flow, including both the
fixed and the moving grids and a representation of the velocity magnitude field
(uref ¼ ð0:1; 0:0Þ).
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with the reference computation, which only includes a fixed grid, can
be performed.

It can be observed that the direct coupling method results agree very
closely with the reference results. More precisely, with regard to the

reference computation, the errors write jjEqjj1 ¼ 2:86 � 10�7 % for the
density and jjEux jj1 ¼ 6:54 � 10�6 % for the velocity at the last time step.

Additionally, leaving out the machine precision error, no
difference is observed between the direct coupling and the original

FIG. 4. Time evolution of the shifted spatial L1 norm of the density field jjqjj1 (left) and the velocity field jjuxjj1 (right), for the uniform flow test case. The direct coupling over-
set method is compared to the original method and to a reference computation not containing any moving subdomain.

FIG. 5. Density (top) and longitudinal velocity (bottom) profiles upstream (x¼ 15) and downstream (x¼ 85) of the rotating region, for the uniform flow test case. The direct
coupling overset method is compared to the original method and to a reference computation not containing any moving subdomain.
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spatial L1 norm computed values for both density and velocity
(j jjqjjOriginal1 � jjqjjDC1 jtfinal ¼ j jjuxjjOriginal1 � jjuxjjDC1 jtfinal ¼ 0).

This result was expected and can be explained by the following
two points:

(i) First, it is worth noting that in the special case of the uni-
form flow (mathematically, this case is equivalent to the
macroscopic vector X being a constant in R4), the interpola-
tion operator is commutable with the distribution function.
This means that interpolating the distribution functions
then computing the macroscopic values provides the very
same result as interpolating the macroscopic values then
reconstructing the distribution functions. In other words,
the reconstructed distribution function from the original
model [Eq. (26)] is equal to the distribution function
obtained after the rotation/interpolation/change of refer-
ence frame process [Eq. (37)].

(ii) Second, during our investigations, we have computed the
zeroth- and first-order moments of the non-equilibrium

TABLE I. Mean and maximum L1 norm error (%) on the density and longitudinal velocity vertical profiles of Fig. 5, for the original and DC overset methods and for the uniform
flow test case.

x¼ 15 Original method DC method

Mean ðjjEqjj1Þ (%) 1:668 800 001 297 654� 10�6 1:668 800 001 297 654� 10�6

Max ðjjEqjj1Þ (%) 5:960 000 004 634 480� 10�6 5:960 000 004 634 480� 10�6

Mean ðjjEux jj1Þ (%) 1:362 759 979 612 352� 10�5 1:362 759 979 612 352� 10�5

Max ðjjEux jj1Þ (%) 2:235 999 966 892 892� 10�5 2:235 999 966 892 892� 10�5

x¼ 85 Original method DC method

Mean ðjjEqjj1Þ (%) 1:311 200 001 019 586� 10�6 1:311 200 001 019 586� 10�6

Max ðjjEqjj1Þ (%) 5:960 000 004 634 480� 10�6 5:960 000 004 634 480� 10�6

Mean ðjjEux jj1Þ (%) 4:357 639 934 587 714� 10�5 4:357 639 934 587 714� 10�5

Max ðjjEux jj1Þ (%) 1:489 999 977 559 619� 10�4 1:489 999 977 559 619� 10�4

FIG. 7. Time evolution of the spatial L1 norm of the density field jjqjj1 (left) and the velocity field jjuxjj1 (right), for the Poiseuille flow test case. The direct coupling overset
method is compared to the original method and to a reference computation not containing any moving subdomain.

FIG. 6. Sketch of the computational domain for the Poiseuille flow, including both
the fixed and the moving grids and a representation of the velocity magnitude field
as imposed in Eq. (55).
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function at the moving/fixed interfaces, and for the uniform
flow test case, they are found to be of the order of 10�18

using the original model regardless. Since the purpose of the
direct coupling approach is to impose the condition of

nullity of both these zeroth- and first-order moments, and
given that for the uniform flow both distributions from Eqs.
(26) and (37) are equal [see point (i) above], it can be
deduced that the effect of the Newton–Raphson iteration

FIG. 8. Density (top) and longitudinal velocity (bottom) vertical profiles upstream (x¼ 15) and downstream (x¼ 85) of the rotating region, for the Poiseuille flow test case. The
direct coupling overset method is compared to the original method and to a reference computation not containing any moving subdomain.

TABLE II. Mean and maximum L1 norm error (%) on the density and longitudinal velocity vertical profiles of Fig. 8, for the original and DC overset methods and for the
Poiseuille flow test case.

x¼ 15 Original method DC method

Mean ðjjEqjj1Þ (%) 1:176 583 906 798 957� 10�4 1:174 208 598 866 126� 10�4

Max ðjjEqjj1Þ (%) 1:546 827 095 575 228� 10�4 1:428 284 107 822 683� 10�4

Mean ðjjEux jj1Þ (%) 7:881 696 528 406 885� 10�4 7:880 878 689 514 660� 10�4

Max ðjjEux jj1Þ (%) 3:638 914 170 708� 10�3 3:638 914 170 708� 10�3

x¼ 85 Original method DC method

Mean ðjjEqjj1Þ (%) 2:955 730 755 523 385� 10�5 2:955 730 755 523 385� 10�5

Max ðjjEqjj1Þ (%) 7:157 658 657 838 396� 10�5 7:157 658 657 838 396� 10�5

Mean ðjjEux jj1Þ (%) 1:364 851 243 599 0� 10�2 1:364 823 061 568 1� 10�2

Max ðjjEux jj1Þ (%) 2:430 288 413 781 0� 10�2 2:430 288 413 781 0� 10�2
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will be negligible. This is why, for the special case of the uni-
form flow, both original and direct coupling methods end
up providing the same results.

Figure 5 shows the density and velocity vertical profiles
upstream (x¼ 15) and downstream (x¼ 85) of the rotating region,
at the last time step. It can be seen that both overset methods (origi-
nal and direct coupling) provide results that are in a very good
agreement with the ones obtained by the reference computation.
The mean and maximum L1 norm errors on these profiles with
respect to the reference simulation are drawn in Table I. Full data
with maximum precision are shown here as the differences between
the computations are tiny in all test cases. It can be seen that the
error overall does not exceed 5:960� 10�6 % for density and
1:490 � 10�4 % for velocity.

2. Poiseuille flow

We now consider a pseudo-2D Poiseuille flow, which adds
more complexity with respect to the uniform flow test case, due to
the presence of velocity gradients. Both fixed and moving grids
within the computational domain have the same size as for the
uniform flow test case, that is, respectively, Lx ¼ 100� Ly ¼ 100
and Lmx ¼ 14� Lmy ¼ 14. The origin and center of rotation are,
respectively, located at points (0, 0) and (50, 50). The moving grid
rotates at the angular velocity xz ¼ 0:01. No-slip boundary condi-
tions are imposed on the upper and lower walls, while at the inlet
a velocity Poiseuille profile is imposed as follows (Re¼ 90,
Ma¼ 0.17):

ux;inlet ¼ ux;max
4y
Ly

� 4y2

L2y

 !
; (55)

uy;inlet ¼ 0; (56)

qinlet ¼ 1; (57)

where ux;max ¼ 0:1.
The corresponding computational domain velocity magnitude

field is sketched in Fig. 6.
The temporal evolutions of the spatial L1 norm of the density

field jjqjj1 and the longitudinal velocity field jjuxjj1 are plotted in
Fig. 7. Similarly to the uniform flow test case, the DC method’s results
agree very closely with the ones obtained by the original method
simulation: at the last time step, the absolute difference between the
two L1 norm computations for density and velocity is, respectively,

FIG. 9. Closeup at the fixed and the moving grids for the uniform flow past a rotat-
ing cylinder test case. The velocity magnitude field is also represented.

FIG. 10. Velocity streamlines (left) and vorticity field (right) for the uniform flow past a rotating cylinder test case.

TABLE III. Aerodynamic coefficients (uniform flow past a rotating cylinder test case,
Re¼ 200, a¼ 1).

Original method DC method
Mittal and

Kumar (2003)

CL 1.168 043 262 926 71 1.168 034 110 111 57 1.068
CD 2.476 433 333 358 73 2.476 384 452 553 85 2.4

FIG. 11. Pressure coefficient Cp on the cylinder surface for the uniform flow past a
rotating cylinder test case. Original and DC methods are in a very close agreement
and compare very well with Mittal and Kumar (2003) DNS reference results.
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j jjqjjOriginal1 � jjqjjDC1 jtfinal ¼ 3:216� 10�10 and j jjuxjjOriginal1
�jjuxjjDC1 jtfinal ¼ 4:894� 10�11. In the end, the following error
values are found when compared to the reference computation:
jjEqjj1 ¼ 7:89� 10�5 % for the density and jjEux jj1 ¼ 7:10� 10�5 %
for the velocity at the last time step. These low levels of error support
the fact that both original and DC overset algorithms are thoroughly
able to pass through the moving subdomain without altering the qual-
ity of the channel flow solution.

Figure 8 shows the density and velocity vertical profiles
upstream (x¼ 15) and downstream (x¼ 85) of the rotating region,
at the last time step. It can be seen that both methods provide very
accurate results, which are in a satisfactory agreement with the ref-
erence simulation results. The mean and maximum L1 norm errors
on all these profiles drawn in Table II indeed show that the
error overall does not exceed 1:547� 10�4 % for density and
2:430� 10�2 % for velocity.

FIG. 12. Density (top), longitudinal velocity (center), and transverse velocity (bottom) vertical profiles upstream (x=D ¼ �10) and downstream (x=D ¼ 10) of the rotating
region, for the uniform flow past a rotating cylinder test case. Original and DC methods are in a very close agreement.
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3. Uniform flow past a rotating cylinder

In this section, additional complexity is introduced again by con-
sidering the case of the flow past a rotating circular cylinder. The com-
putational domain is a box of size Lx ¼ 798� Ly ¼ 798. It includes a
circular moving grid of radius 30. The moving grid rotates at the angu-
lar velocity xz ¼ 0:0017. The circular cylinder is of radius R¼ 10. It is
attached to the moving grid and therefore rotates in time at the same
angular velocity rate as the moving grid. At the inlet, an uniform veloc-
ity profile is imposed: uref ¼ ðU1 ¼ 0:017; 0:0Þ, while at the outlet
qref ¼ 1. The viscosity is imposed as � ¼ 1:70� 10�3, which yields a
Reynolds number of Re¼ 200. Defining the rotation ratio a as the
ratio between the local velocity at the rotating cylinder wall and the
free stream velocity (a ¼ Rxz=U1), the latter physical values yield
a¼ 1.0. Both fixed and moving grids within the computational
domain are sketched on Fig. 9, which also shows the velocity field. In
addition, velocity streamlines and vorticity field are shown in Fig. 10.
The velocity streamlines clearly show the disruption of wake symmetry
due to the cylinder rotation, while the vorticity field puts forward the
generation of the K�arm�an vortex structure.

Lift and drag coefficients have been computed at the end of the
simulation using the far-field integral method (Toubin and Bailly,
2015; Gariepy et al., 2013; Wilhelm et al., 2018) and are shown in
Table III. They are compared with Navier–Stokes direct numerical
simulation (DNS) results given by Mittal and Kumar (2003). It can be
seen that the aerodynamic coefficients obtained by both the original
and DC methods are in a good agreement with the reference DNS
results. In addition, the pressure coefficient Cp on the cylinder surface
has been plotted in Fig. 11. Again, the results obtained by both overset
methods compare very well with the reference DNS results of Mittal
and Kumar (2003). The small observed differences originates in the
post-processing step of reconstruction of the flow variables on the
solid surface since a body-fitted grid is not used in the present LBM
simulations (Cai et al., 2021).

Figure 12 shows the density and velocity vertical profiles
upstream (x=D ¼ �10) and downstream (x=D ¼ 10, where D¼ 20 is
the diameter of the cylinder) of the rotating cylinder. It can be seen
that the original and DC methods agree very closely with each other,

although slight differences are noticeable in comparison with the refer-
ence computation. These differences have been quantified in Table IV,
which shows the mean and maximum L1 norm errors on the profiles
with respect to the reference simulation. It can be seen that the error
overall does not exceed 4:167� 10�3 % for density and 6.813% for
the velocity magnitude. Therefore, both original and DC methods still
compare fairly well to the reference results considering the increased
complexity along with a much higher Reynolds number brought out
by the flow past a rotating cylinder test case.

Additionally, if one calculates the absolute difference values
between the two spatial L1 norm computations for density and veloc-
ity over the whole domain and at the last time step, tiny difference is
found: j jjqjjOriginal1 � jjqjjDC1 jtfinal ¼ 1:141� 10�9 and j jjujjOriginal1
�jjujjDC1 j ¼ 4:852� 10�6.

In conclusion, these low levels of error observed using the DC
method (interpolating distribution functions along with a
Newton–Raphson algorithm) allow to validate it as an alternative
method to the original one (interpolating macroscopic values) for
the computation and analysis of laminar flows past rotating solid
bodies.

TABLE IV. Mean and maximum L1 norm error (%) on the density and longitudinal velocity vertical profiles of Fig. 12, for the original and DC overset methods and for the uni-
form flow past a rotating cylinder test case.

x=D ¼ �10 Original method DC method

Mean ðjjEqjj1Þ (%) 2:980 363 525 742 923 6� 10�4 2:980 363 525 742 923 6� 10�4

Max ðjjEqjj1Þ (%) 8:333 402 778 411 081� 10�4 8:333 402 778 411 081� 10�4

Mean ðjjEjjujjjj1Þ (%) 3:799 049 107 179 938� 10�2 3:799 106 136 119 404 6� 10�2

Max ðjjEjjujjjj1Þ (%) 6:264 432 073 432 659� 10�2 6.264 431 322 722 924 �10�2

x=D ¼ 10 Original method DC method

Mean ðjjEqjj1Þ (%) 5:436 273 590 404 883� 10�4 5:436 273 590 404 883� 10�4

Max ðjjEqjj1Þ (%) 4:166 805 560 179 329� 10�3 4:166 805 560 179 329� 10�3

Mean ðjjEjjujjjj1Þ (%) 5:677 881 987 115 41� 10�1 5:679 093 365 767 347� 10�1

Max ðjjEjjujjjj1Þ (%) 6.812 550 348 059 371 6.813 554 108 265 357

FIG. 13. Sketch of the computational domain for the acoustic pulse test case,
including both the fixed and the moving grids and a representation of the density
field.
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B. Aeroacoustic test cases

1. Acoustic pulse

A pseudo-2D acoustic pulse including an empty moving subdo-
main is now considered. The computational domain is a periodic box
of dimensions Lx ¼ 100� Ly ¼ 100. It contains a fixed grid of the
same dimensions and a moving grid of dimensions Lmx ¼ 39� Lmy
¼ 39. The origin and center of rotation are, respectively, located

at points (0, 0) and (50, 50). The moving grid rotates at the angu-
lar velocity xz ¼ 0:000 59, and the kinematic viscosity is
� ¼ 1� 10�4. The acoustic pulse is initialized at the center of the
box as follows:

qðx; y; zÞ ¼ 1þ A �ðx � xcÞ2 þ ðy � ycÞ2
2R2

c

 !
; (58)

FIG. 14. Density, velocity magnitude, and velocity divergence horizontal profiles (y¼ 0.5), for the acoustic pulse test case. The direct coupling overset method is compared to
the original method and to a reference computation not containing any moving subdomain.

TABLE V. Mean and maximum absolute errors between the overset computations (original and DC) and the reference computation on the density and velocity horizontal pro-
files of Fig. 14, for the acoustic pulse test case.

Original method DC method

Mean j kqk1 � kqkREF1 j
� �

8:126 333 333 202 674� 10�7 8:126 333 333 202 674� 10�7

Max jkqk1 � kqkREF1 j
� �

1:192 500 000 080 088� 10�6 1:192 500 000 080 088� 10�6

Mean ðj kuk1 � jjujjREF1 jÞ 3:783 709 888 991 750� 10�7 3:783 664 374 708 644� 10�7

Max ðj kuk1 � jjujjREF1 jÞ 6:367 026 105 555 673� 10�7 6:366 852 250 907 429� 10�7
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u x; y; zð Þ ¼ 0; (59)

where A¼ 0.001, xc ¼ yc ¼ 50, and Rc¼ 10.
Both fixed and moving grids within the computational domain

along with a representation of the density field at an arbitrary time
step during the simulation are sketched on Fig. 13.

Figure 14 shows the horizontal profiles located at the center of the
domain (y¼ 50) of density, both components of velocity ux and uy and
velocity divergence, at the last time step. It can be seen that great agree-
ment is achieved between the results of both overset methods and the
reference computation. The velocity divergence profile is fairly smooth,
and no parasitic distorsions are observed whatsoever. The presence of a
rotating domain is thus not affecting the algorithm, and the acoustic
wave is very accurately propagated from the moving to the fixed grid.

For a more precise analysis, as with the previous test cases, quanti-
fied error values are drawn in Table V. It has been chosen here to show
only absolute difference errors rather than errors in % as defined in Eq.
(54). Indeed, given that the reference data set shows at some points very
tiny values (that tend to zero), using the error in % of Eq. (54) type of def-
inition leads to very high error values that have poor physical meaning. It
can be seen that the error overall does not exceed 1:193 � 10�6 for density
and 6:367 � 10�7 for velocity whatever the algorithm. These levels of error
remain fairly low and very similar whatever the algorithm, which allows
to validate both original and direct coupling overset methods as adequate
for the computation of an acoustic pulse with a rotating subdomain.

2. Convected vortex

More complexity is now introduced by addressing the case of a
convected vortex. This test case was previously shown to be likely to

FIG. 16. Density, longitudinal velocity ux, transverse velocity uy, and velocity divergence horizontal profiles (y¼ 50), for the acoustic pulse test case. The direct coupling over-
set method is compared to the original method and to a reference computation not containing any moving subdomain.

FIG. 15. Sketch of the computational domain for the convected vortex test case, includ-
ing both the fixed and the moving grids and a representation of the density field.
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generate spurious acoustics when crossing a plane refinement interface
in Gendre et al. (2017) and Astoul et al. (2020). Additionally, it has
been observed across our investigations that the original overset algo-
rithm may fail at conserving the vortex structure and consistency
when the vortex crosses a rotating subdomain. For these reasons, the
convected vortex is believed to be a challenging test case to assess the
efficiency of our new algorithm.

The computational domain for the pseudo-2D convected vortex
test case is a periodic box of dimensions Lx ¼ 200� Ly ¼ 200. It

contains a fixed grid of the same dimensions and a moving grid of
dimensions Lmx ¼ 79� Lmy ¼ 79. The origin and center of rotation
are, respectively, located at points (0, 0) and (100, 100). The moving
grid rotates at the angular velocity xz ¼ 0:006, and the kinematic vis-
cosity is � ¼ 1 � 10�10. The convected vortex is initialized at the center
of the box as follows (Re ¼ 4 � 1010,Ma¼ 0.17):

qðx; y; zÞ ¼ q0 exp � �2

2c2s
exp �ðx� xcÞ2 þ ðy� ycÞ2

R2
c

 ! !
; (60)

FIG. 17. Closeup at density contours generated by the original (left), the direct coupling (center), and the reference (right) computations, at t¼ 0 (top), t ¼ 10 tadv (center),
and t ¼ 20 tadv (bottom), where tadv is the advection time. The direct coupling method allows a better conservation of the vortex structure and consistency than the original
overset method. Color maps are tightened to enhance visualization of the vortex diffusion over time.
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uxðx; y; zÞ ¼ Ux � �
y� yc
Rc

� �
exp �ðx� xcÞ2 þ ðy� ycÞ2

2R2
c

 !
; (61)

uyðx; y; zÞ ¼ �
x � xc
Rc

� �
exp �ðx � xcÞ2 þ ðy � ycÞ2

2R2
c

 !
; (62)

uzðx; y; zÞ ¼ 0; (63)

where q0 ¼ 1; Ux ¼ 0:1; � ¼ 0:15; xc ¼ yc ¼ 100, and Rc¼ 20.
Both fixed and moving grids within the computational domain

along with a representation of the density field at an arbitrary time
step during the simulation are sketched on Fig. 15.

Figure 16 shows the horizontal profiles located at the center
of the domain (y¼ 50) of density, both components of velocity ux
and uy and velocity divergence, at the last time step. It is worth
noting that this corresponds to 20 times the advection time of the
vortex, meaning that at the last time step, the vortex has crossed
the rotating subdomain 20 times. Figure 16 reveals that while a
poor agreement is found between the original overset method and
the reference computation, excellent results are obtained with the
direct coupling approach. The direct coupling method shows a
good ability to conserve the vortex structure, as opposed to both
the original approach. This phenomena can also been observed in
Fig. 17, which shows the density contours generated by the origi-
nal, the direct coupling, and the reference computations, at t¼ 0,
t ¼ 10 tadv , and t ¼ 20 tadv , where tadv is the advection time. It
can clearly be seen that using the direct coupling method, the

intensity of the vortex does not fade away as rapidly as with the
original overset method.

Additionally, the velocity divergence horizontal profiles in Fig. 16
of reveals another interesting phenomena: high parasitic distorsions
are created at the vicinity of the moving grid interface for both overset
methods. This shows that spurious acoustics are generated by the pres-
ence of the rotating domain. It can be observed that the direct coupling
approach allows to reduce the amplitude of these distorsions in com-
parison with the original method.

For a more precise analysis, quantified L1 norm error values are
drawn in Table VI. For the same reasons as for the acoustic pulse test
cases, it has been chosen here to show only absolute difference errors
rather than errors in % as defined in Eq. (54). It can be seen that the
direct coupling method allows a clear reduction of the error on all the
profiles: the maximum absolute errors on density, longitudinal and
transverse velocity are, respectively, about 1:76�; 6:18�; 2:04� lower
using the direct coupling approach over the original method.
Additionally, we have quantified the amplitude of the parasitic distor-
sions at the vicinity of the moving grid interface that are observed in
Fig. 16. The distortion amplitudes are 1:16� and 2:11� lower using
the direct coupling approach over the original method, for the left one
(x¼ 25) and the right one (x¼ 76), respectively.

C. Sensitivity study to the moving grid local Mach
number and convergence rate

In this section, we want to investigate the sensitivity of the previ-
ously shown errors to the moving grid local Mach number, which

TABLE VI. Mean and maximum absolute errors between the overset computations (original and DC) and the reference computation on the density and velocity horizontal pro-
files of Fig. 16, for the convected vortex test case.

Original method DC method

Mean j kqk1 � kqkREF1 j
� �

9:333 193 049 999 910� 10�4 4:074 471 959 999 959� 10�4

Max jkqk1 � kqkREF1 j
� �

4:724 383 400 000� 10�3 2:678 275 100 000� 10�3

Mean ðj kuxk1 � jjuxjjREF1 jÞ 1:530 553 475 055� 10�3 3:368 238 869 740 786� 10�4

Max ðj kuxk1 � jjuxjjREF1 jÞ 4:819 702 046 274� 10�3 7:792 670 588 818 718� 10�4

Mean ðj kuyk1 � jjuyjjREF1 jÞ 4:765 100 393 857� 10�3 2:212 539 263 029� 10�3

Max ðj kuyk1 � jjuyjjREF1 jÞ 1:927 325 363 924 2� 10�2 9:425 645 768 786� 10�3

TABLE VII. Values of the moving grid maximum local Mach number MaMG;max for the four considered test cases.

MaMG;max;1 MaMG;max;2 MaMG;max;3 MaMG;max;4 MaMG;max;5 MaMG;max;6

Uniform flow 0.029 0.034 0.043 0.057 0.086 0.17
Poiseuille flow 0.029 0.034 0.043 0.057 0.086 0.17
Acoustic pulse 0.0049 0.0058 0.0073 0.0097 0.015 0.029
Convected vortex 0.049 0.059 0.074 0.098 0.15 0.29
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FIG. 18. Evolution of the mean error jjEX jj1 [as defined in Eq. (54)] against the local Mach number for density (left) and velocity (right) and for the four considered test cases
(from top to bottom: uniform flow, Poiseuille flow, acoustic pulse, convected vortex).

Physics of Fluids ARTICLE scitation.org/journal/phf

Phys. Fluids 33, 053607 (2021); doi: 10.1063/5.0044994 33, 053607-18

Published under an exclusive license by AIP Publishing

https://scitation.org/journal/phf


involves the simulation parameterx. The moving grid maximum local
Mach numberMaMG;max is defined as follows:

MaMG;max ¼ jjvr;maxjj
cs

¼ rmaxjjxjj
cs

: (64)

For all test cases studied in this work except the uniform flow
past a rotating cylinder, a square moving mesh has been used, which
means that the grid location leading to the maximum velocity is the
corner of the moving grid: in other words, rmax ¼ lMG

ffiffiffi
2

p
=2, where

lMG is the side length of the square moving mesh. For this sensitivity
study, the following values for x have been chosen: x1; x2 ¼ 2x1;
x3 ¼ 3x1; x4 ¼ 4x1; x5 ¼ 5x1; x6 ¼ 6x1. The corresponding
MaMG;max values are displayed in Table VII.

In Fig. 18, we have plotted the evolution of the mean error jjEX jj1
[as defined in Eq. (54)] against the local Mach number as defined in Eq.
(64). It should be noted that in this figure, the error is expressed in % for
the uniform and Poiseuille flow test cases, while absolute error values are
given for the acoustic pulse and convected vortex test cases. Indeed, as
explained in Sec. IVB1, the reference datasets for these test cases show at
some points very tiny values that in consequence would lead to very high
error values with poor physical meaning if quantifying the error in %.

First, it can be seen overall there is no significant influence of the
rotating grid velocity on the calculated error on the macroscopic val-
ues. No specific pattern is observed in the evolution of the error, as
depending on the test case it might decrease or increase depending on
the moving grid velocity. The error always remains in the same order
of magnitude, which means a fair robustness for the method.

The second observation is that, as shown in Sec. IV B 2, there
is a significant gap between the error obtained with the original
method and the one obtained using the direct coupling method
with regard to the convected vortex test case. It can also be observed
here that this difference is even more enhanced for high x values.
In other words, the higher the moving grid velocity, the more bene-
ficial the use of the direct coupling method over the original one.

Finally, a mesh convergence study on the direct coupling method
has been conducted for the convected vortex test case, based on the L2
and infinity norms, respectively, defined as

jjEX jj2 ¼
P

i XðxiÞ � Xref ðxiÞ
� �2P

i X
2
ref ðxiÞ

; (65)

jjEX jj1 ¼ maxi jXðxiÞ � Xref ðxiÞj
maxi jXref ðxiÞj : (66)

The L2 and infinity norms of both density and velocity for three
different mesh resolutions (number of cells N1 ¼ 9559; N2 ¼ 4N1;
N3 ¼ 16N1) are shown in Fig. 19. A dashed line of slope 2 shows that
the convergence is found to be second order, which was theoretically
expected.

V. CONCLUSION

In this paper, we present a new direct coupling scheme based on
the overset technique to tackle moving boundary problems within the
lattice Boltzmann framework. As opposed to previous studies on the
overset technique, the approach here is based on the interpolation of
distribution functions rather than moments at the borders between
the moving and fixed grids. The present direct coupling approach also
includes additional hypothesis ensuring mass and momentum conser-
vation at the interface nodes between fixed and moving grids. The
method has been validated with three aerodynamic test cases (an uni-
form flow, a Poiseuille flow, and an uniform flow past a rotating cylin-
der) and two aeroacoustic test cases (an acoustic pulse and a
convected vortex). The results are compared to the ones obtained by a
reference computation that does not contain any moving subdomain.
It has been shown that the direct coupling method results compare
very well with the original overset method results as well as the refer-
ence computation results. Additionally, it has been demonstrated that
the direct coupling method allows an improvement of the accuracy of
the lattice Boltzmann overset algorithm for aeroacoustics. In particu-
lar, the convected vortex test case reveals that a better ability to con-
serve the vortex structure over time, as well as a reduction of spurious
acoustic distorsions at the fixed/moving interface, are provided by the
direct coupling approach. Extensions to turbulent and thermal flows
are the subject of further investigations.

FIG. 19. Evolution of the L2 norm jjEX jj2 (left) and infinity norm jjEX jj1 (right)—as defined in Eqs. (65) and (66)—of the density and velocity fields computed by the
direct coupling method against the number of cells Ncells, for the convected vortex test case. A dashed line of slope 2 shows that the convergence is found to be second
order.
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