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Abstract—Decentralized active and reactive power coordina-
tion of the emerging smart grid with increasing integration of
small-scaled distributed energy resources (DER) is becoming
more and more challenging. However, the existing optimiza-
tion techniques either require a central coordinator in their
calculation procedure or are not able to realize component-
level problem decomposition. In this work, we propose a novel
consensus-based ADMM approach, which characterizes a two-
level iterative solution procedure and solves the coordination
problem in a fully decentralized way. The optimal network-
constrained power coordination is achieved through solely the
information exchange between neighboring DER and bus agents
and completely avoid the need for a central coordinator. The
convergence and effectiveness of the algorithm has been validated
in case studies using the IEEE xx-bus test system.

Index Terms—Distributed optimization, consensus-based algo-
rithm, ADMM, optimal power coordination, DCOPF.

NOMENCLATURE

A. Indices and Sets
t ∈ T Index and set of time periods.
k ∈ K Index and set of ADMM iterations.
r ∈ R Index and set of consensus iterations.
i, i′ ∈ I Index and set of distributed energy resources

(DER).
b, b′ ∈ B Index and set of buses in the network.
bb′ ∈ E Index and set of lines in the network.
Bb Set of buses connected to bus b.
Ib Set of DER connected to bus b.
B. Parameters
Fi Feasible operation set of DER i.
sbb′ Thermal capacity of line bb′ (xx).
θref,t Angle of the reference bus at period t.
V b, V b mInimum and maximum allowable voltage magni-

tude at bus b.
Bb,b′ (b, b′)th element of the susceptance matrix B.
Gb,b′ (b, b′)th element of the xx matrix G.
W b
i,i′ (i, i′)th element of the communication matrix W b

on bus b.
ελ Learning gain constants for the update of consensus

variables λ, α and β (£/kW2h).
εpri, εdual Tolerances for primal and dual residuals.
ελ, εe Tolerances for price and power mismatch (kW).
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C. Variables
pderi Vector of active injections pderi,t of DER i (kW).
qderi Vector of reactive injections qderi,t of DER i (kW).
θb Vector of voltage angle θb,t at bus b ().
θbb′ Vector of voltage angle θbb′,t at bus b′ estimated by

bus b ().
Vb Vector of voltage magnitudes Vb,t at bus b ().
V b
b′ Vector of voltage magnitudes V bb′,t at bus b′ esti-

mated by bus b ().
pbb′ Vector of active power flow pbb′,t on line bb′ (kW).
qbb′ Vector of reactive power flow qbb′,t on line bb′

(kW).
ssenbb′,t Apparent power flow leaving the reference sending

bus on line bb′ at time period t (kW).
srecbb′,t Apparent power flow reaching the reference receiv-

ing bus on line bb′ at time period t (kW).
λbi ,λ

b
b Vector of active prices λbi,t and λbb,t estimated by

DER i and bus b (£/kWh).
µbi ,µ

b
b Vector of active prices µbi,t and µbb,t estimated by

DER i and bus b (£/kWh).
eqi , e

q
b Vector of active power imbalances eqi,t and eqb,t

estimated by DER i and bus b (kW).
eqi , e

q
b Vector of active power imbalances epi,t and epb,t

estimated by DER i and bus b (kW).

I. INTRODUCTION

A. Background and Motivation

IN smart electric power grids, the emerging communication
and control technology together with the proliferation of

small-scale distributed energy resources (DER) in distribution
networks significantly increase the complexity of effective
power coordination and stimulate the need for advanced
optimization techniques [1]–[3]. The traditional centralized
control paradigm [xx]-[xx] although provides the optimal
coordination solution, suffers from significant communication
and computational scalability challenges as well as privacy
concerns by DER owners who are not generally willing to
disclose any private information [xx]-[xx]. Thus, they may
no longer be appropriate for controlling and managing such
a distributed energy system. Distributed control approaches,
on the other hand, enable optimal coordination on the basis
on solely bilateral information exchange between neighboring
agents, thereby perform distributed calculations and avoid
the above mentioned limitations. In this context, significant
efforts have been made in the existing literature towards the
development of distributed control approaches.
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The idea of exploiting consensus among neighboring agents
has recently attracts continuous interests for solving opti-
mal power coordination problems, which is essentially an
optimization problem with the objective of total operational
cost minimization (or social welfare maximization). This type
of approach aims at reaching an agreement among agents
regarding certain quantities associated with the coordination
problem, referred to as consensus variables, through an it-
erative process [4]. In the vast majority of relevant papers,
the consensus variables are electricity prices. By applying
consensus-based algorithms, authors in [5]–[7] proposed fully
decentralized methods to determine optimal power coordina-
tion through information exchange solely between dispatch-
able generators (DG) and in [8]–[10], the controllable DER
also includes price-elastic demands. Authors in [11], [12],
solved power coordination also with the consideration of line
losses.

However, previous work [5]–[12] employing consensus-
based algorithms do not take into account the network con-
straints (i.e. power flow constraints) in the coordination pro-
cess since the nodal prices, which encompass both energy
generation and congestion-related costs, could be unequal for
DER located differently in the network due to the presence
of line congestion. As a result, DER owners may not be able
to agree on uniformed electricity prices across the network,
hindering significantly the applicability of the consensus-based
algorithms for network-constrained coordination, namely op-
timal power flow (OPF) problems [13].

In the view of the above challenges, there is an exten-
sive literature on developing optimization methods for the
distributed/decentralized solution of OPF problems. Those
algorithms are characterized by different decomposition tech-
niques, which separate the original centralized OPF problem
to sub-problems with each sub-problem solved by different
agents in a sequential or a parallel manner. Depending on
different application of interests, those agents, who are respon-
sible to solve sub-problems and control devices in its physical
regions, can be large portions of a power system including
several buses connected by transmission lines, individual buses
connected by multiple distributed resources or individual DER
owners. The OPF problem decomposition level correlated to
the above three types of agents are classified by regional-level,
bus-level and component-level, respectively.

The most well-recognized distributed/decentralized opti-
mization algorithms can be divided into two main categories.
The first category is based on Lagrange decomposition, in-
cluding dual decomposition (DD), analytical target cascad-
ing (ATC), alternating direction of multipliers (ADMM) and
auxiliary problem principle (APP). DD applied in [14]–
[17] constitutes a two-level iterative process. However, as
shown by Fig. 1, the second update process of DD requires
a central coordinator to collect global information to account
for imbalances in supply and demand and drive local decisions
to the optimal solution of OPF. Moreover, the convergence of
DD is not guaranteed even for convex problems [17].

Authors in [13], [18] solved OPF by applying ATC,
which decomposes the OPF into sub-problems solved by
agents in different hierarchies iteratively. At each iteration,

Fig. 1. Type 1 algorithm implementation structure: distributed OPF with the
existence of a central coordinator.

the parent-level and children-level sub-problems linked by
the shared variables (which in the majority of the literature
are voltages and voltage angles associated with nodal power
balance equations of two buses connected by tie-lines) are
solved sequentially. Then, in [19], two variants of ATC are
further developed in order to make the sequential calculation
process of ATC into parallel. However, 1) as shown by the
implementation structure of ATC in Fig. 1, the parent agent
needs to collect copies of shared variables from its children
agents to guarantee their equivalence; 2) ATC and its variants
may not be able to deal with systems with meshed networks
[20].

ADMM, developed by [21], with widespread use constitutes
another important methodology framework for solving OPF
in a distributed manner. ADMM decomposes the augmented
Lagrangian function of the centralized OPF to sub-problems.
Then, agents solve their sub-problems independently over
sequential iterations with each of them holding copies of
the shared variables (which usually are the voltages and
voltage angles associated with nodal power balance equations
of two buses connected by tie-lines). ADMM characterizes
implementation structure shown by Fig. 1, where a central
coordinator exists in the second update process to gather
the updated shared variables from all agents and coordinate
those variables to ensure their identity. ADMM is applied to
solve OPF with AC [22], [23] and DC [24], [25] power
flow formulation, respectively. Authors in [26] solve DCOPF
also taking into the consideration of security constraints.
To decompose DC-OPF to the component-level, authors in
[27], [28] proposed a variant of ADMM, however, a central
coordinator still exists in the computational process.

APP developed by [29] is applied in [30] to solve OPF in a
decentralized way by decomposing the centralized problem to
regional/bus-level sub-problems. However, as shown by Fig.
2, the regional/bus agents, who collects information from its
connected buses/DER components for the calculation of sub-
problems, still acts as a central entity.

Rather than based on the augmented Lagrangian decompo-
sition technique as DD, ATC, ADMM and APP, the optimal
condition decomposition (OCD) and consensus+innovation
(C+I) algorithms are developed to decompose OPF based
on the Karush-Kuhn-Tucker (KKT) necessary conditions for
local optimality. Both OCD and C+I characterize iterative
solution procedure where at each iteration the decomposed
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TABLE I
Comparison of different distributed optimization algorithms and relevant references

ref Algorithm Network
constraints

Implementation
Structure

Level of OPF
decomposition

Time Periods Maximum number
of agents in case

studies
[5]-[12] consensus-based 7 component-level each DER owner 25

[13] ATC 3 Type 1 Fig.1 regional-level single 5
[16] DD 3 Type 1 Fig.1 regional-level single 30
[17] DD 3 Type 1 Fig.1 bus-level single
[18] DD 3 Type 1 Fig.1 regional-level multiple
[19] ATC 3 Type 1 Fig.1 regional-level single

Fig. 2. Type 2 algorithm implementation structure: decentralized OPF with
regional-level a) and bus-level b) decomposition.

sub-problems are solved independently. OCT is used in [31]
and [13], for decentralized calculation of both AC and DC
OPF problems, and in [32] C+I method is applied to solve
OPF with DC power flow formulation in a decentralized way.
However, 1) the applicability of OCD requires the satisfaction
of the convergence condition, which is not always hold and
hard to prove with complex and meshed systems; 2) C+I
algorithm is originally designed for distributed parameter esti-
mation in sensor networks [33], [34] and is not theoretically
guaranteed to converge to the OPF optimum, moreover, it
has only been used to solve DCOPF problems; 3) both OCD
and C+I decompose OPF only to regional/bus-level, as shown
by Fig. 2, the regional and bus agents still act as a central
coordinator in their update processes.

Table I summarizes and compares the aforementioned dis-
tributed/decentralized optimization algorithms and the relevant
literature for solving power coordination problems. It can be
observed that:

• A solely consensus-based algorithm [5]–[12] is inherently
unable to solve optimal power coordination problems
when taking into the consideration of network constraints
since a line congestion could result in unequal marginal
costs.

• DD [XX]-[XX], ACT [xx]-[xx] and ADMM [xx]-[xx]
require a central entity to manage distributed computation

in the certain step of the algorithm.
• Although APP, OCD and C+I algorithms completely

avoid the need for a central coordinator, their application
in [xx]-[xx] only decompose the original centralized
OPF problem to regional/bus-level sub-problems. The re-
gional/bus agent still acts as a central entity who collects
global information from its connected buses/DER devices
for the calculation of sub-problems.

• Moreover, most of the above works are focusing on
decomposing the OPF to regional/bus-level sub-problems
and none of them accounts for component-level fully
decentralized optimization.

B. Scope and Contributions
In order to fill this knowledge gap, this paper proposes a

novel fully decentralized consensus-based ADMM algorithm
to tackle optimal power coordination problems considering
network constraints. The term "fully decentralized" signifies
the absence of the need of a central control entity (e.g. the
central coordinator in the calculation process of DD, ATC
and ADMM, and the regional/bus-level energy management
agent who is responsible for sub-problems and collects global
information from its connected DER with the implementation
structure shown in Fig. 2). The algorithm can be applied
to coordination problems with both AC and DC power flow
formulation and networks with arbitrary typologies. Although
the implementation of APP, OCD and C+I do not need the
central coordinator in the regional/bus-level OPF decomposi-
tion, the solely efforts of them cannot realize component-level
optimization (the reason will be further explained in Section
III). Therefore, the proposed algorithm involves a two-level
iterative process, where in the upper-level, a variant of ADMM
algorithm is applied to decompose the OPF to each bus agent
and in the lower-level, a consensus-based algorithm is used and
the nodal balance constraint is full-filled based on interactions
with neighboring DER agents connected at the same bus. The
implementation structure of the algorithm is shown in Fig. 3.
In this algorithm, each bus and each DER component of the
system is modeled as an agent with communication capability.
By using information exchange between neighboring agents,
the consensus-based ADMM algorithm converges asymptoti-
cally to the optimal solution of power coordination considering
network constraints.

To the best of our knowledge, this is the first time to use
ADMM to ad- dress the DEDP with nonquadratic cost function
(E-exponential function) in distributed manner.
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Fig. 3. Implementation structure for the fully decentralized algorithm with
component-level decomposition.

II. FORMULATION OF THE NETWORK-CONSTRAINED
COORDINATION PROBLEM

The optimal active and reactive power scheduling in the
smart grid is important to both economic and efficient op-
eration of the system. In this work, the OPF problem is
formulated as a social welfare maximization problem (1) in
multiple time periods, assuming that Ci constitutes a cost
function if DER i is a generator and a utility function if
DER i is a load (Ci equals zero if DER i is an inflexible
generator or an inflexible load). This problem is subject to
the nodal active (3) and reactive (4) power balance constraints
(the Lagrangian multipliers of which constitute the locational
active and reactive trading prices, respectively), the voltage (6)
and thermal (7)-(8) limits of the distribution network, and the
individual operation constraints of DER (9).

min
U

∑
i∈I

Ci(p
der
i , qderi ) (1)

U = {pderi , qderi ,pbb′ , qbb′ , s
sen
bb′ , s

rec
bb′ ,Vb,θb} (2)

s.t.:
∑
i∈Ib

pderi,t −
∑
bb′∈E

pbb′,t(Vb,θb) =0 : λt,∀t (3)∑
i∈Ib

qderi,t −
∑
bb′∈E

qbb′,t(Vb,θb) =0 : µt,∀t (4)

θref,t = 0,∀t (5)

V b ≤ Vb,t ≤ V b = 0,∀b,∀t, (6)
ssenbb′,t(Vb,θb) ≤ sbb′ ,∀bb′,∀t (7)

srecbb′,t(Vb,θb) ≤ sbb′ ,∀bb′,∀t (8)

(pderi , qderi ) ∈ Fi,∀i ∈ I (9)

Following the formulation in [xx], the active and reactive
power flow on the branch connecting bus b and b′ at each time
period t is formulated as:

pbb′,t(Vb,θb)

= V 2
b,tGb,b + Vb,tVb′,t(Gb,b′ cos(θb,t−θb′,t))+Bb,b′ sin (θb,t−θb′,t),

qbb′,t(Vb,θb)

=−V 2
b,tBb,b + Vb,tVb′,t(Gb,b′ sin(θb,t−θb′,t))−Bb,b′ cos (θb,t−θb′,t).

(10)

III. PROPOSED CONSENSUS-BASED ADMM ALGORITHM

As discussed in Section I, most of the existing work for
solving OPF in a distributed/decentralized way decompose

the OPF problem to regional/bus-level sub-problems and none
of them considering component-level decomposition. The ap-
plied algorithms either require a central coordinator in the
certain step of the algorithm, or cannot decompose OPF into
component-level sub-problems. The reason behind this is that
there are two types of coupling variables associated with
nodal power balance constraints in OPF problem formulation.
The first type constitutes voltages and voltage angles between
adjacent buses connected by tie lines and the second type
includes active and reactive power injections of DER compo-
nents connected at the same bus. The applied APP [xx]-[xx]
and OCD [xx]-[xx] algorithms first duplicate the first type
coupling variables in each region or bus connected by tie-
lines. Then, the centralized OPF can be decomposed to sub-
problems and solved by regional/bus agents involving only
local variables. However, in the computation progress of each
sub-problem, the second type of coupling variables have not
been decoupled and regional/bus agents still need to gather
DER power injections to satisfy the nodal power balance
constraint. Therefore, to decompose the OPF to component-
level, we propose a consensus-based ADMM algorithm, which
solves OPF in a fully decentralized way and involves a two-
level iterative process. In the upper-level, a variant of ADMM
algorithm is applied to decompose the OPF to each bus agent
and in the lower-level, a consensus-based algorithm is used
and the nodal balance constraint is full-filled based solely on
interactions with neighboring DER agents connected at the
same bus. The optimal solution of OPF is achieved through
the information exchange between neighboring DER and bus
agents and completely avoid the need for a central coordinator.

In this section, we first introduce the standard ADMM
algorithm in Section III-A, followed by the detailed discussion
on reformulation of ACOPF problem in a suitable form for the
application of ADMM algorithm in Section III-B. Section II-
C discussed the application of the standard ADMM algorithm
for solving ACOPF with the central coordinator. The proposed
consensus-based ADMM algorithm is introduced in Section
III-D, which achieves fully decentralized ACOPF with local
problems solved by component-level agents.

A. Standard ADMM Algorithm

ADMM [21] is an algorithm that solves optimization prob-
lems in the form of (xx)-(xx), where x ∈ Rq1, z ∈ Rq2,A1 ∈
Rq3×q1, A2 ∈ Rq3×q2, and c ∈ Rq3. c1(x) and c2(z) are
convex functions of x and z, respectively.

min
x,z

c1(x) + c2(z) (11)

s.t. : A1 · x+A2 · z = c (12)

The augmented Lagrange function of (xx)-(xx) is written
as (xx), where u = (ρ2 ) · ν is the scaled dual variable, ν are
multipliers of (xx), ρ > 0 is a predefined parameter, and ‖ · ‖
represents the l2-norm of a vector [xx]. ADMM is an iterative
process consists of steps (xx)-(xx), where k is the index of
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ADMM iterations.

Lρ(x, z, u) :=c1(x) + c2(z)

+ (
ρ

2
)· ‖ A1 · x+A2 · z − c+ u ‖22

(13)

xk+1 := argmin
x

Lρ(x, z
k,uk) (14)

zk+1 := argmin
z

Lρ(x
k+1, z,uk) (15)

uk+1 := uk +A1 · xk+1 +A2 · zk+1 − c (16)

The primal residual and dual residual, that characterize the
convergence of the algorithm, at iteration k+1 are defined as:

prik+1 = A1 · xk+1 +A2 · zk+1 − c (17)

dualk+1 = ρAT1 ·A2(z
k+1 − zk) (18)

ADMM algorithm converges to the optimal solution
(x∗, z∗) and the optimal Lagrange multiplier ν∗ of problem
(xx)-(xx), with:

lim
k→∞

‖ prik+1 ‖22= 0 AND lim
k→∞

‖ dualk+1 ‖22= 0,

under the assumption: 1) The functions c1 : Rq1 → R∪{+∞}
and c2 : Rq2 → R∪ {+∞} are closed, proper and convex; 2)
The unaugmented Lagrangian L0 has a saddle point; 3) The
matrices A1, A2 have full column ranks [xx].

B. Reformation of ACOPF for Application of ADMM

In a transmission network, buses connected by the transmis-
sion lines are called adjacent buses. The difficulty in decom-
posing ACOPF to sub-problems solved by different bus agents
lies in power flow formulations (xx), which induce couplings
in both bus voltage and voltage angle between adjacent buses
(as shown by a simple two-bus power system example in
Fig.4). To decouple the first type coupling variables in the

Fig. 4. A two-bus system showing the coupling variables

Fig. 5. A two-bus system showing the duplication of the coupling variables

OPF formulation and decompose (xx) to small sub-problems
solved by each bus agent individually, the coupling variables
(bus voltage and voltage angle) at each bus are duplicated at
all its adjacent buses. For example, as illustrated by Fig. 5,
variables Vb and θb of bus b are duplicated at its adjacent bus
b′ as V b′

b and θb
′

b , respectively. Similarly, variables Vb′ and
θb′ of bus b′ are duplicated at its adjacent bus b as V b

b′ and

θbb′ . Accordingly, the power flow equation (xx) at time period
t becomes:

pbb′,t(Vb,V
b
b′ ,θb,θ

b
b′)

= Vb,tV
b
b′,t(Gb,b′ cos(θb,t − θbb′,t)) +Bb,b′ sin (θb,t − θbb′,t)

qbb′,t(Vb,V
b
b′ ,θb,θ

b
b′)

= Vb,tV
b
b′,t(Gb,b′ sin(θb,t − θbb′,t))−Bb,b′ cos (θb,t − θbb′,t).

(19)

Since the value of the same variables duplicated in different
buses must be identical, a global variable z ≡ [zV, zθ] is
introduced, voltage and voltage angle consistency constraints
are added to guarantee the equivalence of the problem before
and after the introduction of duplicated variables. For instance,
for the two-bus system in Fig. 5, the global variable for bus b
and b′ includes zb = zb′ = [zVb, zVb′ , zθb, zθb′ ], where zVb
and zθb bundles Vb, V b

′

b and θb, θ
b′

b , respectively; zVb′ and
zθb′ bundles Vb′ , V

b
b′ and θb′ , θ

b
b′ , respectively. Consistency

constraints (xx) and (xx) are included in the constraints of
ACOPF problem for bus b and b′ respectively.

Vb − zVb = 0, θb − zθb = 0

V bb′ − zVb′ = 0, θbb′ − zθb′ = 0
(20)

Vb′ − zVb′ = 0, θb − zθb = 0

V b
′

b − zVb = 0, θb
′

n − zθb = 0
(21)

For the sake of discussion, we define xb ≡ [xL
b ,x

F
b ,x

C
b ],∀b

as decision variables of bus b, which is divided into three
categories: local variables xL

b ≡ [pderi , qderi ,∀i ∈ Ib,∀b],
flow variables xF

b ≡ [pbb′ , qbb′ , s
sen
bb′ , s

rec
bb′ ,∀bb′] and coupling

variables xC
b ≡ [Vb,V

b
b′ ,θb,θ

b
b′ ,∀b′ ∈ Bb]. Accordingly,

the above OPF problem can be formulated as the sum-
mation of objectives for the individual buses (xx), where
fb(xb) =

∑
i∈Ib Ci(p

der
i , qderi ).xb satisfying (xx)-(xx) at bus

b is represented by (xx). Constraint (xx) guarantees that the
same variable duplicated in different buses are identical to
each other.

min
xb

∑
b∈B

fb(xb) (22)

s.t.: xb ∈ Xb,∀b , (23)

xC
b − zb = 0,∀b. (24)

To reformulate ACOPF in the similar form as (xx), indicator
functions gb for sets Xb,∀b are defined as:

gb(xb) =

{
0 if xb ∈ Xb
+∞ otherwise,

,∀b . (25)

Then, problem (xx)-(xx) can be written in the following
equivalent form:

min
xb

∑
b∈B

fn(xb) + gb(xb) (26)

s.t.: xCb − zb = 0,∀b (27)

C. ADMM-based Distributed ACOPF

With the above illustration, the original centralized OPF
problem (xx)-(xx) can be reformulated in a separable form
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(xx) with objective function and constraints related to each
independent bus. We formulate the augmented Lagrangian
function for (xx) as (xx), by applying ADMM introduced in
Section III-A (xx)-(xx), problem (xx)-(xx) can be solved by
individual bus agents in parallel through a three-step iterative
process.

Lρ =
∑
b∈B

fb(xb) + gb(xb) + (
ρ

2
)· ‖ xCb − zb + ub ‖22 . (28)

Step 0: (Initialization) The decision variables, global vari-
ables and the scaled dual variables at each bus b are initialized
as:

x0
b , z

0
b ,u

0
b ,∀b.

Step 1: (Update xk+1
b ) At iteration k, the update rule of

xk+1
b with fixed zkb and ukb can be operated by individual bus

agents in parallel as written by (xx).

xk+1
b = argmin

xb

Lρ(xb, z
k
b ,u

k
b )

= argmin
xb

fb(x
L
b )

+ gb(xb) + (
ρ

2
)· ‖ xCb − zkb + ukb ‖22

(29)

Step 2: (Update zb) In this step, the updated coupling
variables of individual bus agents from the first step are sent
to a central operator as shown in Fig. 2 . The central operator
updates global variables zb,∀b via:

zk+1
b = argmin

zb

(xk+1
b , zb,u

k
b )

=
xC,k+1
b +

∑
b′∈B x

C,k+1
b′

1 +
∑
b′∈B 1

(30)

For example for the two-bus system in Fig. 6, the central
coordinator collects voltage V kb , V

k
b′ , voltage angle θkb , θ

k
b′

variables and their duplicated variables V b
′,k

b , V b,kb′ , θb
′,k
b , θb,kb′

from bus b and bus b′. Then, it updates the global variables
based on (xx), which are the average of all coupling variable
bundled by zb, zb′ , and sends the updated zk+1

b , zk+1
b′ back to

bus b and b′, respectively.

Fig. 6. A two-bus system showing the duplication of the coupling variables

Step 3: (Update ub) After receiving zk+1
b ,∀b, each bus

agent calculates uk+1
b ,∀b by using the following update rule:

uk+1
b = ukb + x

C,k+1
b − zk+1

b . (31)

Then, we compute the primal residual and dual residual
using:

prik+1
b = xC,k+1

b − zk+1
b ,∀b (32)

dualk+1
b = ρ(zk+1

b − zkb ),∀b, (33)

the algorithm (xx)-(xx) terminates when:

‖ prik+1
b ‖22≤ εpri AND ‖ dualk+1

b ‖22≤ εdual,∀b,

where εpri and εdual are feasible tolerances. Detailed process
of ADMM based distributed ACOPF with the existence of the
central operator is described in Algorithm 1.

Algorithm 1 ADMM Algorithm
1: Initialization: Set k = 0 and initialize: x0

b , z
0
b ,u

0
b ,∀b.

2: while ‖ prik+1
b ‖22> εpri or ‖ dualk+1

b ‖22> εdual,∀b
do

3: Step 1: Given zkb and ukb , each bus agent b update xk+1
b

using (xx).
4: Step 2: Each bus agent send the updated xk+1

b to
the central coordinator. The central operator update
the global variables zk+1

b ,∀b using (xx) and send the
updated zk+1

b ,∀b to each bus agent.
5: Step 3: Given xk+1

b and zk+1
b , uk+1

b is updated using
(xx).

6: Compute the primal residual and dual residual using
(xx)-(xx). k = k + 1

7: end while

However, as discussed in Section I-B, Section III-C and
shown by Fig. 2, it is obvious that a central coordinator exists
in the second step of ADMM. Moreover, the bus agent still
requires global information from its connected DER agents in
the first update process of ADMM algorithm. Specifically, the
update of xb in (xx) can be written in its equivalently form as
(xx)-(xx) with function hb(xCb ) defined by (xx). The solution
of (xx)-(xx) require each bus agent to collect active and
reactive power injections from all its connected DER devices
for the satisfaction of demand-supply balance constraints (xx)
and (xx).

min
xb

fb(x
L
b ) + hb(x

C
b ) (34)

s.t.: (5)− (9) (35)∑
i∈Ib

pderi,t −
∑
bb′∈E

pbb′,t(x
C
b ) = 0 : λt,∀t (36)∑

i∈Ib

qderi,t −
∑
bb′∈E

qbb′,t(x
C
b ) = 0 : µt,∀t (37)

hb(x
C
b ) = (

ρ

2
)· ‖ xCb − zkb + ukb ‖22 (38)

D. Proposed Consensus-based ADMM for Fully Decentral-
ized ACOPF

To eliminate the central coordinator in the second update
process of ADMM and decompose the OPF to component-
level, we propose a consensus-based ADMM algorithm for
the fully decentralized solution of OPF, which involves a two-
level iterative process.
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In the upper-level, a variant of ADMM algorithm is pro-
posed to remove the central coordinator, where in the second
update process of standard ADMM, we let the bus agent with
the original voltage and voltage angle variables collect the
duplicated variables from its adjacent buses. Then, each bus
agent updates the global variable correlates to the original
variable using (xx) and sends the updated global variable
back to its adjacent buses. In this step, a communication
network consistent with the transmission network exists for
the information exchange between buses. For the example two-
bus system shown in Fig. 7, bus b with original voltage Vb and
voltage angle θb collects the duplicated variables V b

′

b and θb
′

b

from its adjacent agent b′. It updates zVb and zθb using (xx)
and sends the updated global variables to b′. Bus b′ has the
similar calculation and communication process as b as shown
by Fig. 7.

Fig. 7. A two-bus system showing the communication of adjacent buses with
coupling variables

As discussed in Section I-A, consensus-based algorithms
solve optimization problems through the iterative, bilateral
exchange of information between the neighboring agents until
they reach an agreement regarding certain consensus variables.
Therefore, in the lower level, driven by the approach adopted
by the vast majority of relevant papers, by selecting local
active and reactive prices at bus b as consensus variables, the
first update step of the ADMM algorithm (xx)-(xx) can be
decomposed to component-level sub-problems and solved by
each DER/bus agent using the consensus-based algorithm in
a fully decentralized way. Define the set Hb := {Ib, b} at bus
b ∈ B with |Hb| represents the size of Hb. Each agent h ∈ Hb
estimates the values of these prices and determines its optimal
response accordingly. Furthermore, they update these estimates
by exchanging information with their neighboring agents, i.e.
the DER/bus with which they are connected through the
communication network. The network at each bus can be rep-
resented by a communication matrix W b = [W b

h,h′ ]|Hb|×|Hb|,
each element W b

h,h′ of which represents the relative weight of
the estimates transmitted by the neighboring agent h′ ∈ Hb in
the estimates’ update of agent h ∈ Hb. For space limitation
reasons, the derivation of W b,∀b is provided in Appendix A.

Specifically, the consensus-based algorithm [5]-[12] in-
volves a four-step iterative process, which is outlined below
(considering that the first step update of ADMM addressed is
the one expressed by (xx)-(xx)).

Step 0: (Initialization) The active and reactive prices, local
variables, coupling variables and power mismatches estimated
by each agent h ∈ Hb at bus b are initialized as:

λ0
h,µ

0
h,p

der,0
h , qder,0h ,xC,0b , ep,0h , eq,0h ,∀h ∈ Hb,∀b.

Step 1: (Price update): At each iteration r, each DER/bus
agent h ∈ Hb,∀b updates its active and reactive price estimates
based on its neighboring DER/bus estimates and a correction
term which is proportional to its power mismatch estimates,
weighted by learning gain constants ελ and εµ. The rationale
behind this correction term lies in micro-economic principles:
when the overall demand is higher than the overall supply, i.e.
the power mismatch is positive, the price should be increased,
and vice versa.

λr+1
h,t =

∑
h′∈I

W b
h,h′λrh′,t + ελerh,t,∀h ∈ Hb,∀b, (39)

µr+1
h,t =

∑
h′∈I

W b
h,h′µrh′,t + εµerh,t,∀h ∈ Hb,∀b. (40)

Step 2: (Response Optimization): In this step, each dis-
patchable DER i determines its optimal responses to its
estimated electricity prices by independently solving its eco-
nomic surplus maximization problem subject to its operation
constraint and the bus agent b solves a minimization sub-
problem subject to network constraints (xx)-(xx). (Note, non-
dispatchable DER cannot change their outputs and demands
according to their estimated prices, or equivalently, their
responses are equal to their fixed outputs and demands,
respectively.)

(pder,r+1
i , qder,r+1

i )

= argmin
(pder

i ,qder
i )

λr+1
i,t p

der
i,t + µr+1

i,t q
der
i,t + Ch(p

der
i , qderi ),

s.t.:(9)

(41)

xC,r+1
b

=argmax
xC

b

λr+1
h,t

∑
bb′∈E

pbb′,t(x
C
b ) + µr+1

h,t

∑
bb′∈E

qbb′,t(x
C
b )

− hn(xCb ), s.t.:(xx)-(xx)

(42)

Step 3: (Power mismatch update) Each agent h ∈ Hb,∀b
updates its power mismatch estimates based on its neighboring
agent estimates and a correction term which is given by the
difference between its optimal responses at the two most recent
iterations (for non-dispatchable DER, this difference is zero by
definition and therefore is not included in this step).

ep,r+1
h,t =

∑
h∈I

Wh,h′ep,rh′,t + pder,r+1
h,t − pder,rh,t ,∀h ∈ Hb,∀b,∀t

(43)

eq,r+1
h,t =

∑
h∈I

Wh,h′eq,rh′,t + qder,r+1
h,t − qder,rh,t ,∀h ∈ Hb,∀b,∀t

(44)

ep,r+1
b,t =

∑
h∈I

Wh,h′ep,rh,t−
∑
bb′∈E

pbb′,t(x
C,r+1
b ) +

∑
bb′∈E

pbb′,t(x
C,r
b ),∀b,∀t

(45)

eq,r+1
b,t =

∑
h∈I

Wh,h′eq,rh,t−
∑
bb′∈E

qbb′,t(x
C,r+1
b ) +

∑
bb′∈E

qbb′,t(x
C,r
b ),∀b,∀t.

(46)

Step 4 (Termination check) The l2-norm of the differences in
the price estimates between the two most recent iterations and
the l2-norm of the power mismatch estimates are calculated.
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If both of these are lower than their pre-specified tolerances
ελ, εµ and εep, εeq for all agents h ∈ Hb,∀b (xx), the algo-
rithm terminates. Otherwise, the iteration counter increases by
1 and the algorithm goes back to Step 1.

‖λr
h − λ

r−1
h ‖2 ≤ ελ, ‖µr

h − µ
r−1
h ‖2 ≤ εµ

AND ‖ep,rh ‖2 ≤ ε
ep, ‖eq,rh ‖2 ≤ ε

eq ∀h.
(47)

To this end, we have introduced the fully decentral-
ized ADMM-based algorithm, which decomposes OPF to
component-level sub-problems without the need for a central
coordinator. The detailed process of the fully decentralized
ADMM is described in Algorithm 2.

Algorithm 2 Consensus-Based ADMM Algorithm
1: Initialization: set k = 0, r = 0 and initialize: x0

b , z
0
b ,u

0
b ,

λ0h, , µ
0
h, e

p,0
h , eq,0h ,∀h ∈ Hb,∀b.

2: while ‖ prik+1
b ‖22> εpri or ‖ dualk+1

b ‖22> εdual,∀b
do

3: Step 1:
4: while ‖λr

h − λr−1
h ‖2 ≤ ελ, ‖µr

h − µr−1
h ‖2 ≤

εµ AND ‖ep,rh ‖2 ≤ εep, ‖e
q,r
h ‖2 ≤ εeq ∀h. do

5: Price estimates: Each DER/bus agent update price
estimates using (xx).

6: Optimal response: Each DER/bus agent update price
estimates using (xx).

7: Mismatch estimates: Each DER/bus agent calculate
optimal responses to the estimated price using (xx).

8: Compute the l2-norm of differences in the price
estimates and power mismatch estimates between the
most recent two iterations. r = r + 1

9: end while
10: Step 2: Each bus collects the duplicated variables from

its adjacent buses. The global variables zk+1
b ,∀b are

updated using (xx) and then sent to the adjacent buses.
11: Step 3: Given xk+1

b and zk+1
b , uk+1

b is updated using
(xx).

12: Compute the primal residual and dual residual using
(xx)-(xx). k = k + 1

13: end while

IV. CASE STUDIES
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APPENDIX A
GRAPH THEORY NOTATIONS

Let G = (V, E) be an undirected graph of order I mod-
eling the communication network among the DER, where
V = {1, 2, . . . , I} and E = {(i, h) | i, h ∈ V} are the
non-empty vertex and finite edge set, respectively [35]. The
edge (i, h) implies that DER i and h can communicate
with each other. The neighbor set of vertex i is denoted by
Ii , {h | (i, h) ∈ E}. A strongly connected undirected
communication network G, containing a minimum spanning
tree (a path from any DER i to any other DER h) [36], no
self-circle and no multiple edges, is assumed in this work.

The Adjacency Matrix A = [Ai,h]I×I , associated with
G = (V, E) is defined by (A1). The Laplacian Matrix L =
[Li,h]I×I and communication weight matrix W = [Wi,h]I×I
associated with A are defined by (A2) and (A3), respectively.

Ai,h =

{
1 if h ∈ Ii
0 otherwise.

, (A1)

Li,h =

{ ∑I
h=1Ai,h, if i = h

−Ai,h, otherwise
, (A2)

Wi,h =
| Li,h |∑I
h=1 | Li,h |

. (A3)

It is obvious that W is a positive symmetric matrix with
sums of entries of each row and each column equal to ones.
Therefore, W is a doubly stochastic matrix, satisfying W1 =
1 and 1TW = 1T , where 1 is a column vector of ones.


