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A computational framework 
to establish data‑driven 
constitutive models for time‑ 
or path‑dependent heterogeneous 
solids
Weijian Ge & Vito L. Tagarielli*

We propose and implement a computational procedure to establish data-driven surrogate constitutive 
models for heterogeneous materials. We study the multiaxial response of non-linear n-phase 
composites via Finite Element (FE) simulations and computational homogenisation. Pseudo-random, 
multiaxial, non-proportional histories of macroscopic strain are imposed on volume elements of 
n-phase composites, subject to periodic boundary conditions, and the corresponding histories of 
macroscopic stresses and plastically dissipated energy are recorded. The recorded data is used to train 
surrogate, phenomenological constitutive models based on neural networks (NNs), and the accuracy 
of these models is assessed and discussed. We analyse heterogeneous composites with hyperelastic, 
viscoelastic or elastic–plastic local constitutive descriptions. In each of these three cases, we propose 
and assess optimal choices of inputs and outputs for the surrogate models and strategies for their 
training. We find that the proposed computational procedure can capture accurately and effectively 
the response of non-linear n-phase composites subject to arbitrary mechanical loading.

All solids display a heterogeneous microstructure and their mechanical response depends on complex mecha-
nisms spanning multiple length- and time-scales. For this reason, recent research has focused on multi-scale 
computational modelling of different types of materials1,2. This is typically conducted via computational homog-
enization, commonly of the 1st order3, across multiple scales1,3,4. Such multiscale calculations often have prohibi-
tive computational cost, such that several researchers have been working at reduced-order modelling (ROM) 
and surrogate modelling, which is the subject of the current investigation.

In ROM, the original problem is mapped to a lower-dimensional problem space, saving computational cost 
but reducing the fidelity of the physical description of the material. This mapping occurs by a data-driven method 
and can be applied to the system equations (as in the R3M method5), to the spatial fields of quantities that are 
being sought2,6–9, or to the information describing the microstructure10. Reduced-order models typically have 
neglected microstructure evolution, which limits their predictive capabilities in some nonlinear problems.

In surrogate modelling the predictions of detailed and computationally demanding physically-based models 
are used to perform regressions, using for example Neural Networks (NNs)11 and Gaussian processes12, also 
in the case of history-dependent responses13. Some of these models capture low-dimensional representations 
of the field of variables of interest through data compression14; others use physical governing laws to achieve 
higher accuracy and to accelerate the training process15. Some authors have suggested developing ‘data-driven 
mechanics’16,17 informed exclusively by detailed measurements.

In the current paper, we focus on using NNs to develop surrogate constitutive models for heterogeneous 
solids. This is of interest for two reasons: first, because it enables computational savings of multiple order of 
magnitudes when performing multiscale simulations; secondly, it poses the theoretical basis for the development 
of surrogate models obtained directly from measured data. The existing literature has not explored quantitatively 
how the heterogeneity of the solid under investigation affects the predictions of a surrogate model, and for this 
reason, we focus on the response of a general n-phase composite with tuneable heterogeneity. While many of 
the existing approaches rely on assuming, to some extent, the mathematical structure of the surrogate model 
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(for example the existence of a yield surface, or the existence of an associated flow rule), we aim at constructing 
surrogate models that are purely data-driven. Most studies have focused on the response of solids to monotonic 
proportional loading, while here we aim at achieving generality of the loading, such as to obtain surrogate mod-
els that can be employed effectively in cases where the loading is far from proportional, for example in impact 
applications.

We study separately the cases of nonlinear elastic, time-dependent and history-dependent local constitutive 
response (hyperelastic, viscoelastic or elastoplastic, respectively), and we identify optimal modelling strategies, 
including the optimal features of the NNs, for each case, and accompanying procedures for the training of the 
models. The computational framework is presented in “Computational framework” while results are shown and 
discussed in “Results and discussion”.

Computational framework
In this study we analyse volume elements (VEs) of n-phase composites. We simulate their mechanical response 
using FE calculations and computational homogenisation, and we employ the results of such calculations to 
assemble a training dataset used to teach the macroscopic material behaviour to neural networks. The choice of 
using neural networks over other machine learning techniques is driven by the ready availability of computational 
tools, but many of the conclusions of the present study can be extended to other machine learning methods. In 
this section, we describe the steps of the process.

Definition of the VEs.  In this study we simulate the response of model heterogeneous materials; these 
consist of a cubic domain of unit volume discretised into 10× 10× 10 cubic cells, each possessing different 
mechanical properties, as sketched in Fig. 1. Each of such cells is meshed by one single eight-noded finite ele-
ment of type C3D8 in Abaqus18. The choice of the density of the discretisation was made to ensure that the 
VEs displayed a reasonably complex and approximately isotropic macroscopic mechanical response while keep-
ing the computational cost low. This model material is not intended to quantitatively represent any real solid, 
but rather to represent n n-phase composite of easily tuneable heterogeneity; the spatial distribution P(xi) of a 
mechanical property P of the composite under investigation is assumed to follow

where ri ∈ [0, 1] represents random numbers of uniform probability density generated at the position of each 
cell, xi , i = 1, 2, . . . 1000 . We quantify the randomness of each mechanical property P by its relative variance, 
defined as

where κ = 0 corresponds to no spatial variation of P and κ = 2 corresponds to the maximum variation, obtained 
in the case Pmin = 0  (in which it is also Pmax = 2P , where P is the average value of P). The choice of an uncor-
related, uniform probability density for the mechanical properties of each phase of the composite was based on 
the ease of implementation. In the course of this study, we will analyse the performance of only one realization 
of the VEs for each of the three types of constitutive models analysed.

(1)P(xi) = Pmin + ri(Pmax − Pmin)

(2)κ = 2(Pmax − Pmin)/(Pmax + Pmin) ∈ [0, 2]

Figure 1.   A realisation of the n-phase composite investigated in this study.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15916  | https://doi.org/10.1038/s41598-021-94957-0

www.nature.com/scientificreports/

Finite element simulations.  FE simulations were conducted in Abaqus Standard18 and were fully auto-
mated via Python scripts. Periodic boundary conditions were prescribed on the three pairs of opposite faces of 
the VEs, as prescribed in19. The macroscopic true strains on the VE were controlled by prescribing appropriate 
displacements on a set of auxiliary nodes; such displacements controlled the distance between opposite faces of 
the cuboidal domains and also allowed to calculate the current area of all the faces of the VE. The corresponding 
reaction forces at these auxiliary nodes, representing the components of the total forces acting on the faces of the 
VE, were recorded during the simulations and used, together with the current area of the faces, to calculate the 
histories of macroscopic true stress components, as described in detail in3,19.

In this study, we analyse VEs that are initially approximately isotropic and are subject to small strains, such 
that strain-induced anisotropy is negligible. Driven by the need to keep the computational cost low, we assume 
that the material response can be evaluated in principal strain space, which coincides with principal stress space 
for our isotropic material. In the FE simulations, we prescribe time histories of only the normal macroscopic 
strains εxx , εyy , εzz , while the macroscopic shear strains are set to zero, εxy , εxz , εyz = 0 (xyz is a reference system 
aligned with the edges of the cubic VE). In other words, the applied strains εxx , εyy , εzz are interpreted as prin-
cipal strains εI , εII , εIII . We check that the macroscopic shear tractions are negligibly small in the simulations, 
τxy , τxz , τyz ≈ 0 , confirming that the global reference system xyz is a principal system also for the macroscopic 
stress tensor. We analyse separately three local constitutive behaviours, using models readily available in Abaqus. 
We summarise these models briefly here.

Neohookean hyperelastic.  A hyperelastic composite was studied as a reference case. For this conservative mate-
rial, a one-to-one correspondence exists between stress and strain tensors, and we expect a NN to comfortably 
capture such correspondence. Due to the small deformation imposed, the response of such hyperelastic model 
practically coincides with that of a linear elastic model of equal initial elastic constants. Therefore, the effects of 
elastic nonlinearity in the structural response are not examined in this study. We model an array of isotropic, 
hyperelastic cubic cells, each having an initial Poisson’s ratio of 0.45 and an initial Young’s modulus randomly 
assigned as in Eq. (1) and having a spatial average of 3 GPa. A time-independent neohookean local strain energy 
density is assumed.

Linear viscoelastic.  We also consider a model where the local response is taken as linear isotropic viscoelastic. 
Such response is defined in Abaqus in terms of instantaneous Young’s modulus and Poisson’s ratio and of the 
time-decay of the shear and bulk moduli, expressed by the Prony series20. In this study the Poisson’s ratio is taken 
as constant in time and space and equal to 0.45, while the instantaneous Young’s modulus is randomly assigned 
according to Eq. (1) and has an average value of 3 GPa. The time decay law is taken as spatially uniform across 
the VE and two different laws are considered: one consisting of a single-term Prony series, and one consisting of 
three terms of such series, each associated with time decay constants of different orders of magnitude. A sum-
mary of the relevant properties for the viscoelastic composites is provided in Table 1.

Elastic–plastic.  Elastic–plastic model composites were assembled by assigning to each cell a linear elastic 
response and J2 incompressible, rate-independent plasticity with isotropic hardening. We assume that the mate-
rial has substantial strain hardening, with a constant true hardening modulus of 1 GPa, such that the local mate-
rial response is defined by two elastic constants, a yield stress and this hardening modulus, which is assumed to 
be uniform. The Poisson’s ratio is also assumed to be spatially uniform and equal to 0.45, while spatial variations 
of Young’s modulus and the yield stress are considered separately and prescribed according to Eq. (1), using aver-
age values of 3 GPa for the elastic modulus and 50 MPa for the yield stress.

The FE analyses were conducted via Abaqus Standard using adaptive time stepping. A ‘general step’ was used 
for the hyperelastic and elastic–plastic models, while a ‘visco step’ was used for the viscoelastic model. In all 
simulations, we accounted for geometric non-linearity.

Generation of the training datasets.  To generate the training datasets we consider, for each type of 
constitutive model, a single realisation of the VE described in “Definition of the VEs” and “Finite element simu-
lations”. Note that since we analyse only one realisation of the VE, this does not need to be sufficiently large to 
be “representative”; the only requirement is that such domain is sufficiently large to be approximately isotropic, 
since we will work in principal stress/strain space. A preliminary RVE size convergence analysis showed that the 
VEs analysed had an intrinsic scatter of approximately 5%, and that a further increase in the number of statisti-

Table 1.   Relevant properties of the viscoelastic composites.

Viscoelastic with 1 term of Prony series

Instantaneous elastic constants E0 = 3Gpa ν0 = 0.45

Prony coefficients µ1 = 0.5, k1 = 0.5, t1 = 1 s

Viscoelastic with 3 terms of Prony series

Instantaneous elastic constants E0 = 3Gpa ν0 = 0.45

Prony coefficients
µ1 = 0.177, k1 = 0.177, t1 = 7.71 10−3 s

µ2 = 0.074, k2 = 0.074, t2 = 0.21 s

µ3 = 0.017, k3 = 0.017, t3 = 3.88 s
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cal cells would not affect the average response considerably (while it would reduce such intrinsic scatter). With 
regards to the FE discretisation, the response of the domain is mildly sensitive to the mesh; however, considering 
domains with a finer FE mesh merely results in a marginally different (weaker) macroscopic material response.

Displacement boundary conditions are applied to the auxiliary nodes of the VE to prescribe appropriate 
histories of strain and strain rate. The VEs are taken for pseudo-random walks in true principal strain space 
(

εxx , εyy , εzz
)

. The random walks comprise a number of consecutive steps of random amplitude and duration; 
each random walk is terminated upon meeting the condition 

√

ε2xx + ε2yy + ε2zz ≥ εmax = 0.05 , to limit the 
magnitude of the applied strains, as illustrated in Fig. 2. Each step in the random walks corresponds to relative 
strain amplitudes (final strain minus initial strain) taken, in the case of the hyperelastic and elastic–plastic models, 
as

where �εmin = 0.01 and �εmax = 0.015 are the minimum and maximum amplitude of the strain step in each 
Cartesian direction, rαi and rβi are uniform random variables between 0 and 1, and θ = 0.5 defines the probability 
that the amplitude of each strain step is negative (equal probability of positive and negative steps is assumed in 
this study).

For rate-independent materials (hyperelastic and elastic–plastic constitutive models), each step in the random 
walks has a time duration �T = 1.  For the rate-dependent viscoelastic material, a different approach is taken: 
for each step of the pseudo-random walks, three strain rates are randomly generated for each of the Cartesian 
directions, such that

where rγ is a uniform random number between 0 and 1 and ε̇min, ε̇max are the smallest and largest possible strain 
rates. This ensures that the logarithms of such strain rates are uniformly distributed. Then, the step size �ε is 
generated according to Eq. (3) and the time step duration is determined as �T = �ε/max

(

ε̇x , ε̇y , ε̇z
)

 , where 
ε̇x , ε̇y , ε̇z are the three randomly generated strain rates for each current step.

The FE simulations are then conducted for as many random walks as needed (100 in this study); their solutions 
are incremental, due to the non-linearity of the problems, and the solution time increments �t are determined 
adaptively by the solver. We post-process the results to extract the histories of macroscopic true strain and true 
stress as well as of the plastically dissipated energy Wpl . We then create a database in which each row represents a 
general increment of the solution, and the columns report: the time increment �t ; the initial strains εixx , εiyy , εizz ; 
the initial stresses σ i

xx , σ
i
yy , σ

i
zz ; strain increments �εxx = ε

f
xx − εixx , �εyy = ε

f
yy − εiyy , �εzz = ε

f
zz − εizz ; stress 

increments �σxx = σ
f
xx − σ i

xx , �σyy = σ
f
yy − σ i

yy , �σzz = σ
f
zz − σ i

zz ; increment in plastically dissipated energy, 
�Wpl = W

f
pl −Wi

pl , where the superscripts i and f denote values at the beginning (initial) and the end (final) of 
each increment, respectively. Additional quantities, such as strain rates, macroscopic elastic and plastic strains, 
equivalent plastic strain are calculated from this data as will be detailed below. All quantities with dimensions 
of stress are divided by the average Young’s modulus (3 GPa), while the plastically dissipated energy is divided 

(3)�εi = sgn(rβi − θ)[�εmin + rαi · (�εmax −�εmin)], i = x, y, z

(4)sgn(x) =

{

−1 x ≤ 0
1 x > 0

(5)log ε̇ = ηmin + rγ · (ηmax − ηmin); ηmin = log (ε̇min); ηmax = log (ε̇max)

Figure 2.   Illustration of the random strain histories imposed on the VEs to generate the training data. (a) Three 
examples of pseudo-random loading paths. (b) Details of the strain histories associated to Path 1.
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by the average Young’s modulus and by the volume of the VE (equal to 1 in all cases), to obtain a dataset with 
non-dimensional entries. Each row of such a database represents a data point used to train the surrogate models.

The method proposed to generate the training dataset was the result of a preliminary study in which we 
assessed the distribution of the generated data over the input space of the surrogate models; it was found that 
the choices in Eqs. (3)–(5) correspond to an adequate spread of such data, as shown in detail in Appendix A 
(Supplementary Material). By adjusting the parameters εmax,θ , �εmax , �εmin , ηmax , ηmin, the distribution of the 
training data over the input space can be modified to optimise it for different physical situations. A study of 
the sensitivity of the results to the above parameters is not pursued here, but rather we employ the parameters 
described above for all types of models investigated in this study.

A workstation with 2 processors (Intel Xeon e5-2650 v4, 2.20 GHz) and 256 GB of RAM was used in all 
computations. Approximately 10 h of CPU time were necessary to produce the training dataset.

Training of the neural networks.  We first randomly choose a number φ of data points from the database 
described above. A number φ̄ = 0.9φ of these data points are used to train the NNs, while the remaining 0.1φ 
points are used for validation. All the coordinates of the training data points are normalised by subtracting their 
average value and dividing by their variances (averages and variances are calculated over the set of φ̄ training 
data points). In this study we use multi-layer feed-forward neural networks21, with two hidden layers of 100 
neurons in all cases; the choice of using the same NN architecture in all cases allows a fair comparison between 
the performances of the different models produced in this study. Such networks establish a non-linear function 
relating the desired inputs and outputs. If x and y are column vectors containing the inputs and outputs, respec-
tively, such non-linear function reads

where f  is a non-linear activation function, taken in this study as the Rectified Linear (ReLu) function, defined as

W0, W1, W2 are weight matrices and b0, b1, b2 are column vectors of biases. Training of the neural network is a 
stochastic optimisation process aimed at minimising a chosen objective (or ‘loss’) function. When NNs are used 
to perform regressions, in this study we choose the loss function to be the mean absolute error (MAE), defined as

where y(j)k = NN
(

x̄(j)
)

 is the output of the NN [Eq. (6)] corresponding to the input vector x̄(j) , ȳ(j)k  is the cor-
responding output taken from the training database, j = 1, 2..φ̄ is used to sum over each of the training data 
points and d is the length of the vector y. Minimisation of the loss function is achieved by back-propagation, 
using the Adam algorithm (22, with β1 = 0.9 , β2 = 0.999 , ε = 0 ) with no regularisation, a maximum of 3000 
epochs, a batch size of 50 and learning rate of 0.001. The choice of these parameters was made based on the result 
of a preliminary study aimed at maximising accuracy while maintaining a reasonable computational cost.

We will discuss below that for the elastic–plastic models, separate neural networks will be used to perform 
regressions and classifications, and a different loss function will be used in the case of classification, as described 
in detail in “Response of an elastic–plastic VE”. Training of a single NN took an average CPU time of 20 min.

Structure of the neural networks.  For each of the three constitutive descriptions investigated (hyper-
elastic, linear viscoelastic, elastic–plastic), we use NNs as a surrogate model to predict the homogenised constitu-
tive response of the VEs. In each case, the input and output vectors x and y in Eq. (6) contain different quantities; 
in this section, we present and motivate in detail the choice of inputs and outputs for each surrogate model.

Response of a hyperelastic VE.  For the case of the hyperelastic analyses, each cell (or finite element) of the VE is 
assigned a local response chosen as neohookean. In such constitutive description, which does not include energy 
dissipation, the local stresses [σ ] are obtained by differentiating a scalar elastic potential function as

where F is deformation gradient, �1, �2, �3 are principal stretches, and W  is the neohookean elastic potential, 
defined as

where µ and K are the local shear and bulk moduli, respectively, and they are related to the local Young’s modulus 
E and Poisson’s ratio ν by the usual relations

(6)y =NN(x)= W2f
(

W1

(

f (W0x + b0)
)

+b1
)

+b2

(7)f (α) = max(0,α),

(8)MAE =
1

φ̂

φ̂
∑

j=1

d
∑

k=1

∣

∣

∣
y
(j)
k − ȳ

(j)
k

∣

∣

∣

(9)[σ ] =
1

J

∂W

∂F
F; J = �1�2�3

(10)W = C10(I1 − 3)+
1

D1
(J − 1)2; I1 = �

2
1 + �

2
2 + �

2
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µ

2
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2

K
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E

2(1+ ν)
, K =

E

3(1− 2ν)
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The hyperelastic VEs are n-phase composites in which each phase has a different Young’s modulus and a 
Poisson’s ratio ν = 0.45 ; their macroscopic response is conservative. An elastic potential could be introduced 
to describe such macroscopic response, however, this would take a form different, in general, from the local 
potential in Eq. (10). Such potential would establish a non-linear one-to-one mapping of the macroscopic true 
stress and true strain tensors. In our surrogate models, the neural network (6) will establish such correspond-
ence, such that

where E is the average Young’s modulus of the VE. The choice of having true principal strains ε as input and 
principal stresses σ as an output, rather than vice-versa, is convenient since our simulations are conducted in 
strain control.

Response of a linear viscoelastic VE.  In this case, the VEs are assigned linear viscoelastic local constitutive 
response, as

where µ0 and K0 are the instantaneous shear and bulk moduli, respectively. The principal stress vector  σ is 
decomposed into its deviatoric and hydrostatic parts as in Eq. (13) (note I =

(

1 1 1
)T ), and the shear and bulk 

moduli µR(t) and KR(t) are assumed to relax according to identical Prony series20, having N terms.
The macroscopic response of the composite VE can be proven to be also linear viscoelastic23. It can also be 

shown that the change in principal stresses �σ over a generic time increment �t can be approximated by

where E0 is the instantaneous stiffness matrix, γk is relative relaxation tensor, ◦ indicates the Hadamard product, 
N  is the number of terms in the Prony series which approximates the macroscopic relaxation response, and tk 
is the time relaxation constant of the k-th term of such Prony series.

Inspired by the structure of Eq. (14), in our machine learning exercise we use

where E0 is the average instantaneous Young’s modulus of the VE, �σ is a column vector of the increments in 
principal stresses over a time increment �t , corresponding to an increment in principal strains �ε = ε̇ �t ,  tmax 
is the largest of the time decay constants used in the local Prony series described in Eq. (13). The proposed regres-
sion neglects the effect of history-dependent viscous strains on the behaviour of the composite, assuming that 
the history dependence of the response can be quantified by knowledge of the macroscopic stresses and strains.

Response of an elastic–plastic VE.  For the case of elastic–plastic VEs, the material is assigned a local elastic–
plastic response consisting of isotropic linear elasticity and incompressible, rate-independent J2 plasticity with 
isotropic hardening and strain hardening given by ˙̄εpl = ˙̄σ/H , where 

are the von Mises equivalent stress and accumulated equivalent plastic strain, respectively, such that σij ε̇ij = σ̄ ˙̄εpl 
(Einstein’s summation convention applies), S is the local deviatoric stress tensor, εplloc is the local plastic strain 
tensor, and H is a constant hardening modulus.

In this study, we will compare the performance of three different surrogate models based on multiple NNs 
with different features. The formulation of each of these three surrogate models comprises three steps, as follows.

	 (i)	 A linear perturbation analysis of the unloaded VE is conducted in Abaqus to determine the initial mac-
roscopic elastic stiffness matrix of the VE. This is achieved by imposing a small macroscopic normal 
strain on the VE (in turn, along each of the three Cartesian directions) while constraining the normal 
macroscopic strains in the other two Cartesian directions to vanish, and extracting the corresponding 
macroscopic stresses in all directions, such to assemble the 3 by 3 stiffness matrix, written in principal 

(12)x =
(

εxx , εyy , εzz
)T

= ε; y =
(

σxx/E, σyy/E, σzz/E
)T

= σ/E = NN(x)

(13)

σ = σ
dev + Iσ vol; σ

dev = 2

∫ t

0
µR(t − t ′)

∂εdev(t′)

∂t′
dt; σ vol =
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0
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∂t′
dt
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N
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stress/strain space. As the study is limited to small strains and isotropic VEs, we assume that such stiff-
ness matrix does not change with the applied macroscopic strain.

	 (ii)	 A NN is used to perform a classification exercise, to distinguish between elastic increments (in which no 
plastic dissipation occurs, �Wpl = 0 ) from elastic–plastic increments (in which some energy is plastically 
dissipated, �Wpl > 0).

	 (iii)	 Then, if an increment is classified as elastic, the change in the macroscopic stress state of the VE is 
obtained from the equations of linear elasticity, using the stiffness matrix calculated in step (i). Con-
versely, if an increment is classified as elastic–plastic, a second NN is used to perform a regression 
exercise to predict the change in the macroscopic stress state of the VE over that increment.

In the following, due to the isotropy of the VEs and the small strains imposed, we will assume (as observed 
from the simulations) that no substantial strain localisation and softening occur during deformation of the VEs, 
such that the macroscopic principal stress σ and principal strain ε are, in first approximation, sufficient to describe 
the state of the solid at any given point in time, and that history effects can be quantified by appropriate auxiliary 
variables depending on the histories of σ and ε . This justifies the use of simple feed-forward NNs as opposed to 
more complex, computationally demanding, and hard to train recurrent NNs13.

We also note that the presence of the classification step can be in principle avoided, however in our prelimi-
nary studies we found that including the preliminary classification step increases the accuracy by approximately 
20%.

We now proceed to describe the three different models proposed in this study.

Model I.  The classification is performed by a neural network NNI
clas having as inputs σ , ε and �ε for each 

increment, and providing a single scalar output NNI
clas(σ , ε,�ε) ∈ [0, 1] , such that an increment is considered 

elastic if NNI
clas has an output less than 0.5 and elastic–plastic otherwise. To train such NN we proceed broadly 

as described in “Training of the neural networks”. Our results database is pre-processed to include, for each 
increment, a column ylabel that is set to 0 if no plastic dissipation occurs over that increment, and to 1 otherwise

(note that �Wpl < 0 does not occur in our thermodynamically consistent training dataset).The desired number 
of training data points φ is selected from the database such that φ/2 such points have ylabel = 0 and φ/2 have 
ylabel = 1, to avoid any bias. A number φ̄ = 0.9φ of these data points is randomly selected for training and the 
remaining 0.1φ is used for validation. The loss function used to train NNI

clas is chosen as the binary cross-entropy 
BCE, defined as

with j = 1, 2..φ̄ used to sum over each of the training data points.
The regression to predict the change in the macroscopic stress state is performed by a separate NN using the 

same inputs as NNI
clas and providing as output �σ , as

This is the simplest possible choice to capture a path-dependent, rate-independent response, and it assumes 
that path-dependence is completely quantified by knowledge of the initial σ and ε.

Model II.  In this model we include as an input for the classification and regression a macroscopic measure 
of the accumulated equivalent von Mises plastic strain; this is obtained by assuming that the total macroscopic 
strains can be decomposed as the sum of elastic and plastic parts

The increments in a ‘macroscopic’ equivalent von Mises plastic strain are computed as

and its accumulated value ε̄pl0  is computed as a function of time. In this model we prefer to use εel , εpl in lieu of σ , 
ε , as inputs for the NNs; the macroscopic response of the VE is expected to be elastic–plastic with a hardening 
response not necessarily isotropic, as prescribed at a local level. For this reason, we prefer to feed to the NNs the 
explicit knowledge of the plastic strains εpl .

The classification is performed by a neural network NNII
clas having as inputs εel , εpl , �ε and ε̄pl0  for each incre-

ment, and providing a single scalar output NNII
clas

(

ε
el , εpl ,ε̄

pl
0 ,�ε

)

∈ [0, 1] , used to determine if an increment is 
elastic 

(

NNII
clas < 0.5

)

  or elastic–plastic 
(

NNII
clas ≥ 0.5

)

 . The loss function for the classification exercise is identical 
to that for Model I.

(17)ylabel =

{

0 if �Wpl = 0 (elastic)
1 if �Wpl > 0 (elastic - plastic)

(18)BCE =
−1

φ̄

φ̄
∑

j=1

(

y
j
label ln

(

NNI
clas

(

σ
j

E
, εj ,�ε

j

))

+
(

1− y
j
label

)

ln

(

1− NNI
clas

(

σ
j

E
, εj ,�ε

j

)))

(19)�σ/E = NNI
reg

(

σ/E, ε,�ε
)

.

(20)ε = ε
el + ε

pl = C−1
0 σ+ ε

pl; �ε = �εel +�εpl = C−1
0 �σ +�εpl .

(21)�ε̄
pl
0 =

√

2

3
�εpl�εpl
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The regression is performed by a separate NN using the same inputs as NNII
clas and providing as an output �ε

pl

The corresponding increment in stress can readily be obtained from Eq. (20), �σ = C0

(

�ε −�εpl
)

.
We note here that decomposing the macroscopic strains into an elastic and plastic component is not, strictly, 

physically consistent. For example, one cannot use knowledge of macroscopic stress and macroscopic plastic 
strain to compute the density of plastically dissipated energy in the volume element, i.e.

where �WFE
pl  is the density in plastically dissipated energy computed by the FE simulations; this is because the 

left-hand side of the inequality, σ�ε
pl , in the case of heterogeneous solids, includes the plastic-free energy, which 

is the elastic strain energy stored in the elastic regions of a plastically deforming heterogeneous volume element24. 
The inequality (23) violates the Hill-Mendel condition3 unless the equal sign applies. This is illustrated in Fig. 3, 
where we compare the plastically dissipated energy calculated from the knowledge of the macroscopic plastic 
strains (as Wpl =

∫ t
0 σ

(

dεpl/dt
)

dt ) to that determined by the FE simulations. The plastically dissipated energy 
is normalised in Fig. 3 as Wpl = Wpl/

(

EV0

)

 , and evaluated in the case of a homogeneous volume element (for 
which σ�ε

pl = �WFE
pl  , Fig. 3a) and for a composite of heterogeneity κ = 2 , for which σ�ε

pl ≥ �WFE
pl  (Fig. 3b).

Model III.  To avoid the physical inconsistency of Model II, we derive an alternative model which does not 
make use of the accumulated macroscopic equivalent von Mises plastic strain ε̄pl0  or of the macroscopic plastic 
strain components �ε

pl . In Model III we replace ε̄pl0  by Wpl as an input of the NNs and we perform an additional 
regression to predict �Wpl at every increment.

A classification to distinguish elastic from elastic–plastic increments if performed by a neural network 
NNIII

clas

(

ε,σ/E,Wpl ,�ε
)

∈ [0, 1] , where Wpl = Wpl/
(

EV0

)

 ; the two regressions described above use NNs with 
the same inputs as NNIII

clas , namely

As for the previous models, the chosen loss functions are BCE for the classification and MAE for the two 
regressions.

Using the NNs to predict stress versus strain histories.  Once successfully trained, the NNs are used 
as surrogate models to predict the homogenised constitutive response of the VEs subject to previously unseen, 

(22)�ε
pl = NNII

reg

(

ε
el , εpl ,ε̄

pl
0 ,�ε

)

.

(23)σ�ε
pl ≥ �WFE

pl

(24)�σ/E = NNIII
regσ

(

ε,σ/E,Wpl ,�ε
)

,

(25)�Wpl = NNIII
regW

(

ε,σ/E,Wpl ,�ε
)

.

Figure 3.   Comparison of the time histories of the density of plastically dissipated energy during selected 
random multiaxial loading cases, as calculated analytically from Eq. (23) (label ANL) or obtained from the 
FE simulations (label FE). The comparison is made for a homogeneous volume element ((a), κ = 0 ) and for a 
heterogeneous material with spatially varying Young’s modulus (κ = 2) and uniform plastic properties (b).
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pseudo-random, multiaxial macroscopic strain histories. To assess the accuracy of each surrogate model we gen-
erate 20 additional unseen loading cases, in the form of pseudo-random walks in true principal strain space, as 
described in “Generation of the training datasets”. These loading cases are applied to the same realisation of the 
VE used to produce the training data, and the corresponding simulations are conducted in Abaqus Standard as 
in “Finite element simulations”. The macroscopic stress versus strain histories are extracted from the simulations 
and used as a benchmark for the surrogate models.

The predictions by the surrogate model are obtained as follows. First, macroscopic strains and stresses are 
initialised and set to zero. Then, we consider the first increment of the simulations, corresponding to time and 
strain increments �tFE1  , �ε

FE
1  ; the NNs described in the previous section are used to predict the stress and strain 

vectors at the end of the first increment, using �tFE1  , �ε
FE
1  as inputs. Such updated stress and strain vectors are 

used as inputs of the NNs for the following increment; such NNs always use time and strain increments identical 
to those in the FE solution, �t = �tFE , �ε = �ε

FE . Repeating this procedure iteratively, we construct predic-
tions of the stress versus strain curves using the surrogate models.

Generating a prediction of the stress versus strain history for an average random loading case takes approxi-
mately less than one second of CPU time. We note that obtaining the corresponding predictions via FE simula-
tions requires approximately 350 s, therefore the surrogate models offer a computational saving of at least two 
orders of magnitudes. In this study, the VE was meshed by only 103 elements, but this number was kept low 
in the interest of speed. For very detailed VE of materials with complex architecture, such a number can easily 
exceed 108, corresponding to a great increase in the CPU time required to perform the FE simulations; however, 
the time required by the surrogate models to produce the same predictions would remain below 1 s. Also, in 
this study we use NNs with 100 neurons per layer; the number of neurons can be reduced substantially without 
a corresponding reduction in accuracy, as it was found in a preliminary study not reported here for brevity.

Quantification of the accuracy of the surrogate models.  To assess the accuracy of the regressions 
performed by the NNs NNI

reg , NNII
reg , NNIII

regσ
,NNIII

regW
, in addition to the final value of the loss function MAE, we 

introduce an additional metric, to which we refer as path-wise stress error, Eσ ; this metric aims at capturing the 
effectiveness of a surrogate model in predicting macroscopic stress versus strain histories of a VE. This is com-
puted as follows. A pseudo-random loading case is generated as described in “Generation of the training data-
sets” and the corresponding FE simulation (comprising Ninc increments) is conducted. The macroscopic stress 
predicted by the detailed FE simulation, referred to as σFE here, is compared to the corresponding prediction by 
a NN (at the same strain ε ), indicated as σNN , at the end of every increment, and Eσ is defined as

where j is used to sum over different increments and �∗�2 denotes the norm 2 of *. To compare the accuracy of 
different models,  Eσ is evaluated over 20 different pseudo-random loading cases and the corresponding average 
Eσ is computed.

When assessing the effectiveness of the classification exercises performed in this study by NNI
clas , NN

II
clas , 

NNIII
clas , we define a path-wise accuracy A as

where Ccorrect is the total number of correct classification instances over a certain random loading case. Similarly 
to the case of the regressions, this is computed for a population of 20 different loading cases and the average A 
is evaluated.

Results and discussion
We proceed to present the predictions of the surrogate models for each constitutive description of the n-phase 
composites analysed. We note here that the predictions shown below, obtained with accurately trained NNs, 
were found to be thermodynamically consistent, with no exception, in the sense that in all cases, and in all 
increments of the simulations conducted in this study, the energy was conserved and the dissipated energy was 
non-negative. This can be explained by the fact that our training data is thermodynamically consistent and that 
the NN have an excellent agreement with this data at the end of the training. During the training/optimisation 
of the NNs, it can occur that thermodynamically inconsistent predictions are made, especially at the early stages 
of the optimisation. In this study, however, this problem was not detected after the training, such that it was not 
necessary to include explicit constraints in the optimisation problem.

We also checked, by appropriate permutations of the indices of inputs and outputs along the three Cartesian 
directions, that the predictions of the surrogate models were approximately isotropic as expected.

Hyperelastic n‑phase composite.  We recall that these composites comprise an array of 10× 10× 10 
cubic cells (each meshed by a single FE of type C3D8 in Abaqus18) with dissimilar Young’s moduli and uniform 
Poisson’s ratio as detailed in “Computational framework”. Figure 4 presents, for a selected pseudo-random load-
ing case, a comparison of the predictions of the FE simulations and of the surrogate model. These are found in 
excellent agreement and correspond to a path-wise stress error Eσ = 1.7% . φ = 4000 datapoints were used to 
train the surrogate model.

(26)Eσ =
1

Ninc

Ninc
�

j=2





�

�

�σNNj − σ FEj

�

�

�

2
�

�

�
σ FEj

�

�

�

2





(27)A =
1

Ninc
Ccorrect
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Figure 4.   Example of strain versus time (a) and stress versus strain (b–d) histories for a hyperelastic composite 
with κ = 2.0. FE predictions are compared to predictions by a surrogate model. Eσ = 1.7% for the load case 
shown, which used φ = 4000 training data points.

Figure 5.   Average path-wise stress error Eσ (calculated over 20 different pseudo-random loading paths) as a 
function of the heterogeneity κ and the number of training datapoints φ.
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Considering the small strains imposed on the composite, we expect the NN (12) to predict comfortably the 
correspondence between stress and strain, which is very close to a linear elastic relation. Figure 5 shows that this 
is indeed the case. Only 2000 training data points are required to ensure Eσ < 5% ; the surrogate model shows 
accuracy approximately independent of the degree of heterogeneity κ.

We note that choosing a NN with a structure like in (12), rather than looking for an elastic potential as 
pursued by other authors (e.g.25), has the advantage of being suitable in cases where such elastic potential does 
not exist.

Viscoelastic n‑phase composite.  We proceed to assess the accuracy of the surrogate model of a viscoe-
lastic composite. Figure 6 compares the FE predictions to those by the surrogate model for a composite with 
relaxation characteristic given by a single-term Prony series, while Fig.  7 presents the same information for 
the case of a relaxation function comprising a three-term Prony series. We note that for both cases ηmin = − 3, 
ηmax = 0, such that the strain rates in each increment are logarithmically spread over three orders of magnitude 
and comprised between 10−3 and 100 s−1. We found in a preliminary study that logarithmic spacing of the train-
ing data points was more effective than linear spacing.

The data in Figs. 6 and 7 correspond to κ = 2 and φ = 5000 . For this choice, the surrogate model performs an 
excellent regression for a composite with a single-term Prony series, achieving a path-wise stress error Eσ = 6.2% . 
In the case of a relaxation function comprising a three-term Prony series, the accuracy of the surrogate model 
is lower but still acceptable (Eσ = 19.4%) , especially in consideration of the very complex loading case imposed 
on the composite. The accuracy of the regressions could be improved by increasing the number of training 
datapoints, but this is not investigated here. Figure 8 provides average values of Eσ, calculated over 20 different 
pseudo-random loading cases, for the two composites examined. Clearly, the accuracy of the model is relatively 
insensitive to the degree of heterogeneity for the case of a single-term Prony series (Fig. 8a); for a three-term 
Prony series (Fig. 8b), the surrogate models give lower Eσ at low heterogeneity κ , but the error becomes less and 
less sensitive to κ with an increasing number of training data points φ. The trends in Fig. 8a suggest that the error 
can be lowered by increasing the number of training data points.

Figure 6.   Example of strain versus time (a) and stress versus strain (b–d) histories for a viscoelastic composite 
with κ = 2.0 and stiffness relaxation dictated by a single-term Prony series. FE predictions are compared to 
predictions by a surrogate model. Eσ = 6.2% for the load case shown, which used φ = 5000 training data points.
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Figure 7.   Example of strain versus time (a) and stress versus strain (b–d) histories for a viscoelastic composite 
with κ = 2.0 and stiffness relaxation dictated by a three-term Prony series. FE predictions are compared to 
predictions by a surrogate model. Eσ = 19.4% for the load case shown, which used φ = 5000 training data 
points.

Figure 8.   Average path-wise stress error Eσ (calculated over 20 different pseudo-random loading paths) as 
a function of the heterogeneity κ and the number of training data points φ . Data are shown for a viscoelastic 
model using a single-term Prony series (a) or a three-term Prony series (b).



13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:15916  | https://doi.org/10.1038/s41598-021-94957-0

www.nature.com/scientificreports/

We conclude that our proposed regression (15) is effective in capturing the response of volume elements with 
a general linear viscoelastic response, loaded over wide ranges of strains and strain rates. The proposed method 
directly provides macroscopic stresses and strains without the need for defining a “macroscopic relaxation func-
tion” as pursued in other studies26.

Elastic–plastic n‑phase composite.  We now examine the accuracy of the surrogate models proposed for 
the elastic–plastic composites; in this section, we only focus on composites with heterogeneous Young’s modu-
lus and uniform yield stress, while the case of uniform modulus and spatially varying yield stress is presented 
in Appendix B (supplementary material) for the sake of brevity. The predictions of Model II are compared to 
the results of FE simulations in Figs. 9 and 10, in terms of stress versus strain histories, for the highest possible 
heterogeneity, κ = 2. We choose to plot the predictions of Model II because this model outperforms the other 
two, as it will be shown below. Figures 9 and 10 correspond to selected pseudo-random loading paths, with Fig. 9 
referring to a relatively simple path and Fig. 10 present the case of a much more complicated path. In both cases, 
Model II achieves excellent accuracy, however, as expected, this accuracy is higher for the simpler loading path 
(Eσ = 2.7%) than for the more complicated one (Eσ = 17.8%).

Figure 11 compares the accuracy of Models I, II and III (in terms of the average path-wise stress error Eσ ) 
and the sensitivity of such accuracy to the degree of heterogeneity κ and to the size of the training dataset φ. 
For φ = 5000 , Model II outperforms Model I, which in turn is more accurate than Model III; this trend is also 
observed at lower values of φ . The accuracy of Model II is scarcely sensitive to the value of φ , suggesting that 
φ = 2000 is a sufficiently large dataset for the problem at hand. The general trend observed is that the accuracy 
of all models decreases as κ increases.

The effectiveness of the classifications and regressions performed by Models I, II and III, are assessed inde-
pendently in Figs. 12 and 13, respectively. Figure 12 presents the accuracy of the classification NNs used for the 
three models. Such accuracies are comparable for the three models, with Model III outperforming slightly the 
other two. Perhaps counter-intuitively, for κ > 0 , the accuracy of the classification exercise is higher for a higher 
degree of heterogeneity. This is due to the fact that for very heterogeneous materials, the vast majority of the 
input space corresponds to plastic increments. We recall that the training dataset for these classifications contains 

Figure 9.   Example of strain versus time (a) and stress versus strain (b–d) histories for an elastic–plastic 
composite with κ = 2.0 . FE predictions are compared to predictions by a surrogate model. Eσ = 2.7% for the 
load case shown, which used φ = 5000 training data points.
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equal numbers of data points in the plastic and elastic regimes, such that at high heterogeneity, data points that 
correspond to elastic increments tend to cluster in input space, and this makes the classification process easier for 
the NNs. Similarly, in the case κ = 0 a vast majority of increments are elastic, resulting in an easier classification.

In Fig. 13 we compare the values of MAE calculated for the validation dataset, for different values of κ and φ . 
We note that this quantity is independent of the length and complexity of the loading path and of the classifica-
tion process, and only quantifies the effectiveness of the models in predicting the evolution of state variables 
over a single (elastic–plastic) increment. Model II always outperforms the other two irrespective of κ and φ ; in 
absolute terms, the performance of Model II is nearly independent of φ , again suggesting that φ = 2000 is a suf-
ficiently large dataset. At low φ , Model III outperforms Model I, but the opposite is observed at high values of φ.

In summary, Model III is the best of the three in the classification exercise, while Model II outperforms the 
other two models in the regression exercise (with models I and III approximately equivalent in regression perfor-
mance). Overall, Model II is the best performing model in terms of Eσ and requires a smaller size of the training 
dataset to achieve a given accuracy. As larger and larger training datasets are employed, the performances of 
the three models, however (in terms of Eσ ) tend to become very similar. For the n-phase composites considered 
in this study, φ ≥ 3000 guarantees Eσ < 10% for all models and irrespective of κ , which results in sufficiently 
accurate predictions in all cases of practical interest.

It is expected that composites with heterogeneous Young’s modulus and uniform yield stress (whose perfor-
mance is discussed here and shown in Figs. 9, 10, 11, 12, and 13) display a macroscopic plastic response which 
is substantially pressure-sensitive; in contrast, composites with uniform Young’s modulus and spatially varying 
yield stress are expected to have an approximately pressure-insensitive macroscopic behaviour. Consequently, 
capturing the material response is expected to be easier in the second case. We found that indeed this is the 
case. Results for composites with uniform Young’s modulus and varying yield stress are presented in detail in 
Appendix B (supplementary material) for the benefit of the interested reader.

Some unexpected non-monotonic trends are observed in Figs. 11, 12 and 13; the reasons for these trends 
were not investigated further in this study, but these could be due to different distributions of training datapoints 
across the input space, for different values κ . Similarly, the relative performance of models II and III was also 
unexpected, in consideration of the slight physical inconsistency of Model II. While for the n-phase composites 

Figure 10.   Example of strain versus time (a) and stress versus strain (b–d) histories for an elastic–plastic 
composite with κ = 2.0 . FE predictions are compared to predictions by a surrogate model. Eσ = 17.8% for the 
load case shown, which used φ = 5000 training data points.
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Figure 11.   Average path-wise stress error Eσ (calculated over 20 different pseudo-random loading paths) as a 
function of the heterogeneity κ and the number of training data points φ . Data are shown for models I, II and 
III.

Figure 12.   Average path-wise accuracy A (calculated over 20 different pseudo-random loading paths) as a 
function of the heterogeneity κ . The performance of the classifications in models I, II and III are compared.
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investigated here Model II outperforms (however slightly) Model III, this might not be the case for other types of 
heterogeneous materials containing plastically deforming phases. A detailed analysis of the relative performance 
of these two models and possible improvements to both is left as a topic for future studies.

Concluding remarks
We proposed and assessed a computational framework to derive data-driven surrogate models for the response 
of non-linear n-phase composites to arbitrary mechanical loading. We considered composites with different 
non-linear local material responses, including non-linear elastic, time-dependent linear viscoelastic, and history-
dependent elastic–plastic; in each case, we determine the macroscopic mechanical response via FE simulations 
and computational homogenisation and use data from the simulations to train appropriate neural networks to 
reproduce the homogenised response accurately. For each local constitutive description, we propose a compu-
tational procedure to produce training data and appropriate inputs and outputs for the surrogate models. We 
examine systematically the accuracy of the proposed surrogate models and we explore the sensitivity of their 
accuracy to the degree of heterogeneity of the composites and to the size of the training dataset. The main con-
clusions of the study are as follows:

•	 The strategy proposed to produce the training dataset, consisting of imposing pseudo-random histories of 
macroscopic deformation to the volume elements, results in training data representative of realistic scenarios 
for all three constitutive descriptions analysed in this study. The datasets produced appropriately sample the 
input space of the surrogate models, facilitating the application of machine learning techniques.

•	 For the type of loading examined in this study, restricted to small strains and negligible localisation of the 
stress, strain and strain rate fields, the proposed surrogate models proved very effective in capturing the non-
linear multi-axial material response over wide ranges of applied strain rates and strain triaxiality, including 
non-monotonic and non-proportional loading.

•	 For elastic–plastic n-phase composites, absent any substantial strain localisation, the history-dependence 
of the material can be quantified adequately by knowledge of the current macroscopic stresses and strains; 
on the other hand, including appropriate history-dependent internal variables improves the accuracy of the 
surrogate models and decreases the size of the training dataset needed to achieve a prescribed accuracy.

Figure 13.   MAE for the validation dataset at convergence, for the NNs (19), (22) and (24), as a function of the 
heterogeneity κ and the number of training data points φ . Data are shown for models I, II and III.
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The findings of this study may serve as a guide to researchers developing multi-scale computational models 
or data-driven models informed directly from measured data. Several improvements could be introduced to the 
proposed computational framework, such as: refining the features of the surrogate models, by including addi-
tional internal variables to aid capturing of the time- and history-dependence; relaxing the hypothesis of small 
strains and approximately isotropic response; extending the analysis to solids displaying a cohesive response 
and the consequent macroscopic softening and strain localisation. These improvements will be the subject of 
our future studies.
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