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Abstract 

Experimental autoimmune vasculitis (EAV) is a model of antineutrophil cytoplasm antibody 

(ANCA)-associated vasculitis (AAV) induced by immunisation of susceptible rat strains with 

myeloperoxidase (MPO). Animals develop circulating MPO-ANCA, pulmonary haemorrhage 

and glomerulonephritis, although renal injury is mild and recovers spontaneously without 

treatment. In this study we aimed to augment the severity of glomerulonephritis. Following 

induction of EAV on day 0, a sub-nephritogenic dose of nephrotoxic serum (NTS) containing 

heterologous antibodies to glomerular basement membrane was administered on day 14. This 

resulted in a significant increase in disease severity at day 28 compared to MPO immunisation 

alone - with more urinary abnormalities, infiltrating glomerular leucocytes, and crescent 

formation that progressed to glomerular and tubulointerstitial scarring by day 56, recapitulating 

important features of human disease. Importantly, the glomerulonephritis remained pauci-

immune, and was strictly dependent on the presence of autoimmunity to MPO, as there was no 

evidence of renal disease following administration of sub-nephritogenic NTS alone or after 

immunisation with a control protein in place of MPO. Detailed phenotyping of glomerular 

leucocytes identified an early infiltrate of non-classical monocytes following NTS 

administration that, in the presence of autoimmunity to MPO, may initiate the subsequent 

influx of classical monocytes which augment glomerular injury. We also showed that this 

model can be used to test novel therapeutics by using a small molecule kinase inhibitor 

(fostamatinib) that rapidly attenuated both glomerular and pulmonary injury over a four-day 

treatment period. We believe that this enhanced model of MPO-AAV will prove useful for the 

study of glomerular leucocyte behaviour and novel therapeutics in AAV in the future. 
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Introduction 

Anti-neutrophil cytoplasm antibody (ANCA) associated vasculitis (AAV) is a rare systemic 

autoimmune disease, which can cause life-threatening lung haemorrhage and end stage kidney 

disease (ESKD) [1]. The typical renal lesion in AAV is pauci-immune crescentic 

glomerulonephritis. Circulating ANCA are directed to myeloperoxidase (MPO) or proteinase-

3 (PR3), which are present in the granules of neutrophils and lysosomes of monocytes [2,3], 

and a number of experimental and clinical observations indicate they have a directly pathogenic 

role in disease pathogenesis [4,5]. 

Studies in animal models have been critical for understanding disease mechanisms, and several 

rodent models of anti-MPO vasculitis have been developed [6]. These include passive transfer 

of anti-MPO antibodies, raised in MPO-deficient mice, to naïve wild-type mice, causing 

glomerulonephritis (GN) and pulmonary capillaritis [5–7]. Models of active autoimmunity in 

mice have also been developed; mice immunised with mouse MPO develop anti-MPO 

antibodies at low titre, but these are not sufficient to cause GN, and a ‘second-hit’ is required 

to induce disease. For example, a subsequent injection of heterologous anti-mouse glomerular 

basement membrane (GBM) globulin results in transient neutrophil recruitment to the 

glomerulus. This ‘planting’ of the MPO autoantigen (derived from retained neutrophils) results 

in recruitment of MPO-specific CD4+ T cells, neutrophils and macrophages to the glomerulus, 

and the development of crescentic GN [8,9]. The disease triggered by anti-GBM globulin is 

dependent on MPO; disease does not occur in MPO-deficient mice. A limitation of this model 

is that the response to anti-GBM globulin is itself nephritogenic; by 4 days mice develop an 

autologous immune response to deposited anti-GBM antibody, leading to severe GN, even in 

the absence of pre-immunisation with MPO. As such, study of anti-MPO mediated disease is 

limited to early time points, meaning that therapeutics can only be tested in preventative 

studies, not after the development of vasculitis [9,10]. 



A model of experimental autoimmune vasculitis (EAV) in the susceptible Wistar–Kyoto 

(WKY) rat strain was previously described by Little et al in our laboratory. Rats immunised 

with human MPO develop polyclonal MPO-ANCA cross-reactive to rat MPO expressed in 

neutrophils and monocytes, and subsequently small vessel vasculitis, pauci-immune GN and 

haemorrhagic pulmonary capillaritis [11–14]. A limitation of the model is that renal disease is 

relatively mild; glomerular lesions are mainly proliferative, crescent formation is rare, and 

disease spontaneously resolves from six weeks post-induction. It has been shown in other 

studies in rats that addition of a low-dose of NTS, containing heterologous anti-rat GBM 

antibodies, after immunisation with MPO, results in increased disease severity [15,16], similar 

to the approach described in mice. However, this approach is not well characterised in rats, and 

in these reports the administration of NTS alone, in the absence of autoimmunity to MPO, 

induced GN, and immunoglobulin deposits could be detected in glomeruli.  

In this study, we aim to augment disease severity of EAV by the addition of a truly sub-

nephritogenic dose of NTS that is insufficient to induce disease in the absence of autoimmunity 

to MPO. To investigate possible mechanisms by which sub-nephritogenic NTS increases 

disease severity, we isolate and phenotype glomerular leucocytes using flow cytometry. 

Finally, we show that an enhanced model can be used to test therapeutic approaches in a 

preclinical study. 

  



Materials and methods 

 

 

Animal husbandry 

WKY and Lewis rats were purchased from Charles River (Saffron Walden, UK) and 

maintained in a pathogen-free animal facility at the Central Biomedical Services unit, 

Hammersmith Hospital Campus, Imperial College London. All procedures were carried out in 

accordance with the regulations of the UK Animals (Scientific Procedures) Act (1986) and 

ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines. 

Experimental autoimmune vasculitis/NTS administration 

NTS was prepared in rabbits as previously described [17]. For the NTS titration experiment, 

male WKY rats aged 8–9 weeks (n=4/group) were immunised intravenously (IV) with 100 μl 

of NTS (or serial dilutions in sterile PBS) and maintained until 10 days post-immunisation.  

EAV was induced by immunising 7–8 week old male WKY or Lewis rats (n=4–10/group) 

intramuscularly with 800 µg/kg human MPO (Calbiochem, Merck Millipore, Darmstadt, 

Germany), or human serum albumin (HSA; Sigma, Poole, UK) as a control human protein, 

emulsified in complete Freund’s adjuvant supplemented with Mycobacterium butyricum 

(Sigma). Intraperitoneal pertussis toxin (Sigma) was administered on days 0 and 2 [13]. 

For ‘double’ immunisation studies, on day 14 after initial immunisation with MPO, 100 μl of 

1:100 dilution of NTS or normal rabbit serum (NRS) was administered IV. Urine was collected 

weekly by housing animals in individual metabolism cages overnight, and blood collected 

every 14 days by lateral tail vein bleed. Animals were sacrificed after 28, 42 or 56 days. 



For additional experiments to assess glomerular cell infiltrate at early time points, neat or 1:100 

NTS was given IV to 8–9 week old male WKY rats (n=4/group) and animals sacrificed after 3 

h, 24 h or 7 days. 

Assessment of renal disease 

Proteinuria was measured by the sulphosalicylic acid method and haematuria by urine dipstick 

(Multistix 8; Siemens, Munich, Germany) [18]. At the end of each experiment animals were 

exsanguinated under terminal anaesthesia. Renal tissue was fixed in 10% neutral buffered 

formalin, transferred to 70% ethanol, and processed to paraffin blocks. Sections were stained 

with periodic acid Schiff (PAS), haematoxylin and eosin, and Jones’ silver stain. Fifty 

consecutive glomeruli were assessed for crescents ± necrosis, segmental necrosis, or minor 

changes such as segmental endocapillary proliferation, by a blinded observer, and results 

expressed as mean proportion of glomeruli for each animal. Immunoperoxidase staining was 

carried out using CD68 (ED-1, Bio-Rad, Watford, UK; dilution 1:500), CD8 (OX-8, Bio-Rad; 

dilution 1:50), CD3 (1F4, Bio-Rad; dilution 1:400), and for smooth muscle actin (M0851, 

Dako, Ely, UK; dilution 1:100). Number of positive cells was quantified using ImageProPlus 

software to measure percentage area staining in 20 consecutive glomeruli, or 20 consecutive 

high-powered field (HPF) for interstitial staining, and results expressed as mean percentage for 

each animal. Smooth muscle actin immunostaining was used to quantify the area proportion of 

fibrous/fibrocellular crescents using assessment of 50 consecutive glomeruli. 

Glomeruli were isolated by serial sieving of whole kidney tissue as described previously [19], 

then digested with 1 mg/ml Type IV collagenase (Sigma), 0.5 mg/ml trypsin (Sigma) and 0.1 

mg/ml Type I DNase (Roche, Welwyn, UK) for 20 min at 37 °C with gentle agitation. Cells 

were washed and used for cell surface staining with antibodies against CD172a (OX-41, FITC, 

Biorad, 1:5), CD45 (OX-1, V450, BD Biosciences, Oxford, UK, 1:40), CD3 (eBioG4.18, PE, 



eBiosciences, Hatfield, UK, 1:40), B220 (HIS24, PE, eBiosciences, 1:40), CD161a (3.2.3, PE, 

BioLegend, San Diego, USA, 1:40), granulocyte marker antibody (HIS48, biotin, 

eBiosciences, 1:40) and CD43 (W3/13, AlexaFluor647, BioLegend, 1:40) followed by 

streptavidin-PECy7 (BioLegend, 1:300) secondary. Cells were analysed on a BD LSRFortessa 

flow cytometer with standard lasers, and gating strategy and analysis performed using FlowJo 

v10 software [20]. For quantification of cell numbers, precision count beads (BioLegend) were 

used. 

Assessment of lung injury 

Severity of lung injury was graded by visual inspection of the lungs using a semi-quantitative 

scoring system which graded lungs as: 0- normal; 1- less than 10 petechiae; 2- 10–20 petechiae; 

and 3 if > 20 petechiae were seen. Lung tissue was also collected and processed as for kidney 

tissue. Perls’ Prussian blue staining was used to quantify haemosiderin-laden macrophages 

using ImageProPlus software by measuring proportion of stained cells in 5 HPF. 

Assessment of autoantibody response 

Anti-MPO antibodies were assayed in serum using a direct ELISA. Plates were coated with 

1.33μ g/ml of hMPO overnight, blocked with 3% BSA followed by rat serum, and standards 

diluted in PBS. A goat anti-rat IgG-ALP conjugate (1:1000, Sigma) was used as a secondary 

antibody and plates were developed with p-nitrophenyl-phosphate solution (Sigma).  

IgG binding to rat leucocytes was assayed using flow cytometry and indirect 

immunofluorescence (IIF). For flow cytometry, whole blood was collected via cardiac 

puncture, red cells were lysed (1X RBC Lysis Buffer, eBioscience) and cells were used for cell 

surface staining with antibodies against CD3 (eBioG4.18, PE), B220 (HIS24, PE), and CD161a 

(3.2.3, PE), all 1:40. Cells were fixed and permeabilised then incubated with 1:1000 dilution 

of rat serum followed by an Alexa647 conjugated anti-rat IgG secondary (1:1000, Biolegend). 



Cells were analysed on a BD LSRFortessa flow cytometer with standard lasers, and gating 

strategy and analysis performed using FlowJo v10 software. The mean fluorescence intensity 

(MFI) of PE-negative cells was used to quantify IgG binding. For IIF rat bone marrow was 

applied to microscope slides using a cytospin at 300 rpm for 3 min. Cells were fixed in 95% 

ice cold ethanol for 10 min, blocked for 20 min in 20% goat serum and incubated with rat 

serum diluted 1:10 in PBS. Bound IgG was detected using FITC-conjugated goat anti-rat IgG 

(1:1000, Sigma).  

Deposited rat and rabbit IgG was assessed using direct immunofluorescence on frozen kidney 

sections using FITC-labelled antibodies and quantified by examining 20 glomeruli and scoring 

each as 0 to 3+, with results expressed as mean per animal. Indirect immunofluorescence for 

C3 was carried out using anti-C3 (1:200, 12E2, Abcam) with anti-mouse FITC secondary 

(1:200, Vector Laboratories, Peterborough, UK). Direct immunofluorescence for MPO was 

carried out using anti-MPO FITC (Abcam, 2D4) and to aid visualisation of glomeruli, tomato-

lectin-DyLight 594 conjugate was added (Vector). 

For electron microscopy, renal tissue was collected in 2.5% glutaraldehyde. Processing of 

tissue sections and imaging was carried out by North West London Pathology. 

SYK inhibitors 

Fostamatinib disodium (R788) was a gift from Rigel Pharmaceuticals (South San Francisco, 

California). It was reconstituted in vehicle formulation (0.1% carboxymethylcellulose, 0.1% 

methylparaben sodium, 0.02% propylparaben sodium, in distilled water, pH 6.5). Based on a 

previous dose-ranging study in nephrotoxic nephritis (NTN) in WKY rats, animals received 30 

mg/kg, administered by twice daily oral gavage [21]. Control animals received an equivalent 

volume and schedule of vehicle formulation.  

Statistical Analysis 



Statistical analysis was conducted using Prism 8.0 (GraphPad Software Inc., San Diego, CA, 

USA). Unless otherwise stated, all data are reported as median with interquartile range. Where 

appropriate, Mann–Whitney U and Kruskal–Wallis tests were used to assess the difference 

between 2 or >2 groups, with Dunn’s post hoc test to compare individual groups.  

 

  



Results 

 

Administration of a sub-nephritogenic dose of NTS in EAV increases renal injury in the 

presence of autoimmunity to myeloperoxidase, and disease remains pauci-immune 

In the conventional NTN model, WKY rats are immunised with 100 µl neat (undiluted) rabbit 

anti-rat NTS by intravenous (IV) injection, resulting in rapid glomerular deposition of rabbit 

IgG, urinary abnormalities by day 4, deposition of autologous rat IgG by day 6, and severe 

crescentic GN by day 10  [17].  

To identify a sub-nephritogenic dose of NTS, rats were immunised with serial dilutions of NTS 

from neat to 1:100 (n=4 per group) and assessed at day 10. After immunisation with 1:50 or 

lower dilutions of NTS, there was no detectable glomerular injury, and there was no evidence 

of either deposited rabbit or autologous rat IgG within the kidney by direct 

immunofluorescence (supplementary material, Figure S1A–J). Thus, a 1:100 dilution of NTS 

was selected as a sub-nephritogenic dose for all subsequent experiments. 

To assess whether the addition of this sub-nephritogenic dose of NTS could augment disease 

severity in EAV, WKY rats were immunised with human MPO (or human serum albumin 

(HSA) as control) on day 0, followed by 1:100 NTS (or 1:100 normal rabbit serum (NRS) as 

control) on day 14 (n=4–6/group). This time point (day 14) after MPO immunisation was 

selected because rats have developed circulating MPO-ANCA but no urinary abnormalities or 

glomerular injury. By 7 days after administration of NTS (21 days after MPO immunisation) 

animals began to develop urinary abnormalities. At day 28 after initial immunisation with 

MPO, the addition of 1:100 NTS caused significant increases in haematuria (Figure 1A; 

median dipstick haematuria 3,0,0,0 for MPO/NTS, MPO/NRS, HSA/NTS, HSA/NRS 

respectively, p<0.0001) and proteinuria (Figure 1B; median proteinuria 137.0, 5.0, 6.0, 3.4 

mg/day for MPO/NTS, MPO/NRS, HSA/NTS, HSA/NRS respectively, p<0.0001). 



Histological assessment at day 28 showed glomerular necrosis and crescents in all animals 

immunised with MPO/NTS, with around 60% abnormal glomeruli, including 30% with 

crescents. Disease was similar to that seen in AAV, with focal disease, crescents, and segmental 

necrosis the main features (Figure 1C,I). In animals immunised with MPO/NRS there were 

mild proliferative changes and occasional crescent formation, in keeping with early 

conventional EAV (supplementary material, Figure S2). Animals immunised with HSA and 

NTS/NRS had near normal glomerular histology (supplementary material, Figure S2). There 

was a significant increase in cell infiltration into glomeruli at 28 days in MPO/NTS animals 

when assessed by immunostaining and this was predominantly CD68/ED-1+ 

monocyte/macrophages (Figure 1D,I; median % staining/glomerular cross section (GCS) 5.65, 

0.04, 0.12, 0.01 for MPO/NTS, MPO/NRS, HSA/NTS, HSA/NRS respectively, p<0.0001). A 

smaller infiltrate of CD8+ (Figure 1E,I; median % staining/glomerular cross section (GCS) 

0.84, 0.01, 0.02, 0 for MPO/NTS, MPO/NRS, HSA/NTS, HSA/NRS respectively, p=0.005) 

and CD3+ (Figure 1F,I; median % staining/glomerular cross section (GCS) 0.92, 0.04, 0.08, 

0.03 for MPO/NTS, MPO/NRS, HSA/NTS, HSA/NRS respectively, p=0.01) cells were also 

present. The glomerular cell infiltrate was further phenotyped using flow cytometry; this 

showed an increase in both non-classical and classical monocytes in animals immunised with 

MPO/NTS, and a small increase in non-classical (NC) monocytes in animals immunised with 

HSA/NTS (Figure 1G,H; median 17.4, 7.3 and 8.2 NC monocytes/glomerulus for MPO/NTS, 

MPO/NRS, HSA/NTS respectively, p=0.002).  

Importantly, in animals immunised with sub-nephritogenic NTS, disease remained pauci-

immune with no detection of deposited autologous rat IgG or C3 at day 28 in any group by 

indirect immunofluorescence (Figure 2A–F). There were no deposited immune complexes 

seen using electron microscopy in any group (Figure 2G,H). Cellular crescents and cells 

interacting with the GBM were seen by electron microscopy in animals immunised with 



MPO/NTS, but not in other groups (Figure 2G,H and supplementary material, Figure S3A–

D). 

Susceptibility to GN in this model was limited to the WKY rat strain. Despite developing robust 

auto-immunity to MPO, Lewis rats did not develop urinary or glomerular abnormalities 

following immunisation with MPO and low-dose NTS (supplementary material, Figure S4A–

F). Immunostaining for monocytes/macrophages using CD68/ED-1 identified a small cellular 

infiltrate (supplementary material, Figure S4G,H). This was also seen on flow cytometry 

phenotyping of glomerular cellular infiltrate which identified a small infiltrate of non-classical 

monocytes (supplementary material, Figure S4I). 

Addition of a sub-nephritogenic dose of NTS has no effect on lung injury or circulating 

autoantibodies 

There was no difference in lung haemorrhage severity in animals given 1:100 NTS in addition 

to MPO; both by visual inspection (Figure 3A; median lung haemorrhage score 1,1,0,0 for 

MPO/NTS, MPO/NRS, HSA/NTS, HSA/NRS respectively) and by Perls’ staining for 

haemosiderin-laden macrophages (Figure 3B,C; median Perls’ stain 0.13, 0.11, 0, 0 au for 

MPO/NTS, MPO/NRS, HSA/NTS, HSA/NRS respectively). The degree of lung injury was in 

keeping with that seen in our previous studies of EAV without additional NTS/NRS [14]. There 

was no difference in circulating MPO-ANCA levels between the groups of rats immunised 

with MPO either by ELISA using human MPO, or by flow cytometry to assess IgG binding to 

rat leucocytes (Figure 3D,E). IIF using normal rat bone marrow cells confirmed that sera from 

rat immunised with hMPO (+/-NTS) resulted in perinuclear staining in cells with neutrophil 

nuclear morphology (Figure 3F). 

Rats immunised with MPO followed by a sub-nephritogenic dose of NTS develop 

glomerular and tubulointerstitial scarring at 6 and 8 weeks 



In the conventional EAV model, disease spontaneously resolves beyond six weeks. To assess 

disease phenotype at later time points in this enhanced model, WKY rats (n=5 or 6/group) were 

immunised with the protocol described above for examination at days 42 and 56. We did not 

examine control animals (MPO/NRS, HSA/NTS, HSA/NRS) at these time points as no 

significant disease was present in these groups at 28 days. Proteinuria decreased steadily after 

day 28 in 10/11 rats. One animal developed persistent high levels of proteinuria until day 56 

(Figure 4A; median proteinuria 69.9, 54.5, 55.8, 37.9 and 40.1 mg/day at day 28, 35, 42, 49 

and 56, respectively). All rats continued to have 3+ haematuria until time of sacrifice (Figure 

4B). Cellular crescents at day 28 progressed to a mixture of cellular and fibrocellular crescents 

at day 42, with further progression at day 56 (Figure 4C,H). Glomerular cell infiltrate 

decreased sequentially at days 42 and 56 (Figure 4D,E). CD68/ED-1+ cell infiltrate was 

predominately tubulointerstitial and peri-glomerular at both time points (Figure 4E,G; median 

glomerular CD68/ED-1 staining 1.0 and 0.6 %/GCS at week 6 and week 8, respectively). 

Smooth muscle actin (SMA) staining was used to identify myofibroblasts and the development 

of fibrocellular crescents, with predominantly interstitial staining seen at day 42, and 

glomerular and interstitial staining by day 56 (Figure 4F,G,J; median tubulointerstitial 

staining 0.23, 2.7 and 6.1%/HPF at day 28, 42 and 56 respectively, p=0.0004; median 

glomerular staining 0.03, 1.2 and 10.1%/GCS at day 28, 42 and 56 respectively, p<0.0001). 

There was continuing evidence of lung haemorrhage in most animals, more severe at day 42 

than day 56, in keeping with the natural history of conventional EAV (supplementary material, 

Figure S5A–C; median Perls’ stain 1.4 and 0.4 at day 42 and 56 respectively). Circulating 

MPO-ANCA levels peaked at day 42 after immunisation (supplementary material, Figure 

S5D). There was no evidence of deposited glomerular rat or rabbit IgG at days 42 or 56. 

Sub-nephritogenic NTS induces early infiltrate of non-classical monocytes 



In the autoimmune MPO model of GN in mice, administration of NTS is thought to cause 

glomerular neutrophil infiltration and de-granulation, extracellular MPO deposition, and 

augmented glomerular injury in mice with autoimmunity to MPO [9,10]. To investigate this in 

our model, we re-examined early time points after administration of NTS. Rats were 

immunised with either neat or 1:100 NTS and sacrificed at 3 or 24 h (n=4/group). By direct 

immunofluorescence, there was strong linear deposition of rabbit IgG following immunisation 

with neat (undiluted) NTS and faint deposition of rabbit IgG within the kidney at 3 h with 1:100 

NTS, which largely resolved by 24 h (Figure 5A). It was not possible, to quantify the difference 

in fluorescence intensity between this and neat NTS as the magnitude of the difference was so 

great that images could not be captured with comparable exposure times. Images of direct 

immunofluorescence for rabbit IgG in a normal rat, and after immunisation with 1:100 NRS 

with equivalent exposure times are shown for comparison (Figure 5A). At 3 h after 

immunisation with 1:100 NTS, there was patchy deposition of complement C3, of decreased 

intensity compared to animals immunised with neat NTS (Figure 5B). 

We then examined glomerular cell infiltrate at these early time points using two methods 

(Figure 5C–E). By both indirect immunofluorescence and flow cytometry there was 

significant neutrophil infiltrate and deposition of granular extracellular MPO within glomeruli 

at 3 h after immunisation with neat NTS. This was not seen following immunisation with 1:100 

NTS; neutrophil number in this group was similar to that in normal rats. The neutrophil 

infiltrate seen with neat NTS reduced by 24 h, suggesting a transient effect on neutrophil 

recruitment (Figure 5C; median neutrophils/glomerulus 10.5, 1.05, 1.3 and 0.8 for 3 h after 

neat NTS, 24 h after neat NTS, 3 h after 1:100 NTS and normal rats respectively. Figure 5D, 

E; median cells/GCS 2.3, 0.5, 0.15, 0.06 for 3 h after neat NTS, 24 h after neat NTS, 3 h after 

1:100 NTS, and normal rats respectively). 



Using flow cytometry, by 24 h after immunisation with 1:100 NTS there was a small infiltrate 

of non-classical monocytes, lower than that seen with neat NTS, but significantly higher than 

normal rats (Figure 5C; median 5.8, 4.9 and 7.7 cells per glomerulus for normal, 3 h and 24 h 

after 1:100 NTS respectively, p=0.03 for 24 h compared to normal). This suggests that a sub-

nephritogenic dose of NTS may alter early non-classical monocyte, rather than neutrophil, 

retention within glomeruli in this model. 

Fostamatinib treatment reduces the severity of renal and lung injury in augmented EAV 

We next set out to identify whether this model was useful for evaluation of therapeutic 

strategies. We have previously used fostamatinib, a small molecule inhibitor of spleen tyrosine 

kinase (Syk), as treatment in experimental models of GN, including EAV [14,21]. Given the 

rapid onset of therapeutic effect in previous experiments, we elected to assess a short period of 

treatment in the present study. Animals were treated from day 24 (after onset of renal disease 

evidenced by urinary abnormalities) until day 28. In keeping with our previous studies, 

fostamatinib was administered at a dose of 30 mg/kg twice daily by oral gavage (n=5 or 

6/group).  

After 4 days treatment with fostamatinib, there was a significant reduction in proteinuria 

compared to vehicle-treated animals (Figure 6A; median proteinuria/day 62.8 mg and 9.4 mg 

for vehicle- and fostamatinib-treated rats respectively, p=0.002). There was a non-significant 

reduction in haematuria, but this was not seen in all animals, likely reflecting the short 

treatment period (Figure 6B; median dipstick 3 and 2.5 for vehicle- and fostamatinib-treated 

rats respectively). There was a significant improvement in glomerular injury, with near normal 

histology in fostamatinib-treated animals, and around 50% abnormal glomeruli in vehicle-

treated rats (Figure 6C). Glomerular infiltrating leucocytes were reduced by both CD68/ED-1 

immunohistochemistry (Figure 6D, median CD68/ED-1 % staining/GCS 4.2 and 0.02 for 



vehicle and fostamatinib-treated rats respectively, p=0.004) and flow cytometry (Figure 6E). 

Fostamatinib also improved lung injury; compared to vehicle-treated animals, there were 

decreases in visual lung haemorrhage score (Figure 6F; median score 1.5 and 0 for vehicle and 

fostamatinib-treated rats respectively, p=0.04) and hemosiderin laden cells (Figure 6G; 

median Perls’ score 0.11 and 0 for vehicle and fostamatinib-treated rats respectively, p=0.01). 

As expected with a short duration of treatment, there was no difference in circulating MPO-

ANCA levels (Figure 6H). 

 

Discussion 

We have shown that adding a sub-nephritogenic dose of NTS to immunisation with MPO 

results in significant augmentation of renal injury in EAV. By using a low-dose of NTS, this 

model remains pauci-immune with no detectable immune complex deposition by conventional 

methods (either immunofluorescence or electron microscopy) at the time of crescentic GN. The 

model remains critically dependent on the presence of autoimmunity to MPO, as disease does 

not occur following immunisation with a control human protein. 

In contrast to previously described rodent models, an autologous response to NTS does not 

occur at any time point in this model [9,22–24]. In a previous study in the Brown Norway rat, 

which is less susceptible to GN than the WKY strain, animals immunised with low-dose NTS, 

even in the absence of autoimmunity to MPO, developed clear evidence of GN, including 

proteinuria and glomerular macrophage infiltration. In addition, disease was not pauci-

immune, as strong linear deposits of rabbit IgG were seen at all time points, with deposited rat 

IgG in areas of crescent formation [16]. Another study used the susceptible WKY strain, as in 

our model. Again, however, the dose of NTS in isolation caused overt GN with substantial 

haematuria and 5% glomerular crescents by light microscopy, and no data were provided 

regarding the pattern of glomerular immunoglobulin deposition [15]. By contrast, in our study, 



the dose of NTS has been decreased such that no urinary or glomerular abnormalities occur in 

rats immunised with low-dose NTS following a control protein.  

This model has several advantages over the conventional EAV protocol; it allows for a 

shortened disease course from 42 to 28 days and, as disease is more reproducible and of greater 

severity, for a reduction in the number of rats needed to test therapeutic approaches. Rather 

than complete resolution after day 28, disease progresses to fibrosis and scarring, which more 

accurately recapitulates the natural history of ANCA-associated GN in humans. Disease is 

somewhat heterogenous, particularly the degree of proteinuria (which ranged from 36–220 

mg/day). Glomerular crescents and CD68/ED-1+ cell infiltration were less variable; these may 

be better outcome measures to use in studies of therapeutic approaches.  

Analysis of glomerular infiltrating cells at day 28 showed that a 1:100 NTS dose alone induced 

a small influx of non-classical monocytes (median 8.2 and 6 cells/glomerulus in animals 

immunised with HSA/NTS and normal WKY rats respectively, p=0.1) but in the presence of 

autoimmunity to MPO this was much greater (17.3 cells/glomerulus, p=0.0005) and 

accompanied by a significant infiltrate of classical monocytes. Although we could not detect 

immune complexes or deposited autologous IgG within the kidney, low-dose NTS is clearly 

mediating a biological effect. We show that within 3 h of injection it is transiently localised to 

the kidney at very low levels, accompanied by C3 deposition, and this is followed by a small 

but significant infiltration of non-classical monocytes by 24 h. We hypothesise that this influx 

of non-classical, patrolling monocytes occurs in response to low-dose NTS in glomeruli, via 

direct Fc receptor- (CD16-) or complement-dependent mechanisms. This is in keeping with 

intravital microscopy studies in both mice and rats with NTN [20,25–28]. In WKY rats, we 

have recently shown that in response to nephritogenic stimuli, there is increased LFA-1-

dependent surveillance of the endothelium by non-classical monocytes, and subsequent 

classical monocyte retention within the glomerulus in conventional NTN [20].  We now show 



that this response is insufficient to initiate GN after a reduced dose of NTS alone. However, 

these non-classical monocytes express MPO, and we hypothesise an interaction with 

circulating MPO-ANCA in MPO-immune rats – such that these retained and activated non-

classical monocytes may initiate disease and promote classical monocyte recruitment. 

In a well-characterised mouse model of MPO-AAV, low-dose NTS is thought to mediate its 

actions by recruiting neutrophils to the glomerulus. In our model we could not detect early 

infiltration of neutrophils following a sub-nephritogenic dose of NTS. This does not exclude a 

role for neutrophils in this cell type, as neutrophil survival may be impaired during tissue 

processing, and may lead to an under-estimate of their true number in our flow cytometric 

analysis. Future studies using intravital microscopy and live cell imaging will be useful to 

definitively assess early glomerular cell infiltrate following injection of neat and 1:100 NTS. 

Mechanisms may also differ between species and rodent strains. The WKY rat has a pro-

inflammatory monocyte/macrophage phenotype, such that disease in this strain may be 

dependent on these cell types [29]. In keeping with this, we show that although Lewis rats 

develop a small glomerular infiltrate of non-classical monocytes at day 28 after immunisation 

with MPO and low dose NTS, they do not develop features of GN, again suggesting that 

monocyte/macrophage responses contribute disease initiation in this model. This may have 

relevance for clinical translation, as there is increasing evidence that monocytes play a 

previously under-appreciated role in AAV. Monocytes express the ANCA autoantigens, 

stimulation with ANCA in vitro leads to cytokine production and generation of ROS, and 

monocytes and macrophages are the predominant cell types identified in renal biopsies from 

patients with AAV. As such, a monocyte/macrophage dependent mechanism in this model may 

be in keeping with aspects of disease pathogenesis in humans.  



Finally, we also showed that this model is useful for testing therapeutic approaches, by 

administering a Syk inhibitor during established disease. Notably, in the present study we used 

a very short treatment period of only 4 days and show rapid reversal of glomerular injury, with 

a significant effect on infiltrating monocytes. These data support clinical investigation of Syk 

inhibition as a therapeutic target.  

By adding a sub-nephritogenic dose of NTS to the existing model of EAV, we have developed 

a model of MPO-AAV which has several advantages over the standard protocol. It is more 

reproducible, with a greater proportion of crescents and more severe glomerular damage. This 

allows for a reduction in the number of animals required when testing therapeutic agents and, 

by timing of administration of therapeutic interventions, it is possible for investigators to 

distinguish their effects on both autoimmunity and glomerular injury. Unlike standard EAV, 

this model progresses to scarring and fibrosis, meaning it can also be used to study endpoints 

relevant to clinical disease. Crucially, disease remains pauci-immune and critically dependent 

on the presence of autoimmunity to MPO. We believe this model complements existing in vivo 

approaches for investigating AAV, and that it will prove valuable for future preclinical 

therapeutic studies. 
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Figure Legends 

Figure 1. Addition of a sub-nephritogenic dose of NTS increases renal injury in the 

presence of autoimmunity to myeloperoxidase 

When animals were immunised with 1:100 NTS at day 14 after hMPO there was a significant 

increase in (A) haematuria and (B) proteinuria by day 28. (C) Quantification of glomerular 

histology showed significant increase glomeruli with crescents and/or necrosis in animals 

immunised with MPO/NTS. (D) Quantification of CD68/ED-1 immunoperoxidase staining. 

(E) Quantification of CD8 immunoperoxidase staining. (F) Quantification of CD3 

immunoperoxidase staining. (G) Gating strategy for neutrophils and monocyte subsets 

infiltrating glomeruli. Myeloid cells are identified as CD172a+Lin- within CD45+ leukocyte 

gate.  Neutrophils were differentiated from monocytes based on their CD172a and HIS48 

expression.  Neutrophils are identified as CD172aloHIS48hi. Monocytes are identified as 

CD172ahi, and CD43 and HIS48 expression used to differentiate CD43hiHIS48int non-classical 

monocytes and CD43loHIS48hi classical monocytes. (H) Glomerular infiltrating cells showing 

significant infiltrate of non-classical (NC) and classical monocytes at day 28 in animals 

immunised with MPO/NTS. (I) Representative images of glomerular pathology in animals 

immunised with MPO/NTS showing the presence of crescents and necrosis on H&E, PAS), 

and Jones’ silver stain. CD68/ED-1+ and CD3+ cells are mainly found in areas of crescent 

formation and CD8+ cells are scattered throughout glomeruli. Original magnification of images 

x400. Immunoperoxidase staining shown with haematoxylin counterstain. Images of 

histopathology from control groups is shown in supplementary material, Figure S2. 

All data are shown as median with IQR. Kruskal–Wallis test with Dunn’s post hoc correction 

to MPO/NRS group *p<0.05, **p<0.01 ***p<0.001. NTS- Nephrotoxic serum, NRS- Normal 



rabbit serum, HSA- human serum albumin. MPO- myeloperoxidase, no- neutrophil, mo-

monocyte 

 

 

Figure 2. Sub-nephritogenic NTS does not result in glomerular immune complex 

deposition 

(A) Quantification of direct immunofluorescence for deposited rabbit IgG. (B) Representative 

images. Top panel shows no deposited IgG in MPO/NTS immunised rat and bottom panel 

representative image after immunisation with neat NTS. (C) Quantification of direct 

immunofluorescence for deposited rat IgG. (D) Representative images. Top panel shows no 

deposited IgG in MPO/NTS immunised rat and bottom panel representative image after 

immunisation with neat NTS. (E) Quantification of indirect immunofluorescence for deposited 

rat C3 (F) Representative images. Top panel shows no deposited C3 in MPO/NTS immunised 

rat and bottom panel representative image after immunisation with neat NTS. (G,H) 

Representative electron microscopy images from rats immunised with MPO/NTS showing no 

immune complex deposition. (G) Evidence of cellular crescent formation (black arrow 

indicates GBM, white arrow Bowman’s capsule. Cells and inflammatory material are seen in 

Bowman’s space) in an animal immunised with MPO/NTS; and (H) a monocyte (black arrow) 

directly interacting with the GBM (white arrow). IF images original magnification x400. 

Images/quantification in experimental animals were obtained at day 28 (14 days after 

immunisation with NTS). Images for comparison following neat NTS administration were 

obtained at day 14 after immunisation with NTS (without prior immunisation with MPO). 

Electron microscopy images from control groups are shown in supplementary material, Figure 

S3. NTS- Nephrotoxic serum NRS- Normal rabbit serum 

 



Figure 3. Addition of a sub-nephritogenic dose of NTS has no effect on lung injury or 

autoimmunity to MPO 

(A) Most animals immunised with MPO developed evidence of lung haemorrhage by visual 

inspection, regardless of second immunisation with NTS or NRS. (B) Quantification of lung 

haemorrhage using Perls’ Prussian Blue stain for haemosiderin laden macrophages. (C) 

Representative images shown for animals immunised with MPO or with HSA (without 

counterstain; original magnification x200). (D) Circulating anti-MPO titres, and (E) 

quantification of sera binding to permeabilised rat leucocytes, showing no difference in animals 

immunised with MPO regardless of the addition of NTS or NRS. (F) Representative images of 

indirect immunofluorescence rat bone marrow cells with diluted rat sera and anti-rat IgG FITC. 

Perinuclear staining is seen in cells with typical neutrophil nuclear morphology with sera from 

rats immunised with MPO but not HSA. Original magnification of images x400. NTS- 

Nephrotoxic serum NRS- Normal rabbit serum MPO- myeloperoxidase HSA-human serum 

albumin 

 

Figure 4. Immunisation with MPO and NTS results in glomerular scarring at day 42 and 

56 

(A) In 10 of 11 rats, proteinuria plateaued at day 28–35 and then decreased steadily. In one 

animal (included in the total group but also represented separately as ‘outlier’) proteinuria 

continued to increase to day 56. (B) Haematuria remained at 3+ in all rats from day 28 for the 

duration of the experiment. (C) Quantification of fibrocellular and fibrous glomerular crescents 

at day 28, 42, and 56. (D) Quantification of glomerular infiltrating leucocytes by flow 

cytometry, showing decreased infiltrating cells at these time points with a return to near-normal 

at day 56. (E) Quantification of CD68/ED-1+ cells infiltrating glomeruli at day 42 and 56 after 

disease induction, showing a progressive decrease from day 42 to 56. (F) Quantification of 



glomerular smooth muscle actin (SMA) staining at 28, 42 and 56 days showing a small increase 

by day 42 and significant increase at day 56. (G) Quantification of interstitial SMA staining at 

28, 42 and 56 days showing a small increase by day 42 and significant increase at day 56. (H) 

Representative photomicrographs of PAS and Jones’ silver stained sections of renal tissue, 

showing development of fibrocellular crescents and peri-glomerular inflammation at day 42, 

and further progression of these changes by day 56. (I) Representative photomicrographs of 

CD68/ED-1 staining, showing mainly tubulointerstitial and peri-glomerular cell infiltrate at 

day 42 and 56. (J) Representative photomicrographs of SMA staining showing the 

development of interstitial staining at day 42 and profound interstitial, staining with 

development of fibrous crescents at day 56. Where appropriate, day 28 results are shown for 

comparison. All data are shown as median with IQR. Original magnification of images x400 

(glomeruli) x200 (tubulointerstitium). Kruskal–Wallis test with Dunn’s post hoc correction 

*p<0.05, **p<0.01 ***p<0.001. NC- Non-classical  

 

Figure 5. Immunisation with 1:100 NTS results in an early increase in non-classical 

monocyte recruitment to glomeruli, without a detectable increase in neutrophils 

(A) Direct immunofluorescence for deposited rabbit IgG at 3 and 24 h after immunisation with 

neat and 1:100 NTS. A representative image of a normal rat, and a rat immunised with 1:100 

NRS are shown for comparison. (B) Indirect immunofluorescence for deposited C3 at 3 and 24 

h after immunisation with neat and 1:100 NTS. (C) Quantification of direct 

immunofluorescence for myeloperoxidase (MPO), with representative images in (D; original 

magnification x400). Arrow indicates MPO+ cells with typical neutrophil nuclear morphology 

in the glomerulus of a rat immunised with neat NTS at 3 h. No neutrophils are seen with animals 

immunised with 1:100 NTS. (E)  Cell count of glomerular infiltrating cells at 3 and 24 h after 

immunisation with neat or 1:100 NTS, showing neutrophil infiltrate at 3 h in animals 



immunised with neat but not 1:100 NTS, and a small infiltrate of non-classical monocytes at 

24 h after immunisation with 1:100 NTS. All data are shown as median with IQR. Kruskal–

Wallis test with Dunn’s post hoc correction *p<0.05, **p<0.01 ***p<0.001. NC- non classical, 

NTS- nephrotoxic serum; GCS, glomerular cross section 

 

Figure 6. Fostamatinib treatment decreases renal and lung injury in rats with enhanced 

EAV 

(A) Proteinuria and (B) haematuria from disease induction to day 28, with the fostamatinib 

treatment period shaded in grey, showing significant reduction in proteinuria in the 

fostamatinib-treated group. (C) Quantification of glomerular abnormalities at day 28 after 

disease induction showing minimal glomerular abnormalities in fostamatinib-treated rats. (D)  

Quantification of CD68/ED-1+ cells infiltrating glomeruli at day 28, with almost no cellular 

infiltrate in fostamatinib-treated rats. (E) Glomerular infiltrating leucocytes, showing 

significant decrease in classical and non-classical monocytes in the fostamatinib-treated group 

(F) Significant decrease in lung haemorrhage in fostamatinib-treated rats by visual inspection 

and (G) Perls Prussian blue staining for haemosiderin laden macrophages. (H) Circulating anti-

MPO antibody titres were not different between fostamatinib- and vehicle-treated rats. Data 

are shown as median with IQR. Mann–Whitney test *p<0.05, **p<0.01. GCS, glomerular cross 

section 
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