
Class-specific early exit design methodology for
convolutional neural networks

Vanderlei Bonatoa,∗, Christos-Savvas Bouganisb

aInstitute of Mathematical and Computing Sciences, The University of São Paulo,
São Carlos, São Paulo - Brazil

bDepartment of Electrical and Electronic Engineering, Imperial College London,
London - England

Abstract

Convolutional Neural Network-based (CNN) inference is a demanding computa-

tional task where a long sequence of operations is applied to an input as dictated

by the network topology. Optimisations by data quantisation, data reuse, net-

work pruning, and dedicated hardware architectures have a strong impact on

reducing both energy consumption and hardware resource requirements, and on

improving inference latency. Implementing new applications from established

models available from both academic and industrial worlds is common nowadays.

Further optimisations by preserving model architecture have been proposed via

early exiting approaches, where additional exit points are included in order to

evaluate classifications of samples that produce feature maps with sufficient ev-

idence to be classified before reaching the final model exit. This paper proposes

a methodology for designing early-exit networks from a given baseline model

aiming to improve the average latency for a targeted subset class constrained

by the original accuracy for all classes. Results demonstrate average time sav-

ing in the order of 2.09× to 8.79× for dataset CIFAR10 and 15.00× to 20.71×

for CIFAR100 for baseline models ResNet-21, ResNet-110, Inceptionv3-159, and

DenseNet-121.

Keywords: Early exit, accuracy preservation, target class, and CNN.

∗Contact author
Email address: vbonato@icmc.usp.br (Vanderlei Bonato)

Preprint submitted to Journal of LATEX Templates July 13, 2021

1. Introduction

Traditional neural networks have evolved significantly in the last decade re-

sulting in deep architectures that can solve complex problems, especially those

related to image [1], text [2], and speech processing [3]. Convolutional Neural

Network (CNN) is a state-of-the-art solution that is able to extract features for

image classification directly from the pixels and it became the core of many

machine learning systems, as for object detection and 3D scene layout under-

standing in real time [4, 5].

By working at pixel level performing convolution operations over a sequence

of tree-dimensional feature maps (width, height, and channel-depth), a model

may demand high computing capacities for data processing and storage. To

mitigate this scaling problem while maintaining the model performance, a sig-

nificant effort has been made on compression, mainly on connection pruning,

weight quantisation, parameter sharing, and on network connectivity encod-

ing [6, 7, 8]. New model architectures conceived to be more compact by adopt-

ing irregular weight connectivity have also been exploited, such as the approach

from GoogLeNet that includes the inception module [9], the one from ResNet [10]

that uses residual functions to define shortcut connections scheme between lay-

ers, and the one from DenseNet where a traditional model is split into dense

connected blocks enabling each layer inside a block to take all preceding feature-

maps from its block as input [11]. From embedded to data center systems all

software and hardware deployments are benefited from these optimisations, re-

ducing resource requirements, power consumption, and even improving predic-

tion accuracy.

Another approach to mitigate the model’s complexity is by adding early exit

points to the neural network’s topology to give the opportunity for “easy” inputs

to be classified early on before reaching the final model’s exit point. The solu-

tions are usually implemented as a conditional neural network [12, 13, 14, 15],

where confidence conditions are in place to decide when an early classification

can be accepted. An in-depth discussion on the design, implementation, and

2

training of the early exit approached is presented in [16]. As [16] demonstrates,

the introduction of early exit mechanisms reduces the average inference latency

and minimises problems related to overfitting during the training of the network.

Solutions that have no early exits in place employ mechanisms to avoid going

through certain layers based on the sample complexity, similar to the ResNet’s

shortcut schema. This is seen in [17, 18, 19], where layers can be fully or

partially skipped dynamically. In [20, 21, 22, 23], layer payloads are balanced

by determining which output channels/filters from the feature maps are used

by the next layer. These solutions give the opportunity for a given sample to

dynamically exploit the backbone model power and avoid the need of adding

extra exits to the model. However, the algorithm complexity and the code size

increase considerably since all the paths need to be available.

The use of cascades of increasing complexity networks has also been ex-

ploited for achieving early prediction of “easy” to be classified inputs. Given an

input, a light-weight network is employed firstly in an attempt to classify the

input. In case the confidence of classification is low, the input is passed to a

more complex network until the desired confidence level is achieved or the last

network in the cascade is reached [24, 25, 26]. In contrast to the conditional

architecture, the cascade approach does not reuse the computations already

performed, with the potential to impact negatively the overall processing time

and energy consumption relative to a system that is based on the conditional

architecture methodology.

The above approaches demonstrate that it is possible to improve classifica-

tion accuracy while reducing the computation time when compared to regular

models.

The aim of this paper is to reduce the average computational time to classify

samples of a target class by extending a given CNN model that is used as a

baseline. The proposed approach adds an additional exit to the given model,

named early exit, to be used as a conditional early classification by taking

advantage of the processing results (feature maps) already in place from the

intermediate network layers. The resulted solution maintains the original CNN

3

accuracy for all classes.

The main contributions of this paper are:

• A method that identifies the best place to attach an early exit that max-

imises the time savings while preserving the original baseline model accu-

racy;

• The exploration of a dense connection between early exit branch and base-

line model layers for simultaneous multi-layer feature extraction of a given

target class;

• A class-orientated approach to allow inference prioritisation;

• A scalable approach to mitigate the effort to apply the proposed method

over neural networks with a large number of layers.

The new target class exploration proposal has demonstrated to be more ef-

fective in reducing the average inference time when compared to solutions that

have no class priority. This is a result of a more specialised early exit place-

ment and a more precise confidence calibration. The exploration methodology

requires training for the early exit branch only and is independent of the model

architecture.

The paper is organised as follows: Section 2 presents works related to re-

ducing the computational complexity for inference. Section 3 describes the

proposed method that includes the mathematical formulation for guaranteeing

the original baseline accuracy. Then, Section 4 starts showing the overhead

effects caused by the early exit followed by a deep analysis of the model param-

eters over prediction and time saving. Then, the performance of the system for

larger models is demonstrated considering CIFAR10 and CIFAR-100 datasets.

A comparison to the related works is also included. Finally, Section 6 concludes

the paper.

4

2. Related Work

Several works have been proposed to accelerate inference in convolutional

neural networks, ranging from high level model optimisation to low level hard-

ware tuning, including solutions based on early exiting, graph pruning, data

quantisation, and hardware accelerators.

More related to this work, which is a data-driven solution that takes advan-

tage of the sample complexity to mitigate computation, [12] proposes a Con-

ditional Deep Learning Network (CDLN). Given a baseline trained model, a

linear classifier block is added at the first convolutional layer and trained with

the same dataset used for the baseline. A next classifier block is added to the

following layer only if the classifications expected to be anticipated will compen-

sate the additional computational cost inflicted. This process stops as soon as

this criterion is not satisfied. During inference, a sample is considered classified

whenever the activation of a block is above a user defined threshold. The authors

claim that the conditional proposal may improve both energy consumption and

prediction accuracy for the whole NN.

In [15] a Conditional Deep Neural Network (CDNN) with early exits to be

mapped in IoT systems supported by Fog platforms is presented. Three super-

vised training modes named End-to-End, Layer-Wise, and Classifier-Wise are

considered, where the Layer-Wise shown to be the preferred choice. A criterion

to choose where to attach early exits is also presented. It was demonstrated that

the conditional approach is able to provide better classification performance and

lower computational time with respect to the baseline models and that a sig-

nificant reduction in energy consumption is achievable when the appropriate

training choice and early exit placement strategies are used.

Differently from CDLN approach, [13] proposes to use a multi-layer sub-

network as early exit branch instead of a simple linear classifier. The branch

locations and architecture are decided empirically. A parametric loss function

is used for each exit, including the baseline. The whole network is trained by

back-propagating the losses via a joint optimisation problem formulation. A

5

sample is considered classified if the entropy of the branch activation is above a

given threshold.

In [27] a Multi-Scale DenseNet (MSDNet) network architecture is presented,

which is a bi-dimensional model that allow operations in horizontal (deph),

vertical and diagonal directions. The objective is to be able to extract coarse

features since from the initial convolutional layers, what is not the case from the

previous approaches. Two model settings are exploited, one to do prediction

in an environment where the processing time available is unbounded and the

other where a time budget is known in advance to classify a batch of samples.

The first produces the most recent prediction when the time is over and the

second produces a prediction as soon as a classifier achieves a pre-determined

confidence measure (softmax probability) that was set according to the budget.

Training is applied to the whole network, including the classifier modules.

A preliminary work on early exiting is also presented by [14] focusing on the

application of the cross-entropy loss function to combine multiple exist losses

during training and to give confidence level during inference. No exploration

regarding to early exit location was done.

SkipNet [17] anticipates classifications by skipping layers (shortcuts) dy-

namically during inference using small gating networks. The whole network is

trained in two phases; first relaxing some parameters for the gating network then

a dedicated algorithm is applied to refine the gating network separately. Over-

all, the training time increased about 30-40%. The network accuracy depends

on the gating binary decisions to skip or not certain layers. A skipping policy

to balance the computational cost and classification accuracy is used, which can

meet the state of the art baseline model accuracy by reducing computational

time saving. An extension of this work is presented in [19], where a layer can

be partially skipped as well, outperforming the previous SkipNet in time saving

and prediction accuracy.

In [20] a network that can prune filters/channels dynamically during infer-

ence according to the input sample is introduced. The pruning problem is seen

as Markov decision process and reinforcement learning is applied to learn prun-

6

ing rules. Results demonstrate that the proposed network was able to keep

the prediction accuracy much higher than a traditional model with equivalent

computational complexity.

In Slimmable neural networks [22] the model complexity is dynamically

adapted by exploiting the width of the feature map. A switchable batch nor-

malization is introduced to deal with statistics among different model variants

(switch). It was shown that by sharing weights among model variants the predic-

tion accuracy can be improved when compared to a model that was trained only

with the channels that it needs. For instance, for ImageNet an improvement of

3.3% was achieved for MobileNet v1 featuring only 12% of its parameters. [21]

extends this work by generalising the training to arbitrary feature map width.

In GaterNet [23] the network complexity is reduced by filter selection similar

to the approach used by the Slimmable network, however here the samples dic-

tate which filters to use during inference dynamically. A conventional backbone

network is used along with a parallel network named gater network to activate

the backbone filters according to the samples. Back-propagation is used for

training starting from pre-trained models on the same task, since it is consid-

ered a difficult task to learn these gates from scratch. The model could reduce

the prediction error up to 1.83% against ResNet-164 on CIFAR100 dataset by

increasing the total number of parameters in about 20%. No processing time

gain is reported.

HydraNet [18] is a dynamic network architecture that specialises components

during training to be chosen by a gating mechanism during inference. Branches

are created from group of classes that are similar visually, which are chosen

according to the input sample by gate functions. A common part named stem,

the branches and the gate functions are trained jointly. Results for CIFAR100

shows that HydraNets achieve a significant computational cost reduction by

keeping the same baseline model accuracy level, obtaining for Hydra-Res-d4 a

reduction by two thirds of the MADD costs when compared to the ResNet-164.

IDK prediction [24] is a framework that composes a set of pre-trained models

to operate in cascade to accelerate inference. An extra class to measure the

7

uncertainty of the base model predictions is included, which is used as a trigger

to activate the next cascade model. The trigger threshold is obtained from

softmax entropy information. It was demonstrated that a reduction of 24%

in the computation cost can be achieved for a composition that maintains the

base model’s accuracy. It was also shown that by allowing a small accuracy

degradation it is possible to have a much higher cost reduction. The authors

suggest that this solution is suitable for the edge-cloud computational systems,

where the light-weight models are deployed at the edge.

Quantisation and pruning techniques have also been investigated under a

data driven setting for speeding up the inference through an early exit struc-

ture. They are particularly useful to deploy networks on edge devices sensitive

to energy consumption and hardware cost. In [25] two networks operating in

cascade are quantised for lower and higher precision, respectively. A confidence

evaluation unit decides against a user-specified error tolerance when an infer-

ence needs to reach the higher precision unit or not. The unit is tuned a priori

considering the probability vector of whole class set. No training is necessary.

Tailored to dedicated hardware, a considerable speed-up could be achieved for

a scenario where only a high accuracy network would exist. While in [8], prun-

ing is exploited by considering that convolutional models have a considerable

amount of repeated data (weight repetition) that are non zero and overlap across

filters.

Early exit, that can be used standalone or integrated to other strategies, is

a model driven approach whose efficiency relies on finding a place(s) to attach

an exit that maximises time saving, on the exit branch architecture, and on

the adopted strategy to guarantee a minimal accuracy level. As seen from the

literature review, except from the MSDNet work [27] that populates every layer

from the second layer with a classifier, the remaining works do not explore the

connection possibilities available throughout all network layers. Our proposed

work presents a solution that searches for the best connection point for a given

target class taking into account all network layers in the space exploration and

also the original baseline accuracy. The best place is the one that maximises

8

time saving while the original accuracy is preserved.

3. Proposed Methodology

3.1. Problem formulation

Given a trained neural network model B as baseline, an early exit branch e

along with a connection type to connect e to B, and a target class k ∈ V , where

V denotes the set of classes classified by B, the aim is to find the place (layer)

to attach e to B that minimises the average execution time to classify samples

belonging to k and the average overhead time inflicted to the rest of the samples

while maintaining the original B accuracy. The connection type is a boolean

variable where (On) indicates that a dense connection layer where e is attached

to B is introduced that takes as inputs the outputs of the current and the all

previous layers, where (Off) indicates that only the connection where e attaches

to B is kept. Thus, this variable indicates whether or not to Keep Previous

connections and it is defined as (KP).

Considering the processing time t of B, the addition of an early exit adds

overhead ei to t resulting in t′i (1), where i indicates the connection point layer.

The larger the i is, the higher is the overhead inflicted by samples not classified

at the early exit point. t can be divided in t−δi for the layers beyond i (potential

layers to skip) and δi for the layers up to i (layers already computed), as seen

in (2). The resulted time t− δi is weighted according to a classification rate γi

(4) as given by (3).

The γi denotes the positive classification rate at e exit (Out:EEi) for k. The

objective is to maximise γi subject to maintain the original classification accu-

racy given by β for the classes V −k and η for k. The objective of maintaining the

original baseline accuracy is captured by the following equations: (5) for classi-

fications of V − k at B exit (Out:B); (6) for classifications of k at (Out:EEi);

and (7) for global classifications of k at both (Out:B) and (Out:EEi). Please

note that (Out:EEi) is a binary classification while in (Out:B) it is a multi-

class classification where only true positive tp and false negative fn are taken

9

into account, allowing to register classification results only in relation to actual

classes. For instance, given a sample and its actual class, the result indicates

if it was classified correctly (tp) or incorrectly as another class (fn), thus the

accuracy of a target class k is equal to tp/(tp + fn). The maximisation of the

global accuracy is seen as a multiclass problem, as samples that are not tpk or

fnk will be registered as some V class. Table 1 presents a description for all

variables used in this formulation.

t+ ei = t′i (1)

(t− δi) + δi + ei = t′i (2)

(1− γi)(t− δi) + δi + ei = t′′i (3)

Maximise:

γi =

(tp
out:EEi

+ fp
out:EEi

)/|k|, if (5) & (6) & (7).

0, otherwise.

(4)

accout:B(V−k)
=

(tpout:B − tpkout:B
)/(|V | − (tpout:EEi

+ fpout:EEi
)− (tpkout:B

+ fnkout:B
)) >= β (5)

accout:EEi =

(tx
out:EEi

)/(tx
out:EEi

+ fx
out:EEi

) >= η (6)

accout:EEiGlobal
=

(tp
out:EEi

+ tpkout:B
)/(tp

out:EEi
+ tpkout:B

+ fnkout:B
) >= η (7)

Figure 1 illustrates where these variables are located considering an ei added

to B and shows a timeline identifying t′′ variation zone (γi = 1 and γi = 0 are

the best and worst scenarios, respectively). The approach leads to latency gain

only if δi+ei < t, which requires the overhead ei to be compensated by successful

early classifications.

10

Table 1: Variable descriptions from Equation (1) to (7).

Variable Description

i Layer number

t Execution time of the baseline model

t′i Maximum execution time of an EEi model

t′′i Execution time dependent on classification rate

δi Execution time from the first layer up to layer i

ei Execution time of the early exit branch

k Target class

V Whole classes of B

γi Classification rate

β Original accuracy of B to classify V − k

η Original accuracy of B to classify k

tp, tn, fp, fn true positive, true negative, false positive, and false negative

tx, fx true and false (each x can be positive or negative)

(a) EEi model variables.

(b) EEi timeline: best case γi = 1 and worst case γi = 0.

Figure 1: Representation of the variables considering one early exit ei added to a baseline

model B and its respective timeline.

3.1.1. Extending to multiple early exits

By including more than one early exit creates opportunities for samples

not classified at a given layer i to be classified later by another layer j before

11

reaching the final output of B (Out:B). The extra computational time added is

formulated by extending t− δi to Equation (8), where ej denotes the execution

time of the additional exit. Equations (9) and (10) show the sequence to add

γj in order to compute t′′j from the window time remained from EEi.

t− δi + ej = t′j (8)

((t− δi)− δj) + δj + ej = t′j (9)

(1− γj)((t− δi)− δj) + δj + ej = t′′j (10)

Equation (10) does not consider the rate of samples that reach the layer

j, which depends on the classification rate γi. This is modelled by joining

equations (10) and (3) resulting in (11). A graphical representation of this time

function is shown in 2. As the samples that reach (Out:EEj) are only the ones

considered no positive at (Out:EEi), the γj function (12) subtracts from |k| the

samples already classified. The restrictions and maximisation of γj are the same

as previously presented, except that j > i.

(1− γi)((1− γj)((t− δi)− δj) + δj + ej) + δi + ei = t̂′′ (11)

Maximise:

γj = (tpjout:EEj
+ fpjout:EEj

)/(|k| − tpiout:EEi
− fpiout:EEi

) (12)

As seen, to extend from one exit to two exits, the expression (t − δi) from

equation 3 resulted in equation 10. Following the same pattern, equation 11

could be extended to accommodate a third exit, that in this case, the expres-

sion to expand would be ((t − δi) − δj). The above process can be repeated

to accommodate as many exits as necessary. However, as defined by the for-

mulation, the later an early exit is added, the smaller is the time gain window

available, which can be compensated if more samples are classified. Therefore, a

trade-off between these two elements exist, which depends on how the features

of B model are distributed throughout the layers and how the class k samples

map such features during inference.

12

Figure 2: Representation of the variables to join EEi and EEj added to B.

3.2. Generating and training EE models

For each convolution layer i of B two EE models can be generated by con-

necting e to B, one for connection type (KP=On) and another for (KP=Off).

Then, each 2n EE models, where n is the quantity of B layers, is trained to

classify k at the branch e exit (Out:EEi) and V at the B exit (Out:B). The

training phase only updates e branch parameters, keeping B as provided by the

user.

Training is considered completed when the accuracy of (Out:EEi) over the

validation dataset stops to improve (Out:B accuracy is constant asB parameters

are fixed) during 10 iterations, which has demonstrated to be sufficient for the

complexity of the branch e. The overfitting problem is mitigated by the fact that

the training can not change the B parameters and e per se is a simple classifier

that is unlikely to overfit for the adopted datasets. A more sophisticated training

strategy could be applied if B were not fixed, as the one presented in [28] where

a cascade learning is applied, which considers that there is always an output

adjacent to the layer being trained. This would require multiple early exits and

an increased time budget for training the whole EE per target class.

Figure 3 illustrates a baseline model with three convolution layers connected

to an early exit branch at Layer 2 with (KP=On) or (KP=Off). When (KP=On)

a dense connection between B and e is created from the current connection layer

i to the first layer. The early exit branch architecture is also presented, which

13

features a ReLU, followed by a Pooling and a Dense layers with Softmax acti-

vation. The Flatten and Concatenate components are used when necessary to

obtain data from the previous layers when (KP=On). The ReLU usually found

in the B models could be used instead of this one from the branch, however B

models may have a BatchNormalization layer between the convolution operation

and ReLU, restricting the direct access to the feature maps. The classification

through a single Dense layer is the same adopted by the traditional models

Inception [9], ResNet [10], and DenseNet [11]. Thus, an EE model captures

the layer where an early exit branch e is attached to B, the connection type

between e and B, and the model parameters to classify samples at (Out:EE)

and (Out:B).

Figure 3: An EE model example along with an early exit branch architecture. If (KP=On)

all previous feature maps from the convolutional layers i (in this case i = 2) are used as input

to the branch. Flatten and concatenate layers are interfaces to deal with the map dimension

variations.

14

The rule of having one EE model per i layer can be restricted to reduce

the problem dimension. For large models we propose to sample the network

architecture p times to increase its granularity. Each network sample is seen as

a layer to attach e and to propagate the connections (KP=On) or (KP=Off),

even though internally there exist (l mod p) layers, where l is the number of

layers of model B. The result section includes both approaches.

3.3. Tuning confidence level threshold

A confidence level threshold is tuned for each EE model by analysing its

inference performance (Out:EEi). To accept a sample, the output activation

value needs to be equal or greater to a threshold αi, which captures the confi-

dence level of the classification. Thus, by varying αi, the classification rate γi

and consequently the accuracy levels are affected.

In this work, for each EEi model, the maximum γi is found in a space

0.95 <= αi <= 1.0. Besides accuracy restrictions, an EEi is considered a

viable solution if also the average execution time gain t− t′′i is positive.

3.4. Selecting EE viable models

After defining the parameters to maximise time saving subject to confidence

level and accuracy restrictions imposed by (4), all EE models with positive

results are considered as viable solutions. Each one has its potential for time

saving (gain) to k versus time inflicted (loss) to V − k. In this paper a solution

that maximise gain/loss is the one adopted from the Pareto frontier.

4. Performance Evaluation

The proposed framework was evaluated in the Google Colabatory Platform

(Colab) with Python v3.6.9 and Tensorflow v2.1.0 as backend for Keras v2.2.5

running on a Tesla P100-PCIE-16GB GPU. Results are based on the CIFAR10

and CIFAR100 datasets [29], which were partitioned into 40k images for train-

ing, 10k for validation and 10k for testing, where each sample is a 32x32 colour

image. The parameters of B can be set from learning transfer or be trained

15

only once, taking into account the whole V , while EE needs for each target

class k to train its e branch section. The branch has the architecture shown

in figure 3 with the polling layer parameters adjusted to fit the input feature

map dimensions. Results are generated by adopting as baseline models ResNet-

21, ResNet-110, InceptionV3-159, and DenseNet-121. The first one is used to

produce a detailed analysis while the others are used to demonstrate scalability.

4.1. Connection type and platform overhead analyses

In order to assess the performance of the approach, an analysis is performed

that decouples the optimisations performed by the utilised platform (Tensor-

flow) to deal with multi-output models from the computational overhead added

by the proposed approach. The analysis starts by presenting how an EE model

featuring a single early exit branch performs if only the time inflicted to the

model as a consequence of the arithmetic operations of e are considered. This

time is an estimation obtained from the actual execution of B in Tensorflow.

By measuring the latency of executing B, the execution time of e is estimated

assuming the same execution time across operations. Thus, adding the latency

of B to the latency of e, an estimate for the execution time of EE is finally

obtained.

For this analysis we considered a 21 layers ResNet as baseline model B and

its classes 1 (automobile), 5 (dogs), and 7 (horses) as target classes that range

from low to high accuracy levels. The graphs in figure 4 show the estimated

average execution time to classify input samples belonging to target class k

along with the time to classify input samples belonging to V set considering

(KP=On) and (KP=Off). The parameters β, η, and the upper and lower bounds

for α are shown above each graph. The line BaselineB corresponds to the

actual execution time t and it provides the reference to verify how each EEi

performs (time t′′). From figures 4(a), 4(c), and 4(e) triangle and stars are the

time for classes V , including k samples not classified at (Out:EEi). Dot lines

are the time for k classified at (Out:EEi). Results are demonstrated for each

layer i. Figures 4(b), 4(d), and 4(f) demonstrate how each EEi performs in

16

relation to (Out:EEi) and (Out:B). The lower the time in both directions the

better. As the cost inflicted by e is quite small compared to the whole B cost,

there are several configurations that reduce the average time for both k and V .

Additionally, it is seen that for this example (KP=On) achieves the best results

for (Out:EEi) and (Out:B).

4.1.1. Wall clock execution time

The previous experiments are repeated and the actual wall clock EEi execu-

tion times are measure. The graphs in figure 5 have changed for the V classes,

since the time overhead by running the multi-output model in the evaluation

platform is directly inflicted to them. Even though samples classified at the

early exit as tp or fp help to reduce the average execution time of the classes

V − k, in this case it was not sufficient to compensate all the extra time added.

However, for the target class k the reduction still significant for the early layers.

As can be noticed, when approaching the latter layers t′′ increases considerable

above t, as the closest to the (Out:B) the smaller becomes the time zone gain

(as seen in figure 1) and the larger is e. When (KP=On) the EEis tend to

provide more opportunities for time saving, even though the cost inflicted to B

is higher reflecting the branch network complexity.

Table 2 shows results for the selected models that maximise the proportion

of time saving t− t′′ over time inflicted t′− t, which were obtained by prediction

exploration via α variation. The column gain is the time reduction for k and

column loss is the time inflicted to V − k, both given by how many times (×)

it is in relation to the baseline time t. The columns accout: show the accuracy

for predictions over the evaluation dataset, corresponding to accout:B(|V |−k),

accout:EEi
, and accout:EEiGlobal

computed from equations (5), (6), and (7), re-

spectively. As seen, they satisfy the restrictions imposed by β and η. When

(KP=On) the i tends to be smaller as the dense connection of ei to B can detect

multiple kernel features simultaneously, not depending only on the current layer.

The smaller the i the greater is the time gain zone, which helps to compensate

the extra complexity imposed by dense connection.

17

(a) (b)

(c) (d)

(e) (f)

Figure 4: Synthetic average execution time to classify at (Out:EEi) and (Out:B). Baseline B

is the real execution time of B used as reference for performance evaluation. 4(a), 4(c) and 4(e)

show the results throughout the layers i and 4(b), 4(d) and 4(f) compare the configurations.

4.1.2. Extending the analysis for all classes

Based on the previous evidence that when (Kp=On) a greater set of EEs

has t′′ > 0, the analysis is extended keeping (Kp=On) for all classes of V . Table

18

(a) (b)

(c) (d)

(e) (f)

Figure 5: Average execution time to classify at (Out:EEi) and the overhead inflicted to

(Out:B). BaselineB is the original execution time of B and is the reference to evaluate time

gain and time loss. 5(a), 5(c) and 5(e) show the results throughout the layers i and 5(b), 5(d)

and 5(f) shows the balance between gain and loss of each configuration.

3 presents results for the evaluation dataset, where the best EEi for each class is

the one that maximises t−t′′. Then new results from the test dataset (never seen

19

Table 2: Selected models for target classes {1}, {2}, and {3}, obtained for model categories

(KP=On) and (KP=Off).

gain loss accout:

KP k i α β η (×) (×) BV−k EEi EEiG

Off {1} 12 0.97 0.910 0.968 1.20 1.24 0.912 0.970 0.978

On {1} 8 0.98 0.910 0.968 1.66 1.31 0.912 0.971 0.981

Off {5} 3 0.95 0.924 0.849 3.17 1.24 0.928 0.865 0.884

On {5} 2 0.95 0.924 0.849 2.34 1.22 0.927 0.920 0.873

Off {7} 17 0.95 0.915 0.923 1.02 1.18 0.917 0.946 0.941

On {7} 4 0.95 0.915 0.923 2.78 1.27 0.917 0.946 0.943

by the NN), identified by (’), are included, which are produced from EEis that

accept samples at their early exits based only on α thresholds. Additionally, ζ

and prec are introduced to indicate the original k and the achieved (Out:EEi)

precision, respectively. prec informs the rate of tp per fp for (Out:EEi). Note

that fp represents samples belonging to V − k classes that will not anymore be

evaluated at (Out:B). As hard samples tend to be classified as fp at the early

exit, it is expect to have prec < ζ. By increasing α such difference tends to

reduce, however the greater α the smaller tp as well. So the key point is have a

system where fp are only samples that would be miss classified by B anyway.

The table shows that accuracy accout:x has improved for both datasets as a

consequence of fp at (Out:EEi). Regarding to time saving, it was possible to

obtain at least one EE per class where the gain is bigger than the loss, demon-

strating that the proposed approach is able to reduce the average processing

time for all target k while keeping at least the original B accuracy.

Table 4 provides the figures for fn at (Out:B) for the original B and for

the EEis taking into account all target classes. Comparing to B we can see for

most cases a reduction of fn for all classes, being more intense for the target

one. The samples reduced for V − k classes are due to they were classified as

fp at (Out:EEi). It is important to notice that not every fp sample would

be an fn sample at (Out:B), it depends on how hard a sample is for both

exits. The important is that restrictions imposed by β and η to accout:B(V−k)

and accout:EEiGlobal
guarantee a solution where the proportion of fn per sample

20

Table 3: Results for (KP=On) for all V classes. EEiG represents EEiGlobal
and (’) are the

results for the test dataset, differentiating them from the evaluation dataset.

gain loss accout: gain’ loss’ accout:

k i α β η ζ (×) (×) BV−k EEi EEiG
prec (×) (×) BV−k’ EEi’ EEiG

’ prec’

{0} 3 0.95 0.914 0.937 0.915 2.66 1.23 0.915 0.949 0.950 0.676 2.76 1.23 0.919 0.948 0.948 0.667

{1} 8 0.98 0.910 0.968 0.947 1.66 1.31 0.912 0.971 0.981 0.799 1.67 1.31 0.915 0.971 0.988 0.802

{2} 5 0.95 0.918 0.896 0.879 1.66 1.24 0.921 0.919 0.913 0.626 1.66 1.24 0.922 0.916 0.876 0.598

{3} 1 0.95 0.927 0.816 0.850 1.96 1.21 0.929 0.840 0.841 0.415 2.18 1.21 0.928 0.838 0.885 0.415

{4} 4 0.97 0.914 0.934 0.897 1.49 1.27 0.919 0.937 0.945 0.657 1.50 1.27 0.921 0.936 0.929 0.654

{5} 2 0.95 0.924 0.849 0.877 2.34 1.22 0.927 0.920 0.873 0.568 2.26 1.22 0.931 0.926 0.870 0.588

{6} 6 0.99 0.912 0.950 0.935 1.85 1.29 0.914 0.958 0.961 0.756 1.81 1.29 0.916 0.961 0.966 0.770

{7} 4 0.95 0.915 0.923 0.958 2.78 1.27 0.917 0.946 0.943 0.693 3.04 1.27 0.920 0.938 0.956 0.664

{8} 5 0.95 0.912 0.953 0.948 2.64 1.28 0.913 0.961 0.973 0.737 2.60 1.28 0.914 0.965 0.972 0.758

{9} 5 0.99 0.914 0.936 0.952 1.82 1.27 0.914 0.953 0.951 0.768 1.78 1.27 0.915 0.961 0.960 0.804

classified is reduced from B to EEi.

Table 4: Number of samples classified as fn at (Out:B) for the original B and for the EEis.

Class k i α {0} {1} {2} {3} {4} {5} {6} {7} {8} {9} total %

Model B - - 63 32 104 184 66 151 50 77 47 64 838 0.00

{0} 3 0.95 50 32 92 183 65 149 49 74 34 61 789 -5.84

{1} 8 0.98 61 19 104 183 65 149 50 77 43 42 793 -5.36

{2} 5 0.95 59 32 87 174 57 138 45 72 47 63 774 -7.63

{3} 1 0.95 63 31 100 159 61 132 45 73 46 64 774 -7.63

{4} 4 0.97 61 32 95 171 55 134 45 66 47 64 770 -8.11

{5} 2 0.95 62 32 94 157 62 127 49 72 46 63 764 -8.83

{6} 6 0.99 61 31 95 172 62 148 39 77 47 64 796 -5.01

{7} 4 0.95 62 32 98 175 60 139 50 57 46 63 782 -6.68

{8} 5 0.95 53 31 96 182 65 151 50 76 27 55 786 -6.20

{9} 5 0.99 62 24 104 183 66 151 49 74 43 49 805 -3.93

4.1.3. Multiple early exits impact

The results shown so far impose the constrains that only one EE at a time

could be added to the baseline model B. The experiments were repeated for k

target {1}, {3}, and {7} considering now multiple EEs where n exits may exist

to provide extra time saving. For the three cases when (Kp=On) all gains were

worst while when (Kp=Off) for {5} the gain improved from 3.17× to 3.24×,

21

however the loss went up from 1.24× to 1.44×. This is because the current

overhead of the adopted platform is enough high to restrict the advantages of

spreading classification throughout additional early exits. Another observation

is that for configuration (Kp=On) the accumulative approach is less effective.

Indirectly, they have similar objectives as the dense connections consider fea-

tures from the current and previous layers as well, but with the advantage of

having only one exit.

4.2. Scaling to deeper models

The previous section has demonstrated a complete analysis of accuracy, pre-

cision, time gain and loss for ResNet-21 model over the CIFAR10 dataset, where

for each layer i an EEi was generated and trained. As i represents a layer num-

ber, for each target class k there are 21 models, which multiplied by the 10

classes of the dataset results in 210 EE models that needed to be trained. Con-

sidering the possible configurations of (KP) variable, this figure doubles to 420

models. This section shows results for scaling to the deeper models ResNet-

110, Inceptionv3-159, and DenseNet-121 using the same CIFAR10 and the CI-

FAR100 superclass labels. Thus, to avoid training a larger number of models,

these deeper models were sampled 20 times as described in Section 3.2, where

each sample has an early exit branch e with connection type (Kp=On).

Figure 6 shows the log speed-up for the top-3 compounded results for each

target class or superclass k, selected according to their proportion of gain in

relation to loss (gain/loss). This proportion depends on αi, which was exploited

from 1.0 to 0.95. Restrictions to accuracy were applied to maintain EEi as the

original baseline model. For CIFAR10 the arithmetic mean gain is 5.09× for

Inceptionv3-159, 5.77× for ResNet-110, and 8.79× for DenseNet-121, while for

the previous model ResNet-21 it is 2.09×. For CIFAR100 the obtained gain is

15.00× for Inceptionv3-159, 17.26× for ResNet-110, and 20.71× for DenseNet-

121. The results show that the time savings for these models increase, which

is expected since the deeper the models the more opportunity exists during

training for easier samples to be exit earlier.

22

Figure 6: Average execution time gain for target class k and time loss for V − k when applied

to baseline models ResNet (110 layers), Inceptionv3 (159 layers) and DenseNet (121 layers).

Gain and loss are shown in times (log speed-up) in relation to the reference model execution

time. For each k the top-3 compounded results are in order. Results are from the datasets

CIFAR10 and CIFAR100 (superclass).

Comparing the same target class between these two models for CIFAR10,

there exist variation in time gain as a consequence of how features maps are

23

spread throughout the layers during B training. As B remains constant during e

training, time gain becomes model architecture dependent. The same behaviour

happens for CIFAR100, however when comparing the average time gain between

CIFAR10 to CIFAR100 datasets, the latter is higher.

When working with the target class approach, the bigger the V the lesser

the expected time gain, however for CIFAR100 it has not been the case. For the

same B model, the superclass approach was demonstrated to be a more difficult

classification problem than CIFAR10, where top-1 accuracy for the respective

ResNet-110, DenseNet-121, and Inceptionv3-159 dropped from 0.922, 0.860, and

0.875 for CIFAR10 to 0.806, 0.664, and 0.618 for CIFAR100. Such classification

performance for CIFAR100 results in a higher number of misclassified samples

and these hard samples tend to be misclassified at the early exit as well. It is

important to notice that the overall classifier accuracy may remain the same

while the early exit precision degrades.

4.3. Comparing to existing work

[12], [13] and [17] are considered to be the closest approaches to the one

presented in this paper, as they also apply dedicated early exit branches to a

baseline network. [12] is excluded from the comparison, as it uses a particular

network configuration over a different dataset, making it not possible to derive

any informative comparison results. In the case of [17], which uses shortcuts

to skip convolutional blocks, the authors evaluate their approach on a standard

model over the same dataset as it is used for evaluation in the work, but the

results are reported in terms of computational costs.

Table 5 shows the performance gains in both speed-up (gains in latency) or

computational cost when the early exit methodology is applied compared to the

original reference model for a number of network topologies (reference models)

when the CIFAR10 dataset is targeted. The reported avg. gains for table rows

identified as (target class) correspond to the average of the results obtained by

each EEi model that was generated for each target class independently. The

table rows that are identified as (all classes) report speed-up/cost results where

24

all classes were considered by the EE model at the same time. In the case of [13],

the performance gain results reported for LeNet-5 and AlexNet-8 correspond to

design points that are able to maintain the baseline accuracy, which was not the

case for the ResNet-110. In contrast, the results reported for [17] and for the

proposed approach in the case of ResNet-110 correspond to design points that

maintain the baseline accuracy.

Focusing on the obtained speed-ups by the various approaches, the results

demonstrate that for large models the proposed approach, where a specific target

class is targeted, leads to larger gains compared to the case where all classes

are considered together. In the case of smaller reference models, the opposite is

observed. For ResNet-110 we provide the results for both approaches in order to

allow a comparison considering the same reference model, dataset, and accuracy.

The results show that a speed-up improvement from 1.23× to 5.77× is achieved.

The results also indicate that by utilising a dense connection (i.e. KP=On) and

the proposed space exploration to find an exit tailored to a specific class, provide

larger gains as the size of the model increases.

Table 5: Related works aiming to reduce either execution latency (speed-up) or computational

cost (cost) for performing an inference by reducing the quantity of layers to be computed. The

reported results are the average gains obtained in relation to a reference model for the same

dataset.

Reference model Ref. model Early exit

Work (approach) Name Param. Dataset accuracy avg. gain

[13] (all classes) LeNet-5 60.0k CIFAR10 maintained 4.7× (speed-up)

[13] (all classes) AlexNet-8 60.0M CIFAR10 maintained 2.4× (speed-up)

[24] (all classes) ResNet-18 - CIFAR10 maintained 5.1% (cost)

not

[13] (all classes) ResNet-110 1.7M CIFAR10 maintained 1.9× (speed-up)

[17] (all classes) ResNet-110 1.7M CIFAR10 maintained 50% (cost)

Our (all classes) ResNet-110 1.7M CIFAR10 maintained 1.23× (speed-up)

Our (target class) ResNet-110 1.7M CIFAR10 maintained 5.77× (speed-up)

Our (target class) Inceptionv3-159 23.9M CIFAR10 maintained 5.09× (speed-up)

Our (target class) DenseNet-121 8.1M CIFAR10 maintained 8.79× (speed-up)

Our (target class) ResNet-21 0.3M CIFAR10 maintained 2.09× (speed-up)

25

Table 6 presents results for a number of datasets and models. Please note

that the perceived gains are strongly influenced by the dataset complexity and

by the model’s architecture, and thus both factors need to be taken into ac-

count when results from the considered approaches are compared. [17] and [27]

report results for CIFAR100 dataset, achieving in their metric a reduction of

computational cost of 37% and 10×, respectively, over the ResNet-110 model.

In [15] a time saving of 1.25× and 1.59× are achieved for the datasets FER-2013

and SVHN, respectively, over the AlexNet model (the number of layers was not

informed). All results are for solutions that have maintained the accuracy of

the reference model. Even though a direct time saving comparison to our re-

sults is not possible since they are not from the same CIFAR100 superclass set,

it can be inferred that our proposed methodology’s average time saving gains

of 15.00×, 17.26× and 20.71× are significant, as the achieved figures are even

better than the ones from CIFAR10 dataset.

Table 6: Related works for different datasets and models. (sc) is an abbreviation of the word

(superclass) and (Comp.) of the word (Computational).

Ref. model Early exit

Work (approach) Model Dataset accuracy avg. gain

[17] (all classes) ResNet-110 CIFAR100 maintained 37% (Comp. Cost)

[27] (all classes) ResNet-110 CIFAR100 maintained 10× (Comp. Cost)

[18] (all classes) ResNet-164 CIFAR100 maintained 3× (Comp. Cost)

[15] (all classes) AlexNet FER-2013 maintained 1.25× (Time)

[15] (all classes) AlexNet SVHN maintained 1.59× (Time)

Our (target class) Inceptionv3-159 CIFAR100 (sc) maintained 15.00× (Time)

Our (target class) ResNet-110 CIFAR100 (sc) maintained 17.26× (Time)

Our (target class) DenseNet-121 CIFAR100 (sc) maintained 20.71× (Time)

5. Applicability, limitations and extension opportunities

The performance of the data-driven approach exploited in this paper was

evaluated with a set of modern CNNs models mainly targeting the image clas-

sification problem. The convolutional part of CNNs has also been widely used

26

as a component in hybrid models for feature extraction or used as a fully convo-

lutional network (FCN) to produce classification maps instead of feature maps.

R-CNN [30], SPP-net [31] and Faster R-CNN [32] are examples of the hybrid

models for object detection, while [33] and [34] are examples of FCNs for se-

mantic segmentation at pixel level.

The essence of our proposed early exit method is to improve the average

latency of classifications for a targeted subset class by providing a classification

outcome as soon as the computed feature maps contain enough evidence to do

so. The proposed approach can also be applied for region or pixel classifications,

where a target class would be a particular object or a particular image segment.

In situations where only feature extraction is performed, a classification via early

exit could be included to predict whether the feature maps extracted so far are

sufficient or not to provide enough information for the processing conducted

by the next stages. A viability study of these assumptions need to take into

account not only the potential time saving, but also the extra classification time

imposed to the non-targeted classes and the associated training complexity.

Our approach of adopting accuracy as a metric to maintain the original

performance has demonstrated to be viable. However, most of the challenging

samples from all classes V that would be miss-classified at the baseline exit

(Out:B) tend to migrate to the early exit (Out:EEi), affecting the precision

as already discussed in Section 4.1.2. This is possible because in Equation (6)

the considered true and false classifications are from the whole set V , which

is appropriate from the accuracy point of view, since it is constrained by the

accuracy η given by the target class. Such behaviour may not be desirable for

applications that consider a higher cost for miss-classification of the V −k classes

in the (Out:EEi) than in (Out:B).

Another limitation of our approach is with regards to the overheads inflicted

to the V − k classes that are classified at (Out:B). In a balanced dataset, the

more classes exist in the baseline the more overhead (increased average time)

will be inflicted to the non-targeted classes. As every input sample needs to go

through the early exit branch, the probability per sample of being a true positive

27

is reduced as well. In this work we haven’t exploited such impact beyond the

20 classes.

One possibility to reduce such overhead is by reducing the complexity of

the dense connection (when KP=On) by analysing the significance of each con-

nection (weight) to the prediction in order to prune it when possible. For EE

models that implement more than one target class, the overhead could be re-

duced by sharing part of the dense connections, being dictated by the training

phase which layer/connection could be shared.

Apart from the expansions previously suggested, to explore precision along

with accuracy would probably have the most positive impact on the the current

method. To do so, the constrains from Equation (4) need to incorporate the

precision metric, which should also be considered in the training phase. A deep

analysis of the output activation (αi) influence in both precision and accuracy

is another relevant exploration point.

6. Conclusion

The proposed methodology introduces early exit opportunities on a reference

model targeting a specific class leading to improved average classification rate

for this specific class, maintaining at the same time the original model accuracy.

Even though samples that belong to the remaining classes suffer by adding

extra latency, as every sample received by the network needs to pass through

the early exit branch to be verified. The dense connection approach (KP=On)

demonstrated to be efficient when the baseline model is maintained, as the

introduced classification stage can access feature maps from all preceding layers.

The evaluation of the proposed methodology demonstrated an average time

savings in the order of 2.09 to 8.79 for the CIFAR10 dataset and 15.00to 20.71for

CIFAR100 for baseline models ResNet-21, ResNet-110, Inceptionv3-159, and

DenseNet-121.

28

Acknowledgement

The authors would like to acknowledge the São Paulo Research Foundation

(FAPESP) for the project financial support, grant number 2019/05286-6.

References

[1] J. Donahue, L. A. Hendricks, M. Rohrbach, S. Venugopalan, S. Guadar-

rama, K. Saenko, T. Darrell, Long-term recurrent convolutional net-

works for visual recognition and description, IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 39 (4) (2017) 677–691. doi:

10.1109/TPAMI.2016.2599174.

[2] F. Gargiulo, S. Silvestri, M. Ciampi, G. D. Pietro], Deep neural network for

hierarchical extreme multi-label text classification, Applied Soft Computing

79 (2019) 125 – 138. doi:https://doi.org/10.1016/j.asoc.2019.03.041.

[3] N. Yalta, S. Watanabe, T. Hori, K. Nakadai, T. Ogata, CNN-based multi-

channel end-to-end speech recognition for everyday home environments, in:

27th European Signal Processing Conference (EUSIPCO), 2019, pp. 1–5.

[4] J. Redmon, S. Divvala, R. Girshick, A. Farhadi, You only look once:

Unified, real-time object detection, in: 2016 IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2016, pp. 779–788. doi:

10.1109/CVPR.2016.91.

[5] S. Yang, D. Maturana, S. Scherer, Real-time 3D scene layout from a single

image using convolutional neural networks, in: 2016 IEEE International

Conference on Robotics and Automation (ICRA), 2016, pp. 2183–2189.

doi:10.1109/ICRA.2016.7487368.

[6] Y. Cheng, D. Wang, P. Zhou, T. Zhang, Model compression and ac-

celeration for deep neural networks: The principles, progress, and chal-

lenges, IEEE Signal Processing Magazine 35 (1) (2018) 126–136. doi:

10.1109/MSP.2017.2765695.

29

http://dx.doi.org/10.1109/TPAMI.2016.2599174
http://dx.doi.org/10.1109/TPAMI.2016.2599174
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2019.03.041
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/CVPR.2016.91
http://dx.doi.org/10.1109/ICRA.2016.7487368
http://dx.doi.org/10.1109/MSP.2017.2765695
http://dx.doi.org/10.1109/MSP.2017.2765695

[7] S. Han, H. Mao, W. J. Dally, Deep compression: Compressing deep neu-

ral networks with pruning, trained quantization and Huffman coding, in:

International Conference on Learning Representations (ICLR), 2016.

[8] K. Hegde, J. Yu, R. Agrawal, M. Yan, M. Pellauer, C. W. Fletcher, UCNN:

Exploiting computational reuse in deep neural networks via weight repeti-

tion, in: Proceedings of the 45th Annual International Symposium on Com-

puter Architecture, ISCA ’18, IEEE Press, Piscataway, NJ, USA, 2018, pp.

674–687. doi:10.1109/ISCA.2018.00062.

URL https://doi.org/10.1109/ISCA.2018.00062

[9] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: 2015

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

Vol. 00, 2015, pp. 1–9. doi:10.1109/CVPR.2015.7298594.

[10] K. He, X. Zhang, S. Ren, J. Sun, Identity mappings in deep residual net-

works, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.), Computer Vision

– ECCV 2016, Springer International Publishing, Cham, 2016, pp. 630–645.

[11] G. Huang, Z. Liu, L. v. d. Maaten, K. Q. Weinberger, Densely connected

convolutional networks, in: 2017 IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017, pp. 2261–2269. doi:10.1109/

CVPR.2017.243.

[12] P. Panda, A. Sengupta, K. Roy, Conditional deep learning for energy-

efficient and enhanced pattern recognition, in: 2016 Design, Automation

Test in Europe Conference Exhibition (DATE), 2016, pp. 475–480.

[13] S. Teerapittayanon, B. McDanel, H. T. Kung, Branchynet: Fast inference

via early exiting from deep neural networks, in: 2016 23rd International

Conference on Pattern Recognition (ICPR), 2016, pp. 2464–2469. doi:

10.1109/ICPR.2016.7900006.

30

https://doi.org/10.1109/ISCA.2018.00062
https://doi.org/10.1109/ISCA.2018.00062
https://doi.org/10.1109/ISCA.2018.00062
http://dx.doi.org/10.1109/ISCA.2018.00062
https://doi.org/10.1109/ISCA.2018.00062
http://dx.doi.org/10.1109/CVPR.2015.7298594
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/CVPR.2017.243
http://dx.doi.org/10.1109/ICPR.2016.7900006
http://dx.doi.org/10.1109/ICPR.2016.7900006

[14] H. Barad, H. Tang, Fast inference with early exit (a case

study), https://www.intel.com/content/www/us/en/artificial-

intelligence/posts/fast-inference-with-early-exit.html, last

access: 06/2020 (2020).

[15] E. Baccarelli, S. Scardapane, M. Scarpiniti, A. Momenzadeh,

A. Uncini, Optimized training and scalable implementation of con-

ditional deep neural networks with early exits for fog-supported

iot applications, Information Sciences 521 (2020) 107 – 143.

doi:https://doi.org/10.1016/j.ins.2020.02.041.

URL http://www.sciencedirect.com/science/article/pii/

S0020025520301249

[16] S. Scardapane, M. Scarpiniti, E. Baccarelli, A. Uncini, Why should we

add early exits to neural networks?, Cognitive Computation 12 (5) (2020)

954–966. doi:10.1007/s12559-020-09734-4.

[17] X. Wang, F. Yu, Z.-Y. Dou, T. Darrell, J. E. Gonzalez, Skipnet: Learning

dynamic routing in convolutional networks, in: The European Conference

on Computer Vision (ECCV), 2018.

[18] R. T. Mullapudi, W. R. Mark, N. Shazeer, K. Fatahalian, Hydranets: Spe-

cialized dynamic architectures for efficient inference, in: Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2018.

[19] J. Shen, Y. Wang, P. Xu, Y. Fu, Z. Wang, Y. Lin, Fractional skipping: To-

wards finer-grained dynamic CNN inference, in: The Thirty-Fourth AAAI

Conference on Artificial Intelligence, AAAI 2020, The Thirty-Second In-

novative Applications of Artificial Intelligence Conference, IAAI 2020, The

Tenth AAAI Symposium on Educational Advances in Artificial Intelligence,

EAAI 2020, New York, NY, USA, February 7-12, 2020, AAAI Press, 2020,

pp. 5700–5708.

URL https://aaai.org/ojs/index.php/AAAI/article/view/6025

31

https://www.intel.com/content/www/us/en/artificial-intelligence/posts/fast-inference-with-early-exit.html
https://www.intel.com/content/www/us/en/artificial-intelligence/posts/fast-inference-with-early-exit.html
http://www.sciencedirect.com/science/article/pii/S0020025520301249
http://www.sciencedirect.com/science/article/pii/S0020025520301249
http://www.sciencedirect.com/science/article/pii/S0020025520301249
http://dx.doi.org/https://doi.org/10.1016/j.ins.2020.02.041
http://www.sciencedirect.com/science/article/pii/S0020025520301249
http://www.sciencedirect.com/science/article/pii/S0020025520301249
http://dx.doi.org/10.1007/s12559-020-09734-4
https://aaai.org/ojs/index.php/AAAI/article/view/6025
https://aaai.org/ojs/index.php/AAAI/article/view/6025
https://aaai.org/ojs/index.php/AAAI/article/view/6025

[20] J. Lin, Y. Rao, J. Lu, J. Zhou, Runtime neural pruning, in: Proceed-

ings of the 31st International Conference on Neural Information Processing

Systems, NIPS’17, Curran Associates Inc., Red Hook, NY, USA, 2017, p.

2178–2188.

[21] J. Yu, T. Huang, Universally slimmable networks and improved training

techniques, in: 2019 IEEE/CVF International Conference on Computer

Vision (ICCV), 2019, pp. 1803–1811. doi:10.1109/ICCV.2019.00189.

[22] J. Yu, L. Yang, N. Xu, J. Yang, T. Huang, Slimmable neural networks, in:

International Conference on Learning Representations, 2019.

URL https://openreview.net/forum?id=H1gMCsAqY7

[23] Z. Chen, Y. Li, S. Bengio, S. Si, You look twice: Gaternet for dynamic filter

selection in CNNs, in: 2019 IEEE/CVF Conference on Computer Vision

and Pattern Recognition (CVPR), 2019, pp. 9164–9172. doi:10.1109/

CVPR.2019.00939.

[24] X. Wang, Y. Luo, D. Crankshaw, A. Tumanov, J. Gonzalez, Idk cascades:

Fast deep learning by learning not to overthink, in: UAI, 2018.

[25] A. Kouris, S. I. Venieris, C. Bouganis, Cascade CNN: Pushing the per-

formance limits of quantisation in convolutional neural networks, in: 2018

28th International Conference on Field Programmable Logic and Applica-

tions (FPL), 2018, pp. 155–1557. doi:10.1109/FPL.2018.00034.

[26] A. Kouris, S. Venieris, C.-S. Bouganis, A throughput-latency co-optimised

cascade of convolutional neural network classifiers, IEEE, 2019.

URL http://hdl.handle.net/10044/1/75445

[27] G. Huang, D. Chen, T. Li, F. Wu, L. van der Maaten, K. Weinberger,

Multi-scale dense networks for resource efficient image classification, in:

International Conference on Learning Representations, 2018.

32

http://dx.doi.org/10.1109/ICCV.2019.00189
https://openreview.net/forum?id=H1gMCsAqY7
https://openreview.net/forum?id=H1gMCsAqY7
http://dx.doi.org/10.1109/CVPR.2019.00939
http://dx.doi.org/10.1109/CVPR.2019.00939
http://dx.doi.org/10.1109/FPL.2018.00034
http://hdl.handle.net/10044/1/75445
http://hdl.handle.net/10044/1/75445
http://hdl.handle.net/10044/1/75445

[28] E. S. Marquez, J. S. Hare, M. Niranjan, Deep cascade learning, IEEE

Transactions on Neural Networks and Learning Systems 29 (11) (2018)

5475–5485. doi:10.1109/TNNLS.2018.2805098.

[29] A. Krizhevsky, V. Nair, G. Hinton, CIFAR-10 and

CIFAR-100 (Canadian Institute for Advanced Research),

http://www.cs.toronto.edu/ kriz/cifar.html, last access: 02/2020 (2020).

[30] R. Girshick, J. Donahue, T. Darrell, J. Malik, Region-based convolutional

networks for accurate object detection and segmentation, IEEE Transac-

tions on Pattern Analysis and Machine Intelligence 38 (1) (2016) 142–158.

doi:10.1109/TPAMI.2015.2437384.

[31] K. He, X. Zhang, S. Ren, J. Sun, Spatial pyramid pooling in deep con-

volutional networks for visual recognition, IEEE Transactions on Pat-

tern Analysis and Machine Intelligence 37 (9) (2015) 1904–1916. doi:

10.1109/TPAMI.2015.2389824.

[32] S. Ren, K. He, R. Girshick, J. Sun, Faster r-cnn: Towards real-time object

detection with region proposal networks, IEEE Transactions on Pattern

Analysis and Machine Intelligence 39 (6) (2017) 1137–1149. doi:10.1109/

TPAMI.2016.2577031.

[33] E. Shelhamer, J. Long, T. Darrell, Fully convolutional networks for seman-

tic segmentation, IEEE Transactions on Pattern Analysis and Machine

Intelligence 39 (4) (2017) 640–651. doi:10.1109/TPAMI.2016.2572683.

[34] Z. Chen, V. Badrinarayanan, G. Drozdov, A. Rabinovich, Estimating depth

from rgb and sparse sensing, in: Proceedings of the European Conference

on Computer Vision (ECCV), 2018.

33

http://dx.doi.org/10.1109/TNNLS.2018.2805098
http://dx.doi.org/10.1109/TPAMI.2015.2437384
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1109/TPAMI.2016.2572683

	Introduction
	Related Work
	Proposed Methodology
	Problem formulation
	Extending to multiple early exits

	Generating and training EE models
	Tuning confidence level threshold
	Selecting EE viable models

	Performance Evaluation
	Connection type and platform overhead analyses
	Wall clock execution time
	Extending the analysis for all classes
	Multiple early exits impact

	Scaling to deeper models
	Comparing to existing work

	Applicability, limitations and extension opportunities
	Conclusion

