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Abstract—Orthogonal frequency division multiplexing
(OFDM) has been widely applied in many wireless
communication systems. The artificial intelligence (AI)-
aided OFDM receivers are currently brought to the forefront
to replace and improve the traditional OFDM receivers. In
this paper, we first compare two AI-aided OFDM receivers,
namely, data-driven fully connected deep neural network
and model-driven ComNet, through extensive simulation and
real-time video transmission using a 5G rapid prototyping
system for an over-the-air (OTA) test. We find a performance
gap between the simulation and the OTA test caused by the
discrepancy between the channel model for offline training and
the real environment. We develop a novel online training system,
which is called SwitchNet receiver, to address this issue. This
receiver has a flexible and extendable architecture and can adapt
to real channels by training only several parameters online.
From the OTA test, the AI-aided OFDM receivers, especially
the SwitchNet receiver, are robust to OTA environments and
promising for future communication systems. At the end of
this paper, we discuss potential challenges and future research
inspired by our initial study in this paper.

Index Terms—Artificial intelligence, DNN, OFDM, SwitchNet,
OTA.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing
(OFDM) is an effective technique to deal with the

delay spread of wireless channels [1], [2]. The conventional
OFDM receivers can be classified into two categories: linear
and iterative receivers. Linear receivers include least square
(LS) [3], [4] and minimum mean-squared error (MMSE)
[5] for channel estimation (CE) or signal detection (SD).
Iterative receivers include approximate message passing [6]
and expectation propagation-based algorithms [7]. These
receivers are all designed on the basis of expert knowledge
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or specific models. However, complex channel scenarios and
nonlinear interference challenge these conventional designs
and limit the performance of OFDM receivers. OFDM can
potentially address many challenging issues in traditional
systems with the introduction of artificial intelligence (AI).
[8]–[11] revealed the benefits of AI in physical layer of
communications. Different modules in the conventional
communication systems have been studied with the aid of AI,
including signal classification [12], channel coding [13]–[15],
CE [16], multiple-input multiple-output (MIMO) detection
[17], [18], channel state information (CSI) feedback [19],
[20], and novel autoencoder-based end-to-end communication
systems [21], [22].

A novel data-driven AI-aided OFDM receiver has been
recently proposed in [23] and this receiver uses a fully con-
nected deep neural network (FC-DNN) to detect data directly
without estimating CSI explicitly after applying a fast Fourier
transformation (FFT) module. The AI-aided OFDM receiver,
which treats joint CE and SD as a black box, exploits no
expert knowledge of wireless communications and trains all
parameters with a large amount of wireless data by stochastic
gradient descent-based algorithms. The data-driven AI-aided
OFDM receiver in [23] is robust to the effect of pilot re-
duction, CP omission, and nonlinear clipping noise; however,
it converges slowly and has high computational complexity.
A deep complex convolutional network (DCCN), which is
inspired by [23], is proposed in [24] for the receiver to convert
OFDM waveform into detected symbols directly without using
discrete Fourier transform (DFT). The Cascade-Net in [25]
is robust to ill-condition channels. The deep learning (DL)
networks in [26] can perform CE and data symbol detection
for one-bit OFDM receivers. Many other data-driven methods,
such as those in [27], [28], are also developed recently. In
brief, the AI-aided OFDM receiver does not need to know
prior information on the hand-craft and usually outperforms
traditional OFDM receivers in terms of BER performance.

AI algorithms can exploit expert knowledge to develop
model-driven AI approaches. One of the earliest model-driven
AI approaches in [29] has been proposed for magnetic res-
onance imaging. Model-driven AI approaches are currently
extended to wireless physical layers through the design of
network architectures based on wireless physical domain
knowledge [10], which are promising in addressing the CE
and SD problems. In particular, a model-driven-based AI-aided
OFDM receiver, called ComNet, has been proposed in [30].
Instead of using a single DNN to detect signals with implicit
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CE as in the FC-DNN receiver [23], ComNet follows the
conventional OFDM architecture but uses two DNNs for CE
and SD, respectively, to improve the performance of the mod-
ules. Simulation results have showed that ComNet has better
performance than the traditional MMSE-based methods and
converges faster given that only fewer parameters need to be
trained than the FC-DNN OFDM receiver [23]. Furthermore,
explicit CE helps in channel analysis and CSI feedback in
downlink transmission, especially in massive MIMO systems.
The abovementioned advantages render ComNet a competitive
candidate for practical system implementation. Additional
research in this topic can be found in [31], [32].

Although the abovementioned AI-aided methods work well
based on simulation, the over-the-air (OTA) performance in
practical environments remains unknown. State-of-the-art OTA
studies usually train well-designed AI networks offline and
deploy them on software-defined radios (SDRs), such as
universal software radio peripheral (USRP), for online use
[12], [21]. In this case, the trained parameters of the DNNs
remain the same as they are deployed. Therefore, all possible
effects of practical environments have to be considered during
the architecture design and training phase, which is impractical
in some cases. In [33], error-correcting codes (ECCs) are
used to construct labeled datasets at the receiver side such
that the trained AI communication systems can be fine-tuned
by transfer learning at run time. This method only works for
channels varying slower than updating parameters. Apart from
transfer learning, the low-complex frameworks in [34] and the
meta-learning frameworks in [35], [36] significantly reduce
required training resources for online adaptation. To the best
of our knowledge, report on using AI-aided OFDM receivers
in real environments with a real-time video transmission is
lacking. Many practical issues are challenging, such as the
robustness to the varying channels, the choice of the training
data, and the real-time data processing.

In this work, we compare the FC-DNN OFDM receiver
[23] and the ComNet OFDM receiver [30] through an OTA
test because practical environment is time-varying and not
always same as the assumption in simulation. We set up a real-
time video transmission system based on the two AI receivers
for the OTA test by using the 5G rapid prototyping (RaPro)
system in [37], [38]. The OTA test in diverse environments
demonstrates that the AI-aided OFDM receivers are feasible
and extendable in practical applications. However, we find a
performance gap between the simulation and the OTA test.
We develop an online learning architecture, called SwitchNet
receiver, and can be trained with offline and real-time online
data to capture channel features ignored during offline training
for addressing the abovementioned problem. Compared with
current AI-aided OFDM receivers, the proposed SwitchNet
has a novel architecture that can be trained online and can
still recover the transmitted symbols even when the training
channel data set and the practical channel conditions mis-
match. In addition, the number of online trainable parameters
is small, which can reduce the online training data and cost.
Furthermore, the proposed SwitchNet is implemented and
evaluated OTA, which proves the feasibility and the real-time
transmission ability of the online training method in commu-

nications. The contributions of this paper are summarized as
follows:

1) We comprehensively compare the performance of the
current AI-based receivers, including the FC-DNN, ComNet,
and the conventional LMMSE receiver. We investigate the sen-
sitivity of the AI-based receivers to the mismatch of channels
between offline training and online deployment stages and
demonstrate the necessity of online training schemes.

2) We propose a novel online training method, called
SwitchNet. This method uses multiple channel models during
offline training and leaves only a few trainable parameters
to be tuned by online training. The network can be applied
to a wide range of environments even without re-training.
Furthermore, the network can converge very fast to adapt to
real environments and avoid overfitting by online training.

3) We demonstrate the feasibility of online training Switch-
Net in different scenarios through a real-time video trans-
mission rapid prototyping (RaPro) system as the OTA test
platform to deploy AI OFDM receivers. To the best of our
knowledge, it is one of the few online training AI-aided OFDM
communication systems.

The rest of this paper is organized as follows. Section II
introduces the architectures of the FC-DNN receiver, ComNet
receiver, and SwitchNet. Simulation results are presented in
Section III. In Section IV, we analyze the OTA test results.
We summarize the challenges for future work in Section V.

II. ARCHITECTURES OF AI-AIDED OFDM RECEIVERS

In this section, the traditional and AI-aided OFDM sys-
tems are introduced. After the existing data-driven FC-DNN
receiver [23] and the model-driven ComNet receiver [30] are
analyzed, we develop SwitchNet to facilitate an OTA test and
the practical application of the AI-aided OFDM receiver.

A. Traditional and AI-aided OFDM systems

Fig. 1 shows the block diagram of an OFDM system,
including transmitter, channel, and receiver. Two types of
OFDM receivers are introduced: traditional and AI-aided
OFDM receivers.

For the transmitter, the input binary data sequence, b, is
modulated as the transmit symbol sequence, where M-QAM,
such as 4-QAM and 16-QAM, is used. Then, an N-point IFFT
is performed to generate an OFDM signal. Thereafter, a cyclic
prefix (CP) is inserted to mitigate the inter-symbol interference
(ISI) caused by the delay spread of wireless channels.

Wireless channels are assumed to be with delay spread
and additive white Gaussian noise, w. The components of w
are independent, with zero-mean and σ2

w-variance. A sample-
spaced multipath channel can be described by complex random
variables. Without the CP, the delay spread of L − 1 samples
will result in ISI and inter-carrier interference (ICI). If the
delay spread is shorter than the length of the CP, P, that
is, L − 1 ≤ P, then ISI and ICI will not occur. To estimate
CSI, pilot symbols are inserted in the first OFDM block in a
frame while the transmitted data are appended in the following
OFDM blocks of the frame. The channel is assumed to be
time-invariant during one frame.
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Fig. 1. Block diagram of an OFDM system, where pilot symbols are inserted at the transmitter, and the receiver acquires
CSI. Compared with the traditional OFDM receiver, the AI receiver performs CE, SD, and QAM demodulation altogether and
directly maps the received signals into decided symbols.

At the traditional OFDM receiver in Fig. 1, the CP is
removed first and then FFT is performed. We denote y(k) as
the received signal at the k-th subcarrier. CE, SD, and QAM
demodulation are subsequently performed. The received pilot
and data signals for the kth subcarrier can be expressed as

yP(k) = xP(k)h(k) + w(k),

and

yD(k) = xD(k)h(k) + w(k),

respectively, where xP(k) and xD(k) denote the pilot and
transmit symbols in the kth subcarrier, respectively. xP(k) is
known at the receiver and used for CE while xD(k) is unknown
at the receiver and needs to be detected based on the received
signal and estimated channel.

The AI receiver in Fig. 1 replaces the three latter modules in
the traditional receiver. It directly maps the received symbols
into the detected binary data. In the following sections, two
types of AI receivers, namely, data-driven FC-DNN and the
model-driven ComNet, and a novel AI receiver, called Switch-
Net are described in detail.

B. FC-DNN receiver

A data-driven AI-aided FC-DNN receiver in Fig. 2 is
proposed in [23]. The received signals, including pilot and
data, are reshaped as the input from complex value to real
value initially. Therefore, the size of input layer will be
2(KP + KD) if KP subcarrier pilot and KD subcarrier data
are available. Then, the input data go through three hidden
layers. The numbers of neurons in the hidden layers are 500,
250, and 120. The output layer is composed of only N/8
neurons and 8 FC-DNN receivers are designed to work in
parallel to recover all input binary data, where N is the length
of the input binary data. Such design is beneficial for ensuring
high precision of the estimated symbols and avoiding a more
complex network. All but the output of layers use the ReLU
function fRe(a) = max(0, a) as the activation function. The
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Fig. 2. Structure of FC-DNN. The FC-DNN receiver contains
five FC layers that directly map the received signal to the
recovered bitstreams.

activation function of the output layer is the logistic sigmoid
function fSi(a) = 1

1+e−a for classification. The logistic sigmoid
function at the output layer maps the input to the interval
[0, 1], which can be regarded as a soft decision. Hard decisions
can be obtained on the basis of the soft decisions. Given
that each DNN recovers only one-eighth of the transmit data,
eight identical DNNs with different coefficients are needed to
recover all the transmit binary data.

The FC-DNN receiver merges CE, SD, and OFDM modu-
lation into one black box and exploits offline training but an
online deployment method. In the training stage, transmit bits
are generated randomly as a label and then modulated to form
a frame by inserting pilot symbols. The CSI is simulated by a
specific channel model and varies with each frame. The `2 loss
and the adaptive moment estimator (Adam) optimizer [39] are
used in the training process.

The FC-DNN OFDM receiver adopts an end-to-end struc-
ture to realize global optimization of the receiver. It is robust
to nonlinear distortions and potential hardware imperfections,
such as lack of CP and clipping. However, FC-DNN requires a
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large labeled data set to train its weights and converges slowly
because of the large number of weights that need to be trained.

C. ComNet receiver

A model-driven AI-aided ComNet receiver is proposed in
[30] to alleviate the demand for vast training data and enabling
the acquisition of CSI. The basic idea of the ComNet receiver
[30] is to use DNNs as auxiliary blocks to refine the original
modules in the OFDM receiver in Fig. 1. Fig. 3 illustrates
the architecture of the ComNet receiver [30], which adopts
two cascaded DNN-based subnets: CE and SD subnets. In the
CE subnet, the LS CE is calculated by element-wise division.
Then, the LMMSE matrix is used as the initiation. In the SD
subnet, the zero-forcing (ZF) SD is first obtained by element-
wise division. The hidden layer FC2 in Fig. 3 uses the ReLU
activation function, whereas the output layer FC3 uses the
logistic sigmoid function. A hard decision is made to decide
the transmit bits. Alternatively, a short-path of a conventional
QAM demodulation module can be added to obtain a robust
bitstream depending on the scenario.

Similar to the FC-DNN receiver in [23], the ComNet re-
ceiver [30] uses offline training but online deployment method.
Different from the FC-DNN receiver, which executes end-to-
end training [23], the ComNet receiver [30] adopts a two-stage
training where the CE and SD subnets are trained separately
and successively. Once the training process of the CE subnet
is done, the parameters in the CE subnet will be fixed in
the following training process of the SD subnet. The labels
of the training data include randomly generated transmitted
bitstreams for updating the SD subnet and the specific channel
model for updating the CE subnet.

The ComNet receiver [30] exploits expert knowledge and
breaks the black box of the purely data-driven AI receiver
in [23]. Similar to the FC-DNN receiver, the output layer of
the SD subnet has N/8 neurons and 8 SD subnets that work
together in the ComNet receiver.

D. SwitchNet receiver

The DNN networks in the abovementioned FC-DNN and
ComNet receivers are trained with simulated data offline. This

condition will lead to mismatch and performance degradation
if practical channels are different from the simulated ones or
unexpected distortions are ignored during offline training.

The delay spread of the multipath channel is an important
parameter for calculating the LMMSE weight matrix in the
CE subnet. The robust LMMSE receiver in [1] needs the
max delay to calculate the LMMSE filter matrix offline. The
delay spread estimation exploiting few channel samples online
is proposed in [2] by introducing the channel shape in time
domain.

However, AI-aided receivers learn the environmental fea-
tures implicitly and the learned parameters are unexplained.
Therefore, retraining the NNs online is more difficult com-
pared with recalculating the LMMSE matrix similar to con-
ventional ways [1], [2]. Therefore, an adaptive and practical
AI-aided OFDM receiver is desired. Online transmission data
[33] should also be considered in the training process of DNNs
in OFDM receivers for designing a practical AI-aided OFDM
receiver.

As shown in Fig. 4, the SwitchNet receiver is based on
the ComNet receiver because it is similar to conventional
receivers. The difference between them is the architecture of
the CE subnet is designed for online adaption. As shown
in Fig. 4, the CE subnet of the SwitchNet receiver consists
of LS CE, two or more CE RefineNets, and online training
parameters α ∈ [0, 1]. The structures of the LS CE and
each CE RefineNet are the same as those in the ComNet
receiver. We consider two channel models, namely, the short
and long channels, to combat the changing delay spread online.
However, the architecture can be directly extended to more
channel models. As depicted in Fig. 4, the CE RefineNet 0
is a basic neural network for channel estimation and the CE
RefineNet from 1 to M is the compensating network of the
CE RefineNet 0 to adapt different channel environments.

CE 

RefineNet 0

CE 

RefineNet 1

LS CE +
P

y

P
x

LS
ĥ

ĥ

CE 

RefineNet 2

CE 

RefineNet M

Fig. 4. CE subnet architecture of the SwitchNet receiver. The
CE RefineNet 0 is the basic DNN network for CE, and the
CE RefineNets from 1 to M are the compensating network of
the CE RefineNet 0. α is the switching parameters to decide
whether the CE RefineNets from 0 to M are accessed.

The aforementioned CE RefineNets are trained offline for
different channel models, and the switch parameters α are
trainable online to decide whether the CE RefineNet from
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0 to M is accessed. Given only M training parameters α,
a small batch of OFDM symbols with bit labels are needed
and overfitting can be avoided. In the offline stage, the CE
RefineNet 0 is trained for the robust channel first, which only
assumes the max delay in time domain as in [1]. Then, the
trained parameters of CE RefineNet 0 are fixed and the CE
RefineNet 1 is trained to adapt the short channel. RefineNets
from 2 to M have the same process for the different channels.
In the online stage, the parameters α are trained to switch to
the specific channel. For example, under the short channel,
all α connected to the RefineNets are set as 0 and only CE
RefineNet 1 is accessed. Denote Wi and θi as the 2K×2K real
multiplicative parameter matrix and the 2K × 1 real additive
parameter vector for the i-th CE RefineNet in Fig. 4, where
K is the number of effective subcarriers. From Fig. 4, the
estimated channel ĥ can be expressed as

ĥ =

(
M∑
i=1

αiWi + α0I

)
(W0ĥls + θ0) +

M∑
i=1

αiθi . (1)

The offline training process is divided into two steps similar
to the ComNet. In the first step, the CE RefineNets are trained
one by one, which can be written as

(Ŵi, θ̂i) = arg min
Wi,θi

| |ĥ − h| |22, (2)

where

αj =

{
1, j = i,

0, j , i.
(3)

Then, the CE RefineNets are fixed and the SD subnet is trained
as

(ŴSD, θ̂SD) = arg min
WSD,θSD

| |b̂ − b| |22, (4)

where WSD and θSD are trainable parameters in the SD subnet,
b̂ is the output of the SD subnet, and b is the transmit
bitstream.

The online training strategy aims to learn a combination of
the CE RefineNets with extreme few pilots and known bits.
If all bits in the data block of the subframes are known to
the receiver, then they are called training subframes in the
following. This end-to-end training process can be expressed
as

α̂ = arg min
α
| |b̂ − b| |22, (5)

where α = [α0, α1, · · · , αM ]. The known bits are better than
ECC in online training [33]. However, the training subframes
are insufficient due to the limited transmit resources.

The SwitchNet receiver introduces the idea of online train-
ing and can adjust to different channel environments; thus,
making the OFDM system becomes more robust than the
FC-DNN and the ComNet receivers. Compared with offline
switch, the online training of SwitchNet receiver can improve
the BER performance continuously in the switch process.
Meanwhile, α can be beyond 0 and 1 with a good combination
of the CE RefineNets to adapt a new environment. In addition,
the SwitchNet receiver can be naturally extended to multi-user
MIMO systems given that the SwitchNet receiver is inherited
from the ComNet, in which the traditional methods, including
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Fig. 5. Frame structure of the simulated OFDM system. Each
frame contains several OFDM symbols. A pilot symbol and a
data symbol are set as the inputs of NNs. Each OFDM symbol
contains 128 subcarriers. A total of 64 subcarriers are used for
the pilot symbol or data symbol transmission while the vest
64 subcarriers serve as guard band and DC offset.

the LS CE and the ZF SD, can be used.

III. SIMULATION AND DISCUSSION

In this section, we analyze the pros and cons of different
AI-aided OFDM receivers through extensive simulation.

A. Configurations of the simulation system

1) Frame structure: Fig. 5 illustrates the frame structure
of the simulated OFDM system. In Fig. 5, a 15 ms frame is
composed of a frame header and 36 subframes. Each subframe
contains one pilot OFDM symbol and one data OFDM symbol.
Each OFDM symbol consists of 128 subcarriers where 64
subcarriers are used for pilot or data transmission and the
others are for guard band and DC offset.

2) Channel conditions: Three classic channel conditions
are chosen for simulation to investigate the effect of changing
scenarios on the conventional and AI-aided receivers.

Short channel in the simulation is with the exponential
(EXP) power delay profile (PDP), which is defined in IEEE
802.11b to model the indoor channel at the carrier frequency
of 2.4 GHz [2]. The PDP is given as follows:

P(τ) =
1

τrms
e−τ/τrms , (6)

where P(τ) is the received power at delay τ, and τrms denotes
the root-mean-square (RMS) delay spread. The output of a
finite impulse response filter is used to represent channel
impulse response h for generating the short channel. Each
tap is modeled as an independent complex Gaussian random
variable and set at integer multiples of the sampling interval.
The maximum number of paths is decided by τrms and
sampling period Ts . In this study, the maximum number of
paths nmax is set as 10τrms

Ts
. This model is called EXP(nmax)

channel model in the following part.
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Long channel uses the Stanford University Interim (SUI)
channel model [11], which is a type of outdoor multipath
channels. In IEEE 802.16, the suburban path loss environment
can be divided into three terrains according to the tree densi-
ties and path-loss conditions. This channel can be described
by different combinations of channel parameters. For SUI-5
channel model, the delay spread is [0 0.4nmax nmax] and power
profile is [0 dB − 5 dB − 10 dB], where

nmax = d
10τrms

Ts
e . (7)

In the following part, SUI-5 environment with the max delay
spread at nmax is denoted as SUI-5(nmax).

Robust channel is based on the assumptions in [1]. The
delay spread is [0 1 · · · nmax] and the power profile is
[ 1
nmax+1

1
nmax+1 · · ·

1
nmax+1 ].

3) Conventional LMMSE receivers: The channel correla-
tion matrix and the noise power are the key parameters for the
LMMSE receivers. The noise power can be easily estimated
from the subcarriers for guard. However, the channel corre-
lation matrix is challenging because of the varying channel
environment.

Online LMMSE is based on the method of estimating
delay spread in [40]. It assumes the channel is with multipath
fading and its PDP is with exponential shape similar to Short
Channel. Therefore, the element in the channel autocorrelation
matrix can be expressed as

Rf (k)/Rf (0) =
e−j2πτ0k/N

1 + j2πτrmsk/N
, (8)

where τµ denotes mean delay, τ0 = τµ − τrms; N is the size of
the DFT used in OFDM modulation.

Then, the LS CE and DD (decision-directed) CE are used
to estimate τrms and τµ. For example, if the pilots are limited,
then the known data blocks are used to obtain channel infor-
mation. We use the same training frames for Online LMMSE
and the SwitchNet for comparison.

Robust LMMSE is based on the work in [1], which
calculates the max delay and the LMMSE matrix offline.
Therefore, the channel autocorrelation matrix can be expressed
as

Rf = FDFH, (9)

where F is discrete DFT matrix and (·)H is Her-
mite transpose. D is diagonal matrix with the elements
diag{ 1

nmax+1,
1

nmax+1, · · · ,
1

nmax+1, 0, · · · , 0}. In the following
part, the robust LMMSE receiver designed with the max delay
of nmax is called Robust LMMSE nmax.

In this study, Perfect baseline has knowledge of true channel
and represents the best performance of a linear receiver. The
statistic parameters of the channel are changing and difficult
to obtain. Thus, the Robust LMMSE and the Online LMMSE
are also simulated for comparison. The performance of the two
LMMSE estimator is determined by the accuracy of statistical
information of channels. The noise is set as 40 dB, which is
the same as the training environment of NNs.

4) Parameter setting: The detailed network layouts of the
AI-aided OFDM receivers are summarized in Table I. Training
parameters are shown in Table II. The parameters in the AI-

aided OFDM receivers are trained through labeled data in
advance. Table II lists the selected training parameters in the
simulation.

TABLE I. Network layouts of the AI-aided OFDM receivers.

Layer Output Activation
dimensions function

FC-DNN

Input 256 None
FC 500 ReLU
FC 250 ReLU
FC 120 ReLU
FC 16 Sigmoid

ComNet

CE LS Estimation 128 /
FC 128 None

SD
ZF Detection 128 /

FC 120 ReLU
FC 16 Sigmoid

SwitchNet

CE
LS Estimation 128 /

FC1 128 None
FC2 128 None

FC1 out + FC2 out 128 /

SD
ZF Detection 128 /

FC 120 ReLU
FC 16 Sigmoid

TABLE II. Training parameters in simulation.

Parameter Value
SNR 25 dB

Loss function MSE
Epoch 2000

Initial learning rate 0.001
Optimizer Adam

B. Performance of the existing AI-aided OFDM receivers
The existing AI-aided OFDM receivers, namely, the FC-

DNN and ComNet, adopt offline training but an online de-
ployment scheme. We will evaluate the performance variation
of FC-DNN and ComNet when they encounter mismatched
channels. The Robust LMMSE, Online MMSE and Perfect
baseline are tested for comparison.

Fig. 6(a) compares the BER performance of ComNet, FC-
DNN, and LMMSE. The AI-aided methods are trained and
tested in EXP(5) channel, which means the trained and tested
channels are the same. Fig. 6(a) shows that these receivers
exhibit similar BER performance when SNR ≤ 10 dB given
that the influence of the accurate delay spread is slight when
the noise power is high. The ComNet is close to the Perfect
baseline and nearly 1 dB better than the Online LMMSE
when SNR = 20dB. With the increase in SNR, the ComNet
is slightly worse than Online LMMSE. This result means that
the ComNet learns more to deal with the noise. Meanwhile,
the proper channel shape assumption of the Online LMMSE
results in its tightly close performance to the Perfect baseline,
especially when SNR is high. The evident performance gain
of ComNet over FC-DNN suggests that the expert knowledge
of the traditional algorithm can be beneficial to the learning
process of the DL networks. The Robust LMMSE shows the
worst performance because it uses the least statistic informa-
tion.

Fig. 7(b) compares the BER performance of ComNet and
FC-DNN trained in the EXP(5) channel but tested in the SUI-
5(10) channel. As shown in the figure, the ComNet is the
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Fig. 6. BER performance of FC-DNN and ComNet under matched and mismatched channels. (a) FC-DNN and ComNet
receivers trained and tested under matched channels. (b) FC-DNN and ComNet receivers trained and tested under mismatched
channels.

worst. The BER performance of the FC-DNN receiver is still
close to that of Robust LMMSE, whereas the ComNet receiver
does not work well and becomes saturated when SNR > 20
dB. The Online LMMSE is still close to the Perfect baseline
because it can learn the changing channel and recalculate the
LMMSE matrix. However, a gap exists between the Online
LMMSE and the Perfect baseline when the SNR is high
because the exponential model assumption is inaccurate. In
general, the ComNet receiver has excellent performance under
matched channels and poor performance under mismatched
channels. By contrast, the FC-DNN is more robust to channel
mismatch than ComNet, which may be due to the redundant
network parameters. The Robust LMMSE is worse and shows
error floor because its performance degrades when the delay
spread is longer.

The existing AI-aided OFDM receivers outperform the
traditional method, especially under the non-ideal scenarios,
such as insufficient pilots, clipping, and other nonlinear effects
[23]. However, the feasibility of the AI-aided method is still
questionable.

C. Performance of the SwitchNet receiver

Performance degradation of the existing AI receivers for
mismatched channels is due to their offline training mode,
which makes them well known to the trained channel but
“unfamiliar” with the untrained channels. Performance may
not be guaranteed for the AI receivers under real scenarios with
channels untrained offline. The AI receiver should be trained
under more channel models offline or the online receiver
should be trained to adapt to the real environment, as indicated
in the proposed SwitchNet, to address the channel mismatch
issue.

Fig. 7 shows the convergence of the SwitchNet with two CE
RefineNets online. We also compare the impact of different
sizes of online training sets, where Fig. 7(a) uses only one
subframe for online training and Fig. 7(b) uses 10 subframes.

The SwitchNet is combined with two CE RefineNets trained
under EXP(5) and SUI-5(10), respectively. We let α = [1 0]
to train CE RefineNet 0 for EXP(5) and α = [1 1] to train CE
RefineNet 1. The learning rate is set as 0.1, and 50 times of
training are conducted for an epoch.

Before training online, the receiver works in the specific
channel environment. The value of α1 is 0 when the simulated
environment is EXP(5) or α1 is 1 when the environment is
SUI-5(10). When the channel suddenly changes, the value
of α adjusts immediately to match the new channel. Fig. 7
shows the online-training curves when the channel changes. As
shown in the figure, the value of α1 of the star curve changes
quickly from 1 to 0 within 10 epochs when the channel
changes from SUI-5(10) to EXP(5). Similarly, the crossing
curve adapts to 0 from 1 within 10 epochs when the channel
changes from EXP(5) to SUI-5(10). Within 10 epochs, α1
moves closer to the value of 0 or 1 and slightly varies around
them. The amplitude of variation decreases gradually and
converges eventually. Although the vibration of the curve in
Fig. 7(a) is larger than that in Fig. 7(b), the BER performance
is still tightly close to that of the ComNet trained under the
matched channels. Therefore, the online system can perform
well in terms of adaptability and stability. In our simulation,
the 100 epochs can be trained within 1 ms.

A robust combination of the CE RefineNets is proposed
to explain the expandable architecture of SwitchNet. The CE
RefineNet 0 is initiated by the Robust LMMSE 12 and trained
for better performance. After CE RefineNet 0 is trained, we
set α = [0 1 0 0 0] and train for the max delay at 3. Then, we
set α = [0 1 1 0 0] for the max delay at 6, α = [0 1 1 1 0]
for the max delay at 9, and [0 1 1 1 1] for the max delay at
12. The pilot numbers are set as 8 and 64 for comparison in
this simulation.

Fig. 8 shows the BER performance of the SwitchNet
receiver after online training from the initial state, where
α = [1 0 0 0 0]. We use 10 OFDM symbols as a training set
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Fig. 7. Online training process during channel change. The star curve is the training process of α1 when the channel changes
from SUI-5(10) to EXP(5). The crossing curve is the training process of α1 when the channel changes from EXP(5) to
SUI-5(10).
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Fig. 8. BER performance of SwitchNet after online training when the channel changes. The test scenario is SUI-5(10), where
the SwitchNet has not learned offline.

and train 50 times for an epoch. All the online training process
converges within 40 epochs. The SwitchNet(online) is learned
by gradient descent as in Fig. 7 and the SwitchNet(hard)
means all the α = values are chosen either 0 or 1 by
comparing the BER performance. Thus, if we train several
ComNets offline and choose the best online, then the Com-
Net has the same BER performance as the SwitchNet(hard).
α = [0.25 0.73 0.52 0.04 0.00] for SwicthNet(online) with 64
pilots, and α = [0.13 0.86 0.65 0.09 0] for SwitchNet(online)
with 8 pilots. The SwitchNet(hard) chooses the best combi-
nation in this scenario and when α = [0 1 1 1 0]. We find
that the SwitchNet(online) uses the CE RefineNets from 0 to 3
because the CE RefineNet 0 is robust and the CE RefineNets
from 1 to 3 are trained when nmax = 9. This online training
result is reasonable because the nmax of SUI-5(10) is 10.

Fig. 8(a) shows that the SwitchNet online is close to Online
LMMSE and the SwitchNet hard is close to Robust LMMSE

when SNR is high. The two online methods are better where
the robust methods offline have error floor. This performance
is due to the aid of online training. Online LMMSE is
better than the SwitchNet online when SNR ≤ 20 dB. The
performance loss is reasonable because Online LMMSE has
an exponential channel shape assumption, which only has a
slight model error. The SwitchNet(online) needs to combine
the CE RefineNets properly online while it has only learned the
Robust channel. When the pilot number reduced to 8 in Fig.
8(b), the superiority of the SwitchNet to the conventional ways
is obvious. Meanwhile, the SwitchNet(online) is still better
than the SwitchNet(hard). Therefore, the several trainable
parameters for online training enable the AI-aided method to
adapt to the unfamiliar scenarios. Robust LMMSE can still
work due to its robust design but Online LMMSE fails.

We compare different online training methods with the
SwitchNet in Fig. 9. Robust ComNet is trained under all the
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Fig. 9. BER performance of SwitchNet and competing methods with 8 pilots. (a) Under the scenario of CE RefineNet 2. (b)
Under the SUI-5 (10).

possible scenarios offline, which is the common method to
cope with the changing scenarios. Transfer learning and meta-
learning [41] use Robust ComNet as initiation. A total of
10 collected subframes are used to fine tune the CE subnet
given a fixed SD subset. The Robust ComNet can work under
all scenarios but cannot achieve the best performance, which
shows the similar trend to the Robust LMMSE in Fig. 8. The
transfer learning method only has a slight improvement over
the Robust ComNet because 10 subframes are not enough to
train an FC layer. Meta-learning is more suitable for such
a few training data and better than the transfer learning.
The SwitchNet shows the best performances and learns α =
[−0.01 0 0.98 0 0] in Fig. 9(a) and α = [0.13 0.86 0.65 0.09 0]
in Fig. 9(b), which demonstrates that 10 subframes are suffi-
cient for the SwicthNet to find a good combination of the CE
RefineNets.

In summary, the online training process in the SwitchNet
receiver can combat performance degradation under the mis-
matching channel. Compared with training offline, the Switch-
Net receiver needs much fewer training data and can work
under varying channels OTA. However, the CE RefineNets in
SwitchNet should be trained under several possible environ-
ments, which are potentially suitable for practical channels.
Otherwise, the performance will not be improved by online
training. The combination of the CE RefineNets can rely on
the expert knowledge in wireless communications to guarantee
the robustness. The SwitchNet not only has the superiority of
the AI-aided method under the non-ideal scenarios, such as no
sufficient pilots, but also shows its expandability and flexibility
for implementation.

D. Complexity analysis

Table III compares the complexity in terms of the number of
floating-point multiplication-adds (FLOPs), activation memory
consumption, parameters, and time consumption in one for-
ward propagation to recover the binary bitstream in a frame
among three AI-aided OFDM receivers. As shown in Table
III, SwitchNet consumes slightly more resource than ComNet

TABLE III. Forwarrd complexity analysis for SwitchNet and
competing methods.

FLOPs Activation memory Parameters Time

SwitchNet 0.34M 10.50kBytes 0.17M 1.2us
ComNet 0.31M 9.47kBytes 0.16M 1.2us
FC-DNN 4.33M 29.37kBytes 2.29M 1.2us
LMMSE 0.06M / / 0.8us

while remaining at a low complexity compared with FC-DNN.
Specifically, SwitchNet needs 0.03 million more FLOPs, 1.03
thousand more bytes activation memory, and 0.01 million more
parameters than ComNet while only costing approximately
1/10 of hardware resources compared with FC-DNN. The
additional hardware consumption of SwitchNet relative to that
of ComNet is reasonable. SwitchNet, which is an enhanced
architecture of ComNet, has an extra CE subnet to adapt to
added channel models; thus, it has a slightly larger hardware
consumption than ComNet. Meanwhile, the running time of
the three AI-aided OFDM receivers is comparative due to
paralleled calculation of graphic processing unit (GPU) and
the same depth of network. The traditional OFDM receiver in
our system has an LMMSE estimator and an MMSE detector,
and its complexity is always the lowest. The FLOPs of a
CE subnet is similar to that of the LMMSE estimator, but
that of the SD subnet is much larger because of the fully
connected architecture and only one-eighth of the transmitted
bits demodulated once. Thus, the FLOPs is 8 times that in
[30]. The high complexity of SD subnet can be reduced if
the experimental scenarios are simple. By clipping the size of
hidden layer and removing the nonlinear activation function,
the FLOPs of the SwitchNet is close to 0.1 M. The reasons
for simplifying the SD subnet are discussed in Section IV D.

Overall, complexity analysis suggests that SwitchNet has
the advantage of adaptability to more channel models with
acceptable sacrifice in hardware resource compared with
ComNet. Moreover, SwitchNet consumes considerably fewer
hardware resources than FC-DNN.
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IV. OTA TEST AND DISCUSSION

OTA test is important for AI-based receivers because con-
sidering all distortions in the systems is nearly impossible.
Several prototyping systems have been developed to verify
the feasibility and effectiveness of AI-based receivers in real
environments. In [37], a novel 5G RaPro system is proposed
to deploy FPGA-privileged modules on SDR platforms, im-
plement complex algorithms on multi-core GPPs, and con-
nect them through high-speed 10-gigabit Ethernet interfaces.
Such architecture deploys a multi-user full-dimension MIMO
prototyping system [37], [38] and is therefore flexible and
scalable. In this study, we set up the first real-time testbed
for AI-aided OFDM receivers, which has been never reported
before. The RaPro system is used as our testbed to test the
OTA performance of the FC-DNN, the ComNet, and the
SwitchNet receivers. Various tests are conducted in different
scenarios. After the system setup and software implementation
are introduced, we will present our experimental results and
analyze the flexibility of the AI-based receiver.

A. System setup

Fig. 10(a) illustrates the AI-aided OFDM receiver based
on the RaPro architecture. It comprises SDR nodes at the
transmitter and the receiver, respectively, and a multi-core
server. Each SDR has with one antenna and one RF chain
and is provided with a unified reference clock and trigger
signal by the timing/synchronization module. The AI-aided
OFDM receivers are implemented on a multi-core server in a
Linux environment. The proposed receivers (FC-DNN, Com-
Net, and SwitchNet) can be developed on multi-core GPPs
by programming with high-level language, such as C/C++,
in conjunction with Intel Math Kernel Library (MKL), which
is a highly optimized and commonly used math library for
processors.

SDR

OFDM  Modulator

SDR

OFDM  Demodulator AI Receiver

Channel

(a)

(b)

Fig. 10. AI-aided OFDM receiver system based on the RaPro
architecture. OFDM-related algorithms are deployed on SDRs
while AI receivers are deployed on the multi-core server.

Fig. 10(b) shows the hardware of the assembled AI-aided
OFDM receiver system, which is implemented by two SDR
nodes of USRP-2943R and a multi-core server that contains
32 Intel Xeon E5-2680 v2 @ 2.8 GHz processors. Each SDR
node consists of two RF transceivers of 120 MHz bandwidth,
one of which is used to transmit modulated radio signals. The

multi-core server provide sufficient GPPs to meet the require-
ments of TensorFlow and MKL, which are necessary for the
implementation of the AI-aided receivers. An RF antenna of
USRP-RIO, which has center frequency is adjustable from 1.2
GHz to 6 GHz, receives the wireless signals. After CP removal
and FFT-based OFDM demodulation operated by USRP-RIO,
the data are sent to the multi-core server via a cable. The video
stream is recovered by the AI receiver running on the server.

The SwitchNet receiver can be easily extended to a MIMO
system because the SwitchNet receiver is inherited from the
ComNet, in which the traditional methods, including LS CE
and ZF SD, can be used.

B. Software implementation

On the transmitter side, the video stream is transmitted
through the RF module after QPSK modulation and IFFT.
On the receiver side, FFT transformation is performed to the
signal received by the antenna. Then, the data are sent to
the multi-core server through user datagram protocol (UDP)
module. The AI-aided OFDM receivers (FC-DNN, ComNet,
and SwitchNet), which run on the multi-core server, will
recover and display the original video stream.

The proposed AI-aided OFDM receiver contain two phases:
training and working. The training phase is realized in Python
based on TensorFlow and powerful GPU. The back propaga-
tion algorithm is used to train the weights and biases of the
DNN via OTA data captured by USRP-RIO. These parameters
are saved as comma-separated value (csv) files after training
and used for the working phase. In the working phase, the
values of the weight matrices and bias vectors are initiated by
the parameters in the csv files. Then, the forward propagation
is performed in C/C++ with the help of Intel MKL library on
the multi-core server. Fig. 11(a) shows the architecture of the
training phase. After the zero padding removal module, 128
effective subcarriers of pilot and data are saved. A total of 256
real inputs are prepared for FC-DNN through the separation
of their real and imaginary parts. For ComNet, the received
pilot divides the local pilot to obtain LS CE. Similarly, the
input of ComNet is real form of LS CE and data. Fig.
11(b) presents the overall data processing program diagram
of the forward propagation on the multi-core server. Multi-
threading technology is applied in the multi-core GPP-based
AI-aided OFDM receiver design to process each module. Each
processing thread is bounded to a unique central processing
unit core with semaphore and spinlock as the synchronization
mechanism to avoid the cost of context switching. A total of
11 threads are in the implemented system. The main thread is
in charge of scheduling the other threads. A UDP receiving
thread is used to collect the demodulated data from USRP-
RIO. Eight AI detection (FC-DNN and ComNet) threads run
in parallel, where the matrix manipulation in the forward
propagation is realized based on the Intel MKL Library. After
detection, one UDP transmitting thread is used to pack the
video stream and send to display.

Considering that the data transmission and preprocessing
capabilities of the receiver (e.g., receiving data, unpacking
data, and repacking data to transmit to server) are limited by
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Fig. 11. Overall data processing program of training and
working phases. The weights and biases of the AI receiver
trained based on TensorFlow and will be used to initialize the
parameters of the matrices in the working phase.

the host of the USRP, the testbed adopts 15 ms frame duration
and 731 kHz sample rate. According to the frame structure in
Fig. 5, each frame contains 36×64×2 = 4, 608 bits, where 36
represent the number of subframes to transmit valid data and
pilots, 64 are for 64 subcarriers to transmit valid modulated
symbols, and 2 are for 2 bits in a QPSK symbol. Therefore,
the data transmission rate is 4608 bits/15 ms= 307 kbps. This
data transmission rate can be increased if the data transmission
and preprocessing strategy of the receiver can be accelerated
by FPGA implementation.

C. Implementation details

AI receiver

Transmitter

5m
4m

3.2m3m

(a)

Obstacle

(b)

(c)

Fig. 12. Three scenarios of the OTA test for real-time AI
testbed: (a) indoor scenario with an obstacle and windows,
doors, and walls around; (b) outdoor scenario where the trans-
mitter and receiver are placed on a straight road surrounded
by trees and grass; and (c) indoor to outdoor scenario in which
the transmitter is deployed on the second floor of the building
and the receiver is outside the building surrounded by several
trees and cars.

1) OTA scenarios for offline-trained AI receivers: As shown
in Fig. 12, three different scenarios are chosen to test our real-
time AI testbed.
• Scenario 1 is the indoor scenario in Fig. 12(a), where

the transmitter and the receiver are in the same room
with obstacles, windows, and walls around; the distance
between the transmitter and the receiver is 4 m.

• Scenario 2 is the outdoor scenario in Fig. 12(b), where
the transmitter is at a distance of 5 m on a straight road
surrounded by several trees.

• In Scenario 3, as shown in Fig. 12(c), the transmitter
is deployed indoors while the AI receiver is deployed
outside the building.

The practical channels can be regarded as the EXP channel
model because of the limited transmission distance, reflectors,
and scatters of the three scenarios. Therefore, the EXP channel
model is applied to train the FC-DNN, ComNet, and Switch-
Net receivers offline and conduct the OTA test under high and
low SNR by changing the antenna gain of the testbed.

2) Training strategy for online-trained AI receivers: In
the real-time system, the AI receivers obtain online training
dataset by the received training sequence that is sent by
the transmitter and known to the receiver. We use pseudo
random testing dataset and calculate BER to measure the
online training performance of the AI receivers. In [30], the
CE subnet is trained independently, which is very difficult in
online training because the accurate information of the real
channel remains unknown. Thus, the parameters of ComNet
are refined by the online training dataset in an end-to-end
manner, which is the same as the FC-DNN receiver. The
online training method of FC-DNN and ComNet corresponds
to the idea of transfer learning. We use the frame structure
depicted in Fig. 5, that is, one pilot symbol followed by one
data symbol, for real-time transmission. The training process
is similar to that in Fig. 7(b).

D. OTA performance of offline-trained AI receivers

In this subsection, we compare the experimental results of
the offline-trained FC-DNN and ComNet receivers in the OTA
tests. The SwitchNet cannot obtain the specific α without
online training and therefore α is set according to the assump-
tion offline; in this condition, its performance is same as the
ComNet.

TABLE IV. BER performance of AI receivers and the LMMSE
receiver in OTA test (mismatch)

SNR LMMSE FC-DNN ComNet

Scenario 1 High SNR 1.74 × 10−6 5.21 × 10−6 5.21 × 10−6

Low SNR 1.88 × 10−4 3.68 × 10−4 3.94 × 10−4

Scenario 2 High SNR 5.99 × 10−5 1.10 × 10−4 1.11 × 10−4

Low SNR 4.71 × 10−4 7.36 × 10−4 7.73 × 10−4

Scenario 3 High SNR 2.78 × 10−5 5.82 × 10−5 7.52 × 10−5

Low SNR 1.30 × 10−5 2.86 × 10−5 5.29 × 10−5

The two receivers are trained offline under the EXP(5)
channel model. The Online LMMSE is used as the baseline.
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As shown in Table IV, the LMMSE method achieves better
BER performance than the two AI-aided OFDM receivers in
all scenarios and the FC-DNN receiver slightly outperforms
the ComNet receiver. The mismatch phenomenon is observed.

TABLE V. BER performance of AI receivers and the LMMSE
receiver in OTA test (153.6MHz sampling rate)

SNR LMMSE FC-DNN ComNet

Scenario 1 High SNR 6.27 × 10−5 8.89 × 10−5 3.21 × 10−5

Low SNR 3.91 × 10−4 5.33 × 10−4 1.72 × 10−4

Scenario 2 High SNR 9.98 × 10−4 7.84 × 10−4 5.58 × 10−4

Low SNR 5.31 × 10−3 4.44 × 10−3 3.18 × 10−3

Scenario 3 High SNR 6.60 × 10−4 6.52 × 10−4 5.37 × 10−4

Low SNR 5.74 × 10−3 4.29 × 10−3 3.01 × 10−3

The offline OTA data from the SISO system with 153.6
MHz sampling rate are used for test to investigate the afore-
mentioned issue, and Table V shows the result. The Online
LMMSE is better than FC-DNN in Scenario 1 but worse
in others. The ComNet shows the best performance in all
scenarios, and this performance verifies that the channel real-
ization in our online video transmission system is simple due
to low sampling rate. We also find that the nonlinear activation
should be removed because the LS or LMMSE CE and ZF
SD can perform well in the real-time video transmission.
The nonlinear activation is unnecessary in simple channel
condition and may worsen the BER performance because of
its redundant complexity.

In summary, the expert knowledge in wireless communica-
tions is helpful when analyzing the effectiveness of the AI-
aided methods. The simple channel realizations of our online
video transmission system in the OTA test still lead to the
performance gap between simulation and practice.

E. Online training for the AI receiver

In this subsection, we discuss online training for the AI-
aided OFDM receiver. Only the EXP(5) and SUI-5(10) are
chosen to combat the channel environment with different
lengths of channel spread for simplicity. We perform transfer
learning for ComNet and FC-DNN as in Fig. 9 to demonstrate
the superiority of the SwitchNet. In this case, the network is
retrained using online data in the transmission stage based on
the offline-trained network.

TABLE VI. The training process of α when initialized as one
under the real channel.

epoch 0 10 20 50 100

α1 1.0 0.107 -0.168 -0.065 -0.059

Table VI shows the change in α1 in the online training
process, where the learning rate is optimized. The initial value
of α1 is set to 1 as the network is initialized under the SUI-5
channel model and decreases to close to 0 within 20 epochs.
This result indicates that SwitchNet can adapt to the simple
real channel by online training data. α1 is also convergent to

-0.059, which implies that the real channel is not exactly EXP
or SUI-5.

TABLE VII. BER performances of SwitchNet, ComNet and
FC-DNN with different numbers of epochs and optimized
learning rates.

SwitchNet ComNet FC-DNN LMMSE

epoch
0 2.2 × 10−2 2.2 × 10−2 1.2 × 10−3 4.7 × 10−4

10 4.7 × 10−4 1.4 × 10−3 7.7 × 10−4 4.7 × 10−4

100 4.5 × 10−4 6.7 × 10−4 6.8 × 10−4 4.7 × 10−4

Table VII compares the BERs of SwitchNet, ComNet, and
FC-DNN by using online training with different numbers of
epochs. The learning rate for each network is optimized.
ComNet and FC-DNN are trained by transfer learning. The
table shows that the SwitchNet can perform online training
rapidly with a few epochs. Meanwhile, ComNet and FC-DNN
need a relatively large number of epochs to yield a similar
performance.

TABLE VIII. BER performances of SwitchNet, ComNet,
and FC-DNN with different numbers of epochs and decayed
learning rates.

SwitchNet ComNet FC-DNN LMMSE

epoch
0 2.2 × 10−2 2.2 × 10−2 1.2 × 10−3 4.7 × 10−4

10 7.4 × 10−4 1.1 × 10−2 1.4 × 10−3 4.7 × 10−4

100 4.5 × 10−4 9.8 × 10−3 1.4 × 10−3 4.7 × 10−4

We also investigate the effect of the learning rate for three
networks. Table VIII shows that the initial learning rates
for SwitchNet, ComNet, and FC-DNN are 0.6, 0.01, and
0.01, respectively. The learning rate is decreased to 1/5 when
each 1/5 of the total epochs has been trained. Table VIII
illustrates that SwitchNet is relatively robust to the learning
rate. Conversely, ComNet and FC-DNN heavily depend on the
learning rate. An improper learning rate will result in severe
deterioration, failure to restore performance through online
training, and additional training data and time consumed.

The advantage of training with practical data has been
verified by carefully tuning the parameters in the NNs. The
bottleneck of training with practical data is the convergence
speed because the practical channel is varying with time.

Real-time transmission means the bitstreams are demodu-
lated by the AI-aided receivers online in addition to capturing
online data and testing offline. The real-time transmission is
achieved only if the time consumption to process a frame on
the receiver is less than the duration of a frame. After OTA test,
the average duration of data processing on the receiver is 14
ms, which allows the realization of the real-time transmission.
Among the processing modules, the average durations of the
AI-aided OFDM receivers to conduct a forward-propagation
inference are 2.4, 0.6, and 0.6 ms for FC-DNN, ComNet,
and SwitchNet, respectively; they account for 16%, 4%, and
4% duty cycle of a frame duration. The quick convergence
of SwitchNet and ComNet compared with that of FC-DNN
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is due to the introduction of expert knowledge in wireless
communications to form the model-driven DL networks.

From the abovementioned discussion, we can conclude that
SwitchNet is more promising than ComNet and FC-DNN in
terms of online training. The SwitchNet can avoid overfitting
and reduce training time because it needs only one parameter
to be optimized in the online training process. More trainable
parameters can be introduced into the network to further
improve the flexibility and adaptability given that the real-time
system has adequate hardware resource and time for training
model-driven AI networks.

V. CONCLUSIONS AND FUTURE CHALLENGES

We have proposed an online trainable AI-aided OFDM
receiver, named SwitchNet, to adapt to the channel variation
and diversity in the OTA scenarios. The proposed SwitchNet
receiver pretrains multiple channels offline and reserves an
online trainable parameter to act as a switch that chooses the
network for the real transmission. Simulation results indicate
that the proposed SwitchNet receiver has feasibility in online
training and outperforms the ComNet and FC-DNN receivers
and the traditional LMMSE baseline in terms of BER perfor-
mance. OTA tests demonstrate BER gains under real scenarios
and efficient online training characteristics of the proposed
SwitchNet receiver.

Although the AI-aided OFDM receivers relieve the difficulty
of mathematical modeling and may outperform conventional
communication systems, a performance gap may occur be-
tween offline and the OTA test due to the mismatch between
simulation and real environments. Considering all possible
system imperfections is challenging. Online training is a
promising method to solve this dilemma. SwitchNet offers
a realizable online training scheme by sharply reducing the
number of parameters to be trained. The adaptive ability of
SwitchNet is guaranteed by the addition of subnets that are
trained offline under different channel models.
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