
Research Paper

A study of vectorization for matrix-free
finite element methods

Tianjiao Sun1 , Lawrence Mitchell2, Kaushik Kulkarni3,
Andreas Klöckner3, David A Ham4 and Paul HJ Kelly1

Abstract
Vectorization is increasingly important to achieve high performance on modern hardware with SIMD instructions.
Assembly of matrices and vectors in the finite element method, which is characterized by iterating a local assembly kernel
over unstructured meshes, poses difficulties to effective vectorization. Maintaining a user-friendly high-level interface with
a suitable degree of abstraction while generating efficient, vectorized code for the finite element method is a challenge for
numerical software systems and libraries. In this work, we study cross-element vectorization in the finite element
framework Firedrake via code transformation and demonstrate the efficacy of such an approach by evaluating a wide range
of matrix-free operators spanning different polynomial degrees and discretizations on two recent CPUs using three
mainstream compilers. Our experiments show that our approaches for cross-element vectorization achieve 30% of
theoretical peak performance for many examples of practical significance, and exceed 50% for cases with high arithmetic
intensities, with consistent speed-up over (intra-element) vectorization restricted to the local assembly kernels.

Keywords
Finite element method, vectorization, global assembly, code generation

1 Introduction

The realization of efficient solution procedures for partial

differential equations (PDEs) using finite element methods

on modern computer systems requires the combination of

diverse skills across mathematics, programming languages

and high-performance computing. Automated code gener-

ation is one of the promising approaches to manage this

complexity. It has been increasingly adopted in software

systems and libraries. Recent successful examples include

FEniCS (Logg et al., 2012), Firedrake (Rathgeber et al.,

2016) and FreeFemþþ (Hecht, 2012). These software

packages provide users with high-level interfaces for high

productivity while relying on optimizations and transfor-

mations in the code generation pipeline to generate effi-

cient low-level code. The challenge, as in all compilers, is

to use appropriate abstraction layers that enable optimiza-

tions to be applied that achieve high performance on a

broad set of programs and machines.

One particular challenge for generating high-

performance code on modern hardware is vectorization.

Modern CPUs increasingly rely on SIMD instructions to

achieve higher throughput and better energy efficiency.

Finite element computation requires the assembly of vec-

tors and matrices which represent differential forms on

discretized function spaces. This process consists of

applying a local function, often called an element kernel,

to each mesh entity, and incrementing the global data struc-

ture with the local contribution. Typical local assembly

kernels suffer from issues that can preclude effective vec-

torization. These issues include complicated loop struc-

tures, poor data access patterns, and short loop trip counts

that are not multiples of the vector width. As we show in

this paper, general purpose compilers perform poorly in

generating efficient, vectorized code for such kernels. Pad-

ding and data layout transformations are required to enable

the vectorization of the element kernels (Luporini et al.,

2015), but the effectiveness of such approaches is not con-

sistent across different examples. Since padding may also

result in larger overheads for wider vector architectures,

1 Department of Computer Science, Imperial College, London, UK
2 Department of Computer Science, Durham University, Durham, UK
3 Department of Computer Science, University of Illinois at Urbana-

Champaign, IL, USA
4 Department of Mathematics, Imperial College, London, UK

Corresponding author:

Tianjiao Sun, Department of Computing, Imperial College London,

London SW7 2AZ, UK.

Email: tianjiao.sun14@imperial.ac.uk

The International Journal of High
Performance Computing Applications
2020, Vol. 34(6) 629–644
ª The Author(s) 2020

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/1094342020945005
journals.sagepub.com/home/hpc

https://orcid.org/0000-0003-4223-6700
https://orcid.org/0000-0003-4223-6700
https://orcid.org/0000-0001-5905-1804
https://orcid.org/0000-0001-5905-1804
mailto:tianjiao.sun14@imperial.ac.uk
https://sagepub.com/journals-permissions
https://doi.org/10.1177/1094342020945005
http://journals.sagepub.com/home/hpc
http://crossmark.crossref.org/dialog/?doi=10.1177%2F1094342020945005&domain=pdf&date_stamp=2020-07-31


new strategies are needed as vector width increases for the

new generation of hardware.

Matrix-free methods avoid building large sparse

matrices in applications of the finite element method and

thus trade computation for storage. They have become pop-

ular for use on modern hardware due to their higher arith-

metic intensity (defined as the number of floating-point

operations per byte of data transfer). Vectorization is par-

ticularly important for computationally intensive high

order methods, for which matrix-free methods are often

applied. Previous work on improving vectorization of

matrix-free operator application, or equivalently, residual

evaluation, mostly focuses on exposing library interfaces to

the users. Kronbichler and Kormann (2017) first perform a

change of basis from nodal points to quadrature points, and

provide overloaded SIMD types for users to write a

quadrature-point-wise expression for residual evaluation.

However, since the transformation is done manually, new

operators require manual reimplementation. Knepley and

Terrel (2013) also transpose to quadrature-point basis but

target GPUs instead. Both works vectorize by grouping

elements into batches, either to match the SIMD vector

length in CPUs or the shared memory capacity on GPUs.

In contrast, Müthing et al. (2017) apply an intra-kernel

vectorization strategy and exploit the fact that, in 3D, eval-

uating both a scalar field and its three derivatives fills the

four lanes of an AVX2 vector register (assuming the com-

putation is in double precision). More recently, Kempf

et al. (2018) target high order Discontinuous Galerkin

(DG) methods on hexahedral meshes using automated code

generation to search for vectorization strategies, while tak-

ing advantage of the specific memory layout of the data.

In this work, we present a generic and portable solution

based on cross-element vectorization. Our vectorization

strategy, implemented in Firedrake, is similar to that of

Kronbichler and Kormann (2017) but is fully automated

through code generation like that of Kempf et al. (2018).

We extend the scope of code generation in Firedrake to

incorporate the outer iteration over mesh entities and lever-

age Loopy (Klöckner, 2014), a loop code generator based

loosely on the polyhedral model, to systematically apply a

sequence of transformations which promote vectorization

by grouping mesh entities into batches so that each SIMD

lane operates on one entity independently. This automated

code generation mechanism enables us to explore the effec-

tiveness of our techniques on operators spanning a wide

range of complexity and systematically evaluate our meth-

odology. Compared with an intra-kernel vectorization strat-

egy, this approach is conceptually well-defined, more

portable, and produces more predictable performance. Our

experimental evaluation demonstrates that the approach

consistently achieves a high fraction of hardware peak per-

formance while being fully transparent to end users.

The contributions of this work are as follows:

� We present the design of a code transformation pipe-

line that permits the generation of high-

performance, vectorized code on a broad class of

finite element models.

� We demonstrate the implementability of the pro-

posed pipeline by realizing it in the Firedrake finite

element framework.

� We provide a thorough evaluation of our code gen-

eration strategy and demonstrate that it achieves a

substantial fraction of theoretical peak performance

across a broad range of test cases and popular C

compilers.

The rest of this paper is arranged as follows. After

reviewing the preliminaries of code generation for the finite

element method in Section 2, we describe our implemen-

tation of cross-element vectorization in Firedrake in Sec-

tion 3. In Section 4, we demonstrate the effectiveness of our

approach with experimental results. Finally, we review our

contributions and identify future research priorities in Sec-

tion 5.

2 Preliminaries

The computation of multilinear forms using the basis func-

tions spanning the discretized function spaces is called

finite element assembly. When applying the matrix-free

methods, one only needs to assemble linear forms, or resi-

dual forms, because matrix-vector products are essentially

the assembly of linear forms which represent the actions of

bilinear forms. Optimizing linear form assembly is there-

fore crucial for improving the performance of matrix-free

methods. In Firedrake, one can invoke the matrix-free

approach without changing the high-level problem formu-

lation by setting solver options as detailed by Kirby and

Mitchell (2018).

The general structure of a linear form L is

Lðc1; c2; . . . ; ck ; vÞ : V̂ 1 � V̂ 2 � . . . V̂ k � V ! R; ð1Þ

where ci 2 V̂ i; i ¼ 1 . . . k, are arbitrary coefficient func-

tions, and v 2 V is the test function. L is linear with respect

to v, but possibly nonlinear with respect to the coefficient

functions.

Let f�igN
i¼1 be the set of basis functions spanning V.

Define vi ¼ Lðc1; . . . ; ck ;�iÞ 2 R, then the assembly of L

constitutes the computation of the vector v ¼ ðvi; . . . ; vnÞ.
In Firedrake, this is treated as a two-step process: local

assembly and global assembly. The rest of this section

highlights the computational properties of these two steps

with an example, and in doing so, introduces the compo-

nents and concepts in Firedrake that are relevant to the

implementation of cross-element vectorization.

2.1 Local assembly

Local assembly of linear forms is the evaluation of the

integrals as defined by the weak form of the differential

equation on each entity (cell or facet) of the mesh. In Fire-

drake, the users define the problem in Unified Form Lan-

guage (UFL) (Alnæs et al., 2014) which captures the weak

630 The International Journal of High Performance Computing Applications 34(6)



form and the function space discretization. Then the Two-

Stage Form Compiler (TSFC) (Homolya et al., 2018) takes

this high-level, mathematical description and generates

efficient C code. The intermediate representation of TSFC

is a tensor algebra language called GEM, which supports

various optimizations on the tensor operations. As an

example, consider the linear form of the weak form of the

positive-definite Helmholtz operator:

Lðu; vÞ ¼
Z
O
ru � rvþ uv dx; ð2Þ

Listing 1 shows the UFL syntax to assemble the linear

form L as the vector result, on a 10� 10 triangulation of

a unit square. We choose to use the second-order Lagrange

element, commonly known as the P2 element, as our

approximation space. Listing 2 shows a C representation

of this kernel generated by TSFC.1 We note the following

key features of this element kernel:

� The kernel takes three array arguments in this case:

coords holds the coordinates of the current trian-

gle, w_0 holds ui, the coefficients of u, and A stores

the result.

� The first part of the kernel (lines 8–20) computes the

inverse and the determinant of the Jacobian for the

coordinate transformation from the reference ele-

ment to the current element. This is required for

pulling back the differential forms to the reference

element. The Jacobian is constant for each triangle

because the coordinate transformation is affine in

this case. In the general case, the Jacobian is com-

puted at every quadrature point.

� The constant arrays t13, t14, t15, t16 are the

same for all elements. t14 represents the tabulation

of basis functions at quadrature points, t15 and t16

represent derivatives of basis functions at quadrature

points across each spatial dimension, t13 represents

the quadrature weights.

� The ip loop iterates over the quadrature points,

evaluating the integrand in (2) and summing to

approximate the integral. The i and j loops iterate

Listing 1. Assembling the linear form of the Helmholtz operator
in UFL.

Listing 2. Local assembly kernel for the Helmholtz operator of Listing 1 in C generated by TSFC.

Sun et al. 631



over the degrees of freedom performing a change of

basis to values at quadrature points and then back to

degrees of freedom when accumulating into the out-

put array A. The extents of these loops depend on the

integrals performed and the choice of function

spaces respectively.

� TSFC performs a sequence of optimization passes

by rewriting the tensor operations following mathe-

matical rules before generating the loop nests (see

Homolya et al. (2017) for details). This is more

powerful than the C compiler’s loop-invariant code

motion optimization because, firstly, TSFC operates

on the symbolic tensor expressions to explore differ-

ent refactoring and reordering strategies that expose

invariant sub-expressions, and secondly, non-scalar

sub-expressions can also be extracted into temporary

arrays to eliminate redundant computation in the

loop nests. As a side effect of these transformations,

the loop nests in the kernels are no longer perfectly

nested, thus limiting the effectiveness of vectoriza-

tion if it is only applied to the innermost loops.

� After the optimization and scheduling stage, the

translation of tensor algebra to C in TSFC is a

straightforward rewrite of tensor operations to loop

nests. This process results in certain artifacts that are

shown in Listing 2. For example, since there is no

specific representation for subtractions in TSFC,

negations are emitted as multiplication by -1. This

can result in generated C code that is not as idiomatic

as if written by hand. We rely on the modern C com-

pilers to optimize such artifacts away, since readabil-

ity is a secondary concern for the generated code.

2.2 Global assembly. During global assembly, the local

contribution from each mesh entity, computed by the ele-

ment kernel, is accumulated into the global data structure.

In Firedrake, PyOP2 (Rathgeber et al., 2012) is responsible

for representing and realizing the iteration over mesh enti-

ties, marshalling data in and out of the element kernels. The

computation is organized as PyOP2 parallel loops, or par-

loops. A parloop specifies a computational kernel, a set of

mesh entities to which the kernel is applied, and all data

required for the kernel. The data objects can be directly

defined on the mesh entities, or indirectly accessed through

maps from the mesh entities. For instance, the signature for

the global assembly of the Helmholtz operator is:

parloop(helmholtz, cells, L(cell2dof, INC),

coords(cell2vert, R), u(cell2dof, R)).

Here helmholtz is the element kernel as shown in

Listing 2, generated by TSFC; cells is the set of all tri-

angles in the mesh; L, coords, and u are the global data

objects that are needed to create the arguments for the

element kernel, where L holds the result vector, coords

holds the coordinates of the vertices of the triangles which

are needed for computing the Jacobian, and u holds the

vector representation of function u (as weights of basis

functions). These global data objects correspond to the ker-

nel arguments A, coords and w_0 respectively. The maps

cell2dof and cell2vert provide indirection from

mesh entities to the global data objects, and each data argu-

ment is annotated with an access descriptor (R for read-

only, INC for increment access). In this example, the L and

u arguments share the same map (since they are both

defined on the same quadratic Lagrange space) while the

coords, being linear, use a different map.

Listing 3 shows the C code generated by PyOP2 for the

above example. The code is then JIT-compiled when the

result is needed in Firedrake. In the context of vectoriza-

tion, this approach, with the inlined element kernel, forms

the baseline in our experimental evaluation. We note the

following key features of the global assembly kernel:

� The outer loop is over mesh entities.

� For each entity, the computation can be divided into

three parts: gathering the input data from global into

local data (t3 and t4 in this case, which correspond

to kernel arguments coords and w_0), calling the

local assembly kernel, scattering the output data

(t2) to the global data structure.

� The gathering and scattering of data make use of

indirect addressing via base pointers (dats) and

indices (maps).

� Different mesh entities might share the same degrees

of freedom: parallelization of the scattering loop on

line 27 must be aware of the potential for data races.

� Global assembly interacts with local assembly via a

function call (line 25). While the C compiler can

inline this call, it creates an artificial boundary to

using loop optimization techniques that operate at the

source code level. Additionally, even after inlining,

outer loop vectorization over mesh entities requires

that the C compiler vectorize through data-dependent

array accesses. This is the software engineering chal-

lenge that has previously limited vectorization to a

single local assembly kernel in Firedrake.

3 Vectorization

As one would expect, the loop nests and loop trip counts

vary considerably for different integrals, meshes and func-

tion spaces that users might choose. This complexity is one

of the challenges that our system specifically, and Fire-

drake more generally, must face in order to deliver predict-

able performance on modern CPUs, which have

increasingly rich SIMD instruction sets.

In the prior approach to vectorization in our framework,

the local assembly kernels generated by TSFC were further

transformed to facilitate vectorization, as described in

Luporini et al. (2015). The arrays are padded so that the

trip counts of the innermost loops match multiples of the

length of SIMD units. However, padding becomes less

632 The International Journal of High Performance Computing Applications 34(6)



effective for low polynomial degrees on wide SIMD units.

For instance, AVX512 instructions act on 8 double-precision

floats, but the loops for degree 1 polynomials on triangles

only have trip counts of 3. Moreover, loop-invariant code

motion is very effective in reducing the number of floating-

point operations, but hoisted instructions are not easily vec-

torized as they are no longer in the innermost loops. This

effect is more pronounced on tensor-product elements where

TSFC is able to apply sum factorization (Homolya et al.,

2017) to achieve better algorithmic complexity.

3.1 Cross-element vectorization and Loopy

Another strategy is to vectorize across several elements in

the outer loop over the mesh entities, as proposed previ-

ously by Kronbichler and Kormann (2017). This approach

computes the contributions from several mesh entities

using SIMD instructions, where each SIMD lane handles

one entity. This is always possible regardless of the com-

plexity of the local element kernel because the computation

on each entity is independent and identical. One potential

downside is the increase in register and cache pressure as

the working set is larger.

For a compiler, the difficulty in performing cross-element

vectorization (or, more generally, outer-loop vectorization)

is to automate a sequence of loop transformations and nec-

essary data layout transformations robustly. This is further

complicated by the indirect memory access in data gathering

and scattering, and the need to unroll and interchange loops

across the indirections, which requires significantly more

semantic knowledge than that available to the C compiler.

Loopy (Klöckner, 2014) is a loop generator embedded in

Python which targets both CPUs and GPUs. Loopy pro-

vides abstractions based on integer sets for loop-based

computations and enables powerful transformations based

on the polyhedral model (Verdoolaege, 2010). Loop-based

computations in Loopy are represented as Loopy kernels.

A Loopy kernel is a subprogram consisting of a loop

domain and a partially-ordered list of scalar assignments

acting on multi-dimensional arrays. The loop domain is

specified as the set of integral points in the convex inter-

section of quasi-affine constraints, represented using the

Integer Set Library (Verdoolaege, 2010). Loopy supports

code generation for different environments from the same

kernel by choosing different targets.

To integrate with Loopy, the code generation mechan-

isms in Firedrake were modified as illustrated in Figure 1.

Instead of generating source code directly, TSFC and

PyOP2 are modified to generate Loopy kernels. We have

augmented the Loopy internal representation with the abil-

ity to support a generalized notion of kernel fusion through

the nested composition of kernels, specifically through sub-

programs and inlining. This allows PyOP2 to inline the

element kernel such that the global assembly Loopy kernel

encapsulates the complete computation of global assembly.

This holistic view of the overall computation enables

robust loop transformations for vectorization across the

boundary between global and local assembly. To facilitate

SIMD instruction generation, we also introduced a new

OpenMP target to Loopy which extends its existing

C-language target to support OpenMP SIMD directives

(OpenMP Architecture Review Board, 2018, §2.9.3).

Listing 3. Global assembly code for action of the Helmholtz operator in C generated by PyOP2.

Sun et al. 633



Listing 4 shows an abridged version of the global assem-

bly Loopy kernel for the Helmholtz operator, with the ele-

ment kernel fused. We highlight the following key features

of Loopy kernels:

� Loop indices, such as n and i1, are called inames in

Loopy, which define the iteration space. The bounds

of the loops are specified by the affine constraints in

domains.

� Loop transformations operate on kernels by rewrit-

ing the loop domain and the statements making up

the kernel. In addition, each iname carries a set of

tags governing its realization in generated code, per-

haps as a sequential loop, as a vector lane index, or

through unrolling.

� Multi-dimensional arrays occur as arguments and

temporaries. The memory layout of the data can

be specified by assigning tags to the array

dimensions.

� Dependencies between statements specify their par-

tial order. Statement scheduling can also be con-

trolled by assigning priorities to statements and

inames.

For example, to achieve cross-element vectorization (by

batching four elements into one SIMD vector in this exam-

ple) we invoke the following sequence of Loopy transfor-

mations on the global assembly Loopy kernel, exploiting

the domain knowledge of finite element assembly:

1. Split the outer loop n over mesh entities into

n_outer and n_simd, with n_simd having a trip

count of four. The objective is to generate SIMD

instructions for the n_simd loops, such that each

vector lane computes one iteration of the n_simd

loops.

2. Assign the tag SIMD to the new iname n_simd.

This tag informs Loopy to force the n_simd loop

to be innermost, privatizing data by vector-

expansion if necessary.

We show the change to the Loopy kernel after these

transformations in Listing 5. In particular, the vector-

expansion of the temporary t4, and the splitting (and sub-

sequent modification of the loop domain) of the n iname.

Listing 6 shows the generated C code for the Helmholtz

operator vectorized by grouping together four elements.

Figure 1. Integration of Loopy in Firedrake for global assembly code generation.

Listing 4. Global assembly Loopy kernel of the Helmholtz
operator.

634 The International Journal of High Performance Computing Applications 34(6)



Apart from the previously mentioned changes, we note the

following details:

� The n_simd loops are pushed to the innermost

level. Moreover, this transformation vector-

expands temporary arrays such as t2, t3, t4 by

four, with the expanded dimension labeled as vary-

ing the fastest when viewed from (linear) system

memory. This ensures their accesses in the n_simd

loops always have unit stride.

� Loopy provides a mechanism to declare arrays to be

aligned to specified memory boundaries (64 bytes in

this example).

� The n_simd loops are decorated with #pragma

omp simd to inform C compilers to generate SIMD

instructions. The exception is the writing back to the

global array (lines 43–45), which is sequentialized

due to potential race conditions, as different mesh

entities could share the same degrees of freedom.

� The remainder loop which handles the cases where

the number of elements is non-divisible by four is

omitted here for simplicity.

� After cross-element vectorization, all local assembly

instructions (lines 28–42) are inside n_simd loops,

which always have trip counts of four and are unit

stride. All loop-varying array accesses are unit stride

in the fastest moving dimension. There are no loop-

carried dependencies in n_simd loops. As a result,

the n_simd loops, and therefore all local assembly

instructions, are vectorizable without further consid-

eration of dependencies. This is verified by checking

the x86 assembly code and running the program with

the Intel Software Development Emulator.

3.2 Vector extensions

A more direct way to inform the compiler to emit SIMD

instructions without depending on OpenMP is to use vector

extensions,2 which support vector data types. These were

first introduced in the GNU compiler (GCC), but are also

supported in recent versions of the Intel C compiler (ICC)

and Clang. Analogous mechanisms exist in various vector-

type libraries, e.g. VCL (Fog 2017). To evaluate and com-

pare with the directive-based approach from Section 3.1,

we created a further code generation target in Loopy to

support vector data types. When inames and corresponding

array axes are jointly tagged as vector loops, Loopy gen-

erates code to compute on data in vector registers directly,

instead of scalar loops over the vector lanes. It is worth

noting that the initial intermediate representation of the

loop is identical in each case, and that the different specia-

lizations are achieved through code transformation. List-

ing 7 shows the C code generated for the Helmholtz

operator vectorized by batching four elements using the

vector extension target. Here almost all vectorized (inner-

most) loops for local assembly are replaced by operations

on vector variables. For instructions which do not fit the

vector computation model, most noticeably the indirect

data gathering (lines 18–19 24–25), or instructions contain-

ing built-in mathematics functions which are not supported

on vector data types (line 37), Loopy generates scalar loops

over vector lanes decorated with #pragma omp simd. In

addition, because vector extensions do not automatically

broadcast scalars, any vector instruction with a scalar rva-

lue is modified by adding the zero vector to the expression,

as shown in lines 29 and 31.

Compared to Listing 6, using vector extensions removes

most of the innermost loops, and the only remaining

OpenMP SIMD directives are due to the limitations of

vector extensions as explained previously.

4 Performance evaluation

We follow the performance evaluation methodology of

Luporini et al. (2017) by measuring the assembly time of

a range of operators of increasing complexity and polyno-

mial degrees. Due to the large number of combinations of

experimental parameters (operators, meshes, polynomial

degrees, vectorization strategies, compilers, hyperthread-

ing), we only report an illustrative portion of the results

here, with the entire suite of experiments made available

on the interactive online repository CodeOcean (Sun,

2019a).

4.1 Experimental setup

We performed experiments on a single node of two Intel

systems, based on the Haswell and Skylake microarchitec-

tures, as detailed in Table 1. Firedrake uses MPI for parallel

execution where each MPI process handles the assembly for

a subset of the domain. Hybrid MPI-OpenMP parallelization

Listing 5. Changes to global assembly Loopy kernel of the
Helmholtz operator after cross-element vectorization.

Sun et al. 635



is not supported, and we stress that OpenMP pragmas are

only used for SIMD vectorization within a single MPI pro-

cess. Because we observe that hyperthreading usually

improves the performance by 5% to 10% for our appli-

cations, we set the number of MPI processes to the

number of logical cores of the CPU to utilize all avail-

able computation resources. Experimental results with

hyperthreading turned off are available on CodeOcean.

Turbo Boost is switched off to mitigate reproducibility

problems that might be caused by dynamic thermal

throttling. The batch size, i.e. the number of elements

grouped together for vectorization, is chosen to be con-

sistent with the SIMD length. We use three C compilers:

GCC 7.3, ICC 18.0 and Clang 5.0. The two vectoriza-

tion strategies described in Section 3 are tested on all

platforms. We use the listed Base Frequency to calculate

the peak performance in Table 1. In reality, modern

Intel CPUs dynamically reduce frequencies on heavy

workloads with AVX2 and AVX512 instructions, which

results in lower achievable performance. Running the

optimized LINPACK benchmark binary provided by

Intel gives a reasonable indication of achievable peak

performance for compute-bound applications.

For the benefit of reproducibility, we have archived the

specific versions of Firedrake components used for the

experimental evaluation on Zenodo (Sun, 2019b; Zenodo/

Firedrake, 2019). An installation of Firedrake with compo-

nents matching the ones used for evaluation in this paper

can be obtained following the instruction at https://

www.firedrakeproject.org/download.html, with the follow-

ing command:

python3 firedrake-install --doi 10.5281/

zenodo.2595487

We measure the execution time of assembling the resi-

dual for five operators: the mass matrix (“mass”), the

Helmholtz equation (“helmholtz”), the vector Laplacian

(“laplacian”), an elastic model (“elasticity”), and a

hyperelastic model (“hyperelasticity”). The mathe-

matical description of the operators is detailed in the sup-

plemental material. These operators stem from real-world

Listing 6. Global assembly code for action of the Helmholtz operator in C vectorized by batching four elements.

636 The International Journal of High Performance Computing Applications 34(6)



Listing 7. Global assembly code for action of the Helmholtz operator in C vectorized by four elements (using vector extensions).

Table 1. Hardware specification for experiments.

Haswell Xeon E5-2640 v3 Skylake Xeon Gold 6130

Base frequency 2.6 GHz 2.1 GHz
Physical cores 8 16
SIMD instruction set AVX2 AVX512
doubles per SIMD vector 4 8
Cross-element vectorization batch size 4 8
FMA3 units per core 2 2
FMA instruction issue per cycle 2 2
Peak performance (double-precision)4 332.8 GFLOP/s 1075.2 GFLOP/s
System memory 4 � 8 GB DDR4-2133 2 � 32 GB DDR4-2666
LINPACK performance (double-precision)5 262.5 GFLOP/s 678.8 GFLOP/s
Memory bandwidth6 38.5 GB/s 36.6 GB/s
GCC/Clang arch flag -march¼native -march¼native
ICC SIMD flag -xcore-avx2 -xcore-avx512 -qopt-zmm-usage¼high
Other compiler flags -O3 -ffast-math -fopenmp -O3 -ffast-math -fopenmp
Intel Turbo Boost OFF OFF

Sun et al. 637



applications and cover a wide range of complexity: the

generated C code for the corresponding global assembly

kernels exceeds hundreds of KB for the hyperelasticity

operator at high polynomial degree.

We performed experiments on both 2D and 3D domains,

with two types of mesh used for each case: triangles

(“tri”) and quadrilaterals (“quad”) for 2D problems, tet-

rahedra (“tet”) and hexahedra (“hex”) for 3D problems.

This large variety underscores the broad applicability of

our approach. The arithmetic intensities and other pertinent

characteristics of the operators are listed in Table 2. The

memory footprint is calculated assuming perfect caching—

it is thus a lower bound which results in an upper bound

estimation for the arithmetic intensity. The triangular and

tetrahedral meshes use an affine coordinate transformation

(requiring only one Jacobian evaluation per element). The

quadrilateral and hexahedral meshes use a bilinear (tri-

linear) coordinate transformation (requiring Jacobian eva-

luation at every quadrature point), which usually results in

higher arithmetic intensities at low orders. In Firedrake,

tensor-product elements (McRae et al., 2016) benefit from

optimizations such as sum factorization to achieve lower

asymptotic algorithmic complexity. They are therefore

more competitive for higher order methods (Homolya

et al., 2017).

We record the maximum execution time of the gener-

ated global assembly kernels on all MPI processes. This

time does not includes the time in synchronization and MPI

data exchange for halo updates. Each experiment is run five

times, and the average execution time is reported. Exclu-

sive access to the compute nodes is ensured and threads are

pinned to individual logical cores. Startup costs such as

code generation time and compilation time are excluded.

We use automatic vectorization by GCC without batching,

compiled with the optimization flags of Table 1, as the

baseline for comparison. Comparing with our cross-

element strategy, the baseline represents the out-of-the-

box performance of compiler auto-vectorization for the

local element kernel. We note that cross-element vectori-

zation does not alter the algorithm of local assembly except

for the vector expansion, as illustrated by Listing 2 and

Listing 6. Consequently, the total number of floating-

point operations remains the same. The performance

benefit from cross-element vectorization is therefore com-

posable with the operation-reduction optimizations per-

formed by the form compiler to the local assembly kernels.

4.2 Experimental results and discussion

Figures 2 to 5 show the performance of the helmholtz

and elasticity operators on Haswell and Skylake, vec-

torized with OpenMP SIMD directives (Section 3.1), and

with vector extensions (Section 3.2). We indicate the frac-

tion of peak performance achieved on the left axis, and the

fraction of the LINPACK benchmark performance on the

right axis. Figures 6 and 7 compare roofline models (Wil-

liams et al., 2009) of the baseline and our approach using

vector extensions and the GCC compiler on Haswell and

Skylake. The speed-up achieved is also summarized in

Table 2.

4.2.1 Compiler comparison and vector extensions. When vec-

torizing with OpenMP SIMD directives, ICC gives the best

performance for almost all test cases, followed by Clang,

while GCC is significantly less competitive. The perfor-

mance disparity is more pronounced on Skylake than on

Haswell. However, when using vector extensions, Clang

and GCC improve significantly and are able to match the

performance of ICC on both Haswell and Skylake, whereas

ICC performs similarly with both OpenMP SIMD direc-

tives and vector extensions.

We use the Intel Software Development Emulator7 to

count the number of instructions executed at runtime for

code generated by different compilers. The data indicate

that although floating-point operations are fully vectorized

by all compilers, GCC and Clang generate more load and

store instructions between vector registers and memory

when using OpenMP SIMD directives for vectorization.

One possible reason is that GCC and Clang choose to allo-

cate short arrays to the stack rather than the vector registers

directly, causing more load on the memory subsystem.

In light of these results, we conclude that vectorization

with vector extensions allows greater performance port-

ability on different compilers and CPUs for our application.

It is, therefore, our preferred strategy for implementing

cross-element vectorization, and is the default option for

the rest of our analysis.

4.2.2 Vectorization speed-up. Almost across the board, sig-

nificant speed-up is achieved on the test cases under con-

sideration. Slowdown occurs in two situations. On low

polynomial degrees, the kernels tend to have low arithmetic

intensity so that the increase in available floating point

throughput through cross-element vectorization cannot

compensate for the increase in the size of the working set

of data. On simple operators such as mass on tri and

tetra, the kernels have simple loop structures and the

compilers can sometimes successfully apply other optimi-

zations such as unrolling and loop interchange to achieve

vectorization without batching elements in the outer loop.

The pattern of speed-up is consistent across Haswell and

Skylake. Higher speed-up is generally achieved on more

complicated operators (e.g. hyperelasticity), and on

tensor-product elements (quad and hex), which generally

correspond to more complicated loop structure and higher

arithmetic intensity due to the Jacobian recomputation at

each quadrature point.

4.2.3 Achieved fraction of peak performance. We observe that

the fraction of peak performance varies smoothly with

polynomial degrees for cross-element vectorization in all

test cases. This fulfils an important design requirement for

Firedrake: small changes in problem setup by the users

should not create unexpected performance degradation.

638 The International Journal of High Performance Computing Applications 34(6)



T
a
b

le
2
.
O

p
er

at
o
r

ch
ar

ac
te

ri
st

ic
s

an
d

sp
ee

d
-u

p
su

m
m

ar
y,

u
si

n
g

G
C

C
w

it
h

ve
ct

o
r

ex
te

n
si

o
n
s.

A
I:

ar
it
h
m

et
ic

in
te

n
si

ty
(F

LO
P
/b

yt
e)

.D
:t

ri
p

co
u
n
t

o
f
lo

o
p
s

o
ve

r
d
eg

re
es

o
f
fr

ee
d
o
m

.Q
:t

ri
p

co
u
n
t

o
f
lo

o
p
s

o
ve

r
q
u
ad

ra
tu

re
p
o
in

ts
.
H

:
sp

ee
d
-u

p
o
ve

r
b
as

el
in

e
o
n

H
as

w
el

l,
1
6

p
ro

ce
ss

es
,
w

it
h

ve
ct

o
r

ex
te

n
si

o
n
s.

S:
sp

ee
d
-u

p
o
ve

r
b
as

el
in

e
o
n

Sk
yl

ak
e,

3
2

p
ro

ce
ss

es
,
w

it
h

ve
ct

o
r

ex
te

n
si

o
n
s.

T
r
i

q
u
a
d

t
e
t

h
e
x

P
A

I
D

Q
H

S
A

I
D

Q
H

S
A

I
D

Q
H

S
A

I
D

Q
H

S

m
as

s
1

1
.2

3
3

1
.0

1
.0

4
.7

2
3

1
.1

1
.5

2
.7

4
4

1
.2

0
.7

1
6
.9

2
3

1
.8

2
.8

2
1
.7

6
6

1
.3

1
.0

3
.9

3
4

0
.8

1
.0

5
.9

1
0

1
4

1
.7

2
.4

1
0
.8

3
4

1
.1

1
.5

3
3
.0

1
0

1
2

2
.0

1
.3

3
.9

4
5

0
.8

1
.0

8
.7

2
0

2
4

0
.9

1
.8

8
.5

4
5

1
.8

2
.5

4
5
.6

1
5

2
5

2
.4

2
.6

3
.9

5
6

2
.2

1
.9

3
9
.2

3
5

1
2
5

1
.0

1
.6

7
.4

5
6

2
.1

2
.8

5
7
.5

2
1

3
6

1
.1

2
.0

3
.9

6
7

2
.3

1
.5

5
5
.9

5
6

2
1
6

0
.7

1
.0

7
.0

6
7

2
.0

2
.7

6
9
.7

2
8

4
9

0
.8

1
.6

4
.1

7
8

2
.5

1
.9

8
1
.2

8
4

3
4
3

1
.1

1
.9

6
.9

7
8

2
.2

2
.7

h
el

m
h
o
lt
z

1
1
.8

3
3

1
.2

1
.0

1
0
.7

2
3

2
.0

2
.9

3
.9

4
4

1
.6

1
.6

4
5
.5

2
3

2
.5

3
.5

2
5
.7

6
6

2
.2

1
.7

1
0
.6

3
4

1
.0

1
.3

2
7
.3

1
0

1
4

2
.3

5
.5

3
4
.9

3
4

1
.8

3
.3

3
9
.6

1
0

1
2

2
.3

5
.6

1
0
.5

4
5

1
.3

2
.1

3
7
.5

2
0

2
4

1
.5

3
.3

2
7
.9

4
5

1
.8

3
.2

4
1
7
.8

1
5

2
5

2
.3

5
.2

1
0
.5

5
6

3
.2

5
.7

1
6
4
.1

3
5

1
2
5

1
.9

2
.8

2
4
.5

5
6

2
.8

4
.7

5
2
3
.3

2
1

3
6

1
.7

3
.5

1
0
.4

6
7

2
.8

4
.8

2
3
0
.1

5
6

2
1
6

1
.4

1
.8

2
3
.1

6
7

2
.8

4
.5

6
2
9
.9

2
8

4
9

1
.3

2
.8

1
0
.9

7
8

3
.0

5
.0

3
3
1
.4

8
4

3
4
3

1
.5

4
.1

2
2
.7

7
8

2
.9

4
.4

la
p
la

ci
an

1
0
.5

3
1

1
.0

1
.1

7
.9

2
3

1
.7

2
.7

1
.9

4
1

1
.0

1
.0

3
7
.8

2
3

2
.3

3
.2

2
2
.7

6
3

1
.7

1
.4

8
.7

3
4

1
.0

1
.2

1
0
.4

1
0

4
2
.2

3
.6

2
7
.1

3
4

1
.9

2
.8

3
4
.0

1
0

6
2
.2

2
.1

8
.4

4
5

1
.5

2
.0

2
4
.0

2
0

1
4

2
.2

3
.5

2
1
.6

4
5

1
.5

2
.0

4
6
.9

1
5

1
2

2
.4

2
.8

8
.3

5
6

3
.1

2
.9

3
1
.5

3
5

2
4

2
.7

3
.2

1
9
.2

5
6

2
.6

3
.7

5
1
2
.6

2
1

2
5

2
.1

3
.1

8
.2

6
7

2
.9

3
.9

1
2
4
.3

5
6

1
2
5

2
.9

2
.6

1
8
.4

6
7

2
.5

3
.7

6
1
6
.8

2
8

3
6

1
.9

2
.7

8
.6

7
8

2
.8

4
.0

1
8
9
.3

8
4

2
1
6

2
.6

2
.3

1
8
.3

7
8

2
.5

4
.1

el
as

ti
ci

ty
1

0
.5

3
1

1
.0

1
.0

1
0
.2

2
3

1
.9

2
.8

1
.9

4
1

1
.1

1
.0

4
8
.0

2
3

2
.3

3
.3

2
3
.0

6
3

1
.8

1
.5

1
0
.2

3
4

0
.9

1
.3

1
1
.6

1
0

4
2
.0

6
.3

3
1
.8

3
4

1
.9

2
.9

3
4
.4

1
0

6
2
.1

2
.2

9
.5

4
5

1
.5

2
.0

2
5
.6

2
0

1
4

2
.2

3
.3

2
4
.4

4
5

1
.5

1
.9

4
7
.3

1
5

1
2

2
.5

3
.6

9
.2

5
6

3
.0

3
.9

3
2
.7

3
5

2
4

2
.8

3
.1

2
1
.3

5
6

2
.6

3
.7

5
1
3
.2

2
1

2
5

2
.1

3
.2

9
.0

6
7

2
.8

3
.9

1
2
7
.5

5
6

1
2
5

2
.8

2
.6

2
0
.1

6
7

2
.5

3
.8

6
1
7
.4

2
8

3
6

1
.9

2
.8

9
.3

7
8

2
.8

4
.3

1
9
2
.6

8
4

2
1
6

2
.6

2
.4

1
9
.8

7
8

2
.4

4
.2

h
yp

er
el

as
ti
ci

ty
1

0
.5

3
1

1
.5

1
.4

3
1
.9

2
4

1
.2

1
.9

1
.7

4
1

1
.6

1
.9

1
8
3
.0

2
4

1
.2

1
.9

2
9
.8

6
6

2
.6

4
.2

3
1
.3

3
6

1
.9

3
.0

6
3
.2

1
0

1
4

3
.1

5
.9

1
3
7
.8

3
6

2
.3

4
.3

3
2
6
.8

1
0

2
5

3
.1

6
.7

3
0
.6

4
8

1
.4

1
.6

3
1
3
.8

2
0

1
2
5

3
.0

6
.1

1
1
8
.6

4
8

1
.5

1
.7

4
4
0
.7

1
5

4
9

3
.3

7
.3

3
0
.6

5
1
0

3
.3

6
.3

6
0
0
.0

3
5

3
4
3

2
.9

4
.2

1
1
0
.3

5
1
0

3
.2

6
.0

5
5
6
.1

2
1

8
1

2
.6

6
.1

3
0
.5

6
1
2

3
.4

6
.6

9
1
5
.2

5
6

7
2
9

2
.6

2
.8

1
0
8
.1

6
1
2

3
.0

5
.5

6
7
4
.5

2
8

1
2
1

2
.3

4
.3

3
1
.8

7
1
4

3
.3

5
.9

1
4
2
8
.3

8
4

1
3
3
1

1
.7

4
.6

1
0
8
.8

7
1
4

3
.0

5
.7

639



This is also shown in Figures 6 and 7 where the results are

more clustered on the roofline plots after cross-element

vectorization. The baseline shows performance inconsis-

tency, especially for low polynomial degrees. For instance,

for the helmholtz operator with degree 3 on quad, the

quadrature loops and the basis function loops all have trip

counts of 4, which fits the vector length on Haswell and

results in better performance.

On simplicial meshes (tri and tetra), higher order

discretization leads to kernels with very high arithmetic

intensity because of the quadratic and cubic increases in

the number of basis functions, and thus the loop trip counts.

This is due to the current limitation that simplicial elements

in Firedrake are not sum factorized. In these test cases, we

observe that the baseline approaches cross-element vector-

ization for sufficiently high polynomial degrees. This is not

Figure 2. The fraction of peak FLOP/s (as listed in Table 1) achieved by different compilers for operators fhelmholtz,
elasticityg, on meshes ftri, quad, tet, hexg on Haswell using vector extensions with 16 MPI processes. The dotted
line indicates the fraction of peak performance achieved by LINPACK benchmark.

Figure 3. The fraction of peak FLOP/s (as listed in Table 1) achieved by different compilers for operators fhelmholtz,
elasticityg, on meshes ftri,quad,tet,hexg on Haswell using OpenMP SIMD directives with 16 MPI processes. The
dotted line indicates the fraction of peak performance achieved by LINPACK benchmark.

640 The International Journal of High Performance Computing Applications 34(6)



a serious concern for our optimization approach because

the break-even degrees are very high except for simple

operators such as mass, and ultimately tensor-product ele-

ments are more competitive for higher order methods in

terms of algorithmic complexity.

We also observe that there exist a small number of test

cases where the achieved peak performance is marginally

higher than the LINPACK benchmark on Skylake, as

shown in Figure 7. One possible reason for this observation

is thermal throttling since our test cases typically run for a

shorter period of time than LINPACK. We also note that

these test cases correspond to high order hyperelasti-

city operators on tet meshes, which, as noted previ-

ously, are not practically important use cases since using

tensor-product elements requires many fewer floating-

point operations at the same polynomial order.

Figure 4. The fraction of peak FLOP/s (as listed in Table 1) achieved by different compilers for operators fhelmholtz,
elasticityg, on meshes ftri, quad, tet, hexg on Skylake using vector extensions with 32 MPI processes. The dotted
line indicates the fraction of peak performance achieved by the LINPACK benchmark.

Figure 5. The fraction of peak FLOP/s (as listed in Table 1) achieved by different compilers for operators fhelmholtz,
elasticityg, on meshes ftri,quad,tet,hexg on Skylake using OpenMP SIMD directives with 32 MPI processes. The
dotted line indicates the fraction of peak performance achieved by the LINPACK benchmark.

Sun et al. 641



4.2.4 Tensor-product elements. We observe higher and

more consistent speed-up for tensor-product elements

(quad and hex) on both Haswell and Skylake. This is

because, on these meshes, more computation is moved

out of the innermost loop due to sum factorization,

resulting in more challenging loop nests for the baseline

strategy which attempts to vectorize within the element

kernel. The same applies to the evaluation of the Jaco-

bian of coordinate transformation, which is a nested

loop over quadrature points after sum factorization for

tensor-product elements.

The base elements of quad and hex are interval ele-

ments in 1D, thus the extents of loops over degrees of

freedom increase only linearly with respect to polynomial

degrees, as shown in Table 2. As a result, the baseline

performance does not improve as quickly for higher poly-

nomial degrees on quad and hex compared with tri and

tet, resulting in stable speed-up for cross-element vector-

ization observed on tensor-product elements.

5 Conclusion and future work

We have presented a portable, general-purpose solution for

delivering stable vectorization performance on modern

CPUs for matrix-free finite element assembly for a very

broad class of finite element operators on a large range of

elements and polynomial degrees. We described the imple-

mentation of cross-element vectorization in Firedrake

which is transparent to the end users. Although the tech-

nique of cross-element vectorization is conceptually simple

and has been applied in hand-written kernels before, our

implementation based on code generation is automatic,

robust and composable with other optimization passes.

We have presented extensive experimental results on

two recent Xeon processors that are commonly used in

HPC applications, and compared the vectorization perfor-

mance of three popular C compilers. We showed that by

generating appropriate vectorizable code, and using

compiler-based vector extensions, we can obtain portably

high performance across all three compilers.

Figure 7. Roofline model of operators for baseline and cross-element vectorization using GCC on Skylake. The dotted lines indicate
the performance of the LINPACK benchmark.

Figure 6. Roofline model of operators for baseline and cross-element vectorization using GCC on Haswell. The dotted lines indicate
the performance of the LINPACK benchmark.

642 The International Journal of High Performance Computing Applications 34(6)



The write-back to global data structure is not vectorized

in our approach due to possible race conditions. The newly

introduced Conflict Detection instructions in the Intel

AVX512 instruction set could potentially mitigate this lim-

itation (Zhang, 2016, section 2.3). This could be achieved

by informing Loopy to use the relevant intrinsics when

generating code for loops with specific tags.

We have focused on the matrix-free finite element method

because it is compute-intensive and more likely to benefit

from vectorization. However, our methods and implementa-

tion also support matrix assembly. Firedrake relies on PETSc

(Balay et al., 2017) to handle distributed sparse matrices, and

PETSc requires certain data layouts for the input array when

updating the global matrices. When several elements are

batched together for cross-element vectorization, we need

to generate code to explicitly unpack/transpose the local

assembly results into individual arrays before calling PETSc

functions to update the global sparse matrices for each ele-

ment. Future improvement could include eliminating this

overhead, possibly by extending the PETSc API.

The newly introduced abstraction layer, together with

Loopy integration in the code generation and optimization

pipeline, opens up multiple possibilities for future research

in Firedrake. These include code generation with intrinsics

instructions, loop tiling, and GPU acceleration, all of which

are already supported in Loopy.

Acknowledgments

The authors would like to thank Tobias Grosser, Richard

Veras, J. Ramanujam and P. Sadayappan for their valuable

insights during our discussions which started at Dagstuhl

Seminar 18111 on Loop Optimization. The authors are

grateful to James Cownie and Andrew Mollinson at Intel

Corp. as well as Koki Sagiyama at Imperial College Lon-

don for providing access to the Skylake platform.

Declaration of conflicting interests

The authors declared no potential conflicts of interest with

respect to the research, authorship, and/or publication of

this article.

Funding

The author(s) disclosed receipt of the following financial

support for the research, authorship, and/or publication of

this article: This work was supported by the Engineering

and Physical Sciences Research Council [grant numbers

EP/L016796/1, EP/R029423/1], and the Natural Environ-

ment Research Council [grant number NE/K008951/1]. It

was further funded by the US Navy Office of Naval

Research under grant number N00014-14-1-0117 and the

US National Science Foundation under grant number CCF-

1524433. AK gratefully acknowledges a hardware gift

from Nvidia Corporation.

ORCID iD

Tianjiao Sun https://orcid.org/0000-0003-4223-6700

Paul HJ Kelly https://orcid.org/0000-0001-5905-1804

Supplemental material

Supplemental material for this article is available online

Notes

1. This TSFC-generated kernel is reformatted slightly for

consistency with the PyOP2 generated kernels. The ker-

nel function names generated by TSFC and PyOP2 are

long and complicated due to name mangling in Fire-

drake. They are shortened to operator names such as

helmholtz in the listings for readability.

2. https://gcc.gnu.org/onlinedocs/gcc/Vector-Extensions.

html

3. Fused multiply-add operations.

4. Calculated as basef requency� #cores� SIMDwidth�
2 ðf orFMAÞ � #issuepercycle

5. Intel LINPACK Benchmark. https://software.intel.com/

en-us/articles/intel-mkl-benchmarks-suite

6. STREAM triad benchmark, 2 threads per core.

7. https://software.intel.com/en-us/articles/intel-software-

development-emulator

References

Alnæs MS, Logg A, Ølgaard KB, et al. (2014) Unified form

language: a domain-specific language for weak formulations

of partial differential equations. ACM Transactions on Math-

ematical Software 40(2): 9:1–9:37.

Balay S, Abhyankar S, Adams M, et al. (2017) Petsc users manual

revision 3.8. Technical report. Argonne, IL: National Lab.(ANL).

Fog A (2017) VCL—A Cþþ Vector Class Library. Available at:

https://www.agner.org/optimize/vectorclass.pdf (accessed 19

March 2019).

Hecht F (2012) New development in FreeFEMþþ. Journal of

Numerical Mathematics 20(3-4): 251–266.

Homolya M, Kirby RC and Ham DA (2017) Exposing and

exploiting structure: optimal code generation for high-order

finite element methods. ArXiv: 1711.02473 [cs.MS].

Homolya M, Mitchell L, Luporini F, et al. (2018) TSFC: a

structure-preserving form compiler. SIAM Journalon Scien-

tific Computing 40(3): C401–C428.

Kempf D, Heß R, Müthing S, et al. (2018) Automatic code gen-

eration for high-performance discontinuous Galerkin methods

on modern architectures. arXiv preprint arXiv:1812.08075.

Kirby RC and Mitchell L (2018) Solver composition across the

PDE/linear algebra barrier. SIAM Journal on Scientific Com-

puting 40(1): C76–C98.

Klöckner A (2014) Loo. py: transformation-based code genera-

tion for GPUs and CPUs. In: Proceedings of ACM SIGPLAN

International Workshop on Libraries, Languages, and Compi-

lers for Array Programming, Edinburgh, UK, 12–13 June

2014, p. 82. New York, NY: ACM.

Knepley MG and Terrel AR (2013) Finite element integration on

GPUs. ACM Transactions on Mathematical Software (TOMS

39(2): 10.

Kronbichler M and Kormann K (2017) Fast matrix-free evalua-

tion of discontinuous Galerkin finite element operators. arXiv

preprint arXiv:1711.03590 .

Sun et al. 643

https://orcid.org/0000-0003-4223-6700
https://orcid.org/0000-0003-4223-6700
https://orcid.org/0000-0003-4223-6700
https://orcid.org/0000-0001-5905-1804
https://orcid.org/0000-0001-5905-1804
https://orcid.org/0000-0001-5905-1804
https://www.agner.org/optimize/vectorclass.pdf


Logg A, Mardal KA and Wells GN (eds.) (2012) Automated Solu-

tion of Differential Equations by the Finite Element Method:

the FEniCS Book. Berlin: Springer. ISBN 978-3-642-23098 -

1. DOI:10.1007/978-3-642-23099-8.

Luporini F, Ham DA and Kelly PHJ (2017) An algorithm for the

optimization of finite element integration loops. ACM Trans-

actions on Mathematical Software (TOMS 44(1): 3.

Luporini F, Varbanescu AL, Rathgeber F, et al. (2015) Cross-loop

optimization of arithmetic intensity for finite element local

assembly. ACM Transactions on Architecture and Code Opti-

mization (TACO 11(4): 57.

McRae ATT, Bercea GT, Mitchell L, et al. (2016) Automated gen-

eration and symbolic manipulation of tensor product finite ele-

ments. SIAM Journal on Scientific Computing 38(5): S25–S47.

Müthing S, Piatkowski M and Bastian P (2017) High-performance

implementation of matrix-free high-order discontinuous

Galerkin methods. arXiv preprint arXiv:1711.10885.

OpenMP Architecture Review Board (2018) OpenMP Applica-

tion Programming Interface Version 5.0. Available: https://

www.openmp.org/wp-content/uploads/OpenMP-API-Specifi

cation-5.0.pdf (accessed 5 November 2020).

Rathgeber F, Ham DA, Mitchell L, et al. (2016) Firedrake: automat-

ing the finite element method by composing abstractions. ACM

Transactions on Mathematical Software 43(3): 24:1–24:27.

Rathgeber F, Markall GR, Mitchell L, et al. (2012) PyOP2: A

High-Level Framework for Performance-Portable Simulations

on Unstructured Meshes. In: 2012 SC Companion: High Per-

formance Computing, Networking Storage and Analysis, Salt

Lake City, UT, USA, 10–16 November 2012. Piscataway:

IEEE. ISBN 978-0-7695-4956-9, pp. 1116–1123. DOI:10.

1109/SC.Companion.2012. 134.

Sun T (2019a) Cross-element vectorization in Firedrake. Avail-

able at: https://www.codeocean.com/. DOI: https://doi.org/10.

24433/CO.8386435.v2 (accessed 5 November 2020).

Sun T (2019b) tj-sun/firedrake-vectorization: scripts for experimen-

tal evaluation for the manuscript on cross-element vectorization.

DOI: 10.5281/zenodo.3365432 (accessed 5 November 2020).

Verdoolaege S (2010) ISL: An integer set library for the polyhe-

dral model. In: International Congress on Mathematical Soft-

ware, Kobe, Japan, 13–17 September 2010, pp. 299–302.

Berlin: Springer.

Williams S, Waterman A and Patterson D (2009) Roofline: an

insightful visual performance model for multicore architectures.

Communications of the ACM 65–76. Available at: http://dl.acm.

org/citation.cfm?id¼1498785 (accessed 5 November 2020).

Zenodo/Firedrake (2019) Softwareusedin’Astudyofvectorization

for matrix-free finite element methods’. DOI:10.5281/

zenodo.3362177 (accessed 5 November 2020).

Zhang B (2016) Guide to automatic vectorization with Intel AVX-512

instructions in Knights Landing processors. Available at: https://

colfaxresearch.com/knl-avx512 (accessed 19 March 2019).

Author biographies

Tianjiao Sun is a PhD student in the Department of Com-

puting at Imperial College London, where he is a member

of the Software Performance Optimisation research group.

His main research interests include domain-specific com-

pilers and optimisations for numerical simulations.

Lawrence Mitchell is an Assistant Professor in the Depart-

ment of Computer Science at Durham University. His

research is in high performance computing and computa-

tional mathematics. Much of his recent focus has been in

the development of compilers and software abstractions

for the development of numerical models implemented

using the finite element method. This research is concre-

tely realised in the open source Firedrake project. He is

particularly interested in preconditioning techniques for

challenging problems in computational and atmospheric

fluid dynamics.

Kaushik Kulkarni is a third year PhD student at the Uni-

versity of Illinois at Urbana-Champaign, where he is a

member of the Scientific Computing group in the Com-

puter Science Department. His research focuses on the area

of transformation based code generation in applications

motivated by the finite element method.

Andreas Klöckner is an Associate Professor in the scientific

computing area within the Department of Computer Science

at the University of Illinois at Urbana-Champaign. His

research focuses on high-order accurate integral equation

methods and fast algorithms for elliptic boundary value

problems as well as code transformation for high-

performance scientific computing. He is the recipient of a

2017 National Science Foundation CAREER Award. In sup-

port of his research, Dr. Klöckner has released numerous

scientific software packages. Previously, he was a Courant

Instructor at the Courant Institute of Mathematical Sciences

at New York University with Leslie Greengard, after obtain-

ing his PhD degree from the Division of Applied Mathe-

matics at Brown University in 2010 with Jan Hesthaven.

David A Ham is a Senior Lecturer (Associate Professor) in

the Department of Mathematics at Imperial College London.

His research centres on code generation approaches to high

performance finite element simulation, chiefly through the

Firedrake project. He was awarded the 2015 Wilkinson Prize

for Numerical Software for his contribution to the Dolfin-

Adjoint automated adjoint simulation system, and is an exec-

utive editor of Geoscientific Model Development.

Paul HJ Kelly leads the Software Performance Optimisa-

tion research group in the Department of Computing at

Imperial College London. His main research focus is com-

piler technology, specifically automated delivery of

domain-specific performance optimisations.

644 The International Journal of High Performance Computing Applications 34(6)

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5.0.pdf
https://www.codeocean.com/
http://dl.acm.org/citation.cfm?id=1498785
http://dl.acm.org/citation.cfm?id=1498785
http://dl.acm.org/citation.cfm?id=1498785
https://colfaxresearch.com/knl-avx512
https://colfaxresearch.com/knl-avx512

