
1.  Introduction
In the Earth’s magnetosphere, in situ spacecraft observations have directly confirmed many important 
signatures of magnetic reconnection with different spatiotemporal scales. Recently, high-time-resolution 
measurements by the Magnetospheric Multiscale (MMS) mission (Burch et  al.,  2016) successfully ob-
served the electron diffusion region (EDR), resolving its electron-scale structures in the magnetotail for the 
first time on July 11, 2017 (Torbert et al., 2018). In this observation event, the EDR structures were nearly 
steady for a few seconds (∼an ion gyro-period) during which the spacecraft crossed the EDR. Employing 
the high-performance fully kinetic simulation code VPIC (Bowers et al., 2008, 2009), our previous large-
scale two-dimensional (2D) simulation of this event, in which the initial conditions were set based on the 
MMS data and a single reconnection point (X-line) was placed in a laminar state, successfully reproduced 
the steady EDR structures (T. K. M. Nakamura et al., 2018). Given the quantitative consistencies with the 
MMS data, the results further predicted that the normalized reconnection rate, which is a measure of the 
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efficiency of the change in the magnetic field topology, was in the range R ∼ 0.15–0.2 (Genestreti et al. 2018; 
T. K. M. Nakamura et al., 2018). As shown in Section 2.1, given mass and magnetic flux conservation near 
the EDR, it is predicted that the reconnection rate is roughly comparable to the aspect ratio of the EDR δe/Le 
as R ∼ α(δe/Le) (see Section 2.1 for derivation of this relation). Here α = Bin/B0 is the ratio between the mag-
netic field strength at the inflow-side edge of the ion diffusion region and in the upstream region. Indeed, 
the observed aspect ratio of this event (δe/Le ∼ 0.24  0.08) was close to the reconnection rate (R. Nakamura 
et al., 2019). These previous results strongly suggested that formation of a steady EDR as seen in the laminar 
simulation really occurred in this MMS event.

However, MMS has observed a number of magnetotail reconnection events with more non-steady, turbu-
lent features in field and plasma parameters (e.g., Ergun et al., 2018; Zhou et al., 2019). For example, on 
August 10, 2017, MMS observed stronger magnetic field fluctuations than those in the July-11 event with 
multiple Vix (∼ion outflow velocity) reversals, indicating the presence of multiple reconnection X-lines and/
or strongly oscillating reconnection layers (Zhou et al., 2019). Substantial turbulent fluctuations accompa-
nied by multiple flux rope encounters occurred even in the July-11 event after the EDR crossing interval 
(Stawarz et al., 2018; Teh et al., 2018). Past in situ observations have also shown that turbulent fluctuations 
in both field and plasma parameters commonly occur in the magnetotail (Angelopoulos et al., 1999; Bor-
ovsky et al., 1997; Neagu et al., 2002; Weygand et al., 2005), and that the fluctuations tend to be amplified 
in the magnetotail when the events are accompanied with bursty bulk flows (BBFs; Vörös et al., 2004) and 
auroral substorms (Stepanova et al., 2011), both of which are thought to be related to reconnection. These 
observational results strongly indicate that the magnetotail would commonly be in a turbulent state, and 
that turbulence can be enhanced by reconnection.

To investigate evolution and cross-scale interaction of turbulence, in this study, we perform an additional 
VPIC simulation with the same setting as the previous simulation of the July-11 event (T. K. M. Nakamura 
et al., 2018) except for the initial magnetic field perturbations. As described in Section 2, this new simula-
tion employs a technique to set up an initially fluctuating magnetic field (T. K. M. Nakamura et al., 2020); an 
ensemble of kx modes is added to the Bz (boundary normal) component to form a power-law spectrum with 
−5/3 scaling index for modes larger than the ion scales (kxdi < 1). The results show that the macro-scale 
evolution of turbulent reconnection involving merging of macro-scale magnetic islands induces repeated, 
quick formation of new secondary micro-scale islands within the EDR. As the merging of the macro-scale 
islands progresses, the micro-scale islands grow to larger scales, leading to an efficient cross-scale energy 
transfer from electron- to larger-scales.

2.  Methods
2.1.  Relation Between Reconnection Rate and Aspect Ratio of the Electron Diffusion Region

Based on the classic Sweet-Parker model of the ion diffusion region (Parker 1957; Sweet 1958), the conser-
vations of mass and magnetic flux and the pressure balance between the upstream and downstream regions 
approximately give the following relation between the aspect ratio of the diffusion region and the normal-
ized reconnection rate,
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where L and δ are the width and thickness of the diffusion region, respectively, Vin and Vout are the inflow 
and outflow speed at the upstream and downstream edges of the diffusion region, respectively, VA is the 
Alfvén speed, Bin is the magnetic field strength at the upstream edge, and Er and R  Er/VAB0 are the un-
normalized and normalized reconnection rates, respectively. Extending this relation to the inner EDR, the 
conservation of mass ,in ,oute e e eV L V  where Le and δe are the width and thickness of the EDR, respectively, 
the pressure balance  2 2

,in 0 ,out/ 2 / 2e e eB m nV  where Be,in is the magnetic field strength at the upstream 
edge of the EDR, and the flux conservation Er ∼ VinBin ∼ Ve,inBe,in approximately give the aspect ratio of the 
EDR as,
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Assuming a linear variation of the magnetic pressure in z    
2 0.5
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2.2.  Simulation Settings

The simulation employed in this study was performed on the MareNostrum machine at the Barcelona 
Supercomputing Center, using the high-performance particle-in-cell code VPIC (Bowers et al., 2008, 2009), 
which solves the relativistic Vlasov-Maxwell system of equations. The initial simulation settings are the 
same as the ones employed in the study of T. K. M. Nakamura et al. (2018) to model an in situ observation 
of the steady EDR crossing by the MMS mission on July 11, 2017, except for the magnetic field perturba-
tions that initiate reconnection. The simulation is 2-1/2 dimensional (2D variations in space with all three 
components of vectors) in the x–z plane. The initial magnetic field and number density are Bx(z) = B0tan-
h(z/L0), By = Bg, and ni,e(z) = n0sech2(z/L0) + nb, where B0 is the background reconnecting magnetic field 
component, Bg is the initial uniform guide field, n0 is the Harris density component, nb is the background 
density in the upstream region, and L0 is the half-thickness of the initial current sheet. We obtained the 
initial magnetic field, density and temperature ratios from the MMS data as Bg = 0.03B0, n0/nb = 3.0, Ti0/
Te0 = 3.0, Tib/Teb = 3.0, and Ti0/Tib = Te0/Teb = 3.0, where Ti0, Tib, Te0, and Teb are the ion and electron Harris 
and background temperatures, respectively. L0 is 0.6di0, where di0 is the ion inertial length based on n0. The 
ratio between the electron plasma frequency and the gyrofrequency is set to be ωpe/Ωe = 2.0. The ion-to-
electron mass ratio is mi/me = 400. The system size is Lx  Lz = 120di0  40di0 = 2,400de0  800de0 = 14,400  
4,800 cells with a total of 1.4  1011 simulated particles, where de0 is the electron inertial length based on n0. 
The boundary conditions are periodic along x, with conducting walls along z.

While T. K. M. Nakamura et al. (2018) added only one mode for the initial magnetic field perturbation with 
wavelength equal to Lx (mx = 1) to initiate a single reconnection X-line, we investigate here the macro-scale 
turbulent evolution of multiple X-lines, by employing an ensemble of mx (kx) modes in Bz to form a pow-
er-law spectrum with −5/3 slope at ion-inertial and larger scales (kxdi0 < 1), as observed in the Earth’s mag-
netotail during non-reconnection related intervals (Vörös et al., 2004). See T. K. M. Nakamura et al. (2020) 
for more details of the technique to set up an initially fluctuating magnetic field. As seen in the study of 
T. K. M. Nakamura et al. (2020), these initial magnetohydrodynamic (MHD)-scale modes inject energy to 
smaller scales and quickly form a spectral slope of the smaller-scale modes, which is smoothly connected to 
the MHD scales, sufficiently before the reconnection matures (see the black curve in Figure 1a).

3.  Results
As the simulation proceeds, the amplitude of the initial perturbations is enhanced (Figure 1a), correspond-
ing to the formation of multiple MHD-scale magnetic islands, as seen in Figure 1b. For these MHD-scale 
modes (kxdi < 1), as reconnection develops, the amplitude at larger scales gets stronger forming a ∼−2.7 
slope near ion scales and shallower slopes at larger scales, which indicates energy being transferred to larg-
er scales through the island merging process. Similar scaling indices near ion- and larger scales were seen 
in past kinetic simulations that had multiple island or flux rope evolution (Daughton et al., 2014; Franci 
et al., 2017) and a single X-line evolution (Adhikari et al., 2020). Past observations of the magnetic field fluc-
tuations in the magnetotail also showed that similar scaling indices (∼−2.6 to ∼−1.6) were observed accom-
panied with BBFs (Vörös et al., 2004) and ion diffusion regions (Eastwood et al., 2009), while ∼−1.6 indices 
were observed for weaker non-reconnection associated fluctuations (Vörös et al., 2004). Accompanied by 
the enhancement of the MHD-scale modes, smaller-scale modes (kxdi > 1) are also amplified and form a 
sharper (∼4) spectral slope, indicating the occurrence of a downward energy cascade from MHD-to-smaller 
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scales (see black-to-red curves in Figure 1a). After reconnection matures (t > 15–20Ωi
−1), an additional peak 

is produced near electron scales, and the enhanced power of these modes spreads to larger scales with time 
(see green-to-cyan curves). This corresponds to an additional, repeated formation of electron-scale magnet-
ic islands within the EDR (Figure 1e), which will be explained in detail in the next paragraphs.

As seen in Figures 2a and 2b, as the MHD-scale initial islands are merged into larger ones, the Bz peaks, 
where the reconnected field lines are most strongly piled-up, are transported farther away from the most 
developed X-line by the outflow jets. Here, notice that the Bz strength behind the peaks becomes smaller as 
the peaks move farther away from the X-line (Figure 2b). This occurs because the motion speed of the peaks 
(dXpeak/dt > 0.2VA as seen in Figure 3c) is almost always faster than the inflowing speed of the magnetic 
flux (Vin ∼ RVA < 0.2VA as seen in Figure 3d), resulting in the continuous decrease of the reconnected flux 
density behind the Bz peaks. As this flux density (i.e., Bz in the outflow region) decreases, it becomes more 
difficult for electrons to be magnetized in the outflow region, leading to the extension of the EDR in the 
x-direction (Daughton et al., 2006). Thus, as seen in Figure 2d, during the continuous MHD-scale island 
merging process, the aspect ratio of the EDR (δe/Le) continuously decreases. Notice also that this δe/Le de-
crease corresponds to the reduction of the reconnection rate as predicted in Equation 3 and shown in blue 
and red curves in Figure 2d. Here, δe and Le are the vertical and horizontal lengths of the EDR defined as the 
positive Ey’ region surrounding the most developed X-line, respectively. To remove the noise of the electric 
field data and better identify the location of the edge of the EDR where Ey’ = 0, we used the 2D Gaussian 
smoothing filter near the edge of the EDR.

It is notable here that short time-scale (∼1Ωi
−1 or shorter) fluctuations are seen in the time variation of 

the reconnection rate after reconnection matures (t > 15–20Ωi
−1), and the amplitude of these fluctuations 

becomes larger as the rate itself decreases (Figures 2e and 2f). This corresponds to the repeated formation 
of the electron-scale islands within the EDR. Figure 3 shows this small-scale island evolution for a weak 
fluctuation interval at t ∼ 21.4Ωi

−1 (blue-shaded interval in Figure 2e) and for a stronger fluctuation interval 
at t ∼ 56.0Ωi

−1 (red-shaded interval in Figure 2f). At t ∼ 21.4Ωi
−1, a small island whose length is less than the 

electron inertial-scale forms near the center of the EDR, but it quickly disappears in less than 0.2–0.4Ωi
−1. 

On the other hand, at t ∼ 56Ωi
−1, a larger island whose length is nearly close to λ ∼ 2πde_EDR forms. Here, 
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Figure 1.  Multi-scale turbulent evolution of reconnection layer. (a) Time evolution of one-dimensional power spectra (kx) of Bz modes averaged around the 
center of the current sheet (Z = 0 ± 2.5di0), and the spectra multiplied by kx

4. Here, di0 is the ion inertial length based on n0. The vertical dotted lines indicate the 
ion and electron inertial scales (kxdi = 1 and kxde = 1) based on n0 and the densities within the ion and electron diffusion regions ni_IDR and ne_EDR. (b–e) Color 
contours of Uix with the magnetic field lines (b, c) and zoomed-in view of Ey’ near the most developed X-line (marked by the black boxes in Figures 1b and 1c) 
(d, e) at t = 18Ωi

−1 and t = 56Ωi
−1. Here,  0Ω /i ieB m  is the ion gyrofrequency based on the reconnecting magnetic field B0 and E′ is the electric field in the 

electron frame   eE E U B. The positive Ey’ region surrounding the X-line is an indicator of the EDR (Zenitani et al., 2011).
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de_EDR is the local electron inertial length based on density in the EDR, which roughly corresponds to the 
thickness of the EDR (de_EDR ∼ δe; Shay et al., 2001). This island propagates in the x-direction and is even-
tually absorbed into the region outside the EDR. The time scale of this island evolution within the EDR is 
∼0.6–0.8Ωi

−1.

Notice that the size of the island seen in Figures 3f–3i increases during its propagation, which corresponds 
to the energy transfer from electron- to larger scales and contributes to the formation of flatter spectra at 
small scales as seen in green-to-cyan curves in Figure 1a. Notice also that the island length at t ∼ 56Ωi

−1 is 
close to the theoretically expected wavelength of the fastest growing mode of the electron tearing instability 
(kl ∼ 0.5 where l is the half-thickness of the current sheet; Jain & Sharma, 2015). This indicates that as the 
EDR aspect ratio becomes smaller, larger islands, whose wavelength closer to the electron inertial scale 
(∼2πde_EDR), can grow more strongly within the EDR. Indeed, the visibly strong fluctuations of the recon-
nection rate (seen in Figures 2d–2f) occur when δe/Le ∼ de_EDR/Le < 1/2π.

The electron-scale magnetic island within the EDR has some unique features. Figure 4 shows a zoomed-in 
view near the electron-scale island at t = 56Ωi

−1. There is almost no enhancement of the core magnetic field 
(By) near the center of the island (Figure 4b), but a substantial enhancement of Uey (Figure 4c) and a signif-
icant enhancement of the electron temperature (Figure 4d), which is mainly due to the enhancement of the 
out-of-plane component Teyy, are seen near the island center. These enhanced electron flow and temperature 
could be caused by electron acceleration by the positive Ey’, which is responsible for the conversion of the 
inflowing magnetic energy into particle energy (positive    y yJ EJ E ) (Zenitani et al., 2011), filling the 
whole island including the O-point (island center) (see magenta curve in Figure 4e). Here, J is the current 
density. Notice that the positive Ey’ is seen within the whole island as long as the island stays within the EDR 
(see red-to-magenta curves), indicating that the magnetic energy is being dissipated not only near the X-line 
but also within the whole island as long as the island stays within the EDR. Consistently, the y-component 
of vector potential (Ay), which corresponds to magnetic flux surfaces, at both the X-line (the bottom of the 
curves) and the O-point (the positive peak near the X-line) decreases with time as seen in red-to-magenta 
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Figure 2.  Evolution of reconnection rate and electron diffusion region (EDR) aspect ratio. (a) Time evolution of Uix at z = 0 and the locations of the most 
developed X-line and the positive and negative Bz peaks. (b) Cuts at z = 0 of Bz at t = 18Ωi

−1, t = 37Ωi
−1, and t = 56Ωi

−1 (the times marked by dotted lines in 
Figure 2a). The vertical dotted lines mark the location of the positive Bz peak. (c, d) Time evolution of (c) the relative velocity of the positive Bz peak from the 
most developed X-line, and (d) the normalized reconnection rate R measured by the time derivative of the vector potential Ay at the most developed X-line (red), 
the aspect ratio of the EDR δe/Le (green) and (δe/Le)(Bin/B0) (blue). Bin is the Bx magnitude at (x, z)=(xX-line, 0.5di_IDR) where xX-line and di_IDR are the x-coordinate 
of the most developed X-line and the ion inertial length based on the density within the ion diffusion region, respectively (corresponding to the edge of the ion 
diffusion region). (e, f) Zoomed-in views of the R evolution during the intervals marked by the black boxes in Figure 2d.
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curves in Figure 4f. As the island propagates away from the EDR, the negative Ey’ region appears within 
the EDR (i.e., a normal type island sandwiched between two positive Ey’ regions is forming) as seen in Fig-
ure 4e. Correspondingly, the potential drop as well as the increase of Teyy near the O-point cease as seen in 
cyan curves in Figures 4f and 4g.

4.  Summary and Discussions
By both spatially and temporally resolving electron scales, we found repeated formation of spatially 
electron-scale islands within the EDR, whose lifetimes are comparable to or less than ion-scale. When 
MHD-scale turbulent fluctuations initially exist, as frequently observed in the Earth’s magnetotail (Vörös 
et al., 2004), the merging of MHD-scale islands induced by the initial fluctuations not only amplifies the 
MHD-scale turbulence itself but also facilitates the micro-scale island evolution within the EDR. During 
the merging process, the faster transport of the piled-up reconnected flux relative to the flux inflow to the 
most developed X-line continuously reduces the flux density (Bz) in the outflow region, which makes it 
more difficult for outflowing electrons to be magnetized and leads to the continuous decrease of the EDR 
aspect ratio and the reconnection rate. This allows micro-scale islands to become larger within the EDR, 
leading to an additional energy transfer to larger scales.

A similar micro-scale island formation is seen even in the simulation of a single X-line (see the supporting 
information), although the transport of the piled-up flux and the resulting generation of larger islands 
can easily be inhibited once the outflow jets reach the periodic simulation boundaries. Past fully kinetic 
simulations of a single X-line with open simulation boundaries by Daughton et al.  (2006) demonstrated 
larger island formations near the extended EDR, indicating the possibility of the cross-scale energy transfer 
even in the single X-line case, although they treated only on ion- or larger-scale island evolution. Thus, the 
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Figure 3.  Evolution of micro-scale islands within extended electron diffusion region. Time evolution of zoomed-in views of Ey’, along with the magnetic field 
lines near the most developed X-line at the times around (a–e) t = 21.4Ωi

−1 and (f–i) t = 56.0Ωi
−1 (the time intervals marked by the blue- and red-shaded boxes 

in Figures 2e and 2f). The color ranges for all plots are the same as the ones in Figures 1d and 1e.
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EDR structures would be commonly in a non-steady, turbulent state through the formation of micro-scale 
islands, and this can cause the additional cross-scale energy transfer as long as the fast transport of the 
reconnected flux occurs.

Note that in the present simulation, the initial fluctuations are added only for the MHD-scale modes, and 
as the simulation proceeds, subion- to electron-scale fluctuations with a spectral index ∼−4 spontaneously 
forms as seen in the black curve in Figure 1a. However, shallower spectral slopes at sub-ion- to electron 
scales were seen in some recent MMS observations in the magnetotail (e.g., Ergun et al., 2018). Since these 
small-scale fluctuations could be seed perturbations to induce magnetic islands within the EDR and control 
how quickly the islands grow, to understand the micro-scale island formation process within the actual 
EDR, it would be required to setup more realistic conditions for the initial turbulent spectra including the 
spectral slopes below subion scales.

Finally, since the present simulation further demonstrated that strong electron acceleration and heating 
occur when the island formed within the EDR becomes larger, these cross-scale and non-steady aspects of 
the EDR may significantly contribute to particle energization in reconnection. Further surveys considering 
3D, asymmetries, and/or guide magnetic field effects would lead to a more comprehensive understanding 
of properties and roles of the non-steady EDR.

Data Availability Statement
The simulation data are available online via http://doi.org/10.5281/zenodo.4641782.
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Figure 4.  Structures of an electron-scale island within extended electron diffusion region. (a) Color contour with the magnetic field lines of Ey’ in the region 
marked by the black box in Figure 3h at t = 56.0Ωi

−1. (b–d) Cuts along the black dotted line (z = 0) in Figure 4a of (b) the magnetic field components Bx, By, and 
Bz, (c) the electron bulk velocities Uex, Uey, and Uez, and (d) the electron temperature components Texx, Teyy, and Tezz. (e–g) Time evolution of the cut of (e) Ey’, (f) 
Ay, and (g) Teyy along the same line in Figure 4a during t = 55.4–56.4Ωi

−1. The vertical dotted lines in Figures 4e–4g mark the O-point of the magnetic island at 
each time.

http://doi.org/10.5281/zenodo.4641782
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