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Variational quantum algorithm with information sharing
Chris N. Self 1✉, Kiran E. Khosla1, Alistair W. R. Smith 1, Frédéric Sauvage 1, Peter D. Haynes 1,2, Johannes Knolle 1,3,4,
Florian Mintert1 and M. S. Kim1

We introduce an optimisation method for variational quantum algorithms and experimentally demonstrate a 100-fold
improvement in efficiency compared to naive implementations. The effectiveness of our approach is shown by obtaining multi-
dimensional energy surfaces for small molecules and a spin model. Our method solves related variational problems in parallel by
exploiting the global nature of Bayesian optimisation and sharing information between different optimisers. Parallelisation makes
our method ideally suited to the next generation of variational problems with many physical degrees of freedom. This addresses a
key challenge in scaling-up quantum algorithms towards demonstrating quantum advantage for problems of real-world interest.
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INTRODUCTION
Rapid developments in quantum computing hardware1–3 have led
to an explosion of interest in near-term applications4–8. Though
current devices are remarkable feats of engineering, their current
coherence times and gate fidelities exclude running general
quantum algorithms such as Shor’s factorisation, Grover search or
quantum phase estimation. Nevertheless, it is hoped that
variational quantum algorithms (VQA’s) will be able to demon-
strate a quantum advantage on noisy intermediate scale quantum
(NISQ) devices9.
Variational algorithms use low depth quantum circuits as a

subroutine in a larger classical optimisation and have been
applied broadly, including to binary optimisation problems10–12,
training machine learning models13–15, and obtaining energy
spectra16–18. While low depth circuits lessen the effect of errors,
error rates are still a challenge for current practical implementa-
tions. Addressing these errors has been a focus within the
literature, with many sophisticated error mitigation approaches
being developed19–21. However, errors will not be the only limiting
factor for VQA’s. Other obstacles include ansatz construction22,23,
optimisation challenges24,25 and integrated hardware design26.
VQA’s are very demanding of quantum hardware, requiring

large numbers of sequential calls to quantum devices. In many
cases demands on device throughput are further exacerbated by a
need to solve multiple different but related optimisation problems
(e.g. molecules with different nuclear separations16, or edge-
weighted graphs for different weights12), which to date have
mostly been treated independently. Few notable exceptions have
solved related problems iteratively27. Parallelising related pro-
blems offers a way to maximize the utility of each circuit. This is
particularly relevant to cloud-based interfaces—rapidly becoming
the industry standard—however, even with dedicated device
access, the low-throughput of quantum hardware remains a
limiting factor, worsening for larger and more complex problems.
In this paper, we introduce a parallel optimisation scheme for

VQA problems where the cost function is parameterised by some
physical parameter(s). A collection of problems, corresponding to
different values of physical parameters, are optimised in parallel
by an array of Bayesian optimisers sharing quantum measurement
results between them. Using our Bayesian optimisation with

information sharing (BOIS) approach, we demonstrate a significant
reduction in the number of circuits required to obtain a good
solution at all parameter points. BOIS allows us to efficiently find
potential energy curves and surfaces for small molecules and a
quantum spin model on IBM Quantum devices28.

RESULTS
Parallelising VQE
As an example VQA, we consider the variational quantum
eigensolver (VQE)29, used to find the ground states of qubit
Hamiltonians H. VQE uses a quantum ansatz circuit, parameterised
by a set of angles θ, to prepare a state ψðθÞj i, and estimate the
expectation value Hh iθ � hψðθÞjHjψðθÞi. Classical optimisation is
used to minimize the cost function Hh iθ with respect to θ,
which—for a sufficiently expressive ansatz (see “Ansatz design” in
the “Methods” section)—corresponds to the ground state.
Qubit Hamiltonians can always be decomposed into a weighted

sum of Pauli strings Pi∈ {I, X, Y, Z}⊗n (for n qubits) with the weights
ci depending on some physical parameter(s) x,

HðxÞ ¼
X

i

ciðxÞPi: (1)

These physical parameters are, for example, nuclear coordinates of
a molecule, length scale of long-range interactions, distance of
reactants above a catalyst, etc.
From the structure of Eq. (1), it is clear that optimising for each x

independently does not exploit the relationships between
problems at different physical parameters. In particular, measuring
the required Pauli expectation values Pih iθ at a single θ point can
be used to estimate 〈H(x)〉θ for all x, as it is simply a weighted sum
of Pauli expectation values with weights ci(x)

Bayesian optimisation and BOIS
In order to exploit the relationships between VQE problems, we
use an optimisation method that collates function evaluations
across the entire θ parameter space. Bayesian optimisation (BO)
uses a surrogate model of the global cost function to guide the
optimization30. The surrogate model at unevaluated θ points is
inferred, by means of Bayes rules, based on all previous cost
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functions evaluations. Every optimization round, the next θ point
is decided by maximizing a utility function over the surrogate
model (see “Practicals aspects of Bayesian Optimisation” in the
“Methods” section). BO has been applied in quantum control31–34,
as well as in experimental variational algorithms35,36, however its
use in VQE and the exploitation of its global surrogate model
remains largely unexplored.
BOIS employs an array of Bayesian optimisers running in

parallel. Each optimiser, BðxαÞ, attempts to solve a separate but
related VQE problem, by minimising hHðxαÞiθ over θ at physical
coordinate xα, see Fig. 1. At each iteration, optimiser BðxαÞ
requests a cost function evaluation at the Bayes optimal
point to evaluate next θα (see “Practicals aspects of Bayesian
optimisation” in the “Methods” section). As described in the
section “Parallelising VQE”, the Pauli string measurement results
required to evaluate ψðθαÞh jHðxαÞ ψðθαÞj i also allows us to
evaluate ψðθαÞh jHðxβÞ ψðθαÞj i, which can be passed to the
optimiser BðxβÞ. We refer to these cross-evaluations as informa-
tion sharing from BðxαÞ to BðxβÞ. This requires each optimiser to

use the same θ-parameterised ansatz circuit and that H(xα)
decomposes into the same set of Pauli strings {Pi} for all α (this can
be padded as necessary).
The intrinsic locality of gradient-based approaches limits the

amount of information that can be shared between different
optimization runs. While we focused on BO, other surrogate
model-based approaches37 could be equivalently lifted to benefit
from this information sharing scheme.

Testing the effectiveness of information sharing
Firstly we demonstrate the effectiveness of information sharing by
using BOIS for a VQE task (VQE+ BOIS) applied to a quantum spin
chain with Hamiltonian

HðhX ; hZÞ ¼
X

<i;j>

ZiZj �
X

i

ðhXXi þ hZZiÞ: (2)

The (dimensionless) transverse hX and longitudinal hZ fields are
classical coordinates analogous to nuclear separation in mole-
cules. For hX > 0 and hZ= 0, Eq. (2) can be diagonalized by a
Jordan-Wigner transformation, which transforms the spins into
non-interacting fermions. For hX, hZ > 0 it becomes non-integrable,
with approximate methods eventually breaking down around a
phase transition occurring along a critical line38.
We consider the case where hX= hZ= h∈ [0, 0.9], which we

discretise into 15 values hα. This range of h approaches but does
not cross the critical line. The VQE is then run using our BOIS
optimisation approach for a system of four spins, with open
boundary conditions. We use an ansatz circuit systematically
generated—using an original approach (see “Practicals aspects of
Bayesian optimisation” in the “Methods” section)—for this
Hamiltonian. Noiseless simulations are carried out by contracting
tensor network representations of the ansatz circuit and
Hamiltonian using the Quimb python package39.
The performance of four different information-sharing strate-

gies is shown in Fig. 2. Firstly, as a baseline, we consider
independent BO with no information sharing Fig. 2a, followed by
independent BO’s with two extra (random) function evaluations
per iteration Fig. 2b. This second case is chosen such that the
number of evaluations seen by each BðhαÞ is the same as nearest-
neighbour information sharing (each hα shares only with hα±1) Fig.
2c. Finally, we show all-to-all information sharing (each hα shares
with all hβ, β ≠ α) Fig. 2d, which requires the same number of

Fig. 1 Information sharing framework. Parallel Bayesian optimisa-
tion for physically parameterised VQE tasks. Separate BO’s BðxαÞ
optimise for different cost functions Cα, corresponding to different
values of the physical parameters xα, using the same parameterised
ansatz circuit U(θ). Every iteration, each BðxαÞ requests a new
variational parameter point θα, at which the set of Pauli strings {Pi}
are measured. These expectation values are used to compute any Cβ
cost functions (dashed lines) at θα, for all α, β. Each BO can then be
updated using the measurement results obtained for several θα, θβ,
… parameter points each iteration (bold arrows), dramatically
speeding up convergence at all xα.

Fig. 2 Numerical study of the effectiveness of information sharing. Comparison between (a–b) independent vs (c–d) information shared
VQE optimisation strategies for the quantum spin model, Eq. (2) with field h= hX= hZ. The sample distribution of 100 repetitions of the same
optimisation are shown as density plots for each hα, with darker shades corresponding to more observations, and the solid curve showing the
mean. Optimisation is run for thirty iterations and we consider fifteen values of hα. Data boxes show the total number of function evaluations
per repetition and the number of evaluations seen by each optimiser BðhαÞ, in addition to the numbers quoted each BO receives ten
initialisation data points that are also either independent or shared (see “Practicals aspects of Bayesian optimisation” in the “Methods”
section). a Independent BO’s at each hα. b As before, but each optimiser requests two additional energy evaluations (at random θ parameter
points) at each iteration. c BOIS nearest-neighbour information sharing, i.e. BO’s at neighbouring h-field points (e.g. hα and hα±1) share device
measurement results. d BOIS all-to-all information sharing, i.e., every BO sees all device measurement results. Insets of (c) and (d) show the
same data on a log-scale.
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function evaluations as nearest-neighbour sharing but employs
more cross-evaluations. Each strategy is run for thirty iterations,
after which we compare the final VQE energy estimate (E*) to the
exact ground state energy (Eexact). Optimisation of the full energy
curve is repeated 100 times for each strategy. We present the data
as a shaded histogram of E*− Eexact at each hα, as well as the
sample mean. Each optimisation run is initialised with ten cost
function evaluations, these are either shared for the BOIS
strategies Fig. 2c–d or independent Fig. 2a–b, as discussed in
“Practicals aspects of Bayesian optimisation” in the “Methods”
section.
We see clear improvement of sharing strategies over indepen-

dent optimisations. After thirty iterations none of the independent
BO Fig. 2a cases have converged close to the exact ground state
energy. Adding extra energy evaluations (at random θ) to the
independent optimisations improves their performance Fig. 2b,
highlighting the capacity of BO to leverage the full dataset of
evaluations it can access. Despite the improvement, a significant
portion of runs end far from the ground state, with non-zero mean
error and large variance. Nearest-neighbour sharing Fig. 2c hugely
improves on Fig. 2b despite the individual BO’s of the two
strategies receiving the same number of function evaluations per
iteration. Here, the extra evaluations have greater utility compared
to Fig. 2b as they come from BO’s solving similar (i.e. for close
values of h) optimisation problems. Finally, All-to-All sharing
shows moderate improvement over nearest-neighbour sharing,
Fig. 2d in spite of having received five times more energy
evaluations. This indicates that most of the advantage of the
information sharing is coming from BO’s that are close together in
h. An additional advantage of nearest-neighbour sharing is it
reduces the computational overhead of updating the surrogate
model by only including the most relevant shared data. As
expected, we find the hardest optimisation problems, where our
sharing strategies still do not always converge, to be large values
of h closest to the critical line.

Experimental demonstration on IBMQ devices
In the following, we demonstrate the success of the BOIS strategy
on problems run on IBMQ devices. By studying a quantum spin
model (used in “Testing the effectiveness of information sharing”)
as well as H2, LiH and a linear chain of H3, we highlight the
capability of our approach to complete VQE tasks in practical
timescales. Optimisation tasks were carried out either on
Paris, Toronto, Athens, Manhattan, Valencia, or Santiago IBMQ
quantum processors28. We employ Qiskit’s40 built in ‘Complete

Measurement Filter’ with no further error mitigation. During
optimisation 1024 measurement shots are used, increasing to
8192 shots for the final reported VQE energies.
Figure 3 shows the BOIS methods applied to finding ground

states of H2 (all-to-all sharing), LiH (all-to-all sharing) and the spin
model (nearest-neighbour sharing), each of which only has one
physical parameter. These are two, four and four qubit problems
respectively, with six, thirteen, and ten optimisation parameters
respectively (see “Practicals aspects of Bayesian optimisation” in
the “Methods” section). In obtaining the Hamiltonians for H2 and
LiH, we have removed the spin Z2 symmetries, and in the case of
LiH, have also frozen non-participating orbitals (see “Qubit
Hamiltoniansfor small molecules” in “Methods” section). H2 can
be reduced to a single qubit41, however, for comparison with
previous work, the two-qubit Hamiltonian is used. These
optimisations converge after a remarkable ~10–50 iterations, far
below what could be reasonably expected for any stochastic
gradient descent, which would require many hundreds of
iterations. Such a drastic improvement unequivocally demon-
strates the advantage of data sharing between optimizers,
showing just how much information can be extracted from each
set of quantum measurements.
We now consider a linear chain of H3, parameterized by two

relative inter-atomic distances x= (x1, x2), which we discretize into
a grid to find the 2D energy surface. Figure 4 shows the two-
dimensional potential energy surface found using VQE+ BOIS
with nearest-neighbour sharing. For this two-dimensional problem
nearest-neighbour sharing means ðxα1; xβ2Þ shares with ðxαþ1

1 ; xβ2Þ,ðxα�1
1 ; xβ2Þ, ðxα1; xβþ1

2 Þ and ðxα1; xβ�1
2 Þ. Solving for the eight-by-eight

grid in parallel means 64 θ points per iteration, however, we
construct the entire surface with just ten iterations, for a total of
650 individual θ evaluations (including initialisation). In contrast,
we expect gradient descent (in this ten-dimensional optimisations
space) would require a similar number of θ evaluations just for a
single physical coordinate16.

DISCUSSION
Our experimental results, Fig. 3, show a discrepancy between
experimental and theoretical energy curves/surfaces. The most
significant sources of VQE errors are (i) optimisation errors, and (ii)
device errors. Ansatz expressibility errors, the other limiting factor
for VQE, can be ruled out by our custom circuit design (see “Ansatz
design” in the “Methods” section). Known difficulties in the
optimisation landscapes mean single runs of the optimisation will

Fig. 3 Experimental application of VQE+ BOIS running on IBMQ devices. Final energy estimates E* (top) and final errors (E*− Eexact)
(bottom) are plotted for three different problems. Repeated runs (blue curves), executed on a set of different devices28, show the distribution
around the mean (orange curves). a H2 dimer showing eighteen separate VQE+BOIS (all-to-all) runs. Each ran for ten iterations with thirty
(shared—see “Practicals aspects of Bayesian optimisation” in the “Methods” section) initial points. b LiH dimer showing thirteen separate VQE
+BOIS (all-to-all) runs. Each ran for thirty iterations with thirty (shared) initial points. c Quantum spin model, Eq. (1) with hX= hZ= h,
(considered in “Testing the effectiveness of information sharing”) showing ten separate VQE+ BOIS (nearest-neighbour) runs. Each ran for fifty
iterations with ten (shared) initial points. Error bars indicate standard error on final energy measurements.
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sometimes fail24. This is exemplified in Fig. 2 for large h where the
ground state is more entangled. The same qualitative behaviour is
observed in the experimental data Fig. 3c and is made worse by
the randomness from using a noisy quantum device to estimate
the cost function.
The systematic offset in the experimental data, Fig. 3, is typical

of depolarising errors in quantum gates, becoming worse for more
qubits19. Variations between runs are expected as different
devices have different error characteristics and additionally these
change over time. In general, the variance is further compounded
by shot noise (i.e. finite numbers of measurement on device), but
this is well below the variance of device noise across different days
and devices.
Why would we expect this information sharing to be helpful?

Considering a molecule as an example, a small change in the
nuclear coordinates can be understood as a perturbation of the
electronic Hamiltonian. The perturbed and unperturbed ground
states will have some overlap, so their optimal θ’s will be found in
a similar region of parameter space. We can then see that a useful
θα selected by optimiser BðxαÞ is likely to be valuable to
Bðxα þ δxÞ. In this way, information sharing allows each BO to
exploit the promising regions of θ-space discovered by other
optimisers, making the evaluations of adjacent optimisers more
valuable than random θ evaluations.
Information sharing would be particularly helpful when the

physical parameter tunes some non-trivial interaction that
continuously increases the entanglement in the ground state,
for example approaching a phase transition as in “Testing the
effectiveness of information sharing”. In this case we would expect
the optimisation to converge faster in the simple (less entangled
ground state) limit and this information to flow to harder (more
entangled) problems.
Here we introduced BOIS, an efficient optimisation scheme for

related VQA’s. Our approach is specifically designed to make
maximum use of limited numbers of quantum measurements in
order to combat the limited throughput of NISQ quantum devices.
We demonstrated the efficiency of our approach by experimen-
tally solving for energy curves in tens, instead of hundreds or
thousands of iterations. The speedup provided by our method has
enabled both 1D energy curves and the 2D energy surface of a
molecular trimer to be found on a practical timescale, even
without dedicated device access. BOIS can be readily applied to
other parameterised VQA’s and, combined with our circuit
construction, makes benchmarking VQA algorithms on real
devices significantly more practical.

METHODS
Qubit Hamiltonians for small molecules
To find molecular ground states we first reformulate the problem from
electrons to qubits. This is discussed at length in the literature, e.g., in the
reviews7,8. Here we outline the general procedure and highlight features
relevant to the above simulations.
The electronic states are expanded in hydrogen-like orbitals centred on

each atom, specifying a fermionic operator and a spatial wave function for
each spin orbital. The electronic spatial dependence can be integrated out
under the Born-Oppenheimer approximation. This re-expresses the kinetic
and potential energy terms as non-linear coupling rates between the
fermionic operators, where the couplings rates are nuclear coordinates
dependent. The Hilbert space can be further reduced by removing or
freezing (i.e. permanently occupied) spin orbitals. Finally, the anti-
commuting fermionic operators are transformed into commuting Pauli
operators using the Jordan-Wigner, Bravi-Kitaev, or some similar map7.
In this work we use Openfermion42 (for H3) and Qiskit40 (for H2 and LiH)

to compute the one and two body integrals, using the STO-3G
approximation. For H2 and H3, only the 1s orbitals are used (none of
which are frozen), and the systems have a total of two and three electrons
respectively. For LiH, the Li:1s, orbital is doubly occupied with electrons
and frozen, while the four Li:2py, Li:2pz spin orbitals are forzen with zero
occupation. Thus only the four Li:2s,2px spin orbitals (bond axes aligned
with x) and two H:1s spin orbitals constitute the available states for the
remaining two electrons. We use the symmetry conserving Bravi-Kitaev
transform for H3, and the parity transforms for H2 and LiH to express the
fermionic Hamiltonian as a qubit Hamiltonian. For each molecule the Z2

symmetries (corresponding to particle and spin symmetries) have been
removed16,41, reducing the number of qubits by two.

Ansatz design
As our focus is on efficient optimisation, rather than the challenging and
distinct problem of blind ansatz construction, we construct ansatzes that
are tailored to the problems we consider. The effectiveness of VQE is highly
dependent on the suitability of the ansatz used. An ansatz circuit must be
sufficiently expressive to produce its target state, however this must be
balanced against other practical concerns including hardware limitations
(restricted qubit connectivity and practical limits on circuit depth due to
experimental noise) as well as optimisation considerations (the number of
optimisation parameters must not be too large).
Our ansatzes, for systems other than H2, are constructed classically such

that they are guaranteed to be able to produce the target states with high
fidelity (in noiseless simulations), while being both depth and parameter
number efficient. This allows us to assess the performance of our
optimisation scheme without it being limited by the expressive power of
the ansatz. In addition, this allows us to bake hardware constraints, such as
qubit connectivity, into the construction process. The ansatzes we use for
each of the systems we consider are shown in Fig. 5.
Building the ansatz circuit is done in two phases; a growth phase in

which the expressivity of the circuit is increased, and a shrinkage phase in
which redundant parameters are removed. This approach is inspired by

Fig. 4 Experimental application to a multi-dimensional problem. Ground state energies (in Hartree) for a linear chain of H3, over two-
dimensional parameter space (x1, x2) where x1 the distance between the first and second H atoms and x2 the distance between the second and
third. a the exact ground state energy surface for an 8 × 8 grid of x1 and x2 values, compared to experimental results from running VQE+ BOIS
on from IBM’s Paris chip. The optimisations converged in ten iterations to compute the entire surface. b the error in the VQE+ BOIS results,
showing systematic offsets due to gate errors.
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qubit-ADAPT23 but uses exhaustive optimisation to decide how to grow
the circuit rather than a gradient-based condition. The noiseless
simulations used to construct these ansatzes are carried out with highly
efficient tensor-network calculations43, performing gradient-descent with
the Quimb Python package39. We now describe each phase in detail.
The growth phase begins with a separable circuit consisting only of

single-qubit rotations and adds two-qubit entangling blocks in the
locations that provide the greatest increase in the fidelity with the target
state. Entangling blocks consist of a two-qubit gate, e.g. CNOT, padded on
either side with parameterised single-qubit rotations. In general, the single-
qubit gates are arbitrary Bloch sphere rotations (e.g. Qiskit’s U3 gate or
equivalent) to allow maximum flexibility. However, in many cases simpler
gates can be used (such as real-valued Hamiltonians where RY is sufficient).
At each step, we determine all locations that it is possible to place a new
entangler, compatible with the qubit connectivity. Early in the optimisation
this is a weak constraint as we do not initially enforce a mapping of virtual
to physical qubits. As the ansatz grows the mapping is fixed by the
previously chosen locations and this greatly reduces the number of
potential locations in subsequent steps. We test each possible location by
optimising the fidelity F between the target state and the circuit with this
block added. For small to moderately sized systems, noiseless tensor-
network-based gradient descent can be performed efficiently with
automatic differentiation (e.g. using Google’s TensorFlow44) to minimise
a cost C. For a target state ψtj i and trial state ψj i we used

C ¼ 1� F ¼ 1� jhψjψtij: (3)

(Here we use this convention for the fidelity, as opposed to ∣〈ψ∣ψt〉∣2, as this
yielded better performance.) The entangling block that leads to the
greatest increase in fidelity is added to the ansatz and the process is
repeated. Since our scheme relies on direct optimisation we are able to
trial placing entangling blocks at both the beginning and end of the circuit.
Placing an entangling block at the beginning of a circuit can produce a
more dramatic change than placing one at the end, potentially allowing
our method to converge to the target state more quickly than other
greedy methods such as qubit-ADAPT. The ansatz that is produced in the
growth phase is very efficient in terms of depth. Using gradient descent
the growth stage can be performed with relatively few cost/gradient
evaluations.
Once the circuit has converged to an acceptable fidelity with the target

state (we used 1�F<10�6) we begin the shrinkage phase. We re-optimise
the fidelity of the ansatz with respect to the target state but now adding a
regularisation penalty to our cost function which, for gate angles {ϕi},
becomes

C ¼ 1� F þ η
X

i

Dðϕi ; 2πÞ (4)

Here η is a small regularisation weight parameter and D(ϕi, 2π) is the
absolute distance between ϕi and its nearest multiple of 2π. This is an
example of (periodic) L1 regularisation and, provided η is small, encourages
gate angles to shrink towards a multiple of 2π while maintaining a high
fidelity. This allows us to identify unnecessary single-qubit gates (those
with angles close to multiples of 2π) which are then removed from the

ansatz. This regularisation process is repeated with increasing η until the
point where removing any more single-qubit gates would appreciably
degrade the fidelity (checking if this is the case by re-optimising the fidelity
using the ansatz with small parameter gates removes).
The ansatz construction process is non-deterministic however for the

systems considered we found that typically required numbers of cost/
gradient evaluations were (for the growth/shrinkage stages respectively) –
H3:~4500, 1200 (using general U3 gates); LiH~1800, 600; quantum spin
model~1800, 500.
These ansatzes are produced by optimising the fidelity with a single

target state. In our VQE+ BOIS simulations we are attempting to find
ground state energy surfaces across a physical parameter space. For each
VQE+ BOIS simulation a target state was chosen as a ground state sitting
on the energy surface in question. However, these target states were
chosen such that their physical parameter x was not one that was
associated with a BOIS optimiser x ∉ xα. Although our ansatzes were
produced targeting just one state on each energy surface, we found that
provided it can represent this target state with a high fidelity (around
1� F<10�6) then it will typically have similar performance on the other
states of the surface (assuming we do not cross any complicated quantum
phase transitions). Finally, to further reduce the number of optimisation
parameters, the optimal gate parameters for each BOIS physical parameter
xα are found (again by maximising the fidelity) and any single-qubit gate
angles within this optimal parameter set that are found to remain
effectively constant across the energy surface are fixed to these constant
values in the ansatz. These fixed angle gates are indicated with partial
transparency in Fig. 5.
While this ansatz preparation procedure uses the fidelity with a known

target state as a cost function, requiring knowledge of the target state, this
is not an a priori requirement. With minimal adjustments the same tensor-
network-based framework can be adapted to use the expectation of a
Hamiltonian as a cost function to be minimised, resulting in a scheme that
is qualitatively similar to hardware-efficient ADAPT-VQE23. An energy-
based cost function would be less specific than one based on the fidelity
with a target state and so convergence issues may arise if the Hamiltonian
possesses many near-degeneracies. The lifting of degeneracies across
physical parameter space may also prevent an energy-optimised ansatz
from generalising well. Ultimately these classical gradient-based methods
are limited to systems of only up to around 10 qubits (we have tested up
to this size).
As we aimed to build tailored VQE ansatzes to benchmark BOIS, rather

than develop a full scalable adaptive ansatz algorithm, we employed the
more reliable fidelity-based approach. However, we believe an adaptive
scheme in which an ansatz is grown ansatz one entangling block at a time
followed by parameter regularisation has the potential to be run in a more
scalable way on-device. Each stage of such a process would be effectively
its own VQE problem, potentially allowing information sharing to increase
its efficiency, provided that the optimisation is done globally such that
information can be shared. By considering all physical parameter points
when choosing entangling block placement and performing regularisation,
a general ansatz for the whole energy surface may also be obtained more
easily than when considering only a single physical parameter point.

Fig. 5 Parameterised quantum circuits used as ansatz. Ansatz circuits used for each of the physical systems we consider, generated using
the procedure described in “Ansatz design”. Gates referenced are from the Qiskit gate set40. Parameterised gates are shown in solid colours
and fixed angle rotations are indicated with partial transparency.
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Practicals aspects of BO
In our work BO is implemented using the GPyOpt python package45. We
have used the standard multipurpose Matern-5/2 kernel. Whether more
specialised kernels are more suitable for VQA’s is an interesting question.
BO begins with a pool of initial data. These are cost functions

evaluations made at random in the optimisation parameter space, that
are used to initialise the surrogate model. We select the M initial points by
Latin hypercube sampling. When considering our information-sharing
strategies we additionally share these M initial points amongst the
different optimisers BðxiÞ. In contrast, when we compare this to
independent strategies with no information sharing each optimiser BðxiÞ
sees a different set of M initial points.
In all of our results, we use a lower-confidence bound (LCB) acquisition

function46, defined by

aLCBðθÞ ¼ μðθÞ � κ σðθÞ ;
where μ and σ2 are the mean and variance functions of the Gaussian
process surrogate model. The hyperparameter κ is chosen to decrease
linearly from an initial value κ0 to zero at the final iteration N, so that at
iteration t ∈ [1, N] it has value

κt ¼ κ0
N � t
N

:

This highly weights exploration early in the optimisation, while prioritising
exploitation later on. The value of κ0 is tuned between one and five
depending on the problem. At iteration t the next θ to evaluate is selected
by minimising aLCB(θ).
BO is conventionally limited to small numbers of parameters, typically

<20–3030. This will become a problem for larger VQE problems, especially
when using hardware efficient ansatz. However, decreasing noise rates will
help alleviate this issue, since it will allow more complex but parameter
efficient ansatz, such as unitary coupled cluster (UCC)7, to be employed.
Beyond this, global optimisation with large numbers of parameters is an
active research topic. Replacing the Gaussian Process with other surrogate
models, such as neural networks or random forests, can potentially allow
much larger numbers of parameters47.
Problems such as over-parameterisation can, in principle, be solved by

using physically motivated ansatz circuits, such as UCC for molecules48, or
schemes that grow an ansatz systematically, for example, ADAPT-VQE22,23.
These approaches typically require circuits that are too deep to be
practically run on current NISQ devices, however more sophisticated
schemes such as ansatz that preserve symmetries49 may help to overcome
these challenges.

Separating experimental data by device
The experimental data presented in Fig. 3 was collected in October and
November 2020 from the IBM quantum devices Athens, Manhattan, Paris,
Toronto and Valencia, with additional H2 data from Santiago28. In Fig. 6 the
final VQE errors, E*− Eexact, is plotted for the H2, LiH and quantum spin
model tasks, with the IBM device the data was collected from indicated by
plot colour.
All of the devices we use have quantum volume 32, with the exception

of Valencia which has quantum volume 16. Within our data, we do not see
clear systematic differences between the devices when looking across all
the tasks. For a given task there can appear to be clustering. For example,
in our LiH data, Paris appears to do consistently worse and Manhattan
better. However, this is more likely related to calibration differences in the

time window of use or small sample sizes. It is interesting to note, though,
that the only non-physical results (ground state energies lower than the
true ground state energy) occur for the H2 task on the lower quantum
volume device, Valencia.
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