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Abstract
Distributed multi-agent agreement problems (MAPs) are central to many multi-agent systems. However, to date, the issues 
associated with encounters between self-interested and privacy-preserving agents have received limited attention. Given 
this, we develop the first distributed negotiation mechanism that enables self-interested agents to reach a socially desirable 
agreement with limited information leakage. The agents’ optimal negotiation strategies in this mechanism are investigated. 
Specifically, we propose a reinforcement learning-based approach to train agents to learn their optimal strategies in the 
proposed mechanism. Also, a heuristic algorithm is designed to find close-to-optimal negotiation strategies with reduced 
computational costs. We demonstrate the effectiveness and strength of our proposed mechanism through both game theoreti-
cal and numerical analysis. We prove theoretically that the proposed mechanism is budget balanced and motivates the agents 
to participate and follow the rules faithfully. The experimental results confirm that the proposed mechanism significantly 
outperforms the current state of the art, by increasing the social-welfare and decreasing the privacy leakage.

Keywords  Multi-agent agreement problem · Incentive mechanism design · Faithful distributed mechanism · Privacy 
awareness · Reinforcement learning

Introduction

In a multi-agent agreement problem (MAP) multiple agents 
have to make an agreement, yet they may have different pref-
erences for different possible outcomes. Thus, it is of central 
importance to be able to aggregate the preferences so as to 
make a socially desirable agreement. In this paper, we focus 
on a class of MAP where the following two conditions are 

present: (1) Agents have private information about their pref-
erences and may be reluctant to share them; (2) Decisions 
are incremental in that the needs for new agreements arise 
over time and the new decisions must be consistent with the 
old ones. This class is known as Private Incremental multi-
agent agreement problems (piMAPs) [62] and is focused on 
many real-world applications including resource allocation 
[9], distributed scheduling [71], electronic commerce [86] 
and logistics [79].

To solve piMAPs, agents need to negotiate with each 
other until an agreement is reached or until they find out 
that there is no feasible solution to the problem. However, 
the assumption of private information places limits on the 
information that the agents may be willing to exchange in 
the negotiation. Specifically, privacy-preserving agents face 
a tradeoff between the amount of information they reveal and 
their desire to reach an acceptable agreement [31, 48]. For 
example, exchanging no information minimizes the amount 
of information revealed but is unlikely to lead to an agree-
ment, whereas all agents revealing all their constraints maxi-
mizes the chance of finding an optimal agreement but at the 
cost of all privacy.
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The problem of designing a negotiation mechanism that 
strikes a balance between outcome efficiency and privacy 
becomes particularly challenging when the agents are self-
interested and are willing to better their outcome by manipu-
lating the protocol. Self-interested agents, when trusted to 
perform an action in a mechanism, may betray that trust by 
not performing the action as required. For example, they 
may provide false information during the negotiation or may 
not pass an agent’s message on to another if these deviations 
increase their individual welfare. When dealing with self-
interested agents, the mechanism has to provide appropriate 
incentives to the agents to make sure that they cannot profit 
from manipulating the mechanism.

In the standard incentive mechanism design setting [7], 
there exists a trusted central authority that first solicits all 
agents’ private information and then constructs a solution for 
the problem that maximizes the global objective function. 
In this setting, the goal is to design an incentive-compatible 
mechanism that induces agents to reveal their information 
truthfully. Incentive compatibility is a required feature for 
mechanisms in which information is distributed but the 
algorithm is executed centrally. However, in a distributed 
setting like piMAP, where both information and algorithm 
execution are distributed, a stronger notion of obedience is 
required. This leads to the concept of faithfulness for dis-
tributed mechanisms [83]. A mechanism is faithful if agents 
have incentives to obey all the mechanism rules, including 
truthful information revelation, honest computation, and 
faithful algorithm execution.

A common approach for designing either incentive-
compatible or faithful mechanisms is to impose economic 
incentives on self-interested agents by using monetary pay-
ments [15, 76]. The use of money, however, is prohibited or 
unnatural in many real-life agreement problems, including 
political decision making or allocating “public” goods like 
school admissions [35, 36]. The lack of monetary payments 
as a means to incentivize agents makes mechanism design 
in such settings more challenging. However, recently, a class 
of simple non-monetary mechanisms, namely mechanisms 
based on artificial currencies [22], has gained considerable 
attention due to their successful use in practice [10, 77, 78]. 
Such mechanisms involve endowing agents with a budget 
of an artificial currency and then organizing a monetary 
mechanism with payments in terms of artificial currencies. 
The main challenge of designing such mechanisms is that 
an artificial currency has no independent valuation outside 
the setting of the mechanism; therefore, the mechanism must 
define a usage for the currency to make it valuable to the 
agents. The main goal of this paper was to design a faith-
ful distributed incentive mechanism for piMAP based on an 
artificial currency.

In addition to faithfulness, we would like our mechanism 
to satisfy voluntary participation [7] and individual budget 

balance. The former is a standard requirement for an incen-
tive mechanism which requires that the participation in the 
mechanism results in at least the same expected utility as 
not participating overall. The latter is an extended version of 
budget balance that requires each agent’s expected payment 
to be zero at all on- and off-equilibrium paths. The standard 
notion of budget balance is not appropriate for distributed 
mechanisms without a central authority (or bank), as in these 
mechanisms, the payments are always made within the net-
work from one agent to another; hence, the budget balance 
is always satisfied at the network level. In this paper, we 
would like to design a mechanism that keeps all the indi-
viduals’ budgets balanced. We term this extended version of 
budget balance individual budget balance (IBB). Imposing 
individual budget balance motivates agents to put all their 
effort on achieving a good agreement and not on collecting 
reward. (For more details, see “Individual rationality and 
individual budget balance”.)

Against this background, we propose the first faithful 
distributed incentive mechanism for piMAPs that satisfies 
voluntary participation and individual budget balance. Our 
mechanism is based on the score-voting idea which has been 
used in the literature for designing centralized incentive 
mechanisms [56] (see “Related literature” for more details). 
Specially, we design a distributed score-based multi-round 
(DSM) negotiation mechanism in which at each round, one 
agent, called the initiator, offers a set of possible agreements 
to its neighbors, called responders, and asks them to score 
the offers. The initiator evaluates the offers based on the 
received scores and makes a decision. To motivate respond-
ers to score offers truthfully, the initiator promises some 
future rewards in terms of an artificial currency. Rewards 
are determined based on the scores the responders give to 
the offers and designed so as to incentivize them to give true 
scores. The second role of the rewards is to drive the initia-
tor away from its selfish behaviour and motivate it to make 
socially optimal decisions based on the received scores. We 
guarantee faithfulness of the mechanism by setting non-
manipulable rules. To test the effectiveness of the proposed 
mechanism, several benchmarks are adopted to demonstrate 
the performance in terms of social-welfare, privacy loss and 
convergence speed, where the privacy loss is measured by 
a novel privacy metric introduced in the paper. The results 
show that the minimum and maximum number of agree-
ments that the agents are allowed to discuss at each round 
are control parameters that balance the tradeoff between 
these performance metrics.

For the proposed mechanism, we determine the optimal 
strategies of both the initiator and the responders at each 
round. To find the initiator’s optimal offering strategy, 
we formulate the problem as a Markov Decision Process 
(MDP). To solve the MDP without requiring complete 
information about the expected future utilities, we devise a 
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reinforcement learning algorithm that allows the initiator to 
learn the expected utilities and eventually its optimal offer-
ing strategy, in a trial-and-error fashion. We also provide a 
heuristic offering strategy that eliminates the need for learn-
ing and hence significantly reduces the time-complexity. We 
show by numerical simulations that this heuristic strategy 
performs very closely to the optimal policy.

The rest of the paper is organized as follows: After a 
review of the main relevant literature (“Related literature”), 
a description of the general model of the multi-agent agree-
ment problem is given in “Strategic multi-agent negotia-
tion over a communication graph”. In “Privacy leakage”, 
we present a metric to quantify the privacy leakage in a 
negotiation mechanism. In “The distributed score-based 
multi-round negotiation mechanism”, we formulate piMAP 
as a mechanism design problem and introduce a novel dis-
tributed incentive mechanism to solve it. We establish the 
properties of the proposed mechanism in “Properties of the 
mechanism”. In “Initiator’s optimal offering strategy”, we 
study the initiator’s behavior in the mechanism and present 
both an optimal and a heuristic, but less complex, strategy 
to maximize its utility. In “Numerical results”, we evaluate 
our proposed mechanism by simulations compared to several 
benchmarks. We conclude our paper in “Conclusions and 
future work”. Short proofs are in the main text, while more 
technical proofs are deferred to the Appendix.

Related Literature

Multi-agent agreement problems are a special form of the 
well known distributed constraint optimization problem 
(DCOP) [61] for modeling multi-agent coordination tasks. 
DCOPs assume that a set of decision variables are distrib-
uted among a set of agents and constraints among the vari-
ables require agents to coordinate their decisions. As a strict 
subset of DCOP intended to model “agreement”, MAPs 
require that constraints between variables belonging to dif-
ferent agents are limited to equality constraints.

Several distributed algorithms designed originally for 
general DCOPs (and hence applicable to MAPs) currently 
exist. Most of these algorithms have been proposed to solve 
classical DCOPs where all decision variables and constraints 
are known a priori and agents are fully cooperative. These 
algorithms can be classified as being either exact or non-
exact, based on whether they can guarantee to return the 
optimal solution or they trade optimality for shorter running 
times, producing near-optimal solutions. Some representa-
tive examples of the first group are SyncBB [41], ADOPT 
[61], DPOP [74], AFB [34], BnB-ADOPT [96], and PT-FB 
[52]. Some recent examples of the non-exact algorithms are 
GDBA [67], BMS [80], BnB-FMS [53], Max-Sum-ADVP 
[102], D-Gibbs [64], ACO-DCOP [13], and AED [55].

All the above-mentioned algorithms are offline mean-
ing that full information about the variables and constraints 
must be available in advance and then the decisions about 
all variables are made simultaneously. However, piMAP is 
incremental with some new decision variables and/or con-
straints being introduced over time. There are a number of 
algorithms that handle such dynamic DCOP problems [42, 
75, 89, 97]. Most of this work responds to the changes of 
the problem by resolving the DCOP every time such changes 
occur [75, 89, 97]. Such algorithms are not suitable for 
incremental MAPs in which the previous agreements should 
not change when the need for a new agreement arises.

There is also a strand of work focusing specifically on 
MAPs and designing more specialized (and potentially 
more efficient) algorithms for agreement problems [2, 8, 16, 
18–20, 47, 100, 104]. These MAPs are often studied in the 
domain of meeting scheduling where the attendees of each 
meeting must agree on a time and/or a place for the meeting 
[15, 104]. Some research efforts tackle meeting scheduling 
MAPs as offline problem [8, 18, 47], but the most relevant to 
our work are those approaches that study incremental MAPs 
[2, 16, 19].

The main and most well-known technique that is used in 
the literature for reaching an agreement in incremental set-
tings is negotiation [11, 14, 44, 62, 72, 82]. For instance, in 
[14] the authors present a negotiation mechanism that helps 
agents to make incremental agreements efficiently. However, 
most of the available negotiation mechanisms are designed 
for cooperative environments where the agents obey the 
rules without questioning or challenging them [11, 14, 44, 
62, 82]. In competitive environments where agents are self-
interested, each negotiation mechanism induces a game 
among agents [50, 81]. A number of papers use game theo-
retic techniques to study the interactions of self-interested 
agents in a negotiation game and to determine the outcome 
[5, 72]. Another class of works use mechanism design theory 
to design negotiation mechanisms so as to achieve desired 
outcomes [15, 98].

There is a long tradition of using mechanism design tech-
niques to manage distributed systems [15, 25, 27, 69]. Most 
of this work concentrates on problems where the informa-
tion is distributed but the mechanism is executed centrally 
by a trusted entity. In such settings, voting mechanisms 
are widely used to facilitate agreement [33]. In [3, 56], the 
authors present two sufficient conditions for a non-monetary 
voting mechanism, namely neutrality and elementary mono-
tonicity that guarantee its incentive compatibility. Neutrality 
means that every voting alternative is treated in the same 
way, i.e., the “names” of the alternatives do not matter [56]. 
Elementary monotonicity requires that if an alternative a 
is the outcome at a particular voting mechanism, then it is 
also the outcome of the vote where a single voter increases 
its vote to a. Scoring correspondences are a class of voting 
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mechanisms that satisfy neutrality and elementary monoto-
nicity and hence are incentive compatible [56]. In a scoring 
correspondence, the central authority asks each self-inter-
ested agent to give a score to each possible option. Then, it 
selects the option with the maximum aggregate score. The 
set of feasible scores that the agents are allowed to give to 
the options is determined by the central authority and distin-
guishes the different scoring correspondences.

The voting mechanisms, as well as the other incentive 
mechanisms presented in [15, 25, 27, 69], presume the exist-
ence of a central trusted entity. The first steps in providing 
a decentralized incentive mechanism were presented in [28, 
29]. In these mechanisms, both information and algorithm 
execution are distributed; however, the agents are assumed 
to have strategic behaviors only for information revelation, 
and not for mechanism execution. Starting from [70], a few 
research works have attempted to design faithful mecha-
nisms that are completely robust to manipulation [59, 60, 
73, 76, 83, 90, 91]. In [83], the authors introduce a general 
decomposition technique that splits a distributed algorithm 
into disjoint phases, each of which are provably robust 
against rational manipulation. This decomposition technique 
is powerful because it can allow an exponential reduction 
in the number of joint manipulation actions that must be 
checked in a faithfulness proof. In [76], the authors inte-
grate the DPOP algorithm with the Vickrey–Clarke–Groves 
(VCG) mechanism and introduce the first DCOP algorithm, 
named as M-DPOP, that provides a faithful distributed 
implementation for efficient social choice. The works of 
[90] and [91] provide two other VCG-based mechanisms 
for faithful implementation of dual decomposition and aver-
age consensus algorithms. The idea of faithful distributed 
implementation has been applied to real-world problems 
such as smart grid [60], electricity pricing [59], and wire-
less spectrum auctions [73]. However, in all available works 
in this area, agents are assumed to be privacy-neutral and 
hence have no objection to sharing their private information 
with others. Therefore, these mechanisms are not appropri-
ate for piMAP where agents are privacy-preserving and seek 
to reach an agreement with minimum privacy leakage.

Privacy is recognized as a key motivating factor in the 
design of several multi-agent algorithms, and research-
ers have introduced several types of privacy concerns that 
agents may have during a multi-agent encounter [24, 37, 39, 
40, 46, 48, 49, 88, 99]. In [46, 88], privacy is considered as 
the negotiation subject, however, the privacy loss caused by 
the exchange of messages during the algorithm is neglected. 
In [49], four notions of privacy are introduced to capture the 
agents’ privacy attitudes in the message exchange part of 
a DCOP algorithm: agent privacy where agents hide their 
identities, topology privacy where agents hide the topo-
logical structure of the constraint graph, constraint privacy 
where agents hide the constraints from the ones who are 

not involved, and decision privacy where agents hide their 
final decisions (see [24, 49] for more details). Out of these 
four privacy notions, constraint privacy, which has drawn the 
most attention in past research [21, 54, 85], is most relevant 
to our work. This is because in piMAPs, the information that 
the agents want to keep confidential is about their prefer-
ences and hence the constraints they must respect to satisfy 
their goals.

One approach to guarantee constraint privacy has been to 
use cryptographic techniques [99], but the required use of 
multiple external servers may not always be desirable, avail-
able or justifiable for its benefit. Instead, a second approach 
has attracted significant attention, where researchers provide 
metrics for measuring the extent of constraint privacy loss in 
multi-agent algorithms [30, 57, 84]. The most general work 
in this regard is [54] which proposed a unifying quantita-
tive framework, known as the Valuation of Possible States 
(VPS), for quantifying the privacy loss in a variety of multi-
agent algorithms. This framework led to entropy-based [8], 
proportional [54], and state-guessing metrics [38] that have 
been widely used in the literature. However, these metrics 
are unable to model the agents’ different and even contra-
dictory attitudes towards information sharing with different 
agents. One of our contributions in this paper is to introduce 
a privacy metric that resolves this drawback (see “Privacy 
leakage”).

As discussed above, both privacy issues and the selfish 
behavior of agents have been studied in a wide range of 
works, separately. However, there are only a few works that 
deal with agents that are both privacy-aware and self-inter-
ested [1, 43, 51, 65, 66, 101]. In [43, 51, 65, 66, 101] the 
authors focus on offline problems, while the problem stud-
ied in [1] is online. These works often consider differential 
privacy as their privacy notion and try to design incentive 
mechanisms such that the impact of a single agent’s revealed 
information on the final outcome is small. This notion is 
suitable for centralized settings when the agents have com-
plete trust in a central entity, but not in other agents. In such 
settings, the privacy-sensitive agents would like to make 
sure that announcing the final decision by the central entity 
does not disclose their private information. This notion is 
not applicable for settings without a central authority. There-
fore, the tools developed for designing differentially-private 
incentive mechanisms cannot be used to design our distrib-
uted incentive mechanism.

The mechanism designed in our paper can be viewed as a 
negotiation mechanism with an artificial or virtual currency. 
Virtual currencies were first introduced in online games and 
social networks as a means to buy and sell virtual goods 
without making use of real money, thus avoiding security 
issues, taxation, and mistrust [6]. Then, the idea has been 
adopted in non-cooperative networks to provide non-mone-
tary incentive mechanisms. The representative examples of 
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virtual currency systems have been used in non-cooperative 
systems are Bitcoin [63], Nuglets [12], and WhoPay [95]. 
The idea of incentivizing agents to make desirable actions 
by granting them some rewards in terms of an artificial cur-
rency has been applied to a few negotiation mechanisms 
[4]. However, all this work is for centralized settings. Our 
paper is distinct from this literature in that our proposed 
mechanism is designed for distributed settings with no cen-
tral authority.

Strategic Multi‑Agent Negotiation Over 
a Communication Graph

We formalize the private incremental multi-agent agreement 
problem (piMAP) with self-interested agents as a network 
in which at each instant of time, a selfish agent may need to 
make an agreement with some of its neighbors. Such agents 
negotiate with their neighbors to reach socially-acceptable 
agreements. The agents’ preferences over different agree-
ments, which are their own private information, determine 
their strategies in the negotiation.

We model a multi-agent system by an undirected 
graph G(V, E) , where the nodes V = {1, 2,… ,V} repre-
sent the agents, and the edges E ⊆ {{i, j}|i, j ∈ V, i ≠ j} 
represent reciprocal relationships among agents. An edge 
�ij = {i, j} ∈ E implies that agents i and j are socially-
connected to each other and may need to enter into a joint 
agreement. Social connections could include family, friends, 
co-workers and neighbors. We define the set of agent i’s con-
nections as Ni = {j ∈ V|{i, j} ∈ E}.

At some point t in time, an agent I(t) ∈ V may need to 
make an agreement with a group RI(t) ⊆ NI(t) of its connec-
tions. The subject of the agreement could be anything such 
as the time and/or the place of a meeting, a schedule for 
using a shared resource, or the allocation of a task. When 
the need for an agreement arises, agent I(t) initiates a nego-
tiation process N(t) and contacts other agents RI(t) . In this 
negotiation, agent I(t) is called the initiator and other agents 
RI(t) are called the responders. The set of all participants of 
the negotiation N(t) is denoted by A(t) = RI(t) ∪ {I(t)} . We 
denote the set of all possible outcomes of the negotiation 
N(t) by O(t) = {Ot,0,Ot,1,… ,Ot,o(t)} , where Ot,0 represents 
the disagreement outcome and o(t) represents the number of 
possible agreements at N(t).

The agents are assumed to be self-interested, meaning 
they have some preferences over the outcomes and attend to 
their desires without any regard to the preferences of others. 
Each agent i ∈ A(t) has a valuation function

(1)Vi(t) ∶ O(t) → [V , V̄] ∪ {−∞},

that assigns a value to each possible outcome of the nego-
tiation N(t) . A valuation Vi(Ot,k) represents the value of 
agreeing on outcome Ot,k for agent i, where Vi(Ot,k) = −∞ 
means that the outcome Ot,k does not satisfy agent i’s con-
straints and hence is infeasible for it. Any outcome Ot,k with 
Vi(Ot,k) ≠ −∞ is defined to be feasible for agent i. We denote 
the minimum and maximum values of feasible outcomes by 
V  and V̄  , respectively.

Reaching an agreement is the agents’ main and uncom-
promisable goal in an agreement problem. Therefore, direct-
ing the negotiation according to their own preferences is 
valuable for the agents as long as it does not prevent the 
agreement from being reached. This phenomenon can be 
clearly seen in the meeting scheduling application. In the 
meeting scheduling, all agents’ first priority is to set a meet-
ing. Therefore, the agents are reluctant to prevent a meet-
ing from being scheduled under the pretext of their indi-
vidual preferences. We capture this fact by the following 
assumption.

Assumption 1  Disagreement has an infinite cost for the 
agents 1

Agents are not aware of the other agents’ valuation func-
tions Vi(.) . However, they have a common belief about the 
strictness of each agent’s feasibility constraints. We define 
each agent i’s strictness coefficient di ∈ [0, 1] as the prob-
ability by which an arbitrary outcome is infeasible for agent 
i, i.e. di = ℙ

(
Vi(Ot,k) = −∞

)
 . Agents with higher strictness 

coefficients are more strict in their preferences and hence 
fewer agreements can satisfy their requirements. In a meet-
ing scheduling application, for example, the strictness coef-
ficient is equivalent to the agent’s calendar density which 
is the proportion of busy hours in its calendar. During a 
negotiation, agents can build an estimation of their neigh-
bors’ strictness coefficients based on the messages they 
send. As time goes on, the estimations are likely to become 
more accurate and approach the actual di s. In this paper, we 
assume that each agent has a rich history of interactions with 
its neighbors and hence has an accurate estimation of their 
strictness coefficients.2

In addition to the final outcome, the agents are also con-
cerned about the following two matters: 

(2)Vi(Ot,0) = −∞,∀i, t.

1  There are other approaches in the literature that map the disagree-
ment outcome to a finite negative value [62]. Designing a faithful 
and privacy-preserving incentive mechanism under such setting is a 
potential area for further investigation.
2  In “Initiator’s optimal offering strategy”, we will discuss what will 
happen if this information is not available.
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(a)	 the speed of convergence; and
(b)	 the amount of information they share during the nego-

tiation process.

Speed of convergence refers to the number of rounds Z 
needed until the negotiation process converges towards an 
outcome. Agents prefer negotiations that take fewer rounds 
to finish, as they require agents to use less communication 
resources. We denote the value agent i assigns to the com-
munication resources it utilizes in each round of the negotia-
tion by a bargaining cost �i ≥ 0 . Therefore, the cost incurred 
by agent i when it participates in Z rounds of negotiation is 
�iZ.

The agents are privacy-aware and prefer not to share their 
private information with others. We denote agent i’s privacy 
sensitivity when it shares its information with agent j by 
�ij ≥ 0 , where a higher �ij means that agent i is less keen 
to reveal its information to agent j. The amount of agent 
i’s information that is leaked by sending a set of messages 
Mi→j to agent j in negotiation N(t) is captured by a leakage 
function Li,j(Mi→j) . We will detail how to design the leakage 
function in “Privacy leakage”.

Based on the discussion above, we model agent i’s utility 
from the negotiation N(t) as follows:

When agent i participates in negotiation N(t) , it cares about 
the utility Ut

i
 it receives in N(t) as well as the expected utili-

ties it can collect in future negotiations. At each time t, agent 
i has a belief �t

i
 about the number of future negotiations it 

might need to participate. Therefore, it chooses its strategy at 
time t so as to maximize its expected total utility from time t 
onward. Before modeling the agents’ expected total utilities 
mathematically, let’s first introduce the following assump-
tion and discuss how to handle the issues caused by it.

Assumption 2  Each agent i’s personal parameters, includ-
ing its value function Vi(.) , its bargaining cost �i , its privacy 
sensitivities �ij , for j ≠ i , and its belief function �t

i
 , for all t, 

are its own private information and cannot be observed by 
any other agent. These private valuations will be addressed 
as agents’ types.

According to (3) and Assumption 2, agents’ preferences 
over different negotiation strategies are determined based on 
their types which are unknown to others. Therefore, to assure 
that all selfish agents follow their required actions in the 
negotiation, including information-revelation, computation 
and message passing, a faithful incentive mechanism must 

(3)

Ut
i
(Ot,k, Z, {Mi→j}j∈A(t)) = Vi(Ot,k) − �iZ −

∑

j ∈ A(t)

j ≠ i

�ijLi,j(Mi→j).

be designed so as to provide appropriate incentives to agents 
of any type to follow their prescribed strategies.

Due to practical concerns discussed in “Introduction”, 
we restrict attention to non-monetary incentive mechanisms 
with an artificial currency [22]. For ease of reference, in this 
paper, we call this type of currency “the convenience point”. 
In this class of mechanisms, the agents receive rewards in 
terms of convenience points, based on their level of coopera-
tion. For example, the rewards granted to an agent i could 
be an increasing function of the number of other agents’ 
proposals that are accepted by agent i during the negotiation. 
The mechanism must define a usage for convenience points 
to make them valuable for the agents. This goal is often 
achieved by making some desirable actions that agents can 
do in the negotiation, such as making or rejecting a proposal, 
costly.

The convenience point is the link between the agents’ 
current decisions and the utility they can gain in the future. 
The more cooperatively an agent i behaves in the current 
negotiation, the more convenience points and hence more 
negotiation power it will have in the future. To capture this 
phenomenon, we model the expected total utility from time t 
onward for an agent i with budget of bi(t) convenience points 
at time t as

where Ut
i
 is agent i’s instant profit at negotiation N(t) derived 

by (3), �t
i
(k) is agent i’s belief for participating in k negotia-

tions after time t, and �[Ut+1∶∞
i

|k negotiations, bi(t + 1)] is 
agent i’s expected utility from time t + 1 onwards if it par-
ticipates in k negotiations with the initial budget of bi(t + 1) . 
The function �[Ut+1∶∞

i
|k negotiations, bi(t + 1)] is increasing 

in terms of the budget bi(t + 1) , as an agent with a higher 
budget can influence the negotiations more significantly and 
hence better manipulate the process to its own advantage.

Each agent i is a long-run optimizer and hence chooses 
its negotiation strategy so as to maximize (4). Based on (4), 
there is a tradeoff between the agent’s current-negotiation 
utility and the utility it can derive from future negotiations. 
To increase the total profit, agent i can spend more points 
and influence the current negotiation to its own advantage, 
however, doing this reduces its remaining points for the 
future negotiations and hence reduces its future utilities. The 
tipping point of this tradeoff at any time t depends on (i) the 
budget bi(t) of convenience points that is available to agent i 
at time t, and (ii) the belief function �t

i
 agent i has about the 

number of future negotiations. An agent with a low budget 
that believes that it should participate in many negotiations 
in the future might prioritize collecting points over reaching 
a desirable agreement in the current negotiation. However, 
an agent with a large number of points in its pocket or one 

(4)

�[Ut∶∞
i

|bi(t)] = �[Ut
i
] +

∑
k

�t
i
(k)�[Ut+1∶∞

i
|k negotiations, bi(t + 1)],
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that believes that it is participating in its last negotiation, 
might be not worried about spending its points to drive the 
negotiation to its most preferable agreement.

Our goal in this paper is to design an incentive mecha-
nism based on convenience points to motivate agents with 
any budget and any belief to act faithfully in the negotia-
tions. Designing the reward function, that determines how 
the points are distributed among the agents, and the cost 
function, that determines how the points can be used by 
the agents to influence the outcomes, are our main tools to 
achieve this goal. We discuss our design method thoroughly 
in “The distributed score-based multi-round negotiation 
mechanism”. Before going to “The distributed score-based 
multi-round negotiation mechanism”, however, in the next 
section, we complete the definition of agents’ utility function 
by introducing a privacy leakage function L(.) that captures 
the agents’ willingness to hide their private information.

Privacy Leakage

As discussed in “Strategic multi-agent negotiation over a 
communication graph”, the agents are privacy-aware and 
incur some cost from the leakage of their private information 
to others. For instance, in a meeting scheduling application, 
the agents might have some private events in their calendars 
that they do not want to share with others. For example, 
an employee may need to go out of the office on Thurs-
day morning for a personal matter and does not want their 
employer to know this. Therefore, in a negotiation to set a 
work meeting, they prefer not to announce their unavail-
ability on Thursday morning. Similarly, in negotiations for 
solving task allocation problems an agent may want to hide 
its inability to do a particular task from the others.

The above examples show that in many real-life negotia-
tions, the agents consider the feasibility or infeasibility of 
different possible agreements for them as private and would 
like to hide this information from others. In the subsection 
below, we develop a privacy metric that measures the agents’ 
privacy loss in a negotiation and then discuss the main fea-
tures of this metric in “Properties of the privacy leakage 
function.”

The Privacy Metric

We make use of the Valuation of Possible States (VPS) 
framework [54] to quantify the privacy loss from each agent 
i ∈ A(t) to each agent j ≠ i during a negotiation. In VPS, 
agent i’s private information is modeled as a state s ∈ S , 
where S is a set of all possible states that i may occupy. 
At each instant of time, agent i puts a value on each pos-
sible belief that agent j could have about i’s state. Agent 
i’s privacy loss during a negotiation with respect to j is the 

difference in the valuations of agent j’s belief before and 
after the negotiation.

Now, to apply VPS to the MAP studied in this paper, we 
define a belief function Belj,i ∶ O(t) ×M → [0, 1] that 
returns the belief of agent j in the feasibility of different 
outcomes for agent i as a function of the messages it has 
received so far. We denote the set of messages agent j 
received from agent i before the start of the negotiation N(t) 
by M0

i→j
(t) . This set includes all the messages agent j receives 

from i in previous negotiations. Keeping track of the entire 
history of messages can become cumbersome, but fortu-
nately each agent’s belief about other agents is a sufficient 
statistic for the complete history. Therefore, in practice, the 
agents only need to store their beliefs and update them by 
applying Bayes rule when a new message arrives.3

To employ the idea of VPS, we also need to define a value 
function �ij that captures the value agent i assigns to each 
belief of agent j. Then, the amount of agent i’s privacy that 
is leaked to agent j during negotiation N(t) can be defined 
as follows:

where Belj,i(.,M) = (Belj,i(Ot,1,M),… ,Belj,i(Ot,o(t),M)) is a 
belief vector that represents agent j’s belief about the feasi-
bility of all possible agreements for agent i.

As discussed in “Related literature”, the value functions 
that have been previously used in the literature are unable 
to model the agents’ different and even contradictory atti-
tudes towards information sharing with different agents. In 
practice, each agent i may have different preferences related 
to the beliefs of different agents. For example, in a meeting 
scheduling problem, an agent may want to hide their unavail-
ability to meet at a certain time from their boss, but prefer 
their other colleagues to know their unavailability so that 
they can help to push the meeting to another date.

To model this behavior, we define an ideal belief function 
Di,j ∶ O(t) → [0, 1] that represents how agent i likes agent j 
to think about it. The ideal beliefs are generally audience-
dependent as the agents’ privacy concerns may vary across 
different audiences. Agent i uses ideal function Di,j as a 
touchstone to determine the value of belief Belj,i(.,M) of 
agent j. The comparison of the beliefs can be done based on 
any vector norm ‖.‖ . In this work, we choose weighted L1 
norm to measure the distance between Belj,i(.,M) and Di,j . 
The reasons of this selection are: (1) the weighted L1 norm 

(5)
Li,j(Mi→j) = �ij(Belj,i(.,M

0
i→j

(t))) − �ij(Belj,i(.,M
0
i→j

(t) ∪Mi→j)),

3  In any particular negotiation with selfish agents, each agent j also 
has a belief about whether the messages it has received from i are 
correct or misleading. However, our goal in this paper is to design 
a mechanism in which agents always tell the truth. Therefore, the 
agents can always trust in the information they receive and use that to 
build their beliefs.
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simplifies the calculations by treating the leak of information 
about different outcomes independently, and (2) the use of a 
weighted norm allows us to capture the fact that some bits of 
information may be much more sensitive than others (e.g. an 
agent may wish to keep several secrets, but some are much 
more important than others).

The weighted L1 norm of a column vector q is

where w > 0 is a fixed column weight vector. Using this 
norm, we define the value function 𝕍ij ∶ [0, 1]o(t) → ℝ as

This function takes value 0 when agent j has the ideal belief 
Di,j(.) and takes a negative value with magnitude of the dis-
tance between Belj,i(.,M) and Di,j(.) , otherwise. The weight 
vector wi > 0 , can be arbitrarily selected by each agent i.

Substituting (7) in (5), the privacy loss of agent i to agent 
j during negotiation N(t) can be derived as

Properties of the Privacy Leakage Function

The privacy metric of “The privacy metric” has two main 
features.

Feature 1. The ideal belief function Di,j is a powerful 
tool for modeling the agents’ different attitudes towards their 
privacy information. For example,

–	 Di,j(Ot,k) = 1 (or Di,j(Ot,k) = 0 ) implies that agent i 
wishes to persuade agent j that outcome Ot,k is feasible 
(infeasible) for it; e.g. during a negotiation to set a meet-
ing, an employee aims to persuade their boss that they 
are available to meet at any time the boss wants.

–	 Di,j(Ot,k) = 0.5 means that agent i wants to maximize 
agent j’s uncertainty (entropy) about its personal infor-
mation; e.g. in a negotiation before a common-value auc-
tion, the auctioneer is very careful to reveal no informa-
tion about its reserve price [92]. The reserve price is a 
threshold indicating the lowest price the auctioneer is 
willing to accept for selling the good. Disclosure of this 
information discourages some bidders with low budgets 
from participating. As a result, their information about 
the value of the good plays no role in the auction even 
though it may be relevant for the valuation of other bid-

(6)‖q‖1,w = ‖wT
q‖1 =

�
k

wk
��qk��,

(7)

�ij(Belj,i(.,M)) = −‖Belj,i(.,M) − Di,j(.)‖1,wi

= −

o(t)�
k=1

wi,k
���Belj,i(Ot,k,M) − Di,j(Ot,k)

���.

(8)
Li,j(Mi→j) = ‖Belj,i(.,M0

i→j
(t) ∪Mi→j) − Di,j‖1,wi

− ‖Belj,i(.,M0
i→j

(t)) − Di,j‖1,wi
.

ders. The consequence is to prevent some sales from 
being made even though the aggregate information would 
imply that a transaction should occur. This decreases the 
auctioneer’s revenue and hence is not in its interest.

–	 Di,j(Ot,k) = �(Vi(Ot,k) = −∞) , where �(.) is the indicator 
function, implies that agent i wants to twist the truth and 
distort reality; e.g. to set a trap for a repairman thief, a 
detective may request a repair and then, during the nego-
tiation to set a time, tell the repairman that no one is at 
home at times they actually are.

The ability to model the agents’ different attitudes towards 
their privacy information is an important feature which is 
missing in the existing privacy metrics. Considering a fixed 
and identical attitude towards sharing information with all 
other agents is simply unrealistic.

Feature 2. The privacy metric Li,j defined in (8) is able 
to model the possible correlations among the feasibility of 
different agreements for an agent. In many negotiations, the 
possible outcomes are correlated. In this contect, outcomes 
Ot,k and Ot,k′ are said to be correlated if the feasibility of one 
of them gives some information about the feasibility of the 
other. For example, in meeting scheduling, an agent may 
have some side information about the pattern of agent i’s 
calendar. This side information could be the length or repeat 
frequency of agent i’s meetings, or the length of breaks it 
normally has between meetings. In this situation, knowing 
that agent i is free or busy at a time slot may reveal some 
information about its availability at other time slots.

Task allocation is another example in which correlation is 
significant. Consider an outcome in which both tasks 1 and 2 
are assigned to agent i. If this outcome is infeasible for agent 
i, we can conclude that agent i is unable to perform either 
task 1 or 2 or it cannot do both of the tasks simultaneously. 
In this case, any outcome in which both tasks 1 and 2 are 
assigned to agent i is definitely infeasible for it. Moreover, 
this information decreases other agents’ beliefs on the fea-
sibility of outcomes that assign either task 1 or 2 to agent i.

As seen from the above examples, the indirect leakage of 
information is present in many real life problems. Therefore, 
it is essential for a privacy metric to be able to model this 
feature. The privacy leakage function defined in (8) achieves 
this goal through the posterior beliefs Belj,i(.,M0

i→j
(t) ∪Mi→j) 

that agents have about the feasibility of undiscussed out-
comes for other agents. In other VPS-based metrics available 
in the literature [54], the value function �  is defined based 
on the number of states that others believe to be possible for 
each agent i. Therefore, these metrics cannot model the cor-
relation unless the indirect leakage of information is strong 
enough to completely remove the possibility of an agent i’s 
state in others’ points of view. In contrast to this literature, 
our privacy metric can model even weak correlations.
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In connection with this feature, it is of interest to take a 
look at a special case where the agreements are independ-
ent. That means, discussing each outcome Ot,k provides no 
information about the feasibility of other outcomes. In this 
case, suppose that each agent j has a prior belief 1 − di that 
an outcome Ot,k  i s  feasible  for  agent  i ,  i .e . 
Belj,i(Ot,k,M

0
i→j

(t)) = 1 − di . Then, the costs for privacy loss 
w h e n  a g e n t  i  r e v e a l s  f e a s i b i l i t y  ( i . e . 
Belj,i(Ot,k,M

0
i→j

(t) ∪Mi→j) = 1 )  or  infeasibi l i ty ( i .e . 
Belj,i(Ot,k,M

0
i→j

(t) ∪Mi→j) = 0 ) of this outcome are

and

respectively. These results will be used in “Initiator’s opti-
mal offering strategy7” to design the initiator’s optimal 
negotiation strategy.

Feature 3. In Feature 2, we discussed that the agents 
may have some side information about the correlation 
among the feasibility of different agreements for each other. 
This information is assumed to be common knowledge and 
fixed. However, in some applications, the agents may receive 
private signals over time that are informative about other 
agents’ preferences. These signals may impact the agents’ 
beliefs about others and hence their privacy losses.

When such private information is available, we denote the 
posterior belief of an agent j about the feasibility of agree-
ment Ot,k for agent i by Belj,i(Ot,k,M

0
i→j

(t) ∪Mi→j, S
n
j
) , where 

Sn
j
 represents the signals received by agent j up to round n of 

negotiation N(t) . Using this notation, we can derive the 
amount of agent i’s privacy that is leaked to agent j during 
negotiation N(t) as

The main difference between this case and the former one 
without private signals is that in the latter case each agent’s 
utility depends not only on its own private information, but 
also on other agents’ private information. This property is 
known in the literature as interdependent valuations [27, 58]. 
Agents with interdependent valuations, choose their actions 
so as to maximize the expected utility they can collect, 
where the expectation is taken with respect to the signals 
other agents may receive.

(9)

Li,j(Ot,k is feasible for i) = wi,k

(
1 − Di,j(Ot,k) −

|||1 − di − Di,j(Ot,k)
|||
)

= wi,k(min (di, 2(1 − Di,j(Ot,k)) − di)),

(10)

Li,j(Ot,k is infeasible for i) = wi,k

(
Di,j(Ot,k) −

|||1 − di − Di,j(Ot,k)
|||
)

= wi,k(min (1 − di, 2Di,j(Ot,k) − 1 + di)),

(11)Li,j(Mi→j, S
n
j
) = �ij(Belj,i(.,M

0
i→j

(t), S0
j
)) − �ij(Belj,i(.,M

0
i→j

(t) ∪Mi→j, S
n
j
)).

The privacy leakage function presented in this section 
completes the description of the agents’ preferences in our 
model. In the next section, we present an incentive mecha-
nism to solve the problem of designing a faithful negotiation 
protocol for privacy-aware agents.

The Distributed Score‑Based Multi‑Round 
Negotiation Mechanism

In this section, we present a distributed negotiation mecha-
nism that privacy-aware agents can employ to reach an 
agreement. This mechanism is faithful, and gives sufficient 
incentives to the selfish participants to follow its rules. The 
mechanism is individually rational (IR) as well, meaning 
that the utilities the agents get in this mechanism are at least 
as much as the utilities they get when they do not participate 
in the mechanism [7]. This feature which is also known as 
voluntary participation, is important as the selfish agents 
are not forced to join the mechanism. We first describe 
informally the idea behind our mechanism in “Key intui-
tions” and then go on to the formal description in “Formal 
description”.

Key Intuitions

As we discussed in “Related literature”, scoring correspond-
ences have been widely used in the literature for solving 
agreement problems. However, these mechanisms are not 
directly applicable for distributed piMAPs with self-inter-
ested agents due to the following two drawbacks: (1) Scor-
ing correspondences are designed for centralized settings 
where a trusted central entity exists and is responsible for 
running the mechanism. This class of mechanisms provides 
appropriate incentives for the agents to score the candidates 
truthfully, by promising that the central authority selects the 
option with the maximum aggregate score. However, in a 
distributed setting, the agents act strategically and if any of 
them asks others to score some outcomes, it is clear that it 

will select its own most preferable outcome among those 
that are feasible for others. (2) In scoring correspondences, 
the agents’ preferences over all possible options are collected 
in one round to calculate the socially-optimal outcome. In 
these mechanisms, similar to the direct mechanisms, the pri-
vacy leakage is too high to be meaningful in an agreement 
problem with privacy-aware agents.

To solve these drawbacks, we propose a novel Distributed 
Score-based Multi-round (DSM) negotiation mechanism 
based on an artificial currency. Making payments in terms 
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of an artificial currency, which we call “convenience points” 
(“Strategic multi-agent negotiation over a communication 
graph”), is our main tool to provide a faithful implementa-
tion of scoring correspondences in distributed settings. The 
main role of the convenience points is to make the selfish 
initiator sensitive to the responders’ opinions. In this mecha-
nism, the number of points (i.e. subsidy) the initiator must 
give to an agent to persuade it to accept an agreement is 
inversely proportional to the score s it gave to that agree-
ment. Therefore, the total cost incurred by the initiator to 
get everyone’s consent for an agreement is inversely propor-
tional to the responders’ total satisfaction with that agree-
ment. This cost aligns the initiator’s total utility with the 
social-welfare; that is, the higher satisfaction an agreement 
provides to the participants, the more attractive it is to the 
initiator.

In general, adding a virtual currency to a scoring cor-
respondence can ruin its incentive compatibility. This is 
because the responders are not concerned only about the 
final agreement anymore, but also about the points they 
can collect. For example, a reward function that is decreas-
ing in terms of the scores might motivate the responders to 
give lower scores to the offers. To avoid this problem, we 
design a reward function that is (1) decreasing in terms of 
the score the agent gives to the selected agreement, and (2) 
increasing in terms of the degree of flexibility it shows in 
the negotiation. This means that if a responder announces to 
be generally more satisfied with the offers, it will get more 
points if one of its undesirable agreements is selected. Using 
this idea, we design the reward function such that the trade-
off between the benefits of giving low and high scores to 
the offers will make truth-telling the best strategy for the 
responders.

As discussed in “Strategic multi-agent negotiation over 
a communication graph”, a mechanism with an artificial 
currency must define a usage for the currency to make it 
valuable for the agents. In our mechanism, the usage of con-
venience points is twofold. If an agent acts as an initiator in 
a negotiation, it needs convenience points to get responders’ 
consent for the agreement it would like to select. The second 
usage is for responders who want to score the offers made 
by the initiator. Scoring is considered to be costly with the 
costs inversely proportional to the given scores. Therefore, 
the number of convenience points that an agent has is an 
indicator of the impact it can make in the future negotiations.

Formal Description

The DSM negotiation mechanism is multi-round, where each 
round consists of three stages: (1) Proposal, (2) Scoring, and 
(3) Assessment (see Fig. 1). Each round of the mechanism 
starts with the proposal stage in which the initiator proposes 

some agreements to the responders. The responders score 
the proposals at stage 2. Then, the initiator assesses the 
responses at stage 3. If the initiator finds any of the agree-
ments appealing at this stage, it announces the agreement 
publicly and goes to the Reward stage where it should give 
responders’ rewards. Otherwise, it goes to the next round 
and repeats stages 1–3 until a suitable agreement is found 
or no agreements remain undiscussed. In the following sub-
sections, we discuss the main stages of our mechanism in 
more detail.

Proposal Stage

The initiator offers between Lmin and Lmax agreements to the 
responders. We denote the number of proposals it makes at 
round n of negotiation N(t) by Ln(t) . These proposals are 
denoted by {O1

n
,… ,O

Ln(t)
n } ⊆ O(t) . The initiator extracts the 

responders’ opinions about these agreements at the scoring 
stage. Then, it decides whether any of the proposed agree-
ments are suitable. If the initiator finds none of the agree-
ments appealing, it is allowed to go to the next round and 
make some new offers, provided that it followed the rules at 
round n and offered at least Lmin agreements. Otherwise, the 
negotiation terminates at the end of round n, independent 
of whether or not agreement is achieved. This rule is set to 
encourage the initiator to make at least Lmin offers at each 
round of the negotiation.

Fig. 1   An overview (not detailed) flowchart of the DSM mechanism
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Scoring Stage

Responders are asked to score each of the offers O1
n
,… ,O

Ln(t)
n  

on a scale of 0 to D − 1 , where 0 means “infeasible”, 1 
means “Feasible but very unsatisfactory” and D − 1 means 
“Feasible and completely satisfactory”. The number of sat-
isfaction levels D ≥ 2 represents the number of rating lev-
els that are used by the agents to evaluate the suitability 
of different agreements. The responders who give score 
s ∈ {1, 2,… ,D − 2} to an agreement Ot,k accept it only if 
the initiator compensates them for the hardship they endure 
by giving them some convenience points. Two examples of 
hardship could be attending a meeting after work hours and 
doing a job for which the agent has no passion or inter-
est. The agents use these convenience points to score future 
offers.

We denote the score vector given by responder i at round 
n by �i,n = (s1

i,n
,… , s

Ln(t)

i,n
) , where sj

i,n
∈ {0, 1,… ,D − 1} indi-

cates how satisfied responder i is with the j-th agreement 
offered at round n.

We define some parameters related to the responder i’s 
scores at round n, as follows: 

1.	 Frequency Hs
i,n

 of each score s: This parameter is defined 
as the number of agreements to which responder i gives 
score s; that is 

2.	 Availability level Ai,n : This is the number of agreements 
responder i has announced to be feasible for it; that is 

3.	 Degree of Flexibility Fi,n : The flexibility responder i 
shows at round n of negotiation is defined as 

 This function gives the decimal value of number 
(HD−1

i,n
,… ,H1

i,n
) in base Ai,n + 1 . Therefore, a greater 

value of Fi,n means responder i has announced to be 

more satisfied with the agreements offered at round n. 
Function F is invertible; meaning that for each i and n, 
given Ai,n + 1 , the vector (HD−1

i,n
,… ,H1

i,n
) can be recon-

structed from the flexibility Fi,n.

(12)Hs
i,n

=
∑
j

�(s
j

i,n
= s).

(13)Ai,n =

D−1∑
s=1

Hs
i,n
.

(14)Fi,n =

D−1∑
s=1

(Ai,n + 1)s−1Hs
i,n
.

Scoring is costly. The agents need to spend C(s) points to 
give a score s to an offer. The cost function C(s) is given by

where sign (s) is equal to + 1 , − 1 , or 0, as s is positive, nega-
tive, or zero, respectively. Based on (15), the agents can 
report infeasibility of an agreement and their complete satis-
faction, free of charge, by giving scores 0 and D − 1 , respec-
tively. However, reporting “feasibility but lack of complete 
satisfaction” requires spending points. The number of points 
an agent needs to spend to give score s to an agreement is a 
decreasing linear function of s. Using (15) and (12), we can 
derive the total cost to responder i, for giving scores �i,n to 
the offers of round n as

As discussed earlier, the frequency variables Hs
i,n

 , 
s ∈ {1,… ,D − 1} can be uniquely determined by the avail-
ability level Ai,n and the degree of flexibility Fi,n . Therefore, 
the cost Ci,n of agent i’s scoring at round n can be consid-
ered as a function of Ai,n and Fi,n , and hence represented as 
C(Ai,n,Fi,n).

The initiator collects the points used by responders for 
scoring at round n, if it finds a suitable agreement at round 
n. Otherwise, the points are refunded to the responders.

Assessment Stage

After receiving the responders’ scores �i,n , i = 1,… ,M , 
the initiator evaluates all offers {O1

n
,… ,O

Ln(t)
n } and decides 

which, if any, of them are suitable to be selected. Since the 
initiator is selfish, it does this evaluation based on its own 
utility. According to (4), the initiator’s goal is to maximize 
its forward utility

where the first term on the right represents the initiator’s 
instant profit in negotiation N(t) and the second term repre-
sents its expected utility in the future negotiations. Based on 
(3), the initiator’s instant profit from selecting any agreement 
O

j
n at round n of negotiation N(t) is

The final agreement must be feasible for all participants. 
Therefore, the initiator’s utility would be −∞ , if the agree-
ment is not feasible for at least one responder. For the 

(15)C(s) = (D − s − 1) sign (s),

(16)Ci,n =

D−1∑
s=0

C(s)Hs
i,n

= C(Ai,n,Fi,n).

(17)

�
[
Ut∶∞

I
||bI(t)] = Ut

I
+
∑
k

�t
I
(k)�

[
Ut+1∶∞

I
|k negotiations, bI(t + 1)

]
,

(18)Ut
I
(Oj

n
) =

�
VI(O

j
n) − 𝛽In −

∑
i ∈ RI(t)

𝜃IiLI,i(MI→i), If s
j

i,n
> 0 for all i,

−∞, Otherwise.
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agreements that are feasible for all agents, the initiator’s 
instant profit is computed as the difference between the value 
it gains and the costs it incurs. The initiator gains value 
VI(O

j
n) from making agreement Oj

n , and incurs costs of �In 
and 

∑
i ∈ RI(t)

�IiLI,i(MI→i) , from running the mechanism 

for n rounds and losing its privacy in communications with 
different responders, respectively.

The cost terms in the initiator’s instant utility function 
(18) are independent of the selected outcome Oj

n ; they 
are just affected by the number of execution rounds and 
the offers the initiator makes at each round. Therefore, 
the initiator considers the cost terms when it is deciding 
whether to choose an agreement at this round or go to the 
next round; but it disregards them when it is comparing 
the offers within one round. When the initiator decides 
round n is the final round of negotiation, it chooses an 
agreement Oj

n that is feasible for everyone and maximizes 
VI(O

j
n) +

∑
k �

t
I
(k)�

�
Ut+1∶∞

I
�k negotiations, bI(t) + BI

�
, 

where the second term is an increasing function of the ini-
tiator’s point income BI.

The initiator’s point income BI is the difference between 
the points it collects during the negotiation and the points 
it spends. The initiator neither spends or collects any 
points at the pre-final rounds. However, at the final round, 
it collects the points that responders spend for scoring the 
offers and awards some points to the responders that are 
not completely satisfied with the final choice. The num-
ber of points that must be awarded to a responder i when 
agreement Oj

n is selected is determined by a reward func-
tion r(sj

i,n
,Ai,n,Fi,n, Ln(t)) . This function determines each 

responder i’s reward based on its score sj
i,n

 to the selected 
outcome Oj

n , the availability Ai,n and the flexibility Fi,n it 
announces for the whole offer set, and the number Ln(t) of 
offers made by the initiator at round n. In “Reward stage”, 
we will fully explain the design of the reward function r(.). 
This function is designed so as to be decreasing in terms of 
the score sj

i,n
 and increasing in terms of the flexibility Fi,n.

From the discussions above, we can derive the initiator’s 
points income in the negotiation N(t) as

The reward function is a decreasing function of the score 
the responder gives to the selected outcome. Therefore, the 
initiator’s point income BI is directly proportional to the 
responders’ total satisfaction with the final agreement. For 
a fixed set of offers, the initiator can collect more points by 
choosing an agreement that is more favorable to the respond-
ers. However, the initiator has a personal preference VI(.) 
over the agreements, as well. Therefore, the selfish initiator 
that maximizes the sum of VI(.) and an increasing function 
of BI faces a tradeoff between its own preferences and the 

(19)BI =
∑

i∈RI (t)

C(Ai,n,Fi,n) −
∑

i∈RI (t)

r(s
j

i,n
,Ai,n,Fi,n, Ln(t)).

social-welfare. It can determine the best point of this tradeoff 
by solving the following optimization problem:

Let j∗ denote the solution of the optimization problem (20). 
O

j∗

n is the best agreement for the initiator among those offered 
at round n. However, the initiator has an option to not select 
any agreement at round n and move forward to the next 
round. In this case, the mechanism does not let the initiator 
go back to the agreements it previously offered. This rule is 
designed to encourage the initiator to choose the final agree-
ment as soon as possible. If the initiator rejects a feasible 
agreement at round n and moves to the next round, there 
is a risk that no other feasible agreement can be found and 
hence disagreement happens. To avoid this risk, the initiator 
prefers to make an agreement as soon as it can.

Reward Stage

When the initiator finds an agreement Oj∗

n appealing at round 
n, the negotiation moves to the final stage, which is called 
the reward stage. In this stage, the initiator awards the prom-
ised rewards to the responders. Rewards are determined 
based on the scores the responders gave to the offers and 
must be designed so as to incentivize responders to give 
true scores.

To incentivize agents to score the offered agreements 
truthfully, we design reward function r(.) such that it satis-
fies the following conditions: 

(a)	
 where P(s, A, F, L) is the probability that a responder 
with flexibility F that announced feasibility of A out of 
L agreements assigns to the fact that one of the agree-
ments it scored s will be selected by the initiator.

(b)	 r(s, A, F, L) is a decreasing function of s for s > 0.
(c)	 r(D − 1,A,F, L) = 0 , for all A,F, L ≤ Lmax.
(d)	 r(s,A,F, L) = ∞ , for all s,A,F, L > Lmax.
(e)	 r(.) is invariant to shifting of the scores. That is, 

�
�
i,n

= (�i,n + c) sign (�i,n) , where c ∈ {1,… ,D − 2} , 
implies that r(s�,A�,F�, L) = r(s,A,F, L).4

The intuitions behind the above conditions are as follows. 
Condition (a) guarantees that provided the agent gives 

(20)

max
j∈{1,…,Ln(t)}

VI(O
j
n
) +

�
k

�t
I
(k)�

�
Ut+1∶∞

I
�k negotiations,

bI(t) +
∑

i∈RI (t)
C(Ai,n,Fi,n) −

∑
i∈RI (t)

r(s
j

i,n
,Ai,n,Fi,n, Ln(t))

�
,

s.t. s
j

i,n
≥ 0, ∀i ∈ RI(t).

(21)

D−1∑
s=1

P(s,A,F, L)r(s,A,F, L) − C(A,F) = 0,

∀L ≤ Lmax,∀A ≤ L,∀F ≥ (A + 1)D−2,

4  It is clear that by this transformation, we have A� = A.
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score D − 1 to at least one offer (i.e. F ≥ (Ai,n + 1)D−2 ), the 
expected reward it gets minus the number of points it spends 
is zero. This expectation is computed based on the agent’s 
belief about the likely effectiveness of its scores on the selec-
tion of the final agreement. Condition (b) means that the 
agents that are less satisfied with the final agreement receive 
higher rewards. Condition (c) ensures that a responder that 
is announced to be completely satisfied with the chosen 
agreement receives no reward. Condition (d) means that the 
initiator that wants to offer more than Lmax agreements in 
one round, needs to pay an infinite number of points to the 
responders. This condition is set to prevent the initiator from 
violating the upper bound Lmax . Condition (e) determines the 
reward for scores with F < (Ai,n + 1)D−2 and guarantees that 
the reward function is only sensitive to the relative scores 
the agent gives to the offers and not on the absolute values. 
Based on the definition provided in condition (e), we call 
scores � and �′ shifted versions of each other, if (1) they mark 
the same agreements as infeasible, and (2) they differ only 
by a constant factor in the feasible agreements.

Theorem 1  For any fixed belief profile {P(s,A,F, L)}s,A,F,L 
with

(22)
D−2∑
s=1

P(s,A,F, L) ≠ 0,

f o r  a l l  A ≤ L ≤ Lmax  a n d  F  s u c h  t h a t 
mod (F, (Ai,n + 1)D−2) > 0 , the system of equations defined 
in (21) has a solution that satisfies (b)–(e).

Theorem  1 proves that for a fixed belief profile 
{P(s,A,F, L)}s,A,F,L , we can find a reward function r(.) 
that satisfies all the desirable conditions (a)–(e). However, 
probabilities {P(s,A,F, L)}s,A,F,L are not independent of the 
reward function, but a function of it. The reason is as fol-
lows. The probabilities {P(s,A,F, L)}s,A,F,L depend on the 
initiator’s strategy in selecting the final agreement. The opti-
mization problem (20) shows that the initiator’s strategy is 
determined based on the reward function r(.). Therefore, to 
derive a belief profile and reward function that are consist-
ent with each other, we have to run Algorithm 1. This algo-
rithm works by first considering an arbitrary reward function 
r(.) that satisfies conditions (b)–(e). These conditions are 
weak and easily satisfied. Then it calculates probabilities 
{P(s,A,F, L)}s,A,F,L that match with the selected reward func-
tion and updates function r(.) based on equation (21) and 
conditions (b)–(e). This procedure repeats until convergence 
is reached. Theorem 1 ensures that the algorithm will never 
stick in Line 5 because of not finding a solution to the set 
of equations (21). In practice, Algorithm 1 converges to a 
solution in a few iterations.5

5  The formal proof of the convergence of Algorithm 1 is a challeng-
ing open question and is left for our future work.

We represent the DSM negotiation mechanism designed 
in this section by Γ = (Lmin, Lmax,D, r(.)) . The correspond-
ing pseudo-code of this mechanism is given by Algorithm 2. 
Briefly, when the need for an agreement arises, the initia-
tor I(t) starts a negotiation process by offering some agree-
ments to the responders RI(t) (Lines 2–7). The number of 
offers at each round is one of the initiator’s decision vari-
ables. Receiving the offers, responders use their convenience 
points to express their preferences over the offers (Line 8). 
Then, the initiator evaluates each offer based on the utility 
it provides to it (Line 9). If the initiator finds any of the 
agreements acceptable, it will announce it and terminate the 

negotiation by paying the rewards (Lines 10–13). Otherwise, 
it will go to the next round if Ln(t) ≥ Lmin (Lines 14–21). 
At each instant, the agreement indicator ag ∈ {0,±1} shows 
whether the negotiation is in process ( ag = 0 ), ends by 
agreement ( ag = 1 ), or ends by disagreement ( ag = −1 ). The 
MATLAB code of negotiation based on the DSM mecha-
nism is publicly available at https://​github.​com/​ffarh​adi20/​
Distr​ibuted-​Score-​based-​Multi​round-​Mecha​nism.

https://github.com/ffarhadi20/Distributed-Score-based-Multiround-Mechanism
https://github.com/ffarhadi20/Distributed-Score-based-Multiround-Mechanism
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Properties of the Mechanism

In “The distributed score-based multi-round negotiation 
mechanism”, we designed a mechanism to be followed by 
the agents to make an agreement. However, since selfish 
agents always try to maximize their utilities, they may cheat 
and deviate from the specified rules if it is advantageous. 
For example, at the proposal stage, the initiator may offer 
less than Lmin agreements, when it can do otherwise, or at 
the reward stage the initiator may refuse to pay the respond-
ers’ rewards.

Definition 1  The initiator is faithful to the mechanism 
Γ = (Lmin, Lmax,D, r(.)) , if it follows all the following rules: 

	 (I1)	 At a proposal stage, it offers no less than Lmin and 
no more than Lmax agreements, when it can do so.

	 (I2)	 At a proposal stage, it chooses an offer size such 
that the maximum budget needed for selecting a 
feasible agreement is below its available budget.

	 (I3)	 At an assessment stage, it selects the solution of the 
optimization problem (20) as the final agreement, 
if the feasible set is not empty.

	 (I4)	 At the reward stage, it awards the promised rewards 
to the responders.

Satisfaction of Rule (I2) is an important property for a 
mechanism which is known in the literature as budget feasi-
bility [68]. In a budget feasible mechanism, no one commits 
to make a payment that it cannot afford.

Responders take actions only at the scoring stage. At 
this stage, each responder should give scores to the offers 
according to its preference orderings. We define the faithful 
behavior of the responders in Definition 2. A responder can 
deviate from its faithful behavior by violating the conditions 
stated in this definition.

Definition 2  Responder i is faithful to the mechanism 
Γ = (Lmin, Lmax,D, r(.)) , if its score vector �i,n at each round 
n satisfies the following conditions: 
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	(R1)	 For each j = 1,… , Ln , s
j

i,n
= 0 if and only if the agree-

ment Oj
n is infeasible for responder i.

	(R2)	 The scores are non-decreasing in the agreements’ val-
ues, i.e. Vi(O

j
n) > Vi(O

k
n
) implies that sj

i,n
≥ sk

i,n
.

	(R3)	 The scores are as discriminatory as possible. That is, 
agreements with different values get different scores, 
as long as both the number of satisfaction levels D and 
the responder’s budget bi allow.

In “Initiator’s faithfulness” and “Responders’ faithful-
ness”, we prove that the mechanism Γ is faithful for the 
initiator and the responders, respectively, meaning that the 
mechanism provides sufficient incentives to them to not 
deviate from the rules. Then, in “Individual rationality and 
individual budget balance”, we discuss the additional inter-
esting properties of the mechanism Γ . All of the proofs are 
given in the appendix.

Initiator’s Faithfulness

We prove that the initiator can gain no benefit by deviat-
ing from the rules (I1)–(I4). The initiator plays an active 
role in three out of four stages of the mechanism (i.e. pro-
posal, assessment, and reward). Thus, in the first instance, 
it may seem difficult to prove the initiator’s loyalty to the 
algorithm’s rules. However, in the design process, having in 
mind that the initiator is selfish, we established some control 
policies into the mechanism so as to guarantee the initia-
tor’s faithfulness. The most prominent control policies of 
the mechanism are as follows: 

	(C1)	 The initiator is not allowed to move forward to round 
n + 1 , if Ln < Lmin . Therefore, the initiator proposes at 
least Lmin offers at each round, if possible, to preserve 
the chance of continuing the negotiation;

	(C2)	 r(s,A,F, L) = ∞ , for L > Lmax . With a finite budget, 
the initiator cannot get responders’ consent for any 
agreement, if it offered more than Lmax outcomes. This 
feature forces the initiator to observe the upper limit 
Lmax;

	(C3)	 There is no returning to the past options. The mecha-
nism does not let the initiator go back to the agree-
ments it previously rejected. Therefore, to prevent 
disagreement, the initiator prefers to select a feasible 
agreement as soon as it finds one.

The control policies discussed above help us to state the 
following theorem.

Theorem 2  The mechanism Γ = (Lmin, Lmax,D, r(.)) is faith-
ful for the initiator.

We can see from proof of Theorem 2 that control policies 
(C1)–(C3) have important roles in preventing the initiator 
from deviating from desirable rules (I1)–(I4). We provide 
two examples below to illustrate how the results would 
change if any of these control policies were lifted.

Example 1  If (C1) was not in place, an initiator with a low 
bargaining cost and high privacy sensitivity would prefer 
to deviate from (I1) and offer the options one by one. In 
this case, since the initiator offers the options in order of its 
own satisfaction, the final outcome would be the best option 
for the initiator that is feasible for all responders. This out-
come is not socially desirable as it is similar in spirit to the 
outcome of dictator games, where one agent (i.e. the initia-
tor) has all the power and the other agents (i.e. responders) 
have no opportunity to express their preferences. Control 
policy (C1) has been developed to prevent this undesirable 
behavior.

Example 2  If (C3) was not in place, an initiator with a low 
bargaining cost and low privacy sensitivity would prefer to 
deviate from (I3) and negotiate all the available options with 
the responders to find the agreement that exactly maximizes 
its own utility. This perfectionism lowers the convergence 
speed and led the responders to lose all their privacy.

It is important to note that in addition to control poli-
cies (C1)–(C3), the reward function designed in “Reward 
stage” has an important role in providing the incentive for 
the initiator to follow the rules (I1)–(I4). If the initiator did 
not have to pay rewards to the responders based on their sat-
isfaction from the final outcome, it would not care about the 
responders’ preferences and only take the feasibility or infea-
sibility of different outcomes for responders into considera-
tion. Then, the initiator would choose the best agreement 
for itself that is feasible for all responders. By designing a 
suitable reward function which is inversely proportional to 
the responders’ satisfaction from the final outcome, we drive 
the initiator away from its selfish behaviour and motivate it 
to make socially-optimal decisions.

Responders’ Faithfulness

We now prove that the responders have appropriate incen-
tives to follow rules (R1)–(R3).

Lemma 1  The responders do not have any incentive to lie 
about the feasibility of agreements for them, i.e. giving a 
rating of 0 to an agreement Oj

n is efficient for a responder i 
if and only if agreement Oj

n is infeasible for it.

Lemma 1 proves that condition (R1) of Definition 2 is 
satisfied. To prove satisfaction of conditions (R2) and (R3), 
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we need the two following lemmas. Lemma 3 states an 
important property of the proposed mechanism that is key 
to proving faithfulness.

Lemma 2  It is optimal for each responder i to announce 
its complete satisfaction for at least one feasible offer, if it 
exists.

Lemma 3  A responder’s expected net point income at each 
round is 0, provided that it gives score D − 1 to at least one 
feasible offer.

As a result of Lemmas 2 and 3, when a responder is 
deciding about the scores it should give to the offers, it can 
neglect the points and only take into account the effect of its 
scores on the selection of the final agreement. This property 
helps us to prove the next two lemmas.

Lemma 4  It is never optimal for a responder to give a higher 
rating to an agreement it likes less.

Lemma 5  The scores are as discriminatory as possible. 
That is, as long as the number of satisfaction levels and the 
responder’s budget allow, it is optimal for the responder 
to give unequal scores to agreements with unequal values.

Based on Lemmas 1–5, we can state the following main 
theorem.

Theorem  3  For any Lmin , Lmax , and D, the mechanism 
Γ = (Lmin, Lmax,D, r(.)) where reward function r(.) is derived 
by Algorithm 1 is faithful for the responders.

Proof  This is directly derived from Lemmas 1–5. 	�  ◻

Individual Rationality and Individual Budget 
Balance

In “Initiator’s faithfulness” and “Responders’ faithfulness”, 
we proved that DSM is faithful and can be executed by self-
ish agents with no need for a trusted controller. In this sec-
tion, we show that this mechanism also satisfies two other 
desirable properties, namely individual rationality and indi-
vidual budget balance. The individual rationality is mainly 
due to Assumption 1, and the individual budget balance is 
mainly due to the appropriate design of the reward function.

Individual Rationality: The DSM mechanism is individu-
ally rational for both the initiator and the responders. That 
is, each participant prefers the outcome of the mechanism to 
the utility it gets when it does not participate. The reason is 
simple: The participants cannot reach an agreement unless 
all of them participate in the negotiation process. Therefore, 

to avoid disagreement, which is assumed to be the worst 
outcome for all agents (see Assumption 1), the agents prefer 
to participate in the mechanism.

Individual Budget Balance: The DSM mechanism is nei-
ther profitable nor loss-making in terms of the points. The 
convenience points are just a tool for aligning the initiator’s 
objective with the responders’. Therefore, the agents’ long-
term objectives are not to collect points, but rather making 
socially-acceptable agreements.

Theorem 4  The DSM mechanism is individually budget bal-
anced (IBB). That is, at each round of the mechanism, each 
participant’s expected point income is zero.

Proof  In the DSM mechanism, all responders trade their 
points with the initiator. Therefore, the initiator’s point 
income is the negative of the sum of the responders’ point 
income. Based on Lemmas 2 and 3, the responders’ expected 
point incomes are zero at the optimal strategy. Therefore, the 
initiator’s expected point income is zero as well. This proves 
the individual budget balance of the DSM mechanism. 	
� ◻

This feature is particularly useful as it ensures that con-
secutive negotiations do not lead to one agent losing all its 
points or one agent gaining a large number of extra points. 
This property keeps agents’ negotiation power balanced and 
hence can be interpreted as the fairness of the mechanism.

Initiator’s Optimal Offering Strategy

In “Properties of the mechanism”, we showed that the DSM 
mechanism provides the initiator with positive incentives 
to follow rules (I1)–(I4). Rule (I1) guarantees that at each 
round, the initiator offers between Lmin and Lmax agreements 
to the responders. However, the exact number of offers and 
the agreements that should be offered at each round are 
the initiator’s decision-making variables. In this section, 
we derive the optimal offering strategy that the initiator 
should adopt to maximize its utility. For ease of presenta-
tion, we restrict attention to the case where outcomes (i) 
are independent (i.e. the feasibility of one outcome for a 
participant provides no information about the feasibil-
ity of other outcomes for it), and (ii) have equal privacy 
importance (i.e. wI,k = 1,∀k ) and equal desired belief (i.e. 
DIi(Ot,k) = DIi,∀i, k ) from the initiator’s point of view. How-
ever, the method can be simply generalized to the correlated 
outcomes with unequal privacy importance.

For any fixed offer size L, it is optimal for the initiator 
to offer its top L agreements that have not been discussed 
before. This is because when agreements are independent, 
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previous discussions give no information about the feasi-
bility of undebated agreements. Therefore, the chance of 
an agreement being feasible for all participants, as well as 
the privacy leakage of offering it, are the same across all 
agreements. In this case, the only factor that distinguishes 
the agreements for the initiator is their valuations VI(O

j
n) . 

Therefore, when the offer size is fixed, it is most advanta-
geous for the initiator to offer the agreements which have the 
maximum valuation for it. With this known, our objective in 
the rest of this section is to derive the optimal offer size L.

The optimal offer size depends on different factors; the 
most important being: 

(a)	 The initiator’s bargaining cost �I : An initiator with 
a higher bargaining cost prefers to offer more agree-
ments at each round to reduce the number of negotia-
tion rounds;

(b)	 The initiator’s privacy sensitivity �Ii , i ∈ RI : A more 
privacy-sensitive initiator offers fewer agreements at 
each round to reduce its privacy leakage;

(c)	 The values of different agreements for the initiator 
VI(O

j
n) , j ∈ O(t) : If there is a big drop in valuation 

between the jth and j + 1th top agreements, the initiator 
prefers to keep agreement j + 1 for the next round and 
first try the more valuable agreements;

(d)	 Number of participants |A(t)| : The chance of an agree-
ment working for all agents is inversely proportional to 
the number of participants. Therefore, when the initia-
tor is negotiating with a larger group of agents, it offers 
more outcomes at each round to increase the chance of 
reaching an agreement;

(e)	 The responders’ strictness coefficients di , i ∈ RI : Deal-
ing with responders who are more strict in their prefer-
ences motivates the initiator to offer more agreements 
at each round to increase the chance of reaching an 
agreement.

(f)	 The initiator’s budget bI(t) : As discussed in “Proper-
ties of the mechanism”, the initiator always chooses 
an offer size L such that the maximum budget needed 
for selecting a feasible agreement is below its available 
budget. The maximum budget needed for selecting a 
feasible agreement is increasing in terms of the offer 
size. Therefore, an initiator with a higher budget is able 
to offer more agreements at each round.

To find the initiator’s optimal offering strategy, we formulate 
the problem as a Markov Decision Process (MDP). MDPs 
are the standard formalism for learning optimal sequential 
decision making in stochastic domains. The present prob-
lem is stochastic from the initiator’s point of view, as it is 
not aware of the responder’s preferences and hence their 
responses to the offers it makes.

In an MDP, the environment is modeled as a set of states 
and actions that can be performed to control the system’s 
state. The effectiveness of an action can be measured by its 
impact on the system state and the instantaneous reward it 
provides. In our problem, we define a state s by the number 
of agreements that are feasible for the initiator and have not 
been discussed yet. We also define two additional states: 
Succ and Fail, where Succ (Fail) means that the agreement 
(disagreement) arises. These two states are terminal states 
or absorbing states that terminate a negotiation round. Let 
As = {1,… , min{s, �(bI)}} represent the action set at a non-
terminal state s ∈ ℤ++ , where �(bI) is the maximum offer 
size that is affordable for an initiator with budget bI . The 
action sets corresponding to terminal states are empty, i.e. 
As = � , for s = Succ,Fail.

By choosing L as the offering size in a state s ∈ ℤ++ , the 
system makes a transition from s to a new state s′ , based on 
a probability transition function PL(s, s

�) . If at least one of 
the offers is feasible for all the responders, the state transits 
to the Succ state. Otherwise, the state transits to the Fail 
state, if either no options remained, i.e., L = s , or the rules 
do not allow the initiator to move forward, i.e. L < Lmin . If 
neither of these conditions is satisfied, the state transits to 
state s − L . Thus, we have

where 
∏

i∈RI
(1 − di) is the probability that a specific agree-

ment is feasible for all responders.
The last major element of an MDP that remains to be 

defined is the reward function. The reward function RL(s, s
�) 

specifies the initiator’s immediate reward when the state 
transits from s to s′ as a result of an action L. Note that 
since the DSM mechanism is individually budget balanced 
(Lemma 4), the initiator’s expected point income is zero 
irrespective of the offer size L. Therefore, the initiator’s 
offering strategy at a negotiation N(t) has no effect on its 
negotiation power in the future negotiations. Thus, to choose 
the optimal offering strategy, the initiator should only focus 
on the instant profit it gains at the current negotiation. The 
initiator gains no positive reward if its action does not lead 

(23)PL(s, s
�) =

⎧
⎪⎪⎨⎪⎪⎩

1 − (1 −
∏

i∈RI
(1 − di))

L, If s� = Succ,

(1 −
∏

i∈RI
(1 − di))

L, If s� = Fail, (L = s or L < Lmin),

(1 −
∏

i∈RI
(1 − di))

L, If s� = s − L, L < s,L ≥ Lmin,

0, Otherwise,
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to a terminal state. Therefore, for s′ ≠ Succ,Fail , its reward 
only consists of the communication cost �I , and the privacy 
leakage (9), i.e.

where C =
∑

i∈RI
�Ii min (dI , 2(1 − DI,i) − dI) is the privacy 

loss of offering a single agreement. When the negotiation 
fails and disagreement happens, the initiator incurs an infi-
nite cost. We model this fact by considering

where K is an arbitrarily large number. Parameter K has no 
other role in the results than to prevent the initiator from 
offering less than Lmin agreements, when s ≥ Lmin . There-
fore, its exact value is not important.

Deriving the reward function for s� = Succ is challenging. 
The reason is as follows. Once the agreement happens, the 
initiator’s utility is computed according to (18) as a function 
of the final outcome Oj∗

n . The final outcome Oj∗

n is the solution 
of the optimization problem (20), which should be solved 
by the initiator at the assessment stage. The optimal solution 
of (20) depends on the responders’ scores and the payment 
function r(.). Therefore, computing the probability that any 
specific outcome Oj

n becomes the solution of the optimiza-
tion problem (20) is complex. Due to this complexity, the 
initiator often fails in practice to derive the reward function 
analytically, and hence finds itself faced with an MDP whose 
reward function is not known to it.

The most attractive way to solve MDP problems whose 
model is not completely known is reinforcement learning 
(RL) [32, 87]. In “Optimal RL-based offering strategy, we 
detail a RL technique to derive the optimal offering strategy 
for the initiator. This strategy gives a theoretical upper bound 
for the utility that the initiator can achieve in the negotia-
tion. However, it is not very practical in dynamic settings 
like piMAP. The reason is that the RL techniques need a 
learning phase to calculate the unknown parameters of the 
model. However, in an incremental problem the parameters 
change continuously over time. Thus, there is no time for 
the initiator to first learn and then perform an action. In such 
problems, decisions must be made instantly and swiftly at 
the time they are called for. Considering this fact, in “Heu-
ristic policy”, we construct a heuristic policy with no need 
for a learning phase that performs very close to the optimal 
one. This algorithm is based on an approximate calculation 
of the reward function RL(s, s

�) for s� = Succ.

Optimal RL‑Based Offering Strategy

Reinforcement learning is a general class of algorithms in 
the field of machine learning that aim to achieve an optimal 
policy when complete information about the environment is 

(24)RL(s, s
�) = −�I − LC, s� ≠ Succ,Fail,

(25)RL(s,Fail) = −K − �I − LC,

not available. RL techniques allow an agent to interact with 
the environment to gain knowledge about how to optimize 
its behavior.

One of the most popular RL methods is Q-learning where 
the agent estimates a Q value for every possible state-action 
pair (s, L), indicating the utility of performing action L in 
state s [94]. More specifically, assume the agent observes in 
mth round of learning that action L executed at state s results 
in state s′ and some immediate reward r. The whole observa-
tion is performed to update the Q value as follows:

where the learning rate �m determines to what extent the old 
information will be overridden by the newly acquired infor-
mation at round m. At any time, the Q values suggest a pol-
icy for choosing actions, namely the one which, in any state 
s, chooses action L that maximizes Q(s, L). However, the 
following theorem defines a set of conditions under which 
the repeated application of this update equation eventually 
yields Q values that give rise to a policy that maximizes the 
expected cumulative reward. This theorem is proved in [94].

Theorem 5  Let mi(s,L) denote the index of the ith time that 
action L is tried in state s. Given bounded rewards and 
learning rates 0 ≤ �m ≤ 1 , and

then the Q-learning solution converges to the optimum with 
probability 1.

Using the Q-learning algorithm, we derive the optimal 
offering strategy �∗ for the initiator. However, RL techniques 
require a large amount of exploration of all actions and states 
for proper convergence to the optimal policy. In the pre-
sent problem, the optimal policy depends on the negotia-
tion specifications, such as the number of participants and 
the values of different agreements for the initiator. These 
parameters usually change from one negotiation to another. 
Therefore, in practice, the initiator cannot interact with a 
fixed environment repeatedly and learn the optimal policy.

To solve this issue, in “Heuristic policy”, we propose a 
heuristic offering strategy that, as we shall demonstrate in 
“Numerical results”, performs closely to the optimal policy 
�∗ . This strategy can be derived analytically and does not 
need any exploration.

Heuristic Policy

A key component in the construction of the heuristic policy 
is to find a good approximation for the reward function of the 

(26)Q(s,L) = (1 − �m)Q(s,L) + �m(r +max
L�

Q(s�, L�)),

(27)
∞∑
i=1

𝛼mi(s,L) = ∞,

∞∑
i=1

[
𝛼mi(s,L)

]2
< ∞,∀s,L,
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MDP proposed in “Initiator’s optimal offering strategy”. As 
previously noted, the reward function is hard to derive due 
to the complexity of calculating the probability (P1) that any 
specific offer Oj

n becomes the solution of the optimization 
problem (20). In this section, we propose a low-complexity 
approximation for this probability and derive the reward 
function accordingly. Then, we solve the approximated MDP 
via a typical approach based on dynamic programming, to 
obtain a heuristic offering strategy for the initiator.

In more detail, we approximate (P1) by assuming that all 
offers have an equal chance of being selected as the solu-
tion to problem (20). Therefore, the probability (P1) can be 
approximated as

Equation (28) is not an equality, as in reality, the offers 
with higher valuations for the initiator have higher chances 
of being selected at the assessment stage. However, our 
assumption leads to a good approximation, because the opti-
mal policy �∗ selects the agreements with relatively close 
valuations for being offered at each round. This observation 
is our main motivation for this approximation and the main 
reason it leads to a good result.

Using (28), it can be shown that the reward func-
tion RL(s, Succ) for an initiator with L best agreements 
O1

n
,… ,OL

n
 , can be approximated as

(28)P1 ≈
1 − (1 −

∏
i∈RI

(1 − di))
L

L
.

(29)RL(s, Succ) ≈
1

L

L∑
j=1

VI(O
j
n
) − �I − LC,

when L ≤ Lmax . This reward is the average valuation of the 
initiator’s L top offers minus the communication cost and 
the privacy loss.

Reward function (29) completes the definition of the 
approximated MDP. The initiator could solve this MDP 
analytically to derive a suboptimal offering strategy 𝜋̂ . In 
“Numerical results” we present performance results based 
on numerical simulations and show that 𝜋̂ does indeed give 
results very close to the optimal offering strategy �∗.

Remark 1  As stated in “Strategic multi-agent negotiation 
over a communication graph”, we assume that agents have 
a rich history of interactions with their neighbors and hence 
have accurate estimations of their strictness coefficients di , 
i ∈ V . Therefore, the initiator is able to calculate the transi-
tion probabilities (23) accurately. Now, consider a situation 
where an initiator joins a network recently and does not have 
sufficient interactions with its neighbors to obtain an accu-
rate belief about their strictness coefficients. In this case, the 
initiator can use its beliefs to derive an estimate, but not the 
precise, transition probabilities.

However, this does not prevent the initiator from using the 
Q-learning technique. The reason is that in Q-learning, the 
initiator does not use its prior information about the transi-
tion probabilities, but it learns both the transition probabili-
ties and the rewards in a trial and error fashion. Therefore, 
Q-learning helps the newly-arrived agents to not only learn 
their optimal offering strategies, but also derive a good esti-
mation of their neighbors’ strictness coefficients. Once the 
estimation is complete, the initiator can switch to the heu-
ristic policy to derive its future offering strategies with less 
complexity.

Fig. 2   Accuracy of the heuristic policy
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It is important to note that the desirable properties of the 
DSM mechanism discussed in “Properties of the mecha-
nism” do not depend on the common knowledge assumption 
on the strictness coefficients. This assumption has not been 
used in the proofs and hence the DSM mechanism satisfies 
faithfulness, individual rationality, and individual budget 
balanced even if the agents have no precise estimation on 
the strictness coefficients.

Numerical Results

In “Properties of the mechanism”, we proved that the DSM 
mechanism is faithful and gives sufficient incentives to the 
agents to follow its rules. In this section, we study through 
numerical simulations the performance of the DSM mecha-
nism when agents follow the rules. We evaluate the mecha-
nism based on a set of metrics including privacy leakage, 
speed of convergence, and expected social-welfare. This is 
done is “Evaluation of the DSM mechanism”. In “Evaluation 
of the heuristic offering strategy”, we study the performance 
of the heuristic offering strategy 𝜋̂ proposed in “Heuristic 
policy” and show by numerical testing that the heuristic 
offering strategy 𝜋̂ achieves almost the same performance 
compared to the optimal strategy �∗ . This result allows us to 
consider 𝜋̂ as the initiator’s offering strategy for the perfor-
mance evaluation of “Evaluation of the DSM mechanism”.

Evaluation of the Heuristic Offering Strategy

In Fig. 2a, we compare the expected utilities the initiator 
can achieve by adopting the optimal offering strategy �∗ 
and the heuristic offering strategy 𝜋̂ . The x-axis shows the 
maximum strictness coefficient d of all participants. For each 
fixed value of d, we generate 10000 negotiation instances 
with maxi∈A(t) di = d , where the effective parameters such 
as the number of participants |A(t)| ∈ ℤ++ , the number of 
possible agreements o(t) ∈ ℤ++ , the initiator’s bargaining 
cost �I ∈ ℝ+ , and the initiator’s privacy sensitivity �Ii ∈ ℝ+ , 
i ∈ RI , are selected randomly and uniformly from the corre-
sponding intervals. The valuation vector of each participant 
i is constructed based on its strictness coefficient di . For each 
outcome Ot,k , Vi(Ot,k) takes the value −∞ with probability 
di , meaning that the outcome Ot,k is infeasible for agent i; 
otherwise the outcome is feasible for i and hence Vi(Ot,k) is 
uniformly selected from the set of all positive real numbers.

For each negotiation instance, we compute the subopti-
mality of the solution found by adopting the heuristic policy 
𝜋̂ to the solution found by π*. Figure 2a shows the mean 
and standard deviation of the suboptimality gaps for differ-
ent strictness coefficients d. The suboptimality gap is below 
3.5% for all d ∈ [0, 1] , showing that the heuristic solutions 

generated are close to the optimum. Therefore, it is almost 
without loss of optimality for the initiator to adopt policy 𝜋̂ 
for making the offers.

We can see from Fig. 2a that the average suboptimality 
gap varies from very small values at the ends of the spec-
trum to a maximum value 2.9% near the middle of the strict-
ness range. The reason for this behavior is as follows. When 
d is close to 0, the probability that an arbitrary agreement 
satisfies the responders’ constraints are close to 1. There-
fore, both the optimal and heuristic policies recommend 
the initiator to be thrifty and offer only Lmin agreements 
to the responders. When d approaches 1, there exists very 
few (if any) agreements that can satisfy all the responders’ 
constraints. In this case, both policies advise the initiator 
to be generous and offer Lmax agreements at each round, 
to expedite the search for the only feasible agreement(s). 
Therefore, the heuristic and optimal policies have similar 
behaviors at the ends of the spectrum. However, their behav-
iors can be different in the middle. The reason is as follows. 
As discussed in “Heuristic policy”, the heuristic strategy 
𝜋̂ is based on estimating the reward function by using two 
low-complexity approximations. The error of these approxi-
mations may cause some delay or advance in following the 
optimal policy’s pattern. Figure 2b shows a case where an 
advance occurs. In this case, the optimal offering strategy is 
of threshold type with three thresholds d∗

1
= 0.65 , d∗

2
= 0.68 , 

and d∗
3
= 0.695 . However, the heuristic policy estimates 

these thresholds as d̂1 = 0.419 , d̂2 = 0.43 , and d̂3 = 0.507 , 
respectively. Such inaccuracies in estimating the optimal 
policy’s pattern degrades the heuristic policy’s performance 
in the middle of the strictness range. However, as we can see 
from Fig. 2a, the overall error caused by such inaccuracies is 
not very significant, which means that cases similar to what 
has been shown in Fig. 2b do not happen frequently.

We have discussed in “Heuristic policy” that deriving 
the heuristic policy is much less complex than deriving the 
optimal policy, since it does not need a learning process like 
reinforcement learning to calculate the unknown parameters 
of the models. Now, Fig. 2a shows that the performance of 
the heuristic policy is very close to the performance of the 
optimal policy and competes with it very well. Therefore, 
through the rest of the numerical investigations, we assume 
that the initiator always adopts the heuristic offering strategy.

Evaluation of the DSM Mechanism

In this section, we conduct empirical studies to evaluate 
our mechanism based on a set of metrics including privacy 
leakage, speed of convergence, and social-welfare. We also 
evaluate the role of parameters Lmin and Lmax on the perfor-
mance of mechanism Γ = (Lmin, Lmax,D, r(.)).

For these experiments, we consider a piMAP where the 
needs for different negotiations arise over time. Similar to 
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the settings used in [31, 93], we set the number of possi-
ble outcomes for each negotiation to 100 and the number 
of agents who participate in each negotiation is uniformly 
distributed from 5 to 10. To explore a broad range of reason-
able negotiation strategies, we assume that the agents’ bar-
gaining costs and privacy sensitivities are drawn uniformly 
from [0.1, 10]. Bargaining cost �i and privacy sensitivity 
�ij determine the weights that the convergence speed and 
privacy leakage, respectively, receive in agent i’s utility 
function. The range 0.1 to 10 for these parameters means 
that the importance of convergence speed and privacy leak-
age for the agents is comparable to the importance of the 
final agreement’s value. Different valuation functions with 
Vi ∈ [0, 100] are tested in the experiments and all results are 
averaged over 10000 cases to ensure statistical robustness (p 
value less than 10−5).

In Fig. 3, we consider a symmetric network where the 
agents have the same strictness coefficients d and study the 
role of parameter Lmax on the performance of the mecha-
nism. For this study, we have plotted (1) the agents’ average 

privacy leakage (Fig. 3a), (2) the number of offers that are 
made by the initiator (Fig. 3b), (3) the number of nego-
tiation rounds for the successful creation of an agreement 
(Fig. 3c), and (4) the outcome efficiency (Fig. 3d), when the 
agents employ a DSM mechanism with Lmin = 1 , D = 3 , and 
Lmax ∈ {2, 5, 10,∞} . In each figure, the error bars show the 
standard error of the mean, which depicts the accuracy of the 
results. Figure 3a shows the average privacy leakage for the 
agents who are interested in maximizing the others’ uncer-
tainties about their preferences, i.e. Di,j = 0.5 , for all i, j (see 
(5)). As the strictness coefficient d increases, i.e., agents are 
more strict in their preferences and hence fewer agreements 
can satisfy their requirements, the average privacy leakage 
first increases and then decreases. The intuition behind this 
result is twofold. First, according to (9)–(10), discussing 
each possible outcome induces min (d, 1 − d) privacy loss 
to a responder and (|A(t)| − 1)min (d, 1 − d) privacy loss 
to the initiator. Therefore, for each negotiation, the average 
privacy loss over all agents is

Fig. 3   Performance evaluation: role of parameter L
max
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where G is the number of discussed outcomes. Function 
min (d, 1 − d) is monotonically increasing on the interval 
[0,  0.5] and monotonically decreasing on the interval 
[0.5, 1]. Therefore, the same behavior is expected to be 
observed from the average privacy loss. The second intuition 
comes from the behavior of function G which is reported in 
Fig. 3b. We can see from this figure that the average number 
of discussed outcomes in a negotiation starts from 1 when 
d = 0 , reaches a maximum at an intermediate value of d and 
then drops. Such a result comes from two opposite trends. 
On one hand, finding an agreement that is feasible for agents 
who have higher strictness coefficients requires more nego-
tiation. On the other hand, a more intransigent initiator is 
satisfied with a smaller number of agreements and hence has 
fewer candidate agreements to offer. The tradeoff between 

(30)

Lavg =
1

|A(t)|
∑

i,j∈A(t)

Li,j =
2(|A(t)| − 1)

|A(t)| min (d, 1 − d)G,
these two effects describes a first increasing and then 
decreasing characteristics of both G and 1

�A(t)�
∑

i,j∈A(t) Li,j.
Figure 3a shows that increasing the upper bound Lmax 

of the number of offers that are allowed to be made at each 
round, results in an increase in the privacy leakage. How-
ever, based on Fig. 3c, the increase of parameter Lmax can 
promote the speed of convergence. For a larger value of 
Lmax , the initiator is allowed to make more offers at each 
round to speed up the negotiation. However, since the initia-
tor is privacy-sensitive it does not unleash all its freedom to 
do so. Therefore, even in the absence of an upper bound (i.e. 
Lmax = ∞ ), the initiator does not offer all its candidate agree-
ments in one negotiation round. For Lmax = ∞ , the agents 
can reach an agreement at one round when d approaches 0 or 
1, but it takes about 5.18 rounds on average for them to make 
an agreement when d = 0.4 . This is because when d = 0 , 
the agents are totally flexible and accept any agreement; 
therefore, the initiator makes only 1 offer and the responders 
accept that. When d approaches 1 the privacy loss is small 

Fig. 4   Performance evaluation: role of parameter L
min
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(see Fig. 3a); therefore, the initiator is not worried about its 
privacy and makes all its offers at one round. However, for 
middle-range values of d in which the privacy leakage is 
significant, the initiator prefers to be prudent and offer agree-
ments gradually, even if it is allowed to offer them en masse.

In Fig. 3d, we plot the outcome efficiency versus the 
strictness coefficient d for different upper bounds Lmax . The 
outcome efficiency of negotiation N(t) is defined as

where Ot,k is the negotiation outcome. The outcome effi-
ciency is the ratio of the aggregate valuation of the selected 
outcome for the agents to the aggregate valuation of the best 
socially-accepted outcome. Figure 3d shows that irrespec-
tive of the upper bound’s value Lmax , the outcome efficiency 
monotonically increases with d and reaches the limit 1 at 
a certain value of d. Based on the results above, we can 
conclude that the upper bound Lmax can tune the tradeoff 

(31)Eo =

∑
i∈A(t) Vi(Ot,k)

maxk�
∑

i∈A(t) Vi(Ot,k� )
,

between convergence speed and privacy leakage, without 
affecting the outcome efficiency.

In Fig. 4, we study the role of parameter Lmin on the per-
formance of the DSM mechanism. For this study, we have 
fixed the upper bound Lmax to be 30. This rather high value 
was chosen to provide a wide range of possible lower bounds 
Lmin . We can observe in Fig. 4, that increasing the lower 
bound of the number of offers the initiator is allowed to 
make increases the privacy loss (see Fig. 4a), decreases the 
number of negotiation rounds (see Fig. 4c), and enhances 
the outcome efficiency (see Fig. 4c). Therefore, the lower 
bound Lmin is able to tune the relative importance of all three 
metrics.

Two important differences should be noted between the 
roles of the lower bound Lmin and the upper bound Lmax . 
First, the upper bound Lmax has no impact on the outcome 
efficiency; thus, Lmin is the only parameter that can balance 
the tradeoff between outcome efficiency and the other two 
metrics. Second, the lower bound Lmin has a more signifi-
cant impact on the privacy leakage and convergence speed 
than the upper bound Lmax . For example, increasing Lmin 

Fig. 5   Performance evaluation: optimal parameters
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from 1 to 25 increases the peak of average privacy leak-
age by 57% , while this increment is only about 18% when 
Lmax rises from 2 to infinity. This is because when Lmax 
increases, the initiator enlarges its offer sets only if it finds 
it profitable. However, when Lmin increases, the initiator is 
obliged to make at least Lmin offers at each round to keep 
the chance of continuing alive.

In Figs. 3 and 4, we have studied the role of Lmin and 
Lmax on some individual metrics and shown that these 
bounds may have opposite effects on each of the metrics. 
Now, we are going to investigate the role of these parame-
ters on the overall performance of the mechanism, which is 
quantified by the social-welfare per individual (SWI) [17]:

(32)
SWI =

1

|A(t)|
∑
i∈A(t)

Ui(.) =
1

|A(t)|
∑
i∈A(t)

[Vi(Ot,k) − �iN −
∑

j ∈ A(t)

j ≠ i

�ijLi,j(Mi→j)].

SWI measures the average utility realized by the agents and 
acts as an indicator of the satisfaction level an algorithm 
provides to the network users. This metric is the normaliza-
tion of the social-welfare [7] to the number of agents and is 
designed for evaluating the performance of algorithms over 
networks with different number of users [17].

In Fig. 5, we illustrate the social welfare per individual 
achieved by DSM with different Lmin and Lmax , for (1) a net-
work of flexible agents with d = 0.2 (Fig. 5a), (2) a network 
of strict agents with d = 0.7 (Fig. 5b), and (3) a network 
of agents with uniformly selected strictness coefficients 
(Fig. 5c). We can see that when agents have low strictness 
coefficients, the lower bound Lmin has a more significant 

Fig. 6   Performance evaluation: social-welfare
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effect on SWI than the upper bound Lmax . This observation 
is evident from the range of changes in each row and column 
of Fig. 5a. However, when agents become more strict in 
their preferences (Fig. 5b), the role of Lmax becomes more 
significant. Intuitively, in negotiating with flexible agents, 
the initiator is not interested in making many offers itself. 
Therefore, as long as the upper bound is not very low, its 
changes do not affect the initiator’s decision-making. How-
ever, when the initiator is negotiating with strict agents, it 
prefers to approach the upper bound to enhance the chance 
of reaching an agreement. Thus, the mechanism’s perfor-
mance is very dependent on the upper bound’s value. We can 
observe that when d = 0.2 , the best performance is achieved 
by a DSM mechanism with lower bound Lmin ∈ {3, 4, 5} . 
When d = 0.7 , the optimal performance is obtained when 
Lmax ∈ {5, 6, 7} . When the negotiators’ strictness coeffi-
cients are not fixed, but take random values within [0, 1] 
with a uniform distribution (Fig. 5c), both lower and upper 
bounds have significant impacts on SWI and the optimal 
performance is achieved at Lmax = 6 and Lmin = 5.

So far, we have studied the roles of different parameters 
on the performance of our proposed mechanism and found 
their optimal values. In Fig. 6, we compare the performance 
of the DSM mechanism with the following benchmarks:

–	 Centralized mechanism (similar to [23, 33]): Suppose 
that there is a trusted central entity to whom all agents 
share their preferences without any concern about pri-
vacy leakage. Then, the central entity can choose the 
agreement that maximizes the social-welfare per indi-
vidual. This solution provides the maximum theoretical 
SWI that could be achieved, if a central trusted entity 
existed. Hence, it serves as an upper bound for the per-
formance of a mechanism.

–	 Greedy mechanism (similar to [45]): The initiator acts 
in a greedy fashion to improve its own satisfaction of the 
final outcome. It sorts the agreements from highest to 
lowest values and offers them one by one until an agree-
ment that is feasible for all agents is found.

–	 Preference-sharing mechanism (similar to [103]): The 
initiator and the responders share all their preferences 
with each other and then the initiator chooses the agree-
ment that maximizes the SWI. We can evaluate how 
much privacy leakage can be saved compared to this 
mechanism. The preference-sharing mechanism differs 
from the centralized solution in that the agents do not 
share their information with a trusted entity, but with 
each other.

We show the comparison in three different settings. In 
Fig. 6a, we considered a network where the range of param-
eters �i and {�ij} are the same (Setting 1). Both of these 
parameters take random values in [0.1, 10] with a uniform 

distribution. This means that, on average, the agents give 
equal importance to both privacy and speed of convergence. 
In Fig. 6b, we consider a setting where agents are more 
concerned about the speed of convergence (Setting 2). To 
this end, we assume that the bargaining costs and privacy 
sensitivities are drawn uniformly from [5, 10] and [0.1, 5], 
respectively. Fig. 6c shows the other way around when �i s 
and {�ij} s are drawn from [0.1, 5] and [5, 10], respectively, 
and hence the privacy has more importance (Setting 3). We 
can see that in all cases, the DSM mechanism is significantly 
superior to the preference-sharing mechanism, except when 
d ≤ 0.04 . The superiority comes mainly from better privacy 
protection. However, when d is almost 0, even before the 
start of negotiation, the agents are almost certain about the 
feasibility of all agreements for all negotiators. Therefore, 
revealing information does not reduce the agents’ privacy. 
In this case, sharing the preferences has no negative impact 
on the agents’ utilities and hence is superior to the DSM 
mechanism due to its higher convergence speed.

We can see from Fig. 6 that the DSM mechanism is 
always superior to the greedy algorithm, however the extent 
of its superiority depends on the relative importance of 
privacy and speed of convergence. The main advantage of 
the DSM mechanism over the greedy algorithm is the con-
vergence speed. Therefore, the superiority is higher when 
agents are more concerned about speed (i.e., Fig. 6b) and is 
lower when speed is less important for the agents (Fig. 6c). 
We observe from Fig. 6 that DSM outperforms the existing 
distributed mechanisms by up to 67.5% , 75.2% , and 23.4% , 
in Settings 1–3, respectively. Moreover, the proposed mecha-
nism achieves up to 75% , 73.2% , and 79% of the theoretical 
upper bound in Settings 1–3, respectively.

Finally, as the last experiment, we examined the impact of 
the initiator’s privacy sensitivity on the negotiation process 
and the outcome. In Fig. 7, we plot the outcome efficiencies 
of (1) all the participants (blue line), (2) the responders (red 
line), and (3) the initiator (yellow line), versus the initiator’s 

Fig. 7   Impact of initiator’s privacy sensitivity on the final outcome
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privacy sensitivity �Ii = �I ,∀i ∈ RI . The outcome efficiency 
of a subgroup X of participants, which we denoted by Eo(X) , 
is defined in a similar way as in (31) replacing A(t) by X. 
This metric indicates how close the selected outcome is to 
the ideal outcome for subgroup X. We can observe in Fig. 7 
that the initiator’s privacy sensitivity has inverse relations 
with Eo and Eo(RI) , while it has a direct relation with its own 
outcome efficiency Eo(I).

For interpreting this behavior, let’s take a look at two 
extreme cases that could happen in the DSM mechanism 
with Lmin = 1 and Lmax = ∞ . First, consider an initiator with 
a very high privacy sensitivity. This type of initiator is not 
willing to share much information with others and hence 
offers the options one by one. Since the initiator offers the 
options in order of its own satisfaction, the final outcome 
of this case would be the best option for the initiator that is 
feasible for all responders. In this case, the initiator’s pri-
vacy awareness prevents it from taking socially-efficient 
decisions. Now consider the other end of the spectrum. A 
non-privacy concerned initiator offers all of the available 
options at one round and then selects the option that bal-
ances the tradeoff between its own satisfaction with the 
final outcome and the number of points it needs to spend 
to satisfy the responders. The number of points is inversely 
proportional to the responders’ satisfaction from the final 
outcome. Therefore, a non-privacy concerned initiator takes 
the responders’ satisfaction into consideration and selects 
an outcome that is better for the responders. The intuition 
behind these extreme cases justifies the behavior observed 
in Fig. 7. As the initiator’s privacy sensitivity decreases, the 
extent to which the responders’ preferences influence the 
initiator’s decision making improves. Therefore, the final 
outcome shifts from the initiator’s optimal one to the one 
that provides the same level of satisfaction to both the initia-
tor and the responders.

Conclusions and Future Work

We have studied the distributed piMAP where a set of 
self-interested and privacy-preserving agents are required 
to make incremental agreements. Using an artificial cur-
rency, we developed a distributed multi-round negotiation 
mechanism which enables self-interested agents to reach a 
socially-desired agreement with limited information leak-
age. Through theoretical analysis, we proved that the DSM 
mechanism is (1) faithful, meaning that it gives sufficient 
incentives to the agents to follow the rules,( 2) individually 
rational, meaning that it is dominant strategy for the agents 
to participate in the mechanism, and (3) individual budget 
balanced, meaning that each agent’s expected payment is 
zero at all on- and off-equilibrium paths.

The DSM mechanism induces negotiation games with 
incomplete information among the agents. We derived the 
optimal negotiation strategies of both the initiator and the 
responders in such games. Specifically, we proposed a RL 
algorithm that allows the initiator to learn its optimal nego-
tiation strategy, in a trial-and-error fashion. To avoid the 
complexity and time consuming nature of the RL algorithm, 
we also propose a simple heuristic strategy for the initiator 
in which the game’s unknown parameters are not learned, 
but approximated by analytic expressions. We showed by 
numerical simulations that this heuristic strategy performs 
very closely to the optimal policy. Fixing the agents’ strate-
gies, we studied the performance of the proposed mechanism 
in terms of outcome efficiency, privacy leakage, and con-
vergence speed, through comprehensive simulation experi-
ments. In particular, we showed that the mechanism has two 
tuning parameters that can be used to adjust the tradeoff 
among the above-mentioned performance metrics. By set-
ting these parameters suitably, the social welfare of the DSM 
mechanism significantly surpasses that of the best available 
distributed mechanisms by 67.5%.

To apply the DSM mechanism in real-life applica-
tions, we need an infrastructure that (1) provides a com-
munication platform for message transmission among 
agents. Using this platform, the agents can send/receive 
offers to/from their neighbors. They can also give scores 
to the offers they receive; (2) assigns a fixed budget of 
convenience points to each agent upon arrival and then 
keeps track of its budget; (3) deducts the scoring cost 
from the agents’ budgets; and (4) allows agents to convey 
their points to others. The initiator can use this feature to 
award the promised rewards to the responders. Using this 
infrastructure, the DSM mechanism can help the agents 
to reach socially-desirable agreements. The properties of 
the DSM mechanism discussed in the paper can guarantee 
its good performance in real-life applications. First of all, 
the faithfulness of the mechanism ensures that even if the 
agents devote all their computing power to manipulate the 
negotiation process to their own benefits, they will not find 
any strategy better than loyalty to the rules. Second, the 
property of individual budget balance ensures that consec-
utive negotiations do not lead to the agents losing all their 
points and negotiation powers. Assigning a sufficiently 
high number of points to the agents upon arrival can guar-
antee that their budgets do not vanish, but just fluctuate 
around the initial budget. With such an infrastructure in 
place, our mechanism can be used in any real-world appli-
cations that require privacy sensitive negotiations (includ-
ing those mentioned in “Introduction”.)

As it stands, the DSM mechanism assumes that agents 
are non-malicious and do not build their strategies to 
oppose others or steal their information. Assuming the 
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agents are good-natured, DSM is able to incentivize 
agents to follow the rules faithfully. However, the presence 
of malicious agents may make others more cautious and 
hence more reluctant to follow the rules. For future work, it 
would be interesting to design a faithful distributed mecha-
nism for piMAPs with malicious agents. Further extensions 
to DSM include designing an algorithm for reviewing pre-
vious agreements if an agent’s preference changes signifi-
cantly. In the current version of DSM, it is assumed that 
the agents’ preferences over different agreements do not 
change over time. However, in some cases, the agents may 
need to update their preferences based on the new infor-
mation they receive over time. In such settings, an agent 
may need to renegotiate a pre-agreed decision. Therefore, 
designing a faithful renegotiation procedure would be of 
interest in future work.

Appendix

A Proof of Theorem 1

We prove this theorem by showing that for any fixed belief 
profile that satisfies (21), we can design a reward function 
r(.) such that the constraints (a)–(d) are maintained. In order 
to satisfy constraints (c) and (d), we design

Then, we split the design of reward function r(s, A, F, L) into 
three cases based on the degree of flexibility F:

Case 1: F ≥ (A + 1)D−2 and mod (F, (A + 1)D−2) = 0 . These 
two conditions on the degree of flexibility F are satisfied if 
and only if the responder gives score D − 1 to all offers that 
are feasible for it, when at least one such offer exists. In 
this case, no offer with a score between 1 and D − 2 exists. 
Therefore, constraint a can be rewritten as

Based on (15), giving scores 0 and D − 1 to offers are free of 
charge. Thus, we have C(A,F) = 0 . Substituting this result 
and (33) into (35) shows that constraint (a) is satisfied. In 
this case, r(s, A, F, L) is only well-defined for s = D − 1 . 
Therefore, condition (b) is trivially satisfied.

Case 2: F ≥ (A + 1)D−2 and mod (F, (A + 1)D−2) > 0 . In this 
case, the responder gives score D − 1 to at least one, but not 
all, the feasible offers. In this case, substituting (33) in (21), 
we can rewrite constraint (a) as follows:

(33)r(D − 1,A,F, L) = 0, ∀A,F, L ≤ Lmax,

(34)r(s,A,F, L) = ∞, ∀s,A,F, L > Lmax.

(35)P(D − 1,A,F, L)r(D − 1,A,F, L) − C(A,F) = 0.

For each L ≤ Lmax and A ≤ L , equation (36) is a multi-var-
iable linear equation with positive coefficients and positive 
sum (see (22)), which always has a non-negative solution 
that satisfies condition (b).

Case 3: 0 < F < (A + 1)D−2 . This case happens when the 
responder gives score D − 1 to none of the offers. In this 
case, constraint (a) does not put any restriction on the reward 
function. However, to satisfy constraint (e), we design 
r(s,A,F, L) = r(s�,A�,F�, L) ,  where  �

� = (� + c) sign (�) 
and c = D − 1 −max (�) . The score vector �′ is defined so 
as to assign score D − 1 to at least one offer. Therefore, 
F� ≥ (A� + 1)D−2 and hence the reward function r(s�,A�,F�, L) 
is designed as per Cases 1 and 2. The reward function cor-
responding to F′ is decreasing in terms of s′ . Therefore, this 
property is inherited by the reward function corresponding 
to F.

Discussions made above show that we can design the 
reward function r(.) such that it satisfies constraints (a)–(e).

B Proof of Theorem 2

We prove the initiator’s loyalty to the rules (I1)–(I4).
(I1): r(s,A,F, L) = ∞ , for L > Lmax . Therefore, if it offers 

more than Lmax outcomes it cannot get responders’ consent 
for any agreement. This feature forces it to observe the upper 
limit Lmax . In addition, in each round of the negotiation, 
there is a positive probability that none of the offers are 
feasible for all participants, and hence the need for moving 
to the next round arises. Therefore, to avoid disagreement, 
which has a value of negative infinity for the initiator, it 
prefers to propose at least Lmin offers at each round, if pos-
sible, to preserve the chance of continuing the negotiation.

(I2): If the initiator offers L options to the responders 
when it doesn’t have enough budget to select a feasible time 
slot for at least one tuple of the scores it might receive, it 
removes the chance of selecting some feasible options and 
hence increases the chance of disagreement. To avoid this 
situation, the initiator always chooses an offer size such that 
the maximum budget needed for selecting a feasible agree-
ment is below its available budget.

(I3): There is no returning to the past options. Therefore, 
to prevent disagreement, the initiator prefers to select a fea-
sible agreement as soon as it finds one. If the initiator finds 
more than one agreement that is feasible for everyone, it 
selects the solution of optimization problem (20) to maxi-
mize its utility.

(I4): The responders do not keep their commitment unless 
they receive the promised rewards. Therefore, the initiator 

(36)

D−2∑
s=1

P(s,A,F, L)r(s,A,F, L) − C(A,F) = 0, ∀L ≤ Lmax,∀A ≤ L.
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awards the promised rewards to the responders to avoid 
breaking the agreement.

C Proof of Lemma 1

The agents are expected utility-maximizers. Therefore, 
each responder i’s first priority is to reduce the chance of 
intolerable outcomes that drive its utility to negative infin-
ity, i.e. Vi(O

l
n
) = ∞ . Responder i’s utility becomes negative 

infinity when either (E1) the final agreement is infeasible 
for it, or (E2) disagreement arises. The disagreement arises 
only when no agreement receives non-zero scores from all 
responders. This is because, as we have discussed in rule 
(I2), the initiator makes its offers such that it can always 
afford to select a feasible agreement. In the following we 
show that truth-telling about the feasibility of offers is the 
best strategy for a responder to minimize P(E1) + P(E2).

Let {O1
n
,… ,OL

n
} denote the initiator’s offers in round n 

of the negotiation. We sort the offers based on the responder 
j’s preferences and assume that offers O1

n
,… ,Ok

n
 are feasible 

and offers Ok+1
n

,… ,OL
n
 are infeasible for j. In the follow-

ing two cases, we show that responder j has no incentive to 
either give a non-zero score to an infeasible agreement Ol

n
 , 

l = k + 1,… , L , or give a zero score to a feasible agreement 
Ol

n
 , l = 1,… , k.

Case 1: We show that giving a non-zero score to an infeasi-
ble agreement Ol

n
 , l = k + 1,… , L , increases P(E1) + P(E2) 

and hence is not in agent j’ favor. To show this, we partition 
the space of all possible preferences among the respond-
ers into three disjoint subspaces: (C1) There is at least 
one agreement, except Ok+1

n
,… ,OL

n
 , that is feasible for all 

participants; (C2) There is no common feasible agreement 
when we exclude Ok+1

n
,… ,OL

n
 , and responder j is the only 

responder who is against agreement Ol
n
 ; (C3) There is no 

common feasible agreement when we exclude Ok+1
n

,… ,OL
n
 , 

and agreement Ol
n
 is infeasible for at least two responders.

It can be seen that if responder j tells the truth about 
the feasibility of the offers, we have P(E1) = 0 and 
P(E2) = P(C2) + P(C3) . If responder j gives a non-
zero score to agreement Ol

n
 which is infeasible for it, the 

probabilities change to P�(E1) = P(C2) + �P(C1) and 
P�(E2) = P(C3) , where 0 < 𝛾 ≤ 1 is the probability that 
Ol

n
 will be selected in case (C2) when responder j gives 

a non-zero score to agreement Ol
n
 . Therefore, we have 

P�(E1) + P�(E2) = P(C2) + P(C3) + 𝛾P(C1) > P(E1) + P(E2) , 
and hence a responder always gives score 0 to an agreement 
that is infeasible for it.

Case 2: Now, we show that giving a zero score to a feasi-
ble agreement Ol

n
 , l = 1,… , k , increases P(E1) + P(E2) and 

hence is not in agent j’ favor. In this case, we partition the 
space into the following disjoint subspaces: (D1) There is at 

least one agreement, except Ol
n
 and Ok+1

n
,… ,OL

n
 , that is fea-

sible for all participants; (D2) There is no common feasible 
agreement when we exclude Ok+1

n
,… ,OL

n
 , and agreement Ol

n
 

is feasible for all responders; (D3) There is no common fea-
sible agreement when we exclude Ok+1

n
,… ,OL

n
 , and agree-

ment Ol
n
 is infeasible for at least one responder.

If responder j tells the truth about the feasibility of the 
offers, we have P(E1) = 0 and P(E2) = P(D3) . However, if 
it gives a zero score to agreement Ol

n
 which is feasible for it, 

we have P�(E1) = 0 and P�(E2) = P(D2) + P(D3) . There-
fore, we have P�(E1) + P�(E2) > P(E1) + P(E2) , which 
proves optimality of giving a non-zero score to a feasible 
agreement. This completes the proof of Lemma 1.

D Proof of Lemma 2

Suppose a responder i finds it optimal to give score vector �i,n 
to offers of round n, where Ai,n > 0 and HD−1

i,n
= 0 . Now, we 

show that the responder’s utility increases if it chooses score 
vector ��

i,n
= (�i,n + c) sign (�i,n) , where c = D − 1 −maxj s

j

i,n
 . 

This contradicts the optimality of score vector �i,n.
The privacy leakages corresponding to �i,n and �′

i,n
 are 

the same. Moreover, according to constraint (d), the reward 
function is invariant to shifting of the scores. The initiator’s 
decision about the final outcome is based on the rewards 
it needs to pay. Therefore, if responder i changes its score 
from �i,n to �′

i,n
 nothing except its cost is impacted. Accord-

ing to (15) and (16), the cost function is decreasing in terms 
of the scores. Therefore, the cost of giving score �′

i,n
 is less 

than the cost of scoring �i,n . Therefore, score vector �′
i,n

 can 
achieve a similar performance to �i,n , but with a lower cost. 
Therefore, score vector �i,n cannot be an optimal response 
for responder i.

E Proof of Lemma 3

We proved in Lemma 1 that the agents announce the feasibil-
ity of the agreements truthfully. Therefore, all the rational 
scores a responder i would give to the offered agreements 
at round n have the same Ai,n . For Ai,n = 0 , the problem 
becomes trivial as the only rational choice responder i has 
is to give score 0 to all offers. Therefore, in the rest of the 
proof, we focus on the case where Ai,n > 0.

Based on Lemma 2, responder i gives a score D − 1 to 
at least one of its feasible agreements. Therefore we have 
HD−1

i,n
> 0 and hence F ≥ (A + 1)D−2 . Now, using (21), we 

derive the expected point income of responder i at round n 
of the negotiation, when it gives a rational score vector �i,n 
to offers as follows:

(37)

�[Bi,n] =

D−1∑
s=1

P(s,Ai,n,Fi,n, Ln)r(s,Ai,n,Fi,n, Ln) − C(Ai,n,Fi,n) = 0,
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where the second equality holds due to (21). This completes 
the proof of Lemma 3.

F Proof of Lemma 4

We prove this lemma by contradiction. Consider two agree-
ments O1

n
 and O2

n
 where Vi(O

1
n
) > Vi(O

2
n
) . Suppose that in 

round n of the mechanism, agent i is asked to score agree-
ments {O1

n
,O2

n
,… ,O

Ln
n } , and it gives a higher score to O2

n
 

than O1
n
 , i.e. s2

i,n
> s1

i,n
 . Now, we construct another score vec-

tor �′
i,n

 from �i,n by exchanging its first and second elements 
(i.e. ��

i,n
= (s2

i,n
, s1

i,n
, s3

i,n
,… , s

Ln
i,n
) ) and show that responder i 

could achieve a higher expected utility if it gave score �′
i,n

 to 
the offers. Showing this fact contradicts the rational behavior 
of the responder and hence proves Lemma 4.

Let

denote the expected instantaneous utility agent i gets at 
round n of the mechanism, when it gives score �i,n to the 
offers. Function P(sj

i,n
,Ai,n,Fi,n, Ln) indicates the probability 

that one of the offers that receives score sj
i,n

 from agent i 
will be selected by the initiator. H

s
j

i,n

i,n
 is the number of offers 

that receive score sj
i,n

 from agent i at round n. Therefore, 
the probability that any specific offer Oj

n is being selected 
is (H

s
j

i,n

i,n
)−1P(s

j

i,n
,Ai,n,Fi,n, Ln) . If offer Oj

n is selected, agent i 
gets value Vi(O

j
n) while it incurs the bargaining cost �i and 

the privacy loss �iILi,I(�i,n).
If responder i changes its scores to �′

i,n
 , the frequencies 

Hs
i,n

 , ∀s , the availability level Ai,n , and the degree of flex-
ibility Fi,n remain unchanged. Therefore, we can write its 
expected instantaneous utility as follows:

The privacy leakages corresponding to �i,n and �′
i,n

 are the 
same. Therefore, we have:

where Ks ∶= (Hs
i,n
)−1P(s,Ai,n,Fi,n, Ln) is the probability 

that a specific agreement that got score s from responder 
i is selected at round n. This probability is increasing in 
terms of s. Therefore, s2

i,n
> s1

i,n
 implies that Ks2

i,n > K
s1
i,n . 

Using this result, we can conclude from (40) that 

(38)

�[Ui,n(�i,n)] =

Ln∑
j=1

(H
s
j

i,n

i,n
)−1P(s

j

i,n
,Ai,n,Fi,n, Ln)Vi(O

j
n
) − �i − �iILi,I(�i,n),

(39)

�[Ui,n(�
�
i,n
)]

= (H
s2
i,n

i,n
)−1P(s2

i,n
,Ai,n,Fi,n, Ln)Vi(O

1
n
) + (H

s1
i,n

i,n
)−1P(s1

i,n
,Ai,n,Fi,n, Ln)Vi(O

2
n
)

+

Ln∑
j=3

(H
s
j

i,n

i,n
)−1P(s

j

i,n
,Ai,n,Fi,n, Ln)Vi(O

j
n
) − �i − �iILi,I(�

�
i,n
).

(40)
�[Ui,n(�

�
i,n
)] − �[Ui,n(�i,n)] = (Ks2

i,n − K
s1
i,n )(Vi(O

1
n
) − Vi(O

2
n
)),

�[Ui,n(�
�
i,n
)] > �[Ui,n(�i,n)] which contradicts the rational 

behavior of the agent and shows that responder i achieves 
more utility if it scores the offered agreements in an ordering 
consistent with its valuation function.

G Proof of Lemma 5

Suppose that at round n, the initiator offers agreements 
{O1

n
,… ,O

Ln
n } to the responders. We assume that the num-

bering of these agreements are according to agent i’s prefer-
ences. That is,

We focus on agreements {O1
n
,… ,O

Ai,n

n } that are feasible for 
responder i. Responder i gives a score between 1 and D − 1 
to each of these agreements.

Suppose that agent i strictly prefers outcome Ok
n
 to Ok+1

n
 , 

i.e. Vi(O
k
n
) > Vi(O

k+1
n

) , but it gives a similar score to both 
of them, i.e. sk

i,n
= sk+1

i,n
 . We show by contradiction that this 

scoring cannot be optimal for responder i, if H1
i,n

= 0 and the 
agent has not run out of budget.

Suppose that �i,n is responder i’s optimal scoring and 
H1

i,n
= 0 . We will prove that agent i could achieve a higher 

utility if it changes the scores to �′
i,n

 , where

We define the selection vector Ki,n = (K1
i,n
,… ,K

Ai,n

i,n
) , 

where Kj

i,n
= (H

s
j

i,n

i,n
)−1P(s

j

i,n
,Ai,n,Fi,n) is the probability that 

responder i assigns to the selection of agreement Oj
n at round 

n. We denote the selection vector corresponding to rating 
�
′
i,n

 by K′
i,n

 . Using this new notation, we write the expected 
instantaneous utility of responder i at round n when it gives 

scores �i,n and �′
i,n

 to the offers, as

and

(41)Vi(O
1
n
) ≥ Vi(O

2
n
) ≥ … ≥ Vi(O

Ln
n
).

(42)s
�j

i,n
=

{
s
j

i,n
− 1, Ifk + 1 ≤ j ≤ Ai,n,

s
j

i,n
, Otherwise.

(43)

�[Ui] =

Ai,n∑
j=1

K
j

i,n
[Vi(O

j
n
) + r(s

j

i,n
,Ai,n,Fi,n, Ln) − C(Ai,n,Fi,n)]

− �i − �iILi,I(�i,n),
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respectively. Score vectors �i,n and �′
i,n

 deliver the same mes-
sage about feasibility and infeasibility of the offered agree-
ments for responder i. Therefore, they cause an equal amount 
of privacy leakage, i.e. Li,I(�i,n) = Li,I(�

�
i,n
).

In Lemma 3, we proved that as long as the responder 
gives score D − 1 to at least one of the feasible offers, its 
expected point income will be zero. The score vector �i,n is 
assumed to be optimal. Therefore, according to Lemma 2, it 
gives score D − 1 to at least one of the agreements. The map-
ping (42) keeps the top score fixed. Therefore, the condition 
is satisfied for �′

i,n
 as well. Thus, we have

Therefore, we have

Using the properties of the payment function, it can be 
shown that the selection vectors satisfy the following 
condition:

for all l ≤ Ai,n . This means that the selection vector K′
i,n

 has 
first-order stochastic dominance over Ki,n . Now, we can use 
the first-order stochastic ranking theorem stated below. This 
theorem is proved in the literature.

Theorem 6  If u is strictly increasing, and cumulative F 
first-order stochastically dominates cumulative G ≠ F , then 
�F[u(x)] > �G[u(x)].

Using this theorem, we can conclude that 
�K� [Vi] > �K[Vi] . Substituting this in (46) we have 
�[U�

i
] > �[Ui] which contradicts the optimality of scor-

ing �i,n . Therefore, as long as the number of satisfaction 
levels and the responders’ budget allow, it is optimal for 
the responders to give unequal scores to agreements with 
unequal values.

(44)

�[U�
i
] =

Ai,n∑
j=1

K
�j

i,n
[Vi(O

j
n
) + r(s

�j

i,n
,Ai,n,F

�
i,n
, Ln) − C(Ai,n,F

�
i,n
)]

− �i − �iILi,I(�
�
i,n
),

(45)

Ai,n∑
j=1

K
j

i,n
[r(s

j

i,n
,Ai,n,Fi,n, Ln) − C(Ai,n,Fi,n)]

=

Ai,n∑
j=1

K
�j

i,n
[r(s

�j

i,n
,Ai,n,F

�
i,n
, Ln) − C(Ai,n,F

�
i,n
)] = 0.

(46)

�[U�
i
] − �[Ui] =

Ai,n∑
j=1

K
�j

i,n
Vi(O

j
n
) −

Ai,n∑
j=1

K
j

i,n
Vi(O

j
n
) = �K� [Vi] − �K[Vi].

(47)
l∑

j=1

K
�j

i,n
≥

l∑
j=1

K
j

i,n
,
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