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A B S T R A C T   

Integrated assessment models are often used to evaluate the role of different technologies in meeting global 
climate goals. Such models have been criticised for failing to address the deep uncertainties and plurality of 
values that are fundamental to energy transitions. One consequence is that model scenarios overwhelmingly 
depend on large-scale carbon dioxide removal to hold warming to below 2 ◦C. 

Here we propose an alternative approach using Scenario-Focused Decision Analysis (SFDA) as methods that 
embrace decision making under deep uncertainty. SFDA can accommodate a range of value sets and perspectives, 
and most importantly can integrate value-based decision-making in designing climate policy. We specifically 
consider Robust Decision Making (RDM) as an exemplar of SFDA for developing climate policy. 

We outline an iterative five-stage framework for RDM using the role of carbon dioxide removal in long-term 
mitigation pathways as an example. The five steps comprise (i) participatory definition of goals, values, potential 
policy options and uncertainties; (ii) modelling the performance of policy portfolios across a wide range of future 
scenarios; (iii) visualisation and identification of portfolio vulnerabilities; (iv) analysis of trade-offs; and (v) 
development of policy strategies. SFDA, and specifically RDM, provide untapped opportunities for diverse actors 
to explore alternative mitigation pathways and evaluate the robustness of climate policy choices through 
“deliberation with analysis”. In relation to carbon dioxide removal methods, RDM provides a framework for 
evaluating their potential for safely meeting climate goals in a societally acceptable manner.   

1. Introduction 

The Paris Agreement seeks to hold the increase in global average 
temperature ‘to well below 2 ◦C above pre-industrial levels and to pur
sue efforts to limit the temperature increase to 1.5 ◦C above pre- 
industrial levels’ (UNFCCC, 2015). There is increasing awareness that 
with current delay in mitigation efforts, there will be a need for both 
mitigation and carbon removal efforts to limit warming to 1.5 ◦C 
(Jackson et al., 2017; Strefler et al., 2018). Furthermore, there are sec
tors of the economy such as aerospace, steel, cement and agriculture 
amongst others which will not be able to mitigate sufficiently rapidly to 
2050 meaning that there will be residual emissions of an uncertain 
extent (Energy Transitions Commission, 2018). As a consequence, recent 

opinion pieces have explored the need to strongly pursue both deep cuts 
in greenhouse gas (GHG) emissions, and substantial net removal of 
GHGs from the atmosphere. Mitigation pathways produced through 
integrated assessment models (IAM) suggest these removals will be 
required in the coming decades and continuing well into the 22nd cen
tury (IPCC, 2014). However, the ability to remove CO2 at scale would 
mean the development of a number of pre-commercial technologies and 
their rapid spread throughout almost every aspect of our modern mar
kets at an historically unprecedented rate of technological diffusion 
(Peters et al., 2017). Carbon-dioxide removal (CDR) is expected to 
become amongst the largest global industries and to be extensive and 
pervasive in the fabric of our societies and economies (Committee on 
Climate Change, 2019). 
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There is a growing body of work which has called into question the 
application of IAM modelling when seeking to engage with the extent of 
uncertainty in policy (e.g. Castrejon-Campos et al., 2020; Floyd et al., 
2020; Hoolohan et al., 2019 amongst others). The dominance of bio
energy with carbon capture and storage (BECCS) and Afforestation / 
Reforestation (A/R) in IAM mitigation scenarios emerges as a particu
larly problematic outcome of IAM scenarios. Workman et al. (2020) 
found that the widespread reliance on BECCS in these scenarios reflects 
a series of assumptions and structural features within IAMs as much as 
its value as a mitigation technology. However, we argue that a deeper 
problem is the degree to which these results and technologies have 
subsequently defined the framing of international emissions targets. The 
fundamental error lies in assuming that complicated models can define 
“optimal” pathways and strategies for which climate policy should 
strive, rather than providing exploratory tools to aid a broader policy 
development process. 

In the case of BECCS, this is fuelling a polarised debate around the 
modelled reliance on large-scale carbon dioxide removal (CDR), which 
lacks engagement in the broader societal and policy implications of 
these technologies and hinders discussion of alternative innovation 
pathways. Workman et al. (2020) articulate an alternative approach that 
embraces multiple policy values, viewpoints and possible futures, in 
which modelling exists in an iterative exchange with policy develop
ment rather than being separate from it. Such an approach would sup
port more relevant and robust near-term policymaking, ensure greater 
transparency and facilitate a more productive dialogue on the role of 
new technologies in climate policy. 

In this paper, we develop an alternative framework using exploratory 
modelling tools - Scenario Focused Decision Analysis (SFDA) and spe
cifically Robust Decision Making (RDM) - that seek to avoid the inad
vertent and distortive effects arising from the dominance of IAMs in 
climate policy. In Section 2, we review the role of IAMs and other 
optimisation-based economic models as tools to explore climate change 
mitigation futures. We argue that optimisation tools, based on the 
construct of rational decision theory, are not well suited to many of the 
defining features of climate policy, in particular the diversity of values 
and actors, and the “deep uncertainty” around economic, environmental 
and sociotechnical futures. Section 3 explores how SFDA and RDM ap
proaches could be applied to assessment of mitigation technologies and 
pathways, and Section 4 reviews how such methods could effectively 
address some of the persistent flaws in IAM interpretation. 

It is important to address a number of framing issues before 

progressing. Firstly, we do not seek to negate the role of parametric 
complex systems modelling in climate policy design; indeed, we advo
cate that modelling has a critical function in policy design when the 
extent of uncertainty is suitable. Rather, we argue for the need to apply 
parametric decision support tools in a more appropriate way in climate 
policy design, as described using SFDA and RDM approaches as an 
exemplar to better manage uncertainty. Secondly, our main criticism 
regarding IAMs is not only that these models are not well equipped to 
handle the extent of uncertainty involved in climate policy design, but 
that they are used and interpreted in ways that neglect and compound 
these inadequacies. Robust Decision Making, effectively an ensemble 
approach incorporating a range of sub-processes (see Fig. 1), covers a 
greater extent of the decision making process both upstream and 
downstream than that which IAM covers to better illuminate the options 
and choices that can be made to attain robust policy design in the face of 
deep uncertainty. Finally, while the resources required to conduct RDM 
processes may be greater than those required to develop new IAM sce
narios, the global policy implications of effectively addressing the threat 
of climate change justifies the additional resource allocation and effort. 
This is especially true given the burdens of climate change and the en
ergy transition will be borne by everyone, justifying approaches that 
seek greater plurality, inclusivity and transparency in climate policy 
analysis (Nesta, 2019). 

Therefore, the contribution of this article is: (i) to critique the 
construct of IAMs as tools to provide policy insight in contexts of deep 
uncertainty; (ii) to show that an overreliance on IAMs favours a narrow 
subset of mitigation pathways characterised by late-century carbon di
oxide removal; and (iii) to suggest an alternative approach using RDM as 
an exemplar that can address these shortcomings. Using the role of CDR 
as a case study, we illustrate how RDM allows for uncertainties and 
supports a more open ‘deliberation with analysis’ via participatory and 
pluralistic processes. We argue that this not only makes policy more 
robust, but also more relevant to audiences by negating the ability to 
cherry pick solution sets or avoid problematic outcomes and their 
implications. 

2. Uncertainty in global energy system modelling 

2.1. The role of modelling in framing climate policy 

Policy formulation can be described as an analytical community 
undertaking evidence gathering and analysis, while a policymaking 

Fig. 1. The iterative, participatory steps (1 to 4) which characterise Robust Decision Making Analysis (Lempert et al., 2013). Parametric energy system models are 
mainly used in Step 2 and as such RDM involves a much more substantive extent of the decision making process than IAMs. An explanation of each component of the 
process is described in greater detail below. 
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community debates, negotiates or further develops policy for enactment 
based on potential outcomes and acceptability. Popper (2019) distin
guishes these two cultures as a numerate, reductionist analytical com
munity, rooted in deductive logic, while the culture of policy is more 
narrative based and framed in the logic of abductive reasoning. The 
culture of policy considers questions of the future: “How will we be 
affected if present trends continue? What could go wrong if we follow this 
course or that? If the circumstances we most fear come to pass, how will we 
cope?”. 

The concept of “policy paradigms” (Carson et al., 2009) highlights 
that rather than a clear cut distinction between analytical and decision 
making functions in policy design, divergent interests, agendas and 
values shape policy-making. The role of co-production and boundary 
work around science and policy in conferring legitimacy on analytical 
policy inputs is well documented (e.g. Beck and Mahony, 2018; McLaren 
and Markusson, 2020). However, beyond the politics of climate policy, 
the psychology as to how decisions regarding policy are actually 
formulated, the role of detailed analysis and expertise such as that 
involved in parametric modelling in the process of policy development, 
and its role in final policy output and decision-making has had limited 
research and is therefore poorly understood (Conway and Gore, 2019). 
What is known is that heuristics and biases are prevalent, particularly 
around issues involving substantial uncertainty and that the dialectic 
process between the analytical and policy making communities is 
marked by very different cultures, processes and lexica (Tverskey and 
Kahnaman, 1974; Kahnaman and Tverskey, 1984; Klein et al., 2007; 
Kahneman and Klein, 2009; Klein, 2013). 

With the increase in computer power and available data allowing the 
development of more complex tools, the role of modelling in climate and 
energy policy has been increasing (Pollitt, 2018). Furthermore, the 
relative weight placed on model results has increased over the last 10 
years (European Commission, 2015, p32). Therefore, understanding 
how IAMs gain legitimacy in climate policy, and their appropriateness 
for contexts of deep uncertainty, is of paramount importance. Ulti
mately, closer engagement between analytical and policy communities 
would allow for a more critical interrogation of mitigation scenario 
development (Dooley et al., 2018; Sutherland and Burgman, 2013; and 
Tyler, 2013). Especially avoiding the `fallacy of misplaced concreteness’ 
which is associated with parametric outputs (Whitehead, 1929). 

IAMs have historically been developed within the analytical com
munity to provide insight into the global implications of different soci
etal, policy or technological scenarios (Haikola et al., 2018). They assist 
in identifying technical and policy solutions by representing the world’s 
energy, agricultural and land emissions, and implicitly their interaction 

with societal systems, over a time period spanning from the present to 
the end of the 21 st century (Anderson and Jewell, 2019). While IAMs 
are not typically direct inputs for designing national policies, they have 
had an important role in framing what are seen as plausible and 
cost-effective pathways and technologies for meeting internationally 
agreed climate targets (IPCC, 2014; Gambhir et al., 2019). 

While many critiques have been made of integrated assessment 
modelling (Gambhir et al., 2019), here we focus on the characterisation 
of the uncertainty that is being encountered. We argue that a better 
understanding of the uncertainty, complexity and irreducibility of the 
future option space reveals the inadequacy of even the most elaborate of 
optimisation-based tools to reconcile the range of possible futures over 
the timescales considered by IAMs. Instead, recognising the character of 
international climate policy discourse as one of deep uncertainty would 
justify application of a broader suite of tools. 

2.2. Thinking under uncertainty 

Lempert et al. (2003a), 2003b define “deep uncertainty” as a 
circumstance: 

where analysts do not know, or the parties to a decision cannot agree on, 
(1) the appropriate conceptual models that describe the relationships 
among the key driving forces that will shape the long-term future, (2) the 
probability distributions used to represent uncertainty about key variables 
and parameters in the mathematical representations of these conceptual 
models, and/or (3) how to value the desirability of alternative outcomes. 
In particular, the long-term future may be dominated by factors that are 
very different from the current drivers and hard to imagine based on to
day’s experiences. 

By this definition, the future development of novel technologies 
within the broader evolution of the global socio-political and techno- 
economic systems to address international climate goals represents a 
clear case of deep uncertainty:  

1) Whilst there is some consensus on conceptual models, including use 
of global energy models and earth system models, there remains 
considerable uncertainty about the key driving forces over these 
timescales; furthermore, scenarios that attempt to describe the latter 
are often limited by their normative design (Pindyck, 2013; Rosen 
and Guenther, 2015). 

2) There is significant uncertainty about key variables such as avail
ability, cost and effectiveness of technologies, social preferences and 
political contexts. For example, many CDR technologies represent 

Table 1 
Uncertainties in climate policy based on optimisation modelling (a) within the modelling process and (b) between modelling and policy design.  

a. Integrated Assessment Modelling Process  

• Stochastic uncertainties: physical randomness of the climate, social and technical systems which models are simulating.  
• Epistemological uncertainties: uncertainty in defining the current status of technologies, social and economic variables, climatic processes etc.  
• Ontological uncertainty: entities, interactions and processes occurring that are not yet contained in analysts’ conceptual models of the world (Lane and Maxfield, 2005).  
• Computational uncertainties: inaccurate calculations as a function of rounding errors e.g. Lorenz, 1963 and the butterfly effect.  
• Scope uncertainties: processes generating important changes in the real world that are not captured by or within the scope of a given model, e.g. political dynamics or innovation.  
• Judgement uncertainties: the setting of parameters and convergence criteria in codes that parameterise the models. The complexity of IAMs in particular make these substantive. 

They are rarely disclosed in an explicit manner to external audiences (Pindyck, 2013).  
• Modelling errors: however good the model is, it will not fit the real world perfectly.  

b. Pervasive across climate policy design including interaction between analytical and policymaker communities  

• Endpoint uncertainties: when the required endpoint is ill-defined - this is manifest in the coupling of carbon budgets and temperature targets which are far from rigid or in the exact 
emissions that are sequestered and/or emitted from bodies of land at different latitudes.  

• Semantic uncertainties or ambiguities: ill-defined meaning of terminology and wording which will be prevalent across the multiplicity of disciplines, ontologies and domains that 
integrated models seek to describe, and how they are communicated to policymakers (Lane and Maxfield, 2005).  

• Implicit value judgements and/or preferences: no matter how well-intentioned modellers or policymakers are, value trade-offs will have to be made when designing policy. In 
optimisation modelling, the terms of such trade-offs are usually implicit in the choice of goals, constraints and metrics, and may not reflect those of the policymaking community or 
wider publics (Stanton et al., 2009; Keeney, 2002; Vezer et al., 2018; Elliott, 2017; Helgeson, 2019).  

• Implementation uncertainty: uncertainty in the effectiveness of the policies in the idealised simulation trajectories output by climate models when implemented in the real-world.  
• Ethical uncertainties: what is ‘right’ and for whom? Who defines policy goals and acceptable trade-offs? Such issues are being unpicked in the just transitions and climate equity 

literature (Kartha et al., 2018; Green and Gambhir, 2019).  
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novel innovations for which there is no large-scale track record 
(Anderson and Peters, 2016).  

3) There is little agreement on how to value and trade off alternative 
possible outcomes on metrics such as equity, economic benefits, 
preservation of biodiversity etc. Fundamentally, all such questions 
are subject to opposing ethical, philosophical and political views 
(Beck and Mahony, 2018; Dooley et al., 2018). 

Even defining the suite of technologies that policy makers will have 
at their disposal in 50–80 years’ time is subject to substantive - espe
cially ontological – uncertainty (US National Academy of Sciences, 1937 
after Rees, 2003). The costs and societal responses associated with these 
technologies are yet more uncertain. For example, 80 years ago nuclear 
power and smartphones were not yet imagined, they are now integral to 
global energy systems and societal fabric. Yet the technology suite 
applied to energy systems in IAMs to 2100 seems very similar to that of 
today (Gambhir et al., 2019). 

As an illustration of the depth of uncertainty in modelling complex 
sociotechnical systems, Table 1 presents a list of the uncertainties 
associated with developing climate policy on the basis of IAM outcomes, 
including those inherent in the modelling process and those arising from 
the interpretation of model outcomes in policy design (French et al., 
2019). 

Addressing these uncertainties within the IAM framework is not 
trivial. There have been recent attempts to explicitly assess the extent of 
uncertainty in IAM outputs. For example, Marangoni et al. (2017) con
ducted a thorough sensitivity analysis of the key drivers of uncertainty in 
long-term CO2 emissions across the Shared Socioeconomic Pathways 
using several major IAMs. However, such descriptive assessments con
ducted within IAM frameworks do not address the non-quantitative 
uncertainties such as those defined in Table 1 (Pindyck, 2017; Pye 
et al., 2018), and are not readily reconciled with the use of models as 
prescriptive tools. 

While it is good practice to be completely transparent about un
certainties (French et al., 2019), this transparency is both a significant 
communications challenge, and is lacking in practice between the IAM 
and policy communities (Haikola et al., 2018). Indeed, in the context of 
international climate policy, the models produce point estimates and the 
modellers do only limited sensitivity testing. If uncertainty analysis is 
done at all, it is often undertaken retrospectively by policy makers 
(Anderson and Jewell, 2019; Dooley et al., 2018) but many policy an
alyses lack a serious assessment of uncertainty (e.g. European Com
mission, 2020). Rather than sidestep uncertainty or deal with relatively 
minor elements of uncertainty we suggest that policy makers should 
adopt decision making tools that embrace the deep uncertainty of 
climate policy. 

2.3. From consolidative optimisation to simulation to exploratory 
modelling 

Besides treatment of uncertainty, the use of IAMs to select cost- 
optimal solutions also undermines flexible and transparent decision 
making. IAMs are typically grounded in an equilibrium modelling phi
losophy (Bolwig et al., 2019; Mercure, 2019). The market (or an imag
ined social planner) is assumed to maximise utility by allocating 
resources optimally at each point in time in order to meet given goals at 
a minimum cost. 

Equilibrium models commonly also assume perfect (or at least 
probabilistic) knowledge of the future in order to find the optimal 
outcome, and this model-selected outcome is considered a “normative or 
aspirational” scenario to be pursued by policymakers. Such con
solidative models gather all relevant knowledge into a single package 
which, once validated can be used as a surrogate for the real world and 
tend to be used for predictive exercises (Bolwig et al., 2019). However, 
in optimising for pre-defined goals and parameters, they can be sensitive 
to false assumptions, and tend to obscure both the value judgements 

implicit in their goals and alternative pathways for achieving them. 
Other authors have thus sought to soften the cost-optimisation cri

terion to generate a wider range of possible solutions sets. Price and 
Keppo (2017), for example, used the TIAM-UCL model to generate a set 
of maximally different energy system transition pathways that were 
“near cost optimal”. While usefully expanding the range of options to be 
considered, this approach remains grounded in an optimisation frame
work, neglecting both widespread uncertainties in cost estimates and the 
importance of other variables in determining feasible or desirable policy 
choices. 

A contrasting approach is non-equilibrium modelling (Mercure, 
2019), which views the economy as consisting of multiple actors making 
decisions with imperfect knowledge of the future. This philosophy views 
the economy as a complex dynamical system, and models in this school 
aim to be “simulations” of real-world behaviour in response to changing 
conditions. Such a simulation-based approach seeks insights as to what 
might happen to a system following a change in an important driver such 
as introduction of a new low carbon technology or policy. Responses are 
based on predictions of real-world behaviour using historical or 
econometric datasets (Pollitt, 2018). Crucially, models are not used to 
internally select an optimal scenario, but to map out possible trajectories 
arising from different policy choices. However, even sophisticated 
simulations depend on making best-guess predictions about the behav
iour of the economy, whether through economic theory or econometric 
data, and thus also face challenges in addressing deep uncertainty on 
timescales of energy system change. 

An extension of the simulation approach is exploratory modelling 
which maps assumptions onto consequences without privileging any one 
set of assumptions, and thus supports iterative problem-solving (e.g. 
Kwakkel and Pruyt, 2013). The use of exploratory modelling mitigates 
many of the challenges of designing policy based on optimisation 
modelling, and situates modelling within the policymaking process 
(aiding policy impact assessment) rather than upstream of it (defining 
normative policy goals). 

There has been increasing recognition of the limits of purely techno- 
economic analysis to provide insight into decarbonisation transitions 
(Floyd et al., 2020). Several recent studies have sought to develop ap
proaches that combine quantitative, model-centric methods with 
participatory, qualitative and scenario-based processes (Moallemi and 
Malekpour, 2018). Such combined approaches have started to explicitly 
engage with the extent of uncertainty in energy transitions (Cas
trejon-Campos et al., 2020). It has been argued that the increasing use of 
participatory processes can help stakeholders reach a shared problem 
definition, reconcile multiple competing goals and explore a wider range 
of solution sets than in model-led approaches (Hoolohan et al., 2019) to 
envision and adapt to surprises (Sharmina et al., 2019); and to increase 
flexibility and transparency in strategic planning (Pereverza et al., 
2019). 

These recent contributions provide critical mass to the appropriate 
application of modelling tools to address uncertainty and the impor
tance of participatory processes to elicit robust outcomes (van der Voorn 
et al., 2015). We aim to build on these efforts by detailing the applica
tion of RDM methods to explore robust pathways to meeting interna
tional climate targets. 

3. From Optimisation to Robustness: how Robust Decision 
Making could open up the assessment of climate change 
mitigation pathways? 

3.1. Scenario Focused Decision Analysis and Robust Decision Making 

We now introduce Robust Decision Making (RDM) as an exemplar of 
a group of tools we define as “Scenarios-Focused Decision Analysis”, and 
outline how they can support resolution of the issues raised regarding 
the application of IAMs to international climate policy design, particu
larly with respect to the role of CDR technologies. 
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Scenarios-Focused Decision Analysis (SFDA) describes a family of 
methods that aim to explicitly characterise (deep) uncertainties within 
scenarios, and then undertake decision analysis within and across these 
scenarios (French et al., 2019). The role of scenarios and their 
employment in decision making under many forms of uncertainty and 
complexity is a growing field. Guivarch et al. (2017) explore how new 
decision support techniques address the uncertainty/complexity space 
and reconcile multiple objectives and scales. Trutnevyte et al. (2016) 
discuss focal points for reinvigorating the scenario technique to help 
scenario developers and users expand uncertainty consideration. Der
byshire (2020) highlights the narrowness of common practice in both 
scenario planning and policymaking, and how SFDA can help address 
the inability of these to consider ontological uncertainty. The need to 
understand the comparability of the different techniques and how they 
can be brought together to build on strengths of each other demonstrates 
the nascent and emergent nature of this field. 

Here we use RDM as an exemplar of an SFDA approach due to its 
broad employment over 15 years (Lempert et al., 2003a, 2003b). The 
basis of RDM approaches are articulated by Dessai and Darch (2014) in 
that `Whereas traditional decision-making processes seek optimality, RDM 
approaches accept uncertainty and focus on robust strategies….’ i.e. strate
gies that are better able to accommodate a wider range of uncertainty. 
The key tenets of the RDM approach in contrast to optimisation-centric 
methods are:  

1 RDM embraces uncertainties in all forms and works with these to 
identify solutions that are robust;  

2 RDM is a participatory and iterative process, from the design of 
performance metrics through to the trading-off of solutions between 
decision makers and analytical community through “deliberation 
with analysis”;  

3 RDM is compatible with adaptive pathway approaches which (a) 
identify low regret solutions for implementation in the short-term, 
and (b) identifies triggers for the deployment of alternative strate
gies, taking into account lead times for solution development; and 

4 RDM reflects how effective decision making is practiced in real sit
uations in conditions of deep uncertainty (Klein et al., 2007). 

RDM analysis can allow for climate policy and technology options, 
including CDR, to be treated in a more nuanced manner, taking account 
of the co-benefits and drawbacks, and drawing on the practice and 
policy implementation, resulting in more implementable options. RDM 
is also well suited to a more bottom-up approach, potentially supporting 
the framework of the Paris Agreement which allows nations to submit 
their Nationally Determined Contributions (NDCs) to the UNFCCC 
(Waisman et al., 2018). Table 2 summarises the shift in the philosophy 
from a consolidative IAM-based optimisation approach, the application 
of simulation based approaches, to an exploratory RDM approach and 
the way that models can be used to inform international climate policy 
as to the role and extent of CDR in possible climate futures. 

3.2. A potential RDM process for evaluating global mitigation pathways 

Here we articulate how RDM could be applied to evaluating a spe
cific suite of climate policy options related to atmospheric carbon di
oxide removal. RDM could be applied at the global scale, providing an 
alternative to the current context of IAM use, and could also be applied 
to national policy development based on country-specific analyses. The 
steps related to the RDM process are outlined in Fig. 1, and further 
explained below. The framework set out in Fig. 1 is malleable depending 
on the circumstances. In this paper, we suggest a potential framework 
for conducting a robust decision-making analysis of global mitigation 

Table 2 
From optimisation to exploration. Comparing the consolidative approaches of Optimisation (Paradigm 1a) and Simulation (Paradigm 1b) to the exploratory approach 
of Robust Decision Making (Paradigm 2). Adapted from Stern et al., 2013 and Pollitt, 2018.  

Optimisation (Paradigm 1a) - seeking optimal outcomes under fixed assumptions, where markets or actors have perfect knowledge of future conditions and minimise costs through 
optimally allocating resources. 

Goal: Figure out your best-guess future and design the best policy you can for that future. 
Conceptual framework: Optimisation and Maximize expected utility 
Question: ‘What is most likely to happen?’ 
Observations:   

• Can be efficient but limited applicability to more simple cases / systems.  
• Often ignores or simplifies wider interpretations of value and non-quantified benefits.  
• This tends to result in the best-characterised technologies being overly favoured in modelling processes e.g. BECCS.  
• Favours approaches that (cost) efficiently meet goals within model assumptions over examining plausibility of approaches or assumptions.  

Prediction-based simulation (Paradigm 1b) - seeking real world input via econometric data. Simulation studies avoid optimising but instead create best guess predictions based on real 
world datasets for the outcomes of various proposed policy packages to assess the impact of an intervention to the system. 

Goal: Figure out what will happen in response to a change in the system such as a new policy. 
Conceptual framework: Represent real world behaviour using analogous data; not optimisation. 
Question: How will the system respond to a new intervention based on analogues from real-world data. 
Observations:   

• Social systems can be very hard to embed into models as they operate in different ways to the physical systems. There are often gaps in the knowledge base and irrationality of sub- 
components of social systems can be problematical to model.  

• Should avoid monetising impacts into a Cost Benefit Analysis as that effectively indirectly cost optimises. 
• The lack of real-world roll-out of novel technologies such as CDR, and the limited social science research activity in the CDR space, means there are few datasets to provide con

straints on technology adoption and impacts.  
• The introduction of econometric social system dimensions to simulations would likely result in substantially reduced maximum CDR presence in the models and much slower 

diffusion rates as that for optimisation but would still struggle to reconcile the extent of uncertainty.  

Robust Decision Making (Paradigm 2)– whereby the goal is to explore and manage, rather than characterize Deep Uncertainty 

Goal: Identify greatest vulnerabilities across full range of futures and identify the suite of policies that perform reasonably well across this range. 
Conceptual framework: Minimize regret and assess assumptions. 
Question: ‘How does the system work and when might the policies applied fail?’ 
Observations:   

• An RDM framework offers greater insight into policy vulnerability and facilitates the selection of robust portfolios of options across multiple possible scenarios.  
• Concerns regarding reliability and technology uncertainty can be explicitly incorporated in an RDM framework, allowing testing of possibilities such as failure in scale up.  
• Multiple audiences including policy/decision makers can be brought into the process to ensure value sets are integrated into the process.  
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pathways, using the potential role of CDR as an example. 

3.2.1. Step 1: participatory scoping 
The process, as illustrated in Fig. 1, first begins by defining the goals, 

metrics, uncertainties, and choices or options that are available. Typi
cally, this step is participatory. This presents a challenge for a global 
policy problem, but could be constrained by a group of representative 
stakeholders, or by reference to commonly used appraisal objectives. 
Ethical uncertainties (Table 1) are an important consideration at this 
point and goal identification should be broadly scoped. Much of the 
effort in a participatory approach - but also the value - arises from 
overcoming semantic uncertainties and ambiguities and developing a 
meaningful understanding of stakeholder ontologies and objectives. 

However, “problems of deep uncertainty should be addressed su
perficially at first” (Popper, 2019) meaning that formal models are not 
necessarily required, especially at first. The modelling is developed and 
modified through several iterations, facilitated by the participators’ 
deliberations. As there should be many iterations of the analysis, this 
provides numerous opportunities to engage with wider diversity of 
stakeholders and their deliberations. Thus, the key participants in the 
early iterations are the policy makers. 

This step can use the Exogenous Variables-Policy Levers-Relation
ships-Measures (‘XLRM’) framework to identify exogenous un
certainties, levers or measures, relationships between the uncertainties 
and measures (typically captured in a model, see Step 2), and metrics to 
define performance against goals (HMG, 2009). 

Goals can include temperature target(s), a need for cost efficiency (e. 
g. select options according to a marginal abatement curve), mini
misation of environmental impact, food security, considerations of eq
uity, etc. High-level goals can be subjective, but if they are to be part of 
the trade-off process (described below) they require a quantified or 
scaling metric e.g. meet a 2 ◦C temperature limit, minimise costs. 
Endpoint uncertainties (Table 1) can be represented by alternative goals, 
or by setting ranges. Defining metrics can be a complex process that 
requires some testing and iteration. 

Uncertainties should cover factors that may affect the system and are 
likely to be broad. These include stochastic, epistemic and endpoint 
uncertainties (Table 1). These uncertainties can be drawn from Political- 
Economic-Social-Technical-Legal-Environmental (PESTLE)-type guides 
to allow the more explicit unpacking of the broader considerations that 
are needed to realise different scenarios (Government Office for Science, 
2017). Uncertainties can be represented using exploratory scenarios, 
either created specifically or by using or adapting existing scenario sets.1 

Key factors are likely to include economic growth, social attitudes, costs, 
effectiveness and scale-up of technologies, and the political 
environment. 

Strategies should focus on identifying options or measures for real
ising climate goals. As discussed above these can be taken from existing 
normative scenarios and associated studies, and in doing so a wider 
variety of options could be sought. Initially options should be considered 
at a discrete level so as not to conflate characteristics, e.g. between 
different combinations of value chain options (Platt et al., 2018). It may 
be helpful to categorise measures into different types. 

In the case of CDR, this stage may include grouping technologies into 
categories and defining relevant uncertainties, risks and enabling con
ditions. For example, “no-regrets” options with co-benefits (e.g. resto
ration of degraded ecosystems and soil carbon) may raise certain issues, 
while options dependent on CCS technology may be subject to other 
vulnerabilities and prerequisites (Caldecott et al., 2015). Options need 
to be described in sufficient detail to be characterised and included in 
the modelling. This will require estimates of lead-in time, capital and 
operating costs, scale of deployment including uncertainties associated 

with these variables, etc., again allowing greater fidelity on the part of 
the modellers and policy community to better comprehend what is 
required to introduce and scale up different technologies. 

3.2.2. Step 2: case generation 
The next step uses a wide range of potential future scenarios to assess 

the performance of options. Typically, options are integrated into 
portfolios, each of which collectively meets a minimum performance 
level such as reaching defined temperature goals. Aggregation can be 
undertaken ‘manually’ or through modelling, for example using multi- 
criteria search.2 This would not require abandonment of normative, 
goal-oriented scenarios. Rather, the portfolio of measures that these 
scenarios incorporate could be used as candidate portfolios. Alternative 
portfolios can also be developed, or an RDM process can be designed to 
automatically search for candidate portfolios by combining individual 
measures. In addition, the RDM process requires a large set of exogenous 
scenarios that are used to test the candidate portfolios (see Step 3). 

Robust Decision Making generally uses models to assess the perfor
mance of candidate portfolios. The models must describe the relation
ship between measures and scenarios, such that the former can be tested 
by the latter. Such models could themselves be IAMs or an emulation of 
these. To ensure robustness a very large number of scenarios is typically 
used, often in combination with a large variety of portfolios. Therefore, 
the model chosen should be adaptable and fast to run, though the 
associated processes around the agreement of the parameterisation of 
the models can be substantive (Gambhir et al., 2019) and model-related 
uncertainties are better represented using exploratory modelling ap
proaches (Castrejon-Campos et al., 2020). 

To evaluate CDR, a model should be chosen that effectively repre
sents key technology groups and associated issues, e.g. carbon storage in 
vegetation and soils. 

3.2.3. Step 3: scenario discovery 
The analysis of this data from all the scenarios (generated in step 2) is 

then processed and visualised, which helps decision-makers identify 
policies’ vulnerabilities, new opportunities, and new scenarios and un
certainties for exploration. This step can be assisted by algorithms such 
as cluster analysis, which identifies the circumstances that lead to good 
performance or failure. It may be that there are easily identifiable sce
narios under which some or all portfolios fail; this helps to understand 
existential vulnerabilities to objectives that no combination of measures 
will be able to address. This again allows better insights and under
standing as to what the scenarios involve in order to realise solution sets 
- getting away from the perception that the models are able to charac
terise the future. 

In simple terms, candidate portfolios will be rejected if they do not 
meet all minimum criteria; visualisation techniques can facilitate the 
selection/rejection of portfolios including via a trade-off analysis or 
exercises (Step 4). The performance of policy portfolios can be assessed 
and incorporated in different ways depending on the nature of the RDM 
process used. For example, portfolios could be rated according to their 
cost, deliverability and environmental impact, with these metrics then 
incorporated into the trade-off process - see Step 4, below. Alternatively, 
measures within portfolios could be introduced at a later point in model 
time (for example if using multiple ‘time-slices’). 

Combined with a pathways approach, this could then illuminate how 
to achieve goals if CDR options failed, or were less effective or extensive 
than anticipated (Haasnoot et al., 2013). This would then force policy 
makers to better understand how the different scenarios have been 
developed and what they would involve in terms of policy interventions 

1 For example, see scenarios from IPCC, Millennium Ecosystem Assessment, 
Shell, UNEP (GEO-4). 

2 For example, see Matrosov, J., Huskova, I., Kasprzyk, J.c., Harou, J., 
Lambert, C. and Reed, P. 2015. Many-objective optimization and visual ana
lytics reveal key trade-offs for London’s water supply. Journal of Hydrology 531 
(2015) 1040–1053. 
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to realise. Implementation uncertainties (Table 1) can also be explored 
by altering performance according to the scenarios (or states of the 
world) or in alternative portfolios. 

3.2.4. Step 4: trade-off analysis 
Optimal performance when considering many metrics generally in

volves some compromise. For example, there tends to be an inverse 
relationship between cost efficiency and reliability. This step is con
cerned with trading off metrics and ‘satisficing’, i.e. deciding what is a 
reasonable balance. Wider considerations regarding shortlisted option 
portfolios may also be considered at this point. 

Ideally this step involves real trade-offs between stakeholders, 
including information on values-based metrics such as human rights, 
food security or biodiversity protection which can be problematical to 
trade off. The need to integrate values in decision making is fundamental 
when designing climate policy; it is integral to ensuring plurality, 
engagement with broader constituents, and forces transparency to 
develop trust amongst audiences. However, the role of transparency and 
relevance in decision support is under-researched (Bessette et al., 2017; 
Mayer et al., 2017; Casey Helgeson, 2019) and values can be mishandled 
in analysis (Keeney, 2002; Vezer et al., 2018; Elliott, 2017; Helgeson, 
2019). 

The role of the integration of values, transparency and trust is inte
gral to the RDM process and would address many of the issues regarding 
the polarisation around the CDR discourse raised in Colvin et al., 2019. 
Trade-off analysis could be invaluable in answering key policy questions 
such as:  

● What proportion of CDR portfolios meet fixed temperature targets?  
● Which CDR technologies are commonly selected and why?  
● What the key trade-offs between CDR options and other values? 

There are several techniques for visualising and implementing the 
trade-off process including multi-dimensional and parallel axis plots. 
Software such as Polyvis3 can be used to highlight which portfolios are 
included or excluded based on the desired metric performance and 
trade-offs between metrics (see Fig. 2, below). In this type of figure, 
portfolios of options are represented by left-right lines, with their per
formance measured against goals depicted by vertical axes. Trade-offs 
between goals are required where portfolio performance lines cross. 

3.2.5. Feeding RDM into the climate policy process 
A final step is to use the preferred portfolio (or portfolios where there 

are synergies) to develop a suite of climate policies (Friedman, 2013). 
The steps described above are typically undertaken for a fixed point in 
time or ‘time-slice’ (average period of time) to produce a robust port
folio. Developing a set of climate policies which includes ordering of 
options can be achieved by evaluating the options using simpler opti
misation techniques (e.g. based on cost, size, feasibility) or/and using 
multiple future time horizons as a guide. A more robust approach would 
be to use methods that formally evaluate alternatives and the potential 
for regret (such as failing to meet a target, or the construction of assets 
that later become stranded). Such methods include Real Options Anal
ysis (HMT, 2013), Least Worst Regrets Analysis (Zachary, 2016; Ministry 
of Housing, Communities and Local Government, 2009; Loomes and 
Sugden, 1982; Bell, 1982 and Fishburn, 1982) and adaptive planning 
techniques (Haasnoot et al., 2013 and Maier et al., 2016). 

Applied to CDR, such an approach could highlight alternative path
ways that better manage trade-offs and uncertainties associated with 
large-scale deployment of developing technologies. 

4. Implications and benefits of the use of RDM in climate policy 
development 

4.1. An RDM approach addresses key issues of global policy discourse 
dominated by IAMs 

Table 3 highlights how when, applied transparently, within an in
clusive, participatory decision-making framework, parametric decision 
support processes can lead to substantively different policy outcomes. 
By seeking vulnerabilities in proposed policy measures, RDM can illu
minate alternative pathways to meet key challenges identified through 
modelling. For example, in the case of BECCS, considering the failure to 
develop carbon capture and storage infrastructure would force policy
makers to explore alternative ways of addressing the roles played by 
BECCS in IAMs, including the development and scale-up of dispatchable 
clean power, addressing of residual emissions in different industries, 
integration with low-carbon sustainable biofuels, and achieving net 
negative emissions. 

RDM is explicitly designed to manage uncertainties by seeking so
lutions that are robust to unknowns. The role of RDM in addressing 
different types of uncertainties has been described at each step in the 
process (see Section 3) and is summarised in Table 4. The Participatory 
Scoping step (the first step) is the most important given its influence on 

Fig. 2. Illustration of Trade-off Analysis in RDM strategy development accounting for, in this particular example, parameters related to CDR deployment.  

3 Polyvis.org. 
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setting the framework for the whole process. The modelling is developed 
and modified through the iterations facilitated by the participators de
liberations. The transparency and participatory nature of the process 
supports participants and observers in challenging assumptions and 
reasoning. This improves robustness, the primary aim of the RDM pro
cess, as well as driving better understanding of the conceptual models 
used to represent the system (e.g. partially addressing judgement un
certainties). Some uncertainties are not addressed by RDM specifically 
(e.g. computational uncertainties, modelling errors and model-related 
judgement uncertainties); approaches such as exploratory modelling 
(Castrejon-Campos et al., 2020; Moallemi and Malekpour, 2018; and 
Kwakkel, 2017) can be used to address these. 

4.2. Policy interpretation and development in RDM approaches: a new 
relationship between analysis and decision-making 

As articulated by Popper (2019), tools for decision making under 
uncertainty, and specifically RDM approaches, would assist policy
makers to articulate more robust climate policy portfolios through the 

following key features as articulated in Table 5, below. 
RDM approaches therefore force an anthropological choreography 

which breaks the entrenched `tribal’ axioms of the design of climate 
policy (Thompson, 1984). The iterative nature and underpinning phi
losophy of ‘deliberation with analysis’ makes for plurality of audience 
engagement, and therefore transparency, as well as the imposition of 

Table 3 
How RDM could address the distortive effects introduced by IAMs into long-term 
climate policy (Workman et al., 2020).  

1. IAM development is a closed 
community with limited 
engagement of societal audiences 
or policymakers during the 
modelling process. 

RDM is a participatory process, 
involving all these stakeholders in 
the design and evaluation. 

2. IAMs optimise for a fixed set of 
assumptions. 

RDM embraces uncertainty and uses 
exploratory scenarios to test a wide 
range of candidate strategies; the 
latter can include normative goals 
but is flexible and can evaluate any 
combination of solutions. 

3. IAMs are perceived as evidence of 
attainability of climate targets. 

RDM exposes the fragility of 
portfolios that are not robust to 
future uncertainties. Furthermore, it 
can evaluate the performance of 
solutions that are at different level 
of technology readiness. 

4. IAMs require pre-defined 
assumptions and technology 
characteristics and suppress 
certain categories of uncertainties. 

RDM exposes fragility of portfolios 
to a range of uncertainties identify 
low-regret measures and longer- 
term strategies that are robust 
across a range of outcomes. 

5. Large-scale reliance on certain 
technologies in IAM simulations 
for attaining climate targets lead to 
a polarising discourse. 

RDM can explicitly trade-off 
available technologies against 
cumulative emissions or/and 
temperature targets. 

6. IAMs introduce immature 
technologies needing to scale at 
rates unprecedented for such an 
infrastructure-intensive value 
chain. 

Technology Readiness Level can be 
built into solution evaluation for 
RDM; adaptive pathway approaches 
can incorporate lead times. 

7. IAMs lead to a lack of appreciation 
of the scale of the upstream value 
chain which needs to be developed 
to realise negative emissions on the 
scale simulated to meet climate 
targets, nor the trade-offs which 
need to be considered. 

Upstream metrics could be 
incorporated into the trade-off 
process in RDM e.g. how land 
availability is decided and potential 
trade-offs (and synergies) on food 
security and biodiversity protection. 

8. Limited portfolio of solutions is 
selected in IAMs. 

RDM will test a wide range of 
portfolios that include significantly 
lower and higher levels of different 
technology options. 

9. The need to develop political will, 
values or social acceptance around 
new technologies and their 
associated value chains are 
omitted in IAMs. 

Values and social acceptance can be 
built into the trade-off process for 
RDM. 

10. Deferment of near-term climate 
action, technology innovation and 
value chain development in IAMs. 

Adaptive pathway approaches can 
incorporate lead times and be 
reflected in the trade-off process in 
RDM.  

Table 4 
How RDM could address uncertainties in climate policy based on optimisation 
modelling (a) within the modelling process and (b) between modelling and 
policy design.  

a. Integrated Assessment Modelling Process 

Stochastic 
uncertainties 

The ability to represent these may be conditional upon 
the model used, although some can be represented as 
scenarios e.g. climate processes. 

Epistemological 
uncertainties 

These can be represented as alternative scenarios (e.g. 
states of the world) or in different options. 

Ontological 
uncertainties 

Additional knowledge should be used to improve 
models, but some uncertainties can be represented 

Computational 
uncertainties 

These relate to the system models used rather than the 
RDM process per se. 

Scope uncertainties These apply to models but the participatory scoping 
phase of the RDM process will seek a broad scope. 

Judgement 
uncertainties 

These relate to the system models used. However, the 
participatory nature of the process should facilitate a 
meaningful understanding of key assumptions in the 
modelling process. 

Modelling errors These relate to the system models. Assurance activities 
including independent checks should provide 
confidence to stakeholders.  

b. Pervasive across climate policy design including interaction between analytical and 
policymaker communities 

Endpoint uncertainties These can be represented as alternative goals or 
expressed as ranges. 

Semantic uncertainties or 
ambiguities 

The participatory scoping phase should seek to 
overcome this and should be part of long-term 
engagement between stakeholders in 
understanding others’ ontologies and objectives. 

Implicit value judgements 
and/or preferences 

Goal setting, metric definition and the trade-off 
process are designed to make the implicit explicit. 

Implementation uncertainty These can be represented in conjunction with 
exogenous uncertainties (e.g. the effectiveness of 
portfolios can depend on states of the world) or in 
alternative portfolios that represent different 
levels of success in implementation. Adaptive 
pathway approaches can also be used. 

Ethical uncertainties These can be addressed in an inclusive approach 
to goal setting and during the trade-off process.  

Table 5 
Features of RDM which assist policy makers articulate robust climate policy.   

• Begin from the end. RDM encourages development of the analytical framework 
around the problem so as to ensure that policymakers’ questions are answered. 
RDM - especially with adaptive planning (Haasnoot et al., 2013) - can identify and 
work with lead-in times (e.g. the lead time for BECCS development allowing poli
cymakers to identify decision points);  

• Characterization of uncertainty. The explicit acceptance of deep uncertainty 
ensures policymakers are not over-confident in modelling outputs. Rather, uncer
tainty is characterised as the degree to which the extent of uncertainty might affect 
proposed solution sets or the ability to realise objectives or indeed whether those 
objectives are relevant (Kahneman and Klein, 2009 and Klein, 2013);  

• Multi-objective Analysis. An RDM analysis will typically range over several 
classes of factors to explore whereby multiple policymaking actors will be able to 
have their priorities accommodated for. This also allows the identification of low- 
regret solutions in the short term which satisfy multiple objectives, thus avoiding 
polarisation;  

• Iteration. As analyses are inherently iterative, the accommodation of climate 
policy portfolios can be refined and complexity unpacked for policymakers over the 
course of analysis to ensure robustness under uncertainty; and  

• Accessibility and Transparency. The forcing of RDM to share analytical output 
and insights allows for broader capacity for policymakers to have greater awareness 
of analysis.  
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value sets which allow trade-offs to be identified in a clear manner. 
Understanding of modelling assumptions, auditability by different 
modelling communities, and integration of models in the policy devel
opment process would be extended beyond a small technical community 
as advocated by Strachan et al. (2016). Uncertainties and assumptions 
would be explicitly discussed and narratives co-generated between 
analytical and policymaking communities, in contrast to the narrower 
analytical communities and assumption sets behind IAM research. 
Additional benefits for policy makers will likely include: (1) better 
engagement of stakeholders in policy making; (2) a more robust suite of 
policy portfolios that address deep uncertainty around climate across a 
range of possible futures; (3) clearer understanding of which policy 
portfolios are likely to work and those vulnerable to exogenous factors; 
and (4) through iterative deliberation, outcomes are more likely to be 
accepted by stakeholders and therefore more likely to be implemented. 
This would be highly beneficial in policy design and decision making 
around the development of the post-Paris international climate agenda 
(Waisman et al., 2019). An RDM perspective would illuminate the 
fragility of the solution-chasing outputs which achieve 2 ◦C and 1.5 ◦C 
climate targets and force greater understanding of the need to be 
transparent, flexible and persistently aggressive in pursuit of mitigation 
(Pye et al., 2019 and Winning et al., 2018). 

5. Conclusions 

This paper was stimulated by our observation of the narrowness, 
fragility and opacity of the manner in which carbon dioxide removal, 
and especially BECCS, has become embedded in global mitigation 
pathways at a scale of multiple GtCO2 per year as a function of the IAM 
optimisation approach, bypassing the societal debate that should have 
accompanied such recommendations. Recognising that the desire for 
answers that provide this “illusion of concreteness” is a systemic one, 
that pervades many modern institutions e.g. demonstrated in the World 
Banking systems by Kay and King, 2020. We show that the modelling 
philosophy underlying IAMs is ill-suited to exploring the deep uncer
tainty that pervades questions of long-term policy pathways and tech
nology choice, and propose the use of alternative tools designed 
explicitly to characterise and manage such uncertainty. 

We postulate that employing RDM (and similar) approaches can shift 
evidence provision to policy from a transactional process to a deliber
ative one, actually supporting difficult deliberations rather than pro
posing a fait accompli answer. For example, in CDR this might shift the 
debate from ‘what is the optimal pathway to meeting climate targets under 
the most likely scenario?’ to ‘how can we develop a robust climate policy 
regardless of what happens?’. By broadening participation in defining 
future scenarios and seeking vulnerabilities in prevalent assumptions, 
RDM can broaden the range of policy options considered and stimulate 
creativity in seeking robust pathways to meeting climate targets. 

Specifically, we outline how this framework could support a deeper 
examination of the role of CDR in the light of the prominence of BECCS 
in IAM outputs. Developing effective and sustainable CDR policy is 
likely to require co-evolution and iterative refinement of policies as CDR 
efforts scale up over decades, in the context of public scrutiny and 
debate. RDM processes would facilitate this by making more explicit the 
issues in CDR development and implementation that are highly uncer
tain and sensitive to assumptions, which therefore need to be considered 
more carefully to identify near-term low-regret options to support 
technological development. For example, RDM can explicitly examine 
the vulnerabilities and lead times associated with BECCS and alternative 
CDR options, as well as the resource and value trade-offs involved (e.g. 
interactions between CDR and food systems). RDM can thus assist in 
understanding whether and how CDR should have a role in long-term 
climate policy, and what near-term steps are required to develop CDR 
approaches in a societally acceptable manner. 

We present a case for the more widespread use of SFDA and RDM 
approaches within climate policy as a first step, rather than prescribing 

in substantive detail what issues RDM methods should focus on. To 
achieve the latter would require the broader adoption of RDM in the 
climate policy community at national and international level. This 
would require a deliberate and co-ordinated research effort accommo
dating experience from efforts to develop key technologies; participa
tory engagement with the public and stakeholders; open knowledge 
sharing sessions with industry, developers and civil society; and a range 
of activities including policy analysis, prototyping and engagement. This 
is a significant research effort requiring much wider participation. Ele
ments of this research agenda will form the basis of additional research, 
with a view to realising the broader use of SFDA and RDM in climate 
policy development. 
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