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A Formal Framework for Maximum Error
Estimation in Approximate Logic Synthesis
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Abstract—Approximate Logic Synthesis techniques have be-
come popular in error-resilient systems, where accuracy require-
ments can be traded for improved energy efficiency. Many of
these techniques operate on a circuit by substituting or removing
some of its portions under a predefined error constraint; however,
research on systematic methods to determine the error induced
by such transformations is still at an early stage. We propose
herein a generic framework for modeling maximum error in a
circuit, called Partition and Propagate, which is a fundamental
preliminary step for ALS. This framework is based on circuit
partitioning and error propagation among the sub-circuits. We
provide a sound, complete formal description of such framework,
and we illustrate how two state-of-the-art algorithms can be
subsumed by it. Moreover, we propose a novel gate-level error-
modeling algorithm which is able to identify the whole range of
possible errors induced by a given approximate transformation.
We compare the three strategies and illustrate the efficiency of
the new error-propagation methodology, which is able to identify
accurate error bounds and, hence, guide ALS techniques to more
valuable solutions.

Index Terms—approximate computing, logic synthesis, efficient
architecture, hardware design, error modeling.

I. INTRODUCTION

Energy efficiency is nowadays regarded as a most crucial
concern in a large spectrum of applications, ranging from
portable devices to cloud computing and data warehouses.
Approximate Computing leverages the inherent error resilience
of many real-world scenarios to improve scalability and reduce
energy consumption at the expense of a slight reduction in
output accuracy [1].

In particular, approximate circuits provide a solution for
improving hardware performance (such as area, latency and
power consumption) by relaxing the requirement for fully
accurate computation. The process of designing approximate
circuits starting from their high-level description is called Ap-
proximate Logic Synthesis (ALS), and has recently attracted
many research efforts.

A large family of ALS methods operate on a gate-level
netlist representing a circuit and identify portions of the circuit
that can be neglected [2], [3], or substituted [4], without im-
pacting too strongly on the final result quality. The efficiency
of these techniques relies deeply on the availability of an
accurate circuit error model. In other words, it is of crucial
importance to possess an accurate estimate of the effect that

M. Shell was with the Department of Electrical and Computer Engineering,
Georgia Institute of Technology, Atlanta, GA, 30332 USA e-mail: (see
http://www.michaelshell.org/contact.html).

J. Doe and J. Doe are with Anonymous University.
Manuscript received April 19, 2005; revised August 26, 2015.

a given approximate transformation of the original circuit will
have.

Although other works [5], [6], [7] have provided an initial
approach to error estimation, the literature lacks a sound
formalisation of the problem, along with generic, automatic
and efficient algorithms to solve it.

This work aims at addressing this gap by providing a sound
description of the error modeling framework. In particular, it
focuses on providing bounds on the maximum error entailed
by a given approximate transformation.

The principal contributions of the paper are:
• a formal definition of error model of a circuit described

at gate-level;
• the formal description of Partition and Propagate, an

efficient framework to derive such error model and, in
particular, to identify bounds on the errors induced by
approximate transformations, through circuit partition;

• the presentation of a novel algorithm fitting the above-
mentioned framework, as well as the illustration of two
state-of-the-art algorithms that follow it.

The next section introduces the state of the art in ALS, fur-
ther motivates the necessity of a formal framework description
and outlines the weaknesses of currently available approaches.
Section III provides an overview of the proposed framework,
which is then formally defined in Section IV and V. Section
VI illustrates how two previously-published approaches are
subsumed by our framework. Section VII instead describes a
new algorithm fitting the framework, proposed in this work.
Finally, Section VIII illustrates the effectiveness of the pre-
sented strategy in guiding ALS methods through experimental
evaluation.

II. MOTIVATION

Approximate Computing (AC) as a design paradigm has
been attracting a large amount of research effort. While
approximation can be exploited at various levels of the hard-
ware/software stack [1], [8], circuit-level AC methodologies
are most related to our contribution. In particular, we focus on
Approximate Logic Synthesis, which consists of manipulating
the Boolean function implemented by a circuit to obtain an
inexact counterpart, as opposed to Voltage Overscaling, where
the voltage supply of an architecture is altered, injecting timing
errors [9], [10].

Some notable efforts in inexact circuit research focus on
manually designing specific arithmetic units, such as adders
[11] or multipliers [12], [13], while others adopt a more
generic approach, enabling the simplification of any combina-
torial circuit [2], [3], [4], [7], [14], [15], [16]. A wide variety
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of techniques belong to this category, including methods
exploiting BDDs [17], [18] or and-inverter graphs [19], as
well as combining together approximate units to realise more
complex systems [20], [21], [22].

A large portion of these ALS methods is based on the
derivation of inexact circuits by the elimination (or substitu-
tion) of some components from the original ones [2], [3], [4],
[23], [24], [25]. Some of these techniques initially blindly ap-
ply such transformations and then evaluate the effect that they
have on the output. Other methods instead, in order to choose
which components are the best candidates for elimination,
undergo the preliminary step of assigning each component a
value. This value, or weight, represents an estimate of the error
that its removal can induce on the final output.

Figure 1 illustrates this process: the original circuit, ex-
pressed as a gate-level netlist, undergoes an error modeling
phase, the output of which is the circuit labelled with weights.
With this additional information, the ALS method itself is
applied, leading to the synthesis of the desired approximate cir-
cuit, which has to respect some pre-defined error constraints.
Finally, an error validation phase aims at verifying that the
given error threshold has not been violated.

The strategies adopted so far to obtain such weights are
of three different types: Monte Carlo sampling of the circuit
inputs and simulation over the resulting input subset is a first
possibility [4], [7], [15]. However, the accuracy of the weights
obtained through this strategy relies entirely on the size of
the sample and, most importantly, the obtained results do not
guarantee any bound on the induced error.

Other works exhaustively evaluate such weights, either
explicitly by fully simulating the circuit [3], or implicitly
by employing SAT-solvers [6]. While these strategies derive
exact weights, they clearly present scalability problems when
applied to large circuits, since their complexity is exponential
in the number of the circuit inputs. Indeed, in [3], full circuit
simulation is employed for small benchmarks, while gate-level
errors for large benchmarks have been derived inductively on
identical circuit blocks.

Finally, conservative bounds can be adopted to estimate such
weights, as in [2], where node weights are assigned to the sum
of the significance of all their reachable primary outputs. How-
ever, such overly conservative weights have proven to provide
poor guidance to the ALS method applied subsequently [5].
The strengths and weaknesses of the methods described above
are summarised in Figure 2.

In this work we provide a complete framework for circuit
maximum error modeling, Partition and Propagate, which
allows for a controlled trade-off between QoR (i.e., the ac-
curacy of the obtained weights) and execution time. Actually,
conservative bounds estimation and full simulation are par-
ticular instances of algorithms subsumed in such framework,
representing the two extreme points. We will also present an
algorithm lying between these extremes, which overcomes the
limitations of the previously described approaches by allowing
for a parameterizable trade-off between execution time and
accuracy, while maintaining bound guarantees.
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Fig. 1: The original circuit is labelled with weights through
an error modeling phase, then the ALS method is applied to
synthesize an approximate circuit. Finally, the error constraint
is checked through error validation.
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Fig. 2: Summary of the main strengths and weaknesses of the
state of the art techniques for error modeling.

III. PARTITION AND PROPAGATE OVERVIEW

In Partition and Propagate (P&P), the circuit is represented
as a Directed Acyclic Graph (DAG), such as the one in
Figure 3. The purpose of this work is to derive an error-
model, where we aim at calculating bounds on the maximum
error induced on the circuit output if a gate is removed from
the circuit. A simple example of such model is provided in
Figure 3: each node is labelled with an integer, called its
weight, which represents a bound for the corresponding gate.
In this example, the output represents a 4-bit binary number, so
the output weights are set to their bit-significance (consecutive
powers of two), while the weights of all other nodes are
derived through the approach presented in this paper.

The crucial step we introduce to control the execution time
of error-modeling is to partition the graph into subgraphs:
the reduced size of these subgraphs allows their exhaustive
simulation, so that bounds on maximum error can be derived
locally, by observing changes in each subgraph output. These
bounds are then propagated among the different subgraphs,
in a traverse from the primary outputs to the primary inputs,
through a propagation procedure which we describe in depth
in Section IV.

Figure 4 illustrates the P&P process: starting from the
original circuit, where primary output nodes are labelled with
their bit-significance, the graph is partitioned (step 1). In
step 2, the partition-graph is traversed from the POs to the
PIs, identifying propagation functions for each subgraph and
transferring information from their outputs to their inputs.
After this step, all bounds on subgraph output nodes are
known. In step 3, bounds for internal nodes are derived through
exhaustive simulation in each (small) subgraph.

The employment of full simulation on each subgraph sep-
arately guarantees scalability, while accuracy on estimated
bounds is preserved thanks to the choice of a convenient
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Fig. 3: A simple example of DAG labelled with weights.
Primary output weights are assigned to the arithmetic bit
significance.
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Fig. 4: Different phases of Partition and Propagate. Initially,
only output bounds are assigned, then the graph is partitioned
(1), the propagation function is applied for all subgraphs, so
that subgraph output nodes are labelled (2) and, finally, full
simulation is performed in every subgraph to label internal
nodes (3).

propagation function. For graph partitioning, we employ the
technique described in [5].

The next section will provide a formal definition of error
model.

IV. ERROR MODEL DEFINITION

As introduced in Section III, a combinatorial circuit can be
represented as a Directed Acyclic Graph (N,E), where each
node ni ∈ N represents a single-output Boolean gate and each
edge (ni, nj) ∈ E represents a connection between nodes such
that the output of ni is used by nj . A graph (N,E) has a set
of primary inputs I and a set of primary outputs O.

Each element of the input set I is an h-dimensional Boolean
vector x ∈ Bh, and each element of the output set O is a k-

dimensional Boolean vector o ∈ Bk, so that |I| = 2h and
|O| = 2k.

The result of a circuit computation is captured by function

f : Bk → D (1)

mapping the Boolean vector of the circuit primary outputs into
any linearly ordered group, representing the value computed
by the circuit. For example, if the output is an integer binary
word, we may take D = Z, the integers, with f corresponding
to the bit-significance weighting of the k-bit vector.

The purpose of error modeling is to obtain bounds on the
influence of a node ni on the circuit output, in terms of
difference from the exact result that can be observed if ni

is removed from the circuit and its output is set to a constant
value. For the rest of this section, we will assume that the
node output is set to 0 without loss of generality, since the
equivalent process can also be performed with the output set
to 1.

Figure 5 represents three graphs which are identical, except
for the value of ni: the leftmost graph is the original one,
where the value of node ni is unknown. In the central graph,
the node output is forced to 0, while in the rightmost graph it is
forced to 1. All three graphs are fed with the same input x ∈ I ,
and they generate three vectors ox, ox

i,0 and ox
i,1 respectively.

For each input x, we are interested in error

ex = f(ox)− f(ox
i,0) (2)

given by the difference between the exact output and the
approximate one where the node in exam ni has been forced
to 0. Note that we do not know whether for that given input
the node value was 0 or 1. However, we do know that the
error is maximum if the node value is 1 in the exact circuit
and, therefore, we bound ex through

e01,x = f(ox
i,1)− f(ox

i,0) (3)

since

|ex| ≤ |e01,x| (4)

We are interested in estimating the maximum possible
discrepancy from the exact output, which is represented by
the absolute value of error ex:

max
x
|ex| ≤ max

x
|e01,x| = max

x
|f(ox

i,1)− f(ox
i,0)| (5)

where the maximum is taken over all possible inputs x ∈ I .
Error modeling is, then, the process of estimating (5).

In the following sections, we will mainly refer to absolute
error distance as the error metric for e in Eqs. (2)-(5). However,
this approach can also handle other error metrics, such as, for
instance, Hamming distance. In Eq. (1), let D = Bk, with f
as the identity function; then define addition in the usual way
as element-wise XOR for Equations (2) and (3) and, finally,
define |.| as the Hamming Weight, so that Eq. (4) is still valid.
A straightforward change in Eq. (5) from max |ex| to E|ex|
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Fig. 5: Comparison between exact circuit and approximate
versions with a gate set to 0 or 1.
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Fig. 6: Label propagation model for a generic subgraph with
s inputs and t outputs, implementing function g.

for expected error, instead, would not be useful, since the
bound of Eq. (4) would be too loose for a good estimate of the
expected error. Indeed, the probabilities of nodes being zero
or one should be taken into account, introducing significant
modifications in the framework.

V. P&P PROPAGATION TECHNIQUE

We define a partition function

P : (N,E) 7→ S (6)

where S is a set of subgraphs (Ns, Es), Ns ⊆ N, Es ⊆
E. Each node n ∈ N is assigned to exactly one subgraph
(Ns, Es) ∈ S, and

⋃
s Ns = N . Similarly, Es = {(ni, nj) ∈

E | ni ∈ Ns ∧ nj ∈ Ns}.
We define external edges {(ni, nj) | ni ∈ Ns ∧ nj ∈ Nt ∧

s 6= t} as those linking two different subgraphs. A subgraph
(Np, Ep) is parent of subgraph (Nq, Eq) if there exists at least
one external edge (ni, nj) with ni ∈ Np and nj ∈ Nq .

Figure 6 illustrates a generic graph divided into three
subgraphs, where the lower one has s inputs, t outputs and
implements a generic function g : Bs → Bt. Subgraph outputs
are associated with a label, and a propagation function p is
defined to derive labels of the s subgraph inputs, starting from
the t subgraph outputs and function g:

p : Lt × (Bs × Bt) −→ Ls (7)

Partition and Propagate

PP-Mon [5] PP-Intsum p. [2]

Fig. 7: Our formal framework subsumes different error-
modeling approaches.

The purpose of P&P is to assign a label to each node
n ∈ N , and these labels carry information on errors associated
to approximate transformations. The label of an edge is equal
to that of its destination node. The process of deriving labels
through the propagation function is performed in a traverse of
the graph from the POs to the PIs, starting from assigning the
primary output labels (for example, to their bit significance,
as in Figure 3). The definition of set L depends on the
chosen error representation: for example, the integer weights
introduced in Section III are particular instances of labels. We
will see in Section VII that elements of L can also be intervals,
providing an upper and lower bound to the maximum error
entailed by a gate removal. The information contained in these
labels is essential in boosting the efficiency of ALS methods,
since knowledge on entailed error can guide the choice of
applicable transformations.

Figure 7 illustrates that this framework captures a whole
family of existing error-modelling approaches, each with
different characteristics. In the following Section we show
how two existing techniques, sum propagation [2] and P&P-
Monotonicity (PP-Mon) [5], fit into the proposed framework.
Section VII, instead, describes a novel algorithm called P&P-
Intervals (PP-Int), which improves on the two state-of-the-art
methods accuracy and simplicity.

VI. EXISTING TECHNIQUES

A. Sum propagation

A very simple way of implementing a propagation-based
error model is called sum propagation, which coincides with
the conservative bound estimation presented in Section II.
Here, each node is considered individually and, hence, the
graph can be trivially partitioned so that each node corresponds
to a subgraph.

Labels are positive integers, the weights, and a label ` ∈ L
represents a bound on the absolute error, i.e. maxx |ex| ≤ `.

In sum propagation, the propagation function p ignores the
functionality implemented by a given node and assigns to it
the sum of all its children’s labels. This approach is used, for
instance, in [2], and an example of a graph labelled through
sum propagation is given in Figure 8.

Explicitly,

pj(`, g) :=

t∑
i=1

`i (8)

for all inputs 1 ≤ j ≤ s of the node under consideration.
Note that g and j do not appear on the right-hand side of
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the definition, leading to a fast but imprecise analysis. Since
propagation is a linear operation, Eq. (8) can be expressed in
matrix form:

p(`, g) := 1s1
T
t `

where 1k notes a vector of ones of length k.
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Fig. 8: Sum labelling.

B. P&P-Monotonicity

A more precise analysis can be obtained through a combi-
nation of larger subgraphs and a study of the functionality
of each subgraph. This is done in P&P-Monotonicity (PP-
Mon) [5], which is another example of prior work that fits into
the presented framework. We will now describe this algorithm
using the notation introduced above, and we will add some
new insights on how monotonicity of subgraphs is exploited
to improve weights accuracy.

In PP-Mon, labels are pairs of a numerical weight and a
symbolic tag, L = Z × {S,NS,NM}, where weights are
integers w ∈ Z and tags are associated attributes mean-
ing respectively strict monotonic, non-strict monotonic, and
non-monotonic: indeed, in PP-Mon, the monotonicity of the
primary output w.r.t. each node is taken into account when
propagating weights through subgraphs.

1) Propagation mechanism: Propagation is performed
looking at the subgraph truth-table, which implements a
Boolean function

g : Bs → Bt (9)

where s is the number of inputs of the truth table, and t the
number of outputs. We, then, define function

gn,v : Bs−1 → Bt (10)

to be

gxn,v = g(x1, ..., xn−1, v, xn+1, ..., xs). (11)

Equation (11) represents the output of truth table g when its
n-th input is forced to a constant value v. Note that it has one
fewer input than g. We call y ∈ Bs−1 an input combination
of function (11).

To derive the weight of bit n, the difference

|f(gyn,1)− f(gyn,0)| (12)

is computed for all y ∈ Bs−1, where f is the significance-
weighting function (1).

The final value of wn is, then:

wn = max
y

(|f(gyn,1)− f(gyn,0)|) (13)

Figure 9 illustrates an example of weight propagation, where
a subgraph of two inputs (a, b), and two outputs (c, d) is
depicted; weights of the two outputs are wc and wd.

In particular, Figure 9b illustrates how wb is obtained: a pair-
wise comparison is performed between input tuples that differ
only for the value of bit b. In this example, y ∈ {y0, y1}, where
y0 = [0] and y1 = [1]. For y = y1, g1b,0 = g(1, 0) = [0 1]
and g1b,1 = g(1, 1) = [1 0]; hence the difference computed in
equation (12) is equal to |wc − wd|, which we will assume
greater than wc for the sake of explanation. Here is where
tags on monotonicity come into play: if the integer value of the
primary output vector f(o) is strictly monotonically increasing
with subgraph output bits c and d, these bits are tagged as S
(for strict monotonic). We can safely set wb to the difference
of output bits weights because the strict monotonicity of f(o)
guarantees that errors at the subgraph output will propagate
in the same way (i.e., with the same polarity) to the graph
primary outputs. Otherwise, if bits are tagged as NS or NM ,
it will not be possible to simply subtract the weights, as will
be explained in detail in the following sections.

Weight wb is then derived according to the subgraph output
monotonicity, as follows:

p(`, g)n := max
y∈Bs−1

|`T4(gyn,1 − gyn,0)| (14)

where ` is the vector containing all labels of the subgraph
output, and the usual scalar product is redefined with 4,
which applies a different operation to each i-th partial product
according to the corresponding bit monotonicity tag:

4 =

{
+`i(g

y
n,1 − gyn,0)i, if output i is S

+`i|(gyn,1 − gyn,0)i|, if output i is NM

while if output i is NS, the signed partial product `i(g
y
n,1 −

gyn,0)i is temporarily held aside, to check whether it increments
the final result or not. The reason for this distinction will be
clarified in point 3, below.

The same process is repeated for input a1 and, since input
labels are linear combinations of output labels, the results can
be stored in a propagation matrix M(|Is|, |Os|), where the
i-th row contains the coefficients (0, 1 or -1) of the linear
combination for input i:

p(`, g) = M(g)`

Propagation matrices are derived for each subgraph, when
Equation (14) is applied to propagate subgraph output weights
to their inputs, hence obtaining the matrices coefficients.
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Fig. 9: Propagation matrix derivation for an example subgraph.
The figure reports its truth table, and differences are computed
for wb. The process is repeated twice (once for each distin-
guishable input) to obtain the complete matrix.

a  b   d o1
0  0    0  1
0  1    1  0
1  0    1  0
1  1    1  1

c   d   o2
0   0   0
0   1   1
1   0   1
1   1   0
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d, NM
0→1

1→0
o2, S
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1→0

a
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Fig. 10: An example of reverted propagation in non-monotonic
output bits. A two-subgraph partition (b), with the truth table
of the left subgraph (a) and that of the right one (c).

2) Non-monotonic outputs: If, on the contrary, f(o) is not
monotonically increasing with the subgraph output bits, the
direction of subgraphs bit variations could be reverted in lower
computations and, hence, we are forced to set the input weight
to the sum of all flipped output bit weights, always taking the
absolute value of the difference (gyn,1 − gyn,0)i in Eq. (14).

Figure 10 illustrates an example of this behaviour: in Fig.
10b we can observe a two-subgraph partition with primary
outputs o1 and o2. These are by definition strictly monotonic
(S): if their value increase, the primary output value f(o)
increases as well. When computing weight wb, we observe
from the truth table of the left subgraph (Fig. 10a) that the first
comparison, enclosed in the red rectangle, would give again
|wd −wo1 |. However, d is input to the right subgraph, whose
truth table is depicted in Fig. 10c: here it can be seen that for
an increase of bit d, the primary output can either increase or
decrease, as highlighted by the red rectangle. In this case, the
final effect on the primary output would be | − wo2 − wo1 |
and, therefore, wb should be set to wd +wo1 . Indeed, bit d is
tagged as non monotonic (NM ).

Note that a single non-monotonic subgraph in the path to
the primary outputs is sufficient for potential error underesti-
mation; therefore, information on non-monotonicity must be
retained for upper subgraphs and, hence, each output bit is

a  b   d o1
0  0    0  1
0  1    1  0
1  0    1  0
1  1    1  1

c   d   o2
0   0   0
0   1   0
1   0   0
1   1   1

=

+

(a) (b) (c)

d, NS
0→1

0
o2, S

b

1→0

a

o1, S

c

Fig. 11: An example of propagation in non-strict monotonic
output bits.

tagged with information on monotonicity (strict monotonic,
non-strict monotonic, and non-monotonic).

3) Non-strict monotonic outputs: It is also important to
distinguish between strict and non-strict monotonicity. Figure
11 illustrates a non-strict monotonic bit d: indeed, in Fig. 11c
it can be seen that if bit d increases, the primary output o2
can either increase or remain constant. Therefore, there can be
two possible outcomes on the primary outputs, depending on
the value of bit c: | − wo1 | or |wd − wo1 |, and we will have
to take the maximum between these two quantities. Hence, in
case of multiple output bitflips, all partial products left aside
in 4 of Eq. (14) will be either added or excluded from the
final result, so to maximize it.

We provide below an example of a subgraph with seven
outputs and their corresponding tags, where the difference
gn,1 − gn,0 is computed as in Eq. (14) to discover the sign
of each bitflip.

1,S 2,S 3,NM 4,NM 5,NS 6,NS 7,NS
0 1 0 1 1 1 0 = gn,0

1 0 1 0 0 0 1 = gn,1

1 -1 1 -1 -1 -1 1 = gn,1 − gn,0

Now, if output tags were all S, the product `T (gn,1− gn,0)
would give `1 − `2 + `3 − `4 − `5 − `6 + `7. For outputs with
an NM tag, instead, we need to take the absolute value of
the corresponding bit in gn,1−gn,0, hence obtaining `1−`2+
`3+`4 − `5 − `6 + `7. For outputs with an NS tag, since the
bitflip effect can manifest or not (it could be zero), we’ll need
to check which of these cases maximises the final sum. In
this example, we have three output bits with an NS tag, two
of negative direction (bits 5 and 6) and one positive (bit 7).
Therefore, the two most conservative cases are those where
all negative bitflips manifest, while all positives do not, and
viceversa:

max(|`1 − `2 + `3 + `4−`5 − `6|, |`1 − `2 + `3 + `4+`7|)

Note that, if (gn,1 − gn,0)7 were 0, hence output bit 7 did
not flip, the first term of the comparison above would be the
same, while the second would be |`1−`2+`3+`4|, accounting
for the case where negative bitflips of outputs 5 and 6 do not
manifest.

Node tags are computed over the graph primary outputs, by
verifying whether these are strictly monotonically increasing,
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non-strictly increasing or non-monotonic with respect to each
subgraph input. However, unless all subgraph outputs are
primary outputs, this property cannot be directly observed.
Therefore, the subgraph truth table along with the local output
tags are used to propagate information on monotonicity: if, for
example, the local output is monotonically increasing w.r.t. a
given input, but one of the local output bits is tagged as NM,
then the input will also be tagged as NM, since we cannot
guarantee that an increase in the local output will reflect in
an increase on the global output. Note also that, if a node has
children in different subgraphs, it will automatically be tagged
as NM, since there is no information on the combined effect
of its children monotonicity.

It is interesting to remark that monotonicity is strictly
connected with the choice of the error metric employed to
measure the discrepancy between exact and approximate out-
put. For instance, if Hamming distance was employed instead
of numerical distance, all bits would be tagged as NM , since
the Hamming distance between the exact and the approximate
output would always increase, no matter what direction a given
bitflip takes, and all primary output weights would be equal
to 1.

4) Final error model derivation: The missing step at this
point is to propagate weights from the inputs of generic
subgraphs to the outputs of their parent subgraph(s). For
a generic subgraph output, either all its children belong to
the same subgraph (as for node b of Figure 9), or children
nodes are distributed in different subgraphs (as for node
a). Derivation for the first case is trivial: wb is the one
computed through the propagation matrix M. However, if a
node has children belonging to different subgraphs, its weight
must conservatively be computed as the sum of its children
nodes weights (wa1

+ wa2
for wa in the example), since the

algorithm cannot resort to a single truth table to compute a
less conservative weight.

Once external edges and subgraph outputs are labelled,
each subgraph is populated with internal node weights. In this
phase, exhaustive simulation is employed, as in [3], but applied
to each subgraph separately, where the crucial difference is
that the number of inputs of each subgraph is much smaller
than that of the whole circuit |I|, hence ensuring computational
tractability. Note that it is not necessary to compute tags for
internal nodes, since their weights are never used to compute
upper-level weights.

VII. P&P-INTERVALS

While PP-Mon presents a valid compromise between ac-
curacy and scalability, the study of the primary output mono-
tonicity w.r.t. subgraph output nodes introduces computational
overhead.

In P&P-Intervals (PP-Int), labels L = R × R are intervals
of values that enclose the error entailed on the output by the
removal of node ni:

Ii = [li, ui] (15)

o2o3

Io3 = [4, 4]

o1

Io2 = [2, 2] Io1 = [1, 1]

S2 S1

Fig. 12: A simple example of a 2-bit ripple-carry adder, with
intervals assigned to its primary outputs.

where the two extremes li, ui represent, respectively, a bound
on the minimum and maximum error that can be observed on
the circuit primary output when ni flips from value 0 to value
1. The interval corresponding to a decrease of a node value
from 1 to 0 is symmetric with the increasing one:

−Ii = Ii,1→0 = [−ui,−li] (16)

We consider again ox
i,0 and ox

i,1, the two Boolean vectors
of the primary outputs generated when node ni is set to 1 and
0 respectively, for input x. The extremes of Ii are, then:

li = min
x

(f(ox
i,1)− f(ox

i,0)) (17)

ui = max
x

(f(ox
i,1)− f(ox

i,0)) (18)

Enclosing all possible error values in an interval presents
a major advantage when it comes to the choice of approx-
imation: indeed, not only the value of the maximum error
is available, as in PP-Mon, but its whole range. Moreover,
once the interval is at hand, deriving the maximum possible
discrepancy from the exact output (the weight) is trivial:

w(ni) = max(|li|, |ui|) (19)

However, values of equations (17) and (18) are, in general,
unknown. We aim to find bounds on such values, which will
satisfy the following:

li ≤ min
x

(f(ox
i,1)− f(ox

i,0)) (20)

ui ≥ max
x

(f(ox
i,1)− f(ox

i,0)) (21)

In other words, we aim to identify the tightest possible
interval containing the actual one.

A. Primary output intervals

As mentioned above, function (1) assigns a value to the
Boolean vector of primary outputs, the most natural choice
for such function being bit-significance weighting in the case
where the output represents a single binary word. Therefore,
primary output intervals are assigned with both extremes equal
to the output bit significance.

Figure 12 illustrates a simple example of a 2-bit adder with
three primary outputs, o3, o2 and o1. When these output bits
flip from 0 to 1, the integer value of the output increases
by, respectively, 4, 2 and 1. Therefore, primary output bits
intervals are set to Io3 = [4, 4], Io2 = [2, 2] and Io1 = [1, 1].
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If, instead, one was interested in estimating the Hamming
distance from the exact result, all primary outputs would have
equivalent weight and, hence, all primary output intervals
would be set to [1, 1].

B. Input interval derivation and propagation

Once primary output intervals are assigned, the partition
graph is traversed towards the PIs to compute intervals for all
external edges (i.e., those linking two different subgraphs).
Each input interval is computed by comparing truth table
lines where the inspected input flips from 0 to 1, while all
other input remain constant, exactly as in PP-Mon. In Figure
13a, input c is inspected and these lines are enclosed in red
rectangles.

As illustrated in Section VI-B, we represent each truth table
as a function

g : Bs → Bt

where s is the number of inputs of the truth table, and t the
number of outputs. We have defined function gn,v of Eq. (11)
as the output of truth table g when its n-th input is forced to
a constant value v.

Figures 13 and 14 illustrate interval propagation for input
c in a generic subgraph (fig. 13b). Here, y ∈ {y0, . . . , y3},
where y0 = [0 0], y1 = [0 1], etc., representing all possible
combination of inputs a and b. Each value of y identifies a
pair of truth table lines employed to compute a partial interval
Iy .

Figure 14 illustrates partial interval computations per single
value of y. For example, when y = y0, a and b are equal to
0, and equation (11) provides values

g0c,0 = g(0, 0, 0) = [0 0]

g0c,1 = g(0, 0, 1) = [0 1]

because we fix the value of input c to 0 and to 1.
I0 is computed by subtracting the weighted value of g0c,0

from that of g0c,1:

I0 = [Id Ie](g
0
c,1 − g0c,0) = Ie = [0, 2]

a b c d  e
0 0 0    0  0
0 0 1    0  1

ca b

ed
[0, 2][5, 5]

(a) (b)

0 1 0    0  1
0 1 1    1  0
1 0 0    0  1
1 0 1    1  0
1 1 0    1  0
1 1 1    1  1

S1

y0

y1

y2

y3

Fig. 13: A generic subgraph (b) with its truth table (a), which
is used to compute intervals for its inputs.

a b c d  e
0 0 0    0  0
0 0 1    0  1
0 1 0    0  1
0 1 1    1  0
1 0 0    0  1
1 0 1    1  0
1 1 0    1  0
1 1 1    1  1

y0

y1

y2

y3

Ie = [0, 2] = I0

Id - Ie = [5, 5] + [-2, 0] = [3, 5] = I1

Id - Ie = [5, 5] + [-2, 0] = [3, 5] = I2

Ie = [0, 2] = I3

Fig. 14: Detailed computation of intervals for bit c of Figure
13a.

For interval I1, instead, we have I1 = [Id Ie](g
1
c,1−g1c,0) =

Id− Ie = [5, 5]− [0, 2] = [3, 5]. The final interval for bit c is,
then, the smallest interval containing all 2s−1 partial intervals
Iy: [0, 5], in this simple example.

Therefore, the propagation function for input n is:

p(`, g)n := ]y∈Bs−1`T (gyn,1 − gyn,0) (22)

where ] indicates interval union, denoting the smallest interval
containing all argument intervals. Equation (22) can also be
expressed in matrix form, since the input intervals extremes
are linear combination of the output interval extremes:

p(`, g) = N(g)`

where N(g) contains, as in PP-Mon, coefficients 1, 0 or -1;
while ` is a vector of the form [l1 u1 ... lt ut] with all output
labels extremes.

After all input intervals of a given subgraph are computed,
the process is repeated for upper level subgraphs, and interval
values are propagated to the graph primary inputs. If a node
has children belonging to different subgraphs, its interval will
be set to the sum of its children’s intervals.

Note that we would always employ the sum of children’s in-
tervals also when estimating the maximum Hamming distance
from the exact result, as opposed to the arithmetic distance. In-
deed, we must remember that the Hamming distance increases
independently from the bitflip direction.

Finally, we resort to exhaustive simulation on each subgraph
to compute internal node intervals, similarly to PP-Mon.

The key characteristics of this method, as well as those
described in the previous sections, are summarized in Table I
for rapid comparison.

C. Strengths of PP-Int

The strength of PP-Int over PP-Mon resides in the choice
of intervals for label representation, which allows faster –
and more elegant – propagation by ignoring information on
monotonicity, and provides lower bounds for errors. In fact,
there is no need to consider how a given bitflip will impact on
the primary output (either positively or negatively), because
this information is intrinsically contained in the error interval.
Moreover, since intervals purely track the error propagation



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 9

TABLE I: Summary of the three algorithms subsumed by our formal framework.

method ref. labels p(`, g) matrix form
sum [2] L = Z

∑t
i=1 `i 1s1Tt `

PP-Mon [5] L = Z× {S,NS,NM} maxy∈Bs−1 |`T4(gyn,1 − gyn,0)| M(g)`

PP-Int - L = R× R ]y∈Bs−1`T (gyn,1 − gyn,0) N(g)`

TABLE II: Characteristics of benchmarks employed in [5].

benchmark I/O gates delay (ns) description
ADDER8 16/9 115 0.5 8-bit adder
BUTTFLY 32/33 485 2.0 simple butterfly structure
ABS DIFF 16/9 245 0.1 8-bit absolute difference
ADDER32 64/33 475 2.0 32-bit adder
MULT8 16/16 685 2.0 8-bit unsigned multiplier
BIN SQ 16/18 946 5.0 8-bit binomial squared

TABLE III: Characteristics of new benchmarks.

benchmark I/O gates delay (ns) description
O ADDER4 18/10 137 1.0 4-bit online adder
O ADDER8 34/18 140 2.0 8-bit online adder
O ADDER32 130/66 549 5.0 32-bit online adder
ADDER48 2 96/49 833 2.0 48-bit adder, 2 ns
ADDER48 5 96/49 806 5.0 48-bit adder, 5 ns
DIST 64/32 5344 50.0 16-bit euclidean distance
MADD 24/16 840 5.0 8-bit multiply-add unit
MULT16 1 32/32 3811 1.0 16-bit unsigned multiplier, 1 ns
MULT16 5 32/32 2572 5.0 16-bit unsigned multiplier, 5 ns
SAD 10 80/16 2893 10.0 16-bit sum of absolute difference, 10 ns
SAD 20 80/16 2385 20.0 16-bit sum of absolute difference, 20 ns
SAD 50 80/16 1998 50.0 16-bit sum of absolute difference, 50 ns
ADDER32 1 64/33 487 1.0 32-bit adder, 1 ns
ADDER32 1.5 64/33 474 1.5 32-bit adder, 1.5 ns
ADDER32 5 64/33 537 5.0 32-bit adder, 5 ns

across the graph and do not need to distinguish between sum,
difference or maximum (as PP-Mon does), the corresponding
weights can be less conservative. This happens when non-
symmetric intervals are summed together: as a simple exam-
ple, consider intervals [-3, 1] and [5, 5]. Their sum gives [2,
6], which corresponds to a weight of 6, while in PP-Mon the
first interval would have been associated to a non-monotonic
output of weight 3, giving a weight of 8 as final result.

However, as can be seen in our experiments in the next
section, these two approaches can sometimes lead to similar
weight values. Indeed, they both aim at providing bounds on
the error range and, while PP-Int is often less conservative
– and this is a significant improvement over PP-Mon – we
expect comparable results. In some benchmarks though, such
as online adders, the difference in weights is much more
pronounced, as illustrated in Section VIII.

The principal strength of this method resides in its simplicity
and in the enriched information provided for error-modeling.

VIII. EXPERIMENTAL EVALUATION

To assess the performance of the presented methodology,
we have implemented the three error propagation techniques
over a wide set of benchmark circuits specified in VHDL. We
have first considered the same benchmarks employed in [5],
whose characteristics are reported in Table II, then we have
expanded this benchmark set by adding the circuits listed in
Table III. All circuits were synthesized with Synopsys Design

Compiler, targeting a 40nm technology library, while exhaus-
tive simulation and sub-graph simulation was performed with
SIS [26]. For both PP-Mon and PP-Int we have employed the
partitioning strategy described in [5], setting the maximum
number of inputs per subgraph to 10.

A. PP-Int interval values

As described in Section VII, PP-Int assigns to each circuit
gate a label in the form of eq. (15), with a lower bound li and
an upper bound ui. To derive the corresponding weight, we
take the maximum absolute value of the two, as in eq. (19).
Figure 15 reports these three values for each gate of the two
benchmarks ADDER8 and ABS DIFF, where gates are sorted
by increasing weight value. It can be observed that, even for
large weight values, ADDER8 presents narrow intervals, which
seldom span from −w(ni) to w(ni). On the contrary, ABS -
DIFF shows more variability, with wide symmetric intervals
for many gates. Indeed, as described in the following section
and illustrated in Figure 16, ADDER8 weights coincide with
the simulated ones, while ABS DIFF weights are, generally,
more distant.

B. Comparison with benchmarks used in [5]

Figure 16 compares weights obtained by PP-Int, derived
from the corresponding interval, against the state-of-the-art
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Fig. 15: Lower and upper bounds found by PP-Int, and the corresponding weight, for ADDER8 (left) and ABS DIFF (right).

0 25 50 75 100
gate ID

100

101

102

103

w
ei

gh
t

adder8

sum p.
PP-Int
PP-Mon
simul

0 100 200 300 400 500
gate ID

101

103

105

107

109

w
ei

gh
t

buttfly
sum p.
PP-Mon
PP-Int

0 50 100 150 200 250
gate ID

100

101

102

103

104

w
ei

gh
t

abs_diff

sum p.
PP-Int
PP-Mon
simul

0 100 200 300 400
gate ID

101

103

105

107

109

w
ei

gh
t

adder32

sum p.
PP-Mon
PP-Int

0 200 400 600
gate ID

101

103

105

107

109

w
ei

gh
t

mult8

sum p.
PP-Int
PP-Mon
simul

0 200 400 600 800
gate ID

101

103

105

107

109

1011

w
ei

gh
t

bin_sq

sum p.
PP-Int
PP-Mon
simul

Fig. 16: Comparison of weights obtained through sum propagation, PP-Mon and PP-Int for the benchmarks employed in [5].
The weight of each gate is reported, and gates sorted by increasing (simulated or PP-Int) value.

strategies sum propagation and PP-Mon. For circuits with up
to 16 inputs, also exhaustive simulation has been performed.
For each circuit, the weight of each gate is reported, and
gates are disposed on the x-axis by increasing simulated
weight, when available, and otherwise by increasing PP-Int
weight. We can observe that PP-Mon and PP-Int weights are
almost always identical, except for MULT8 benchmark and
for a very small set of gates in BUTTFLY. As introduced in
Section VII-C, the main advantage of PP-Int does not reside in
strongly improved weight values, but rather in the simplicity,

and therefore effectiveness, of the propagation mechanism.
Moreover, weights confirm to be very close (or even equal) to
the simulated ones, and still orders of magnitude lower than
those obtained through sum propagation (for example, seven
orders of magnitude lower for gate with ID=200 in BIN SQ).

C. Expanded benchmark set

We have expanded [5] benchmark set with those of Table
III and, in particular, we have introduced larger benchmarks
to assess the efficiency of the proposed approach. Figure 17
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Fig. 17: Comparison of weights obtained through sum propagation, PP-Mon [5] and PP-Int for adders and euclidean distance
(top-row), multiply-add and a multiplier (bottom row).
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Fig. 18: Comparison of weights obtained through sum propagation, PP-Mon [5] and PP-Int for online adders.

reports six large benchmarks, whose average gate count is ≈
2400 (with a maximum of 5344 for the DIST circuit).

In the top row of Figure 17 we can observe two 48-bit
adders synthesised with different constraints on their critical
path. In particular, ADDER48 2 has critical path of 2 ns,
while ADDER48 5 of 5 ns. PP-Int and PP-Mon retrieve much
lower weights than sum propagation for the slower adder
(ADDER48 5), while for the faster adder (ADDER48 2) the
difference is less pronounced (although still of one order of
magnitude): this is due to the more complex structure of the
faster adder, where it is harder to isolate monotonic subgraphs,
or subgraphs leading to narrow intervals. A similar effect
can be seen for the two 16-bit multipliers MULT16 1 and

MULT16 5, and will be further illustrated in section VIII-E.
In the two remaining benchmarks MADD and DIST, the

difference between weights obtained by sum propagation and
those obtained by PP-Int and PP-Mon is again of several orders
of magnitude (up to 9 in DIST).

In general, for four out of six benchmarks, PP-Int weights
are slightly lower than PP-Mon ones, confirming the validity
of the proposed approach.

D. Online adders

Online adders are special adder architectures which employ
redundancy in data representation, allowing less-significant
digits to correct errors introduced in those of higher signif-
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Fig. 19: Comparison of weights obtained through sum propagation, PP-Mon [5] and PP-Int for SAD with different delay
constraints (top row) and 32-bit adders (bottom row).

icance, and functioning in MSD-first fashion [27], [28]. In
these adders, each input bit xi corresponds to a pair of bits,
x+
i and x−i , selected such that xi = x+

i −x
−
i [27]. This is why

O ADDER8 (the 8-bit online adder) has 34 inputs (four 8-bit
inputs, plus a 2-bit carry-in) and 18 outputs (two 8-bit outputs,
and a 2-bit carry-out). Their structure looks similar to that of a
ripple-carry adder, but there is no carry chain running through
the graph, leading to a partition that isolates full-adder-like
blocks, but with different subgraph functionalities. Figure 18
reports weights obtained by the three techniques for 4, 8 and
32-bit online adders. For the second and third circuit, sum
propagation and PP-Mon weights even coincide, while PP-Int
is able to systematically retrieve lower weights in all cases.
This demonstrates once again that PP-Int can improve weights,
especially when non-monotonic subgraphs hamper PP-Mon.

E. Faster vs slower circuits

Finally, we have further studied weights accuracy for cir-
cuits with the same functionality but with different topological
structure, imposed by different delay constraint at synthesis
time.

Figure 19 showcases weights retrieved for three 16-bit
SAD circuits (top row) and three 32-bit adders (bottom row).
Their delay constraint decreases left to right, so that leftmost
circuits are the fastest and, consequently, the largest. The
results confirm the trend already seen in other benchmarks:
for faster circuits, the difference between weights obtained by
sum propagation and by PP-Int and PP-Mon is visible and
can be of two orders of magnitude (see gate with ID 500

in SAD 10), but it increases remarkably in slower circuits (7
orders of magnitude for gate with ID 2000 in SAD 50, or even
15 orders of magnitude for gate with ID 100 in ADDER32 5).

Except from ADDER32 5, where PP-Int and PP-Mon
weights coincide, in all other benchmarks PP-Int performs
better than PP-Mon. In particular, we can see that weights are
significantly improved for ADDER32 1.5, where for a large
portion of gates the difference between PP-Int and PP-Mon
reaches three orders of magnitude.

To sum up, we can conclude that the efficiency of PP-Int
and PP-Mon can vary significantly according to the circuit
structure, but these methods always perform better than sum
propagation and, in many cases, PP-Int improves even consid-
erably the accuracy of weights obtained through PP-Mon.

F. Effectiveness of error modeling for ALS

As motivated at the beginning of this paper, the importance
of an accurate error-modeling phase is crucial for guiding
ALS methods towards efficient solutions. To demonstrate this,
we have compared the performance of approximate circuits
obtained with the approach described in [2], called Gate Level
Pruning (GLP), which iteratively removes one gate from the
circuit and simulates the result, until the given error threshold
is violated. Specifically, we have compared the Energy, Delay
and Area Product (EDAP) of circuits obtained by GLP when
guided by sum propagation, as in its original implementation,
and when guided by our PP-Int. Figure 20 illustrates the
obtained results: for the same amount of tolerated error, GLP
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Fig. 20: Comparison of EDAP for circuits obtained with GLP [2] guided by sum propagation vs PP-Int. The error constraint
is a measure of maximum error, expressed as a percentage of the maximum circuit output.

guided by PP-Int retrieves smaller, faster and less power-
consuming circuits than those obtained when sum propagation
is applied. For example, the EDAP is halved for a maximum
tolerated error of 1% in BIN SQ. These results further show-
case the validity of the proposed approach in increasing the
performance of ALS algorithms.

G. Runtime comparison for PP-Int and PP-Mon

As introduced in Section VII-C, the greatest advantage
of PP-Int resides in the simplicity of label propagation. To
assess the extent of such improvement, we have compared
the label propagation runtime of PP-Mon and PP-Int over all
benchmarks listed in Table II and III. These runtime values
range from few seconds to several minutes, up to 14 minutes
for BIN SQ. Although BIN SQ is not the largest benchmark in
terms of number of gates, its subgraphs have a high number
of inputs (up to 9), which explains the long runtime, since
subgraph simulation is exponential in the number of the inputs.
Indeed, runtime strongly depends on the partition structure
found.

The results obtained confirm our insight: on average, PP-
Int reduces the runtime by 11%. However, if we only consider
those benchmarks for which propagation is slow, i.e., it takes
longer than a minute, the average runtime reduction amounts
to 42%. We therefore conclude that, especially for complex
partition structures with several propagation steps, PP-Int
represents a significant improvement over PP-Mon.

TABLE IV: Influence of T , the maximum number of inputs
allowed per subgraph, on the resulting weight accuracy of
BIN SQ.

T 10 8 5 4 3 2
number of sg. 8 117 123 126 136 206
avg. dist. 9.81e3 1.60e7 1.66e7 1.66e7 1.73e7 2.23e7
runtime (s) 849.8 63.2 37.7 36.1 34.2 27.2

H. Maximum number of inputs per subgraph

Finally, we have studied the effect of varying the maximum
number of inputs T allowed per subgraph on the resulting
weight accuracy. Less inputs per subgraph imply smaller
subgraphs and, hence, more nodes with children belonging
to different subgraphs, which will force the employment of
conservative sum propagation. On the other hand, allowing too
many inputs will result in infeasible simulation. We remind the
reader that, for all the experiments presented in this section,
threshold T was set to 10. Table IV reports these results for
weights obtained by PP-Int on BIN SQ: when T decreases,
both the total number of subgraphs and the average distance
from the exact weights increase, while the runtime decreases.
Figure 21 showcases this effect, where T is indicated between
brackets. While weights obtained by PP-Int with a threshold of
10 inputs per subgraph are close to the simulated ones, when
the threshold is lowered to 5 they approach sum propagation.

IX. CONCLUSION

In this work we have enriched the state of the art in error
modeling by introducing a formal framework for maximum
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Fig. 21: Weights obtained by PP-Int on BIN SQ with different
values of maximum number of inputs per subgraph, respec-
tively 5 (pink) and 10 (black).

error-propagation, Partition and Propagate, where the circuit is
partitioned and the gates are labelled with values representing
their influence on the final output. These labels are then
propagated through the circuit via a propagation function.
Several different error-modeling strategies originate from this
framework, according to the choice of the partitioning algo-
rithm and the propagation function. We have showcased how
two prior-work methods fit in the described framework, and
we have presented a third, new error-modeling strategy called
P&P-Intervals. We have compared the three strategies over
a wide set of benchmark circuits, outlining their different
performance and demonstrating the effectiveness of the novel
P&P-Intervals error-modeling method in estimating accurately
gate-level errors.
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