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Adaptive Formation Tracking Control for First-Order Agents with a
Time-Varying Flow Parameter

Yang-Yang Chen, Member, IEEE , Kaiwen Chen, and Alessandro Astolfi, Fellow, IEEE

Abstract— A novel adaptive method to achieve both path follow-
ing and formation moving along desired orbits in the presence of
a spatio-temporal flowfield is presented. The flowfield is a spatio-
temporal general flow with unknown time-varying parameters. The
so-called congelation of variables method is used to estimate the
time-varying flow parameters, which do not have any restrictions
on the rate of their variation. The asymptotic properties of the
resulting adaptive system are studied in detail. Simulation results
demonstrate the effectiveness of the proposed method.

Index Terms— Formation tracking control, time-varying
flow parameters, adaptive estimate.

I. INTRODUCTION

Formation tracking control, also called as coordinated path follow-
ing control, has received significant attention in oceanic and planetary
explorations [1], [2]. Differently from the consensus problem [3],
[4], the objective of the formation tracking control problem consists
of the simultaneous path following and formation control around a
given orbit. This yields, for example, good performance in seeking
measurements of biological variables across a range of spatial and
temporal scales [5]. In early works on formation tracking control,
see e.g. [6]–[9], the effect of the external flowfield has been ignored.
However, as pointed out in [10], the flowfield may force the vehicles
to deviate from the desired orbit and may affect the formation to
such an extent that it can cause damage to the equipment [11]. It
is therefore essential to design formation tracking methods in the
presence of a flowfield.

In the area of flow-based formation tracking control there are
two main trends. The first is based on state/parameter estimation
methods. In particular, a state observer to achieve even distribution on
a simple and closed curve with an unknown time-invariant flowfield
is given in [12]. A similar idea is used in [13], in which the
flowfield is uniformly rotating with an unknown rotating speed.
In [14] a consensus-based filter to estimate the uncertain constant
parameter of the parameterized flowfield, under the assumption that
the convergence speed of the filter is faster than that of the tracking
error, is designed. Formation tracking in a general flowfield has been
studied with a new adaptive method in [15], on the basis of the
notion of neighbor states, whereas a disturbance observer has been
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proposed in [16] to estimate disturbances, the time derivative of
which converges to zero. An alternative filter to deal with unknown
nonlinear terms satisfying a Lipschiz-like condition has been designed
in [17]. Finally, adaptive methods have been applied to cooperative
output regulation in [18] and to the unknown target enclosing task
in [19]. However, none of the aforementioned methods is applicable
to the case in which the parameter is time-varying and the rate of its
variation has no restriction.

The second trend is based on the use of adaptive neural network
(ANN). In the 1990’s, ANNs have been introduced for flight control
problems [20]. In [21], the formation flight control problem with
uncertainties has been translated into a simple master-slave tracking
control problem and it has then be solved with an ANN. Such a
method is developed for the general leader-following structure in
[22] and in [23] for ocean currents. ANNs have also proven to be
useful to deal with time-delays in multi-agent systems [24], for robust
time-varying formation mission [25] and in the case of topology-
switching multi-agent systems [26]. It should be noted that the use
of ANNs is beneficial in the presence of nonlinearity and in dealing
with spacial flowfields. However it cannot be used to address the
formation tracking problem in spatio-temporal flowfields. Finally by
using ANNs only uniform boundedness of the tracking error can be
obtained. In practice, the dynamics of the flowfield is often spatio-
temporal and contains unknown time-varying parameters [27], the
effect of which cannot be alleviated by the indicated estimation
methods and/or by the use of ANNs.

Recently a novel method called congelation of variables [28]–
[31] has been developed for the adaptive stabilization of a class
of single-input-single-output nonlinear system with time-varying
parameters. On the basis of this adaptive method we propose a
novel robust formation tracking control for bidirectional connected
first-order agents. The flowfield under consideration is a general
spatio-temporal flow with unknown time-varying parameters: this can
model for example the time-varying spatially flowfield in [13], the
parameterizable flowfield in [14], [15] and the Eulerian flowfield in
[32]. The formation tracking task with/without reference orbital speed
is addressed and solved by means of a congelation of variables
method, with asymptotic guarantees, despite the effect of a state
and time dependant spatio-temporal flow. In addition, the adaptive
update law for the unknown time-varying parameters in the case of
formation tracking without reference orbital speed is designed by
using the consensus errors, i.e. the differences between neighboring
states, yielding an adaptive update law different form that in [31].
Note finally that the class of systems studied in this paper is different
from that in [31].

The paper is organized as follows. Section II summarizes some
preliminaries and formulates the adaptive tracking control problem
in the presence of an unknown spatio-temporal flowfield. In Section
III we firstly give a solution to the problem in which a reference
orbital speed is given and then we solve the problem without the use
of any global reference signals. Simulation results are presented in
Section IV. Conclusions are given in Section V.
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II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries
The notation used in the paper is standard. R denotes the set of

real numbers. T denotes the one-torus, that is, φ ∈ T implies that we
identify φ + 2π with φ. ‖ · ‖ denotes the Euclidean norm and |M |
denotes the determinant of the square matrix M .

Let G = {V, E} be a bidirectional graph defining a network
topology among vehicles. The set V = {V1, · · · ,Vn} denotes a set of
n vehicles and E ⊆ V×V is a set of data links. A path from node Vj
to Vi is a sequence of edges

(
Vi,Vi1

)
, . . . ,

(
Vim ,Vj

)
in the network

topology with distinct nodes Vik , k = 1, . . . ,m. A bidirectional
topology is connected if there exists a path from any node to any other
nodes in the graph. Let, for i, j = 1, . . . , n, aii = 0, aij = aji = 1 if
(Vj ,Vi) ∈ E , and aij = 0 otherwise. In addition define the Laplacian
matrix L , [lij ]

n
i,j=1 with lii =

∑n
j=1 aij and lij = −aij , for any

i 6= j, i, j = 1, . . . , n.
In this paper the desired orbit associated to each vehicle is a

simple, closed and regular curve with nonzero curvature. In a fixed
inertial reference frame it can be parameterized by a smooth map
Ci0 : [0, 2π)→ R2, φi 7→ Ci0(φi), where φi ∈ T is the phase angle
denoting the direction of the vector from the origin of the orbit to the
point on the orbit with respect to the positive axis of the fixed inertial
reference frame. To define each desired orbit as a level line of the
smooth map Ci0 should satisfy the following additional conditions,
in which ε is a positive constant.
(C1) ‖Ci0(φi)‖ > ε ≥ 0, which means that the distance from each

point on the orbit to the origin of the fixed inertial reference is
bounded away from zero. This assumption is without loss of
generality, since one can always shift the origin of the reference
frame.

(C2) 0 < ε ≤ ‖dCi0(φi)/dφi‖ <∞, which implies that the tangent
vector at each point of the orbit is well-defined and nonzero.

(C3) |Ci0(φi),dCi0(φi)/dφi| 6= 0 for all φi, which implies that the
well-defined vector from the origin to each point pi,k on the
orbit and the tangent vector to the orbit at pi,k are linearly
independent.

If the above assumptions hold a set of level curves of a smooth
function can be constructed by concentric compression, that is by
defining the maps

Cic (φi, c) = (1− c) Ci0 (φi) , (1)

where c ∈ R is the compression margin.
Lemma 1 [8]: For any simple, closed and regular orbit satisfying

conditions (C1) to (C3) and identified by the map Ci0, there exists a
constant εi > 0 such that Ci(·) (·, ·) is a diffeomorphism on [0, 2π)×
(−εi, εi). Moreover there exists an open set Ωi ⊂ R2, which is a
tubular neighborhood of the orbit, and a smooth function λi : Ωi →
(−εi, εi), which is called the orbit function (and its value is called
the orbit value), such that the following conditions hold:

1. ‖∇λi‖ =
∥∥∥∂λi∂pi

∥∥∥ 6= 0, for all pi ∈ Ωi;
2. λi (pi) = c, for all point pi on the orbit identified by Cic with

c ∈ (−εi, εi).
Remark 1: Cic is a level line of the orbit function λi(pi) and the

orbit value associated to the orbit Ci0 is zero, as illustrated in Figure 1.
Remark 2: The (skewed) superellipse, a class of closed curves that

includes circles, ellipses, and rounded parallelograms, is described via
the equation

Ci0 (φi) =
[
a (cosφi)

1
ν + µb (sinφi)

1
ν , b (sinφi)

1
ν

]T
, (2)

where µ ∈ R is the so-called skewness parameter. The semi-major
axis length a and the semi-minor axis length b satisfy a > b > 0.

Fig. 1. Level orbits of λi(pi) on Ωi. The meshed area denotes the
tubular neighborhood Ωi.

The parameter ν = 1, 3, 5, . . . determines the corner sharpness. For
µ = 0 and a > b (resp. a = b), setting ν = 1 yields an ellipse (resp. a
circle) and setting ν ≥ 3 yields a rounded rectangle (resp. a rounded
square). Setting µ 6= 0 and ν > 1 yields a rounded parallelogram.
Note now that equation (1) yields

Ciλ (φi, c) = [pxi (φi, c) , pyi (φi, c)]
T

=

 (1− c)
(
a (cosφi)

1
ν + µb (sinφi)

1
ν

)
(1− c) b (sinφi)

1
ν

 . (3)

Thus, using equation (3) we obtain(
pxi − µpyi

a

)2ν

+
(pyi
b

)2ν
= (1− c)2ν , (4)

which, solved for c, gives the expression of the orbit function, that
is

λi (pi) = c = 1−

((
pxi − µpyi

a

)2ν

+
(pyi
b

)2ν) 1
2ν

. (5)

As a result, the tubular neighborhood can be represented as

Ωi =
{
pi ∈ R2 | |λi (pi)| < εi

}
with 0 < εi < 1. Note finally that∥∥∥∥∂λi∂pi

∥∥∥∥ = (1− λi)1−2ν
[

1

a2

(
pxi − µpyi

a

)4ν−2

+
µ2

a2

(
pxi − µpyi

a

)4ν−2
+

1

b2

(pyi
b

)4ν−2
−2

µ

ab

(
pxi − µpyi

a

)2ν−1(pyi
b

)2ν−1] 1
2

. (6)

Hence ‖∇λi‖ is bounded on the set Ωi. For illustration Figure 2
displays level superellipses with a = 3, b = 3, µ = 0, ν = 3 and
c = −0.5, c = 0, and c = 0.5.

To ensure that each vehicle with initial position in Ωi remains in
Ωi, a barrier function Ψi is introduced.

Definition 1: A C2 function Ψi : (−εi, εi) → R is a barrier
function with a wide of 2εi if
(C4) lim

λi→−ε
+
i

Ψi (λi) = +∞ and lim
λi→−ε

+
i

∇Ψi (λi) = −∞.

(C5) lim
λi→ε

−
i

Ψi (λi) = +∞ and lim
λi→ε

−
i

∇Ψi (λi) = +∞.

(C6) ∇Ψi (0) = 0.
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Fig. 2. Plots of level superellipses.

B. Problem statement

Consider a formation composed of n vehicles moving in a fixed
inertial reference frame each satisfying the dynamic equation

ṗi = ui + fi (pi, t, θi (t)) , (7)

with position variable pi(t) ∈ R2, and control input ui =

[uxi , uyi ]
T ∈ R2. The mapping fi (pi, θi (t)) denotes the spatio-

temporal flowfield which is such that

fi (pi, t, θi (t)) = fαi (λi) fβi (pi, t) θi (t) , (8)

where fαi : R→ R denotes the known, space-based flow amplitude;
fβi : R2×R→ R2×m is the 2×m matrix of known basis bounded
functions of the flowfield; and θi (t) ∈ Rm is the set of unknown
time-varying parameters.

Assumption 1: The functions fαi are bounded and are such that
∇Ψifαi ≥ f

2
αi , for all λi, and fαi(0) = 0.

Assumption 2: There exists a constant c1 > 0 such that
∥∥fβi∥∥ ≤

c1, for all pi and t ≥ 0.
Assumption 3: The vectors of unknown time-varying parameters

θi (t) satisfy, for all t ≥ 0, the box constraint

θi ≤ θi (t) ≤ θ̄i, (9)

for some constants θi ∈ Rm and θ̄i ∈ Rm where the sign ≤
is defined element-wise. Moreover the radius of the box δi∗ =
1
2

∣∣θ̄i − θi∣∣ is known.
Remark 3: Figure 3 provides a graphical illustration of the relation

among Ψi, ∇Ψi and fαi . Some examples of barrier functions Ψi
can be found in [8]. Note that it is always possible to construct a
barrier function such that Assumption 1 holds.

Remark 4: Assumption 1 is without loss of generality. Choosing
the functions fα such that the signs of fα and ∇Ψi are consistent
and noting that

fi (pi, t, θi (t)) = fαi (λi) fβi (pi, t) θi (t)

=
(
αif̄αi (λi)

) (
α−1i f̄βi (pi, t)

)
θi (t) ,

the condition ∇Ψifαi ≥ f
2
αi , for all λi ∈ (−εi, εi) can be enforced

by adjusting the parameter 0 < αi < 1. Moreover since the flowfields
fi are bounded, it is natural to assume that the functions fαi are
bounded. The condition fαi (0) = 0 implies that the effect of the
flowfield disappears on the desired orbit associated to each vehicle.

Remark 5: Assumption 2 is natural due to boundedness of the
flowfields. Assumption 3 is a boundedness condition for the set of
unknown time-varying parameters, which is natural and common in
the literature, see e.g. [13]–[15] and [32].

Fig. 3. Sketches of Ψ, ∇Ψi and fαi .

The formation tracking objectives can be decomposed into a path
following task and a formation motion task, which are formally
described as follows.

The path following error can be described, by Lemma 1, as
λi(pi(t)), hence path following is achieved if

lim
t→∞

λi(pi(t)) = 0, (10)

and
λi(t) ∈ Ωi, (11)

for all t ≥ 0, where Ωi =
{
pi ∈ R2 | |λi (pi(t))| < εi

}
.

To define the formation motion task the following definition of
arc-lengthes si should be given at first, i.e.,

si (λi, φi) ,
∫ φi

φ∗i

∂si (λi, τ)

∂τ
dτ, (12)

where φ∗i is the parameter associated with the starting point of the
arc.

Then, consistently with [8], the generalized arc-lengths ξi(si) are
C1 functions of si and |∂ξi/∂si| ≥ ε > 0, which are selected to
satisfy that formation is achieved if

lim
t→∞

(
ξi(t)− ξj(t)

)
= 0. (13)

Finally, the following assumption holds.
Assumption 4: The bidirectional topology associated with the n

vehicle system is fixed and connected.
In this paper the formation tracking problems with/without refer-

ence orbital speed are studied. These can be be formulated as follows.

Problem 1. Adaptive formation tracking problem with reference
orbital speed. Let i ∈ [1, n]. Consider the system (8) and the initial
position pi(0) ∈ Ωi. Suppose Assumptions 1 to 4 hold. Design a
formation tracking control law ui, with an adaptive update law for
the unknown time-varying flow parameter θi (t), such that the closed-
loop system satisfies the control objectives (10), (11) and

lim
t→∞

(ξi (t)− ξ∗(t)) = 0, (14)

where ξ∗(t) =
∫ t
o η∗(τ)dτ , and η∗(t) > 0 is a bounded reference

orbital speed.

Problem 2. Adaptive formation tracking problem without reference
orbital speed. Let i ∈ [1, n]. Consider the system (8) and the initial
position pi(0) ∈ Ωi. Suppose Assumptions 1 to 4 hold. Design a
formation tracking control law ui, with an adaptive update law for
the unknown time-varying flow parameter θi (t), such that the closed-
loop system satisfies the control objectives (10), (11) and (13).
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III. MAIN RESULTS

A. Open-loop System

By Lemma 1 one obtains the path following dynamics by differ-
entiating λi, i.e.1,

λ̇i = ‖∇λi‖ vNi + fαi ‖∇λi‖ fβNiθi, (15)

where

vNi = NT
i vi (16)

denotes the control input projected to the normal vector Ni to the
level orbit of the current position of the vehicle, Ni = ∇λi

‖∇λi‖
and

fβNi = NT
i fβi .

From (12) we have that

ṡi = vTi + fαifβTiθi +
∂si
∂λi
‖∇λi‖ vNi

+
∂si
∂λi

fαi ‖∇λi‖ fβNiθi, (17)

where

vTi = TTi vi (18)

denotes the control input projected to the tangent vector Ti to the
level orbit of the current position of the vehicle, Ti = [R1, R2]TNi
with R1 = [0, 1]T and R2 = [−1, 0]T , and fβTi = TTi fβi .

As a result, the dynamics of ξi is given by the equation

ξ̇i =
∂ξi
∂si

(
vTi +

∂si
∂λi
‖∇λi‖ vNi

+fαi

(
fβTi +

∂si
∂λi
‖∇λi‖ fβNi

)
θi

)
. (19)

Therefore, the dynamics associated to the formation tracking
system for the ith vehicle are described by equations (15) and (19).

B. Solution to Problem 1

Let us consider the candidate Lyapunov function

VI =

n∑
i=1

Ψ (λi) +
1

2

n∑
i=1

ξ̃2i +
1

γ

n∑
i=1

(
li − θ̂i

)T (
li − θ̂i

)
, (20)

where ξ̃i = ξi − ξ∗. The vector li can be selected such that li =
1
2

(
θ̄i + θi

)
as in [28], γ > 0 is the adaptation gain and θ̂i is the

estimate of θi.
In (20) the first term contributes to achieving the path following

objective, i.e., equations (10) and (11). It vanishes when λi = 0.
The second term contributes to achieving the desired formation, i.e.,
equation (14). The last term contributes to achieving flow estimation.
Differentiating both sides of (20) along the trajectories of the system

1In what follows, to simplify notation, we use θi to denote θi(t).

yields

V̇I =

n∑
i=1

∇Ψi

[
‖∇λi‖ vNi + fαi ‖∇λi‖ fβNiθi

]
+

n∑
i=1

ξ̃i

[
∂ξi
∂si

(
vTi +

∂si
∂λi
‖∇λi‖ vNi + fαi

(
fβTi

+
∂si
∂λi
‖∇λi‖ fβNi

)
θi

)
− η∗

]
− 1

γ

n∑
i=1

(
li − θ̂i

)T ˙̂
θi

=

n∑
i=1

∇Ψi
[
‖∇λi‖ vNi + fαi ‖∇λi‖ fβNi (θi − li

+li − θ̂i + θ̂i

)]
+

n∑
i=1

ξ̃i

[
∂ξi
∂si

(
vTi +

∂si
∂λi
‖∇λi‖ vNi

+ fαi

(
fβTi +

∂si
∂λi
‖∇λi‖ fβNi

)(
θi − li + li − θ̂i

+θ̂i

))
− η∗

]
− 1

γ

n∑
i=1

(
li − θ̂i

)T ˙̂
θi. (21)

Rewriting (21) as

V̇I =

n∑
i=1

∇Ψi

[
‖∇λi‖ vNi + fαi ‖∇λi‖ fβNi (θi − li +θ̂i

)]
+

n∑
i=1

ξ̃i

[
∂ξi
∂si

(
vTi +

∂si
∂λi
‖∇λi‖ vNi + fαi

×
(
fβTi +

∂si
∂λi
‖∇λi‖ fβNi

)(
θi − li + θ̂i

))
− η∗

]
+

n∑
i=1

(
li − θ̂i

)T [
− 1

γ
˙̂
θi +∇Ψifαi ‖∇λi‖ f

T
βNi

+ ξ̃i
∂ξi
∂si

fαi

(
fTβTi +

∂si
∂λi
‖∇λi‖ fTβNi

)]
, (22)

suggests the selection

vNi = − 1

‖∇λi‖

(
fαi ‖∇λi‖ fβNi θ̂i + k1fαi

)
, (23)

vTi = −fαi

(
fβTi +

∂si
∂λi

fαi ‖∇λi‖ fβNi

)
θ̂i −

∂si
∂λi
‖∇λi‖ vNi

+

(
∂ξi
∂si

)−1η∗ − k2ξ̃i − k3 n∑
j=1

aij
(
ξi − ξj

) , (24)

˙̂
θi = γ

(
∇Ψifαi ‖∇λi‖ f

T
βNi

+ ξ̃i
∂ξi
∂si

fαi

(
fTβTi

+
∂si
∂λi
‖∇λi‖ fTβNi

))
, (25)

in which the control parameters k1 and k2 have to be selected and
k3 > 0. Substituting (23), (24) and (25) into (22) yields

V̇I =

n∑
i=1

∇Ψi

[
−k1∇ψifαi + fαi ‖∇λi‖ fβNi(θi − li)

]
+

n∑
i=1

ξ̃i

[
∂ξi
∂si

fαi

(
fβTi +

∂si
∂λi
‖∇λi‖ fβNi

)
(θi − li)

−k2ξ̃i − k3
n∑
j=1

aij
(
ξi − ξj

) . (26)

Note that the closed-loop equations associated to the formation
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tracking control system for the ith vehicle are

λ̇i = −k1fαi + fαi ‖∇λi‖ fβNi
(
θi − θ̂i

)
,

˙̃
ξi =

∂ξi
∂si

(
fαifβTi +

∂si
∂λi

fαi ‖∇λi‖ fβNi

)(
θi − θ̂i

)
− k2ξ̃i − k3

n∑
j=1

aij

(
ξ̃i − ξ̃j

)
,

˙̂
θi = γ

(
∇Ψifαi ‖∇λi‖ f

T
βNi

+ ξ̃i
∂ξi
∂si

fαi

×
(
fTβTi +

∂si
∂λi
‖∇λi‖ fTβNi

))
. (27)

By Assumption 3, on the set Ωi the inequalities

‖∇λi‖ ≤ c2,
∣∣∣∣∂ξi∂si

∣∣∣∣ ≤ c3,∣∣∣∣ ∂si∂λi

∣∣∣∣ ≤ ∫ 2π

0

√
(ṗxi (τ))2 + (ṗyi (τ))2dτ ≤ c4, (28)

hold for some positive constants c2, c3 and c4. According to
Assumption 2 and the fact that ‖Ni‖ = ‖Ti‖ = 1 one obtains∥∥∥fβNi∥∥∥ ≤ c1, ∥∥∥fβTi∥∥∥ ≤ c1. (29)

Let now

δi = θi − li. (30)

From (28), (29) and (30) one has

V̇I ≤ −
n∑
i=1

k1∇Ψifαi +

n∑
i=1

c1c2∇ψifαi |δi|

−
n∑
i=1

k2ξ̃
2
i −

n∑
i=1

k3ξ̃i

n∑
j=1

aij

(
ξ̃i − ξ̃j

)
+

n∑
i=1

c1c3 (1 + c2c4)
∣∣∣ξ̃ifαi (λi) δi

∣∣∣ . (31)

Exploiting the inequality∣∣∣ξ̃ifαi (λi) δi

∣∣∣ ≤ 1

2
ξ̃2i |δi|

2 +
1

2
f2αi (32)

By Assumption 3 |δi| ≤ δi∗ we conclude that

V̇I ≤ −
n∑
i=1

k1∇Ψifαi +

n∑
i=1

c1c2∇ψifαiδi∗

−
n∑
i=1

k2ξ̃
2
i −

n∑
i=1

k3ξ̃i

n∑
j=1

aij

(
ξ̃i − ξ̃j

)
+

n∑
i=1

c1c3 (1 + c2c4)

(
1

2
ξ̃2i δ

2
i∗ +

1

2
f2αi

)
≤WI , (33)

where

WI = −
n∑
i=1

(
k1 −

1

2
c1c3 (1 + c3c5)− c1c2δi∗

)
∇Ψifαi

−
n∑
i=1

1

2
c1c3 (1 + c2c4)

(
∇Ψifαi − f

2
αi

)
−

n∑
i=1

(
k2 −

1

2
c1c3 (1 + c2c4) δ2i∗

)
ξ̃2i

− 1

2

n∑
i=1

k3

n∑
j=1

aij

(
ξ̃i − ξ̃j

)2
.

Selecting

k1 >
1

2
c1c3 (1 + c2c4) + c1c2δi∗ ,

k2 >
1

2
c1c3 (1 + c2c4) δ2i∗ , (34)

recalling Assumption 1 and inequality (33), we conclude that V̇I ≤ 0,
which yields the following result.

Theorem 1: Consider the family of level orbits characterized in
Lemma 1. Suppose that the initial positions of each vehicle is such
that pi(0) ∈ Ωi. Assume moreover that Assumptions 1 to 4 hold.
Then Problem 1 is solved by the formation tracking control law

ui =

[
NT
i

TTi

]−1 [
vNi
vTi

]
(35)

with vNi , vTi and the adaptive update law ˙̂
θi given in (23), (24) and

(25), respectively.
Proof: Let pi(0) ∈ Ωi and note that the set ΦI ={(
λi, ξ̃i, li − θ̂i

)
|VI 6 c5

}
, for some c5 > 0, is closed by conti-

nuity. Note now that |λi| < εi,
∣∣∣ξ̃i∣∣∣ 6 √2c5 and

∣∣∣li − θ̂i∣∣∣ 6 √2γc5.
Thus the set ΦI is compact. As a result the closed-loop system (27)
is Lipschitz continuous on the set ΦI and also piecewise continuous
in t, which implies that for each initial condition there exists a unique
solution..

Note that the value of VI is non-increasing along the trajectories of
the system. When the initial value of VI is finite, the entire solution
stays in ΦI , which implies that |λi (pi (t))| < εi by conditions (C4)
and (C5). By LaSalle-Yoshizawa Theorem we have that

lim
t→+∞

WI(t) = 0,

that is

lim
t→+∞

∇Ψi(t)fαi (λi(t)) = 0, (36)

lim
t→∞

ξ̃i (t) = lim
t→∞

(ξi (t)− ξ∗(t)) = 0, (37)

where ξ = [ξ1, · · · , ξn]T . From (36), (C6) and Assumption 1, we
therefore conclude that limt→+∞ λi(t) = 0. �

C. Solution to Problem 2

To deal with Problem 2 the term 1
2

∑n
i=1 ξ̃

2
i in the candidate

Lyapunov function is replaced by 1
4

∑n
i=1

∑n
j=1 aij

(
ξi − ξj

)2, that
is

VII =

n∑
i=1

Ψ (λi) +
1

4

n∑
i=1

n∑
j=1

aij
(
ξi − ξj

)2
+

1

2γ

n∑
i=1

(
li − θ̂i

)T (
li − θ̂i

)
. (38)

Taking the time derivative of (38) along the trajectories of the system
yields

V̇II =

n∑
i=1

∇Ψi

[
‖∇λi‖ vNi + fαi ‖∇λi‖ fβNi (θi − li +θ̂i

)]
+

n∑
i=1

∂ξi
∂si

(
vTi +

∂si
∂λi
‖∇λi‖ vNi + fαi

(
fβTi

+
∂si
∂λi
‖∇λi‖ fβNi

)(
θi − li + θ̂i

)) n∑
j=1

aij
(
ξi − ξj

)
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+

n∑
i=1

(
li − θ̂i

)T [
− 1

γ
˙̂
θi +∇Ψifαi (λi) ‖∇λi‖ fTβNi

+
∂ξi
∂si

fαi

(
fTβTi +

∂si
∂λi
‖∇λi‖ fTβNi

) n∑
j=1

aij
(
ξi − ξj

) . (39)

To guarantee that V̇II ≤ 0 one selects vNi as in (23) and

vTi = −fαi

(
fβTi +

∂si
∂λi

fαi ‖∇λi‖ fβNi

)
θ̂i

− ∂si
∂λi
‖∇λi‖ vNi −

(
∂ξi
∂si

)−1
k2

n∑
j=1

aij
(
ξi − ξj

)
, (40)

˙̂
θi = γfαi ‖∇λi‖ f

T
βNi

+ γ
∂ξi
∂si

fαi

(
fTβTi +

∂si
∂λi
‖∇λi‖ fTβNi

)
×

n∑
j=1

aij
(
ξi − ξj

)
. (41)

Exploiting the inequality∣∣∣∣∣∣fαiδi
n∑
j=1

aij
(
ξi − ξj

)∣∣∣∣∣∣ ≤ 1

2
|δi|2

 n∑
j=1

aij
(
ξi − ξj

)2

+
1

2
f2αi

(42)

and substituting (23), (40) and (41) into (39) yields

V̇II ≤ −
n∑
i=1

(
k1 −

1

2
c1c3 (1 + c2c4)− c1c2δi∗

)
∇Ψifαi

−
n∑
i=1

1

2
c1c3 (1 + c2c4)

(
∇Ψifαi − f

2
αi

)

−
n∑
i=1

(
k2 −

1

2
c1c3 (1 + c2c4) δ2i∗

) n∑
j=1

aij
(
ξi − ξj

)2

.

(43)

Choosing k1 and k2 to satisfy inequality (34) yields VII ≤ 0, hence
the following result.

Theorem 2: Consider the family of level orbits characterized in
Lemma 1. Suppose that the initial positions of each vehicle is such
that pi(0) ∈ Ωi. Assume moreover that Assumptions 1 to 4 hold.
Then Problem 2 is solved by the formation tracking control law (35)
with vNi , vTi and the adaptive update law ˙̂

θi given in (23), (40) and
(41), respectively.

Proof: The proof follows the same argument as the proof of
Theorem 1, hence it is omitted. �

Remark 6: In Problem 1 the formation control law vTi in (24) is
designed on the basis of the reference orbital speed η∗, its integral
ξ∗ and the consensus errors

∑n
j=1 aij

(
ξi − ξj

)
. On the other hand

the design of the parameter update law ˙̂
θi in (25) does not use

any neighboring states. In Problem 2 the design of vTi in (40)
is independent of the reference orbital speed and the parameter
update law ˙̂

θi in (41) is designed according to the consensus errors∑n
j=1 aij

(
ξi − ξj

)
.

IV. SIMULATION

Two examples to illustrate the results in Theorem 1 and 2,
respectively are presented. The topology among the vehicles is as
shown in Figure 4. The vehicles are required to form an in-line
formation pattern under the effect of the spatio-temporal rotating
flowfield described by equation (8) with fαi = 0.1λi, fβi =
diag (cos 0.1t, sin 0.1t) and the unknown time-varying parameters
θi (t) = [θxi , θyi ]

T = [sin 0.1t, cos 0.2t]T .

21

34

Fig. 4. Bidirectional graph.

Fig. 5. Motion of the vehicles.

Case 1: The orbits are concentric superellipses with different semi-
major axis and semi-minor axis, that is

Ci0 :

(
pxi
eia

)6

+

(
pyi
eib

)6

= 1,

where ei = 1 + 0.5 (i− 1), a = 3, b = 2, i = 1, 2, 3, 4. The control
gains are selected as k1 = 200, k2 = 4, k3 = 5. We use the
formation tracking algorithm given in Theorem 1 to achieve in-line
formation motion around the given orbit with reference orbital speed
η∗ = 0.4. The motion of the vehicles is illustrated in Figure 5. From
this figure one can see that the four vehicles converge to the given
orbits and form the desired formation. The time histories of the path
following errors λi and of the formation errors ξi − ξj are plotted
in Figures 6 and 7, respectively. The time histories of the parameter
estimates θ̂xi and θ̂yi are plotted in Figures 8 and 9, respectively.
Consistently with Theorem 1, path following and formation tracking
are achieved.

Case 2: The orbits are concentric ellipses with different semi-major
axis and semi-minor axis as in Case 1. The control gains are set to
k1 = 20, k2 = 5. We use the formation tracking algorithm given
in Theorem 2 to achieve in-line formation around the orbits without
reference velocity. The motion of the vehicles, the path following
errors λi, the formation errors ξi − ξj and the parameter estimates
θ̂xi and θ̂yi are displayed in Figures 10 to 14, respectively.

V. CONCLUSION

A novel adaptive method to solve formation tracking in the pres-
ence of the unknown time-varying parameters of the spatiotemporal
flowfield is proposed. According to the congelation of variables
method the parameter update law does not rely on any restrictions on
the derivatives of the unknown parameters. By integrating adaptive
estimate, concentric compression and barrier functions, a formation
tracking control law to achieve both path following and a formation
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Fig. 6. Time histories of the path following errors.
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Fig. 7. Time histories of the formation errors.
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Fig. 8. Time histories of the parameter estimates θ̂xi .
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Fig. 9. Time histories of the parameter estimates θ̂yi .

Fig. 10. Movement of the vehicles.
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Fig. 11. Time histories of the path following errors.
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Fig. 12. Time histories of the formation errors.
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Fig. 13. Time histories of the parameter estimates θ̂xi .
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0 0.05 0.1 0.15

t
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0.005
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0.015
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0.025

Fig. 14. Time histories of the parameter estimates θ̂yi .

moving along the desired orbits with bounded reference orbital speed
is designed at first. Then formation tracking motion without reference
orbital speed is achieved by using the state of the neighboring
vehicles. Conditions on the control gains to guarantee that the path
following errors and formation errors asymptotically converge to
zeros are presented.

In future work formation tracking problems with directed or time-
varying topologies will be considered.
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