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1 Introduction

The landscape of non-geometric solutions of string/M-theory which are associated with the
AdS/CFT correspondence is still largely unexplored territory. By definition, such solutions
are patched together using duality symmetries and hence they are not ordinary solutions
of the low-energy supergravity approximation. Nevertheless, in favourable situations one
can still utilise supergravity constructions to obtain valuable insights.

Within the context of type IIB string theory, which is the focus of this paper, we can
consider S-folds i.e. non-geometric solutions that are patched together using the SL(2,Z)
symmetry. For AdS/CFT applications we are interested in solutions of type IIB supergrav-
ity of the form AdS×M with, in general, the axion-dilaton, the three-forms and the self dual
five-form all active on M . The S-fold construction implies that M will have monodromies
in SL(2,Z), which act on the axion-dilaton and the three-forms. If these monodromies
involve contractible loops in M then, in general, one is led to the presence of brane singu-
larities and regions where the supergravity approximation breaks down. However, one can
hope to make further progress if the solutions lie within the context of F-theory as in the
AdS3 solutions discussed in [1, 2], for example.

We can also consider AdS ×M solutions of type IIB supergravity where the SL(2,Z)
monodromies do not involve contractible loops. In this case, provided that the fields are all
varying slowly on M , we can expect the type IIB supergravity approximation to be valid,
and that such solutions do indeed correspond to dual CFTs. Examples of such solutions
were presented in [3] and further discussed in [4]: the spacetime is of the form AdS4×S1×S5

with non-trivial SL(2,Z) monodromy just around the S1 direction. The solutions preserve
the supersymmetry associated with N = 4 SCFTs in d = 3, and we shall refer to them as
N = 4 S-folds. These solutions can be constructed as a certain limit of a class of N = 4
Janus solutions [5] which describe N = 4, d = 3 superconformal interfaces of d = 4, N = 4
SYM theory. Using this perspective, and the results of [6, 7], a specific conjecture for the
SCFT dual to these N = 4 S-folds was given in [4].
N = 1 andN = 2 S-fold solutions of the form AdS4×S1×S5 have also been constructed

in [8–10]. In particular, it was shown in [10] how they can be obtained as limiting solutions
of N = 1 [11–13] and N = 2 [5] Janus solutions, also describing interfaces of d = 4, N = 4
SYM theory. Furthermore, the N = 1 AdS4 × S1 × S5 S-folds have been generalised to
N = 1 AdS4×S1×SE5 S-folds, where SE5 is an arbitrary five-dimensional Sasaki-Einstein
manifold [14].

In the Janus solutions that are used to construct the S-folds just mentioned [4, 10],
the complex gauge coupling τ of N = 4 SYM theory takes different values on either side
of the interface. It was recently pointed out that this is not necessarily the case and it is
possible to have interfaces in N = 4 SYM with the same value of τ on either side of the
interface which are supported by spatially dependent fermion and boson mass deformations,
while preserving d = 3 conformal symmetry [15]. The associated supersymmetric Janus
solutions of type IIB supergravity which are holographically dual to such interfaces were
also constructed in [15] by first constructing them in D = 5 SO(6) gauged supergravity.
Furthermore, there is a particularly interesting AdS4×R solution that can be obtained as a
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limit of this class of Janus solutions which is periodic in the R direction and uplifts to give
a smooth1 AdS4 × S1 × S5 solution of type IIB supergravity (i.e. with no S-folding) [15].

The constructions of [15] can be immediately generalised to give Janus solutions which
have spatially dependent masses and varying τ . It is therefore natural to ask if there
are limiting classes of such Janus solutions which can be utilised to construct new S-fold
solutions and/or periodic solutions. While we have not found any more periodic solutions,
we have found infinite new classes of AdS4×R solutions ofD = 5 SO(6) gauged supergravity
that give rise to infinite new classes of S-fold solutions of the form AdS4×S1×S5, generically
preserving N = 1 supersymmetry in d = 3.

Our new construction will utilise various consistent sub-truncations of D = 5 SO(6)
gauged supergravity all lying within the 10-scalar truncation of [16] which, not surprisingly,
just keeps 10 of the 42 scalars as well as the metric. One of these scalars, the D = 5 dilaton
ϕ, which for the vacuum AdS5 solutions is dual to the coupling constant of N = 4 SYM
theory, plays a privileged role as we expand upon below.2 Within this truncation we numer-
ically construct families of AdS4×R solutions that arise as certain limits of Janus solutions
withN = 4 SYM on either side of the interface. We then uplift these to obtain AdS4×R×S5

of type IIB supergravity, using the results of [17, 18]. Additional AdS4×R×S5 solutions in
D = 10 can then be generated using SL(2,R) transformations. Finally, within this larger
family of solutions of type IIB supergravity one can find discrete examples where we can
S-fold leading to supersymmetric AdS4×S1×S5 S-fold solutions of type IIB string theory.

The D = 5 metric for the solutions we discuss in this paper are all of the form

ds2 = e2A(r)[ds2(AdS4)− dr2] , (1.1)

with all of the D = 5 scalar fields just a function of the radial coordinate. The ansatz
therefore preserves d = 3 conformal invariance. The D = 5 solutions associated with the
known N = 1, 2 and 4 S-folds are all direct products of the form AdS4 × R with constant
warp factor A and with all of the D = 5 scalars constant, except for the D = 5 dilaton, ϕ,
which varies linearly in the radial coordinate.

The new AdS4×R solutions involve several novel features. First, the metric on AdS4×R
is no longer a direct product but a warped product, since the warp factor now has non-
trivial dependence on the radial direction. Secondly, and importantly, the warp factor A(r)
and all of the D = 5 scalars are now periodic in the R direction, with the same period ∆r,
except for ϕ which is now a “linear plus periodic” (LPP) function of r. Thus, unlike the
known AdS4 × R S-fold solutions, the metric no longer admits a Killing vector associated
with translations in the R direction and, furthermore, the solution is no longer invariant
under the continuous symmetry consisting of translating along the R direction combined
with a suitable dilaton shift. Thirdly, and as a consequence of the latter, we do not believe
that the new solutions can be constructed in the maximally supersymmetric D = 4 gauged
supergravity theory which can be used to construct the known S-fold solutions [3, 8, 9].

1As far as we are aware this is the first example of a supersymmetric AdS4 ×M6 solution of type IIB
supergravity, with compact M6 that is smooth i.e. without sources.

2We note that, in general, the type IIB dilaton of the uplifted solutions is not the same as the D = 5
dilaton, as explained in appendix A.
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Figure 1. A D = 5 Janus solution that is approaching the new AdS4 × R solutions for the SO(3)
invariant model. As r̄ → ±∞, the solution is approaching AdS5 on either side of the interface: the
warp factor is behaving as A → ±r̄/L, the D = 5 dilaton is approaching two different constants
ϕ → ϕ±, while the remaining scalar fields φ1, α1 and φ4 (not displayed) are going to zero. In the
intermediate regime we see the build up of a periodic structure for the warp factor and the scalar
fields, with ϕ having, in addition, a dependence linear in r̄ i.e. ϕ is a “linear plus periodic” (LPP)
function. In the new limiting AdS4 × R solutions the intermediate structure extends all the way
out to infinity. Note that we have used the proper distance radial coordinate r̄ given in (3.2).

This is simply because the D = 4 theory is expected to arise after carrying out a Scherk-
Schwarz dimensional reduction of maximal D = 5 gauged supergravity on the R direction
and this reduction requires such a continuous symmetry. In figure 1 we have illustrated
how the new solutions arise as limiting cases of Janus solutions of N = 4 SYM which,
generically, have the N = 4 SYM coupling taking different values on either side of the
interface, as well as additional fermion and boson mass deformations.

The plan of the paper is as follows. We begin in section 2 by discussing the 10-scalar
truncation of maximal D = 5 SO(6) gauged supergravity given in [16] as well as various
sub-truncations. In section 3 we discuss the general framework for constructing the new
AdS4 ×R solutions in D = 5 and the procedure for then obtaining AdS4 × S1 × S5 S-folds
solutions of type IIB string theory.

In sections 4 and 5 we discuss in more detail the constructions for two particular sub-
truncations: an SO(3) ⊂ SU(3) ⊂ SO(6) invariant model involving four scalar fields and an
SU(2) ⊂ SU(3) ⊂ SO(6) invariant model involving five scalar fields. The SO(3) invariant
model, called the N = 1∗ equal mass model in [15], includes the AdS4 × R solutions
associated with the known N = 1 and N = 4 S-fold solutions as well as the periodic
AdS4 × R solution found in [15]. We note that figure 1 is associated with this model.
The SU(2) invariant model includes the AdS4 × R solutions associated with the known
N = 2 S-fold solutions and it also includes those associated with the known N = 1 S-fold
solutions. In both truncations, our new family of S-fold solutions includes the previous
known solutions. Furthermore, in both cases one can identify the existence of some of
our new family of solutions by a perturbative construction about the known N = 1 S-fold
solution (but, interestingly, not around the N = 2, 4 solutions).
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In section 6 we briefly discuss some novel “one-sided Janus” solutions which approach
the AdS5 vacuum on one side and either a known S-fold solution, an LPP dilaton solution
or the periodic D = 5 solution of [15] on the other. Unlike other one-sided Janus solutions,
they are non-singular. In the case that it approaches the N = 4 AdS4×R S-fold solution we
are able to construct the solution analytically and we show how, after uplifting to type IIB
supergravity, it fits into the general class of AdS4×S2×S2×Σ solutions preserving N = 4
supersymmetry that were studied in [19, 20] (see also [21–23] for some later developments).
We also discuss how the solution is related to solutions describing D3-branes ending on
D5-branes. In appendix A we have included some useful results concerning how to uplift
solutions of the 10-scalar model in D = 5 to type IIB supergravity. In appendix B,
prompted by the analysis in section 6, we refine the holographic renormalisation analysis
for the 10-scalar truncation of [15] in a way that is consistent with the preservation of
additional supersymmetry in the boundary theory.

2 The 10-scalar model

We are interested in a truncation of N = 8, SO(6) gauged supergravity in D = 5, discussed
in [16], that involves the metric and ten scalar fields which parametrise the coset

M10 = SO(1, 1)× SO(1, 1)×
[SU(1, 1)

U(1)

]4
. (2.1)

The SO(1, 1) × SO(1, 1) is parametrised by two scalars β1, β2 while the remaining eight
scalars of this truncation, parametrising four copies of the Poincaré disc, can be packaged
into four complex scalar fields zA via

z1 = tanh
[1

2
(
α1 + α2 + α3 + ϕ− iφ1 − iφ2 − iφ3 + iφ4

)]
,

z2 = tanh
[1

2
(
α1 − α2 + α3 − ϕ− iφ1 + iφ2 − iφ3 − iφ4

)]
,

z3 = tanh
[1

2
(
α1 + α2 − α3 − ϕ− iφ1 − iφ2 + iφ3 − iφ4

)]
,

z4 = tanh
[1

2
(
α1 − α2 − α3 + ϕ− iφ1 + iφ2 + iφ3 + iφ4

)]
. (2.2)

Schematically, these 10 scalar fields are dual to the following Hermitian operators in N = 4
SYM theory:

∆ = 4 : ϕ ↔ trFµνFµν ,
∆ = 3 : φi ↔ tr(χiχi + cubic in Zi) + h.c. , i = 1, 2, 3 ,

φ4 ↔ tr(λλ+ cubic in Zi) + h.c. ,

∆ = 2 : αi ↔ tr(Z2
i ) + h.c. , i = 1, 2, 3 ,

β1 ↔ tr(|Z1|2 + |Z2|2 − 2|Z3|2) ,
β2 ↔ tr(|Z1|2 − |Z2|2) . (2.3)
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The operators of d = 4, N = 4 SYM appearing on the right hand side of (2.3) have been
written in an N = 1 language, with Zi and χi the bosonic and fermionic components of
the associated three chiral superfields Φi while λ is the gaugino of the vector multiplet.
Thus, the D = 5 dilaton ϕ is dual to the coupling constant of N = 4 SYM theory, while
φi, φ4 are fermionic mass terms and αi, β1, β2 are bosonic mass terms.

The action is given by

SBulk = 1
4πG(5)

∫
d5x

√
|g|
[
− 1

4R+ 3(∂β1)2 + (∂β2)2 + 1
2KAB̄∂µz

A∂µz̄B̄ − P
]
, (2.4)

and we work with a (+ − − − −) signature convention. Here K is the Kähler potential
given by

K = −
4∑

A=1
log(1− zAz̄A) . (2.5)

The scalar potential P can be conveniently derived from a superpotential-like quantity

W ≡ 1
L
e2β1+2β2

(
1 + z1z2 + z1z3 + z1z4 + z2z3 + z2z4 + z3z4 + z1z2z3z4

)
+ 1
L
e2β1−2β2

(
1− z1z2 + z1z3 − z1z4 − z2z3 + z2z4 − z3z4 + z1z2z3z4

)
+ 1
L
e−4β1

(
1 + z1z2 − z1z3 − z1z4 − z2z3 − z2z4 + z3z4 + z1z2z3z4

)
, (2.6)

via

P = 1
8e
K
[1

6∂β1W∂β1W + 1
2∂β2W∂β2W +KB̄A∇AW∇B̄W −

8
3WW

]
, (2.7)

where KB̄A is the inverse of KAB̄ and ∇AW ≡ ∂AW + ∂AKW .
The model is invariant under Z2 × S4 discrete symmetries which, importantly, leave

W invariant. First, it is invariant under the Z2 symmetry

zA → −zA , ⇔ {φi, φ4, αi, ϕ} → −{φi, φ4, αi, ϕ} . (2.8)

Second, it is invariant under an S3 permutation symmetry which acts on (−z2,−z3, z4) as
well as β1, β2 and is generated by two elements:

{z3 ↔ −z4 ⇔ φ1 ↔ φ3 , α1 ↔ α3} , β1 → −
1
2(β1 + β2) , β2 →

1
2(β2 − 3β1) ,

{z2 ↔ −z4 ⇔ φ1 ↔ φ2 , α1 ↔ α2} , β2 → −β2 . (2.9)

There is also an invariance under the interchange of pairs of the zA:

z1 ↔ z4, −z2 ↔ −z3 , ⇔ (φ2, φ3)→ −(φ2, φ3) , (α2, α3)→ −(α2, α3) ,
z1 ↔ −z2, −z3 ↔ z4 , ⇔ (φ1, φ3)→ −(φ1, φ3) , (α1, α3)→ −(α1, α3) ,
z1 ↔ −z3, −z2 ↔ z4 , ⇔ (φ1, φ2)→ −(φ1, φ2) , (α1, α2)→ −(α1, α2) . (2.10)
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Together (2.8)–(2.10) generate Z2×S4 as observed in [24]. We also note that (2.9), (2.10) are
discrete subgroups of the SO(6) R-symmetry while (2.8) is part of the SL(2,R) symmetry
of D = 5 gauged supergravity.

The model is also invariant under shifts of the dilaton

ϕ→ ϕ+ c . (2.11)

For later use, we note that this shift symmetry is generated by the following holomorphic
Killing vector

l = 1
2

4∑
A=1

(−1)s(A)
(
1− (zA)2

) ∂

∂zA
, (2.12)

where s(A) = 0 for A = 1, 4 and s(A) = 1 for A = 2, 3. Furthermore, if we define

K̃ ≡ K + logW + logW , (2.13)

we have

lA∂AK̃ + lĀ∂ĀK̃ = 0 , (2.14)

and the corresponding moment map µ = µ(zA, z̄A), satisfying

µ = ilA∂AK̃ = KAB̄∂B̄µ∂ĀK̃ , (2.15)

is given by

µ = − i2

4∑
A=1

(−1)s(A) z
A − z̄A

1− zAz̄A . (2.16)

In terms of the fields given in (2.2) we find that the moment map only depends on φi, φ4
and takes the form

µ = 1
2 [tan(−φ1 − φ2 − φ3 + φ4)− tan(−φ1 + φ2 − φ3 − φ4)

− tan(−φ1 − φ2 + φ3 − φ4) + tan(−φ1 + φ2 + φ3 + φ4)] . (2.17)

Expanding about φi = 0 we have to lowest order µ ∼ 2φ4.
The 10-scalar truncation is not a supergravity theory. However, the conditions for

a solution of the 10-scalar model to preserve a preferred supersymmetry as a solution
of D = 5 SO(6) gauged supergravity were written down in [16] and also used in [15].
These preferred supersymmetry transformations are left invariant under the Z2 × S4 dis-
crete symmetries (2.8)–(2.10). The equations of motion of the 10-scalar model are also
invariant under additional discrete symmetries, given in appendix B, which transform the
supercharges of the maximal D = 5 gauged supergravity theory into each other and do
not preserve the preferred supersymmetries that we focus on in this paper. Here we use
exactly the same conventions as [15].

There are a number of different consistent sub-truncations of the 10-scalar model which
were also discussed in [16], that we summarise in figure 2. The figure also displays where

– 6 –
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z2 = −z4, β2 = 0

z2 = z̄2 z1 = −z3 z2 = z3, β1 = 0

z1 = z3, z2 = 0
z1 = −z3

z3 = z̄3 = z2,
β1 = 0z2 = z̄2 z1 = z2

z1 = −z2z1 = −z2,
β1 = 0

z2 = z̄2

10-scalar truncation

7-scalar truncation
SO(2) invariant
φ1 = φ2, φ3, φ4

α1 = α2, α3, ϕ, β1

6-scalar truncation
U(1)× U(1) invariant
φ1 = φ2, φ3 = −φ4
α1 = α2, α3, ϕ, β1

5-scalar truncation
SU(2) invariant

φ3, φ4
α3, ϕ, β1

N = 1∗ equal-mass truncation
SO(3) invariant
φ1 = φ2 = φ3, φ4
α1 = α2 = α3, ϕ

N = 2∗ truncation
φ1 = φ2, α1 = α2, β1

4-scalar truncation
SU(2)× U(1) invariant
φ3 = −φ4, α3, ϕ, β1

contains N = 2 S-fold

3-scalar truncation
SO(3)× SO(3) invariant
φ1 = φ2 = φ3 = −φ4
α1 = α2 = α3, ϕ

contains N = 4 S-fold

N = 1∗ one-mass truncation
φ3, α3, β1

contains LS point

2-scalar truncation
SU(3) invariant

φ4, ϕ
contains N = 1 S-fold

Figure 2. Various sub-truncations of the ten scalar model. In this paper we focus on the N = 1∗

equal mass, SO(3) invariant truncation and the 5-scalar SU(2) invariant truncation, marked by red
boxes, as well as their associated sub-truncations in the bottom line. The boxes with the blue
outline are truncations that contain known AdS4 × R S-fold solutions discussed in [10]. The boxes
with the green outline are truncations which were used in [15].

one can find the three known AdS4 × R solutions with a linear D = 5 dilaton ϕ which are
associated with S-folds preserving N = 1, 2 and 4 supersymmetry, as well as the symmetry
subgroup of SO(6) that is preserved by the truncation. These sub-truncations preserve
various subsets of the Z2 × S4 discrete symmetries given in (2.8)–(2.10). All of the sub-
truncations preserve the Z2 symmetry (2.8) as well as shifts of the dilaton (2.11) when the
dilaton ϕ is present in the truncation. In this paper we will be mostly interested in two
cases: the N = 1∗ equal mass, SO(3) invariant model, with SO(3) ⊂ SU(3) ⊂ SU(4) and
involving four scalar fields; and the 5-scalar SU(2) invariant model, with SU(2) ⊂ SU(3) ⊂
SU(4). While the SO(3) invariant model does not preserve any additional symmetries, the
SU(2) model preserves a further Z2 that is contained in (2.10).

3 Constructing S-folds

The construction of the S-fold solutions starts with solutions of D = 5 supergravity. These
are then uplifted to type IIB, where additional solutions are generated using the SL(2,R)
symmetry of type IIB supergravity. Finally, the S-folding procedure, using the SL(2,Z)
symmetry of type IIB string theory, is made.

3.1 Ansatz in D = 5

We consider solutions of D = 5 supergravity of the form

ds2 = e2Ads2(AdS4)−N2dr2 , (3.1)

– 7 –
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where ds2(AdS4) is the metric on AdS4, which we take to have unit radius, and A, N as
well as the scalar fields β1, β2, z

A are functions of r only. Clearly this ansatz preserves
d = 3 conformal invariance. There is still some freedom in choosing the radial coordinate.
In this paper we will either use the “conformal gauge” with N = eA, as in (1.1), or the
“proper distance gauge” with N = 1

conformal gauge: N = eA , radial coordinate: r ,
proper distance gauge: N = 1 , radial coordinate: r̄ , (3.2)

with dr̄ = eAdr.
We are interested in supersymmetric configurations which, generically, are associated

with N = 1 supersymmetry in d = 3 (i.e. two Poincaré plus two superconformal super-
charges). As shown in [15], we obtain such solutions provided that we satisfy the following3

BPS equations (in the conformal gauge),

∂rA− i = 2Br,
∂rBr = 2FBrB̄r , (3.3)

where F is a real quantity just depending on W, K given by

F ≡ 1− 3
2

1
|W|2

∇AWKAB̄∇B̄W̄ −
1
4 |∂β1 logW|2 − 3

4 |∂β2 logW|2 , (3.4)

as well as

∂rz
A = −3KAB̄∇B̄W

W
B̄r ,

∂rβ1 = −1
2∂β1 logWB̄r ,

∂rβ2 = −3
2∂β2 logWB̄r . (3.5)

In these equations the quantity Br is defined as Br ≡ 1
6e
iξ+A+K/2W where ξ(r) is a

phase that appears in the Killing spinors. It is helpful to point out that the BPS equations
are left invariant under the transformation4

r → −r, zA → z̄A, ξ → −ξ + π . (3.6)

The BPS equations are also invariant under the discrete Z2×S4 symmetries in (2.8)–(2.10)
and this will also be the case for any of the sub-truncations in figure 2 for which they are
still present. Additional general aspects of the space of solutions to these BPS equations
were discussed in section 5 of [15].

3With essentially no loss of generality, the parameter κ = ±1 appearing in [15], which fixes the projections
on the Killing spinors, has been set to κ = +1.

4In general, the transformation zA → z̄A by itself, which can be obtained by combining (B.2) with
(2.8)-(2.10), is a symmetry of the equations of motion for the 10-scalar model but also acts on the preferred
supersymmetries.
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It will also be useful to notice that the dilaton shift symmetry (2.11) of the 10-scalar
model gives rise to a conserved quantity for the BPS equations. Specifically, using (2.15)
one can check that an integral of motion for the BPS equations is given by

E ≡ 1
L3 e

3Aµ(z, z̄) , (3.7)

where the moment map was given in (2.16) or (2.17). This result can be derived via the
Noether procedure as follows. The Killing vector lA generating the symmetry (2.11), gives
rise to a conserved current for the full equations of motion. For our radial ansatz we deduce
that the radial component of this current, given by

E ∝ √ggrr
(
KAB̄∂rz̄

B̄lA +KBĀ∂rz
BlĀ

)
, (3.8)

is a conserved quantity, independent of r. Using the BPS equations we then obtain

E ∝ e3A
(
∂AK̃BrlA + ∂ĀK̃B̄rl

Ā
)
,

= e3A
[(
lA∂AK̃ + lĀ∂ĀK̃

)
Re(Br)−

i

2
(
lA∂AK̃ − lĀ∂ĀK̃

)]
,

= −e3A
(
ilA∂AK̃

)
= −e3Aµ , (3.9)

where to get to the second line we wrote Br = Re(Br)− i
2 , and to get to the third line we

used (2.14) and (2.15).

3.2 Janus solutions

We now briefly summarise some aspects of the Janus solutions constructed in [15]. We first
recall that the AdS5 vacuum solution, dual to d = 4, N = 4 SYM, has a warp factor given by

eA = L cosh r̄

L
, (3.10)

with all of the scalars vanishing, zA = 0.
Janus solutions, describing superconformal interfaces of d = 4, N = 4 SYM, can be

obtained by solving the BPS equations and imposing boundary conditions so that they
approach the AdS5 vacuum solution (3.10) at r̄ = ±∞, with suitable falloffs for the scalar
fields, associated with supersymmetric sources for the dual operators. A detailed analysis
of holographic renormalisation for such Janus solutions was carried out in [15] (using the
proper distance gauge). The focus in [15] was to construct Janus solutions that are dual
to interfaces of N = 4 SYM that are supported by fermion and boson masses that have a
non-trivial spatial dependence on the direction transverse to the interface. These solutions
were constructed within the following truncations, shown in green boxes in figure 2: the
N = 2∗ truncation (three scalar fields), the N = 1∗ one-mass truncation (three scalar
fields) and the N = 1∗ equal-mass, SO(3) invariant truncation (four scalar fields).

Within the Janus solutions of the N = 1∗ equal-mass, SO(3) invariant truncation
(green and red box in figure 2) a special limiting AdS4 × R solution was found with the
warp factor A and all of the scalar fields periodic in the R direction. As such, this solution
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can be compactified on the R direction and after uplifting to type IIB, one obtains a regular
AdS4 × S1 × S5 solution (without S-folding). In the sequel we will present new AdS4 × R
solutions which are no longer periodic in the R direction that can also be found as limiting
classes of Janus solutions. In the new solutions the D = 5 dilaton, ϕ, is a LPP function
while the remaining scalars and warp factor are periodic in the R direction; an illustration
is given in figure 1. All of our new S-fold solutions arise as limits of D = 5 Janus solutions
with ϕ(s), which parametrises the source for the operator dual to ϕ, taking different values
on either side of the interface. In other words the Janus solutions are interfaces of d = 4,
N = 4 SYMwith the coupling constant taking different values on either side of the interface.

It will also be helpful to recall that for the N = 1∗ one-mass truncation, in addition
to the AdS5 vacuum solution dual to d = 4, N = 4 SYM, there are also two other AdS5
solutions, LS±, which are both dual to the Leigh-Strassler N = 1 SCFT. In [15, 25]
interesting limiting solutions of the Janus solutions associated with interfaces involving
the LS SCFT were found. In particular we found solutions dual to an RG interface with
N = 4 SYM on one side of the interface and the LS theory on the other, as well as Janus
solutions with the LS theory on either side of the interface. In this paper we also construct
solutions within the 5-scalar SU(2) truncation in figure 2 (red box), which contain the LS±

fixed points. In addition to the new LPP solutions we also find limiting Janus solutions
that involve Janus interfaces for the LS± fixed points themselves i.e. solutions with LS±

on either side of the interface with a linear D = 5 dilaton.
Finally, as somewhat of an aside, we note that the conserved quantity E given in (3.7)

implies a constraint amongst the sources and expectation values of operators of N = 4 SYM
theory for the Janus configurations. Following the holographic renormalisation carried out
in [15], which used the proper distance gauge, the expansion at, say, the r̄ →∞ end of the
interface is given by

φi = φi,(s)e
−r̄/L + · · ·+ φi,(v)e

−3r̄/L + · · · , αi = αi,(s)
r̄

L
e−2r̄/L + αi,(v)e

−2r̄/L + · · · ,

βi = βi,(s)
r̄

L
e−2r̄/L + βi,(v)e

−2r̄/L + · · · , ϕ = ϕ(s) + · · ·+ ϕ(v)e
−4r̄/L + · · · ,

A = r̄

L
+ · · ·+A(v)e

−4r̄/L + · · · . (3.11)

Here φi,(s), αi,(s), . . . give the source terms of the dual operators, while φi,(v), αi,(v), . . . can
be used to obtain the expectation values, explicitly given in [15]. Using this expansion as
well the conditions on sources and expectation values imposed by the BPS conditions, we
find that the integral of motion is given by

E = 1
L3 (2φ4,(v) − 4φ1,(s)φ2,(s)φ3,(s)) . (3.12)

3.3 AdS4 × R solutions and S-folds

Our principal interest in this paper concerns a new class of solutions to the BPS equations
of the form (in conformal gauge):

ds2 = e2A[ds2(AdS4)− dr2] ,
ϕ = kr + f(r) , (3.13)
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where k is a constant and A, f and all other scalars satisfy

A(r) = A(r + ∆r) , f(r) = f(r + ∆r) , zA(r) = zA(r + ∆r) . (3.14)

Notice that, in general, the D = 5 dilaton ϕ is an LPP function, while the warp factor
and the remaining scalar fields are all periodic functions of r, with period ∆r. Over one
period ϕ changes by an amount ∆ϕ given by

∆ϕ ≡ ϕ(r + ∆r)− ϕ(r) = k∆r . (3.15)

Although we have defined ∆ϕ in the conformal gauge, importantly (and unlike k,∆r) it is
invariant under coordinate changes5 of the form r → ρ with dρ = G(r)dr where G(r) is a
periodic function, G(r + ∆r) = G(r). We can also define the proper distance of a period
∆r̄, which is given by

∆r̄ =
∫ ∆r

0
eAdr . (3.16)

For the special case when k = 0, when ϕ is also periodic, these solutions are periodic in
the r direction and we can then immediately compactify the radial direction to obtain an
AdS4×S1 solution. In this case, if we identify after just one period, ∆r̄ is the length of the
S1. We presented one such solution in [15] and this will appear in our new constructions.
For this purely periodic solution the period of the warp factor is half of that of the scalar
fields. Another special case is when k 6= 0 and f = 0, so that ϕ is purely linear in r, as well
as A and all other scalar fields being constant. These AdS4 × R solutions are associated
with the known AdS4 S-fold solutions: we can periodically identify the radial direction after
uplifting to type IIB supergravity and making a suitable identification with an SL(2,Z)
transformation, as we outline in more generality below.

We now continue with the more general class of LPP solutions of the form (3.13) with
both k 6= 0 and f 6= 0 and show that these too can give rise to new classes of AdS4 S-
fold solutions. We begin by noting, as explained in appendix A (see also [10]), that the
dilaton-shift symmetry (2.11) of the D = 5 theory, ϕ → ϕ + c, acts as a specific SL(2,R)
transformation in D = 10. If the type IIB dilaton, Φ and axion C0 are parametrised as

mαβ =
(
eΦC0

2 + e−Φ −eΦC0
−eΦC0 eΦ

)
, (3.17)

then the transformation is given by m → (S−1)TmS−1 where S ∈ SL(2,R), in the hyper-
bolic conjugacy class, is given by

S(c) =
(
ec 0
0 e−c

)
. (3.18)

Equivalently, we have Φ→ Φ + 2c and C0 → e−2cC0.
5After integrating we can write ρ = cr + H(r) with H(r + ∆r) = H(r) and H having no zero mode.

Inverting this, we can write r = (1/c)ρ + H̃(ρ) with H̃(ρ + ∆ρ) = H̃(ρ), where ∆ρ = c∆r. In this gauge
we can then write ϕ = (k/c)ρ+ f̃(ρ) with f̃(ρ+ ∆ρ) = f̃(ρ) and ∆ϕ = k∆r.
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To carry out the S-fold procedure, we next note that starting from the uplifted D = 5
solutions we can obtain a family of uplifted type IIB solutions after acting with a general
element P ∈ SL(2,R). For example, the axion and dilaton in this larger family will be
of the form m̃(ϕ) = (P−1)Tm(ϕ)P−1, where we have included the dependence on the
D = 5 dilaton for emphasis. Within this larger family of type IIB solutions we then
look for solutions that we can periodically identify along the radial direction with period
q∆r i.e. q ∈ N times the fundamental period ∆r, up to the action of an M ∈ SL(2,Z)
transformation. Recalling that as we translate by ∆r in the radial direction in the conformal
gauge (3.13) we have ϕ→ ϕ+ ∆ϕ, and hence we require that

m̃(ϕ+ q∆ϕ) = (M−1)T m̃(ϕ)M−1 , (3.19)

which can be achieved provided that P ∈ SL(2,R) is such that

M = ±PS(q∆ϕ)P−1 . (3.20)

The different S-folded solutions which can be obtained in this way are labelled by the
conjugacy classes of M in SL(2,Z). A discussion of such classes can be found in [26, 27]
(see also [28]). For any conjugacy class M, we have that −M and ±M−1 also represent
conjugacy classes. Clearly from the form of S in (3.18) we must be in the hyperbolic
conjugacy class with |Tr(M)| > 2. We have the following possibilities for M (as well as
the conjugacy classes −M and ±M−1): we can have

M =
(
n 1
−1 0

)
, n ≥ 3 , (3.21)

with trace n, as well as “sporadic cases” M(t) of trace t. For example for 3 ≤ t ≤ 12 the
complete list is given by6

M(8) =
(

1 2
3 7

)
, M(10) =

(
1 4
2 9

)
, M(12) =

(
1 2
5 11

)
. (3.22)

For these cases, in order to find solutions to (3.19) (focussing on the upper sign in (3.20))
we must have

q∆ϕ = arccoshn2 , for n ≥ 3, q ≥ 1 . (3.23)

For example, for the S-folds that are identified usingM in SL(2,Z) given in (3.21) we have

P =

 1 − 1√
n2−4

1
2

(
−n+

√
n2 − 4

)
1
2

(
1 + n√

n2−4

) . (3.24)

Interestingly, the S-folding procedure preserves the supersymmetry as we now explain.
If we translate the D = 5 solution by ∆r then we have ϕ → ϕ + ∆ϕ. Such a shift in the

6Note that writing Mn for the matrix in (3.21), we can also write M(8)−1 = −M2M−3, M(10)−1 =
−M4 · M−2 andM(12)−1 = −M2 · M−5.
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dilaton is equivalently obtained by carrying out a Kähler transformation K → K+f+f̄ and
W → e−fW with f = f(zA). Under this transformation the preserved supersymmetries,
a symplectic Majorana pair, transform as ε1 → e(f−f̄)/4ε1 and ε2 → e−(f−f̄)/4ε2 as noted
in [15]. Now, as we explained above, this transformation is implemented on the bosonic
fields as an element of S ∈ SL(2,R). In appendix A we show that this is also true for the
preserved supersymmetries. Thus, as we translate by ∆r, the solution and the preserved
supersymmetries get transformed by the same element of SL(2,R). This will also be true
after uplifting toD = 10 and hence, after conjugating by P ∈ SL(2,R), the S-fold procedure
will not break any supersymmetry.

3.4 Free energy of the S-folds

The AdS4 × S1 × S5 S-fold solutions of the kind we have just described should be dual, in
general, to N = 1 SCFTs in d = 3. A key observable is FS3 , the free energy of the SCFT
on S3. This can be calculated holographically after a dimensional reduction on S1 × S5

to a four-dimensional theory of gravity and then evaluating the regularised on-shell action
for the AdS4 vacuum solution of this theory. With a four-dimensional theory that has an
AdS4 vacuum solution with unit radius we have

FS3 = π

2G(4)
. (3.25)

Here G(4) is the four-dimensional Newton’s constant which can be obtained from the five-
dimensional Newton’s constant via

1
G(4)

= 1
G(5)

∫ q∆r

0
dre3A . (3.26)

Here we remind the reader that the radial coordinate, r, is associated with the D = 5
conformal gauge, as in (3.13), and also that in the construction of the S-fold solution
we made the S-fold identification after going along q periods of the periodic functions.
Recalling that the AdS5 vacuum with radius L solves the equations of motion and is dual
to d = 4, N = 4SYM with gauge group SU(N), we have the standard result

1
16πG(5)

= N2

8π2L3 . (3.27)

Putting this together we get our final formula for the free energy:

FS3 = N2

L3 q

∫ ∆r

0
dre3A ,

= N2

L3
arccoshn2

∆ϕ

∫ ∆r

0
dre3A . (3.28)

The first expression is valid for all solutions, including the periodic solution (for which it
is natural to take q = 1), while the second expression is valid for the S-folded solutions. In
the special case of the known N = 1, 2, 4 S-folds which have a purely linear D = 5 dilaton
(i.e. ϕ = kr in (3.13)) and A is constant, we can rewrite this as

FS3 = N2

L3
e3A

k
arccoshn2 . (3.29)
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Finally, following the arguments in [4], at fixed n the type IIB supergravity approx-
imation should be valid in the large N limit since higher derivative corrections will be
suppressed by terms of order 1/

√
N .

4 N = 1∗ equal mass, SO(3) invariant model

This model is obtained from the 10-scalar model by setting z2 = z3 = −z4, or equivalently
α1 = α2 = α3 and φ1 = φ2 = φ3, as well as β1 = β2 = 0. This four-scalar model is
parametrised by the two complex fields

z1 = tanh
[1

2
(
3α1 + ϕ− 3iφ1 + iφ4

)]
, z2 = tanh

[1
2
(
α1 − ϕ− iφ1 − iφ4

)]
. (4.1)

The integral of motion (3.7) for this truncation is given by

E = 1
L3 e

3A 1
2[− tan(3φ1 − φ4) + 3 tan(φ1 + φ4)] . (4.2)

This model has two further sub-truncations as illustrated in figure 2, and in particular
contains the known N = 1 and N = 4 AdS4×R S-fold solutions. Firstly, if we set z1 = −z2,
equivalently, α1 = φ1 = 0, then we obtain a two-scalar SU(3) invariant model depending
on ϕ, φ4 that overlaps7 with the truncation considered in the context of N = 1 S-folds in
section 4 of [10].

The N = 1 AdS4 × R S-fold solution is given (in conformal gauge) by

ϕ =
√

5
2 r, φ4 = cos−1

√
5
6 , eA = 5L

6 , α1 = φ1 = 0 , (4.3)

and we have E = 25
√

5
108 . There is another N = 1 S-fold solution obtained from the sym-

metry (2.8), with opposite sign for E . The free energy of these solutions can be obtained
from (3.29) and is given by

FS3 = 25
√

5
108 arccoshn2N

2 , (4.4)

in agreement with [10].
On the other hand if we further set z2 = z̄2, or equivalently φ1 = −φ4, then we obtain

a three-scalar SO(3) × SO(3) invariant model depending on α1, φ1, ϕ that overlaps8 with
the truncation considered in the context of N = 4 S-folds in section 2 of [10]. The N = 4
S-fold solution is given (in conformal gauge) by

ϕ = 1√
2
r , φ1 = −φ4 = −1

2 cot−1√2 , eA = L√
2
, α1 = 0 , (4.5)

7They consider a model with four scalars: (ϕ, χ, c, ω). One should set c = ω = 0 and then identify
sinφ4 = tanhχ as well as g = 2/L.

8They consider a model with five scalars: (ϕ, χ, α, c, ω). One should set c = ω = 0 and then identify
α1 = α and sin 4φ1 = − tanh 4χ. We also note that setting z2 = z̄2 in the BPS equations (3.5) leads
to an additional algebraic reality constraint. The compatibility of imposing this constraint with the BPS
equations can be verified as in section 5 of [15] for a similar issue associated with the reality of the scalar
fields β1, β2.
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and has E = 1
2 . Again there is another N = 4 S-fold solution obtained from the symme-

try (2.8), with opposite sign for E . From (3.29) the free energy of these solutions is given by

FS3 = 1
2arccoshn2N

2 , (4.6)

in agreement with [4, 10].
The model also contains a single periodic AdS4×R solution that was found numerically

in [15] which has E = 0. In this solution the warp factor eA and all the scalar fields, including
ϕ, are periodic in the radial direction. Thus, it can immediately be compactified to give an
AdS5×S1 solution of D = 5 supergravity and then uplifted to an AdS4×S1×S5 solution
of type IIB using the results of appendix A. From the numerical results we can calculate
the free energy (3.28) and we find

FS3 ≈ q × 1.90107N2 , (4.7)

where q is the number of periods over which we have compactified.
The periodic solution was found as a limiting case of a class of Janus solutions in [15].

The focus in [15] was Janus solutions that approach the N = 4 SYM vacuum with the
same value of ϕ(s) on either side of the interface, corresponding to the same value of τ of
N = 4 SYM on either side of the interface. It is straightforward to generalise these Janus
solutions to allow ϕ(s) to take different values on either side of the interface. As already
noted, taking limits of these solutions leads to new families of AdS4×R solutions with ϕ an
LPP function of the radial coordinate, r, which parametrises R. Before summarising these
new solutions, all found numerically, we discuss how some of the new family of solutions can
also be seen by perturbing the AdS4×R solution associated with the N = 1 S-fold solution.

4.1 Periodic perturbation about the N = 1 S-fold

Within the N = 1∗ equal mass model, we consider linearised perturbations of the BPS
equations about the AdS4 ×R solution (4.3), associated with the N = 1 S-fold. There are
zero modes associated with shifts of ϕ, A and there is also a freedom to shift the coordinate
r. There are two linearised modes that depend exponentially on r. Of most interest is that
there is also a linearised periodic mode of the form

δα1 = sin
√

5r
3 , δφ1 = −

√
5 cos

√
5r
3 . (4.8)

With a little effort we can use this periodic mode to construct a perturbative expansion
in a parameter ε, that takes the form

α1 =
∞∑

m,p=1
a(α1)
m,p ε

m sin pKr , φ1 = φzm1 (ε) +
∞∑

m,p=1
a(φ1)
m,p ε

m cos pKr ,

φ4 = φzm4 (ε) +
∞∑

m,p=1
a(φ4)
m,p ε

m cos pKr , ϕ = k(ε)r +
∞∑

m,p=1
a(ϕ)
m,pε

m sin pKr ,

A = Azm(ε) +
∞∑

m,p=1
a(A)
m,pε

m cos pKr , (4.9)
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where all functions are periodic in the radial direction with period ∆r ≡ 2π
K , with ϕ

having an extra linear piece, and hence an LPP function, exactly as in (3.13)–(3.15). The
wavenumber K is itself given by the following series in ε:

K ≡ 2π
∆r =

√
5

3 −
184
√

5
13 ε2 − 2155938

√
5

2197 ε4 − 1193970682204
1856465

√
5

ε6 + · · · , (4.10)

which we notice is decreasing as we move away from the N = 1 S-fold solution. Interest-
ingly, we notice that α1 has vanishing zero mode in this expansion, while the zero modes
of the remaining periodic functions are explicitly given by

φzm1 = −5
√

5ε2 − 9431
√

5
26 ε4 − 6269904259

26364
√

5
ε6 + · · · ,

φzm4 = cos−1
√

5
6 −
√

5ε2 − 61645
√

5
676 ε4 − 110249429617

1713660
√

5
ε6 + · · · ,

Azm = log 5L
6 − 3ε2 − 102177

338 ε4 − 60279560187
1428050 ε6 + · · · . (4.11)

In addition the slope of ϕ takes the form

k =
√

5
2 −

9
√

5
2 ε2 − 513855

√
5

1352 ε4 − 295876107351
1142440

√
5
ε6 + · · · . (4.12)

Furthermore we also have ∆ϕ ≡ k∆r is given by

∆ϕ = 3π + 1305π
13 ε2 + 95032143π

8788 ε4 + 11893037855571π
7425860 ε6 + · · · . (4.13)

The integral of motion (4.2) is given by

E = 25
√

5
108

(
1− 6ε2 − 14598

169 ε4 − 1590041883
142805 ε6 + · · ·

)
. (4.14)

One finds that all of the expansion parameters a(∗)
m,p appearing in (4.9) are only non-zero

when m+ p is even. This implies the following property of the perturbative solution under
a half period shift in the radial coordinate. Specifically, let Ψ = {A,α1, φ1, φ4} denote the
periodic functions so that the whole solution is specified by Ψ(ε, r) and ϕ(ε, r). We then find

Ψ(ε, r + π/K) = Ψ(−ε, r), ϕ(ε, r + π/K) = ϕ(−ε, r) + constant , (4.15)

where the constant can be removed by (2.11). This means that changing the sign of ε gives,
essentially, the same solution (i.e. up to a shift in the radial direction plus a shift of ϕ).

– 16 –



J
H
E
P
0
5
(
2
0
2
1
)
2
2
2

Finally, after uplifting to type IIB, using the results of appendix A, and carrying out
the S-fold procedure, as described in section 3.3, we obtain new S-folds of type IIB provided
that we can solve (3.23). The free energy for the S-folded solutions can then be obtained
from (3.28) and is given by

FS3 = 25
√

5
108

(
1− 1305

13 ε4 − 26414316
133 ε6 + . . .

)
arccoshn2N

2 . (4.16)

To solve (3.23) we first note that 2 cosh 3π ∼ 12391.6. Thus, the smallest value of n that
can be reached in (3.23) is n = 12392, which occurs for q = 1 and ε ∼ 0.0003. There are
additional branches of solutions, labelled by q, which, for a given n, have smaller values
of ε. Thus, we can find S-fold solutions with arbitrarily small ε. We also note that while
these AdS4 × R solutions are perturbatively connected with the N = 1 AdS4 × R S-fold
solution, they are not as S-folds of type IIB string theory. This is clear when we recall that
for the latter we can solve (3.23) for any n ≥ 3 by suitably adjusting the period ∆r over
which we S-fold, while for the perturbative solutions, as just noted, we have n ≥ 12392.

The N = 1∗ equal mass, SO(3) invariant truncation we are considering also contains
the known N = 4 AdS4×R S-fold solution (4.5). If we consider the linearised perturbations
of the BPS equations about this solution we again find zero modes associated with shifts
of ϕ, A and there is also a freedom to shift the coordinate r. The remaining modes all
depend exponentially on the radial coordinate. In particular, there is no longer a linearised
periodic mode and this feature will manifest itself in the family of new solutions we discuss
in the next section.

4.2 New S-fold solutions

The new AdS4 ×R solutions, with ϕ a LPP function, can be constructed as limiting cases
of Janus solutions. A convenient way to numerically solve the BPS equations (3.3)–(3.5) is
to set initial conditions for the scalar fields at a turning point of the metric warp function,
A, which corresponds to Re(Br) = 0 along with the values of the scalar fields at the turning
points. Some general comments concerning this procedure were made in sections 5 and 6
of [15].

In more detail we consider Janus solutions with the turning point of A located at
r = rtp. Since the BPS equations are unchanged by shifting the radial coordinate by
a constant, we can take rtp = 0. We can also use the shift symmetry (2.11) to choose
ϕ(rtp) = 0. We can then focus9 on solutions that are invariant under the Z2 symmetry,
obtained by combining (2.8) and (3.6),

r → −r, zA → −z̄A, ξ → −ξ + π . (4.17)

9If we relax the condition that the initial data is invariant under the Z2 symmetry, then we do not find
any LPP solutions of the type we are interested in for constructing S-folds. Instead we find some interesting
“one-sided” Janus solutions that we discuss in section 6. We also note that the general periodic perturbative
solution (4.9) did not assume invariance under the Z2 symmetry, yet it is in fact invariant.
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Figure 3. Turning point initial data for the AdS4 × R solutions of the N = 1∗ equal mass SO(3)
invariant model. Red dots correspond to the exactly periodic solution, blue dots correspond to the
N = 1 linear dilaton solutions, green dots to the N = 4 linear dilaton solutions and green squares
to the bounce solutions. The remaining points correspond to AdS4 × R solutions with ϕ a LPP
function of r. All points inside the curve correspond to Janus solutions of N = 4 SYM theory
(the black cross is the Janus solution in figure 1), while points outside the curve have singularities.
Points on the curve with the same colour represent the same solution, up to shifts of ϕ and the
discrete symmetry (2.8).

This implies that φi, φ4 are even functions of r and αi, ϕ are odd functions. In particular,
at the turning point we can take αi(rtp) = 0 as part of our initial value data. For the
SO(3) invariant model, these Janus solutions are therefore fixed by the values of φ1(rtp)
and φ4(rtp). By suitably tuning the values of the scalar field at the turning points we are
able to construct the limiting cases of solutions associated with the S-folds.

The space of solutions that we have found in this way is summarised by the coloured
curve in figure 3, with the colour giving the value of |E|, given by (4.2). If one starts with
turning point data that lies anywhere within the curve, one obtains a Janus solution of
N = 4 SYM theory with fermion and boson masses and a coupling constant that varies as
one crosses the interface. For example, the Janus solution depicted in figure 1 corresponds
to the black cross inside the curve in figure 3. On the other hand if one starts outside the
curve then one finds that the solution becomes singular on both sides of the interface as in
the solutions discussed in [15], for example.

Observe that the figure is symmetric under changing the signs of both φ1(rtp) and
φ4(rtp), as a result of the symmetry (2.8). The associated AdS4 ×R solutions obtained by
this symmetry, which is a discrete R-symmetry combined with an S-duality transformation
for the associated Janus solutions, are physically equivalent. The value of E is positive for
the upper part of the curve between the two red dots and negative for the lower part. We
next point out that the blue dots correspond to the two N = 1 AdS4 ×R S-fold solutions,
with ϕ a linear function of r, as in (4.3). The red dots correspond to the fully periodic
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AdS4 × R solution found in [15]. We will come back to the green dots and squares in a
moment. The remaining points on the curve all correspond to AdS4 × R solutions with ϕ
an LPP function of r. Also, if one starts at the N = 1 S-fold solution at the top of the
curve, then one can match on to the perturbative family of solutions that we constructed
in the previous subsection and there is a similar story for the N = 1 S-fold solution at the
bottom of the curve.

Points on the curve with the same colour have the same value of |E| and represent,
essentially, the same solution, up to dilaton shifts (2.11) and the discrete symmetry (2.8)
if E has the opposite sign. Indeed if we move to the right from the blue dot at the top
all the way to the red dot at the right, the LPP solutions (all of which have E positive)
are essentially the same as those as one moves to the left; although the turning point
data at r = rtp is different, the data of one of the solutions at r = rtp agrees with the
turning point data of the other solution at r = rtp + ∆r/2, after making a suitable shift
of ϕ using (2.11). One can explicitly check this feature analytically for the perturbative
solution (4.9). We also note that this feature is consistent with the fact that there is just
a single periodic solution which has the property that if one uses (2.11) to have no zero
mode for ϕ, then the solution is invariant under a half period shift combined with a Z2
symmetry transformation (2.8).

We now return to the green dots and squares in figure 3. The green dots, located
at |E| = 1/2 represent the N = 4 linear dilaton solutions given in (4.5), while the green
squares represent “bounce” solutions that involve those solutions, as we now explain. We
first consider the limiting class of the LPP solutions as we move along the coloured curve
in figure 3 towards the upper green dot to the left. To illustrate, in the left panel of figure 4
we have displayed the behaviour of one of the periodic functions, φ1(r), as one approaches
the critical initial data associated with the green dot, which has φ1(rtp) = −1/2 cot−1√2 ∼
−0.308. The figure shows that in this limit, the solution simply degenerates into the N = 4
linear dilaton solution (4.5) for all values of r. In the right panel of figure 4 we have also
displayed the approach to the upper green square to the right. In this case the solution
develops a region that approaches the N = 4 linear dilaton solution (4.5) as one moves
away from r = 0 in either direction. Exactly at the initial values associated with the
green square the solution will no longer be an LPP solution but degenerates into a “bounce
solution” which approaches the N = 4 linear dilaton solution (4.5) at both r̄/L → ±∞,
with a kink in the middle. We also see that these degenerations of the LPP solutions
split the whole family of solutions into two branches of LPP solutions: one that includes
the perturbative solutions built using the N = 1 linear dilaton solutions and another that
contains the periodic solution.

In order to obtain S-fold solutions of type IIB string theory we also need to impose the
quantisation condition (3.23). In figure 5 we have plotted some of these discrete solutions
as well as FS3 given in (3.28). The discrete set of vertical points coloured blue and green
correspond to the N = 1 and N = 4 S-fold solutions with linear dilatons, respectively, and
n increasing from 3 to infinity as one goes up; for these S-folds we can obtain all values
n ≥ 3 by suitably adjusting the period ∆r over which we S-fold. The red dots correspond
to the periodic solution for different values of the numbers of period, q, that are used in
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Figure 4. Family of LPP solutions for the N = 1∗ equal mass SO(3) invariant model with turning
point data illustrating the approach to the green dots and squares as in figure 3, with |E| = 1/2.
The figures display just the periodic behaviour of φ1 for clarity and just one period. The left panel
shows that the limiting solutions associated with the green dots degenerate into the N = 4 linear
dilaton solution, marked with a dashed green line. The right panel shows the limiting solution
associated with the green square becomes a bounce solution which approaches the N = 4 linear
dilaton solution, at both r̄ → ±∞, with a kink in φ1 centred at r̄ = 0.
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Figure 5. Plot of the discrete S-folded solutions and the associated free energy of the dual field
theory, FS3 , for the N = 1∗ equal mass SO(3) invariant model as in figure 3. The discrete points
rapidly become indistinguishable from continuous lines.

making the S1 compactification. The remaining discrete points correspond to N = 1 S-fold
solutions with ϕ an LPP function, for representative values of q = 1, 2, 3. Starting from the
left, for a given q, we have n = 3 at the left and then rising to infinity as one approaches the
bounce solution or the N = 4 S-fold solution at E = 1/2, where the free energy diverges.
Moving further to the right the value of n decreases from infinity down to a bounded value
[2 cosh q3π], at the intersection with the N = 1 solutions on the blue line, which can be
deduced from the perturbative analysis (4.13).
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5 5-scalar model, SU(2) invariant

This model is obtained from the 10-scalar model by setting z1 = −z3, z2 = −z4, or
equivalently α1 = α2 = 0, φ1 = φ2 = 0, β2 = 0. This model involves five scalar fields
parametrised by

β1, z
1 = tanh

[1
2
(
α3 + ϕ− iφ3 + iφ4

)]
, z2 = tanh

[1
2
(
α3 − ϕ− iφ3 − iφ4

)]
. (5.1)

In addition to the symmetry (2.8), this model is also invariant under the symmetry

φ3 → −φ3 , α3 → −α3 , (5.2)

with β1, φ4, ϕ unchanged, which is a remnant of the discrete transformations given in (2.10)
for the 10-scalar truncation. This additional symmetry will clearly manifest itself in the set
of solutions we construct. The integral of motion (3.7) for this truncation is now given by

E = 1
L3 e

3A[− tan(φ3 − φ4) + tan(φ3 + φ4)] . (5.3)

If we further set z1 = −z2, equivalently, α3 = φ3 = 0, as well as β1 = 0 then we
obtain a two-scalar model depending ϕ, φ4 that overlaps with the truncation considered in
the context of N = 1 S-folds in section 4 of [10], which we also discussed in the previous
section. In particular the AdS4 ×R solution associated with the N = 1 S-folds is given by

ϕ =
√

5
2 r, φ4 = cos−1

√
5
6 , eA = 5L

6 ,

β1 = α3 = φ3 = 0 , (5.4)

with E = 25
√

5
108 . There is another N = 1 S-fold solution that can be obtained from the

symmetry (2.8), with opposite sign for E .
On the other hand if we set z2 = z̄2 or equivalently φ3 = −φ4 then we obtain a

four-scalar model depending on φ3, α3, ϕ, β1 that overlaps10 with the truncation considered
in the context of N = 2 S-folds in section 3 of [10]. Also note that after utilising the
symmetry (5.2) we can also truncate to a 4-scalar model by taking z1 = z̄1, or equivalently
φ3 = +φ4. The N = 2 S-fold solution, with φ3 = −φ4, can be written

ϕ = r , φ3 = −φ4 = −π8 , β1 = − 1
12 log 2 , eA = L

21/3 , α3 = 0 , (5.5)

with E = 1
2 . After using the symmetries (2.8) and (5.2) there are now a total of four N = 2

AdS4×R S-fold solutions with ϕ linear in r. From (3.29) the free energy of these solutions
is given by

FS3 = 1
2arccoshn2N

2 , (5.6)

in agreement with [10].
10They consider a model with seven scalars: (ϕ, χ, α, λ, c, ω, ψ). One should set c = ω = ψ = 0 and then

identify α = β1, λ = α3, sin 2φ3 = − tanh 2χ as well as g = 2/L.
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Finally, if we set z1 = z2 or equivalently φ4 = ϕ = 0 then we obtain the N = 1∗

one-mass truncation used in [15], which contains three scalars β1, φ3, α3 and retains the
symmetry (5.2). This truncation also contains two LS AdS5 fixed point solutions, LS±,
which are related by (5.2) and given by

β1 = −1
6 log 2, φ3 = ±π6 , α3 = 0, L̃ = 3

25/3L , (5.7)

where L̃ is the radius of the AdS5.

5.1 Periodic perturbation about the N = 1 S-fold

Much as in the last section, within the 5-scalar truncation we can build a perturbative
solution about the N = 1 S-fold solution given in (5.4). The key point is that there is now
a periodic linearised perturbation of the form

δα3 = sin
√

5r
3 , δφ3 = −

√
5 cos

√
5r
3 . (5.8)

With some effort we can use this to construct a perturbative expansion in a parameter
ε, that takes the form

α3 =
∞∑

m,p∈odd
a(α3)
m,p ε

m sinpKr , φ3 =
∞∑

m,p∈odd
a(φ3)
m,p ε

m cospKr ,

φ4 =φzm4 (ε)+
∞∑

m,p∈even
a(φ4)
m,p ε

m cospKr , ϕ= k(ε)r+
∞∑

m,p∈even
a(ϕ)
m,pε

m sinpKr ,

β1 =βzm1 (ε)+
∞∑

m,p∈even
a(β1)
m,p ε

m cospKr , A=Azm(ε)+
∞∑

m,p∈even
a(A)
m,pε

m cospKr , (5.9)

where the sums over odd integers start from 1 and the sums over even integers start from
2. All functions, except ϕ are periodic in the radial direction with period ∆r = 2π

K , with
ϕ an LPP function, exactly as in (3.13)–(3.15). The wavenumber K is itself given by the
following series in ε:

K ≡ 2π
∆r =

√
5

3 −
292
√

5
117 ε2 − 3316328

√
5

59319 ε4 − 241179878834
30074733

√
5
ε6 + · · · , (5.10)

which we notice is decreasing as we move away from the N = 1 S-fold solution.
Notice that both α3 and φ3 have vanishing zero mode in this expansion. The zero

modes of the remaining periodic functions are explicitly given by

φzm4 = cos−1
(√

5
6

)
−
√

5
3 ε2 − 4861

√
5

6084 ε4 − 185672641
√

5
9253764 ε6 + · · · ,

βzm1 = −2
3ε

2 − 755
78 ε

4 − 5171099
19773 ε6 + · · · ,

Azm = log
(5L

6

)
− ε2 − 10241

3042 ε
4 − 663866873

4626882 ε6 + · · · . (5.11)
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In addition the slope of ϕ takes the form

k =
√

5
2 −

3
√

5
2 ε2 − 311

√
5

1352 ε4 − 19753429
√

5
228488 ε6 + · · · . (5.12)

Furthermore, we also have ∆ϕ ≡ k∆r is given by

∆ϕ = 3π + 175π
13 ε2 + 5295375π

8788 ε4 + 153607091549π
7425860 ε6 + · · · . (5.13)

The integral of motion (5.3) is given by

E = 25
√

5
108

(
1− 2ε2 + 4598

507 ε
4 + 96057473

771147 ε6 + · · ·
)
. (5.14)

We now write the periodic functions collectively as Ψ1 = {A, φ4, β1} and Ψ2 = {α3, φ3}
so that the whole solution is specified by Ψ1(ε, r), Ψ2(ε, r) and ϕ(ε, r). We then find

Ψ1(ε, r + π/K) = Ψ1(−ε, r) = +Ψ1(ε, r),
Ψ2(ε, r + π/K) = Ψ2(−ε, r) = −Ψ2(ε, r),
ϕ(ε, r + π/K) = ϕ(−ε, r) + constant , (5.15)

where the constant can be removed by (2.11) and we note that the last equalities in the
first two lines are associated with the symmetry (5.2).

After uplifting to type IIB and carrying out the S-fold procedure as described in
section 3.3, we obtain new S-folds of type IIB provided that we can solve (3.23). This can
be done as in the discussion following (4.16) and, in particular, the smallest value of n that
can be reached in (3.23) is n = 12392, which occurs for q = 1 and ε ∼ 0.0008. The free
energy for the S-folded solutions can be obtained from (3.28) and is given by

FS3 = 25
√

5
108

(
1− 175

39 ε
4 − 13887100

393 ε6 + . . .

)
arccoshn2N

2 . (5.16)

This truncation also contains the known AdS4×R N = 2 S-fold solutions, but there is
no longer a linearised periodic mode within this truncation in which to build an analogous
solution. This is similar to the known AdS4 × R N = 4 S-fold solutions in the SO(3)
invariant truncation that we considered in the previous section.

5.2 New S-fold solutions

The new AdS4×R solutions, with ϕ a LPP function, can be constructed as limiting cases of
Janus solutions, much as in the last section. We again start by constructing Janus solutions
with turning point of A at r = rtp, with rtp = 0. We can use the shift symmetry (2.11) to
choose ϕ(rtp) = 0. We then focus11 on solutions that are invariant under the Z2 symmetry,
obtained by combining (2.8) and (3.6),

r → −r, zA → −z̄A, ξ → −ξ + π . (5.17)
11As in the previous section, if we relax the condition that the initial data is invariant under the Z2

symmetry, then we only find limiting solutions that are in the “one-sided” Janus class discussed in section 6.
We also note that the perturbative solution (5.9) is invariant under this symmetry.
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Figure 6. Turning point initial data for the AdS4 × R solutions of the 5-scalar SU(2) invariant
model. The blue dots correspond to the N = 1 linear dilaton solutions while the green dots
correspond to the N = 2 linear dilaton solutions, as well as associated soliton solutions. The
red dots correspond to the two LS AdS5 solutions, LS±. The remaining points on the solid lines
correspond to AdS4 × R solutions with ϕ a LPP function of r, with the same colour representing
the same physical solution. All points inside the curve correspond to Janus solutions of N = 4
SYM theory while points outside the curve have singularities. The dashed lines correspond to an
LS± to LS± Janus solution.

This implies that φ3, φ4 are even functions of r and α3, ϕ are odd functions. Thus, we again
take α3(rtp) = 0 as part of our initial value data for the solutions. From (3.3)–(3.5), and as
explained in section 5 of [15], the solutions are now specified by the values of φ3(rtp) and
φ4(rtp), with the value of β1(rtp) fixed by this data. By suitably tuning the values of the
scalar field at the turning points we are able to construct the limiting cases of solutions
associated with the S-folds.

The space of solutions we have found in this way is summarised by the curve shown in
figure 6. If one starts with turning point data that lies anywhere within the curve, one ob-
tains a Janus solution of N = 4 SYM theory with fermion and boson masses and a coupling
constant that varies as one crosses the interface. On the other hand if one starts outside
the curve then one finds that the solution becomes singular on both sides of the interface.

Observe that the figure is symmetric under changing the signs of either φ3(rtp) or
φ4(rtp). This is a result of the symmetries (2.8) and (5.2). The associated AdS4×R solutions
obtained using these symmetries, which for the Janus solutions are a combination of a
discrete R-symmetry and an S-duality transformation (in the case of (2.8)), are physically
equivalent. The value of E is positive for the upper part of the curve and negative for the
lower part. We next point out that the blue dots correspond to the N = 1 AdS4×R S-fold
solutions which have ϕ a linear function of r. The green dots represent the N = 2 AdS4×R
S-fold solutions as well as associated “soliton” solutions that we discuss further below. The
remaining points on the coloured, solid lines all correspond to AdS4 × R solutions with ϕ
an LPP function of r. Also, if one starts at the N = 1 S-fold solution at the top of the
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Figure 7. Limiting families of solutions for the 5-scalar SU(2) invariant model, with just the
periodic behaviour of φ3 displayed for clarity. The left panel illustrates the approach to the green
dots in figure 3, along the coloured curve; one finds that the solution will approach the N = 2 linear
dilaton solution associated with the upper green dashed line for all r̄. In the right panel we display
a different limiting solution, obtained by fixing φ3(0) = 0, which degenerates into a soliton solution
that approaches one N = 2 linear dilaton solution, at r̄ → −∞ and another N = 2 linear dilaton
solution at r̄ →∞ with opposite sign of φ3 (related by (5.2)).

curve, then one can match on to the perturbative family of solutions that we constructed
in the previous subsection.

Points on the solid curve with the same colour represent, essentially, the same LPP
solution, up to dilaton shifts and possible discrete symmetries. Moving from the right of
the blue dot at the top all the way to the green dot at the right one finds LPP solutions
that are essentially the same as those as one moves to the left; although the turning point
data at r = rtp is different, the data of one of the solutions at r = rtp agrees with the
turning point data of the other solution at r = rtp + ∆r/2, after making a suitable shift of
ϕ using (2.11). Note that the two sets of turning point data are also related by (5.2). One
can explicitly check these features analytically for the perturbative solution (5.9).

In the limit of approaching the green dots in figure 6 along the solid curve, the LPP
solutions degenerate into the AdS4×R N = 2 S-fold solutions as illustrated in the left panel
in figure 7 for one of the periodic functions, φ3(r). As one approaches the critical initial
data associated with the green dot which has φ3 = π

8 ∼ 0.39, the solution degenerates
into the N = 2 S-fold solution, with the region around r̄ = 0 extending out all the way
to infinity. Interestingly, essentially using the same family of solutions, one can construct
another limiting solution which is a kind of “soliton” solution that approaches one of the
AdS4 × R N = 2 S-fold solutions as r̄ → −∞ and a different AdS4 × R N = 2 S-fold
solution, related by flipping the sign of φ3, as r̄ →∞. This limiting solution is illustrated
in the right panel of figure 7.

We next turn to the remaining points in figure 6. The red dots are the two LS AdS5
fixed points given in (5.7), which we refer to as LS±. Moving along the class of Janus
solutions on the horizontal axis towards the red dots at the right, say, one finds that the
Janus solutions degenerate into three components; a Poincaré invariant RG flow solution
that starts off at the AdS5 vacuum and then approaches the LS+ AdS5 fixed point, the
LS+ fixed point solution itself and then another Poincaré invariant RG flow solution going
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Figure 8. Plot of the discrete S-folded solutions and the associated free energy of the dual field
theory, FS3 , for the 5-scalar SU(2) invariant model as in figure 6. The discrete points rapidly
become indistinguishable from a continuous line.

between LS+ and the AdS5 vacuum. The dashed curves correspond to another interesting
degeneration of the Janus solutions. As one approaches the dashed curve on the right side
of the figure one again finds three components: there is the same two Poincaré invariant
components on the outside and the middle component is now an LS Janus solution that
moves between LS+ and LS+ on either side of the interface, with ϕ linear in r̄. There is
similar behaviour as one approaches the red dot or the dashed line on the left side of the
figure with LS− replacing LS+.

To obtain S-fold solutions of type IIB string theory we also need to impose the quan-
tisation condition (3.23). In figure 8 we have plotted some of these discrete solutions as
well as FS3 given in (3.28). The discrete set of vertical points coloured blue and green
correspond to the N = 1 and N = 2 S-fold solutions with linear dilatons, respectively, and
n increasing from 3 to infinity as one goes up. The remaining discrete points correspond
to N = 1 S-fold solutions with ϕ an LPP function, for representative values of q = 1, 2.
Starting from the right at the blue dots, for a given q, we have n starting from [2 cosh q3π],
which can be deduced from the perturbative analysis (5.13), and then rising to infinity as
one approaches the N = 2 S-fold solution at E = 1/2, where the free energy diverges.

6 One-sided Janus solutions

In this section we discuss a novel class of D = 5 solutions within the ansatz (3.1), that at
one end of R approach the AdS5 vacuum, while at the other end approach an AdS4 × R
solution with the D = 5 dilaton, ϕ, either a linear function or an LPP function of r. We
can also construct solutions that approach the periodic AdS4 × R solution at the other
end. We refer to these solutions as “one-sided Janus” solutions. In contrast to other one
sided Janus solutions that have been previously constructed, for example in [15, 25, 29, 30],
remarkably these new solutions are free from singularities.

6.1 An analytic solution preserving N = 4 supersymmetry

We first consider an analytic solution that lies within the SO(3)×SO(3) invariant truncation
that involves 3 scalar fields, φ1 = φ2 = φ3 = −φ4, α1 = α2 = α3 and ϕ.
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Using the proper distance gauge with radial coordinate r̄, we find the following solution

tan 4φ1 = − 2
√

2e−3r̄/L(
1 + e−2r̄/L)3/2 , cosh 4α1 =

1 + 2e−4r̄/L

(1+e−2r̄/L)2√
1 + 8e−6r̄/L

(1+e−2r̄/L)3

,

e8ϕ−8ϕ(s) = 1 + 3e−2r̄/L(
1 + e−2r̄/L)3 (1 + 3e−4r̄/L) , eA = Ler̄/L

√
1 + e−2r̄/L
√

2
. (6.1)

For these solutions, in which the warp factor A does not have a turning point, we find that
the integral of motion is given by E = 1

2 . Recall that the N = 4 S-fold solution with a
linear dilaton given in (4.5) also had E = 1

2 . In other words, taking the limit E → 1
2 in the

family of Janus solutions in this truncation can either give the N = 4 S-fold solution or
this new solution, which describes a one-sided Janus solution.

At the r̄ → +∞ end these solutions approach the AdS5 vacuum solution, dual to
N = 4 SYM theory. After shifting the radial coordinate r̄ → r̄−L log L√

2 , so we can easily
compare with [15], we find that as r̄ →∞ we have the asymptotic expansion

φ1 = −L
3

4 e−3r̄/L + · · · , α1 = L2

4 e−2r̄/L − L4

4 e−4r̄/L + · · · ,

ϕ = ϕ(s) −
3L4

16 e−4r̄/L + · · · , A = r̄

L
+ L2

4 e−2r̄/L − L4

16 e
−4r̄/L + · · · . (6.2)

From the results given in [15] we can immediately deduce that all sources for the operators
dual to the scalar fields vanish. Furthermore, we can also determine the one point functions.
As explained in detail [15], and refined in appendix B, we can determine the one-point
functions that are associated with N = 4 SYM theory on flat spacetime12 with coordinates
(t, yi); we find that the one-point functions having spatial dependence on one of the spatial
directions, say y3, with13

L2〈Oα1〉 = N2

8π2
1
y2

3
, L〈Oφ1〉 = −N

2

4π2
1
y3

3
, 〈Oϕ〉 = −3N2

8π2
1
y4

3
, (6.3)

where we used (3.27). These expressions display the appropriate dependence on y3 that is
consistent with d = 3 conformal invariance with respect to the (t, y1, y2) for dual operators
of scaling dimension ∆ = 2, 3 and 4, respectively.

At the other end, as r̄ → −∞, again after shifting r̄ → r̄ − L log L√
2 , the asymptotic

expansion is given by

φ1 = −1
4 tan−1

(
2
√

2
)

+ 1
3
√

2L2 e
2r̄/L + 1

18
√

2L4 e
4r̄/L + · · · ,

α1 = 1
3L2 e

2r̄/L − 4
9L4 e

4r̄/L + · · · ,

ϕ = r̄

L
+ ϕ(s) − log L√

2
− 2

3L2 e
2r̄/L + 5

9L4 e
4r̄/L + · · · ,

A = log L√
2

+ 1
L2 e

2r̄/L − 1
L4 e

4r̄/L + · · · . (6.4)

12As opposed to AdS4 to which it is related by a Weyl transformation. We also note that the analysis
in [15] assumed ϕ(s) = 0 which can be achieved by a dilaton shift.

13Note that the operators have not been canonically normalised, which explains the factors of L appearing
on the left hand side.
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This shows that the solution at this end is precisely approaching the N = 4 AdS4 × R
S-fold solution with ϕ a linear function of r, which was given in (4.5).

The solution solves the BPS equations (3.3)–(3.5) and hence it preserves at least N = 1
supersymmetry. However, since it is a solution that lies within the SO(3)×SO(3) invariant
truncation it actually preserves N = 4 supersymmetry. Furthermore, after uplifting the
solution to type IIB, using the formulae in appendix A.2.2, we obtain a D = 10 metric of
the form

ds2 = f2
4ds

2
AdS4 + f2

1dΩ2
2 + f2

2dΩ̃2
2 + ds2(Σ) , (6.5)

where dΩ2
2 and dΩ̃2

2 are metrics on round two-spheres and f1, f2 and f4 are functions
of the coordinates on Σ. A full classification of such solutions which preserve N = 4
supersymmetry can be found in [19, 20]. In appendix A.4 we explicitly show that our
uplifted solution lies within this framework. In particular, the Riemann surface is taken to
be an infinite strip with complex coordinate w with

w = x+ iψ , (6.6)

where −∞ < x <∞ and ψ ∈ [0, π/2]. The solution is completely specified by two harmonic
functions on the strip which are given by

h1 = −i L2

2
√

2eϕ(s)
(sinhw − sinh w̄) = L2

√
2eϕ(s)

cosh x sinψ ,

h2 = eϕ(s)L2

4
√

2

(
ew + ew̄

)
= eϕ(s)L2

2
√

2
ex cosψ , (6.7)

and in comparing with (6.1) we should identify x = r̄/L.
It is interesting to compare this solution with the supergravity solutions associated

with the near horizon limit of a collection of N3 D3-branes ending on N5 coincident D5-
branes. More specifically, we want N3 = KN5 where K ∈ Z, the linking number, is the
same for all D5-branes. From the results of [19–23] we can write the harmonic functions
for such solutions as

h1 =
√
πN3`

2
s√

2gs

(
ex sinψ +

√
gsN3

23/2√πK
log

[
2gsN2

3 e
2x + πK2 + 23/2√πgsN3K sinψex

2gsN2
3 e

2x + πK2 − 23/2√πgsN3K sinψex

])
,

h2 =
√
πgsN3`

2
s√

2
ex cosψ , (6.8)

where gs = e2ϕ(s) is the string coupling constant and `s is the string length. In the large x
limit, as we approach the N = 4 SYM end, this solution behaves as

h1 =
√

2πN3`
2
s√

gs

(
cosh x sinψ + πK2

12gsN3
e−3x sin 3ψ +O(e−5x)

)
,

h2 =
√
πgsN3`

2
s√

2
ex cosψ . (6.9)

Thus, after identifying the Einstein frame AdS5 curvature
√

4πN3`
2
s = L2, as x → ∞ we

see that this solution has the same asymptotic form as (6.7), with sub-leading corrections.
Moreover, note that we also obtain the expansion (6.9) by taking the limit N3 →∞ while
holding the linking number K fixed.
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Figure 9. A one sided Janus solution (solid lines) for the N = 1∗ equal mass SO(3) invariant model
that approaches AdS5 as r̄ → −∞ and approaches, very rapidly, the exactly periodic AdS4 × R
solution (dashed lines) as r̄ → +∞. The left panel plots the behaviour of the warp factor A and
the D = 5 dilaton ϕ and the right panel plots the scalar fields α1, φ1 (we have not plotted φ4
for clarity).

6.2 Other constructions

It is straightforward to construct additional one-sided Janus solutions numerically. In fact
we have found no obstruction to constructing solutions that approach the AdS5 vacuum
at one end and any of the AdS4 × R solutions that we have discussed in the previous
sections at the other end; namely the N = 1, 2 S-fold solutions with ϕ a linear function,
the more general S-fold solutions with ϕ an LPP function or the periodic solution. The
one-sided Janus solutions approaching the S-folds with linear dilaton do not have any
turning points. The solutions approaching the S-folds with either ϕ an LPP function or
the periodic solution do have turning points, but the turning point data is not symmetric
under the Z2 symmetry as we imposed for the solutions summarised in figures 3 and 6. All
of these one-sided Janus solutions are regular.

To illustrate we have displayed in figure 9 a solution constructed in the N = 1∗ equal
mass SO(3) invariant model of section 4 that approaches the AdS5 vacuum at r̄ → −∞
and the periodic AdS4×R solution at r̄ → +∞. Notice that this particular Janus solution
has the feature that the dilaton ϕ is bounded.

7 Discussion

We have constructed a rich set of new S-fold solutions of type IIB string theory of the
form AdS4 × S1 × S5 which are dual to N = 1 SCFTs in d = 3. The solutions are patched
together along the S1 direction using a non-trivial SL(2,Z) transformation in the hyperbolic
conjugacy class. The solutions are first constructed in D = 5 gauged supergravity and then
uplifted to D = 10. In the previously known AdS4 × R solutions associated with S-folds
preserving N = 1, 2, 4 supersymmetry, the D = 5 dilaton is a linear function of a coordinate
on the R direction. Crucially, in the new solutions the D = 5 dilaton is now a linear plus
periodic (LPP) function. We also showed that some of the new families of LPP AdS4 × R
solutions can be seen in a perturbative expansion about the N = 1 S-fold solution with
a linear dilaton. In addition, for the SO(3) invariant model the numerical construction of
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such solutions revealed additional branches of LPP AdS4×R solutions, not perturbatively
connected with any known S-fold solutions.

An interesting feature of the new AdS4 × S1 × S5 solutions is that we can make the
size of the S1 parametrically larger than the size of the S5, by carrying out the S-folding
procedure after multiple periods with respect to the underlying periodic structure. This
will gives rise to an interesting hierarchy of scaling dimensions in the N = 1 d = 3 SCFT.

A proposal for the N = 4 SCFT in d = 3 dual to the N = 4 S-folds of [3] was given
in [4]. One takes the strongly coupled [TU(N)] theory of [7] and then gauges the global
U(N) × U(N) global symmetry using an N = 4 vector multiplet. In addition one adds a
Chern-Simons term at level n, where n is the integer that is used to make the S-folding iden-
tifications (see (3.23)). Proposals for the N = 4 SCFT in d = 3 dual to the N = 2 S-folds
of [9] were also discussed in [10]. It would be very interesting to identify the N = 1 SCFTs
in d = 3 that are dual to the S-fold solutions of [8], the new constructions in this paper, as
well as the periodic AdS4 × S1 × S5 solution of [15]. The small amount of supersymmetry
makes this challenging, but one can hope that the connection with Janus solutions which
we have highlighted in this paper, as well as in [15], will allow progress to be made.

We have seen that the periodic AdS4×R solution found in [15], which uplifts to smooth
AdS4×S1×S5 of type IIB supergravity, is a rather exceptional solution in the general con-
structions of this paper. It would be very interesting to know whether or not there are addi-
tional such solutions of the form AdSd×Tn×Mk either in D = 10 or D = 11 supergravity.

We have focussed on constructing supersymmetric S-fold solutions, but one can also
investigate non-supersymmetric possibilities. In fact a non-supersymmetric AdS4×R×M5
solution of type IIB supergravity was discussed long ago in [31] and [32]. These solutions are
associated with the D = 10 dilaton linear in the R direction, and have been subsequently
rediscovered several times [8, 33–35]. However, in [8, 34, 35] it was argued that these
solutions are unstable (in contrast to the claim in [31]) and hence are not of interest for
S-folds with CFT duals.

Our constructions have also revealed a novel class of non-singular “one-sided Janus”
solutions preserving N=1,2 or 4 supersymmetry. These regular solutions approach the
AdS5 vacuum on one side and an AdS4 × R solution with the D = 5 dilaton a linear
function of the radial coordinate or an LPP function. We also constructed a solution that
approaches the periodic AdS4 ×R solution of [15] on the other side, which is both regular
and has bounded dilaton. For the solution that approaches the N = 4 S-fold solution with
linear dilaton we were able to construct an analytic solution. Using the results of [19–23]
we interpreted this solution as arising from D3-branes ending on D5-branes and it will be
worthwhile to investigate this in more detail.

It seems likely that it will be possible to construct additional LPP AdS4 × R and
one-sided Janus solutions within the 10 scalar truncation and more generally within the
full SO(6) gauged supergravity with 42 scalars. It may also be possible to construct new
type IIB solutions of the form AdS4×S1×SE5, where SE5 is a Sasaki-Einstein manifold,
generalising the work of [14]. More generally, one can try to construct non-geometric
solutions of the form AdSd×Tn×Mk, where Tn is an n-dimensional torus and the solutions
are patched together in the Tn directions using U-duality transformations [36].
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A Uplifting to type IIB supergravity

A.1 The 10-scalar model in maximal gauged supergravity

We first discuss how the 10-scalar model is obtained from maximal SO(6) gauged super-
gravity in D = 5. The 42 scalars of SO(6) gauged supergravity parametrise the coset
E6(6)/USp(8), with USp(8) the maximal compact subgroup of E6(6). To describe this coset
space, it is convenient to work in a basis for E6(6) that is adapted to its maximal subgroup
SL(6) × SL(2,R), recalling that the gauge group SO(6) ⊂ SL(6). Following [37], we write
the generators of E6(6) in the fundamental 27 representation in this basis as

X =

−4Λ[I
[MδJ ]

N ] √
2ΣIJPβ

√
2ΣMNKα ΛP Kδβ

α + Λβ αδP K

 , (A.1)

where the indices I, J, . . . = 1, 2, . . . , 6, raised and lowered with δIJ , label the fundamental
of SL(6), while the indices α, β, . . . = 1, 2, raised and lowered with εαβ , are SL(2,R) indices.
It is often convenient to consider X as a 27×27 matrix associated with the branching
of the fundamental of E6(6) under SL(6) × SL(2,R), like 27 → (15,1) + (6,2). From
this perspective, a fundamental index of E6(6), A = 1, 2, . . . 27 splits according to {A} =
{[IJ ], Iα}, where [IJ ] are the 15 antisymmetric pairs of SL(6) indices.

The non-compact part of this algebra is generated by the 20 symmetric, traceless ΛI J ∈
SL(6), the 2 symmetric, traceless Λα β ∈ SL(2,R) and the 20 ΣIJKα antisymmetric in IJK
and satisfying ΣIJKα = 1

6εIJKLMN εαβΣLMNβ . It is possible to choose a gauge for the coset
element such that these 42 non-compact generators are in one-to-one correspondence with
the scalar fields of the gauged supergravity.

In this gauge, the truncation to the 10-scalar model discussed [16], retains the metric
and the ten scalar fields {β1, β2, ᾱ1, ᾱ2, ᾱ3, φ̄1, φ̄2, φ̄3, φ̄4, ϕ̄} defined by

ΛI J = diag(ᾱ1+β1+β2,−ᾱ1+β1+β2, ᾱ2+β1−β2,−ᾱ2+β1−β2, ᾱ3−2β1,−ᾱ3−2β1) ,
Λα β = diag(ϕ̄,−ϕ̄) , (A.2)

and

Σ1351 = −Σ2462 = 1
2
√

2

(
φ̄1 + φ̄2 + φ̄3 − φ̄4

)
,

Σ1461 = −Σ2352 = 1
2
√

2

(
−φ̄1 + φ̄2 + φ̄3 + φ̄4

)
,

Σ2361 = −Σ1452 = 1
2
√

2

(
φ̄1 − φ̄2 + φ̄3 + φ̄4

)
,

Σ2451 = −Σ1362 = 1
2
√

2

(
φ̄1 + φ̄2 − φ̄3 + φ̄4

)
. (A.3)
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B(1) B(2) S
(1)
1 S

(1)
2 S

(2)
1 S

(2)
2 S

(3)
1 S

(3)
2 S

(4)
1 S

(4)
2

ᾱ1 0 0 1
2 0 1

2 0 1
2 0 1

2 0
ᾱ2 0 0 1

2 0 −1
2 0 1

2 0 −1
2 0

ᾱ3 0 0 1
2 0 1

2 0 −1
2 0 −1

2 0
ϕ̄ 0 0 1

2 0 −1
2 0 −1

2 0 1
2 0

φ̄1 0 0 0 1
2 0 1

2 0 1
2 0 1

2

φ̄2 0 0 0 1
2 0 −1

2 0 1
2 0 −1

2

φ̄3 0 0 0 1
2 0 1

2 0 −1
2 0 −1

2

φ̄4 0 0 0 −1
2 0 1

2 0 1
2 0 −1

2

β1 1 0 0 0 0 0 0 0 0 0
β2 0 1 0 0 0 0 0 0 0 0

Table 1. The non-compact generators of the SO(1, 1)2 × SU(1, 1)4 ⊂ E6(6) algebra in the 27 that
are associated with the ten scalar truncation can be obtained from this table and (A.2), (A.3).

These barred scalar fields are non-linearly related to the unbarred scalar fields that we
use in (2.2), however they do agree at linear order. It is straightforward to demonstrate
that the generators associated with this truncation generate SO(1, 1)2× SU(1, 1)4 ⊂ E6(6).
Specifically, if we let B(1), B(2) each generate an SO(1, 1), and S

(A)
1,2,3 for A = 1, 2, 3, 4

generate four commuting copies of SU(1, 1) satisfying[
S

(A)
1 , S

(A)
2

]
= 2S(A)

3 ,
[
S

(A)
1 , S

(A)
3

]
= 2S(A)

2 ,
[
S

(A)
2 , S

(A)
3

]
= −2S(A)

1 , (A.4)

then we can explicitly identify the generators using table 1.
The ten scalar fields which are retained in the truncated theory parametrise the coset

SO(1, 1)2 × [SU(1, 1)/U(1)]4. It is convenient to parametrise this coset in terms of two
real scalars β1,2 and four complex scalars zA, which are functions of the remaining scalars
{ᾱ1, ᾱ2, ᾱ3, φ̄1, φ̄2, φ̄3, φ̄4, ϕ̄}, with the zA transforming linearly under the U(1) ⊂ SU(1, 1).
To do this we first move to a basis for each of the SU(1, 1) algebras with definite U(1)
charge, by defining the generators

E(A) = 1
2
(
S

(A)
1 + iS

(A)
2

)
, and F (A) = 1

2
(
S

(A)
1 − iS(A)

2

)
. (A.5)

The desired parametrisation of the coset is then given by

V = eβ1B(1)+β2B(2) ·
∏
a

es(|z
A|)(zAE(A)+z̄AF (A)) , (A.6)

where
s(|zA|) = 1

|zA|
arcsech

√
1− |zA|2. (A.7)

We will work with right cosets, in which V transforms from the left under global elements
of SO(1, 1)2×SU(1, 1)4 and from the right under local U(1)4 rotations. The U(1)4 invariant
tensor defined by

M = V · V† , (A.8)
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can then be used to construct the kinetic terms for the scalar fields of the D = 5 10-scalar
model via

L(k)
10 = 1

96tr
(
∂µM∂µM−1

)
, (A.9)

as given in (2.4). It will also play a distinguished role in the uplift of this model to ten
dimensions as we discuss below.

The scalar potential P of the 10-scalar model appearing in (2.4) can be obtained from
this coset representative using the general results for the form of the scalar potential in
the SO(6) gauged supergravity given in [37]. To do this, and following [37], it is helpful to
change to a basis adapted to USp(8) ⊂ E6(6) using the antisymmetric hermitian gamma
matrices of Cliff(7). An explicit representation is provided by the set of 8 × 8 matrices
(Γ0,ΓI) given by

Γ0 = −σ2 ⊗ σ3 ⊗ σ3 , Γ1 = σ1 ⊗ σ1 ⊗ σ2 ,

Γ2 = σ3 ⊗ σ1 ⊗ σ2 , Γ3 = −σ2 ⊗ σ1 ⊗ 1 ,
Γ4 = 1⊗ σ2 ⊗ 1 , Γ5 = σ2 ⊗ σ3 ⊗ σ1 ,

Γ6 = −1⊗ σ3 ⊗ σ2 , (A.10)

where the σ1,2,3 are Pauli matrices. From these one constructs

ΓIJ = 1
2 [ΓI ,ΓJ ] and ΓIα = (ΓI , iΓIΓ0), (A.11)

whose “spinor” indices a, b are USp(8) indices. In particular (ΓIJ)ab transforms in the 27
of USp(8), indexed by the symplectic traceless index pairs [ab]. The symplectic trace is
taken with respect to the invariant tensor

Ωab = −Ωab = −i (Γ0)ab . (A.12)

Introducing the notation

VA ab =
(
VIJ

ab, V Iαab
)
, and V =

(
UIJ

PQ UIJ,Rβ
UKα,PQ UKα Rβ

)
, (A.13)

for the coset representative in the USp(8) and SL(6)×SL(2,R) bases, respectively, one can
use (A.11) to relate the two:

VPQ
ab = 1

8

[
(ΓIJ)ab UPQ IJ + 2

(
ΓIα

)ab
UPQ,Iα

]
,

V Kαab = 1
4
√

2

[
(ΓIJ)ab UKα,IJ + 2

(
ΓIβ

)ab
UKα Iβ

]
. (A.14)

The W tensors in [37] are then given by

Wabcd = δIJεαβV
Iαa′b′V Jβc′d′Ωaa′Ωbb′Ωcc′Ωdd′ , Wab = ΩdcWcadb , (A.15)

and the scalar potential of the SO(6) gauged supergravity is

P = −g
2

32
(
2WabW

ab −WabcdW
abcd

)
, (A.16)
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where USp(8) indices are raised and lowered with the symplectic invariant (A.12) according
to the rules implicit in (A.15). After substituting (A.6), using

g = 2
L
, (A.17)

and some calculation we obtain (2.7) for the 10-scalar truncation.

A.2 The uplift to type IIB supergravity

The uplift of the bosonic sector of the maximal gauged supergravity to type IIB super-
gravity is given in [18]. The D = 10 Einstein metric can be written in the form

ds2
10 = ∆−2/3

(
ds2

5 +Gmndθmdθn
)
, (A.18)

where ds2
5 is the D = 5 metric, θm, m = 1, 2, . . . , 5, parametrise S5 and the metric Gmn and

the warp factor ∆ are defined below. The type IIB dilaton, Φ, and axion, C0, parametrise
the coset SL(2,R)/SO(2) and can be packaged in terms of a two-dimensional matrix via

mαβ =
(
eΦC0

2 + e−Φ −eΦC0
−eΦC0 eΦ

)
, (A.19)

with detm = 1. The remaining type IIB fields consist of two-form potentials (A1
(2), A

2
(2)),

which transform as an SL(2,R) doublet and from which we identify the NS-NS two-form
B(2) and the RR two-form C(2) via

B(2) = A1
(2) , C(2) = A2

(2) , (A.20)

as well as the four-form potential C(4) that is associated with the self-dual five-form flux
as in [18].

We focus on uplifting the gravity-scalar sector of the D = 5 theory for which the scalar
matrixM introduced in (A.8) plays a key role. In the SL(6)× SL(2,R) basis we can write
the components ofM and its inverseM−1 as

M =
(
MIJ,PQ MIJ

Rβ

MKα
PQ MKα,Rβ

)
, M−1 =

(
M IJ,PQ M IJ

Rβ

MKα
PQ MKα,Rβ

)
. (A.21)

We also introduce the round metric on the five-sphere, G̊mn, with inverse G̊mn. We can
write the Killing vectors of the round metric in terms of constrained coordinates Y I on S5,
satisfying Y IY I = 1, via

KIJ m = − 1
L
G̊mnY[I∂nYJ ] . (A.22)

In term of these quantities, the ten-dimensional fields of the uplifted D = 5 gravity-
scalar sector are given by

Gmn = KIJ mKPQ nM IJ,PQ ,

mαβ = (mαβ)−1 = ∆4/3YIYJM
Iα,Jβ ,

Aαmn = −LεαβGnkKkIJM IJ
Pβ∂mY

P ,

Cmnkl = L4

4

(√
G̊εmnklpG̊

pq∆4/3mαβ∂q
(
∆−4/3mαβ

)
+ ω̊mnkl

)
, (A.23)
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where dω̊ = 16volS5 . Note that the D = 10 warp factor ∆ is defined implicitly using the
fact that the axio-dilaton matrix (A.23) satisfies detm = 1.

Restricting now to the 10-scalar model, we can illustrate the above formulae by writing
down the components of the axion and dliaton matrix:

∆−4/3m11 = e2β1+2β2

(
(1+z1)(1+z̄1)(1+z4)(1+z̄4)

(1−z1z̄1)(1−z4z̄4) (Y1)2+ (1−z2)(1−z̄2)(1−z3)(1−z̄3)
(1−z2z̄2)(1−z3z̄3) (Y2)2

)
+e2β1−2β2

(
(1+z1)(1+z̄1)(1−z2)(1−z̄2)

(1−z1z̄1)(1−z2z̄2) (Y3)2+ (1−z3)(1−z̄3)(1+z4)(1+z̄4)
(1−z3z̄3)(1−z4z̄4) (Y4)2

)
+e−4β1

(
(1+z1)(1+z̄1)(1−z3)(1−z̄3)

(1−z1z̄1)(1−z3z̄3) (Y5)2+ (1−z2)(1−z̄2)(1+z4)(1+z̄4)
(1−z2z̄2)(1−z4z̄4) (Y6)2

)
(A.24)

∆−4/3m12 = e2β1+2β2

(
(z2−z̄2)(z3−z̄3)

(1−z2z̄2)(1−z3z̄3)−
(z1−z̄1)(z4−z̄4)

(1−z1z̄1)(1−z4z̄4)

)
Y1Y2

+e2β1−2β2

(
(z1−z̄1)(z2−z̄2)

(1−z1z̄1)(1−z2z̄2)−
(z3−z̄3)(z4−z̄4)

(1−z3z̄3)(1−z4z̄4)

)
Y3Y4

+e−4β1

(
(z1−z̄1)(z3−z̄3)

(1−z1z̄1)(1−z3z̄3)−
(z2−z̄2)(z4−z̄4)

(1−z2z̄2)(1−z4z̄4)

)
Y5Y6 (A.25)

∆−4/3m22 = e2β1+2β2

(
(1+z2)(1+z̄2)(1+z3)(1+z̄3)

(1−z2z̄2)(1−z3z̄3) (Y1)2+ (1−z1)(1−z̄1)(1−z4)(1−z̄4)
(1−z1z̄1)(1−z4z̄4) (Y2)2

)
+e2β1−2β2

(
(1+z3)(1+z̄3)(1−z4)(1−z̄4)

(1−z3z̄3)(1−z4z̄4) (Y3)2+ (1−z1)(1−z̄1)(1+z2)(1+z̄2)
(1−z1z̄1)(1−z2z̄2) (Y4)2

)
+e−4β1

(
(1+z2)(1+z̄2)(1−z4)(1−z̄4)

(1−z2z̄2)(1−z4z̄4) (Y5)2+ (1−z1)(1−z̄1)(1+z3)(1+z̄3)
(1−z1z̄1)(1−z3z̄3) (Y6)2

)
(A.26)

There are a number of additional sub-truncations of the 10-scalar model as summarised
in figure 2. In this paper we are particularly interested in the SO(3) invariant 4-scalar model
as well as the SU(2) invariant 5-scalar model and their sub-truncations.

A.2.1 The SO(3) invariant 4-scalar model

This truncation is obtained from the 10-scalar model by taking β1 = β2 = 0 and z4 =
−z3 = −z2. The truncation is invariant under SO(3) ⊂ SU(3) ⊂ SO(6). Similar to [38] a
useful parametrisation of the five-sphere adapted to this isometry is given byY

1 + iY 2

Y 3 + iY 4

Y 5 + iY 6

 = eiα cosχR

1
0
0

+ ieiα sinχR

0
1
0

 . (A.27)

Here 0 ≤ α ≤ 2π, 0 ≤ χ ≤ π/4, R = eξ1g1eωg2eξ2g1 is an SO(3) rotation matrix
parametrised by three Euler angles ω, ξ1, ξ2 where g1, g2 are the 3× 3 matrices

g1 = e21 − e12 , and g2 = e31 − e13 , (A.28)

with eij having a unit in the i, j position and zeroes elsewhere. In this parametrisation,
the round metric on the five-sphere is written as a U(1) fibration over CP 2 as

dΩ̊2
5 = ds2

CP 2 + (dα− sin 2χτ3)2 , (A.29)
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where
ds2

CP 2 = dχ2 + sin2 χ τ2
1 + cos2 χ τ2

2 + cos2 2χ τ2
3 , (A.30)

and the τ1,2,3 are locally left-invariant one-forms for SO(3) given by

τ1 = − sin ξ2dω + cos ξ2 sinωdξ1 ,

τ2 = cos ξ2dω + sin ξ2 sinωdξ1 ,

τ3 = dξ2 + cosωdξ1 . (A.31)

This parametrisation of CP 2 is cohomogeneity-one with principle orbits actually given by
SO(3)/Z2 ⊂ SU(3) (rather than SO(3)). The singular orbits are an RP2 at χ = 0 and an
S2 at χ = π/4 (see e.g. [39]).

After uplifting solutions in the SO(3) invariant model, the ten dimensional metric will,
in general have non-trivial dependence on α and more general dependence on χ than that
given in (A.31) and the symmetry will be the SO(3)/Z2 associated with the τi. For the
further truncation to the SU(3) invariant model in figure 2, the χ dependence will be as
in (A.30), giving rise to SU(3) symmetry associated with CP 2, but there will be non-trivial
dependence on α.

A.2.2 The SO(3)× SO(3) invariant 3-scalar model

The SO(3)× SO(3) invariant sector has three scalars, and can be obtained from the SO(3)
invariant model just discussed by setting z2 = z̄2. Specifically, we have

z1 = tanh
[1

2
(
3α1 + ϕ− 4iφ1

)]
, z2 = tanh

[1
2
(
α1 − ϕ

)]
, (A.32)

with β1 = β2 = 0. For this case we can parametrise the five-sphere using the coordinates

Y1 = cosψ sin θ cos ξ, Y3 = cosψ sin θ sin ξ, Y5 = cosψ cos θ ,
Y2 = sinψ sin θ̃ cos ξ̃, Y4 = sinψ sin θ̃ sin ξ̃, Y6 = sinψ cos θ̃ , (A.33)

with 0 ≤ θ, θ̃ ≤ π, 0 ≤ ξ, ξ̃ ≤ 2π and 0 ≤ ψ ≤ π/2. In these coordinates the round metric
on the five-sphere is given by

dΩ̊2
5 = dψ2 + cos2 ψ dΩ2

2 + sin2 ψ dΩ̃2
2 , (A.34)

with dΩ2
2 = dθ2 + sin2 θdξ2 and dΩ̃2

2 = dθ̃2 + sin2 θ̃dξ̃2. The SO(3) × SO(3) symmetry of
the gauged supergravity model is generated by the Killing vectors for each of the round
two-spheres.

For this model it will be useful to write down some additional uplifting formulae. The
D = 10 metric takes the form

ds2
10 = ∆−2/3

[
ds2

5+L2
(
dψ2+ dΩ2

2
e4α1 sec4φ1+tan2ψ

+ dΩ̃2
2

e−4α1 sec4φ1+cot2ψ

)]
, (A.35)
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with the D = 10 warp factor given below. The axion-dilaton matrix is diagonal with

m11 = ∆4/3
[
cos2 ψ

(1 + z1)(1 + z̄1)(1− z2)2

(1− |z1|2)(1− (z2)2)
+ sin2 ψ

(1− z2)4

(1− (z2)2)2

]
,

= ∆4/3
[
e2ϕ−2α1 sin2 ψ + e2α1+2ϕ sec 4φ1 cos2 ψ

]
,

m22 = ∆4/3
[
sin2 ψ

(1− z1)(1− z̄1)(1 + z2)2

(1− |z1|2)(1− (z2)2)
+ cos2 ψ

(1 + z2)4

(1− (z2)2)2

]
,

= ∆4/3
[
e−2ϕ−2α1 sec 4φ1 sin2 ψ + e2α1−2ϕ cos2 ψ

]
, (A.36)

and m12 = m21 = 0, where the D = 10 warp factor is given by

∆4/3 = e2α1 sec2 ψ√(
e4α1 sec 4φ1 + tan2 ψ

) (
e4α1 + tan2 ψ sec 4φ1

) . (A.37)

Thus, we have vanishing axion, C0 = 0, and eΦ = m11.
The NS-NS and R-R two-forms are found to be

B(2) = L2 i sin3 ψ (z2 − 1)(z1 − z̄1)
Π1

volS̃2 ,

C(2) = −L2 i cos3 ψ (z2 + 1)(z1 − z̄1)
Π2

volS2 , (A.38)

where

Π1 = z1
[
(z2 − 1) sin2 ψ − z̄1(z2 + cos 2ψ)

]
+ z2 cos 2ψ + z̄1(z2 − 1) sin2 ψ + 1 ,

Π2 = z1
[
(z2 + 1) cos2 ψ + z̄1(z2 + cos 2ψ)

]
+ z2 cos 2ψ + z̄1(z2 + 1) cos2 ψ + 1 , (A.39)

and volS2 = sin θ dθ ∧ dξ, volS̃2 = sin θ̃ dθ̃ ∧ dξ̃. Finally, the four-form potential is given by

C(4) = L4

4 ω̂ − L4

8 sin3 2ψ
(

z1(z2 + 2z̄1 − 2) + z2(z̄1 − 4)− 2z̄1

−3Π1 −Π2 + z1(1 + z2 − z̄1z2) + (z2 + 1)z̄1 − 4

+ z1(z2 + 2z̄1 + 2) + z2(z̄1 + 4) + 2z̄1

Π1 + 3Π2 − z1z2(z̄1 + 1) + z1 − z2z̄1 + z̄1 + 4

)
volS2 ∧ volS̃2 , (A.40)

where the four-form ω̂ is given by

ω̂ =
(

2ψ − 1
2 sin 4ψ

)
volS2 ∧ volS̃2 , (A.41)

and satisfies dω̂ = 16volS5 , where the volume form is with respect to the round
metric (A.34).

A.2.3 The SU(2) invariant 5-scalar model

This truncation is obtained from the 10-scalar model by taking β2 = 0, z4 = −z2 and
z3 = −z1. The resulting truncation is invariant under SU(2) ⊂ SU(3) ⊂ SO(6). To
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parametrise the five-sphere so that this symmetry is manifest, similar to [10] one can define

Y 1 + iY 2 = e
i
2 (ξ1+ξ2) sin ρ cos(ω/2) ,

Y 3 + iY 4 = e
i
2 (−ξ1+ξ2) sin ρ sin(ω/2) ,

Y 5 + iY 6 = eiα cos ρ , (A.42)

with ω, ξ1, ξ2 Euler angles of SU(2) with

0 ≤ ω ≤ π, 0 ≤ ξ1 ≤ 2π, 0 ≤ ξ2 < 4π , (A.43)

and 0 ≤ ρ ≤ π/2, 0 ≤ α ≤ 2π. In these coordinates the metric on the round sphere takes
the form

dΩ̊2
5 = dρ2 + cos2 ρdα2 + 1

4 sin2 ρ
(
τ2

1 + τ2
2 + τ2

3

)
, (A.44)

where the τi are SU(2) left-invariant forms given in (A.31). The SU(2) symmetry then
corresponds to the Killing vector fields associated with the SU(2) action. In general ∂α
will not be a Killing vector of the uplifted solutions of the SU(2) invariant 5-scalar model
and furthermore, the coefficients of the τi will differ from that of (A.44).

We can also write ξ2 = 2α+ γ so that

Y 1 + iY 2 = eiα+ i
2 ξ1+ i

2γ sin ρ cos(ω/2) ,

Y 3 + iY 4 = eiα−
i
2 ξ1+ i

2γ sin ρ sin(ω/2) ,
Y 5 + iY 6 = eiα cos ρ . (A.45)

We then have

dΩ̊2
5 = ds2

CP 2 +
(

dα+ 1
2 sin2 ρτ3

)2
, (A.46)

where
ds2

CP 2 = dρ2 + 1
4 sin2 ρ(τ̃2

1 + τ̃2
2 ) + 1

16 sin2 2ρ τ̃2
3 , (A.47)

and the τ̃1,2,3 are left-invariant one-forms for SU(2)

τ̃1 = − sin γdω + cos γ sinωdξ1 ,

τ̃2 = cos γdω + sin γ sinωdξ1 ,

τ̃3 = dγ + cosωdξ1 . (A.48)

For the uplift of the SU(2) invariant 5-scalar model, the metric will in general depend on α
and moreover the extra U(1) associated with rotating τ̃1 into τ̃2 that is manifest in (A.47)
will no longer be present. Moving to the SU(3) truncation in figure 2 the uplifted metric
will have a CP 2 factor, as in (A.47), giving rise to the SU(3) symmetry but there will be
dependence on α, in general. Moving instead to the SU(2) × U(1) invariant truncation in
figure 2 the uplifted metric will in general have dependence on α, and the U(1) associated
with rotating τ̃1 into τ̃2 that is manifest in (A.47) will be present.
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A.3 The SL(2,R) action in five and ten dimensions

Both the D = 5 maximal gauged supergravity and the type IIB supergravity are invariant
under global SL(2,R) transformations. Focussing on the gravity and scalar sector of the
D = 5 theory the relationship between the two SL(2,R) transformations can be made
explicit using uplift formulae in (A.23).

Consider first the D = 5 theory in which the SL(2,R) ⊂ E6(6) can be generated by the
X of (A.1) with Λα β a linear combination of the three matrices

(
Λi
)
α
β given by(

Λ1
)
α

β = (σ1)αβ ,
(
Λ2
)
α

β = (σ3)αβ ,
(
Λ3
)
α

β = (−iσ2)αβ , (A.49)

Explicitly, in terms of the 27 dimensional representation the SL(2,R) generators are thus

Xi
∣∣
SL(2,R) =



015×15 (
Λi
)
α
β (

Λi
)
α
β (

Λi
)
α
β (

Λi
)
α
β (

Λi
)
α
β (

Λi
)
α
β


. (A.50)

A finite SL(2,R) transformation in the D = 5 theory, using the ith generator, can then
be written Si(5) = ecX

i|SL(2,R) where c is constant. This transformation acts on the scalar
matrixM given in (A.8) via

M→M′ = Si(5) · M · S
i
(5)

T . (A.51)

From this one can infer the corresponding transformation of the scalars parametrising the
coset which, in general, is non-linear. For the specific case of the transformation associated
with the i = 3 generator, one finds the following action on the ten-scalar model:

β1 → β1 , β2 → β2 ,

z1 →
z1 + tanh c

2
1 + tanh c

2z
1 , z2 →

z2 − tanh c
2

1− tanh c
2z

2 ,

z3 →
z3 − tanh c

2
1− tanh c

2z
3 , z4 →

z4 + tanh c
2

1 + tanh c
2z

4 . (A.52)

From (2.2) one can conclude that this transformation is equivalent to a simple shift in the
five dimensional field ϕ → ϕ + c. Also note that the SL(2,R) transformations associated
with the i = 1, 3 generators take us outside the 10-scalar truncation and will not play a
role in this paper.

We now turn to the SL(2,R) action in D = 10. From (A.23) we can conclude that the
D = 5 transformation by the element Si(5) is equivalent to a transformation by

Si(10) = ec(Λi)
α
β

, (A.53)
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in the D = 10 theory. For example, and of most interest, the transformation associated
with the i = 2 generator gives rise to

m−1 → m′ −1 = S2
(10) ·m

−1 · S2
(10)

T . (A.54)

This transformation is equivalent to

mαβ → m′αβ =
(
e−2cm11 m12
m12 e2cm22

)
, (A.55)

and translates, in turn, into the following simple transformation of the D = 10 dilaton and
axion:

Φ→ Φ + 2c and C0 → e−2cC0 . (A.56)

The transformation by S2
(10) plays a key role for our solutions, as it allows one to S-fold the

D = 5 solutions, as we discuss in the text (note that we call this transformation simply S
in (3.18)).

In checking that the S-fold procedure we employ does not break supersymmetry it is
also useful to see how an S2

(5) ∈ SL(2,R) transformation acts on the D = 5 supersymmetry
parameters. A transformation by any element of the E6(6) global symmetry group is asso-
ciated with a local compensating USp(8) transformation, H, which acts on the fermions.
For the action of S2

(5) we find that H ∈ U(1)4 ⊂ USp(8), in the fundamental representation,
is explicitly given by

H =



k1+k̄1
2 0 0 0 k̄1−k1

2 0 0 0
0 k2+k̄2

2 0 0 0 k̄2−k2
2 0 0

0 0 k3+k̄3
2 0 0 0 k̄3−k3

2 0
0 0 0 k4+k̄4

2 0 0 0 k̄4−k4
2

k̄1−k1
2 0 0 0 k1+k̄1

2 0 0 0
0 k̄2−k2

2 0 0 0 k2+k̄2
2 0 0

0 0 k̄3−k3
2 0 0 0 k3+k̄3

2 0
0 0 0 k̄4−k4

2 0 0 0 k4+k̄4
2


(A.57)

with

k1 =
(
g1g2g3g4
ḡ1ḡ2ḡ3ḡ4

)1/4
, k2 =

(
ḡ1g2ḡ3g4
g1ḡ2g3ḡ4

)1/4
,

k3 =
(
ḡ1ḡ2g3g4
g1g2ḡ3ḡ4

)1/4
, k4 =

(
g1ḡ2ḡ3g4
ḡ1g2g3ḡ4

)1/4
, (A.58)

and

g1 = 1 + tanh (c/2) z1, g2 = 1− tanh (c/2) z2 ,

g3 = 1− tanh (c/2) z3, g4 = 1 + tanh (c/2) z4 . (A.59)

The action on the supersymmetry parameters ε can be seen by diagonalising the W -tensor
Wab of D = 5 gauged supergravity (A.15) and restricting εa to lie within the space spanned

– 40 –



J
H
E
P
0
5
(
2
0
2
1
)
2
2
2

by the eigenvectors of Wab with eigenvalues eK/2W (1st) and eK/2W (5th). In this basis
the USp(8) transformation is found to be

Ĥ = diag
(
k1, k2, k3, k4, k̄1, k̄2, k̄3, k̄4

)
. (A.60)

The dilaton shift action can also be seen as a Kähler transformation acting in the
D = 5 theory, as noted in [15]. Under ϕ→ ϕ+ c we have K → K+ f + f̄ and W → e−fW
with f = f(zA) given by

ef = cosh4(c/2)g1g2g3g4 . (A.61)

Under this transformation the preserved supersymmetries of the BPS equations transform
as ε1 → e(f−f̄)/4ε1 and ε2 → e−(f−f̄)/4ε2 i.e. ε1 → k1ε1 and ε2 → k̄1ε2. This shows that
the dilaton shift is realised by an SL(2,R) transformation that is also acting as an SL(2,R)
transformation on the preserved supersymmetries. This allows us to conclude that the
S-folding procedure will preserve the supersymmetry of the D = 5 solutions as noted in
the text.

A.4 The N = 4 one-sided Janus solution in type IIB

Here we show that the one-sided Janus solution (6.1), after being uplifted to D = 10, can
be cast into the form of the general AdS4 solutions of type IIB which preserve N = 4
supersymmetry [19, 20].

In [19, 20] they consider the type IIB Einstein metric written in the form

ds2 = f2
4 ds2

AdS4 + f2
1 dΩ2

2 + f2
2 dΩ̃2

2 + ds2(Σ) , (A.62)

where ds2(Σ) is the metric on a Riemann surface. Introducing a complex coordinate w on
Σ we write

ds2(Σ) = 4ρ2dwdw̄ , (A.63)

where ρ as well as f1, f2, f4 are functions of w, w̄. To specify a solution in the language
of [19], it is sufficient to provide two harmonic functions on the Riemann surface, h1, h2.
To do so, as in [40], one can introduce the real functions

W ≡ ∂wh1∂w̄h2 + ∂wh2∂w̄h1 ,

N1 ≡ 2h1h2 |∂wh1|2 − h2
1W ,

N2 ≡ 2h1h2 |∂wh2|2 − h2
2W . (A.64)

Then, for example, the D = 10 dilaton Φ is given by

e2Φ = N2
N1

, (A.65)

while the metric functions have the form

ρ8 = W 2

h4
1h

4
2
N1N2 , f2

1 = 2e
Φ
2 h2

1

√
−W
N1

,

f2
2 = 2e−

Φ
2 h2

2

√
−W
N2

, f2
4 = 2e−

Φ
2

√
−N2
W

. (A.66)
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To connect with the uplifted one sided Janus solution (6.1) we take the Riemann
surface to be an infinite strip and write

w = r̄

L
+ iψ , (A.67)

with −∞ < r̄ <∞ and ψ ∈ [0, π/2]. We then take the harmonic functions to be

h1 = −ie
−ϕ(s)L2

2
√

2
(sinhw − sinh w̄) = e−ϕ(s)L2

√
2

cosh r̄

L
sinψ ,

h2 = eϕ(s)L2

4
√

2

(
ew + ew̄

)
= eϕ(s)L2

2
√

2
er̄/L cosψ , (A.68)

and hence

W = −L
4

16 sin 2ψ ,

N1 = e−2ϕ(s)L8

256 sin 2ψ
(
1 + e−2r̄/L

) (
2 + 2e2r̄/L cos2 ψ + e4r̄/L − cos 2ψ

)
,

N2 = e2ϕ(s)L8

256 e2r̄/L sin 2ψ
(
2 + e2r̄/L + cos 2ψ

)
. (A.69)

With a little effort we can show that this agrees with the uplift of (6.1) after using the
results14 in section A.2.2. For example, in both cases the D = 10 dilaton is given by

e2Φ =
e4ϕ(s)e4r̄/L

(
2 + e2r̄/L + cos 2ψ

)
(
1 + e2r̄/L) (2 + 2e2r̄/L cos2 ψ + e4r̄/L − cos 2ψ

) . (A.70)

Notice that as r̄ → ∞, where the solution approaches the AdS5 vacuum, we have e2Φ →
e4ϕ(s) while as r̄ → −∞ we have e2Φ → 0.

B Holographic renormalisation

The holographic renormalisation for the 10-scalar truncation was discussed in detail in [15]
(see also the closely related discussion in [16]). The counter term action required to remove
all divergences was given in (B.7) of [15]. In addition a set of finite counter terms was given
in (B.8) of [15], invariant under the discrete symmetries (2.8)–(2.10), which depends on 14
constant “δ-coefficients” (in particular it was assumed that they are independent of sources
for ϕ). By analysing the conditions for configurations preserving ISO(2, 1) symmetry to
have a local energy density that is a total spatial derivative, it was shown, in the notation
of [15] that

δ4(1) = −1
4 + 2δβ , δ4(3) = 3

4 + 2δβ , δ∂φ2(1) = 2δα . (B.1)

14In fact to get an exact match with the metric and also for the two-form and four-form potentials
in (A.33) we should relabel θ̃ → π − θ, ξ̃ → ξ + π as well as θ → θ̃, ξ → ξ̃, so that dΩ2 ↔ dΩ̃2 and
volS̃2 → −volS2 and volS2 → volS̃2 .
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The finite counter terms combined with this condition are consistent with a renormalisation
scheme preserving N = 1 supersymmetry of the d = 4 boundary theory.

It is of interest to determine a scheme that is consistent with the full N = 4 super-
symmetry of the boundary theory. While the full analysis is left for future work, here
we make a simple observation that further constrains the δ-coefficients. The finite coun-
terterms considered above are invariant under the discrete symmetries (2.8)–(2.10) which
preserve the superpotential and hence preserve the supercharge associated with the N = 1
supersymmetry that is being considered in the BPS equations. One can check that the
action is also invariant under the additional discrete symmetries

z1 ↔ z̄4, z2 ↔ z3; ⇔ φ1 ↔ φ4, φ2 ↔ φ3, (α2, α3)→ −(α2, α3) ,
z1 ↔ −z̄2, z3 ↔ −z4; ⇔ φ2 ↔ φ4, φ1 ↔ φ3, (α1, α3)→ −(α1, α3) ,
z1 ↔ −z̄3, z2 ↔ −z4; ⇔ φ3 ↔ φ4, φ1 ↔ φ2, (α1, α2)→ −(α1, α2) . (B.2)

These symmetries do not preserve the BPS equations but instead transform the super-
charges into each other; they are the generalisation of (3.3) of [41] to include the αi scalars.
For a scheme preserving N = 4 supersymmetry we should therefore impose that the finite
counterterms are also invariant under these discrete symmetries and hence we should also
impose in (B.8) of [15]:

δ4(2) = δ4(1), δ4(4) = δ4(3), δ∂φ2(2) = δ∂φ2(1), δRφ2(2) = δRφ2(1) . (B.3)

To illustrate the impact of these conditions, we now consider the equal mass, N = 1∗

SO(3) invariant truncation which depends on four scalars φ1 = φ2 = φ3, φ4, α1 = α2 = α3
and ϕ, with β1 = β2 = 0. With a D = 5 metric of the form

ds2 = e2A(r̄,x)(dt2 − dy2
1 − dy2

2)− e2V (r̄,x)dx2 − dr̄2 , (B.4)

with all scalar fields functions of (r̄, x) only, we can use the schematic expansion as we
approach the boundary at r̄ →∞:

A = r̄

L
+ Ω + · · ·+A(v)e

−4r̄/L + · · · ,

V = r̄

L
+ Ω + f + · · ·+ V(v)e

−4r̄/L + · · · ,

φ2 = φ3 = φ1 = φ1,(s)e
−r̄/L + · · ·+ φ1,(v)e

−3r̄/L + · · · ,

φ4 = φ4,(s)e
−r̄/L + · · ·+ φ4,(v)e

−3r̄/L + · · · ,

α2 = α3 = α1 = α1,(s)
r̄

L
e−2r̄/L + α1,(v)e

−2r̄/L + · · · ,

ϕ = ϕ(s) + · · ·+ ϕ(v)e
−4r̄/L + · · · , (B.5)

where φ1,(s), φ4,(s), α1,(s), ϕ(s) determine the source terms for the scalar operators in (2.3)
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and, as in [15], we focus on ϕ(s) = 0. Now using (B.1) and (B.3) in (B.37) of [15] we obtain15

〈Oα1〉 = 〈Oα2〉 = 〈Oα3〉 = 1
4πGL

(
α1,(v) − 2δαα1,(s)

)
,

〈Oφ1〉 = 〈Oφ2〉 = 〈Oφ3〉 = 1
2πGL

(
φ1,(v) + 5

6φ
3
1,(s) −

9− 2δ4(5)
3 φ2

1,(s)φ4,(s)

− 1 + 16δβ
6 φ1,(s)φ

2
4,(s) + L2

4 (1 + 4δα)�φ1,(s) −
L2

24 (1 + 2δRφ2(1))Rφ1,(s)

)
,

〈Oφ4〉 = 1
2πGL

(
φ4,(v) −

9− 2δ4(5)
3 φ3

1,(s) −
1 + 16δβ

2 φ2
1,(s)φ4,(s) + 7 + 32δβ

6 φ3
4,(s)

+ L2

4 (1 + 4δα)�φ4,(s) −
L2

24 (1 + 2δRφ2(1))Rφ4,(s)

)
,

〈Oϕ〉 = 1
πGL

(
ϕ(v) −

3
4(α1,(s) − 4α1,(v))(φ2

1,(s) − φ1,(s)φ4,(s))
)
. (B.6)

We now consider the further truncation to the SO(3)×SO(3) invariant truncation which
depends on three scalars φ1 = φ2 = φ3 = −φ4, α1 = α2 = α3 and ϕ. Correspondingly we
should set φ4,(s) = −φ1,(s), φ4(v) = −φ1(v) and then (B.6) becomes

〈Oα1〉 = 〈Oα2〉 = 〈Oα3〉 = 1
4πGL

(
α1,(v) − 2δαα1,(s)

)
,

〈Oφ1〉 = 〈Oφ2〉 = 〈Oφ3〉 = −〈Oφ4〉 = 1
2πGL

(
φ1,(v) +

11− 2δ4(5) − 8δβ
3 φ3

1,(s)

+ L2

4 (1 + 4δα)�φ1,(s) −
L2

24 (1 + 2δRφ2(1))Rφ1,(s)

)
,

〈Oϕ〉 = 1
πGL

(
ϕ(v) −

3
2(α1,(s) − 4α1,(v))φ2

1,(s)

)
. (B.7)

We emphasise that if we had not imposed (B.3), then we would not have obtained the
equality 〈Oφ1〉 = 〈Oφ2〉 = 〈Oφ3〉 = −〈Oφ4〉.

This refinement of the RG scheme does not play a direct role for the one point functions
in section 6.1 since the source terms for the scalars all vanish (after a possible shift of the
dilaton). However, it does impact upon other observables. We also note here that to get
the expectation values as given in (6.3), one should follow the discussion in section C.3
of [15].

15Note that we have corrected a typo in (B.37) of [15]: the sign of the third term on the right hand side
of 〈Oφ4〉 should be + and not -.
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