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ABSTRACT: Imogolite nanotubes (INTs) display a range of
useful properties and provide an ideal material system to study the
assembly of nanomaterials into macroscopic fibers. A method of
wet spinning pure, binder-free imogolite fibers has been developed
using double-walled germanium imogolite nanotubes. The nano-
tube aspect ratio can be controlled during the initial synthesis and
is critical to the spinning process. Fibers made from short
nanotubes (<100 nm) have very low gel strengths, while dopes
with longer nanotubes (500−1000 nm) are readily spinnable. The
tensile behavior of the resulting imogolite nanotube fibers is
strongly influenced by relative humidity (RH), with a modulus of
30 GPa at 10% RH compared to 2.8 GPa at 85% RH, as well as a
change in failure mode. This result highlights the importance of inter-nanotube interactions in such assemblies and provides a useful
strategy for further exploration. Interestingly, in the absence of a matrix phase, a degree of misorientation appears to improve load
transfer between the individual INTs within the porous fiber, likely due to an increase in the number of interparticle contacts.
Imogolite nanotubes are an appealing analogue to other nanotube fiber systems, and it is hoped that learnings from this system can
also be used to improve carbon nanotube fibers.
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■ INTRODUCTION

Nanotubes and nanorods are promising candidates for
producing high-performance fibers due to their excellent
intrinsic mechanical properties and compatible one-dimen-
sional morphology. However, the mechanical properties of
macroscale fibers are typically significantly lower than those of
the constituent nanomaterials due to a combination of
processing challenges and weak intermolecular interactions.
To date, most studies have focused on carbon nanotube
(CNT)-based fibers, using both dry and wet spinning
methods;1−4 fiber properties have typically been improved by
increasing the aspect ratio and alignment of the nanotubes.
CNT processing has proven to be particularly challenging
given their poor solubility in convenient solvents and tendency
to agglomerate. Understanding and optimizing these spinning
processes are generally hindered by the difficulty in measuring
CNT orientation within the fibers. Strong light absorbance
limits the use of optical methods, while polydispersity, irregular
packing, and weak scattering make it challenging to study
single filament samples with X-rays efficiently.5

Imogolite nanotubes (INTs) are an appealing analogue for
CNTs due to their monodisperse diameter and spontaneous
dispersion in deionized water, which enables simple solution
processing.6 The archetypal INT is single-walled and
comprises a curved outer gibbsite Al(OH)3 sheet with isolated
O3SiOH tetrahedra located inside.7,8 However, a variety of
INTs can be synthesized via sol−gel methods using different

precursors, particularly ones with Ge substituting for Si,9 in
either a double-walled or single-walled form.10,11 Similarly to
solutions of CNT polyelectrolytes,12−14 INTs form liquid
crystalline mesophases, which can be reoriented either by
electrical or flow fields,15,16 potentially leading to highly
aligned fibers. In contrast to CNTs, INT solutions are optically
transparent, which greatly aids the use of polarized optical
microscopy (POM) in their characterization. Additionally, Al
and Ge atoms have much greater X-ray scattering cross
sections than carbon atoms, which facilitates the use of lab-
source X-rays for studying the structure of both dispersions
and macroscale fiber assemblies. The hydrophilicity of INTs
also enables the tuning of nanotube interactions by varying
humidity. INTs have been shown to adsorb up to 80% of their
weight in water at 95% relative humidity (RH)17 with the
water adsorbed in the internal cavity, interstitially between the
walls of double-walled nanotubes and crucially on the outer
surface.18 In principle, by varying the humidity, the strength of
inter-nanotube hydrogen bonding should be modified,
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enabling the influence of shear interactions on the mechanical
properties of nanotube-based fibers to be studied.19,20

In addition to their appeal as a model system, INTs are
increasingly of interest in their own right, with potential
applications in molecular filtration, catalysis, and molecular
transport and release.6 While INTs have lower absolute
mechanical properties than CNTs, the strength and stiffness
are still significant, with a predicted elastic modulus between
100 and 400 GPa.21−24 More generally, they have comple-
mentary properties to CNTs in electrical conductivity, color,
and hydrophilicity. Nanocomposites and hybrid films of INTs
with polymers and biomaterials have previously been
produced,25−27 and recently, continuous INT-polyvinyl alcohol
composite fibers have been prepared that show a degree of self-
healing at remarkably high absolute strengths.28 However, as
yet, no macroscale fibers have been reported from pure INTs.
This study, therefore, investigates the possibility of using wet
spinning to create pure, binder-free imogolite nanotube fibers
and explores the effects of nanotube length, alignment, and
hydration on fiber processability and mechanical properties.

■ SYNTHESIS OF DW GE-INTS
It is challenging to spin fibers from nanomaterials such as
CNTs and nanocellulose if the aspect ratio is too low.29,30

Therefore, in order to enhance the spinnability in this work,
the INT synthesis was developed to provide high-aspect-ratio
feedstocks. Compared to the conventional synthesis route
using sodium hydroxide,31 the in situ production of hydroxyl
ions by thermal decomposition of urea produces significantly
longer double-walled germanium imogolite nanotubes (DW
Ge-INTs) after 5 days of reaction; the nanotube inner and
outer diameters remain consistently 1.6 and 4.3 nm,
respectively.32 Although several studies have been devoted to
the mechanisms of nanotube growth during synthesis,33,34 the
effect of long reaction times (>5 days) remains largely
unexplored. In this work, the aging time of the nanotube
synthesis was varied from 5 to 40 days (feedstocks INT-5d,
INT-12d, INT-20d, etc.) to create spinning dopes with an
expected further increase in length. The length distribution of
each INT feedstock was determined by measuring the length
of at least 200 nanotubes over several TEM images (Figure 1).
INT-5d is dominated by short nanotubes (<100 nm). With

further incubation, these nanotubes were consumed to

produce a bimodal distribution with average lengths centered
at 150 and 600 nm. Beyond 20 days of incubation, little further
change to the distribution was identified. Oriented attachment
(OA) of formed nanotubes has previously been proposed as a
key mechanism of INT growth after consumption of the initial
precursors and topological rearrangment of proto-imogolite
nanostructures.33,35 However, this growth mechanism is
expected to occur extremely slowly at larger nanotube lengths
due to the L−4 dependency of tip−tip collision frequency,
explaining the lack of meaningful further growth after 20
days.36 IR spectroscopy indicates no significant difference in
the chemical bonding within the INTs for the different
reaction periods (Figure S1).

■ SPINNING DW GE-INT FIBERS
Binder-free imogolite fibers were spun by injecting an aqueous
spinning dope solution of DW Ge-INTs (9 g/L) through a
needle into a coagulation bath of calcium chloride in water
(300 g/L). The spinning dopes exhibited strong birefringence
(Figure S2), indicative of an ordered mesophase observed
previously in both carbon and imogolite nanotube disper-
sions,16,37,38 which should be ideal for liquid crystalline wet
spinning. The high ionic strength of the coagulant (I = 8.1 M)
enabled the quick gelation of the spinning dope. At slow
injection rates, a transparent gel monolith formed at the tip of
the needle. Increasing the injection velocity led to the
formation of a gel-like protofiber that could be manipulated
and then collected on a winding wheel to provide drawing
during the spinning process (Supplementary Movie 1). The
fracture strength of the protofibers, and thus their ease of
manipulation, depended strongly upon the length distribution
of the nanotube feedstock. The longer nanotube feedstocks
(12d−40d) could be easily spun, whereas frequent filament
breakage occurred with the INT-5d feedstock. It was observed
that the filament breakage consistently occurred at the
coagulant/air interface, indicating that the surface tension of
the coagulant liquid imparts sufficient force to overcome the
gel strength of the fiber. The stress in a cylindrical fiber being
withdrawn from a liquid is inversely proportional to its radius
(Figure S3). Thus, increasing the radius of the gel fiber should
reduce the probability of filament breakage. In accordance with
this theory, the INT-5d feedstock was found to be unspinnable
using a 24 gauge needle (internal diameter, ID, of 311 μm) but
spinnable using a 21 gauge needle (ID of 514 μm). The gel
strength of the INT-5d protofiber was therefore estimated to
be approximately 500 Pa. The other feedstocks, from INT-12d
to INT-40d, were successfully drawn from the coagulant
without breakage using a 27 gauge needle (ID of 210 μm),
implying a gel strength of at least 1.5 kPa. These gel strengths
are relatively low, requiring careful handling of the protofibers
before collection and drying. Polymer/INT hybrid hydrogels
typically have significantly higher fracture strengths; for
comparison, polyacrylamide hydrogels with a 5% INT loading
have been produced with a strength of 220 kPa,39 and
hyaluronic acid/INT hydrogels with 1 and 10% INT loadings
have shown strengths of 20 and 100 kPa, respectively.40 Unlike
polymers, the rigid rod INT system is held together only by
friction and jamming rather than molecular entanglement.
After washing in deionized water and drying in ambient

conditions for 48 h, the resulting INT fibers were robust and
readily handled with an average diameter of ∼20 μm, textured
surfaces, and irregular cross sections typical of nanomaterial
fibers41 (Figure 2a−c and Figure S4). Energy-dispersive X-ray

Figure 1. (a) Length number distributions of INT feedstocks
determined by measurements in TEM (illustrative distribution curves
have been generated with a Gaussian kernel density estimator). (b,c)
Representative TEM images of (b) INT-5d and (c) INT-40d. Scale
bars are 500 nm.
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spectroscopy indicates that the dry fibers are mostly composed
of aluminum, germanium, and oxygen with small residues of
calcium (3 at. %) and chlorine (6 at. %) remaining after the
washing procedure (Figure S4). As expected from the Ge-INT
structural formula (GeAl2O7H4), the measured atomic ratio of
aluminum to germanium was 2:1. Although it is challenging to
image the internal structure by SEM due to the low electrical
conductivity and small INT diameter, the fiber microstructure
appears uniform with no evidence of a skin-core texture. The
packing density of the fibers can be estimated from the dope
concentration, needle area, draw ratio, fiber cross-sectional
area, and density of a DW Ge-INT (Supplementary Note 1).
This estimate yields packing densities of around 45−55%,
similar to that of floating catalyst chemical vapor deposition
CNT fibers (∼35 to 60%)42 but lower than highly optimized
wet spun CNT fibers (∼75%).29
Polarized optical microscopy (POM) observations indicate a

strong birefringence in all fibers, with a maximum of
transmission observed with the fiber axis at 45° to the crossed
polarizers (Figure 2d,e and Figure S5). The use of a
retardation plate of 530 nm gives rise to different interference
colors depending on the orientation of the fiber relative to the
slow axis of the λ plate and shows that the nanotube axes are
aligned with the fiber axis (Figure 2f,g).
X-ray scattering (XRS) patterns were used to quantify the

orientation within the fibers (a typical example is shown in
Figure 3a); in these pure fibers, all the observed scattering

features can be attributed to the INTs. The intensity scattered
by a single nanotube is located in reciprocal planes

perpendicular to its long axis, at = πQ l
Tz
2 , where T is the

period of the nanotube atomic structure along its long axis (T
≈ 8.5 Å) and l is an integer. In these patterns, the scattering
features from the fibers are modulated angularly with the l = 0
scattering signal located on the equator of the fiber scattering
pattern and the (002) feature centered in the fiber direction,
indicating the preferred orientation of the nanotubes along the
fiber axis.28 The intensity on the l = 0 line (Figure 3b and
Figure S7) exhibits oscillations characteristic of the squared
form factor of DW Ge-INTs.32 Although the broad modulation
around 2.6 nm−1 is flattened, the lack of sharp Bragg peaks
indicates that any local structural organization is limited to
bundles of a small size.43,44 The formation of larger, more
ordered bundles is presumably hindered during the fast
coagulation process, given the relatively large size and mass
of the INTs (∼2−17 MDa), compared to typical polymer
molecules that may crystallize. The angular distribution of the l
= 0 signals is used to quantitatively determine the orientation
of nanotubes within the fibers.28,45,46 The angular distribution
of scattering intensity in reciprocal space fits well to a
Lorentzian distribution (Figure 3c and Figure S8), which,
when transformed to an orientation distribution function
(ODF) in direct space, results in a Lorentzian function to the
power 1.5.28 The Hermans order parameter, or ⟨P2⟩, is used to

Figure 2. (a) Photograph of a fiber section on a spool, (b) SEM image of a focused ion beam-milled cross section of a Au-coated dry fiber, (c) SEM
image of a Au-coated dry fiber on an Al stub, (d−g) polarized optical microscopy images for fibers from INT-20d without (d,e) and with (f,g) a
retardation plate (λ plate, 530 nm). The orientations of the polarizer and analyzer are indicated by labels p and a, respectively, while the red line
represents the slow axis of the retardation plate λ. The fiber was tilted by +/−45° with respect to the horizontal direction as indicated in the upper
right corner. Scale bars are 20 μm.

Figure 3. (a) False color X-ray scattering pattern of a dry fiber from INT-20d, (b) radial profile of scattered intensity in a sector ±30° from the
equatorial line after geometric and polarization corrections, and (c) azimuthal profile of scattered intensity at 2.6 nm−1 with a Lorentzian fit and the
value of ⟨P2⟩ calculated from the direct space ODF.
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characterize the orientation between perfectly uniaxial (⟨P2⟩ =
1) or randomly oriented (⟨P2⟩ = 0); it was calculated from the
direct space ODF as ϕ⟨ ⟩ = ⟨ ⟩ −P (3 cos 1)2

1
2

2 , where φ is the

angle between the long axis of the nanotube and the fiber. The
calculated values range from 0.49 to 0.74 for the eight fiber
samples studied by XRS (Table S1). Measurements performed
at varying positions along the length of a single fiber section
indicate that the degree of alignment is constant within each
section; the differences in the orientation between samples are
likely to arise from the manual handling of each fiber section.

■ MECHANICAL PROPERTIES OF DW GE-INT FIBERS
The mechanical properties of the pure INT fibers were
measured using a conventional single filament tensile test. The
tensile strength of dry fibers across the INT feedstocks follows
the same trend observed in their gel strengths, with a higher
strength for feedstocks INT-12d to INT-40d and a lower
strength for INT-5d. The data is quite scattered for these small
batch fibers. However, within error, the strengths and
stiffnesses of fibers produced from feedstocks INT-12d to
INT-40d were similar with an ultimate tensile strength and
elastic modulus in ambient conditions (40% RH) of
approximately 100 MPa and 10 GPa, respectively (Figure
4a). The specific properties of the fibers can be determined

using the breaking force (10−50 mN) and estimated linear
density (∼0.4 tex) with a corresponding tenacity of 0.02−0.12
N tex−1. A lower failure stress was measured for the shorter
INT-5d sample (∼60 MPa). These values are similar to other
networks of hydrophilic nanoscale elements such as cellulose
nanofibers (tensile strength of ∼10−500 MPa and elastic
modulus of ∼2−30 GPa30,47) and to carbon nanotube fibers
assembled from surfactant dispersions48 but lower than highly
optimized, denser carbon nanotube fibers spun from liquid

crystalline mesophases, which can have tensile strengths
exceeding 4 GPa. In addition to the increased intrinsic
strength and modulus, the significantly higher strengths of the
optimized CNT fibers may be due to the much larger aspect
ratio of the nanotubes. The best performing CNTs49 had an
aspect ratio of around 6700, while the INTs in this work had
an aspect ratio of ∼200. An approximately linear relationship
between the fiber tensile strength and CNT aspect ratio has
been reported previously,29 as might be expected below the
critical stress transfer length in a discontinuous nanotube
assembly.50 In this regime, the fibers fail by shear slip of
nanotubes, as illustrated by electron micrographs of fracture
surfaces showing a “finger-like” pull-out structure (Figure 4b).
This fibrillar failure, due to nanotube slip, has previously been
noticed in carbon nanotube fibers with a similar packing
density.1,51

The importance of shear interactions in determining the
fiber mechanical properties is illustrated by the effect of
humidity (Figure 5a). The modulus, in particular, is strongly
dependent upon the humidity during the test, with a modulus
of 30 GPa at 10% RH compared to 2.8 GPa at 85% RH. Due
to the strongly hydrophilic nature of both the INTs and
remnant CaCl2, increasing humidity leads to significant
adsorption of water, with the uptake reaching 150% by mass
at 90% RH (Figure 5b and Figure S6). The presence of water
is expected to modify the interactions between the surface
hydroxyl groups, leading to a reduction in both the shear
strength and shear modulus of inter-nanotube interactions,
without affecting the intrinsic INT axial properties. The 10-
fold decrease in the tensile strength and modulus with
increasing humidity therefore indicates that the fiber properties
are driven by inter-nanotube interactions, which are weakened
by incorporation of water into the fiber structure. The change
in failure mode of these INT fibers with relative humidity is
clearly shown by the fracture surfaces (Figure 5c−e). Fibers
tested at low relative humidity show a flat brittle fracture
surface. As humidity is increased, more pullout is evident, and
at high relative humidity, local necking and shear deformation
are visible. The humidity dependence is broadly reversible,
with fibers conditioned at 85% RH and then tested at 40% RH
showing similar tensile behavior to those simply conditioned at
40% (Figure S9).
In order to explore the scatter in fiber properties in more

detail, a larger number of tensile samples were tested for INT-
20d. The stress−strain curves exhibit the typical shape seen in
nanomaterial fibers. There is a short initial take-up related to
the straightening of fibers followed by an elastic region and
then plastic deformation characteristic of internanotube slip,52

indicated by a prominent “elbow” at around 25 MPa in most of
the cases (Figure 6a). Perhaps surprisingly, higher degrees of
alignment correlate strongly with a lower elastic modulus and a
higher strain-to-failure (Figure 6b,c). This result initially seems
to be counterintuitive, particularly when considering typical
short-fiber composite models, which predict increased stiffness
and strength with increased alignment.53,54

However, this trend may be explained by considering the
microstructure and load transfer within these relatively porous
fibers in the absence of any matrix. The fibers are comprised of
stiff, straight rods, which have a low interfacial shear strength.
In highly aligned fibers, the load is transferred between the
nanotubes by relatively mobile point contacts, which can slide
without arrest, leading to ductile behavior and a higher strain-
to-failure. However, in less aligned packings of high-aspect-

Figure 4. (a) Tensile strength of fibers for each feedstock (dots show
individual test results, dashes show the mean value, and boxes and
whiskers show the standard error and 90% confidence interval for the
mean) and (b) SEM image of the fracture surface of INT fibers
showing a pull-out failure. The scale bar is 1 μm.
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ratio rods, the load can also be supported by mechanical
interlocking, which occurs through a jamming transition when
the number of independent contacts per rod exceeds a critical
value of around 10.55,56 This mechanism of load transfer has
been observed in systems across a variety of length scales
including bird nests, bamboo skewers, and colloidal gels.57−59

As the number of contacts between rigid rods increases with
increased misorientation,60 it is expected that jamming occurs
more frequently in the less aligned INT fibers and leads to
more efficient stress transfer within the fiber and hence a
higher modulus. The deformation of these fibers may be
considered as analogous to the shear of granular assemblies of
frictional rigid rods. Such assemblies are modeled to undergo
extensive shear alignment in order to reduce interparticle
contact and reduce the stress required for deformation.61 As
the solid volume fraction of these models increases above 50%,
a rapid increase in the shear stress occurs due to mechanical
percolation through the formation of rigid clusters. We
propose that the INT fibers are in this mechanical percolation
regime, with a percolation threshold that increases with
alignment.62 At a constant volume fraction, within this regime,
less oriented systems are more networked. The granular
modeling also highlights the importance of friction in
determining the extent of network formation, which here
correlates with the effects of humidity on mechanical response.
The orientational dependence is more manifest in these INT

fibers than in analogous CNTs or nanocellulose fibers due to
the comparably short aspect ratio and high rigidity of the
INTs. The individual INTs are less able to bend and form the
necessary contacts for frictional load transfer and do not kink
or fibrillate in the manner of CNT and nanocellulose bundles.
The coagulation/gelation process delivers porous fibers near
the percolation threshold, and as a result, the jamming

behavior is the most important to the fiber mechanical
properties. At higher packing fractions, or with a composite
matrix,28 a more conventional increase in mechanical proper-
ties with alignment can be anticipated.

■ CONCLUSIONS

Continuous macroscopic fibers of pure imogolite nanotubes
can be prepared by lab-scale wet spinning, which, as a form of
conventional coagulation spinning, can be readily optimized
and scaled up. In the future, these binder-free fibers can be
converted into more complex macroscale constructs by
weaving, braiding, or other textile processes. They may find
applications in catalysis or molecular filtration by providing a
robust structure that enables reagent access to monodisperse
nanotubes and their nanoscale pores. In addition, once
optimized, INT fibers may be used as reinforcements in
structural composites. While the absolute performance will be
lower than that of carbon nanotube-based fibers, the improved
surface interaction with the matrix, oxidation stability, and
optical transparency may offer advantages, just as glass fibers
are often used in preference to carbon fibers in many
composite applications. The ease of fiber spinning and the
resulting fiber properties are both strongly linked to the length
distribution of the INT feedstocks. Short INTs, less than 100
nm, were challenging to spin due to the low gel strength of the
protofibers. However, longer INTs formed more robust gels, as
well as stronger and stiffer dried fibers. The formation of a
liquid crystal mesophase in the spinning dope likely
contributes to the alignment of the INTs due to shear during
spinning. However, in contrast to typical models of nanotube
yarns, fiber strengths and stiffnesses were lower for more
aligned fibers. This unusual finding can be attributed to the
relatively low aspect ratio of the INTs and their high rigidity,

Figure 5. (a) Stress−strain curves for fiber samples of INT-30d at controlled humidity, (b) dynamic vapor sorption isotherms at 25 °C showing
water uptake with relative humidity for adsorption and desorption cycles, and (c−e) optical micrographs of INT-30d fibers fractured at (c) 10, (d)
40, and (e) 85% relative humidity. Scale bars are 20 μm.

Figure 6. (a) Stress−strain curves of fiber samples from INT-20d, (b) elastic modulus, and (c) strain-at-failure as a function of the Hermans order
parameter.
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which makes them much straighter than equivalent CNTs or
biological nanofibrils and less able to bend to form contacts.
They are, therefore, much less likely to entangle or interlock in
aligned fibers. Combined with relatively low-strength intertube
interactions, which are easily disrupted by ambient water,
misorientation is needed to transfer the load across the
individual INTs within the porous fiber. Ductile failure occurs
first due to frictional sliding of the INTs followed by pullout.
The most significant factor currently affecting the mechanical
properties of these INTs fibers is the relative humidity during
tensile testing. Reducing the humidity removes the water from
the intertube space, suppressing the plasticity associated with
INT sliding. As a result, the tensile strength and modulus of
the fibers increase dramatically from 20 to 155 MPa and 2.7 to
30 GPa, respectively, when reducing humidity from 85 to 10%
RH. This result highlights the importance of controlling shear
interactions in nanomaterial fibers in general. The INT fibers
provide a useful model system in which the shear interactions
can be systematically explored through humidity. Through this
system, an optimized relationship between the aspect ratio,
alignment, and interfacial shear properties may be identified,
which can then be implemented in other, more demanding,
material systems. With further optimization of the feedstock
and spinning process, denser, stronger INT fibers may usefully
complement CNT fibers in structural and multifunctional
composites.

■ METHODS
Synthesis of DW Ge-INTs. Double-walled Ge-INTs were

synthesized using aluminum perchlorate nonahydrate (reagent
grade, Alfa Aesar), tetraethoxygermane (TEOG, ≥99.95%, Sigma-
Aldrich), and urea (>99%, Sigma-Aldrich) following the procedure
described elsewhere.32 TEOG was mixed in a PTFE beaker with an
aqueous solution of aluminum perchlorate (C = 0.2 mol L−1) and a
urea solution with a molar ratio of [Ge]:[Al]:[urea] = 1:2:2. After
mixing, the PTFE beaker was placed in an acid digestion bomb
(Zeoclave, Maximator, France) for hydrothermal treatment at 140 °C.
The solution was recovered after 5 days and then dialyzed against
ultrapure water using semipermeable membranes (Spectra/Por, cutoff
= 10 kDa) until the conductivity of the bath drops below 0.5 mS
m−1.37

Preparation of INT Fibers. INT fibers were prepared by injecting
each INT feedstock through a 21 gauge needle at 5 mL/h (linear
velocity of 6.7 mm s−1) into a coagulation bath of aqueous calcium
chloride (300 g L−1). The fibers were collected on a rotating PTFE
wheel (diameter of 100 mm and surface linear velocity of 33.5 mm
s−1) with a spin draw ratio of 5. After collection on the wheel, the
fibers were cut into 15 cm lengths and washed by dipping in deionized
water (3 × 2 s). A small tag of aluminum foil (∼20 mg) was attached
to one end of each fiber, and they were hung to dry in ambient
conditions.
Tensile Testing of INT Fibers. INT fiber samples were tested

following the standard BS ISO 11566:1996. Fiber samples were
mounted onto card frames with a gauge length of 15 mm with the
ends fixed with an epoxy adhesive (Araldite Rapid, Huntsman
Advanced Materials, Ltd., GB). The tensile tests were conducted on a
TST350 tensile stress tester (Linkam Scientific Instruments, Ltd., GB)
with a 2 N load cell and a crosshead speed of 1 mm min−1. The cross-
sectional area for each sample was determined using the observed
diameter in transmission optical microscopy.
Characterization of INT Fibers. A small portion of INT

feedstock was sampled and dried for further infrared (IR) character-
ization between KBr pressed pellets (∼1 wt % dry DW Ge-INT
powder). IR spectra were acquired in transmission mode (Nicolet
iS50) by averaging 256 scans at a resolution of 4 cm−1. Transmission
electron microscopy (TEM) was performed on highly dilute
dispersions of a feedstock (1 mg L−1) prepared in ethanol and

deposited in a carbon-coated copper grid. TEM micrographs were
recorded with a JEOL 1400 operating at 80 kV. X-ray scattering
(XRS) experiments were carried out on a rotating anode (model RU
H3R, Rigaku Corporation, JP) using Cu Kα radiation (λ = 0.154 nm)
delivered by a multilayer W/Si optics. Pieces of single fibers were
mounted on cardboard struts and placed in a beam path. Some
samples were imaged in a lab atmosphere (for which a background
due to scattering from air was subtracted), and others were imaged
using a vacuum chamber equipped with a collimator, with entrance
and exit windows made of 500 mm-thick Mylar films. The fiber was
kept perpendicular to the incident X-ray beam. Two-dimensional
patterns were recorded on a MAR345 detector (marXperts GmbH,
DE) with 150 μm pixel size. Extraction of the scattered intensity I as a
function of the scattering modulus Q (Q = 4π sin θ = λ, where 2θ is
the scattering angle) or azimuthal angle τ was performed with home-
developed software. Scanning electron microscopy (SEM) and
energy-dispersive X-ray spectroscopy (EDX) were carried out using
a JEOL 6010LA microscope on Au sputter-coated samples at an
accelerating voltage of 20 kV. Cross sections were imaged using a
Zeiss Auriga CrossBeam focused ion beam scanning electron
microscope after milling with a 30 kV Ga+ ion beam at a beam
current of 30 nA. The water sorption behavior of INT fibers was
investigated through the dynamic vapor sorption (DVS) technique
using a DVS Advantage apparatus (Surface Measurement Systems,
UK). Several strands of INT fibers (∼13 mg) were manually shaped
into a ball of sample and loaded in an aluminum pan. The moisture
sorption was analyzed over a range of preset RH conditions starting
from 0% RH and increasing to 90% RH in different RH steps at 25 °C
before decreasing to 0% RH to obtain the desorption data. The
moisture sorption measurements were recorded using DVS Analysis
Suite software.
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