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Abstract
Background: Several biologics for atopic dermatitis (AD) have demonstrated good ef-
ficacy in clinical trials, but with a substantial proportion of patients being identified as 
poor responders. This study aims to understand the pathophysiological backgrounds 
of patient variability in drug response, especially for dupilumab, and to identify prom-
ising drug targets in dupilumab poor responders.
Methods: We conducted model-based meta-analysis of recent clinical trials of AD 
biologics and developed a mathematical model that reproduces reported clinical effi-
cacies for nine biological drugs (dupilumab, lebrikizumab, tralokinumab, secukinumab, 
fezakinumab, nemolizumab, tezepelumab, GBR 830, and recombinant interferon-
gamma) by describing system-level AD pathogenesis. Using this model, we simulated 
the clinical efficacy of hypothetical therapies on virtual patients.
Results: Our model reproduced reported time courses of %improved EASI and EASI-
75 of the nine drugs. The global sensitivity analysis and model simulation indicated 
the baseline level of IL-13 could stratify dupilumab good responders. Model simula-
tion on the efficacies of hypothetical therapies revealed that simultaneous inhibition 
of IL-13 and IL-22 was effective, whereas application of the nine biologic drugs was in-
effective, for dupilumab poor responders (EASI-75 at 24 weeks: 21.6% vs. max. 1.9%).
Conclusion: Our model identified IL-13 as a potential predictive biomarker to stratify 
dupilumab good responders, and simultaneous inhibition of IL-13 and IL-22 as a prom-
ising drug therapy for dupilumab poor responders. This model will serve as a compu-
tational platform for model-informed drug development for precision medicine, as it 
allows evaluation of the effects of new potential drug targets and the mechanisms 
behind patient variability in drug response.
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1  |  INTRODUC TION

Atopic dermatitis (AD) is the most common inflammatory skin dis-
ease, whose incidence is increasing in many areas of the world, 
especially urbanized areas, with a current worldwide prevalence of 
5–25%.1 Primary symptoms of AD are relapsing pruritus and skin 
pain, impairing patients’ quality of life, for example by sleep distur-
bance and decreased work productivity especially in moderate-to-
severe cases.2 The pathogenesis of AD involves epidermal barriers 
abnormalities, dysbiosis, and heterogeneous immunological dys-
regulations3–5 characterized by a dominant Type 2 immune acti-
vation including the T helper (Th) 2 axis and, depending on the 
lesional stage and ethnicity, varying degrees of upregulation of the 
Th1, Th17, and Th22 axes. These Th cells produce inflammatory 
cytokines such as interleukin (IL)-4, IL-13, IL-17A, IL-22, and IL-31, 
all of which have been identified and investigated as therapeutic 
targets for AD.4,5

Dupilumab, a monoclonal antibody that inhibits signaling from 
IL-4 and IL-13 by blocking their common IL-4 receptor subunitα (IL-
4Rα), was approved as the first and, so far, the only AD-specific bi-
ologic in 20176 for its promising efficacy demonstrated in clinical 
trials. The high efficacy of dupilumab confirmed the clinical validity 
of IL-4 and IL-13 as therapeutic targets for AD. However, dupilumab 
treatment was not effective for a sub-population of patients; the re-
sponder rates for dupilumab remain 44–69% for Eczema Area and 
Severity Index (EASI)-75 (75% reduction in the EASI score7,8) and 36–
39% for achievement of clear or almost clear skin in Investigator's 
Global Assessment, respectively.9,10

A significant percentage of poor responders was also observed 
for investigational drugs with other mechanisms of action (MoA), 
even if their clinical efficacy was confirmed for the study population 
average. It is thus of high clinical importance to identify underlying 
pathogenesis that causes the patients’ variability in responsiveness 
to each drug and to investigate whether there are alternative drug 
targets for those poor responders.

The clinical efficacy of investigational drugs for AD has been 
evaluated in many clinical trials. Reviewing the combined results 
from the clinical trials, for example by network meta-analysis,11 
suggested hypothetical AD pathogenesis described as diagram-
matic pathways.12,13 However, such a qualitative framework does 
not account for patient stratification and for development of drugs 
that can be effective for poor responders to existing drugs, because 
underlying mechanisms for the variability in individual patients’ re-
sponsiveness cannot be evaluated. In addition, a simple correlation 
analysis between clinical efficacy and biological factors (eg, tran-
scriptome data)14–16 is not suitable to identify appropriate biomark-
ers for patient stratification, as it may detect pseudo-correlations 
rather than the actual causal relationship. Instead, a quantitative 
model-based framework that describes AD pathogenesis is required 
to identify biomarkers for patient stratification and to evaluate the 
clinical efficacy of new hypothetical therapies such as the one that 
inhibits a combination of cytokines.17

As a quantitative approach to elucidate disease pathogenesis, 
quantitative system pharmacology (QSP) has been successfully ap-
plied to enhance understanding of the pathogenesis of many inflam-
matory diseases in the context of translational drug development.18,19 

G R A P H I C A L  A B S T R A C T
We developed a mathematical model that describes system-level AD pathogenesis and reproduces reported clinical efficacies of published 
clinical trials for nine biological drugs. We simulated clinical efficacy of hypothetical therapies on virtual dupilumab poor responders. 
Simultaneous inhibition of IL-13 and IL-22 is the most effective among combinations of two cytokines, whereas inhibition of either IL-13 
or IL-22 alone is ineffective. Abbreviations: AD, atopic dermatitis; EASI, Eczema Area and Severity Index; IFN-γ, interferon-gamma; IL, 
interleukin.
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QSP uses mathematical models to describe a system-level under-
standing of pathogenesis and drug effects by integrating biological 
and pharmacological knowledge.20 For example, the QSP approach 
has been applied to evaluate the efficacy of approved and experi-
mental drugs in rheumatoid arthritis,21 the effects of a hypothetical 
drug on cytokine behaviors in Crohn's disease,22 and the relationship 
between Th1/Th2 responses and exposure levels of lipopolysaccha-
ride in asthma.23 QSP modeling can be leveraged with model-based 
meta-analysis, which integrates data from different clinical trials with 
current understanding on disease pathogenesis, to make maximal use 
of clinical efficacy data of multiple therapies with different MoA.24

In this study, we develop a QSP model that describes the re-
lationship between cytokines and AD pathogenesis using clinical 
efficacy data of nine approved or investigational biologic drugs: 
dupilumab, lebrikizumab, tralokinumab, secukinumab, fezakinumab, 
nemolizumab, tezepelumab, GBR 830, and recombinant interferon-
gamma (rIFNg). We use the model to reveal the pathophysiological 
backgrounds of dupilumab poor responders and to identify promis-
ing drug targets to treat the dupilumab poor responders.

2  |  METHODS

Our QSP model explicitly describes regulatory links between drugs, 
biological factors, and an efficacy endpoint using graphical scheme 
and ordinary differential equations (ODEs). The model development 

processes consist of (1) selecting drugs and biological factors to be 
described in the model, (2) formulating causal relationship between 
the biological factors using ODEs, (3) quantifying drug effects on the 
biological factors, and (4) tuning model parameters of the ODEs so 
that the model reproduce reference data, which were obtained from 
published clinical trials.

2.1  |  Selection of drugs and biological factors

We considered only the drugs that showed a higher (not neces-
sarily statistically significant) efficacy than placebo in a placebo-
controlled double-blinded clinical study (Table  1, the process is 
detailed in Supplementary Information (SI) Section 1, Figure  S1) 
and adopted only the highest dose of each drug. For example, we 
adopted the highest dose, 300 mg weekly, used in the Ph3 study 
for dupilumab. It allowed us to assess the maximal effects of the 
MoA and integrate the clinical data from different MoA, rather 
than investigating the relationship between pharmacokinetics and 
pharmacodynamics.

We did not consider small molecules because they can affect 
many cytokines, making it difficult to associate clinical efficacy with 
a specific cytokine in our model. For example, a Janus kinase (JAK) 
inhibitor, abrocitinib, was excluded in this study, as JAK inhibitors 
block signaling of a considerable number of cytokines and growth 
factors.

TA B L E  1  Drugs considered in this study

Drugs Targets Dose regimen (highest dose)
Available efficacy 
endpoints

#patients in placebo/
drug arm (Phase)

Dupilumab10 (anti-IL-4 receptor 
subunit α antibody)

IL-4 and IL-13 300 mg qw, s.c. +TCS EASI-75, %improved EASI
%improved SCORAD

264/270 (Ph3)

Lebrikizumab37 (anti-IL-13 antibody) IL-13 250 mg q2w, s.c. +TCS EASI-75
%improved EASI

52/75 (Ph2)

Tralokinumab38 (anti-IL-13 antibody) IL-13 300 mg q2w, s.c. +TCS EASI-75
%improved EASI

126/252 (Ph3)

Secukinumab16 (anti-IL-17A antibody) IL-17A 300 mg qw for 4 weeks, 
followed by 300 mg q4w

%improved EASI
%improved SCORAD

14/27 (Ph2)

Fezakinumab39 (anti-IL-22 antibody) IL-22 600 mg at day 0, followed by 
300 mg q2w, i.v.

%improved SCORADa  20/40 (Ph2)

Nemolizumab40 (anti-IL-31 receptor 
subunit α antibody)

IL-31 60 mg q4w, s.c. EASI-75
%improved EASI

72/143 (Ph3)

Tezepelumab41 (anti-TSLP antibody) TSLP 280 mg q2w, s.c. +TCS EASI-75
%improved EASI
%improved SCORAD

56/55 (Ph2)

GBR 83042 (anti-OX40L antibody) OX40L 10 mg/kg q4w, i.v. %improved EASI 16/46 (Ph2)

rIFNg43 IFNg 50 μg/m2 qd, s.c. +TCS % improved AD scoresb  43/40 (Ph2)

Abbreviations: +TCS, concomitant use of topical corticosteroids; i.v., intravenous administration; q2w, every 2 weeks; q4w, every 4 weeks; qd, every 
day; qw, every week; s.c., subcutaneous administration.
a%improved EASI was estimated from %improved SCORAD using a regression curve (Figure S2).
bThe mean value of the %improved AD scores was regarded as %improved EASI because the evaluated signs were same as those for EASI (erythema, 
induration, excoriations, and lichenification). When there were multiple clinical studies per drug, we adopted the clinical study of combination 
therapy with topical corticosteroids, which is more reflective of the likely clinical use compared with monotherapy, and studies with the largest 
number of patients.
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As biological factors, our model described skin barrier integrity 
and infiltrated pathogens, which were described as key factors in our 
previously published mathematical model of AD pathogenesis25 as 
well as the cytokines and OX40L in the skin that have been specifi-
cally targeted by the drugs (Table 1). Our model also described their 
related subtypes of Th cells to explicitly represent feedforward and 
feedback mechanisms (eg, Th2 secretes IL-4, which promotes T-cell 
differentiation toward Th2).

Some biological factors such as dendritic cells and antimicrobial 
pepties (AMPs) were not described as model variables but were 
taken into consideration as a rationale for regulatory processes in 
our model (eg, IL-17A decreases infiltrated pathogens via increasing 
AMPs), to make the model simpler, yet interpretable. Our model ex-
cluded the targets of the excluded drugs because the contribution of 
those targets on AD pathogenesis has not been clinically confirmed 
(eg, IgE was not considered because anti-IgE antibody omalizumab 
was excluded due to lack of efficacy in clinical trials).

The EASI score was adopted as a model variable to represent an 
efficacy end point.

2.2  |  Formulating causal relationship between 
biological factors

We developed a mathematical model consisting of 14 ODEs 
with 51 parameters to simulate the efficacy of the nine drugs 
(detailed in SI Section 3). The functional relationships between 
biological factors in the model were described according to pub-
lished experimental evidence based on human data. We assumed 
that each cytokine independently affects skin barrier integrity 
and infiltrated pathogens (eg, the level of IL-4 does not affect 
the influence of IL-13 on skin barrier integrity.) as cytokines has 
shown additive influence on filaggrin expression, which is related 
to skin barrier integrity and AMPs, which decrease microbial 
pathogens.26,27

The model was implemented in Python 3.7.6 (Python Software 
Foundation).

2.3  |  Modeling drug effects

All the drugs, except for rIFNg, inhibit signaling from biological fac-
tors by blocking their binding to the receptors by targeting the cy-
tokine itself or its receptor. Effective concentration of the target 
biological factor in the skin at time t, c(t), was modeled by

where c ∗ (t) is the actual concentration of the target biological factor 
in the skin at t, and rinhibit is the inhibition rate of the target biologi-
cal factor in the drug treatment. The value of rinhibit was determined 
using the published data on IC50 and the mean concentration of drugs 

in the skin28 that was estimated from their concentration in the serum 
measured in clinical trials (detailed in SI Section 3.4 and Table S3). The 
estimated value of rinhibit was 0.99 for all the antibodies, except for 
rinhibit = 0.44 for tralokinumab (detailed in SI section 3.4).

Administered rIFNg increases the effective amount of IFNg. 
Effective concentration of IFNg in the skin at t, cIFNg(t), is modeled by

where c ∗
IFNg

(t) is the actual concentration of IFNg in the skin at t, and 
crIFNg is the mean concentration of rIFNg in the skin after rIFNg admin-
istration. crIFNg was estimated as 210 based on the pharmacokinetics 
data of rIFNg29 (detailed in SI Section 3.4).

2.4  |  Modeling virtual patients and 
parameter tuning

We represented each virtual patient by a set of values for the 51 
model parameters, where each parameter value is taken from log-
normal distribution30 (Table  S4). The probability distribution func-
tion, f

(

kn
)

, for the n-th parameter, kn, is defined by

where �n and �n are the distribution parameters that represent the 
mean and the standard deviation of lnkn, respectively.

We tuned 102 parameters (�n and �n) that define distributions 
of the 51 model parameters (detailed in SI Section 4). The 11 pa-
rameters, �n for elimination rates of the 11 biological factors, were 
determined using the half-lives measured in vivo (serum) in humans 
(Table  S5). The remaining 91 parameters were tuned so that the 
model reproduces the following clinical data:

-	 The mean and the coefficient of variation of levels of biological 
factors in observational studies (Table  S2) and

-	 The mean EASI scores and EASI-75 when the nine drugs were ap-
plied in clinical trials (Figure 1).

We collected reference data for efficacy end points from pub-
lished clinical trials of the selected drugs. We used EASI-75 (and 
its related %improved EASI and mean EASI score) as an efficacy 
endpoint that was adopted as one of the most common primary 
endpoints in Ph3 studies.10,31 EASI-75 was normalized to com-
pare clinical efficacies of different clinical trials (detailed in SI 
Section 2).

Reference data for the levels of biological factors, including cy-
tokines, OX40 ligand (OX40L), and T cells in AD skin lesions, were 
obtained from human skin biopsy data in published observational 
studies (Table  S2). We described protein levels of cytokines and 
OX40L and count levels of T cells in AD lesion skin by fold change 

(1)c (t) =
(

1 − rinhibit
)

c ∗ (t) ,

(2)cIFNg (t) = c ∗
IFNg

(t) + crIFNg,

(3)f
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�

=
1

√
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relative to those for healthy subjects or to non-lesional skin of the 
same AD patients. The skin barrier integrity and infiltrated patho-
gens were regarded as latent state variables, which have no refer-
ence data to be compared with simulated values.

Simulated data for the baseline levels of the biological fac-
tors were obtained by simulating steady-state levels of biologi-
cal factors (at 1000 weeks without drug treatment) using a large 
number of virtual patients (1000 virtual patients) by randomly 
sampling each of the parameter values from the distribution in 
Equation 3.

Simulated data for the mean EASI and the EASI-75 were ob-
tained by simulating drug treatment for the same number of virtual 
patients as for the corresponding clinical trial (Table  1), while the 
simulated clinical trial was repeated 1000 times to calculate the 95% 
confidence interval (CI).

2.5  |  Identification of pathophysiological 
backgrounds that influence %improved EASI of 
each drug

To identify the pathophysiological backgrounds of virtual patients 
that influence %improved EASI of each drug most, we conducted 
a global sensitivity analysis of the model parameters with re-
spect to %improved EASI. We produced 1000 virtual patients by 
varying the 51 parameters that represent their pathophysiologi-
cal backgrounds using Latin hypercube sampling (LHS) and com-
puted partial rank correlation coefficient (PRCC)32 between each 
parameter and %improved EASI of each drug. LHS is a sampling 
method to explore the entire space of multidimensional param-
eter sufficiently, and PRCC represents a rank correlation coeffi-
cient that is controlled for confounding effects that could lead to 
detecting pseudo-correlations. The evaluated ranges of lnkn were 
[�n − �n, �n + �n]. The p-values for the PRCC were adjusted for 
multiple testing with the Bonferroni procedure, where a signifi-
cance level of adjusted p < 0.05 was used.

2.6  |  Simulation of clinical efficacy of 
hypothetical therapy for dupilumab poor responders

We simulated EASI-75 of a hypothetical therapy for virtual dupilumab 
poor responders. Virtual dupilumab poor responders were the virtual 
patients who did not achieve the criterion of EASI-75 (more than 75% 
improvement of EASI score from week 0) at 24 weeks after dosing 
dupilumab in 1000 virtual patients. The virtual poor responders were 
treated with a single drug, combinations of two drugs, and a hypo-
thetical therapy that inhibited combinations of two cytokines or all 
the cytokines considered in the model (inhibiting IL-4, IL-13, IL-17A, 
IL-22, IL-31, IFNg, and thymic stromal lymphopoietin: TSLP by 99%).

3  |  RESULTS

3.1  |  Normalization of EASI enabled comparison of 
clinical efficacy of nine drugs

We selected nine biologic drugs with different MoA that have shown 
clinical efficacy compared to placebo at least at the population av-
erage (Table 1) and compared the clinical efficacy of the drugs by 
mean EASI score, %improved EASI, and EASI-75 after normalization 
(Figure 1). Dupilumab and lebrikizumab showed the highest efficacy 
among the nine drugs, suggesting that their common target, IL-13, 
has the highest contribution on AD pathogenesis among the drug 
targets evaluated in this study. All other drugs also achieved a cer-
tain efficacy compared to placebo, confirming the clinical relevance 
of all the targets to AD pathogenesis.

3.2  |  QSP model reproduced clinical efficacy of 
nine drugs

We developed a QSP model (Figure 2) that describes the MoA for 
the nine biologic drugs, that is, regulatory mechanisms between the 

F I G U R E  1  Reference data collected from published clinical trials. The mean EASI score, %improved EASI, and EASI-75 of nine drugs 
(dupilumab, lebrikizumab, tralokinumab, GBR 830, fezakinumab, rIFNg, tezepelumab, nemolizumab, and secukinumab) were normalized 
according to the method detailed in SI Section 2
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biological factors and drugs using the published efficacy data from 
clinical trials.

Our model includes 15 biological factors that are targeted by 
the nine drugs or that are known to be related to AD pathogenesis 
(Table S2). They are seven cytokines (IL-4, IL-13, IL-17A, IL-22, IL-31, 
IFNg, and TSLP), OX40L, and four subsets of helper T cell (Th1, Th2, 
Th17, and Th22) that are the main source of the cytokines, except 
for TSLP which is secreted from keratinocytes. The model also in-
cludes “infiltrated pathogens” and “skin barrier integrity” as the main 
variables for a model of AD pathogenesis,25 and the EASI score as 
an efficacy endpoint of each virtual patient. The effects of the drugs 
were modeled by decreasing or increasing effective concentrations 
of their target cytokines or OX40L (Table S2).

The model contains 51 parameters (eg, the recovery rate of 
skin barrier via skin turnover, k1). We assumed the parameter val-
ues, corresponding to the strengths of the regulatory processes, 
vary between AD patients, so that virtual patients are defined by 
sets of 51 parameter values. We tuned the distributions of the 51 
parameters (Table S4) to reproduce the mean and the coefficient 
of variation of the biological factors in observational studies and 
mean EASI score and EASI-75 of the drugs (Figure 3). The root mean 
square errors of the mean EASI and EASI-75 between the simulated 
and reference data were 2.1 (out of 72 = the max EASI) and 7.4%, 
respectively.

3.3  |  Global sensitivity analysis detected 
correlation between turnover rates of IL-13 in the 
skin and clinical efficacy of dupilumab

The variation in the responsiveness to each drug among the patients 
is considered to be due to the heterogeneity in the pathophysio-
logical backgrounds of the patients. The responder rates could be 
improved by patient stratification based on biomarkers that reflect 
pathophysiological backgrounds.33 Using the QSP model, we can 

investigate which pathophysiological backgrounds have influence 
on clinical efficacy of each drug and which cytokines in the skin can 
be promising biomarkers for patient stratification. We performed a 
global sensitivity analysis of the model to investigate the influence 
of the 51 model parameters (that represent pathophysiological back-
grounds of the virtual patients) on %improve EASI of each drug using 
the LHS-PRCC (Figure 4).

Ten model parameters had a significant PRCC with the %im-
proved EASI by dupilumab (Figure  4). Four out of the ten param-
eters are IL-13-related (k13, k14, b2, and d11), and the remaining six 
parameters are skin barrier-related parameters (k1, k3, b4, b6, d1, and 
d3) that correspond to placebo effects and baseline severity of skin 
barrier defects rather than each MoA (SI Section 5). The four IL-13-
related parameters (k13, k14, b2, and d11) can characterize responders 
for dupilumab, as virtual patients with higher k13, k14, and b2 and a 
lower d11 were more responsive to treatment by dupilumab. The pa-
rameter, b2, describes the influence of IL-13 on skin barrier damage. 
IL-4-related parameters (k11, k12, b1, b7, and d10) did not have a signif-
icant PRCC with %improved EASI by dupilumab, which inhibits both 
IL-4 and IL-13 signaling, in consistent with the report that clinical 
efficacy of dupilumab were not correlated with the baseline level of 
IL-4 mRNA expression.14 We confirmed that the ten model param-
eters had different distributions for good and poor responders for 
dupilumab (SI Section 6).

As three out of the four IL-13-related parameters, k13, k14, and 
d11, affect the IL-13 baseline level, we hypothesized that baseline 
levels of some cytokines in the skin could be used as predictive 
markers of good/poor responders for dupilumab and other drugs. 
To test this hypothesis, we stratified virtual patients based on their 
baseline cytokine levels for varying pre-defined threshold values. 
For the virtual patients whose baseline cytokine level is greater than 
the threshold value, we simulated the %improved EASI at week 24 
of each drug (Figure 5). For dupilumab, EASI-75 was improved for 
patients with a higher IL-13 baseline level. It is consistent with the re-
sults from actual clinical trials of dupilumab, where a higher efficacy 

F I G U R E  2  Overview of the proposed 
mathematical model. The model 
comprises of an efficacy end point 
(EASI score), biological factors (skin 
barrier integrity, infiltrated pathogens, 
cytokines, T cells) and drugs (dupilumab, 
lebrikizumab, tralokinumab, GBR 830, 
fezakinumab, rIFNg, tezepelumab, 
nemolizumab, secukinumab). The 
functional relationships between 
biological factors were described 
according to published human data 
(details in SI Section 3) 



588  |    MIYANO et al.

F I G U R E  3  Simulated and reference data of (A) baseline levels of biological factors, (B) mean EASI score, and (C) EASI-75. The model 
parameters were tuned to minimize the difference between simulated and reference data (detailed in SI section 4.2). (A) Reference data 
(striped bars) are the measured values of the biological factors in observational studies. Simulated data (filled bars) were obtained by 
simulating steady-state levels of biological factors (at 1000 weeks without drug treatment) using 1000 virtual patients. Error bars are 
standard deviations. (B,C) Reference data (unfilled circles) are mean EASI scores (B) and EASI-75 (C) after treatment of each drug. Simulated 
data for the mean EASI and the EASI-75 were obtained by simulating the efficacies of drug treatment using the same number of virtual 
patients as for the clinical trials (Table 1), and the simulated clinical trial was repeated 1000 times to calculate 95% CI (lines: mean, shaded 
area: 95% CI)
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F I G U R E  4  Partial rank correlation coefficient (PRCC) between model parameters and %improved EASI by each drug treatment. 1000 
virtual patients (1000 sets of 51 model parameter values) were generated by sampling 51 parameter values independently according to 
Latin hypercube sampling and were treated by each drug to simulate %improved EASI at 24 weeks. Open and crossed cells are statistically 
significant and not significant PRCC (absolute value >0.1 with adjusted p-values <0.05), respectively. Positive PRCC means that virtual 
patients with a higher value of the parameter achieve a higher %improve EASI by the drug treatment (eg, k3). Negative PRCC means that 
virtual patients with a lower value of the parameter achieve a higher %improve EASI by the drug treatment (eg, k1) 
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was observed in the AD patients with higher baseline messenger 
RNA (mRNA) levels of IL-13.14

3.4  |  Simulated hypothetical therapies for 
dupilumab poor responders revealed simultaneous 
inhibition of IL-13 and IL-22 were effective 
whereas the nine biologic drugs were ineffective

The proportion of poor responders to dupilumab, the actual and 
simulated percentages of patients who did not achieve EASI-75 at 
24  weeks, was 31%10 and 35% [95% CI 30.0–41.9%] respectively 
(Figure 3). However, therapeutic options for the dupilumab poor re-
sponders are limited to increasing topical corticosteroids and adding 
systemic immunosuppressive agents, although the dupilumab poor 
responders are often resistant to these treatments and require mon-
itoring for adverse effects.34

We hypothesized that the dupilumab poor responders could 
be responsive to other targeted biologic drugs with different MoA, 
considering the heterogeneity of AD pathogenesis, and evaluated 
the potential efficacy of all nine drugs (Figure 6A). Every one of the 
nine drugs failed to show clinical responses in virtual dupilumab 
poor responders where maximal calculated responder rates, based 

on EASI-75 at 24 weeks, were only 1.9% [95% CI 0.6–3.4%] in fezaki-
numab. These low efficacies imply an upper efficacy ceiling for drugs 
that target single cytokines to treat dupilumab poor responders.

We then evaluated the potential efficacy of hypothetical ther-
apies that inhibit two cytokines, mimicking a bispecific antibody, 
for the virtual dupilumab poor responders. Our simulation demon-
strated that dosing one additional drug to dupilumab achieved a 
better efficacy for virtual dupilumab poor responders (Figure 6B). 
The maximal EASI-75 in the virtual dupilumab poor responders (0% 
achieving EASI-75 at 24 weeks with dupilumab therapy) at 24 weeks 
was 23.0% [95% CI 18.4–27.3%] in dupilumab +fezakinumab, im-
plying that inhibition of both IL-13 and IL-22 would be a promising 
combination for treatment of dupilumab poor responders. Indeed, 
inhibition of both IL-13 and IL-22 showed the highest clinical re-
sponses among all the combinations of two cytokines (Figure 6C), 
with EASI-75 at 24 weeks being 21.6% [95% CI 17.4–25.5%]. These 
results are in concordance with a clinically observed negative cor-
relation between the clinical efficacy of dupilumab and the baseline 
level of IL-22 mRNA expression (not significant, rank correlation co-
efficient −0.208 with p-value of 0.422).14 The simulation results, in 
combination with the clinical observation,14 suggest that inhibition 
of IL-22 in addition to the dupilumab treatment is effective for dup-
ilumab poor responders.

We also confirmed that blocking all targeted cytokines (inhibit-
ing IL-4, IL-13, IL-17A, IL-22, IL-31, IFNg, and TSLP by 99%) achieved 
a higher EASI-75 (33.8% [95% CI 28.8–38.7%], Figure 6C). The re-
sponder rate did not reach 100% even when all the cytokines were 
blocked because some cytokines have not only detrimental but also 
beneficial effects. For example, IL-17A and IL-22 damage the skin 
barrier by inhibiting epidermal differentiation (detrimental effects) 
while they decrease infiltrated pathogens via increasing AMP (ben-
eficial effects). Hence, inhibition of cytokines can partly exacerbate 
the AD symptoms, suggesting that finding optimal combinations of 
drugs requires a system-level investigation.

4  |  DISCUSSION

4.1  |  QSP model to simulate biologics efficacy

Several biologic drugs targeting AD pathogenic cytokines have 
been developed and shown clinical efficacy to some extent in AD 
patients. Although only one biologic drug, dupilumab, has been cur-
rently approved, it is useful to conduct model-based meta-analysis 
by integrating the results from clinical trials of other biologic drugs, 
including those that failed to show clinically significant efficacy and 
those under development, to enhance the understanding of AD 
pathogenesis and clinical efficacy of drugs with different MoA. In 
this study, we conducted model-based meta-analysis of clinical trials 
on the nine biologic drugs for AD (dupilumab, lebrikizumab, traloki-
numab, secukinumab, fezakinumab, nemolizumab, and tezepelumab, 
GBR830, and rIFNg) that were published by Dec 2020 (Figure S1), 
and developed a QSP model of biologics efficacy in AD patients 

F I G U R E  5  Simulated EASI-75 in dupilumab treatment after 
patient stratification with different thresholds of cytokine 
baseline levels. 1000 virtual patients (1000 sets of 51 model 
parameter values) were generated by randomly sampling each 
of the parameter values from the distribution in Equation 3 and 
were stratified into those whose cytokine baseline level (before 
dupilumab treatment) was greater than the threshold (x-axis). 
EASI-75 at 24 weeks (y-axis) were calculated for the stratified 
patients. The number of stratified virtual patients decreases with 
an increasing threshold, while the threshold of zero includes all 
the virtual patients. The maximal threshold for each cytokine 
was set to ensure that at least 10% of the generated 1000 virtual 
patients are stratified. Orange solid lines and shaded areas are the 
mean value and 95% CI of 1000 simulations, respectively. Higher 
EASI-75 achieved with patient stratification (compared to without 
stratification with the threshold zero: dashed line) suggests a 
success in stratifying good responders
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F I G U R E  6  Simulated EASI-75 in virtual dupilumab poor responders. The virtual dupilumab poor responders were treated in simulated 
clinical trials with (A) a single drug, (B) a combination of two drugs, and (C) blocking a combination of two cytokines or all the cytokines 
(inhibiting IL-4, IL-13, IL-17A, IL-22, IL-31, IFNg, and TSLP by 99%). Virtual dupilumab poor responders were the virtual patients who did not 
achieve the EASI-75 criterion at 24 weeks among 1000 virtual patients (mean 356 with 95% CI 300–419 virtual patients). The simulated 
clinical trial was repeated 1000 times to obtain 95% CI. Lines and shaded areas are the mean values and 95% CI of 1000 simulations, 
respectively
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(Figure 2). This QSP model describes dynamic relationships between 
biological factors and clinical efficacies by integrating knowledge 
obtained from experiments using human samples and clinical trials 
of multiple drugs. The model reproduced the clinical efficacies of 
the biologic drugs observed in clinical trials and baseline levels of 
biological factors (eg, cytokines) in the skin from published studies 
(Figure 3).

4.2  |  Comparison of clinical efficacies of biologics

Comparison of clinical efficacies (Figure  1) demonstrated that 
dupilumab and lebrikizumab showed the highest efficacy among 
the nine drugs investigated in this study, suggesting that their com-
mon target, IL-13, is the most crucial target to improve AD severity 
scores. The comparable efficacy between dupilumab (inhibiting both 
IL-4 and IL-13) and lebrikizumab (inhibiting IL-13 only) may suggest 
inhibition of IL-4 signaling has a minor contribution on the efficacy 
of dupilumab. Another anti-IL-13 antibody, tralokinumab, showed a 
significantly lower clinical efficacy than lebrikizumab. Lebrikizumab 
inhibits binding of IL-13 to IL-13Rα1 only, while tralokinumab inhib-
its binding to both IL-13Rα1 and IL-13Rα2. IL-13Rα1 forms a heter-
odimeric receptor with IL-4Rα and is related to the effects of IL-13 
signaling in AD pathogenesis while IL-13Rα2 is a decoy receptor to 
decrease IL-13 signaling via IL-13Rα1. Hence, tralokinumab not only 
inhibits IL-13 signaling via IL-13Rα1 but also enhances IL-13 signaling 
via inhibition of IL-13 binding to IL-13Rα2.35 In our simulation, effec-
tive inhibition of IL-13 signaling by tralokinumab was estimated 44% 
of lebrikizumab (ea2 = 0.44). The difference in the efficacy between 
lebrikizumab and tralokinumab may come from different mecha-
nisms for IL-13 inhibition, dosing regimens, or trial design.

4.3  |  Pathophysiological backgrounds of dupilumab 
poor responders

This study presents a QSP-based approach to identify potential 
predictive biomarkers of clinical efficacy through mechanistic 
model-based simulation. We used the developed model to explore 
pathophysiological backgrounds of dupilumab poor responders. 
Our simulation demonstrated that the higher responder rates for 
dupilumab are expected in patients with the higher baseline level of 
IL-13 in the skin (Figures 4 and 5). Although it also showed baseline 
levels of other cytokines (eg, IFNg) in the skin influence responder 
rates, these influences may be due to a pseudo-correlation of the 
cytokines with clinical efficacy because the parameters related to 
those cytokines were not detected as important in the global sen-
sitivity analysis, which evaluates the “causative” influence of the 
parameters on efficacy. The cytokines detected due to the pseudo-
correlation should not be used as predictive biomarkers for patient 
stratification, because such pseudo-correlations may have low re-
producibility. Hence, our simulations suggest that the baseline level 
of IL-13 in the skin would be more suitable than other cytokines 

to be used as a biomarker for patient stratification in dupilumab 
treatment.

4.4  |  Simulated efficacy of hypothetical therapy in 
dupilumab poor responders

We also used the model to investigate alternative therapeutic op-
tions for virtual dupilumab poor responders. Our simulation results 
suggested inhibition of a single cytokine would be insufficient to 
achieve clinical response in virtual dupilumab poor responders, 
whereas inhibition of multiple cytokines could achieve clinical re-
sponse (Figure 6A,B). Especially, IL-13 and IL-22 were identified to 
be the best combination to treat virtual dupilumab poor responders 
(Figure 6C). Inhibition of two cytokines can be realized by a bispe-
cific antibody as well as combination of two antibodies.

Our simulated hypothetical therapy that inhibits all the cyto-
kines in this model (IL-4, IL-13, IL-17A, IL-22, IL-31, IFNg, and TSLP) 
showed higher clinical efficacy than inhibiting single and a combi-
nation of two cytokines (Figure 6C). These results suggest that in-
hibiting multiple cytokines can exert higher efficacy than biologic 
drugs targeting only one or two cytokines. In fact, the approach to 
inhibit signaling of multiple cytokines has been already realized by 
JAK inhibitors. For instance, abrocitinib blocks JAK1, which is an 
intracellular tyrosine kinase linked to intracellular domains of many 
cytokine receptors, including IL-4, IL-13, IL-22, IL-31, IFNg, and TSLP. 
Abrocitinib showed comparable efficacy with dupilumab,11 but there 
were still a significant percentage of poor responders. One of the 
reasons why even multiple cytokine inhibition cannot achieve clin-
ical response in all AD patients is that inhibition of cytokines can 
deteriorate AD symptoms because some cytokines have both detri-
mental and beneficial effects in AD pathogenesis and the contribu-
tions of each cytokine on AD pathogenesis would vary among the 
AD patients. Hence, appropriate drugs would vary according to the 
pathophysiological backgrounds of the patients. Patient stratifica-
tion may be beneficial not only for biologic drugs but also for the 
drugs that target multiple cytokines.

4.5  |  Limitation of this study using the model

We used clinical efficacy results of the biologic drugs as the refer-
ence data to tune the model parameters. We adopted Ph2 as well as 
Ph3 studies to make a maximal use of available clinical data (Table 1). 
However, the results from Ph2 studies with a rather small number of 
patients need to be confirmed with those from Ph3 studies with a 
larger number of patients. Our model assumptions include that virtual 
patients were generated from single modal distributions of the model 
parameters. There could be a multimodal distribution due to the ge-
netic backgrounds or other demographic variances in a real population 
of AD patients. For the practical purposes of generating this model, we 
assumed the %improved EASI was comparable across clinical trials. We 
know that outcome measures may be influenced by the concomitant 
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use of topical corticosteroids and the statistical methods used to ad-
just for or censor topical corticosteroid use and to impute missing data. 
The model will need to be updated according to availability of the ref-
erence data and assumptions if these are changed as new data emerge.

4.6  |  Prospects for model-informed drug 
development

The proposed model could be further expanded for future devel-
opment of new drugs for AD, by including new drug targets and 
pharmacokinetics and pharmacodynamics profiles of new drugs. 
The expanded model will be a useful tool to computationally evalu-
ate potential clinical efficacies of new drug candidates, to identify 
biomarkers for patient stratification, to clarify the difference from 
existing drugs (eg, showing significant efficacy in dupilumab poor 
responders), and to design optimal doses with considering variations 
in pathophysiological backgrounds.

Such simulated data may inform design of future clinical trials. 
For example, simulated variability in drug efficacy may help deter-
mine the number of participants and the study periods required, 
comparison of the simulated efficacy for new drug candidates and 
competitive drugs may predict the probability of success in achiev-
ing clinical efficacy, and simulated patient stratification may deter-
mine pathophysiological backgrounds of patients to be recruited. 
The model simulation may also enhance understanding of clinical 
trial results. For example, sensitivity analysis of the model may 
identify pathophysiological backgrounds that affect the individual 
variability in pharmacokinetics and clinical efficacy (eg, this study 
identified IL-13-related parameters to be related to the dupilumab 
efficacy). Furthermore, it could inform novel therapeutic approaches 
as a reverse translational research (eg, simultaneous inhibition of IL-
13 and IL-22 proposed in this study).

The model contributes to a system-level understanding of AD 
pathogenesis and the drug effects and to evaluate the effects of 
new potential drug targets by computational simulation. This could 
serve as model-informed drug development36 for precision medi-
cine. The code of the QSP model is available at https://github.com/
Tanak​a-Group/​AD_QSP_model.
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