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Abstract—Distributed computing systems often consist of hun-
dreds of nodes (machines), executing tasks with different resource
requirements. Efficient resource provisioning and task scheduling
in such systems are non-trivial and require close monitoring
and accurate forecasting of the state of the system, specifically
resource utilisation at its constituent machines. Two challenges
present themselves towards these objectives.
First, collecting monitoring data entails substantial communica-
tion overhead. This overhead can be prohibitively high, especially
in networks where bandwidth is limited. Second, forecasting
models to predict resource utilisation should be accurate and also
need to exhibit high inference speed. Mission critical scheduling
and resource allocation algorithms use these predictions and rely
on their immediate availability.
To address the first challenge, we present a communication-
efficient data collection mechanism. Resource utilisation data is
collected at the individual machines in the system and transmitted
to a central controller in batches. Each batch is processed by an
adaptive data-reduction algorithm based on Fourier transforms
and truncation in the frequency domain. We show that the
proposed mechanism leads to a significant reduction in communi-
cation overhead while incurring only minimal error and adhering
to accuracy guarantees. To address the second challenge, we
propose a deep learning architecture using complex Gated
Recurrent Units to forecast resource utilisation. This architecture
is directly integrated with the above data collection mechanism to
improve inference speed of the presented forecasting model. Using
two real-world datasets, we demonstrate the effectiveness of our
approach, both in terms of forecasting accuracy and inference
speed.
Our approach resolves several challenges encountered in resource
provisioning frameworks and can also be generically applied to
other forecasting problems.

Index Terms—Load Forecasting, Data Collection, Communi-
cation Efficient, Fourier Transforms, Complex Gated Recurrent
Units, Deep Learning

I. INTRODUCTION

Distributed systems usually consist of hundreds or thou-
sands of nodes (machines). Efficient management of such
systems is often challenging and requires collecting and
forecasting of the utilisation of resources such as CPU and
memory of the machines of the system. In practice, resource
over and under provisioning are common and overall resource
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utilisation is often poor, leading to a waste of computational
resources [1]. Data collection in some distributed systems
is further hindered by communication constraints, especially
in systems that are not interconnected by a high-bandwidth
network. For instance, sensor networks or networks involv-
ing edge devices may suffer from significant communication
constraints. This leads to two concrete challenges as follows.
First, a central controller that manages scheduling and resource
allocation needs to collect monitoring data from all nodes in
the network in a communication-efficient manner. Second, the
scheduler requires an efficient forecasting model. Efficiency in
this context encompasses both accuracy as well as inference
speed.

Due to the aforementioned communication constraints it
is often detrimental to send all of the collected data to the
central controller, forcing the local machines to reduce or
compress data before transmission. To address this challenge,
we present a data reduction mechanism based on Fourier
transforms that can significantly reduce the communication
overhead of transmitting monitoring data. Our experiments on
real-world data in Section IV demonstrate that communication
savings in excess of 60% can be achieved while only incurring
minimal error in the transmitted data and achieving prediction
accuracy comparable to our benchmark model. The proposed
methodology can be combined with lossless compression
algorithms and exhibits error bounds, which we derive in
Section III-B.

As a forecasting model, we propose the use of a deep
learning architecture, based on complex Gated Recurrent Units
(cGRU). In real-world systems, deep learning models are often
not practical since training of such models and their use for
inference tends to be computationally expensive. The data
collection mechanism we present in this paper, however, can be
directly combined with our proposed forecasting architecture
to improve both training and inference speed, which we
demonstrate in Section IV, using real-world datasets.

The methods presented in this paper are developed specif-
ically with distributed systems in mind. However, the indi-
vidual components can be easily applied to different time
series forecasting problems. The integration of the proposed
data processing and inference techniques with scheduling and
further system management is left for future work. Our main



contributions are as follows:
1) We propose a communication-efficient algorithm for

time series data transmission in distributed systems,
using a batched data transfer protocol with a Fourier
transform based mechanism for data reduction.

2) We show that our data transmission algorithm can
be readily applied to improve the inference speed of
recurrent neural networks, specifically complex Gated
Recurrent Units.

3) We propose a deep learning architecture for forecasting
resource utilisation in distributed systems and conduct
extensive experiments using real-world datasets that
demonstrate the effectiveness of our proposed method-
ology.

The remainder of this paper is structured as follows.
In Section II, we discuss existing literature. The proposed
methodology is presented in Section III, starting with the
data transmission protocol before introducing the proposed
Fourier processing mechanism and forecasting model. The
experiments using real-world datasets are discussed in Section
IV. Lastly, we conclude in Section V and provide directions
for future research.

II. RELATED WORK

Previous literature relevant to the approaches outlined in
Section III can be broadly categorised into the areas of
resource utilisation forecasting, data collection in distributed
systems and complex valued recurrent neural networks.

Ample previous research studies the use of classical time
series models, such as autoregressive and moving average
models for load forecasting, while some have also explored
neural networks and alternative models such as support vector
regression. A comprehensive overview of previously studied
forecasting models for cloud workloads is provided by [2].
The authors of [3], [4] and [5] propose the use of classical
time series models. [4] and [5] both propose autoregressive
models for load forecasting, using a simple autoregressive
model and ARMA models (autoregressive moving average)
respectively. [3] propose a load balancing algorithm for cloud
infrastructures, as part of which they employ an exponential
smoothing based forecasting method. [6], [7] evaluate neural
network based approaches. [6] evaluate several neural network
architectures and compare them against linear regression us-
ing simulated data. The approach proposed by [7] combines
a threshold-based method for communication reduction in
collecting utilisation data in distributed systems and couples
this with a k-means clustering where a forecasting model
predicts the centroid values to infer resource utilisation val-
ues of individual machines. Alternative modelling approaches
including support vector regression, Markov chain models and
exponential smoothing based models are presented by [8], [9],
[10] and [11]. Several previous papers use the same datasets
we use to evaluate their models, enabling comparison among
the different approaches [7]–[10].

Further to load forecasting models, several approaches for
reducing the communication overhead in distributed systems

have been proposed in the body of existing literature. A
number of existing methods use a set of randomly selected
nodes in the system to infer data for the remaining unobserved
nodes using matrix completion [12]–[15]. The approaches in
[16], [17] also use a set of randomly selected nodes, but
employ Gaussian methods to infer unobserved data. For both
approaches, data is only being collected for a random subset
of nodes, which may lead to resource utilisation imbalances
and deviations in accuracy between different nodes. Other
algorithms, relying on a per-node condition, i.e. avoiding
the problems of imbalance, are presented in [18]–[23]. The
proposed methods apart from the ones in [22] and [23] do not
use Fourier transforms for data reduction. Both approaches
rely on heuristics and do not use the reduced data by Fourier
processing as a means to accelerate inference or model training
at a central controller. While there is little research on the
use of Fourier transforms for data collection in distributed
systems, previous research has explored its uses for correlation
approximation and similarity search in databases that has some
similarities to the idea we propose [24]–[26].

The methods in [27] and [28] explore the combination of
Fourier transforms and deep learning. Specifically, [27] pro-
pose the computation of convolutions in the frequency domain
to speed up the training of convolutional neural networks and
the approach in [28] uses windowing to reduce the training
time of recurrent neural networks where Fourier transforms
serve as a pre-processing step.

Our work adds to the body of existing research by introduc-
ing a Fourier transform based methodology that can be used
to reduce communication overhead and directly accelerate the
training of recurrent neural networks.

III. PROPOSED METHODOLOGY

Our proposed methodology consists of three key compo-
nents, namely a batched data collection algorithm, a Fourier
transform mechanism for data reduction and a deep learning
model that can leverage the former two components to achieve
improvements in inference speed.

A. Batched Data Collection

Let M := {M1,M2, ...,Mp} be a set of p nodes in a
distributed system, all connected to a network that allows them
to communicate with a central controller C. We assume that
time is slotted and that the nodes M observe data at pre-
defined, discrete time steps. To manage the nodes M and
schedule computational jobs, C requires information about
the nodes’ resource utilisation. The individual nodes collect
their respective resource utilisation data locally. These form a
discrete-time time series xMi

for each node Mi ∈ M . New
observations are appended to this series as data is collected.
Two protocols for data transmission are readily conceivable.
Each node Mi could decide whether to transmit an observation
at the time it is collected. The central controller would then
treat the last received data point as the current state of node
Mi – potentially interpolating if no update has been received
for some time. [7] introduces such a methodology, where the
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Fig. 1: Data collection and update procedure for a single node
Mi. Measurements are collected at the discrete time steps t
and and the central node C is updated every n time steps, i.e.,
at update times θ.

nodes in a distributed system make an update decision at
each time step. Alternatively, each node Mi can collect its
respective time series locally for a given number of time steps
and then send it to C in one batch. The central controller then
has to estimate the current states of all nodes M in time steps
between consecutive updates using some forecasting model or
method of interpolation. This batched processing approach –
which our proposed methodology relies on – will be referred
to as a batched data collection mechanism.

Before generalising to the complete set of nodes M , con-
sider a single node Mi. Let T be a set of discrete time steps at
which the variable of interest is observed and define the time
between two time steps as τ = tj− ti, j = i+1. Let θ denote
the update times where a batch update is sent to the central
controller. The time between two consecutive updates is then
defined as n× τ := θj − θi, j = i+ 1, 2 ≤ n. The number of
time steps n between batch update times is kept constant, i.e.,
the batch update times are equally spaced. This is equivalent to
saying: The central node C will receive a batch update every
n time steps. This batched update mechanism is illustrated in
Fig. 1. At each update step, the node Mi will have collected n
observations, forming a time series u ∈ Rn. Each observation
measurement in u is represented as a floating-point number.
To achieve any communication savings, fewer than n floating-
point numbers must be transmitted to the central controller
by reducing the data at the individual nodes. We propose an
algorithm for achieving such data reduction in the next sub-
section.

B. Fourier Truncation

The idea behind the proposed data-reduction mechanism is
as follows. A time series can be converted to its frequency-
domain representation using Fourier transforms. If only a few
terms of the Fourier transforms are sufficient to capture the
majority of the variation of the time series then it suffices to
transmit these few terms to the central controller. This way, the
data batch as defined in Section III-A can be reduced to fewer
than n floating point numbers. We start by giving the necessary

definitions for the proposed methodology, before describing
two approaches for choosing the number of terms to include.
The Fourier transform of the discrete time-domain signal or
time series u is denoted by U and given by

Uf =

n−1∑
i=0

uie
−j(2π/n)if . (1)

U ∈ Cn is a sequence of complex numbers of the same length
as u. The Fourier transform of a real-valued time series, u :=
u0, u1, ..., un−1 of length n, where ui ∈ R, 0 ≤ i < n, has
the useful property of complex conjugacy, s.t.

ui = u∗−i , (2)

where ∗ denotes the complex conjugate. Exploiting this prop-
erty, only n/2 + 1 terms of the Fourier transforms of a real-
valued time series are required to fully capture the series. Since
the resource utilisation data under consideration is real-valued,
we can directly use this property to reduce the data volume
of the Fourier transforms to almost the same volume as the
original time-domain data – recall that a complex number is
represented using two floating point numbers.

To further reduce the amount of data in the frequency
domain, we define a methodology referred to as Fourier
truncation, which is equivalent to an adaptive low-pass filter
without attenuation.

Definition 1: The energy of the discrete-time signal u with
length n is given by

E(u) =

n−1∑
i=0

|ui|2 . (3)

Lemma 1: Using Parseval’s theorem and Definition 1, the
energy of a signal is preserved after the Fourier transform
according to

E(u) =

n−1∑
i=0

|ui|2 =
1

n

n−1∑
f=0

|Uf |2 , (4)

where Uf is the Fourier transform of ui.
Lemma 1 forms the fundamental background for our Fourier
truncation methodology, since it details the relationship be-
tween signal energy in the time and frequency domain. We
propose two ways of choosing the number of terms k to
transmit to the central controller, one using an absolute error
criterion and one using a relative similarity criterion.

Definition 2: The series R is the truncated version of the
Fourier transform U of u that includes all terms up to term
k, s.t. R := U0≤i<k , k ≤ n. We also define the energy of the
truncated series R as E(R).

The truncated series R only has k terms. By truncating and
exploiting the complex conjugacy property (Equation (2)), the
number of floating point numbers that have to be transmitted
is therefore reduced by 2(n− k).

Definition 3: As a measure of deviation between the original
time series and the inverse of the truncated frequency-domain
representation, we define the root mean squared error (RMSE)



between the original time series u and the truncated version
R as

RMSE(u,R) =

√√√√ 1

n

n−1∑
i=0

|ui −F−1(R)i|2 , (5)

where F−1 denotes the inverse discrete Fourier transform. We
refer to this measure of error as the truncation error.

Using Lemma 1 we can impose a scale-dependent error
bound in terms of the RMSE defined in Equation (5), which
we detail in the following Proposition.

Proposition 1: The RMSE caused by the truncation of the
Fourier transform U of the time series u is bounded by εRMSE

according to
RMSE(u,R) ≤ εRMSE , (6)

if the number of terms k to include in R is chosen such that√
1

n

(
E(U)− E(R)

)
≤ εRMSE , (7)

where E(R) is the energy of R and R is the truncated
Fourier transform of u, defined as R = U0≤i<k, according
to Definition 2.

Proof: From Definition 2, we define the terms of the
frequency-domain representation U of the time series u, lost
in the truncation of U as L := Uk≤i<n. Using Definition 1
and Lemma 1, the energy lost in the truncation of U is given
by

E(L) = E(U)− E(R) . (8)

For ease of exposition, we denote F−1(R)i by ri, 0 ≤ i < n.
To prove Proposition 1, we need to show that

RMSE(u,R) ≤
√

1

n
E(L) . (9)

By converting both U and R to the time domain and using
Equation (8), this can be simplified to

n−1∑
i=0

|ui − ri|2 ≤
n−1∑
i=0

u2i − r2i . (10)

To prove Proposition 1, it is therefore sufficient to show that
Equation (10) holds. Expanding the left-hand side, we get

n−1∑
i=0

|ui − ri|2 =

n−1∑
i=0

u2i − 2uiri + r2i . (11)

By subtracting the right-hand side of Equation (10) and
simplifying, this transforms to

n−1∑
i=0

|ui − ri|2 −
n−1∑
i=0

u2i − r2i = 2

n−1∑
i=0

ri(ri − ui) . (12)

From Lemma 1, we know that

n−1∑
i=0

r2i ≤
n−1∑
i=0

u2i ⇐⇒ 2

n−1∑
i=0

(ri + ui)(ri − ui) ≤ 0 . (13)

Since ui, ri ≥ 0

2

n−1∑
i=0

ri(ri − ui) ≤ 2

n−1∑
i=0

(ri + ui)(ri − ui) ≤ 0 , (14)

which proves Equation (10) and therefore Proposition 1. Since
E(L) is monotonically decreasing in k, k can be chosen large
enough such that Equation (7) is satisfied.

The error bound given in Proposition 1 uses a scale-
dependent error metric and is thus only useful when the
magnitude of the time series u is known beforehand. To be
able to generalise the methodology to arbitrary time series, a
scale-independent error measure is more desirable. We propose
the use of a percentage energy threshold to be captured in
the truncated time series. We define this threshold value as
e ∈ [0, 1] and use the cumulative fraction of the time series’
energy captured up to each term to choose the number of
terms to include given the threshold value e. Let the series S
of cumulative sums of the energy captured in the terms of the
Fourier transform U of the time series u be defined as

S0 = 0

Si+1 = Si + E(U [i]).

Further, denote the total energy of the time series or equiva-
lently the maximum of series S by Smax := max(S). Then
the normalised series Sn with Sni ∈ [0, 1], is

Sni =
Si

Smax
. (15)

The terms of Sn are equivalent to the fraction of the signal’s
energy captured by the terms of the Fourier transform up to
the ith term. If instead of imposing an absolute RMSE bound
the procedure based on an energy threshold value is employed,
the value of k is chosen such that

E(R) =
1

n

k−1∑
i=0

|Ui|2 ≥ E(u)× e , (16)

where e is the energy threshold as defined previously. Inequal-
ity (16) is satisfied by choosing k such that e ≤ Snk∧e > Snk−1.
The Inequality (16) can be transformed to

E(R)

E(u)
≥ e . (17)

The term on the left hand side of Equation (17) is the similarity
between the original series and the truncated version in terms
of captured energy. It can also be interpreted as the relative
accuracy of the truncated version compared to the full series.
This measure lies between 0 and 1 and is independent of the
scale of the signal. In practice it is sufficient to specify some
level of minimum similarity and choose the threshold value e
according to Inequality (17).

The algorithm, resulting from the truncation methodology
in combination with the proposed batched data collection is
given in Fig. 2.

Using the Fast Fourier Transform algorithm introduced in
[29], the Fourier transforms of a time series of length n can



1: Initialise empty list u
2: while t /∈ θ do
3: Observe the variable of interest.
4: Append the new observation to u.
5: end while
6: U = F(u)
7: Choose k according to either of the two proposed trunca-

tion methodologies
8: R = U0≤i<k
9: Transmit R to the central controller C

Fig. 2: Compression and data collection algorithm executed at
nodes M

be computed with a time complexity of O(n log(n)). The
proposed truncation mechanisms require a complete pass of
the Fourier transforms, adding another n/2 + 1 computation
steps. Hence, the overall number of computation steps required
for a single node is O(n log(n))+n/2+1, resulting in a time
complexity of O(n log(n)).

C. Forecasting by Complex Gated Recurrent Neural Networks

Our proposed methodology requires a forecasting model
both for interpolation at time steps between consecutive batch
updates as well as predicting future resource utilisation for
system management purposes. We propose the use of complex
Gated Recurrent Units (cGRU) [30] to forecast resource util-
isation using the truncated frequency-domain representation
of the resource utilisation time series that results from the
data transmission methodology outlined in Section III-B. As a
benchmark, we compare our approach against a time-domain
GRU [31], which uses the complete time-domain representa-
tion of the input time series. The use of gates in recurrent
neural networks has been shown to improve their ability to
learn longer term dependencies [32] and GRUs implement
a computationally efficient gating mechanism [31]. They are
therefore well suited to the problem at hand.

Throughout our experiments, we employ a sliding window
model that uses a window of historic data to forecast a pre-
defined number of time steps into the future. The size of the
window is defined as a multiple w of the number of time
steps between two successive batch updates and l := n × w
is defined as the total number of observations in a window
(in the time-domain). In the time-domain, the batches in a
window can simply be concatenated to form the input time
series for our forecasting model. The problem of forecasting
a pre-defined number of time steps s into the future can then
be defined as

ût+1, ..., ût+s = arg max
ut+1,...,ut+s

p(ut+1, ..., ut+s|ut−l, ..., ut) ,

(18)
where ût+1, ..., ût+s are the predictions for the next s time
steps and ut−l, ..., ut are the observations included in the
input window. The concatenation of batches to form the input
window is not easily accomplished in the frequency domain
due to the variable length of the truncated Fourier transforms

in the batches constituting a window. Hence, the problem
formulation changes slightly to

ût+1, ..., ût+s = arg max
ut+1,...,ut+s

p(ut+1, ..., ut+s|{R1}, ..., {Rw}) ,

(19)
where {Ri} is the set of all terms in the truncated frequency-
domain representation of batch i.

Our architecture is inspired by the methodology for cGRUs
using frequency-domain input proposed in [28]. The model
accepts variable length input sequences and is applied to the
truncated frequency-domain representation of each batch in
the input window. The size of the model is kept constant
between the time and frequency-domain models as parameters
are shared for each batch in the frequency-domain window.
The hidden states of the GRU for each of the input batches
are concatenated and passed to a linear layer to arrive at
the frequency-domain forecasts. An inverse Fourier transform
is then applied to these to arrive at the final time-domain
predictions, which are used to calculate the prediction error
for backpropagation. Our proposed architecture can therefore
be written as

xjt =Rjt , 1 ≤ j ≤ w, 0 ≤ t < |Rj | , (20)
zjt =σ(Wzxjt + Vzht−1 + bz) , (21)
rjt =σ(Wrxjt + Vrhjt−1

+ br) , (22)
hjt =σ(zjt ◦ hjt−1

+ (1− zjt)◦
φh(Whxjt + Vh(rjt ◦ hjt−1

) + bh) ,
(23)

ût+1, ..., ût+s =F−1(f(h1t , ..., hwt
)) , (24)

where ◦ denotes the Hadamard product, W , V and b are
parameter matrices and biases, Rjt denotes the tth term of the
truncated Fourier transform of the jth batch in the window,
f(·) is the linear layer for final prediction, φ(·) denotes the
hyperbolic tangent, and zjt and rjt are the update and reset
gates respectively. The inverse Fourier transform is denotes
by F−1 and is used to convert the model outputs to the time
domain.

Since the inputs xjt ∈ C are in the complex domain, all
subsequent weight matrices and bias vectors are also complex.
However, in the spirit of [28], it is sufficient to simply con-
catenate the real and imaginary parts into a vector of reals and
recombine them for the inverse Fourier transform at the end
of the network. Note that contrary to the time-domain model,
where the batches in the input window are concatenated along
the temporal axis, the frequency-domain representations are
passed as separate inputs. Explicitly combining the frequency-
domain representations would entail giving up the benefits of
truncation and reduce the gains in computational overhead.
Hence, we choose to let the forecasting model implicitly learn
the relationship between the different batches.

Model training is implemented using mini-batch gradient
descent with a RMSprop optimiser [33] and bucketisation.
Bucketisation refers to grouping series of similar lengths into
one batch and zero-padding the shorter ones. This is required
to be able to use mini-bath gradient descent, which has several



advantages over stochastic gradient descent, both in terms
of convergence and training speed. The prediction error is
calculated using the model’s time-domain predictions and the
original measured data for the predicted period. Specifically,
this means that we only apply our proposed data collection
mechanism to the batches in the input window, but not to the
predicted time steps.

Definition 4: We define the time averaged RMSE between
the predicted values and the original data during the forecast-
ing period for all machines, as

RMSE(t, s) =

√√√√ 1

s× p

p∑
j=1

s∑
i=1

|ûjt+i
− ujt+i

|2 , (25)

where s denotes the number of predicted time steps and p is
the number of machines. We refer to this error as the prediction
error.

While this allows the model to learn to forecast the true
time series rather than the processed one, it also means that
the entire unprocessed time series has to be collected for
the interval used for training. Since our methodology does
not encompass model retraining, all reported communication
savings etc. refer to the period after model training, where
data is collected according to the methodology proposed in
Sections III-A and III-B.

IV. EXPERIMENT RESULTS

A. Preliminary Data Exploration

We evaluate the proposed methodology and forecasting
models using two traces from large multi-purpose computing
clusters, operated by Google and Alibaba respectively [34],
[35]. Although a resource utilisation trace generated by a
sensor network would be preferable, such datasets are not
currently publicly available. Hence, we make the reasonable
assumption that, given the daily cyclicality of the datasets used
here, they are a good proxy for a broad range of different
systems [36]. The datasets are publicly available and have
been frequently used in previous research (see for instance
[1], [7], [37], [38]), enabling comparison with our approach.
Both datasets are pre-processed to contain memory and CPU
utilisation on a per machine basis for the entire sampling
period. The Google trace contains measurements for 12,480
machines over a period of 29 days, while the Alibaba trace has
a sampling period of eight days and contains measurements for
4,022 machines. Both clusters run a mixture of long-running

TABLE I: Data Summary

Statistic Google Alibaba

Sampling Period 29 days 8 days
Number of Machines 12,480 4,022

Observations per Machine 8,351 11,519
Sampling Frequency 5 min 1 min

Size 41GB 48GB
Std. Dev. (CPU) 0.125 0.156

Average Utilisation (CPU) 22.3% 37.4%
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Fig. 3: Average CPU utilisation across all machines in the
cluster traces with 95% confidence intervals.

services as well as batch workloads, co-hosted on the same
set of machines. Raw samples are collected in 5 minute and 1
minute intervals in the Google and Alibaba traces, respectively.
We have pre-processed the raw data to contain CPU and
memory utilisation values in percent on a per machine basis,
according to the methodology used in [7]. We also resample
both traces to a sampling frequency of 5 minutes, i.e., a mea-
surement is collected every 5 minutes, which results in a total
of 8,351 and 2,302 observations per machine in the Google
and Alibaba traces, respectively. For ease of exposition, we
focus our evaluation on CPU utilisation, but the same approach
can be easily applied to forecast memory utilisation. Fig. 3
shows the average CPU utilisation over the entire sampling
period in the Google and Alibaba traces. While both traces
exhibit daily seasonality, this seasonal component is much
more pronounced in the Alibaba trace than in the Google one.
This observation is also confirmed by Fig. 4, which displays
the average autocorrelation at different lags for both traces.
While both datasets exhibit fairly high autocorrelation, the
Alibaba trace has a stronger seasonal (i.e., daily) component.

B. Setup

Given the daily seasonality in the data, we choose a period
of 24 hours, i.e., 288 time steps as the input to our forecasting
models. As the batch length for the conducted experiments,
we use a period of 6 hours, i.e., 72 data points, which results
in a total of four batches per input window. The models
are trained to predict one complete batch of utilisation data,
i.e., 6 hours into the future. This represents the minimum
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Fig. 4: Average autocorrelation across all machines in the
cluster traces with 95% confidence intervals.

prediction length required to fully interpolate between the
batch arrival times θ. Due to the large number of evaluation
runs, we use a random sub-sample of 20 machines from each
of the two datasets for both training and testing. All models
are trained on a personal computer with 32GB of RAM, an
8th generation Intel Core i7-8700 with 3.20GHz and 6 cores
and a 256GB SATA hard drive. The truncation mechanisms
from Section III-B as well as the models from Section III-C
are implemented in Python. We use the PyTorch [39] library
to implement the proposed machine learning models. The
hyper parameters for each model – one model for each of
the evaluated energy thresholds and datasets – are tuned
using Bayesian Optimisation with an Expected Improvement
acquisition function [40]. Since different energy thresholds
results in different data characteristics, we choose to tune the
hyper parameters of each model individually to ensure optimal
performance. We split the dataset into three parts, using the
first 50% of the time steps for training, the next 25% for hyper
parameter tuning (validation) and the last 25% for testing (i.e.,
prediction comparison). We only report the results on the test
set after hyper parameter tuning and complete retraining on the
training and validation set. The reported error is calculated
using the model’s predictions and the original dataset, i.e.,
without applying our proposed truncation methodology to the
predicted period, but only to the model’s input window. This
way of calculating the prediction error makes it more reliable
as we test how well the model predicts true resource utilisation.
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Fig. 5: Communication savings and truncation error (RMSE)
obtained from the Fourier processing mechanism at different
energy threshold values e for the Google and Alibaba cluster
trace sub-samples.
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Fig. 6: Prediction error on the test set for models trained at
different values of the energy threshold e on the Google and
Alibaba cluster traces. The time-domain benchmark models
are included for both datasets.

C. Results

We evaluate the performance of our proposed methodology
in terms of communication savings, prediction errors and
inference times for different energy thresholds e on both the
Google and Alibaba traces.

The Fourier processing mechanism leads to higher commu-
nication savings, the higher the error tolerance as demonstrated
in Fig. 5, where error tolerance is expressed via the energy
threshold. This relationship is better than linear and commu-
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Fig. 7: Inference speed for a single batch for a single ma-
chine using the proposed model architecture, evaluated on
the Google and Alibaba datasets at different energy threshold
values e. The time-domain benchmark models are included for
both datasets.

nication savings in excess of 60% can already be achieved at
a small error tolerance. From Fig. 5, it is apparent that there is
a clear trade-off between the communication savings achieved
via our proposed methodology and the error it introduces in the
data, i.e., the truncation error. The truncation error introduced
in the data refers to the error between the original data and
the truncated representation according to Equation (5), but not
the prediction error.

While there is a trade-off between communication savings
and error in the data, we do not find such a relationship for
the prediction error. Fig. 6 shows the effect of different trun-
cation thresholds on the prediction accuracy of the forecasting
models. While the Fourier processing mechanism introduces
some error in the data (see Fig. 5) it also has a smoothing
effect that may help to filter out some random fluctuations
in the data, which could otherwise have a detrimental effect
on the forecasting performance. For the Alibaba trace, fore-
casting model performance in terms of the prediction error
on the test set does not deteriorate significantly as the energy
threshold level is reduced. The models trained on the Google
cluster trace even exhibit an improvement in performance as
the energy threshold is decreased. This improvement can be
attributed to the smoothing effect of our proposed Fourier
processing methodology, which reduces the noise present in
the Google dataset and allows the forecasting model to learn
more effectively. Generally, the models trained on the Alibaba
trace perform worse than those trained on the Google trace.
This may be due to a variety of factors, such as different
hyper parameters and the shorter sampling period, leading
to fewer data points in the sub-sample, and higher variance
in the dataset. The experiments on real-world data confirm
that a significant improvement in inference speed can be
achieved using our Fourier truncation methodology, as Fig.
7 demonstrates. At an energy threshold level of e = 0.9, the
inference time of forecasting one batch of 72 time steps for a
single machine is reduced by more than 50% compared to the

time-domain benchmark model. This further decreases to less
than one fifth of the time-domain model’s inference time at
e = 0.5. This improvement in inference speed is a direct result
of the reduced length of the data in the input window, which
entails a reduction in the amount of computations required to
forecast a single batch of data. The improvement in inference
speed has two beneficial implications. On the one hand, quick
inference is often required for mission critical systems. On
the other hand, the reduction in computational overhead for
forecasting resource utilisation could make deploying pre-
trained models on less powerful machines in a distributed
system a viable option.

V. CONCLUSION AND FUTURE WORK

We have proposed an approach for the efficient transmission
and forecasting of time series data in distributed systems. The
approach combines a flexible data-reduction mechanism, inte-
grated with a forecasting architecture that can achieve substan-
tial improvements in communication overhead and inference
speed. We demonstrate the effectiveness of our approach using
real-world datasets and provide a comprehensive evaluation
of the proposed methodology. Our experiments show that
communication savings of approximately 60% can already be
achieved at a small error tolerance and that inference speed
can be improved by more than 50% without compromising
the forecasting accuracy of our proposed model. There are,
however, some limitations to the approach that could be the
subject of future research.

We have imposed error bounds to guide the data reduc-
tion rather than imposing explicit communication constraints.
While it is possible to impose explicit communication con-
straints, for example, by introducing an upper bound on the
number of terms that can be transmitted, this would entail
loosing guarantees on the error introduced by the truncation
algorithm. Extending our approach to explicitly include com-
munication constraints is left for future work.

Our proposed truncation methodology can be described as
an adaptive low-pass filter without attenuation. Specifically,
this means that we use the low-frequency terms of the Fourier
transforms and eliminate some of the higher frequency terms
according to the captured energy compared to the energy
threshold used. While this approach works well for the data
at hand, different frequency bands may be desirable for other
problems or datasets. For instance, if the mid-frequency range
captures the signal of interest, our methodology could be
changed to resemble a bandpass filter. An investigation into
such an adaptation may also be a fruitful avenue for further
research. Future research can also study the integration of our
data collection and forecasting methodology with scheduling
and system management frameworks.
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and Y. Bengio, “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” CoRR, vol. abs/1406.1078,
2014.

[32] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997. [Online]. Available:
http://dx.doi.org/10.1162/neco.1997.9.8.1735

[33] G. Hinton, N. Srivastava, , and K. Swersky, “Lecture 6a
overview of mini–batch gradient descent,” 2012. [Online]. Available:
https://www.cs.toronto.edu/ tijmen/csc321/slides/lecture slides lec6.pdf

[34] C. Reiss, J. Wilkes, and J. L. Hellerstein, “Google cluster-usage traces:
format + schema,” Google Inc., Mountain View, CA, USA, Technical
Report, Nov. 2011, revised 2014-11-17 for version 2.1. Posted at
https://github.com/google/cluster-data.

[35] H. Ding, “Alibaba cluster data,” https://github.com/alibaba/clusterdata,
2018, accessed: 2019-05-31.

[36] D.-J. Lee, Z. Zhu, and P. Toscas, “Spatio-temporal functional data
analysis for wireless sensor networks data,” Environmetrics, vol. 26,
no. 5, pp. 354–362, 2015.

[37] F. Li and B. Hu, “Deepjs: Job scheduling based on deep reinforcement
learning in cloud data center,” in Proceedings of the 2019 4th Interna-
tional Conference on Big Data and Computing, ser. ICBDC 2019. New
York, NY, USA: ACM, 2019, pp. 48–53.

[38] S. Ismaeel and A. Miri, “Using ELM techniques to predict data centre
VM requests,” in IEEE International Conference on Cyber Security and
Cloud Computing (CSCloud). New York, NY, USA: IEEE, Nov. 2015.

[39] PyTorch Contributors. PyTorch online documentation.
https://pytorch.org/docs. Accessed: 2019-08-13.

[40] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global
optimization of expensive black-box functions,” Journal of Global
Optimization, vol. 13, no. 4, pp. 455–492, Dec 1998. [Online].
Available: https://doi.org/10.1023/A:1008306431147


