
Adv Comput Math (2021) 47:42
https://doi.org/10.1007/s10444-021-09866-7

A fast sparse spectral method for nonlinear
integro-differential Volterra equations with general
kernels

Timon S. Gutleb1,2

Received: 28 January 2020 / Accepted: 8 April 2021 /
© The Author(s) 2021

Abstract
We present a sparse spectral method for nonlinear integro-differential Volterra equa-
tions based on the Volterra operator’s banded sparsity structure when acting on
specific Jacobi polynomial bases. The method is not restricted to convolution-type
kernels of the form K(x, y) = K(x − y) but instead works for general kernels at
competitive speeds and with exponential convergence. We provide various numerical
experiments based on an open-source implementation for problems with and without
known analytic solutions and comparisons with other methods.

Keywords Volterra · Integral equations · Nonlinear · Integro-differential ·
General kernels · Spectral methods · Multivariate orthogonal polynomials

Mathematics Subject Classification (2010) 45D05 · 65N35 · 65R20

1 Introduction

The Volterra integral operator is defined by

(VKu)(x) :=
∫ x

0
K(x, y)u(y)dy. (1)

Integral equations involving Volterra operators occur in diverse applications in var-
ious disciplines of engineering [55, 59] and finance and economics [3, 37], as well

Communicated by: Tobin Driscoll

� Timon S. Gutleb
t.gutleb18@imperial.ac.uk

1 Department of Mathematics, Imperial College London, London, UK

2 Fakultät für Mathematik, University of Vienna, Vienna, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s10444-021-09866-7&domain=pdf
http://orcid.org/0000-0002-8239-2372
mailto: t.gutleb18@imperial.ac.uk

 42 Page 2 of 26 Adv Comput Math (2021) 47:42

as the natural sciences [9, 20, 28, 30, 31, 35, 44, 58]. Beyond linear Volterra integral
equations of first and second kinds, which respectively take the forms

VKu = g or (λI + VK)u = g,

there exist a vast range of possible generalizations, the most important of which
are linear Volterra integro-differential equations (VIDEs), nonlinear Volterra integral
equations, and in particular nonlinear VIDEs, the last of which takes the form:

m∑
k=0

λk

dk

dxk
u(x) = g + VKf (u), (2)

where m ∈ N and ∀i : λi ∈ R. Linear Volterra equations thus correspond to the
special case f (u) = u. For certain very well-behaved cases, one can use variational
iteration, Adomian decomposition, or Laplace transformmethods [56] to try to obtain
analytic solutions for such equations but in general one must use numerical methods
to find approximate solutions. We assume in this paper that the equations we intend
to solve with our proposed numerical scheme are solvable with unique solutions and
omit discussion of ill-posed problems. A number of results on criteria for the exis-
tence of solutions are known; see, e.g., [22, 34, 60] and the references therein. If
the variable limit of integration is replaced with a constant value, the integral equa-
tions are instead known as Fredholm integral equations [25]. Fredholm integrals and
integral equations tend to have substantially different properties than their Volterra
counterparts, e.g., when it comes to well-posedness [57], and as a result are generally
better treated with specialized approaches.

Interest in efficient algorithms with good convergence properties for Volterra
integral equations is high, resulting in a variety of competitive methods for linear,
nonlinear, and integro-differential Volterra equations. For decades [11], researchers
have been proposing various forms of increasingly refined collocation and iteration
methods to approach nonlinear VIDEs [1, 2, 13, 15, 47, 53]. More recently, they
were also joined by a number of wavelet-based methods [8, 29, 32, 45, 46, 61].
Numerical solvers based on homotopy perturbation methods have also been pro-
posed [21]. A highly efficient spectral solver for the case of convolution kernels
K(x, y) = K(x − y) for linear VIDEs using low-rank approximations was recently
described by Hale [26]. Gutleb and Olver described a general kernel sparse spectral
method for linear Volterra integral equations in [24], which forms the background of
the present paper.

In this paper, we present a spectral method which works for linear, nonlinear,
integro-differential, and many other types of Volterra equations of first, second,
and third kinds while utilizing polynomial spaces in which the Volterra operators
have a sparse banded structure. As such, this paper is a direct generalization of
results in [24], which derived said banded structure of the Volterra operator in Jacobi
polynomial bases and on the basis of [42] developed an efficient Clenshaw algorithm-
based approach to numerically generate the operator. This method thus combines the
unmatched exponential convergence of spectral methods with highly efficient sparse

Adv Comput Math (2021) 47:42 Page 3 of 26 42

linear algebra, a very promising combination which has been successful in recent
years [27, 40, 41, 52, 54]. In addition to efficiency via bandedness and exponen-
tial convergence rate, the proposed method is furthermore not limited to convolution
kernel cases, i.e., kernels of form K(x, y) = K(x−y), a common restriction in com-
petitively fast and accurate approaches [26]. Due to the extensive literature and code
libraries available on numerical solutions for linear and nonlinear VIDEs, an exhaus-
tive comparison with other methods is far beyond the scope of a single paper. We will
however present comparisons with recent collocation methods, as these are the most
competitive and ubiquitous solvers available.

The structure of this paper is as follows: In Sections 1.1 and 1.2, we introduce
the necessary framework of uni- and multivariate orthogonal polynomial approxima-
tion of functions. Section 1.3 briefly recounts relevant results from [24], detailing the
banded structure of the Volterra operator on appropriately chosen triangle domain
Jacobi polynomial bases. Section 2 details the extension of the linear Volterra integral
equation method to a general linear integro-differential case by augmenting the sys-
temwith appropriate evaluation operators. Section 3 details the extension to nonlinear
Volterra integral equations using an iterative approach. Section 4 combines these
two approaches, finally extending the method to general kernel nonlinear VIDEs.
Section 5 showcases various numerical experiments based on open-source code [23]
for linear VIDEs as well as nonlinear VIEs and VIDEs to verify and test applicability,
convergence rate, and competitiveness including comparisons to collocation methods
in Chebfun. We close with notes on convergence for the methods proposed in this
paper in Section 6 and discuss applicability and potential further research directions
in the conclusion.

1.1 Function approximation with univariate orthogonal polynomials

In what follows, we introduce the relevant elements of function approximation in
univariate orthogonal polynomial bases, primarily focusing on the Jacobi polyno-
mials, which are required to understand the proposed spectral method for nonlinear
VIDEs. The reasons for highlighting the specific chosen properties above others will
become clear when we discuss the methods in Sections 2 and 3. For a more general
and complete introduction into the theory of function approximation with univariate
orthogonal polynomials, see, e.g., [6, 19].

The Jacobi polynomials P
(α,β)
n (t) are a univariate complete set of polynomials

orthogonal with respect to the weight function (1−t)α(1+t)β on their natural domain
t ∈ [−1, 1], meaning they satisfy

∫ 1

−1
(1 − x)α(1 + t)βP (α,β)

n (t)P (α,β)
m (t) dt = 2α+β+1

2n+α+β+1
Γ (n+α+1)Γ (n+β+1)

n!Γ (n+α+β+1) δnm,

where α, β ≥ −1. As such, the Legendre polynomials correspond to the special case
α = β = 0 and the ultraspherical or Gegenbauer polynomials correspond to the
special case in which α = β. Spectral methods can make use of the fact that complete

 42 Page 4 of 26 Adv Comput Math (2021) 47:42

sets of orthogonal polynomials can be used to approximate any sufficiently smooth
function f (t) defined on a real interval (a, b) via the expansion

f (t) =
∞∑

n=0

pn(x)fn = p(t)Tf,

where fn are the unique constant coefficients of f (t) in the given complete polyno-
mial basis p(t) which is orthogonal on the domain (a, b). These coefficients fn may
be computed efficiently for various sets of orthogonal polynomials using methods
and C libraries by Slevinsky [48–50], while evaluation of polynomials is efficiently
performed using Clenshaw’s algorithm; see, e.g., [19]. While the interval [−1, 1] is
the natural choice for the Jacobi polynomials, one can easily shift them to any other
real interval required by an application. The method in this paper exclusively makes
use of the Jacobi polynomials shifted to the unit interval [0, 1], so we introduce the
following shorthand notation:

P̃(x) = P(2x − 1), x ∈ [0, 1].
Once expanded in the above way, performing addition and subtraction of func-
tions has an obvious element-wise implementation. Additionally, being orthogonal
polynomials, the Jacobi polynomials satisfy a three-term recurrence relationship

tP (α,β)
n (t) = cn−1P

(α,β)

n−1 (t) + anP
(α,β)
n (t) + bnP

(α,β)

n+1 (t), n ≥ 1,

which allows for efficient computation of function multiplication in this framework
via a tridiagonal so-called Jacobi operator:

tf (t) = P(t)TJTf,

J =

⎛
⎜⎜⎜⎜⎝

a0 b0
c0 a1 b1

c1 a2
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎠ .

The exact elements of the Jacobi operator depend on the Jacobi parameters (α, β)

of the chosen basis; see, e.g., [38, 18.9(i)] for explicit values of ai, bi , and ci . As
the sparsity of the operators in this paper relies heavily on correctly moving between
bases with different Jacobi parameters (α, β), we will index coefficient vectors with
the Jacobi parameters of the basis of expansion, i.e., by writing f(α,β), where it might
otherwise be ambiguous. The above properties allow for the development of software
packages capable of performing arithmetic on functions using highly efficient sparse
linear algebra, where functions are replaced by coefficient vectors. One such package
is ApproxFun.jl [39] writen in the Julia programming language [7], which is used as
the background environment of the implementations presented in this paper. Other
available software packages include among others the Dedalus project [14], Chebfun
[5, 16, 43].

Beyond arithmetic with functions, there are a number of other useful operators
in the sparse spectral method toolbox. We may, for example, freely shift from a

Adv Comput Math (2021) 47:42 Page 5 of 26 42

basis with Jacobi parameters (α, β) to one with higher parameters (α + n, β + m)

via

P̃(α+n,β+m)(x)TS(α+n,β+m)

(α,β) f(α,β) = P̃(α+n,β+m)(x)Tf(α+n,β+m),

where n, m ∈ N using a sequence of upper bidiagonal raising operators [38, 18.9.5]

S(α+n,β)

(α,β) = S(α+n,β)

(α+n−1,β) · · · S(α+2,β)

(α+1,β)S
(α+1,β)

(α,β)

and an analogous sequence of operators for the second Jacobi parameter. Lowering
operators are also available, although this is in general only possible in a sparse (lower
bidiagonal) way with added weights [38, 18.9.6]:

xf (x) = P̃(α−1,β)(x)TL(α−1,β)

(α,β) f(α,β),

(1 − x)f (x) = P̃(α,β−1)(x)TL(α,β−1)
(α,β) f(α,β).

We may also mirror functions on their domain in a given Jacobi polynomial basis by
using the very useful symmetry property [38, Table 18.6.1]:

P (α,β)
n (−x) = (−1)nP (β,α)

n (x). (3)

In particular, on [0, 1], we can define a diagonal reflection operator via

f (1 − x) =
∑
n

(−1)nf(α,β),nP̃
(β,α)
n = P̃(α,β)(x)TRf(α,β).

Differentiation is also a sparse (diagonal) operation if we simultaneously increment
the Jacobi parameters [38, 18.9.15], i.e.:

d

dx
f (x) =

∑
n

f(α,β),n

d

dx
P (α,β)

n (x) (4)

=
∑
n

f(α,β),n

1

2
(n + α + β + 1) P

(α+1,β+1)
n−1 (x) (5)

= P̃(α+1,β+1)(x)TD(α,β)f(α,β). (6)

Importantly, this means that repeated sparse differentiation is not equivalent to a
repeat application of the same operator D(α,β). As the derivative operator shifts coef-
ficient vectors to a higher parameter basis, the second derivative operator is actually
a combination of two distinct derivative operators acting on different bases and so
on for higher derivatives. We thus denote the n-th derivative operator acting on a
coefficient vector in P̃(α,β) basis by D(α,β)

n , where

dn

dxn
f (x) = P̃(α+n,β+n)(x)TD(α+n−1,β+n−1) · · ·D(α,β)f(α,β)

= P̃(α+n,β+n)(x)TD(α,β)
n f(α,β),

instead of the potentially misleading notation Dn which may evoke false intuitions
of commutativity of the operators. The last component of theory we need for our
univariate function approximation purposes are endpoint evaluation operators which
will be used to enforce boundary conditions in integro-differential equations. From
the viewpoint described above, functions are coefficient vectors and multiplications,

 42 Page 6 of 26 Adv Comput Math (2021) 47:42

derivatives, and basis changes are operators on coefficient vectors (matrices in finite-
dimensional approximation space). Functionals, e.g., evaluation operators E at an
endpoint, must act on coefficient vectors to return a scalar value and are thus repre-
sented by row vectors. In particular, for the Jacobi polynomials, we can make use of
the known property [38, Table 18.6.1]:

f (1) = P(α,β)(x)TE1f(α,β) =
∑
n

f(α,β),nP
(α,β)
n (1) =

∑
n

f(α,β),n

(α + 1)n
n! ,

where (·)n denotes the Pochhammer symbol or rising factorial [38, 5.2(iii)]. Via the
symmetry property in Eq. 3, we obtain a similar evaluation operator for the other
endpoint of our chosen interval domain.

1.2 Function approximation withmultivariate orth. polynomials

This section introduces required elements of function approximation in multivariate
orthogonal polynomial bases, focusing on the Jacobi polynomials on the triangle
domain

T 2 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x},
which was discussed in detail in [42]. Multivariate polynomials are not yet widely
used in numerical methods despite their vast potential. For a more general and com-
plete introduction to theoretical aspects of multivariate orthogonal polynomials, see
[17].

Function approximation with multivariate orthogonal polynomials works in direct
analogy to the univariate case. For a given multivariate function f (x, y) defined
on some suitable 2-dimensional domain and given a set of complete multivariate
orthogonal polynomials on said domain, we may expand the function via

f (x, y) =
∞∑

n=0

n∑
k=0

fnkpnk(x, y) = p(x, y)Tf.

A generalization to n-dimensional cases is straightforward, cf. [17]. On the triangle
T 2, a sensible choice of polynomial basis is found in the triangle Jacobi polynomials,
also known as Proriol polynomials, which are defined via reference to the univariate
Jacobi polynomials [17, Proposition 2.4.1]:

P
(α,β,γ)

k,n (x, y) = (1 − x)kP̃
(2k+β+γ+1,α)
n−k (x) P̃

(γ,β)
k

(
y

1 − x

)
.

Expansion coefficients for functions on the triangle Jacobi polynomial basis, such
as required for the kernel K(x, y) discussed in the next section, may be computed
efficiently using C libraries by Slevinsky [48–50]. As in the univariate case, we can
define a variety of operators acting on coefficient space such as multiplication opera-
tors based on Jacobi operators, derivative operators, and basis change operators [42].
The novelty is that for 2-dimensional spaces such as the triangle we need to distin-
guish between the x and y variables and thus have two different Jacobi operators: Jx
for the x variable and Jy for the y variable, which are now block tri-diagonal operators
instead of being tridiagonal; see [42] for details.

Adv Comput Math (2021) 47:42 Page 7 of 26 42

1.3 Banded sparsity of the linear Volterra operator in Jacobi bases

It was shown in [24] that the Volterra integral operator is sparse with banded structure
on appropriate Jacobi polynomial spaces. Based on this, a sparse spectral method
with exponential convergence for linear Volterra equations with general kernels was
motivated and analyzed. The results are based on interpreting the Volterra operator as
acting on multivariate Jacobi bases on a triangle domain. The idea behind the linear
method follows the schemes in Algorithms 1 and 2. In this section, we briefly review
these methods to the degree necessary to follow the integro-differential and nonlinear
extension in this paper. For the full discussion of the linear case, we refer to [24].

The move to the triangle domain may initially be motivated by noting that the
Volterra integral operator

∫ l(x)

0 K(x, y)u(y)dy acting on u may be considered for
other upper bounds l(x) than x, in particular l(x) = 1 − x. The Proriol polynomials
with parameters (0, 0, 0), being orthogonal on the triangle domain, behave well with
respect to this integration:

∫ 1−x

0
f (x, y)dy =

∫ 1−x

0

∞∑
n=0

n∑
k=0

pn,k(x, y)fn,kdy

=
∞∑

n=0

n∑
k=0

fn,k(1 − x)kP̃
(2k+1,0)
n−k (x)

∫ 1−x

0
P̃

(0,0)
k

(
y

1 − x

)
dy

=
∞∑

n=0

n∑
k=0

fn,k(1 − x)k+1P̃
(2k+1,0)
n−k (x)

∫ 1

0
P̃

(0,0)
k (s) ds

=
∞∑

n=0

fn,0(1 − x)P̃ (1,0)
n (x)

Labeling the (1−x) as a weight term and referring to what remains as operatorQy , in
reference of it being an integration with respect to y, aligns our notation with that in
[24]. Using reflection operators, this can be adapted for the more standard l(x) = x

case (see [24]), which means that considering the kernel K(x, y) means looking at
K(1 − x, y) on this domain. This operator Qy acts on a function expanded in the
Proriol polynomials with parameters (0, 0, 0) on T 2 and as seen above has the form

Qy =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

1 0

1 0 0

. . .
. . .

. . .
. . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

We may account for the as of now omitted weight term (1 − x) by using a direct
multiplication with Jacobi operators but for reasons of efficiency and due to the need
to reflect when l(x) = x is better performed using a bidiagonal lowering operator

 42 Page 8 of 26 Adv Comput Math (2021) 47:42

followed by a diagonal reflection and finally a bidiagonal raising operator. The dis-
cussion so far explains the form of the operator for linear Volterra integral equations

of second kind in Algorithm 2 being
(
1 − S(1,0)

(0,0)RL
(0,0)
(1,0)VK

)
. Equations of first kind

are somewhat more subtle and we thus omit discussion of further details, referring
instead to the original linear method derivations and proofs in [24]. We have assumed
above that the function may be expanded in the Proriol polynomials but we can make
use of additional sparsity structures when instead thinking of fn,k as the extension of
univariate function coefficients fn extended to the triangle domain via the expansion
operator

P(x, y)Tf� = P(x, y)TEyf.
Choosing the respectively optimal bases P̃(1,0)(x) and P(0,0,0)(x, y) for this pur-
pose results in the extension operator found in [24], which when multiplied with the
integration from 0 to 1 − x operator above results in the following diagonal operator

(QyEy)n,n = (Dy)n,n = (−1)n+1

n
.

Via certain quasi-commutativity properties of the above-discussed operators and
the Jacobi operators on the triangle domain and using diagonal reflection operators
appropriately, one may iteratively build the full Volterra integral operator for a gen-
eral kernel via the efficient operator-valued Clenshaw algorithm for general kernel
linear Volterra integral equations introduced in [24]. We will refer to this Volterra
operator without the weight (1 − x) as VK in the following sections and assume
it is computed using the methods outlined here and detailed in [24]. The weight is
accounted for by using appropriate basis shifts or multiplication as detailed in the
algorithm steps.

Algorithm 1 Linear Volterra integral equation of first kind [24].

∫ x

0
K(x, y)u(y)dy = g(x).

1. Expand q(x) = g(1−x)
1−x

in P̃(1,0)(x).
2. Generate VK recursively via an operator-valued Clenshaw algorithm for the

flipped kernel K(1 − x, y).
3. Solve the linear system VKu = q for u.
4. The approximate solution is P̃(1,0)(x)Tu.

2 Extension of the linear case sparse spectral method to
integro-differential equations

Volterra integro-differential equations (VIDEs) are named such because the unknown
appears in the equation under the action of both a Volterra integral and a derivative

Adv Comput Math (2021) 47:42 Page 9 of 26 42

Algorithm 2 Linear Volterra integral equation of second kind [24].

u(x) = g(x) +
∫ x

0
K(x, y)u(y)dy.

1. Expand g(x) in P̃(1,0)(x).
2. Generate VK recursively via an operator-valued Clenshaw algorithm for the

flipped kernel K(1 − x, y).

3. Solve the linear system
(
1 − S(1,0)

(0,0)RL
(0,0)
(1,0)VK

)
u = g for u.

4. The approximate solution is P̃(1,0)(x)Tu.

operator. In this section, we will consider linear VIDEs of the following generic form:

M∑
m=0

λm

dm

dxm
u(x) = g + VKu, (7)

with constants λm and M ∈ N. Within the context of the present spectral method,
the integral operator is the Volterra operator from Section 1.3, which as we saw maps
a coefficient vector of a function in the P̃(1,0)(x) basis to the solution in the same
basis. Consistent basis considerations, specifically the Jacobi parameters of our cho-
sen basis, are crucial when developing a solution algorithm for integro-differential
equations. As noted in Section 1.1, there is an abundance of useful structure in the
Jacobi polynomials which among other things allows us to take derivatives by shift-
ing the basis parameters as in Eqs. 4–6. Applying a derivative operator is the same as
applying a parameter-scaled raising operator and thus incurs a basis change, which
needs to be accounted for in the other operators. We choose the integro-differential
equation of second order

d2

dx2
u(x) = g(x) +

∫ x

0
(x − y)u(y)dy.

as an example to illustrate this. To consistently obtain a solution from an extension
to the above linear method, it does not suffice to simply replace the second-order
derivative operator with the appropriate Jacobi polynomial basis derivative operator.
Instead, due to the incurred basis shift, an additional conversion or shift operator
must be applied to the Volterra operator as well. Starting from the P̃(1,0)(x) basis
in which we obtain our solution u, the second derivative operator carries us into the
basis P̃(3,2)(x), meaning that, taking note of the steps in Algorithm 2, the appropriate
operator form of the above second-order example equation is

P̃(3,2)T
(
D(1,0)

2 − S(3,2)
(1,0)S

(1,0)
(0,0)RL

(0,0)
(1,0)VK

)
u(1,0) = P̃(3,2)Tg(3,2).

We may collapse the compatible conversion operators down into a single one to
obtain the slightly simpler

P̃(3,2)T
(
D(1,0)

2 − S(3,2)
(0,0)RL

(0,0)
(1,0)VK

)
u(1,0) = P̃(3,2)Tg(3,2). (8)

 42 Page 10 of 26 Adv Comput Math (2021) 47:42

Note that g(x) must be expanded in the P̃(3,2)(x) basis instead of the P̃(1,0)(x) basis
or converted into said basis using the above-defined basis shift operators. This is for
consistency reasons as the operators acting on u(1,0) shifting the basis from P̃(1,0)(x)

to P̃(3,2)(x) means that the inverse of said operation must act on a function expanded
in P̃(3,2)(x). This is not an artifact of our choice of the P̃(1,0)(x) basis for our solu-
tion: While that basis is particularly well-suited for Volterra integral equations as it
results in a far more efficient kernel computation [24], the derivative operator in the
VIDE will always shift the basis of our solution, so to optimize efficiency g(x) is
always initially expanded in the P̃(1+M,M)(x) basis where M is the order of the high-
est appearing derivative operator. Even in the general case with multiple derivative
operators of different orders, the basis for the solution always remains P̃(1,0)(x) (for
efficiency of kernel computations) while the highest order derivative operator deter-
mines the basis in which g(x) must be expanded along with the shift operators which
respectively act on all lower order operators as well as the Volterra integral operator.

Attempting to invert the operator on the left-hand side of Eq. 8 as-is will yield
nonsensical results. This should be unsurprising, as the differential equation it corre-
sponds with does not have a unique solution unless initial conditions are supplied as
well. Given a Volterra integro-differential equation with highest appearing derivative
operator of order M ∈ N, we will in general require initial conditions for all lower
order derivatives to be given, i.e.:

dm

dxm
u(0) = cm, m = 0...M − 1,

for given constants cm. In the example case of Eq. 8, the values u(0) and u′(0) must
be given. In spectral methods such as the one discussed in this paper, boundary or ini-
tial conditions are enforced by extending the to-be-inverted operator by appropriate
evaluation operators. The relevant Jacobi basis evaluation operators, being function-
als, are represented in the coefficient vector and operator language as row vectors,
as discussed in Section 1.1. For the example in Eq. 8, we thus append the two initial
condition evaluations at the top of the operator as follows obtaining the now solvable
system:

⎛
⎝

E0
E0D(1,0)

D(1,0)
2 − S

(2,3)
(1,0)V

⎞
⎠u(1,0) =

⎛
⎝ c0

c1
g(3,2)

⎞
⎠ , (9)

with consistently modified right hand side. Similar procedures have previously been
used to solve differential equations, cf. [27, 54]. The discussion in this section in
combination with the linear Volterra integral method in Algorithms 1 and 2 thus pro-
vides a recipe for the solution of general linear Volterra integro-differential equations
satisfying a sufficient set of initial conditions. We produce the general case method
in Algorithm 3. The resulting operator on the left-hand side has filled-in top rows
for each initial condition and thus is no longer fully banded but still retains very
well-behaved sparsity structure (semi-banded) leading to fast solutions even for high
orders of polynomial approximation.

Adv Comput Math (2021) 47:42 Page 11 of 26 42

Algorithm 3 Linear integro-differential Volterra equation of second kind.

M∑
m=0

λm

dm

dxm
u(x) = g(x) +

∫ x

0
K(x, y)u(y)dy , λm ∈ R; m, M ∈ N

dm

dxm
u(0) = cm , m = 0...M − 1, cm ∈ R.

1. Expand g(x) in P̃(1+M,M)(x).
2. Generate VK recursively via an operator-valued Clenshaw algorithm for the

flipped kernel K(1 − x, y).

3. Generate the operator
(∑M

m=0 λmS
(1+M,M)
(1+m,m) D

(1,0)
m − S(1+M,M)

(0,0) RL(0,0)
(1,0)VK

)
.

4. Append evaluation operators (E0, E0D(1,0), ...) to the top row of the operator and
corresponding initial conditions (c0, c1, ...) to the top of g(1+M,M).

5. Solve the semi-banded linear system for u(1,0):⎛
⎜⎜⎜⎜⎜⎝

E0
E0D(1,0)

...
E0D(M,M−1)∑M

m=0 λmS
(1+M,M)
(1+m,m) D

(1,0)
m − S(1+M,M)

(0,0) RL(0,0)
(1,0)VK

⎞
⎟⎟⎟⎟⎟⎠
u(1,0) =

⎛
⎜⎜⎜⎜⎜⎝

c0
c1
...

cM−1
g(1+M,M)

⎞
⎟⎟⎟⎟⎟⎠

6. The approximate solution is P̃(1,0)(x)Tu(1,0).

3 Nonlinear Volterra equations via iterative methods

In this section, we develop an iterative approach for solving nonlinear Volterra inte-
gral equations based on the linear case sparse spectral method. Computing solutions
to nonlinear Volterra and Fredholm integral equations with iterative methods is not a
novel idea in itself (see, e.g., [15]), but typically comes with significant drawbacks,
cf. remarks in [4, 18]. The core problem with iterative methods is how rapidly their
computational cost scales with the expense of evaluation in each iteration. The slower
the rate of convergence and the more expensive the individual evaluation in each step,
the less feasible iterative methods become. Conversely, the presented sparse spectral
method is very well suited to be used in conjunction with iterative methods as it not
only converges exponentially but also keeps evaluation cost comparatively low by
making use of operator bandedness in the chosen bases.

We will primarily use a simple Newton iteration algorithm without linesearch on
the basis of implementations in NLsolve.jl [36] for the numerical experiments but in
principle many other iterative approaches may be used, resulting in further speed-ups
in some cases.

The main idea of the extension to the nonlinear case is to notice that given
functions K , g, and f the general nonlinear, second kind Volterra equation

u = g + VKf (u),

 42 Page 12 of 26 Adv Comput Math (2021) 47:42

may be cast into the form of a root-finding problem in function space for the objective
function F(u) defined by

F(u) := u − VKf (u) − g = 0.

The initial guess required for iterative approaches is thus made at the level of coeffi-
cient vectors, meaning that a guessed column vector representing the solution in the
P̃(1,0)(x) basis is supplied to the iterative solver. When no convergence automation
is used, the supplied length of the guess as well as g determines the maximum poly-
nomial degree and thus the approximation error. The step-by-step method is stated in
Algorithm 4.

Algorithm 4 Nonlinear Volterra integral equation of second kind.

u(x) = g(x) +
∫ x

0
K(x, y)f (y, u(y))dy.

1. Expand g(x) in P̃(1,0)(x).
2. Generate VK recursively via an operator-valued Clenshaw algorithm for the

flipped kernel K(1 − x, y).

3. Generate the operator
(
1 − S(1,0)

(0,0)RL
(0,0)
(1,0)VK

)
.

4. Apply a simultaneous root-search (e.g., Newton method) to components of

objective function F(u) =
(
1 − S(1,0)

(0,0)RL
(0,0)
(1,0)VK

)
f(y,u) − g.

5. The approximate solution is the obtained root P̃(1,0)(x)Tu.

4 Nonlinear integro-differential Volterra equations

We can straightforwardly combine considerations in Sections 2 and 3 to obtain a
sparse spectral method suitable for solving Volterra equations featuring both deriva-
tive operators and Volterra integral operators with nonlinearities. A very (but not
exhaustively) general case of such an equation of second kind is

m∑
k=0

λk

dk

dxk
u(x) = g + VKf (u). (10)

For brevity, we only address equations of the form in Eq. 10 but the methodology
outlined in this paper is applicable for a much broader class of problems. The full
step-by-step method is stated in Algorithm 5.

Adv Comput Math (2021) 47:42 Page 13 of 26 42

Algorithm 5 Nonlinear integro-differential Volterra equation of second kind.

M∑
m=0

λm

dm

dxm
u(x) = g(x) +

∫ x

0
K(x, y)f (y, u(y))dy , λm ∈ R; m, M ∈ N

dm

dxm
u(0) = cm , m = 0...M − 1.

1. Expand g(x) in P̃(1+M,M)(x).
2. Generate VK recursively via an operator-valued Clenshaw algorithm for the

flipped kernel K(1 − x, y).

3. Generate the operator
(∑M

m=0 λmS
(1+M,M)
(1+m,m) D

(1,0)
m − S(1+M,M)

(0,0) RL(0,0)
(1,0)VK

)
.

4. Append evaluation operators (E0, E0D(1,0), ...) to the top row of the operator and
corresponding initial conditions (c0, c1, ...) to the top of g(1+M,M).

5. Apply a simultaneous root-search (e.g., Newton method) to components of
objective function F(u) defined by⎛
⎜⎜⎜⎜⎜⎜⎝

E0u − c0
E0D(1,0)u − c1

...
E0D(M,M−1)u − cM−1(∑M

m=0 λmS
(1+M,M)
(1+m,m) D

(1,0)
m − S(1+M,M)

(0,0) RL(0,0)
(1,0)VK

)
f(y,u) − g(1+M,M)

⎞
⎟⎟⎟⎟⎟⎟⎠
.

6. The approximate solution is the obtained root P̃(1,0)(x)Tu.

5 Numerical experiments

The Julia code implemented for the numerical experiments in this section is available
at [23] and includes example files named after the appropriate subsections to help
reproduce our figures.

Throughout this section, we measure errors between analytic solutions u(x) and
computed approximate solutions P̃(1,0)(x)Tu(1,0) in each point of the domain via the
infinity norm of the absolute error

‖u(x) − P̃(1,0)(x)Tu(1,0)‖∞ = sup
x∈[0,1]

|u(x) − P̃(1,0)(x)Tu(1,0)|.

5.1 Numerical experiments with linear VIDEs

5.1.1 Set 1: Second kind, convolution kernels, one derivative operator

As a proof-of-concept, we first test the above method on three simple convolution
kernel cases with analytically known results:

 42 Page 14 of 26 Adv Comput Math (2021) 47:42

d2

dx2
u1(x) = 1 +

∫ x

0
(x − y)u1(y)dy, (11)

d4

dx4
u2(x) = −1 + x +

∫ x

0
(y − x)u2(y)dy, (12)

d3

dx3
u3(x) = 1 + x + x2

2
− x4

4! +
∫ x

0

(x − y)2

2
u3(y)dy, (13)

with initial conditions given by

u1(0) = 1, u′
1(0) = 0, (14)

u2(0) = −1, u′
2(0) = 1 u′′

2(0) = 1 u′′′
2 (0) = −1, (15)

u3(0) = 1, u′
3(0) = 2, u′′

3(0) = 1. (16)

The following analytic solutions derived respectively via variational iteration, Ado-
mian decomposition, and Laplace transform methods are found in [56]:

u1(x) = cosh(x),

u2(x) = sin(x) − cos(x),

u3(x) = x + ex .

We plot the absolute error of the computed solution compared to the analytic solution
in semi-logarithmic scale in Fig. 1, showing exponential convergence to the exact
solutions. As these are simple problems which may be solved with low-order approx-
imations (and thus small matrix dimensions) even with dense methods, the speed
advantage gained from bandedness for such problems is naturally small. We state
timings for these problems in Table 1.

(a) (b)

Fig. 1 Absolute error between analytic and computed solutions for u1(x), u2(x), and u3(x) in Eqs. 11–13
for polynomial approximation of order n with initial conditions in Eqs. 14–16

Adv Comput Math (2021) 47:42 Page 15 of 26 42

Table 1 Performance of sparse method for Eqs. 11–13 with approximation order 15

Problem CPU time approx. order abs. error

Equation 11 0.04 s 15 7.4e−15

Equation 12 0.07 s 15 6.5e−16

Equation 13 0.06 s 15 2.3e−15

CPU time measured on Intel Core i7-8550U CPU @ 1.80GHz

5.1.2 Set 2: Collocation method for third kind integro-differential equations

A collocation method is used in [47] to solve certain types of third kind integro-
differential Volterra equations of form

xβ d

dx
u(x) = xβa(x)u(x) + xβg(x) +

∫ x

0
K(x, y)u(y)dy.

While we do not explicitly treat third kind equations in this paper, the discussion of
first and second kind integro-differential equations in Section 2 suggests a natural
extension to these cases. Shayanfard, Dastjerdi, and Ghaini [47] discuss two numer-
ical examples and provide a table of error values for differently chosen collocation
points. The two numerical experiments with non-convolution kernels are

x
2
3 u′

1(x) = x
2
3

(
10

3
x

7
3 − 3

16
x

14
3

)
+

∫ x

0
yu1(y)dy, (17)

x
1
2 u′

2(x) = 1

20
xu2(x) + 9

2
x4 − 1

20
x

11
2 − 1

6
x6 +

∫ x

0
y

1
2 u2(y)dy, (18)

with initial conditions respectively given by

u1(0) = 0, u2(0) = 0, (19)

and known analytic solutions

u1(x) = x
10
3 ,

u2(x) = x
9
2 .

In Fig. 2, we compare absolute errors of the results obtained with our approach to the
errors obtained with their collocation method (as given in Tables 1 and 2 in [47]).

The bandwidth of the operators for such third kind VIDEs is large or even dense
as they feature additional multiplications with Jacobi operators with poorly approx-
imated rational powers in them. While our proposed method still performs better in
terms of accuracy and convergence as seen in Fig. 2, it is not immediately obvious
that a speed advantage can be gained over standard collocation methods. In third
kind equations which require a high order of approximation, however, we can nev-
ertheless use an approximately sparse approach as the resulting third kind Volterra
operators are banded-dominant and decay exponentially off the main band; see Fig. 3.
By generating these operators in a banded form with a set bandwidth, we can obtain
much more efficient solutions to third kind integro-differential problems while still

 42 Page 16 of 26 Adv Comput Math (2021) 47:42

(a) (b)

Fig. 2 a shows absolute error between analytic and computed solutions for Eq. 17 and b for Eq. 18 for
approximations of order n. The errors for the collocation method are taken directly from Tables 1 and 2 in
[47]. For the errors with our method, the bandwidth was set to increase to convergence; see Table 2 for a
bandwidth-based view of errors

retaining good accuracy; see the timing comparisons in Table 2 for the example of
n = 100.

5.2 Integro-differential equations in Chebfun

The Chebfun package allows state-of-the-art computations using polynomial approx-
imations and collocation methods in MATLAB [5, 16, 43]. An implementation of an
automatic collocation method for integral and integro-differential Volterra and Fred-
holm equations in Chebfun was presented in [15]. In this section, we aim to compare
performance of the sparse method compared to the dense collocation method used in
Chebfun for problems requiring low and high polynomial orders.

(a) (b)

Fig. 3 Dense view of approximately banded form of third kind Volterra integro-diff. operators in Eqs. 17–
18, with logarithmic legend indicating the order of magnitude of the elements. Generating these operators
with fixed bandwidth yields results in good accuracy and significant speed improvements; see Table 2

Adv Comput Math (2021) 47:42 Page 17 of 26 42

Table 2 Performance comparison of our method for Eqs. 17–18

Equation 17, off-diagonal bands CPU time approx. order abs. error

autom. (max) 3.9 s 100 1.1e−12

50 0.17 s 100 1.6e−8

30 0.12 s 100 1.4e−7

10 0.11 s 100 1.5e−5

Equation 18, off-diagonal bands CPU time approx. order abs. error

autom. (max) 4.0 s 100 2.5e−6

30 0.19 s 100 2.6e−6

10 0.16 s 100 3.9e−5

Approximating the operator as banded with stated off-diagonal bands yields significant speed improve-
ments while retaining good accuracy. CPU time measured on Intel Core i7-8550U CPU @ 1.80GHz

5.2.1 Low-order solutions

The example in this section is given in [15] and is a non-convolution kernel linear
VIDE which previously appeared in a discussion of higher order collocation methods
for VIDEs by Brunner [12]. We seek a solution to

u′
1(x) + u1(x) = 1 + 2x +

∫ x

0
x(1 + 2x)ey(x−y)u1(y)dy, (20)

with initial condition
u1(0) = 1, (21)

and known analytic solution

u1(x) = ex2 .

In Fig. 4a, we plot the absolute error of the solution obtained via the sparse spectral
method with maximal polynomial approximation order n. We present a spy plot of the
quasi-banded integro-differential operator generated by our sparse method in Fig. 4b.
We find that for orders around n = 20, where machine precision accuracy is within
reach, the operator for this problem is still dense and thus the proposed method should
realistically only match Chebfun’s performance. That a speed-up is nevertheless
observed (see Table 3) may be explained by language-specific differences between
MATLAB and Julia, the automatic convergence search which Chebfun performs
but was not used for the sparse method or a combination of such factors. Sparsity
becomes an important factor for efficiency when treating equations where more com-
plicated solutions are to be expected which require polynomial approximations in the
order of hundreds or thousands of coefficients.

5.2.2 High-order solutions

For an example which requires a higher n to solve with good accuracy, we consider

u′
2(x, k) = g2(x, k) +

∫ x

0
yex2u2(y, k)dy, (22)

 42 Page 18 of 26 Adv Comput Math (2021) 47:42

(a) (b)

Fig. 4 a shows absolute error between analytic and computed solutions for u1 in Eq. 20 for polynomial
approximation of order n, b shows quasi-bandedness of full sparse method operator for n = 100

given initial condition

u2(0, k) = 0, (23)

and right-hand side function g2(x, k) defined by

g2(x, k) = k

k2x2 + 1
− ex2 arctan(kx)

2k2
+ ex2x

2k
− 1

2
ex2x2 arctan(kx).

For all k ∈ R the analytic solution to this equation is given by

u2(x, k) = arctan(kx).

As this approximates a step-like function at x = 0 for increasing k (see Fig. 5a),
it is easy to see why polynomial approximations quickly begin to require high
orders. Figure 5b shows a spy plot of the quasi-banded integro-differential opera-
tor generated by our sparse method, while Fig. 6 shows the absolute error of some
solutions obtained via the sparse spectral method. The solutions needs to be resolved
in relatively high-order polynomial approximations, so the bandedness of the oper-
ator results in notable performance improvements compared to Chebfun’s dense
collocation method; see Table 4.

Table 3 Quantitative performance comparison of sparse method and Chebfun for Eq. 20

Method CPU time approx. order abs. error

Sparse method 0.1 s 20 1.4e−15

Chebfun 0.2 s 18 (autom.) 2.7e−15

The automatically chosen convergence order was used for Chebfun’s results. CPU time measured on Intel
Core i7-6700T CPU @ 2.80GHz

Adv Comput Math (2021) 47:42 Page 19 of 26 42

(a) (b)

Fig. 5 a shows u2(x, k) = arctan(kx) for some small values of k, b shows quasi-bandedness of full sparse
method operator for Eq. 22 with n = 300. This banded structure makes computations for very high n not
only possible but also fast

5.3 Bessel kernels with highly oscillatory solutions

Hale [26] discusses an integro-differential equation with Bessel function kernel,
which appears in scattering applications and potential theory, on the basis of previ-
ous work on Bessel kernel Volterra equations by Xiang and Brunner [58]. We use
this as the final numerical experiment in this section as it touches on the interesting
case of highly oscillatory solutions without known analytic form. Specifically, we
discuss the singularly perturbed version of the equation which appears in [26] and
intentionally makes the problem significantly more oscillatory:

10−3u′′(x) + ω2u(x) = g(x, μ, ν) − ω

∫ x

0
Jμ(ω(x − y))u2(y)dy. (24)

(a) (b)

Fig. 6 a and b show absolute error between analytic and computed solutions for Eq. 22 for various values
of k

 42 Page 20 of 26 Adv Comput Math (2021) 47:42

Table 4 Quantitative performance comparison of sparse method and Chebfun for Eq. 22

k (sparse) CPU time approx. order abs. error

100 0.3 s 300 6.0e−15

1000 0.4 s 800 2.9e−14

10,000 0.8 s 2000 9.3e−14

50,000 3.5 s 5000 2.8e−13

100,000 8.8 s 8000 8.1e−12

k (Chebfun) CPU time autom. order abs. error

100 1.4 s 196 4.8e−14

1000 2.1 s 540 6.6e−12

10,000 10.7 s 1477 1.2e−09

50,000 10.4 s 2863 4.1e−08

The automatically chosen order was used for Chebfun’s results, while the sparse method can generate
higher accuracy results in less time. For k = 100, 000 Chebfun issues an error after approximately 11 s
that it may not have converged. CPU time measured on Intel Core i7-6700T CPU @ 2.80GHz

with g(x, μ, ν) defined by

g(x, μ, ν) = Jμ+ν(ωx)+ 1

2x2
((ν −1)(ν −2)Jν−1(ωx)+ (ν +1)(ν +2)Jν+1(ωx)),

where Jμ are first kind Bessel functions, μ > 0 and ω ∈ R. Equation 24 is further
supplied with initial conditions

u(0) = u′(0) = 0.

To allow comparisons with [26], we will consider the example parameters

ν = 3, μ = 2, ω = 20.

Analytic solutions to this equation are not known and convergence comparisons are
thus made to high-order approximate solutions (n = 2000) instead. We plot the
highly oscillatory solution to this in Fig. 7a and the convergence to the n = 2000
solution in Fig. 7b. Similarly to results in [26], we observe rapid exponential con-
vergence once the polynomial order becomes sufficient to resolve the frequency of
the oscillations. Better convergence up to machine precision is possible when using a
more sophisticated balancing of approximation orders for the kernel, g and the solu-
tion, respectively, as opposed to linearly increasing the approximation order of each
of them at the same time. This could also be done using an automated convergence
algorithm if needed but this example is primarily presented to show the broad range
of applicability even for oscillatory problems—as this particular Bessel kernel is ulti-
mately a convolution kernel, methods which take the additional convolution kernel
structure into account, e.g., Hale’s method in [26], will generally outperform the gen-
eral kernel method presented in this paper in accuracy or performance (in particular
if operating in low polynomial approximation orders or if they themselves make use
of sparsity structure).

Adv Comput Math (2021) 47:42 Page 21 of 26 42

(a) (b)

Fig. 7 a shows highly oscillatory solution for Eq. 24 for high approximation order n = 2000, b shows
error of lower order approximations compared with the n = 2000 approximation as no analytic solutions
are available

5.4 Numerical experiments with nonlinear equations

5.4.1 Set 1: Power nonlinearity Volterra integral equations

The simplest case of nonlinear Volterra integral equations, and thus also where most
analytic solutions are available for direct comparison, is the case of power nonlin-
earities of the form f (u) = um for some positive integer m. We thus consider the
examples

u1(x) = ex + x(1 − e3x)

3
+

∫ x

0
xu31(y)dy, (25)

u2(x) = sin(x) + sin2(x)

4
− x2

4
+

∫ x

0
(x − y)u22(y)dy, (26)

whose analytic solutions are derived respectively via a Picard-type iteration and
Adomian decomposition method in [56]:

u1(x) = ex,

u2(x) = sin(x).

As discussed above and as is true for any iterative method, there are now multiple
parameters which may be fine-tuned to the problems at hand in order to achieve faster
and more precise convergence. To that end, we may for example fine-tune the initial
guess or the convergence cutoffs. As what can go wrong in a standard application
case is of greater interest than what may happen in ideal circumstances, we omit such
fine-tuning and instead simply supply a vector of all zeros of length n for Eq. 25
and a vector of all ones of length n for Eq. 26. We plot the maximal absolute errors
between true and computed solutions in Fig. 8. We observe exponential convergence
as n increases using simple Newton iteration without linesearch.

 42 Page 22 of 26 Adv Comput Math (2021) 47:42

(a) (b)

Fig. 8 Absolute error between analytic and computed solutions for u1(x) and u2(x) in Eqs. 25–26 for
polynomial approximation of order n

5.4.2 Set 2: Numerical experiments with nonlinear VIDEs

For nonlinear VIDEs, we consider:

d2

dx2
u1(x) = −5

3
sin(x) + 1

3
sin(2x) +

∫ x

0
cos(x − y)u21(y)dy, (27)

d

dx
u2(x) = x + cos(x) − tan(x) + tan2(x) +

∫ x

0

(
sin(x) + u22(y)

)
dy, (28)

with initial conditions

u1(0) = 0, u′
1(0) = 1, (29)

u2(0) = 0. (30)

Analytic solutions to these equations were derived in [56] using the variational
iteration method:

u1(x) = sin(x),

u2(x) = tan(x).

As in Section 5.4, we avoid making educated guesses for the initial guess supplied to
the algorithm and merely increase the maximal allowed length of the solution coef-
ficient vector, i.e., the maximal polynomial degree of the computed approximation.
The initial guess for Eq. 27 is a vector of all ones and the initial guess for Eq. 27
is a vector of all zeros of length n respectively. We plot the maximal absolute errors
between analytic and computed solutions in Fig. 9. We again observe exponential
convergence as n increases using Newton iteration without linesearch.

6 Notes on algorithm convergence

Convergence of the above-discussed method in the case of nonlinear equations arises
as a function of the convergence properties of the root search algorithm that is
utilized, combined with the proofs for the respective linear variants.

Adv Comput Math (2021) 47:42 Page 23 of 26 42

(a) (b)

Fig. 9 Absolute error between analytic and computed solutions for u1(x) and u2(x) in Eqs. 27–28 with
initial conditions in Eqs. 29–30 for polynomial approximation of order n

Proofs of convergence for second kind linear Volterra integro-differential equa-
tions may be given in a similar fashion to linear Volterra integral equations in [24] and
differential equations in [27], the basic observation being that the full to-be-inverted
operator is diagonally dominant for well-behaved functions and may be written as
a compact perturbation of the identity, thus reducing the problem to standard finite
section approximation convergence results, cf. [10, 33, 40, 51]. As seen in the linear
case proof for first kind VIEs in [24], proofs for first kind equations would require a
deeper functional analysis approach. The exponential nature of convergence for suf-
ficiently smooth problems is inherited from the fact that the solution is approximated
in terms of its coefficient vector in a basis of orthogonal polynomials.

7 Discussion

We have presented a competitively fast general kernel sparse spectral method for
nonlinear Volterra integro-differential and integral equations which extends linear
results in [24]. The method is notably not reliant on the structure of convolution
kernels and applies for general kernels. Furthermore, as it does not rely on low
rank approximations it is applicable in more general cases where these approxi-
mations fail. It thus combines very broad applicability with high performance and
accuracy.

One noteworthy drawback of this method is that, although as discussed in the
numerical experiments section in [24] the method may yield sensible results for some
types of singular kernels, there are as of now no known guarantees for such cases.
That said, the presented method was shown to be convergent and well-behaved with
problems that may be well approximated in the specified polynomial bases, which
allow for a very general range of kernels.

The numerical experiments in this paper serve an illustrative purpose—in a practi-
cal application setting one would choose more sophisticated and efficient root search
algorithms than a simple Newton iteration without linesearch and make an edu-
cated initial guess for the root search based on background knowledge about the

 42 Page 24 of 26 Adv Comput Math (2021) 47:42

structure of the problem instead of supplying simple zero or one filled coefficient
vectors. These points were specifically ignored in this paper to illustrate that such
more sophisticated methods are not required to achieve competitive performance and
accuracy.

Acknowledgements The author would like to thank Sheehan Olver for reading a draft and providing
helpful comments, and the anonymous reviewers for their useful comments and suggestions.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
licence, and indicate if changes were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Agbolade, O.A., Anake, T.A.: Solutions of first-order Volterra type linear integrodifferential equations
by collocation method. J. Appl. Math. 2017, 1–5 (2017). https://doi.org/10.1155/2017/1510267

2. Allaei, S.S., Yang, Z.W., Brunner, H.: Collocation methods for third-kind VIEs. IMA J. Numer. Anal.
37. https://doi.org/10.1093/imanum/drw033 (2017)

3. Apartsyn, A.S.: On some classes of linear Volterra integral equations abstract and applied analysis.
https://doi.org/10.1155/2014/532409 (2014)

4. Atkinson, K.E.: A survey of numerical methods for solving nonlinear integral equations. Journal of
Integral Equations and Applications 4(1). https://doi.org/10.1216/jiea/1181075664 (1992)

5. Battles, Z., Trefethen, L.N.: An extension of MATLAB to continuous functions and operators. SIAM
J. Sci. Comput. 25(5). https://doi.org/10.1137/S1064827503430126 (2004)

6. Beals, R., Wong, R.: Special Functions and Orthogonal Polynomials. No. 153 in Cambridge Studies
in Advanced Mathematics. Cambridge University Press, Cambridge (2016)

7. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh approach to numerical computing.
SIAM Rev. 59(1), 65–98 (2017). https://doi.org/10.1137/141000671

8. Biazar, J., Ebrahimi, H.: Chebyshev wavelets approach for nonlinear systems of Volterra
integral equations. Computers & Mathematics with Applications 63(3), 608–616 (2012).
https://doi.org/10.1016/j.camwa.2011.09.059

9. van den Bosch, F., Metz, J.A.J., Zadoks, J.C.: Pandemics of focal plant disease, a model. Phytopathol-
ogy 89(6), 495–505 (1999). https://doi.org/10.1094/PHYTO.1999.89.6.495

10. Böttcher, A., Silbermann, B., Karlovich, A. Analysis of Toeplitz Operators, 2nd edn. Springer
Monographs in Mathematics. Springer, Berlin (2006). OCLC: 181538992

11. Brunner, H.: On the numerical solution of nonlinear Volterra integro-differential equations. BIT
Numer. Math. 13(4), 381–390 (1973). https://doi.org/10.1007/BF01933399

12. Brunner, H.: High-order Methods for the numerical solution of Volterra integro-differential equations.
J. Comput. Appl. Math. 15(3). https://doi.org/10.1016/0377-0427(86)90221-9 (1986)

13. Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Differential Equations.
Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press,
Cambridge (2004)

14. Burns, K.J., Vasil, G.M., Oishi, J.S., Lecoanet, D., Brown, B.P.: Dedalus: a flexible framework for
numerical simulations with spectral methods. arXiv:1905.10388[astro-ph, physics:physics] (2019)

15. Driscoll, T.A.: Automatic spectral collocation for integral, integro-differential, and integrally refor-
mulated differential equations. J. Comput. Phys. 229(17). https://doi.org/10.1016/j.jcp.2010.04.029
(2010)

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2017/1510267
https://doi.org/10.1093/imanum/drw033
https://doi.org/10.1155/2014/532409
https://doi.org/10.1216/jiea/1181075664
https://doi.org/10.1137/S1064827503430126
https://doi.org/10.1137/141000671
https://doi.org/10.1016/j.camwa.2011.09.059
https://doi.org/10.1094/PHYTO.1999.89.6.495
https://doi.org/10.1007/BF01933399
https://doi.org/10.1016/0377-0427(86)90221-9
http://arxiv.org/abs/1905.10388
https://doi.org/10.1016/j.jcp.2010.04.029

Adv Comput Math (2021) 47:42 Page 25 of 26 42

16. Driscoll, T.A., Bornemann, F., Trefethen, L.N.: The chebop system for automatic solution of dif-
ferential equations. BIT Numerical Mathematics 48(4). https://doi.org/10.1007/s10543-008-0198-4
(2008)

17. Dunkl, C.F., Xu, Y.: Orthogonal Polynomials of Several Variables, Second Edn. No. 155 in
Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (2014)

18. Ezquerro, J.A., Hernández, M.A., Romero, N.: Solving nonlinear integral equations
of Fredholm type with high order iterative methods. J. Comput. Appl. Math. 236(6).
https://doi.org/10.1016/j.cam.2011.09.009 (2011)

19. Gautschi, W.: Orthogonal Polynomials: Computation and Approximation. Numerical Mathematics
and Scientific Computation. Oxford University Press, Oxford (2004)

20. Geiser, J.: An iterative splitting approach for linear integro-differential equations. Appl. Math. Lett.
26, 1048–1052 (2013). https://doi.org/10.1016/j.aml.2013.05.012

21. Ghasemi, M., Kajani, M.T., Babolian, E.: Numerical solutions of the nonlinear Volterra–Fredholm
integral equations by using homotopy perturbation method. Appl. Math. Comput. 188(1), 446–449
(2007). https://doi.org/10.1016/j.amc.2006.10.015

22. Gordji, M.E., Baghani, H., Baghani, O.: On existence and uniqueness of solutions of a nonlinear
integral equation. https://doi.org/10.1155/2011/743923 (2011)

23. Gutleb, T.S.: TSGut/SparseVolterraExamples.jl: v0.1.1. https://doi.org/10.5281/zenodo.4382253
(2020)

24. Gutleb, T.S., Olver, S.: A sparse spectral method for Volterra integral equations using
orthogonal polynomials on the triangle. SIAM J. Numer. Anal. 58(3), 1993–2018 (2020).
https://doi.org/10.1137/19M1267441

25. Hackbusch, W.: Integral Equations: Theory and Numerical Treatment. No. 120 in International Series
of Numerical Mathematics. Basel, Birkhäuser (1995)

26. Hale, N.: An ultraspherical spectral method for linear Fredholm and Volterra integro-
differential equations of convolution type. IMA J. Numer. Anal. 39(4), 1727–1746 (2019).
https://doi.org/10.1093/imanum/dry042

27. Hale, N., Olver, S.: A fast and spectrally convergent algorithm for Rational-Order fractional integral
and differential equations. SIAM J. Sci. Comput. 40. https://doi.org/10.1137/16M1104901 (2018)

28. Hethcote, H.W., Tudor, D.W.: Integral equation models for endemic infectious diseases. J. Math. Biol.
9(1), 37–47 (1980). https://doi.org/10.1007/BF00276034

29. Heydari, M.H., Hooshmandasl, M.R., Mohammadi, F., Cattani, C.: Wavelets Method for solving sys-
tems of nonlinear singular fractional Volterra integro-differential equations. Commun. Nonlinear Sci.
Numer. Simul. https://doi.org/10.1016/j.cnsns.2013.04.026 (2014)

30. Krimer, D.O., Putz, S., Majer, J., Rotter, S.: Non-markovian dynamics of a single-mode cav-
ity strongly coupled to an inhomogeneously broadened spin ensemble. Phys. Rev. A 90(4).
https://doi.org/10.1103/PhysRevA.90.043852 (2014)

31. Krimer, D.O., Zens, M., Putz, S., Rotter, S.: Sustained photon pulse revivals from inhomogeneously
broadened spin ensembles. Laser Photonics Rev. (6): 1023–1030. https://doi.org/10.1002/lpor.2016
00189 (2016)

32. Lepik, U.: Haar wavelet method for nonlinear integro-differential equations. Appl. Math. Comput.
176. https://doi.org/10.1016/j.amc.2005.09.021 (2006)

33. Lintner, S.K., Bruno, O.P.: A generalized calderón formula for open-arc diffraction problems: the-
oretical considerations. P. Roy. Soc. Edinb. A 145(2). https://doi.org/10.1017/S0308210512000807
(2015)

34. Meehan, M., O’Regan, D.: Existence theory for nonlinear Volterra integrodifferential and integral
equations. Nonlinear analysis: theory. Methods & Applications 31. https://doi.org/10.1016/S0362-
546X(96)00313-6 (1998)

35. Micke, A., Bülow, M.: Application of Volterra integral equations to the modelling of the sorption
kinetics of multi-component mixtures in porous media. Gas Separation & Purification 4(3), 158–164
(1990). https://doi.org/10.1016/0950-4214(90)80018-G

36. Mogensen, P.K., Carlsson, K., Villemot, S., Lyon, S., Gomez, M., Rackauckas, C., Holy, T., Widmann,
D., Kelman, T., Macedo, M.R.G., Benneti, Bojesen, T.A., Arakaki, T., Christ, S., Byrne, S., Lubin,
M., Barton, D., Kwon, C., Lucibello, C., Riseth, A.N., Levitt, A.: JuliaNLSolvers/NLsolve.jl: v4.2.0.
https://doi.org/10.5281/zenodo.3527404 (2019)

37. Nedaiasl, K., Bastani, A.F., Rafiee, A.: A product integration method for the approximation of the
early exercise boundary in the american option pricing problem.Mathematical Methods in the Applied
Sciences 42(8), 2825–2841 (2019). https://doi.org/10.1002/mma.5553

https://doi.org/10.1007/s10543-008-0198-4
https://doi.org/10.1016/j.cam.2011.09.009
https://doi.org/10.1016/j.aml.2013.05.012
https://doi.org/10.1016/j.amc.2006.10.015
https://doi.org/10.1155/2011/743923
https://doi.org/10.5281/zenodo.4382253
https://doi.org/10.1137/19M1267441
https://doi.org/10.1093/imanum/dry042
https://doi.org/10.1137/16M1104901
https://doi.org/10.1007/BF00276034
https://doi.org/10.1016/j.cnsns.2013.04.026
https://doi.org/10.1103/PhysRevA.90.043852
https://doi.org/10.1002/lpor.201600189
https://doi.org/10.1002/lpor.201600189
https://doi.org/10.1016/j.amc.2005.09.021
https://doi.org/10.1017/S0308210512000807
https://doi.org/10.1016/S0362-546X(96)00313-6
https://doi.org/10.1016/S0362-546X(96)00313-6
https://doi.org/10.1016/0950-4214(90)80018-G
https://doi.org/10.5281/zenodo.3527404
https://doi.org/10.1002/mma.5553

 42 Page 26 of 26 Adv Comput Math (2021) 47:42

38. Olver, F., Daalhuis, A., Lozier, D., Schneider, B., Boisvert, R., Clark, C., Miller, B., Saunders (eds.),
B.V.: NIST Digital Library of Mathematical Functions (2018). https://dlmf.nist.gov/

39. Olver, S.: JuliaApproximation/ApproxFun.jl (2019). https://github.com/JuliaApproximation/
ApproxFun.jl

40. Olver, S., Townsend, A.: A fast and well-conditioned spectral method. SIAM Rev. 55(3).
https://doi.org/10.1137/120865458 (2013)

41. Olver, S., Townsend, A.: A practical framework for infinite-dimensional linear algebra. In: 2014
First Workshop for High Performance Technical Computing in Dynamic Languages. IEEE, LA, USA
(2014). https://doi.org/10.1109/HPTCDL.2014.10

42. Olver, S., Townsend, A., Vasil, G.: A sparse spectral method on triangles. arXiv:1902.04863 (2019)
43. Pachon, R., Platte, R.B., Trefethen, L.N.: Piecewise-smooth chebfuns. IMA Journal of Numerical

Analysis 30(4). https://doi.org/10.1093/imanum/drp008 (2010)
44. Prüss, J.: Evolutionary Integral Equations and Applications. Modern Birkhäuser Classics. Springer,

Basel, New York (2012). OCLC: ocn796763028
45. Saeedi, H., Mohseni Moghadam, M.: Numerical solution of nonlinear Volterra integro-differential

equations of arbitrary order by CAS wavelets. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1216–
1226 (2011). https://doi.org/10.1016/j.cnsns.2010.07.017

46. Sahu, P.K., Ray, S.S.: Legendre wavelets operational method for the numerical solu-
tions of nonlinear Volterra integro-differential equations system. Appl. Math. Comput.
https://doi.org/10.1016/j.amc.2015.01.063 (2015)

47. Shayanfard, F., Laeli Dastjerdi, H., Maalek Ghaini, F.: collocation method for approxi-
mate solution of Volterra integro-differential equations of the third-kind. Appl. Numer. Math.
https://doi.org/10.1016/j.apnum.2019.09.020 (2019)

48. Slevinsky, R.M.: Conquering the pre-computation in two-dimensional harmonic polynomial trans-
forms. arXiv:1711.07866 (2017)

49. Slevinsky, R.M.: Fast and backward stable transforms between spherical harmonic expansions and
bivariate fourier series. Appl. Comput. Harmon Anal. https://doi.org/10.1016/j.acha.2017.11.001
(2017)

50. Slevinsky, R.M.: FastTransforms v0.1.1. https://github.com/MikaelSlevinsky/FastTransforms.
Original-date: 2018-03-15T23:11:52Z (2019)

51. Slevinsky, R.M., Olver, S.: A fast and well-conditioned spectral method for singular integral
equations. J. Comput. Phys. 332, 290–315 (2017). https://doi.org/10.1016/j.jcp.2016.12.009

52. Snowball, B., Olver, S.: Sparse spectral and-finite element methods for partial differential equations
on disk slices and trapeziums. Stud. Appl. Math. 145(1), 3–35 (2020)

53. Song, H., Yang, Z., Brunner, H.: Analysis of collocation methods for nonlinear Volterra integral
equations of the third kind calcolo. https://doi.org/10.1007/s10092-019-0304-9 (2019)

54. Townsend, A., Olver, S.: The automatic solution of partial differential equations using a global spectral
method. J. Comput. Phys. 299. 10.1016/j.jcp.2015.06.031 (2015)

55. Unterreiter, A.: Volterra integral equation models for semiconductor devices. Mathematical Methods
in the Applied Sciences 19(6), 425–450 (1996). https://doi.org/10.1002/(SICI)1099-1476(199604)
19:6〈425::AID-MMA744〉3.0.CO;2-M

56. Wazwaz, A.M.: Linear an Nonlinear Integral Equations: Methods and Applications. Higher Education
Press, Beijing (2011)

57. Wazwaz, A.M.: The regularization method for Fredholm integral equations of the first kind.
Computers & Mathematics with Applications 61(10), 2981–2986 (2011)

58. Xiang, S., Brunner, H.: Efficient methods for Volterra integral equations with highly oscillatory Bessel
kernels. BIT Numer. Math. 53(1), 241–263 (2013). 10.1007/s10543-012-0399-8

59. Zakes, F., Sniady, P.: Application of Volterra Integral Equations in Dynamics of Multispan Uniform
Continuous Beams Subjected to a Moving Load (2016). https://doi.org/10.1155/2016/4070627

60. Zhang, P., Hao, X.: Existence and uniqueness of solutions for a class of nonlinear integro-differential
equations on unbounded domains in Banach spaces. Advances in Difference Equations 2018.
https://doi.org/10.1186/s13662-018-1681-0 (2018)

61. Zhu, L., Fan, Q.: Solving fractional nonlinear Fredholm integro-differential equations by the second
kind Chebyshev wavelet. Commun. Nonlinear Sci. Numer. Simul. 17. https://doi.org/10.1016/j.cnsns.
2011.10.014 (2012)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

https://dlmf.nist.gov/
https://github.com/JuliaApproximation/ApproxFun.jl
https://github.com/JuliaApproximation/ApproxFun.jl
https://doi.org/10.1137/120865458
https://doi.org/10.1109/HPTCDL.2014.10
http://arxiv.org/abs/1902.04863
https://doi.org/10.1093/imanum/drp008
https://doi.org/10.1016/j.cnsns.2010.07.017
https://doi.org/10.1016/j.amc.2015.01.063
https://doi.org/10.1016/j.apnum.2019.09.020
http://arxiv.org/abs/1711.07866
https://doi.org/10.1016/j.acha.2017.11.001
https://github.com/MikaelSlevinsky/FastTransforms
https://doi.org/10.1016/j.jcp.2016.12.009
https://doi.org/10.1007/s10092-019-0304-9
https://doi.org/10.1002/(SICI)1099-1476(199604)19:6$\delimiter "426830A $425::AID-MMA744$\delimiter "526930B $3.0.CO;2-M
https://doi.org/10.1002/(SICI)1099-1476(199604)19:6$\delimiter "426830A $425::AID-MMA744$\delimiter "526930B $3.0.CO;2-M
https://doi.org/10.1155/2016/4070627
https://doi.org/10.1186/s13662-018-1681-0
https://doi.org/10.1016/j.cnsns.2011.10.014
https://doi.org/10.1016/j.cnsns.2011.10.014

	A fast sparse spectral method for nonlinear integro-differential Volterra equations with general kernels
	Abstract
	Introduction
	Function approximation with univariate orthogonal polynomials
	Function approximation with multivariate orth. polynomials
	Banded sparsity of the linear Volterra operator in Jacobi bases

	Extension of the linear case sparse spectral method to integro-differential equations
	Nonlinear Volterra equations via iterative methods
	Nonlinear integro-differential Volterra equations
	Numerical experiments
	Numerical experiments with linear VIDEs
	Set 1: Second kind, convolution kernels, one derivative operator
	Set 2: Collocation method for third kind integro-differential equations

	Integro-differential equations in Chebfun
	Low-order solutions
	High-order solutions

	Bessel kernels with highly oscillatory solutions
	Numerical experiments with nonlinear equations
	Set 1: Power nonlinearity Volterra integral equations
	Set 2: Numerical experiments with nonlinear VIDEs

	Notes on algorithm convergence
	Discussion
	References

