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We calculate the effects of conduction band electrons (CBEs), introduced by doping or pho-
toexcitation, on the ferroelectricity and phonon dynamics of BaTiO3 (BTO). We show that CBEs
destabilize ferroelectricity, which would lower the Curie temperature and coercive field, and might
help to improve the speed or efficiency with which polarization domains can be switched in ferroelec-
tric devices. We show that CBEs lower the frequencies of the A1 soft/ferroelectric modes in BTO’s
ferroelectric phases, and raise the soft mode frequency in its paraelectric phase. We also show that
femtosecond laser pulses could be used to selectively excite a coherent A1 ferroelectric-mode phonon.
This would allow this much-studied excitation to be monitored by pump-probe spectroscopy as it
decays into other modes. We show that many of the properties of doped and undoped BTO have
simple and intuitive explanations, within an ionic picture of BTO’s bonding, if it is assumed that
ferroelectricity is not driven by long range interactions, but by the attraction between Ti and O
neighbours. Most of the effects of CBEs are consequences of them reducing ions’ charges and in-
creasing their polarizabilities, thereby weakening the Ti-O attraction. As the CBE density increases,
so does the density of delocalized interstitial electrons, which would increase conductivity. We argue
that a polar metallic phase exists if the threshold for metallic conductivity can be reached before the
CBEs make polar distortions energetically unfavourable by critically weakening the Ti-O attraction.

I. INTRODUCTION

BaTiO3 (BTO) is a high-κ ceramic that is ferroelec-
tric, ferroelastic, piezoelectric, and pyroelectric. Among
ABO3 perovskites materials, it is often viewed as the sim-
plest multiferroic and the archetype of ferroelastoelectrics
- an important class of functional materials. Therefore,
it is of both fundamental and practical importance to
understand BTO’s structure, energetics, phonon dynam-
ics, and the intimate relationship between its ferroelectric
and ferroelastic orderings.

BTO is used in many devices, including capacitors,
tunable microwave devices [1], transducers, and sen-
sors [2, 3]. It is also being studied for its potential use
in ferroelectric memory devices (FeRAM), photovoltaic
devices [4–9], for electro-optic modulation [10] and for
energy storage [11–14]. It is often doped or alloyed with
other perovskite materials, such as SrTiO3, to achieve
optimal properties for device applications. For example,
although the optical gap (Eg) of pure BTO is around
3.2 eV [15, 16, 112], doping it with electrons (e−) can
make it semiconducting or metallic. Several experimen-
tal groups have even reported the existence of a polar
metallic phase in n-doped BTO [17–19]. This coexistence
of ferroelectricity and metallic conductivity is an exciting
and fundamentally-important finding, which may lead to
new applications. However, it is controversial [20] and
not yet well-understood. Although different experimen-
tal reports of this phase are in broad qualitative agree-
ment, the agreement is not fully quantitative. Further-
more, some of the reported measurements and spectra
have not satisfactorily been explained. This is not sur-
prising given that, after 70 years of experimental, theo-
retical, and computational investigations, large gaps in
our understanding of pure (insulating) BTO remain.

At temperatures (T ) greater than the Curie temper-
ature, TC ≈ 120◦C− 130◦C, BTO is paraelectric (PE)
and its nominal structure is that of a perfectly-cubic per-
ovskite. As T is reduced, it undergoes the following se-

quence of phase transitions: cubic (Pm3̄m)
393K−−−→ tetrag-

onal (P4mm)
278K−−−→ orthorhombic (Amm2)

183K−−−→ rhom-
bohedral (R3m), where the three lower-T phases are all
ferroelectric (FE) and ferroelastic. The mechanisms of
the T -induced phase transitions [21, 22], and the related
question of how closely the microscopic structures of
these four phases match the space- and/or time-averaged
structures observed experimentally [23–25], is still being
debated after decades of research [26–29]. This lack of
clarity or consensus can be attributed, in part, to the
fact that multiple strongly-coupled modes of lattice vi-
bration play important roles in the phase transitions,
not all of which can accurately, or perhaps even use-
fully, be described by phonon theory. Analyses of exper-
imental Raman and THz spectra are frustrated by this
clutter, by the complexity of the interactions between
the modes, and by the existence, near TC , of a broad
and strongly T -dependent spectral feature, known as the
central mode (CM), which spans a wide range of low fre-
quencies (∼ 0 THz− 3 THz). It is almost certainly not
coincidental that the CM partially obscures the frequency
range of most relevance to ferroelectric-ferroelastic cou-
pling and to the acousto-optical couplings that mediate
the phase transitions.

In this work we use a constrained form of density func-
tional theory (DFT) to calculate the effects on BTO’s
structure, energetics, phonon dynamics and ferroelectric-
ity of altering its electronic state by populating its con-
duction band with electrons. We explain the results of
our calculations using a simple and intuitive ionic picture
of BTO’s bonding and electronic structure.
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One of our purposes is to show that above-band-gap
(>Eg) ultrashort (. 100 fs) laser pulses would selectively
excite a coherent long-wavelength (Γ−point) soft mode
(SM) phonon in BTO’s FE phases, and temporarily lower
TC and the magnitude of the coercive field (Ec) required
to switch the direction of its polarization (P). It is gener-
ally accepted that understanding the SM is crucial to un-
derstanding BTO’s phase transitions [30, 31]. Therefore
it seems likely that much more could be learned about
it, and its relationships to other modes, by selectively ex-
citing it at low T and monitoring its decay. We suggest
that this could be achieved by ultrafast pump-probe spec-
troscopy with >Eg pump pulses. Furthermore, interest
in the use of laser pulses to help manipulate P domains
in FE devices [5, 32] has surged in recent years. Various
mechanisms have been reported, including localized heat-
ing of the lattice [33], coupling of <Eg pulses to charged
domain walls [34–38]; coupling of THz pulses to the SM
phonon [39, 40]; indirect excitation of the SM phonon by
resonant infrared (IR) excitation of a mode that couples
strongly to it [41, 42]; and by impulsive stimulated Ra-
man scattering [33, 43]. We demonstrate a non-thermal
mechanism by which laser pulses could facilitate domain
switching in pure or n−doped BTO by lowering Ec.

Our other purpose is to help explain the results of re-
cent experiments on electron doped BTO. The simple
picture of ionic bonding with which we interpret our cal-
culations can also explain some of the puzzling properties
that have been observed, including the non-monotonic
dependence of the SM frequency (νSM) on carrier den-
sity [18, 44], the enhanced SM spectral intensity and
weakened polarization anisotropy of the polar metallic
phase[18], and the coexistence of polar distortions and
metallic conductivity.

A. A1 phonon modes and the ferroelectric
instability

The FE structures of BTO can all be viewed as the
result of slight symmetry-lowering distortions of the cu-
bic PE crystal, which are driven by the attraction be-
tween Ti cations (nominally Ti4+) and O anions (nomi-
nally O2−). This attraction draws neighbouring Ti and
O ions closer, thereby displacing them from their high-
symmetry positions at the center of the conventional cu-
bic perovskite cell and at the centers of its faces, respec-
tively (see Fig. 1). This lowers the Coulomb energy, po-
larizes the crystal and, as a demand of the lowered sym-
metry, strains the unit cell. In all cases the resulting P
is parallel to the (average) off-center Ti displacement.

The equilibrium polar distortions are not unique: for
example, in the R3m phase Ti can be displaced in the
direction of any one of the eight Ba atoms at the cell’s
corners, i.e., along any 〈111〉 direction. Its ferroelectricity
can be attributed, firstly, to the existence of these mul-
tiple energy minima, corresponding to different polariza-
tions, and, secondly, to the shallowness of these minima,

which allows P to be switched by an applied field.

FIG. 1. Eigen-displacements of BaTiO3 zone-centre (a) Soft
mode (SM), (b) Last mode (LM) and (c) Axe mode (AM) in
rhombohedral phase. Green, blue and red balls mark Ba ions,
Ti ions and oxygens, respectively.

The space groups of the FE phases are all subgroups
of Pm3̄m and, as a consequence of their lowered sym-
metry, each FE phase possesses A1 phonon modes. A1

modes preserve symmetry in the sense that a small per-
turbation of a crystal along an A1 eigenvector does not
lower or raise the crystal’s symmetry. Furthermore, the
parent high-symmetry Pm3̄m structure can be reached
from each FE crystal by a linear combination of displace-
ments along the latter’s A1 eigenvectors. Therefore the
ferroelectric instability can be viewed as an instability
of Pm3̄m to distortion along the FE phases’ A1 eigen-
vectors. The Pm3̄m crystal does not possess A1 modes
because all atoms in its unit cell occupy positions of high
symmetry and so any small perturbation would lower the
crystal’s symmetry. Each FE phase has three polar A1

modes, which are both IR- and Raman-active, and whose
eigenvectors are illustrated in Fig. 1. The SM is one of
these; it involves the counter-motion of the Ti ion and
the octahedral ‘cage’ whose vertices are the six nearest
O ions to it. The eigendisplacements of the other two IR-
and Raman-active A1 modes can roughly be described as
motion of rigid TiO6 octahedra relative to the Ba sublat-
tice (“Last mode”, LM), and a rotation and deformation
of the O6 octahedral cage within stationary cation sub-
lattices (“Axe mode”, AM).

The fact that A1 eigenvectors relate a FE phase to
the PE phase is crucial. It means that the magnitude of
the polar distortion of the Pm3̄m structure, and hence
|P|, is not constrained by symmetry but determined by
competition between the Ti-O Coulomb attraction and
the ‘exchange’ repulsion between the ions’ overlapping
electron clouds [45]. It follows that any means of altering
the delicate balance between these opposing forces can be
used to control ferroelectricity and ferroelasticity. One
practical way to effect such a change, which is the subject
of the present work, is to populate the conduction band
(CB) with electrons.
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B. Soft mode, ferroelectric mode, central mode

Much of the work towards understanding the phase
transitions in BTO has focussed on the SM [22], which
is a triply-degenerate IR-active and Raman-active trans-
verse optical (TO) F1u phonon that softens incompletely
as TC is approached from above [46], and which splits, at
the PE-FE transition, into a dramatically-hardened A1

mode and two degenerate E modes. The E modes con-
tinue to soften until one of them hardens at each of the
FE-FE phase transitions. In FE phases the A1 counter-
part of the SM is known as the ferroelectric mode (FM)
because the countermotion of Ti and its O cage is along
the polar axis and, in the long-wavelength limit, the FM
is simply an oscillation of P.

The CM mentioned in the introduction is a further IR-
and Raman-active mode, which is observed in both FE
and PE phases [30, 47]. It is thought to be thermally-
activated and to be overdamped, or heavily damped
if/when it is oscillatory [22]. A plausible explanation of
it has been provided by Hlinka et al. [48]. What follows
is a brief summary of their explanation as it would apply
to a simplistic model of ferroelectricity in BTO.

We notionally partition the crystal into primitive unit
cells and let d denote the difference between a particular
cell’s instantaneous dipole moment and the dipole mo-
ment it would have in the perfect Pm3̄m crystal. The
latter is zero for some choices of unit cell. The macro-
scopic polarization is P = 〈d 〉 / 〈Ω 〉, where Ω denotes a
primitive cell’s volume and 〈 〉 denotes an average over
different cells (space) or time. We refer to the fluctuation
of d within a cell as one of the crystal’s local modes and,
for simplicity, we assume that it is dominated by the con-
tribution to it from distortion of the Pm3̄m primitive cell
along the FE phase’s Γ-point A1 FM eigenvector. In R3m
d arises from a distortion of Pm3̄m along the eigenvec-
tor illustrated in Fig. 1(a). In P4mm and Amm2 it arises
from counter-motion of Ti and its O6 cage along the 〈100〉
and 〈110〉 directions, respectively. We now consider the
coupled dynamics of the d’s and we focus specifically on
their components parallel to P, which we denote by d.

We approximate the FM+CM part of each cell’s
energy as EFM+CM = EFM+CM

local + EFM+CM
d−d , where

EFM+CM
d−d is the coupling to d’s in other cells and

EFM+CM
local (d) is independent of other cells. By sym-

metry EFM+CM
local (d) = EFM+CM

local (−d); therefore, if
we also assume weak coupling between cells, i.e.,∣∣EFM+CM

d−d
∣∣� ∣∣EFM+CM

local

∣∣, we find that EFM+CM(d) is

an almost-symmetric double well potential. EFM+CM
d−d

is responsible for the slight asymmetry that favours
the d > 0 (⇒ d ‖ P) energy basin over the d < 0
(⇒ d ‖ −P) basin. At low T each d(t) oscillates near

its d > 0 energy minimum with amplitude ∝
√
T and

a probability ∝ exp
(
−∆EFM+CM/kBT

)
of hopping

to the d < 0 basin, where ∆EFM+CM is the barrier
separating the two basins. At finite T some fraction
of the d’s are negative, which reduces |P|, thereby

lessening the asymmetry of EFM+CM(d). When T is
low enough we can understand the FM and the CM
as different forms of collective motion of all the d’s
in the crystal: the FM is coupled small oscillations
of the d’s about one of their two local energy minima
and the CM is their coupled low-frequency hopping
between the two energy basins. The fact that each d
has more than one local minimum adds considerable
complexity to the FM, which we do not discuss here.
The FM and CM coexist, but as T increases and hopping
becomes more frequent the CM steals more of the FM’s
spectral intensity. At high T the assumption of weak
coupling breaks down and, effectively, each d moves
on a time-dependent potential energy surface (PES),
EFM+CM(d, t), whose instantaneous shape is determined
by the structures of surrounding cells [49]. Above TC ,
thermal disorder among the d’s ensures symmetry, on
average, of each local PES, EFM+CM(d), about d = 0, so
that 〈d 〉 = P = 0.

If the coupling between local modes remained weak
as T increased, the hopping probability would approach
one and each d would oscillate freely between positive
and negative values. Even if the local PES still had a
double well when the d’s were disordered, its features
would appear flat on the scale of kBT . The FM would
have vanished, giving up all of its spectral intensity to
the CM, which now consists of coupled oscillations of the
d’s about zero. As T increases above TC the frequency
of the CM, νCM, would increasingly be determined by
the side walls of EFM+CM(d), rather than by its almost-
flat base (near d = 0), where each local mode spends a
diminishing fraction of its time.

Because the CM involves local modes traversing the
energy barriers separating their two local energy min-
ima, phonon theory, which relies on potential energy be-
ing well approximated by a low-order Taylor expansion
about a single energy minimum, cannot be relied on to
provide an accurate, or even useful, description of it. Es-
sentially, the CM is a rattler mode [50] at low T , which
means that the distribution of its energy in (ω,k)−space
is diffuse and overlaps with many acoustic and optical
phonons, allowing it to couple to them. In phonon the-
ory, by contrast, each mode is assumed to approximate
a Dirac δ−function in (ω,k)−space.

In summary, below TC the CM spectral intensity in-
creases with T at the expense of the FM, and spans a
wide range of low frequencies (. 3 THz). Above TC , the
CM and the SM are different aspects of the same anhar-
monic motion. To fit experimental spectra, this motion
is often modelled as a damped oscillator, identified as the
FM, coupled to an overdamped oscillator, which is identi-
fied as the CM [18, 48]. The purpose of this simplistic ac-
count of the FM/CM dynamics is to explain, briefly, why
these modes are so important for understanding BTO’s
phase transitions and to lay groundwork that will help
us to explain the effects of doping and photoexcitation
on them.

The modes described here and in Sec. I A are ordered
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FIG. 2. Schematic. Panel A depicts the valence electron density n(r) for two isolated (noninteracting) monovalent atoms.
Panel B shows how textbooks sometimes explain covalency: electrons from each atom combine to form a packet of density
along the bond; the attraction of their nuclei to this packet binds the atoms together. This picture is unphysical because the
density can only be localized around maxima of the electric potential, Φ(r), which occur only at the nuclei. Panel C depicts
the ionic limit if state hybridization is forbidden. One atom donates its valence electron to the other atom’s singly-occupied
valence state. The electron donor and acceptor become a cation and an anion, respectively, with charges of magnitude 1 e.
The potential from the cation lowers the energy of the doubly-occupied valence state on the anion. In reality, states always
hybridize to some degree and if ions did not overlap there would be no repulsion to balance the cation-anion attraction. Panel
D depicts a more realistic ionic or covalent bond. The only density maxima are at nuclei. Ions’ charges cannot be integers
because the valence state is hybridized. The distribution of an ion’s core electrons tends to be almost spherically symmetric
because of their strong attraction to the nucleus. Valence electrons in the overlap region break radial symmetry because they
feel comparable attractions to multiple nuclei. If the overlap is not too great, the material’s structure and energetics are well
approximated by those of a set of slightly-overlapping polarizable ions [49, 56–61].

by frequency as follows: νCM < νLM < νSM,FM < νAM.

C. Bonding and energetics in simple terms

Ferroelectricity in BTO is often attributed to two fac-
tors: long-range electrostatic forces are said to drive the
symmetry-lowering polar distortions that transform the
PE phase into the FE phases, while partial covalency of
the Ti-O bond is said to facilitate this by weakening the
repulsion between overlapping Ti and O ions [45, 51–55].
Overlap repulsion resists the PE-FE transition because
polar distortions shorten Ti-O bonds.

In this section, we revisit both of these claims about

BTO’s bonding and energetics.
In Sec. I C 1 we point out that many definitions of ‘co-

valent’ and ‘ionic’ are in use and we clarify that the sense
in which BTO has been shown to be covalent is not incon-
sistent with our finding that the PES on which its ions
move is very close to the PES on which a set of slightly-
overlapping polarizable ions would move. We also explain
our decision to differ semantically from most recent lit-
erature on ferroelectricity in BTO by referring to this
bonding as ionic.

In Sec. I C 2 we argue that the short-range attraction
between Ti and O neighbours is more likely than long-
range Coulomb interactions to be what drives the PE-FE
transitions.

1. Ionic or partially covalent?

According to standard algorithms for determining oxi-
dation states of ions [62], the electronic configurations of
the ions in BTO within tight binding theory would be Ba
6s0, Ti 3d0, and O 2p6, with the highest occupied and the
lowest unoccupied bands being composed of O 2p orbitals
and Ti 3d orbitals, respectively. Therefore, within this

simplistic picture, BTO’s bonding conforms to the sim-
ple ionic limit depicted in Fig. 2 C, with the Ba, Ti, and
O ions having integer charges of qBa = +2 e, qTi = +4 e,
and qO = −2 e, respectively, where e is the magnitude of
an electron’s charge. However, since the work of Cohen
and Krakauer in the 1990s [45, 51], the prevailing view
has been that there is a significant degree of covalency to
the Ti-O bond in BTO, and that this plays an important



5

role in stabilizing BTO’s ferroelectric phases by reducing
the short range repulsion between ions.

It is important to clarify what Cohen actually found
because the terms ‘covalent’ and ‘ionic’ are notoriously
difficult to define and neither term has a definition that
is both precise and commonly accepted [63–73]. For ex-
ample, one can still find modern textbooks describing a
covalent bond as it is depicted in Fig. 2 B [74–76]: one
or more pairs of electrons (an even integer number) are
localized between two ion cores (nuclei + core electrons)
and the atoms are bonded by the cores’ common attrac-
tion to their shared bundle of electron density. This cari-
cature of covalency dates back to early attempts to make
sense of chemical bonding, including Lewis’s introduction
of his suggestive dot diagrams [77, 78], and Pauling’s de-
scription of the electrons in a covalent bond as “a pair
of electrons held jointly by two atoms” [63]. However, we
now know that it is unphysical because if electrons were
localized along a bond the electron density, n(r), would
have a local maximum there, but it does not. A universal
feature of the electronic ground states of real materials
is the existence of local maxima of n(r) at the nuclei
and nowhere else. This empirical observation has a for-
mal basis, which follows from the ground state relation
eΦ(r) = δF/δn(r) between the electric potential from
the nuclei, Φ(r), and the electron density, where the uni-
versal functional F [n] is the sum of the electrons’ kinetic
energy and their mutual Coulomb repulsion [79]. This
relation implies that maxima of n(r) are always accompa-

nied by maxima of Φ(r) and, since Φ(r) ∼∑i |r− ri|−1
only has local maxima at the positions of nuclei (ri),
the version of covalency depicted in Fig. 2 B is funda-
mentally wrong. Nowadays, most researchers recognise
that ionic and covalent bonding differs only by the de-
gree to which electrons are localized around nuclei. In
ionic bonding more of the valence electron density is lo-
cated at points where ∇n is directed towards the near-
est nucleus, whereas in covalent bonding more of it is
at points where ∇n is not directed towards any particu-
lar nucleus because the net electric field from the nuclei,
−∇Φ, contains significant contributions from multiple
nuclei instead of being dominated by only one.

To analyse BTO’s bonding, Cohen considered the de-
composition of the Kohn-Sham eigenstates [80] into lin-
ear combinations of atomic orbitals (LCAOs). He tacitly
defined covalency as the existence of occupied (valence)
states that have significant projections onto atomic or-
bitals belonging to both bonded atoms. Then he showed
that BTO’s upper VBs [lower CBs] are not composed
purely of O 2p [Ti 3d] orbitals, but are more accurately
described as hybrid states composed of O 2p [Ti 3d] or-
bitals admixed with Ti 3d [O 2p] orbitals [45, 51]. He
also showed that the ionic charges calculated from the
self-consistent charge density are much smaller in magni-
tude than their formal values [45]. They are non-integer
multiples of e, as must be the case when a state whose
density is split between two ions has integer occupancy.

Cohen’s definition of covalency is a practical one and

it is much more sensible and realistic than the cartoon
in Fig. 2 B. It is also consistent with the literal meaning
of covalence (‘shared valence’). However, it is simplis-
tic, because the LCAO method is simplistic. Formally,
atomic orbitals are basis functions and nothing more, and
the Hohenberg-Kohn theorems [79, 81] tell us that if co-
valency and ionicity are qualitatively-distinct forms of
bonding, they are distinguishable from the electron den-
sity alone [79]. Cohen’s definition is also so broad that it
labels almost all semiconductors and insulators as cova-
lent, including materials regarded by most as ionic. For
example, Bao et al. [82] used DFT and wavefunction-
based methods to calculate the charges of a pair of Na
and Cl atoms as they are brought together from a large
separation. When they first begin to interact, Na donates
an electron to Cl to form ions of charge±1 e, thereby real-
izing the ionic limit schematized in Fig. 2 C. As they draw
even closer, their doubly-occupied valence state contin-
uously acquires more Na character, causing the magni-
tudes of the charges to decrease continuously to around
0.8 e at their equilibrium separation. The density of the
hybridized valence state is not localized between the ion
cores. It is localized on them, but divided between them.
Calculations on bulk NaCl have also shown that the va-
lence band is a hybrid of Na s and Cl p states and that
charges have magnitudes of about ∼ 0.8 e [68, 83, 84].
According to Cohen’s definition, NaCl is partly covalent.

From Cohen’s definition of covalency we infer that his
definition of a purely-ionic bond is a very narrow one: it
is a bond that conforms closely to the limit of extreme
ionicity depicted in Fig. 2 C. Few, if any, materials meet
this criterion for pure ionicity. Therefore, in our view,
the breadth of his definition of covalency is problematic.
It implies that the label ‘ionic’ is almost redundant as
a descriptor of real materials and that applying the la-
bel ‘covalent’ to a material reveals almost nothing about
how electrons are distributed within it or the nature of
its interatomic forces. Therefore, we choose to define ion-
icity in energetic terms: An ionic molecule or material is
one whose energy differences and interatomic forces are
well approximated by those of a set of slightly-overlapping
polarizable ions. The ions’ charges need not be integers.

The electron clouds of the ions in an ionic bond must
overlap. If they did not, there would be no repulsion
to balance the cation-anion attraction. By ‘slightly-
overlapping’ we simply mean that, as ions move, the
change in the potential energy associated with the over-
lap only makes up a very small fraction of the total
change in potential energy. This is the case if only a small
fraction of the valence electron density resides where ∇n
is not directed towards the closest nucleas. When it is
the case, even crude approximations to the overlap en-
ergy can be used to estimate energy differences and forces
accurately. Pairwise models often suffice, but more accu-
rate models have also been developed [57, 85].

Cohen’s evidence for covalency is that Ti-O hybrid va-
lence states exist and that the ions’ charges are smaller
than their formal values. Both of these are perfectly
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consistent with our broader definition of ionicity. For
example, the density corresponding to a hybrid valence
state could comprise two disjoint pockets - one localized
on Ti and the other on O. An electron in such a state
would spend all of its time localized on ions, but it would
share its time between Ti and O, contributing a fraction
of its −e charge to each species. Therefore, the ions’
charges would be smaller than their formal values but an
ionic model of energetics would still be appropriate. It
is easier, more accurate, conceptually simpler, and bet-
ter justified by theory [61, 86] to model the distortion of
an ion by the local field from other ions by assigning a
dipole moment to it in proportion to this field, than it
is to model the same distortion within the framework of
LCAO hybridization and covalency. Attempts to derive
accurate models of bonding on the basis of the LCAO
and tight binding theory have proved horrendously com-
plex, and have failed to describe the bonding of crys-
talline silicon with accuracy comparable to ionic models
of ionic materials [87]. There are, of course, many co-
valent effects that cannot be modelled accurately with
an ionic model of energetics but, in at least some mate-
rials, apparent signatures of non-ionic covalent bonding
have turned out to be the effects of ions being polariz-
able [88], or other small easily-modeled deviations from
the rigid-ion limit [57, 69].

To support his claim that covalency helps to ‘drive’
the polar instability [89], Cohen showed that FE phases
can be rendered unstable in calculations if hybridization
of O 2p and Ti 3d states is inhibited by artificially in-
creasing the energies of the Ti 3d orbitals [45, 51, 54];
a similar effect was demonstrated in KNbO3 by penalis-
ing occupation of Nb 4d states [90]. Finally, he showed
that BTO’s FE phases are unstable if the energy of the
crystal is calculated, not from the self-consistent ground
state electron density, but from a superposition of elec-
tron densities of spherically-symmetric ions [45, 91].

The fact that ferroelectricity does not survive driving
electrons from their ground state to a state in which ions’
charges are larger by 50− 100% [45, 51, 54, 90], is also
no less consistent with our definition of ionicity than it
is with Cohen’s definition of covalency. Ferroelectricity
arises in BTO (and not in SrTiO3, which is isoelectronic)
from a delicate balance of energies and can easily be de-
stroyed by slight compositional changes or strain. It is
not surprising that this balance is disrupted by such enor-
mous changes to the ions’ charges because they would
change the crystal’s energetics in many ways. For exam-
ple, they would increase the magnitude of the Madelung
energy by 25− 100%; they would change the electric sus-
ceptibility by increasing the O ions’ polarizabilities; and
they would increase the radius of the O ion by more than
they reduce the radius of the Ti ion, which might leave
less room to accommodate polar distortions. The results
of Sec. III (Figs. 6 and 8) will help to illustrate just how
large a perturbation a 50% increase in ions’ charges is.
They will show that carrier-induced changes in electronic
structure, which are large enough to destabilize ferroelec-

tricity, only change ions’ charges by one or two percent.
It is also unsurprising, and perfectly consistent with

our definition of ionicity, that preventing ions from po-
larising, as Cohen and Krakauer did when they calcu-
lated BTO’s energy from a superposition of spherically-
symmetric electron densities [45, 91], would make
symmetry-lowering polar distortions energetically un-
favourable. It is known that, by not allowing ions to
polarize, the potential induced breathing model that they
used drastically overestimates the energy cost of polar
distortions, resulting in long-wavelength LO phonon fre-
quencies that are much too high [92]. One reason for
this is that polarization of the ions partially screens the
long-wavelength electric field responsible for hardening
the LO mode relative to the TO mode. Imposing spheri-
cal symmetry on ions’ electron clouds would also change
the short-range Ti-O interaction significantly because it
prevents ions from deforming to lower the energy of elec-
trons in the compressed bond. For all these reasons, we
do not share Cohen’s view that this finding, together with
his other findings discussed above, constitute incontro-
vertible proof that BTO is covalent in a way that cannot
be modelled accurately with an ionic model of energet-
ics [89].

We have explained why Cohen’s LCAO analysis of
BTO’s bonding is perfectly consistent with it being en-
ergetically ionic, but we are also in a position to make
a stronger statement, based on previous work: Highly-
accurate models of interatomic forces have been devel-
oped for the oxides BTO [49], MgO [57], SiO2 [56], TiO2

[59], Al2O3 [60], MgSiO3 [93], GeO2, Y2O3, and ZrO2,
by fitting the parameters of ionic models of bonding to
their DFT-calculated PES’s. If we measure ionicity by
the closeness of the fit that can reproducibly be achieved
by our ionic model to an effectively-infinite DFT dataset,
the only one significantly more ionic than BTO is MgO.
Extensive testing of ionic force fields for BTO show ex-
cellent agreement with DFT calculations and experiment
on all calculated observables [49].

2. Short-range vs long-range Coulomb forces

It is common in the literature to find ferroelectricity
attributed to long-range Coulomb interactions destabiliz-
ing a higher-symmetry non-polar parent phase [45, 53].
However, several recent works [94, 95] have suggested
that BTO’s phase diagram can be reproduced by mod-
els that neglect long-range Coulomb interactions: the
only ingredients necessary are the Coulomb attraction
between neighbouring ions, which drives polar distortions
of individual unit cells, and an energy penalty for mis-
alignment of polar distortions in nearby (within ∼ 1 nm)
unit cells [95]. Furthermore, the very existence of a polar
metallic phase suggests that polar distortions are driven
by the very strong attraction between anion and cation
neighbours rather than by long-range fields, which would
be screened by free carriers.
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3. Simple model of energetics

We use the following simple picture to interpret exper-
imental results and our calculations: Conduction band
electrons (CBEs) are either bound to ions (Ti or O, but
not Ba) or they are delocalized in interstices. CBEs
bound to ions are bound more weakly, on average, than
valence band electrons (VBEs) because their energies are
higher. This increases ions’ sizes and gives their outer
electrons more freedom to screen local fields. The lower
CB has mostly Ti 3d character, so bound CBEs reduce
the Ti ion’s charge. The upper VB has mostly O 2p
character, so vacating it reduces the magnitude of the O
ion’s charge. Therefore, the CBEs bound to ions weaken
the Ti-O attraction in two ways: they reduce the ions’
charges and increase their polarizabilities. The CBEs de-
localized in interstices, on the other hand, are those most
responsive to applied or intrinsic long-range fields. Long
range fields are relatively weak. For example, the force of
attraction between point unit charges separated by 2 Å
(≈ Ti-O distance) is at least three orders of magnitude
larger than the force that would be exerted on a unit
charge by a field capable of causing dielectric breakdown
in BTO (∼ 107 − 108 V m−1 [96, 97]).

We can approximate the potential energy difference
per unit cell between any FE phase and the Pm3̄m
structure as ∆E = ∆Eatt + ∆Erep, where ∆Eatt ≤ 0 is
the energy of Ti-O attraction and ∆Erep ≥ 0 includes
inter-nuclear repulsion and exchange repulsion caused
by overlap of the ions’ electron clouds. In Pm3̄m
each Ti is equidistant from six O ions and ∆Erep and
∆Eatt take their minimum and maximum values, re-
spectively, both of which are zero. At equilibrium
∆E = ∆Eeq = ∆Erepeq + ∆Eatteq = ∆Erepeq −

∣∣∆Eatteq

∣∣ and the

partial derivatives of ∆Eatt and ∆Erep with respect to any
nuclear or phonon coordinate are equal in magnitude and
opposite in sign. This balance is disrupted when the Ti-O
attraction is weakened, causing the equilibrium structure
to move closer to the Pm3̄m structure favoured by ∆Erep.
This reduces the magnitudes of P and ∆Eeq.

The magnitude of the latter, |∆Eeq|, is the potential
energy barrier (per unit cell) that must be surmounted
to switch the direction of P by rigid relative motion of
the crystal’s sublattices of inequivalent atoms. In reality,
P does not switch direction in such an orderly manner.
Nevertheless, we take the reduction of |∆Eeq| to be in-
dicative of equivalent changes to the high-dimensional
PES on which the nuclei move. A weakening of the Ti-O
attraction is expected to reduce the magnitudes of the
PES’s peaks and troughs in the vicinity of the equilib-
rium structures of the PE and FE crystals. Therefore,
a lowering of |∆Eeq| indicates a lowering of both Ec and
TC .

D. Populating the conduction band by doping
and/or photoexcitation

Although calculations suggest that the band gaps of
the Pm3̄m and P4mm phases are indirect, with VB max-
ima at

(
1
2 ,

1
2 ,

1
2

)
and CB minima at Γ, their direct gaps

at Γ are larger by only about 0.1 eV and 0.4 eV, respec-
tively. Therefore, it can be viewed as a direct-gap semi-
conductor [112].

An ultrashort & Eg laser pulse would excite electrons
from the upper VB to the lower CB, thereby creating
two ‘carrier’ populations: CBEs and valence band holes
(VBHs). Eventually, the electrons and holes will recom-
bine, returning the electronic subsystem to thermal equi-
librium, which is very close to its ground state.

As an alternative to creating a transient population
of CBEs in pure BTO by photoexcitation, a fixed den-
sity of CBEs can be introduced during synthesis by
n−doping. For example, by introducing some Nb5+ to
Ti4+ sites, some La3+ or Y3+ to Ba2+ sites, or by in-
troducing oxygen vacancies [17–19, 44, 98–100]. Cation
n-dopants, having greater nuclear charges, are expected
to retain more of their outer-shell electrons than the
Ti and Ba cations that they replace. Oxygen vacan-
cies are located at or near local maxima of the elec-
tric potential and so each vacancy is expected to trap
some fraction of the nominal two CBEs that it intro-
duces to the crystal, either in the vacancy or on nearby
Ti cations [101, 102]. Therefore, although the nomi-
nal density of CBEs in the dilutely n−doped materials
LayBa1−yTiO3, BaNbyTi1−yO3, and BaTiO3−y/2 is y,
the true density, x(y), is lower due an unknown fraction
of the electrons being trapped by their donors.

In doped BTO the x electrons per formula unit that are
not bound to dopants are expected to affect the electronic
structure in similar ways to photoexcited CBEs. They
are expected either to bind loosely to Ti cations or O
anions, thereby weakening the Ti-O attraction, or to be
delocalized and responsive to weak long-range fields.

There are several obvious differences between n−doped
BTO and photoexcited BTO. One difference is that
dopants and vacancies perturb the crystal structure lo-
cally. Another difference is that in photoexcited BTO
there are two species of charge carrier, CBEs and VBHs,
that can respond to long-range fields. Even if holes were
immobile it might be important that the positive charges
that compensate for photoexcited CBEs are holes, which
are located predominantly on oxygen anions, whereas
the CBEs in doped BTO are compensated by positively-
charged oxygen vacancies or by the greater charges of
dopant nuclei.

Although these differences may have some important
consequences, the primary qualitative effects of the CBEs
are expected to be the same in all cases: the short range
Ti-O attraction is weakened by those that bind to Ti
and O ions, and conductivity/screening is enhanced by
those that are delocalized in interstices. Therefore, al-
though our calculations were designed to study photoex-
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cited BTO, they shed substantial light on doped BTO
and allow us to explain many of its observed properties.

We are motivated to try because recent experiments
on n-doped BTO show that metallicity and ferroelec-
tricity can coexist [17–19]. It has been found that in
n-doped BTO the phase transition temperatures are de-
creased [17, 44, 98] and the magnitudes of off-centre fer-
roelectric distortions are significantly reduced [17–19].
Also, a remarkable softening of the SM is observed, along
with an overdamped low-frequency CM component [44].
We find that our calculations and our simple ionic pic-
ture of bonding and energetics allow us to offer plausible
explanations for all of these observations.

E. Displacive excitation of coherent phonons
(DECP)

During and immediately after absorption of a laser
pulse the populations of CBEs and VBHs are in non-
thermal states; however, they typically decohere and
thermalize very quickly (. 100 fs) [103, 104]. What
happens next depends strongly on the crystal’s sym-
metry and on the time scales for the multifarious re-
laxation processes which, eventually, return the subsys-
tems of electrons and phonons to a mutual thermody-
namic equilibrium. Electron-hole recombination typi-
cally takes nanoseconds [103, 105]. Therefore, if diffu-
sion of CBEs and VBHs away from the irradiated region
is slow enough, their number densities remain approx-
imately constant on phonon time scales (picoseconds).
Rapid decoherence and thermalization of fixed densities
of CBEs and VBHs imply that the material establishes
a new quasi-equilibrium electronic state within 100s of
femtoseconds (fs). This means that the character of
the bonding in the material, and therefore its phonon
frequencies and equilibrium bond lengths, are changed.
If the material is crystalline and possesses A1 phonon
modes, the equilibrium A1 mode coordinates change in
much less than a phonon period. Zone-center coherent A1

phonon oscillations, with a cosine-like time dependence,
ensue as they move towards their new equilibria and os-
cillate about them. This phenomenon, which is schema-
tized for BTO in Fig. 3, is known as displacive excitation
of coherent phonons (DECP) [106]; it can be observed
experimentally as modulations of the optical response to
time-delayed probe pulses. Much can be learned about
the phonons’ interactions with other degrees of freedom
from the damped oscillations of the differential reflectiv-
ity or transmissivity [107].

As discussed above, in its ferroelectric phases BTO
possesses three optically-active A1 phonon modes and the
CM, which is characterised by strongly-damped large-
amplitude fluctuations along the A1 FM eigenvector be-
tween quasi-stable off-centre ionic positions [108]. In
principle, DECP excites all A1 modes to some degree.
As the FM/SM is characterised by the countermotion of
Ti and its O6 cage, it is obvious that, by weakening the

FIG. 3. Schematic. Left: Potential energy as a function of Ti
position in the ground state and at three levels of photoex-
citation, with their equilibrium positions indicated by black
and red dots, respectively. Right: Oscillations due to the
near-instantaneous shift of the equilibrium Ti position.

Ti-O attraction, photoexcitation would excite it. Phys-
ical mechanisms for direct excitation of the LM or the
AM are not readily apparent.

At high levels of photoexcitation, the amplitude of the
coherent FM phonon would be large enough for the bar-
rier between the symmetry-equivalent P and −P states
to be surmounted; in that case the CM would be excited
instead of, or as well as, the FM, and very rapid decoher-
ence and decay of the displacively-excited lattice motion
is expected.

II. THEORY AND METHODS

To study the transient (� ns) effects of an ultrashort
>Eg pulse on structure and dynamics, we performed con-
strained density functional theory (DFT) calculations.
We used an approach that has been used successfully
to model a number of other materials [109–111]. It is
based on several physical assumptions and simplifica-
tions, which we explain below.

We do not attempt to describe all details of the pho-
toexcitation and relaxation processes. Some of these,
such as the energy of the exciting photons, become irrele-
vant when carrier thermalization erases memory of them.
Others are easily accounted for; for example, if some
mobile charge carriers form excitons [112], the number
contributing to conductivity measurements is reduced.
Many others might have quantitative effects that are less
easy to calculate, but they are unlikely to alter the simple
premise on which our conclusions are built, namely, that
CBEs weaken the Ti-O attraction and increase conduc-
tivity. Therefore, consideration of their effects is unlikely
to alter the physical picture qualitatively.
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A. Assumptions used to model the photoexcited
state

We assume that electrons reach a quasi-equilibrium
number density n(r ;x), where x is the average photoex-
cited CBE and VBH density, within 100’s of fs of pulse
absorption. Our calculations use the simplification that
this quasi-equilibrium state is reached instantaneously.
We assume that x remains constant for several ps after
pulse absorption and that it is approximately uniform
throughout a mesoscopic (� nm) region of the crystal.
We assume that the excited state responds adiabatically
to nuclear motion. On the picosecond time scale of in-
terest to us, we assume that most of the energy absorbed
from the laser pulse remains in the electronic subsystem,
which means that the rates at which it is lost by radiative
carrier-recombination, phonon emission and diffusion of
carriers are low [105, 113].

B. Occupation numbers

We treat electrons and holes as independent par-
ticles occupying states {φi} with probabilities {fi}
and {1− fi}, respectively; the electron density is

n(r;x) ≡∑i fi(x)|φi(r;x)|2. To determine the occupa-
tion numbers, {fi}, we maximise the entropy of single-
electron state occupation, S[{fi}], subject to the follow-
ing constraints: the total energy of the electronic subsys-
tem is conserved and both the total number of electrons
per unit cell (N) and the number of electrons in the con-
duction band per unit cell (x) are conserved. Therefore
the functional

F ≡ λSS[{fi}] + λEE[n] + λ
(h)
N

∑
i≤N

(1− fi) + λ
(e)
N

∑
i>N

fi

(1)

is made stationary with respect to {φi} and {fi}, where

λE/λS , λ
(v)
N /λS and λ

(c)
N /λS are Lagrange multipliers

and E[n] is the energy of the electrons in the presence of
the Coulomb potential from the nuclei. We include four
λ∗ constants in Eq. 1 instead of three to make clear that
stationarity of F can either mean that S is stationary at
a fixed value of E or that E is stationary at a fixed value
of S. In the latter case the Lagrange multipliers have
the form λ∗/λE instead of λ∗/λS , but the mathematical
form of the fi’s derived from Eq. 1 is not changed. The
constants appearing in this form (Eqs. 2) are determined
by the values of the constrained quantities.

Our derivation requires an expression for S. Therefore,
let us assume that the photoexcited region consists of P
primitive unit cells, so that each of the single-electron
states is P -fold degenerate, and that each of these P
states is either occupied by one electron or empty. If
pi is the number of states that are occupied in the ith

set of P -fold degenerate states, the Boltzmann entropy
associated with the occupations of this set of states is

Si = kB logWi, where Wi is the number of different ways
to occupy pi of the P states.

Si = kB log
(
PCpi

)
= kB log

(
P !

pi!(P − pi)!

)
Since P is very large, we can use Stirling’s approximation,
logP ! ≈ P logP − P , and this becomes

Si = kB [P log(P )− (P − pi) log(P − pi)− pi log(pi)]

The occupation entropy associated with the ith band can
then be found by dividing Si by P ; and the total occu-
pation entropy per unit cell is found by summing over all
bands, dividing by P , and noting that fi = pi/P . The
result is

S =
1

P

∑
i

Si =
∑
i

−kB [ fi log(fi) + (1− fi) log(1− fi)]

With this expression for the occupation entropy, station-
arity of F with respect to fi implies that

fi =

{[
e(εi−µe)/kBτ + 1

]−1
, for i > N[

e(εi+µh)/kBτ + 1
]−1

, for i ≤ N
(2)

where τ ≡ −λS/λE , µe ≡ τ λ(e)N /λS , µh ≡ τ λ(h)N /λS , and

εi ≡
∂E

∂fi

∣∣∣∣
{φj},{fj}j 6=i

=⇒ ∂E

∂(1− fi)

∣∣∣∣
{φj},{fj}j 6=i

= −εi

For non-interacting electrons [holes], εi [−εi] can be in-
terpreted as the energy of the ith single electron [hole]
state. From Eq. 2 we see that the CBEs and VBHs have
separate Fermi-Dirac distributions with different chemi-
cal potentials (µe and µh, respectively) and a common
temperature τ . Given τ and the set of single particle en-
ergies {εi}, the values of µe and µh can be determined
from the constraints

∑
i>N fi =

∑
i≤N (1− fi) = x using

a bisection method.
The temperatures of electrons and holes are the same

because, for simplicity, we have constrained the total elec-
tronic energy E, rather than separately constraining the
energies of electrons and holes. We justify this simplifi-
cation empirically by verifying that the results of our cal-
culations are insensitive to τ as long as it is large enough
to smooth out the discontinuities in the dependence of E
on nuclear positions caused by discrete sampling of the
Brillouin zone (see Fig. 5). More generally, apart from
this jitter when τ is low or the sampling grid is coarse,
we have found that, for a given value of x, our results are
largely insensitive to the details of excited state occupa-
tion. We attribute this to the fact that the qualitative
effects of occupying [vacating] the lower CB [upper VB]
are always to reduce the Ti-O attraction and to create
delocalized charge carriers.

To calculate forces, equilibrium structures, and phonon
frequencies in the photoexcited state we must specify how
τ depends on the set r of nuclear positions. One approach
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is to assume that τ is independent of r. Physically, this
implies that the carriers are in contact with a heat bath
- an assumption that might be appropriate in the limit
of high carrier thermal conductivity if the spot size of
the probe pulse is much smaller than that of the pump
pulse, or if the single electron energies are insensitive to
r. We use a different approach, which is to assume that
S is independent of r. This implies that nuclei change E
by doing work on the carrier subsystems as they move.
Physically, both the constant-τ and the constant-S ap-
proaches are simplistic limiting cases; however, we have
checked that our results do not depend strongly on which
approach is used.

Note that when τ has been determined and F, and
hence F/λE , are stationary, the electronic free energy
F ≡ E − τ S is also stationary, subject to the constraints
on the numbers of carriers.

C. Computational methods and calculation
parameters

We used the ABINIT package [114, 115] with the
projector-augmented wave (PAW) method [116], and
the (ground state) PBEsol exchange-correlation func-
tional [117]. We step outside the domain in which DFT
has formally been justified by treating the Kohn-Sham
eigenstates (|φi〉) and eigenvalues (εi) as independent-
electron states and energies, respectively. We expanded
the wavefunctions and core charge density using plane
waves up to energy cutoffs of 980 eV and 1360 eV, re-
spectively.

To achieve stationarity of F with respect to variations
of {φi} and {fi}, we iterate them to self-consistency:
at each iteration we find the set of eigenfunctions and

eigenvalues of the Kohn-Sham hamiltonian ĥ[n] calcu-
lated from the electron density (n) at the previous itera-
tion. We determine {fi} from the eigenvalues as follows:
we use a bisection method to determine the value of τ
that gives the desired entropy Sx at the desired carrier
density x; at each step of the bisection algorithm used to
determine τ , two nested bisection algorithms are used to
determine the values of µe and µh for which the numbers
of CBEs and VBHs per BaTiO3 formula unit are both
x. Once mutually-consistent values of τ , µe, and µh have
been determined, the φi’s and the Fermi-Dirac fi’s are
used to update n(r ;x) [109–111]. When n(r ;x) has been
iterated to self-consistency, F is stationary with respect
to variations of occupation numbers and eigenfunctions
that preserve x and Sx.

The PES on which the nuclei in the unit cell are as-
sumed to move is Ex(r) ≡ Enn(r) + F(r, x), where Enn is
the Coulomb energy of repulsion between nuclei. The sta-
tionarity of F implies that a Hellmann-Feynman theorem
can be used to calculate forces on nuclei. Fig. 4 verifies
that, for x = 4.0 e−/ f.u., the Hellmann-Feynman forces
coincide with the forces calculated numerically from finite
differences of Ex, and that they differ slightly from forces

Y s1Y s2Y s3Y

Ba 0 0 0

Ti 1
2

+ δTi
1
2

+ δTi
1
2

+ δTi

O1
1
2

+ δOI
1
2

+ δOI δOII

O2
1
2

+ δOI δOII
1
2

+ δOI

O3 δOII
1
2

+ δOI
1
2

+ δOI

TABLE I. Equilibrium lattice coordinates sY = (s1Y, s
2
Y, s

3
Y)

of the atoms (Y ∈ {Ba,Ti,O1,O2,O3}) in perfect R3m and
Pm3̄m crystals. In Pm3̄m all three δ∗ parameters are
zero. In the R3m phase we calculate ground state (x = 0)
equilibrium values of δeqTi,0 = 0.0112, δeqOI,0

= −0.0113, and

δeqOII,0
= −0.0181.

calculated from finite differences of Ex + τS = Enn + E.
This demonstrates that constraining Sx and x at each
step of the iteration to self-consistency ensures station-
arity of F.

FIG. 4. Hellmann-Feynman force on a Ti atom in our model
of photoexcited BTO (x = 4 e−/ f.u.) as a function of its dis-
placement from equilibrium along 〈111〉 (red dots) compared
to forces calculated from finite differences of Enn + E (dashed
black line) and Enn + F (blue line).

At each value of x we chose Sx to be equal to the value
of S at τ = 0.02 eV/kB when the lattice coordinates of
the atoms, but not necessarily the lattice vectors, are
those of the ideal Pm3̄m crystal quoted in Table I. This
is our reference structure and we denote the change in Ex
with respect to its value in this structure by ∆Ex.

Because the surrounding crystal inhibits overall strain
of the photoexcited region, and because our primary in-
terest is in optical phonons and polar structural distor-
tions in the long-wavelength limit, in all calculations ex-
cept those presented in the inset of Fig. 6, we fixed the
lattice vectors of the primitive unit cell to their ground
state (x = 0) equilibrium values in the low-T R3m phase.

To study the effects of photoexcitation on phonon fre-
quencies and structural stability, phonons were calcu-
lated at different values of x. We used Phonopy [118]
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FIG. 5. The parameter, δeqTi, that defines the equilibrium Ti
lattice coordinates in the R3m phase as a function of carrier
temperature (τ) when the Brillouin zone is sampled with a
uniform nk × nk × nk grid, where nk ∈ {6, 8, 10, 12}.

to calculate and diagonalize the dynamical matrix con-
structed from finite-differences of forces in a 3 × 3 × 3
supercell. For technical reasons, and physical reasons re-
lated to mobile carriers in photoexcited states, we did
not apply long-range field corrections to the dynamical
matrix in any of our calculations, including our ground
state calculations. Therefore, the giant LO-TO splitting
expected for the SM [119] is absent.

We sampled the Brillouin zone using uniform 8× 8× 8
and 2× 2× 2 grids for calculations on primitive unit cells
and 3× 3× 3 supercells, respectively. The grids were
shifted away from Γ by half a grid-spacing along each
reciprocal lattice vector. We checked that our results
were converged with respect to the density of k−points
and were insensitive to τ at these values. The results of
one such test are presented in Fig. 5.

III. RESULTS

A. Ground state structure

We first found the equilibrium structure in the ground
state (x = 0) by simultaneously relaxing the lattice vec-
tors and atomic positions. The resulting structure is in
excellent agreement with experiments [24] and previous
DFT calculations [24, 120, 121]: it has R3m symmetry,
the lattice parameter is a = 4.00 Å, and the rhombohe-
dral angle is 89.86◦; the lattice coordinates of the atoms
are provided in Table I in terms of parameters δTi, δOI

,
and δOII

, which specify the differences between the lat-
tice coordinates of the Ti and O atoms in the R3m FE
phase and its higher-symmetry parent PE phase, Pm3̄m.

FIG. 6. Potential energy, ∆Ex, as a function of δTi, where
(δTi, δTi, δTi) is the displacement of the Ti sublattice, in lat-
tice coordinates, from its position in a perfect Pm3̄m crystal.
Results are presented for the electronic ground state and at
three levels of photoexcitation (x). Arrows indicate the loca-
tions, ±δeqTi,x, of the curves’ minima and the curves are shifted

vertically to intersect at the ground state minimum, δeqTi,0. In-

set: Comparison of δeqTi,x versus x for a fixed ground state cell
(black curve) and for a fully-relaxed cell (red curve).

B. Excited state structure and energetics

With lattice vectors fixed at their ground state equilib-
rium values, and for a range of values of x, we calculated
the variation of ∆Ex with respect to the 〈111〉 displace-
ment parameter, δTi, of the Ti sublattice. At each value
of δTi ∈ [−0.02, 0.02] we kept Ba and Ti atoms fixed at
the lattice coordinates of Table I and relaxed the O atoms
before calculating ∆Ex (δTi). The results are plotted in
Fig. 6 for five values of x, including x = 0. There are two
minima, which correspond to Ti displacements parallel
and antiparallel to P; they are located at δTi = ±δeqTi,x,
where superscript ‘eq’ abbreviates equilibrium and sub-
script ‘x’ is the carrier density. As x increases the
two symmetry-equivalent wells get shallower and their
minima move closer together until, above a critical car-
rier density xc ≈ 0.124 e−/ f.u. ≈ 1.9× 1021 e− / cm3, the
wells have merged into a single potential energy basin lo-
cated at δTi = δeqTi,x>xc

= 0. Therefore, above xc the FE
distortion is no longer energetically favourable and the
structure that minimises Ex is Pm3̄m, for which P = 0.

Our calculated value of xc is close to the values
(∼ 0.10− 0.11 e−/ f.u.) calculated by others [94, 122], de-
spite significant differences in how single-electron states
are occupied in our calculations: VB states were fully
occupied in previous calculations and, instead of the
CBEs’ negative charges being compensated by VBHs,
it was compensated by a positive uniform background
charge density [55, 94, 122] or, in supercell calculations,
by dopant nuclei [122]. Our value of xc also appears con-
sistent with experimental estimates and measurements of
the critical carrier density at which ferroelectricity dis-
appears [17, 44]. However in our calculations xc is the
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critical density of CBEs, whereas the critical densities re-
ported by experimentalists tend either to be densities of
mobile electrons measured using the Hall effect, or the
nominal density of extra electrons provided by dopants,
i.e., integer × dopant density. In the dilute doping limit
(x→ 0) the nominal density should be viewed as an up-
per bound on the density of CBEs because vacancies and
dopants bind some of the extra valence electrons that
they introduce to their host BTO crystal. The carrier
density from a Hall measurement, on the other hand,
seems likely to be a lower bound on the density of CBEs
if, as our calculations suggest, a high proportion of the
CBEs remain bound to Ti or O ions.

It is clear from Fig. 6 that
∣∣∣δeqTi,x

∣∣∣ and the po-

tential energy gained from the ferroelectric distortion,
Dx ≡ |∆Ex(δeqTi,x)|, both decrease with increasing carrier
density, x. The distances of the oxygen atoms from
their high-symmetry positions also decrease. The val-
ues of (Dx, δ

eq
Ti,x) when x is 0.00 e−/ f.u., 0.05 e−/ f.u.,

and 0.10 e−/ f.u. are, respectively, (16.64 meV, 0.0112),
(8.18 meV, 0.0084), and (1.67 meV, 0.0053). Assuming
that CBEs do not increase ions’ Born effective charges
significantly, the reduction in the magnitude of the polar
distortion implies a reduction in the magnitude of P.
Dx quantifies the stability of the FE phase over the PE

phase in the T → 0 limit and its reduction with x implies
that photoexcitation makes R3m less stable and lowers
the energy barrier to reversing P by rigidly displacing
the Ti and O sublattices relative to the Ba sublattice.
Therefore photoexcitation weakens ferroelectricity and,
above x ≈ xc, the ferroelectric state is not even stable
in the T → 0 limit. We found results qualitatively sim-
ilar to those presented in Fig. 6 when we repeated our
calculations with Ti displaced along 〈001〉 and 〈011〉.

As discussed in Sec. I A, the FE distortion is a superpo-
sition of displacements along A1 eigenvectors. Therefore
the dependence of δeqTi,x on x implies a dependence of the
equilibrium A1 mode coordinates on x. Our assumption
that electrons settle into their quasi-equilibrium photoex-
cited state within 100’s of fs of absorbing a >Eg laser
pulse implies that the bonding changes within a small
fraction of a phonon period. Effectively, the laser pulse
suddenly renders A1 modes out of equilibrium, which
causes them to move towards their new equilibria and
oscillate about them with the cosine-like time depen-
dence (max. displacement at t = 0) that is character-
istic of the DECP mechanism. For x < xc the energy
wells in Fig. 6 become shallower and less symmetric as
x increases. This suggests that in the long-wavelength
limit the displacively-excited A1 FM phonons have lower
frequencies and are more anharmonic than their x = 0
counterparts. Therefore, a significant reduction of x dur-
ing the lifetime of a coherent A1 oscillation might be ob-
servable as an increasing frequency. When x ≈ xc (green
curve) the double-well has disappeared and ∆Ex(δTi) has
a single flat-bottomed (quartic) basin centered at δTi = 0,
which means that the crystal has become paraelectric
(Pm3̄m) in the T → 0 limit. As x > xc increases further,

the quartic potential becomes supplemented, and grad-
ually dominated, by a quadratic confining potential of
increasing curvature (orange curve).

Referring to the simple model discussed in Sec. I C 3,
our results are consistent with photoexcitation reducing∣∣∆Eatteq /∆Erepeq

∣∣, thereby increasing the energy of the FE

phase, which ∆Eatt favours, relative to the Pm3̄m phase
favoured by ∆Erep. We cannot calculate ∆Erep to de-
termine how sensitive it is to x, but we know that it in-
cludes an x−independent contribution from the Coulomb
repulsion between nuclei and an x−dependent contribu-
tion from the kinetic energy and mutual repulsion of elec-
trons in the compressed bond. We also know from the
symmetry of Pm3̄m that ∆Eatt(δTi) = ∆Eatt(−δTi) and
∆Erep(δTi) = ∆Erep(−δTi), which means that ∆E is sta-
tionary at δTi = 0 and has the Taylor expansion

∆E(δTi) =
1

2
δ2Ti

[(
∆Eatt

)′′
(0) + (∆Erep)

′′
(0)
]

+O
(
δ4Ti

)
(3)

where two primes indicate a second derivative with
respect to δTi. By approximating ∆Erep as a sum
of pairwise repulsive interactions between Ti and its
six equidistant O neighbours, it is easy to show
that (∆Erep)

′′
(0) > 0. It then follows from the sta-

bility of R3m at low T that (∆Eatt)′′ (0) < 0 and∣∣∣(∆Eatt)′′ (0)
∣∣∣ > (∆Erep)

′′
(0) when x < xc.

Pm3̄m is lower in energy than R3m when x > xc, which
implies that, to leading order in δTi, ∆E is quartic when
x = xc and quadratic when x > xc. This is consistent
with the curves plotted in Fig. 6 which appear quadratic
when x < xc or x > xc and quartic when x ≈ xc. When

x > xc, (∆Erep)
′′

(0) >
∣∣∣(∆Eatt)′′ (0)

∣∣∣, and ∆E(δTi) has

a positive quadratic term whose coefficient increases as
the Ti-O attraction weakens with increasing x. The in-
crease in curvature of ∆E(δTi) suggests that, in the long-
wavelength limit, the SM frequency increases with x. The
softening of the FM band the hardening of Pm3̄m’s SM
below and above x = xc, respectively, are confirmed in
Fig. 9.

C. Photoinduced changes in electron density

Based on what we know about the characters of the
upper VB and lower CB, and the assumption that bond-
ing is ionic, we have suggested two simple ways in which
populating the CB with electrons can destabilize ferro-
electricity by weakening the Ti-O attraction. The first
is that promoting electrons to the CB moves electrons
from O to Ti, thereby reducing |qO| and qTi. The second
is that CBEs are bound more loosely to ions than VBEs,
which gives them more freedom to partially screen the
Ti-O attraction. Simply put, at any finite separation the
magnitude of the net Coulomb force between polarizable
ions is less than that between rigid ions. However, this is
no longer true in the large separation limit because fields
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from multipoles have a relatively short range. Therefore,
this way of destabilizing ferroelectricity would not apply
if the FE instability is caused by long-range Coulomb
interactions.

FIG. 7. Difference, ∆n(r, 0.01), between the electron densities
at x = 0.01 e−/ f.u. and x = 0 on the common plane of a Ti
nucleus and its closest O neighbours (green spots). The color
scale units are 10−4 e−/ f.u. and contour lines are drawn at
∆n = ±0.0004 e−/ f.u. and at ∆n = 0.

FIG. 8. Changes in magnitudes of ionic and interstitial
charges as a function of carrier density.

We now justify our assumptions about bonding,
and how photoexcitation affects it, by examining how
the electron density n(r;x) changes with x. The
difference, ∆n(r ;x) ≡ n(r ;x)− n(r ; 0), between the
x = 0.01 e−/ f.u. excited state and the ground state is
plotted in Fig. 7. It shows that photoexcitation takes
electrons out of the O 2p-like states whose axes are per-
pendicular to the Ti-O bond and that some of this density

moves to Ti, some of it moves to O, and some is delocal-
ized in interstices. To quantify, roughly, the changes in
the ions’ charges with x, we integrated the charge within
atom-centered partitions, defined as follows: the point
rY +R is assigned to atom Y, where rY is the position of
its nucleus, if both ∇n

∣∣
rY+R

·R < 0 and |R| < RY, where

RBa = 1.5 Å and RTi = RO = 1.4 Å. Points not assigned
to atom-centered partitions are assigned to interstices.
Figure 8 shows that qBa does not change with x, that
qTi and |qO| both decrease with x, and that |qinterstice|
increases with x. Although the charges (qBa ≈ 1.1 e,
qTi ≈ 2.2 e, qO ≈ qinterstice ≈ −1.1 e) depend on the cut-
off radii, the slopes of ∆|qY|(x) all vary by less than 15%
in the range RY ∈ [1.3 Å, 1.6 Å]. The number of electrons
excited into interstices per unit volume is approximately
1.50± 0.05 % of x.

Despite our use of a crude and somewhat arbitrary
method of estimating changes in ionic charges, Fig. 8 val-
idates our assumption that photoexcitation reduces qTi

and |qO|, and shows that it also creates a low density of
more delocalized, and therefore more mobile, interstitial
or ‘unbound’ electrons.

It is very difficult to calculate, or even to define,
excited-state atomic polarizabilities. However, we do not
need to calculate them to know that if two identical nu-
clei have the same number of electrons bound to them,
the one whose electrons are higher in energy is more po-
larizable. Higher energy electrons are more delocalized
and, on average, are attracted more weakly to the ion’s
core. Photoexcitation changes the numbers of electrons
bound to Ti and O slightly, while increasing their aver-
age energies. The polarizability of Ti is increased by both
the number of electrons bound to it increasing and the
average energy of those electrons increasing. We cannot
be certain that the polarizability of O increases because
it loses some of its electrons. Regardless of whether or
not one chooses to discuss photoexcitation under the as-
sumption of ionicity, it is clear from Figs. 7 and 8 that,
apart from the creation of a small number of interstitial
electrons, the major effect of photoexcitation is to redis-
tribute, and increase the energies of, the electrons in the
Ti-O bond. This weakens the bond.

When the number of delocalized, and therefore more
mobile, interstitial electrons is sufficiently large, metal-
lic conductivity is to be expected. When that happens
the mobile electrons would screen long-range fields and
so any long-range contribution to ∆Eatt should vanish.
Therefore, the fact that a polar metallic phase has been
observed experimentally appears to support the idea that
∆Eatt is dominated by the attraction between Ti and
O neighbours. Interstitial electrons, as we have defined
them, do not penetrate the Ti-O bond and would have
a minimal effect on this attraction. Therefore polar dis-
tortions of individual unit cells could still lower the po-
tential energy of the crystal and stabilize the FE phase.
However, screening by free electrons would weaken the
long-range elastic and electrostatic forces responsible for
aligning the cell’s polar displacements into a P−field. By
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lessening the degree of alignment, mobile electrons are ex-
pected to reduce the magnitude of P. This would be the
case even if ∆Eatt was not weakened by photoexcitation.

These considerations suggest that a polar metallic
phase can only exist if photoexcitation or doping gen-
erate enough interstitial electrons for metallic conductiv-
ity before the Ti-O attraction is weakened to the point

that
∣∣∣(∆Eatt)′′ (0)

∣∣∣ < (∆Erep)
′′

(0). They also suggest

that metallic conductivity would reduce the d− d cor-
relation length, leading to increased disorder (reduced
polarization anisotropy) in a polar metallic phase.

D. Selective excitation of the FM and CM

FIG. 9. Frequencies of Γ-point optical phonons (without long-
range field corrections to LO modes) as a function of photoex-
cited electron density, x (e−/ f.u.).

Fig. 9 demonstrates that the SM frequency, νSM, de-
pends strongly and non-monotonically on x. Specifically,
it shows that νSM → 0 as x→ xc and dνSM/dx > 0 when
x > xc. This is consistent with Fig. 6, which shows the
curvature of the wells in the PES increasing with x when
x > xc. It is also consistent with CBEs reducing |∆Eatt|
so that ∆E is dominated by ∆Erep, and it is consistent
with our simple ionic picture of bonding and energetics
because the SM involves the relative motion of Ti and its
O6 cage and so their equilibrium relative displacement is
sensitive to the strength of the Ti-O attraction.

The equilibrium structure can be specified in√
mass-scaled Cartesian coordinates by the vector

Ueq(x) ≡ (
√
mBa r

eq,x
Ba (x), · · · ,√mO r

eq,z
O3

(x))T ∈ R15,

where reqY ≡ (req,xY , req,yY , req,zY )T. With the unit
cell fixed (h = heq

0 ), the normalized symmetry-
breaking

√
mass-scaled displacement vector,

(Ueq(x)−Ueq(0)) /|Ueq(x)−Ueq(0)|, can be ex-
pressed exactly as a superposition of Γ-point A1 optic
mode eigenvectors of the photoexcited R3m crystal.
Therefore, its squared projections onto the LM, SM,
and AM eigenvectors should sum to one and be in
proportion to the squared amplitudes of the Γ-point

phonons that would be excited via DECP at low T . At
x = 0.05 e−/ f.u. [0.12 e−/ f.u.] we calculate them to be
0.04 [0.00], 0.94 [1.00], and 0.01 [0.00], respectively. This
substantiates our claim that the SM could selectively be
excited via DECP.

Note that, because the FM and the CM share the same
eigenvector, displacive excitation of the FM would also
excite the CM to some degree. Therefore pump-probe
spectroscopy could be used to further explore the inti-
mate relationship between these modes and to confirm,
or correct, the picture proposed by Hlinka et al. [48].

E. Electron doped BaTiO3

Electron-doped BTO, including LayBa1−yTiO3,
BaNbyTi1−yO3, and BaTiO3−y/2, has been studied
extensively [17–20, 44, 98–100, 123–127], with particular
recent interest in disputed [20] reports that ferroelec-
tricity can coexist with metallic conductivity. However,
despite broad agreement on what effects n−doping has on
BTO’s structure, transition temperatures, and phonon
frequencies, experiments do not agree quantitatively on
the doping densities or carrier densities at which these
effects occur [17–19]. In this section we use our simple
assumptions about bonding and energetics to explain
many of the observed properties of doped BTO and, in
particular, its polar metallic phase.

It is common to try to understand dilutely n−doped
BTO by relating its properties and behaviour to those
of a pure BTO crystal to which CBEs and compensating
positive charges have been added. However, as discussed
in Sec. I D and Sec. III B, given the total density, y, of
electrons added to a sample by doping, it is very difficult
to determine the appropriate density, x(y), of CBEs in
pure BTO to compare the sample to. This is because an
unknown fraction, 1− x(y)/y, of the y extra electrons
per unit volume remain bound to the impurities and va-
cancies that introduce them to the crystal. Electrons
bound to dopants should not be counted as CBEs be-
cause, instead of occupying the CB of their host crystal,
they remain in localized donor states below the CB.

The free electron density, z(y), measured from the Hall
effect is also expected to differ from x(y) because it only
counts electrons whose attraction to ion cores is weaker
than the Lorentz force from the applied magnetic field.
It is clear from Fig. 8 that the rates of change of qTi

and 3× qO with respect to x have opposite signs and al-
most equal magnitudes, whereas the number of intersti-
tial electrons in each unit cell increases relatively slowly
with x. This implies that most CBEs remain in and
around the Ti-O bond. As discussed in Sec. I C 3, local
fields tend to be much stronger than long-range fields,
making it highly unlikely that all of these ‘bound’ CBEs
would be stripped away from Ti and O ions in a Hall mea-
surement. The interstitial electrons, on the other hand,
are more delocalized because they feel a weaker attrac-
tion to ion cores and are likely to make the greatest con-
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tribution to z(y). Whether or not z(y) can be interpreted
as a rough estimate of the density of interstitial CBEs, it
is almost certainly the case that z(y)/x(y)� 1. There-
fore measured carrier densities are not directly compara-
ble to the densities of CBEs in calculations such as ours.
However, in the dilute doping limit (y → 0) the average
number of electrons bound to each dopant or vacancy is
independent of y, which implies that x ∝ y. If the Hall
density is proportional to the interstitial electron density,
the linearity evident in Fig. 8 implies that z ∝ x ∝ y.

The potential energy as a function of the positions of
all nuclei in the crystal, which we refer to as the ‘full’
PES, is significantly altered when the CB is populated
by electrons. This is clear from the dependence of the
‘reduced’ PES, plotted in Fig. 6, on x. If these changes
are caused by a weakening of the Ti-O attraction, as our
assumptions about bonding and energetics imply, CBEs
would also lower the barriers to reversal of polarity on
each primitive cell’s ‘local’ PES (∆ESM+CM in the sim-
plistic model of Sec. I B) and the barrier to switching the
polarization of a ferroelectric domain. Therefore we ex-
pect CBEs to reduce both TC and Ec. Several experimen-
tal works [17–19, 44], have shown that n−doping reduces
TC and a downward shift of the P4mm→Amm2 tran-
sition temperature has also been observed [18, 19, 124].
Furthermore, although all three FE phases have been ob-
served in doped BTO, the magnitudes of the polar dis-
tortions are found to be remarkably reduced [17]. This
is also consistent with our physical model and the calcu-
lations presented in Fig. 6.

By reducing the degree to which polar distortions of
individual cells are aligned, thermal disorder reduces
the potential energy gained from these distortions [49].
Therefore, at fixed T , the CBE-induced change in each
cell’s local PES is qualitatively similar to the T -induced
change in the time average of each local PES at fixed
x [49]. Both are qualitatively similar to the curves
plotted in Fig. 6: As x or T increases, the double
well becomes shallower, the energy barrier to rever-
sal of polarity is lowered and, when x or T are high
enough, there is only a single well of increasing curva-
ture. The increase in curvature with x when x > xc
(Fig. 6), and with T when T > TC , are both consis-
tent with an increasing dominance of ∆Erep over ∆Eatt,
caused by the weakening of ∆Eatt. The quadratic con-
tribution to ∆E(δTi) in Eq. 3 vanishes at x = xc because

(∆Eatt)′′ (0) = − (∆Erep)
′′

(0). When x > xc the coeffi-
cient of this quadratic term is positive because the neg-
ative contribution to it from ∆Eatt has reduced in mag-
nitude. As either x increases above xc or T increases
above TC , the curvature should continue to increase be-
cause CBEs and thermal disorder both continue to re-
duce the magnitude of ∆Eatt. As a result, the SM of the
Pm3̄m phase, which incorporates the remnants of the FE
phase’s CM and FM, is expected to harden and become
less harmonic with increasing x or T . The hardening of
Pm3̄m’s SM with increasing T is observed experimen-
tally [31, 46, 48], but we are not aware of any measure-

ments of the Pm3̄m SM frequency at multiple carrier
densities and the same temperature.

In a FE crystal the shallowing of the double well as x or
T increases reduces each well’s curvature and lowers the
energy barrier separating them. The reduction in depth
and curvature reduces the FM frequency and makes it
more anharmonic, while the lowering of the energy bar-
rier activates the CM. In the simplistic model of Sec. I B,
the CM emerges because the magnitude of the Boltzmann
factor’s exponent, ∆ESM+CM/kBT , is reduced, which in-
creases the probability of hopping between the two en-
ergy basins. Therefore, in FE phases we should expect
an increase in x or T to cause the FM spectral peak to
soften, to broaden, to lower in intensity, and to develop
a low frequency tail. The CM is responsible for the tail
and for the reduction in spectral intensity of the FM: re-
ferring again to Sec. I B, this is because each local mode
can either oscillate about one of its local energy min-
ima or hop between energy basins, but it can’t do both
simultaneously. Hwang et al. observed precisely these
features in optical conductivity spectra [44]. They con-
trasted dνSM/dx < 0 in BTO with literature reports that
dνSM/dx > 0 in doped SrTiO3 [128, 129]. As shown in
Fig. 6, the FE instability is critically weakened at x = xc
and, like undoped STO, for which xc = 0, BTO is an
incipient ferroelectric. Our finding that dνSM/dx > 0
when x > xc, due to the increasing dominance of ∆Erep
over ∆Eatt, appears to explain the different behaviours
of BTO and STO at low values of x.

Our results imply that polar metals can exist if enough
delocalized interstitial CBEs for metallic conductivity are
created before the Ti-O attraction responsible for local
polar distortions is critically weakened by CBEs that are
bound to atoms. Although delocalized electrons would
not screen the Ti-O attraction that causes local polar dis-
tortions effectively, the long range ordering of these polar
distortions would be vulnerable to screening by them.
This is consistent with the work of Fujioka et al. [18],
who found that metallic BTO had reduced polarization
anisotropy, and enhanced SM spectral intensity. The for-
mer is evidence of reduced long-range order and suggests
the existence of a nanoscale complex domain structure.
The latter is consistent with the ions’ polarizabilities in-
creasing and further supports our contention that the
short-range Ti-O attraction is responsible for the FE in-
stability.

One obvious difference between photoexcited BTO and
n−doped BTO is that in the latter dopant defects per-
turb the lattice, which helps to reduce |P| by weakening
long range order. Disorder also softens the SM [44] by
reducing the depths of the double wells in the PES. In
the simplistic model of Sec. I B, disorder among neigh-
bouring cells can strongly influence the d− d coupling
term, which is responsible for the d ‖ P well in each lo-
cal PES being deeper, on average, than the d ‖ −P well.
Disorder lessens this asymmetry, thereby reducing the de-
gree of alignment of cells’ polarities, lowering the energy
barriers to polarity reversal, and reducing the average
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magnitudes of their polar distortions. In FE phases this
would soften the FM and increase the spectral intensity
of the CM at the expense of the FM. Although all of this
suggests that vacancies and dopants have a deleterious ef-
fect on polar order, it has been suggested that the more
delocalised and itinerant CBEs that are present in polar
metallic BTO help to screen perturbations of the lattice
by defects and impurities, thereby helping to stabilise the
FE phases in metallic BTO [17].

Another difference between photoexcited and electron-
doped BTO is that photoexcitation creates two popula-
tions of carriers: CBEs and VBHs. In the Hall mea-
surements performed by Kolodiazhnyi [124] and Fujioka
et al. [18] it was found that the Hall coefficients (RH)
of all semiconducting and metallic doped samples were
negative and rather insensitive to T above the tempera-
ture range of stability of the R3m phase. However, both
groups found that RH , which is negative at most temper-
atures, changes rapidly as T is reduced in the R3m phase.
Its most interesting and puzzling behaviour was observed
in metallic samples: RH becomes much less negative as
T is reduced and even changes sign below ∼ 50− 100 K,
indicating that holes become the dominant charge carrier
in the T → 0 limit [18, 124]. We do not add to the ex-
planation offered by Kolodiazhnyi for the low-T p−type
conduction, but we can offer an explanation for the dra-
matic reduction of |RH | as a conducting sample is cooled.
In the work of Fujioka et al. a correlation is apparent be-
tween the temperature dependences of RH and the IR
spectral intensity of the FM. If we were correct, above
and in Sec. I B, to attribute the reduction of the FM
spectral intensity as T increases to the emergence of the
CM, Fujioka’s data shows that |RH | increases as the CM
becomes more active. This is not surprising because, as
explained in Sec. I B, the CM involves each cell hopping
between multiple polar states. In R3m this means that
Ti moves further away from the three closest O ions to
it, thereby weakening or breaking three Ti-O bonds, and
moves closer to the other three nearby O ions, thereby
strengthening those bonds. This breaking and reforming
of bonds means that, on average, bonds are weaker. The
structural disorder when the CM is active further weak-
ens bonds by reducing |∆Eatt|. We have argued above
that most of the CBEs that are bound to Ti and O would
not have the freedom to respond to long range fields. It
follows that the proportion CBEs capable of contributing
to a Hall measurement should increase when bonds are
weaker. This may explain why RH becomes less nega-
tive as the temperature is lowered: fewer electrons are
mobile because their net attraction to ions is stronger on
average.

We have suggested that ultrashort laser pulses could
be used in optoelectronic devices to facilitate FE domain
switching by lowering TC and Ec. However, a > Eg laser
pulse that creates a critical density (xc) of CBEs would
heat the crystal by ∼ 300 K, assuming that no photon
emission occurs. One way to avoid this would be to
use both doping and photoexcitation to generate carriers.

Doping reduces Eg, thereby moderately lowering the heat
generated per photon absorbed, and it reduces the num-
ber of CBEs that must be generated by photoexcitation
to lower Ec to the desired level. This would substan-
tially reduce the amount of heat generated in the device.
It might be possible to achieve a further reduction if,
instead of exciting VBEs into the CB, the electrons oc-
cupying donor states just below the CB could be excited
into the CB. Furthermore, as mentioned at the begin-
ning, BTO is a prototype ferroelectric perovskite which
shares many of its properties with other similar materials.
This increases the probability that, in one such material,
a combination of doping and photoexcitation could be
used to improve the speed and efficiency of ferroelectric
devices.

IV. CONCLUSION

We have calculated the effects of CBEs on the soft
mode and ferroelectricity in BTO. Our objective has
been to demonstrate that the structure, polarization, and
phonon dynamics of BTO can be controlled by tuning the
CBE density, and to explain, in simple terms, the mech-
anisms by which they influence these properties.

We have suggested several ways to exploit the sensitiv-
ity of ferroelectricity to the CBE density. One of these
is to facilitate ferroelectric domain switching, either by
using laser pulses to lower Ec temporarily or by adding
n−dopants to reduce it permanently. Another is to use
ultrafast pump-probe spectroscopy to selectively excite
the FM and CM and to monitor their decay into other
modes. It is hoped that a great deal, of fundamental im-
portance to the physics of ferroelectrics, might be learned
by studying these modes at low T as they thermalize by
coupling with other excitations. Our calculations also
suggest that CBEs lower TC and could even be used to
induce a purely-displacive transition to the Pm3̄m PE
structure at low T .

Our work is based on two premises, which differ from
the assumptions on which some other studies of ferro-
electricity in perovskites are based. They are that BTO’s
bonding is best described as ionic and that its ferroelec-
tric phases are stabilized, not by long range Coulomb
interactions, but by the attraction between neighbour-
ing Ti and O ions. The idea that the ferroelectric in-
stability is caused by short-range forces appears to ex-
plain all of BTO’s properties, whereas the idea that long-
range Coulomb interactions are required seems incom-
patible with the existence of a polar metallic phase. We
find that assuming ionicity and that the attraction be-
tween neighbouring ions stabilizes the P field allows us
to suggest simple and intuitive explanations for many of
the experimentally-observed properties of both pure and
electron-doped BTO, including its polar metallic phase.
We also find perfect consistency between these assump-
tions and the results of our DFT calculation.
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