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Abstract—Soft continuum manipulators are characterized by 

low stiffness which allows safe operation in unstructured 

environments but introduces under-actuation. In addition, soft 

materials such as silicone rubber, which are commonly used for 

soft manipulators, are characterized by nonlinear stiffness, while 

pneumatic actuation can result in nonlinear damping. 

Consequently, achieving accurate control of these systems in the 

presence of disturbances is a challenging task. This paper 

investigates the model-based adaptive control for soft continuum 

manipulators that have nonlinear uniform stiffness and nonlinear 

damping, that bend under the effect of internal pressure, and 

that are subject to time-varying disturbances. A rigid-link model 

with virtual elastic joints is employed for control purposes within 

the port-Hamiltonian framework. The effects of disturbances and 

of model uncertainties are estimated adaptively. A nonlinear 

controller that regulates the tip orientation of the manipulator 

and that compensates the effects of disturbances and of model 

uncertainties is then constructed by using an energy shaping 

passivity-based approach. Stability conditions are discussed 

highlighting the beneficial role of nonlinear damping. The 

effectiveness of the controller is assessed with simulations and 

with experiments on a soft continuum manipulator prototype. 

 
Index Terms—Robot Control, Soft Robotics, Adaptive Control, 

Nonlinear Control Systems. 

 

I. INTRODUCTION 

OFT continuum manipulators are a class of systems 

characterized by high dexterity, light weight, and low 

stiffness. Thanks to these desirable features, they are 

ideally suited for minimally invasive surgery, collaborative 

manipulation, and navigation in cluttered environments [1]. 

Popular actuation strategies for soft continuum manipulators 

include pneumatics [2], hydraulics [3], and tendon driven 

 
This research was supported by the Engineering and Physical Sciences 

Research Council (grant number EP/R009708/1 and EP/R511547/1). A. 

Astolfi is also supported by the European Union's Horizon 2020 Research and 

Innovation Programme under grant agreement No 739551 (KIOS CoE). 
E. Franco (*corresponding author), A. Garriga Casanovas, and F. 

Rodriguez y Baena are with the Mechatronics in Medicine Laboratory, 

Mechanical Engineering Department, Imperial College London, Exhibition 
Road, SW7 2AZ, UK (e-mail: e.franco11@imperial.ac.uk, a.garriga-

casanovas14@imperial.ac.uk, f.rodriguez@imperial.ac.uk).  

J. Tang is with the Electrical and Electronic Engineering Department, 
Imperial College London, UK (e-mail: jacky.tang18@imperial.ac.uk). 

A. Astolfi is with the Electrical and Electronic Engineering Department, 

Imperial College London, UK, and with the Dipartimento di Ingegneria Civile 
e Ingegneria Informatica, Università di Roma “Tor Vergata” Rome, 00133, 

Italy  (e-mail: a.astolfi@imperial.ac.uk). 

mechanisms [4]. Alternative approaches include dielectric 

elastomers [5] and shape-memory alloys [6]. Pneumatics has 

been one of the most common strategies due to its fast 

response, high power density, affordable cost, and ease of 

miniaturization. Recently, pneumatics has also been employed 

to provide position and contact sensing in soft manipulators 

[7]. Regardless of the actuation principle, soft continuum 

manipulators are typically underactuated since they experience 

continuous deformation along their length, and since only a 

limited number of control actions are generally available. 

Additionally, only few degrees-of-freedom (DOFs) are 

directly measurable with sensors. Thus controlling soft 

continuum manipulators is a challenging problem that has 

attracted increasing attention in the research community [8]. 

Numerical model-free controllers represent a pragmatic 

solution and are particularly beneficial when knowledge of the 

system is limited [9], [10]. However, this approach can be 

computationally expensive and can rely heavily on training 

data, thus it might not be viable in some applications. Model-

based controllers are often preferred when fast control and 

high accuracy are required [2]. The preferred modelling 

approaches for control purposes due to their computational 

efficiency include the constant-curvature (CC) model, the 

piecewise constant-curvature (PCC) model [11], and the rigid-

link model [12]. CC and PCC are model-reduction techniques 

that allow treating the system as fully actuated, which is a 

suitable approach if external disturbances are negligible. 

Notable alternatives, including discrete Cosserat models [13]–

[15] and order reduction of finite element models [16], [17], 

provide more accurate descriptions of the system in quasi-

static conditions but are less suitable for fast control. Classical 

controllers for CC models of continuum manipulators include 

optimal control [18], sliding mode control, model predictive 

control [19], [20], and feedback linearization [2]. Preserving 

performance of classical controllers in the presence of 

disturbances typically requires high gains, which however can 

increase the stiffness of soft manipulators in closed loop, as 

observed in [21]. This undesirable effect has prompted the 

study of feed-forward control actions, first for planar PCC 

models [22], and more recently by employing a polynomial 

approximation of the curvature thus yielding a nonlinear 

controller [23]. Feed-forward control has also been employed 

for fully actuated continuous manipulators in [24] and to 

compensate the effects of nonlinearities in [25]. Accounting 

for nonlinear stiffness and nonlinear damping within the 

controller has proved beneficial in several settings, including 
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suspension systems [26]. While the former model-based 

controllers are effective within their respective assumptions, 

they are designed for fully actuated models and they do not 

include the adaptive compensation of unknown disturbances.  

This paper investigates the energy shaping control of a class 

of underactuated mechanical systems with nonlinear uniform 

stiffness and nonlinear damping that are representative of soft 

continuum manipulators in 3D space. To this end the port-

Hamiltonian formulation and the method of Interconnection 

and Damping Assignment Passivity Based Control (IDA-PBC) 

[27] are employed. The port-Hamiltonian formulation is 

widely applicable to a variety of systems, including soft robots 

[28]. The IDA-PBC method does not require high gains, but it 

relies on the exact knowledge of the system model and it aims 

to shape the energy of the closed-loop system with an 

appropriate control action in order to stabilize the prescribed 

equilibrium [27]. IDA-PBC has traditionally been applied to 

underactuated systems without physical damping and with a 

limited number of DOFs. An initial energy shaping controller 

for underactuated planar soft manipulators with linear stiffness 

and linear damping has been proposed in [29]. An extension to 

3D space has been presented in [30], which however assumes 

constant disturbances. These results are extended here for soft 

continuum manipulators with nonlinear uniform stiffness and 

subject to time-varying disturbances affecting all DOFs. The 

main contributions of this work include the following points. 

1. A partial-state feedback control law constructed with the 

IDA-PBC method for a generic 2𝑛 + 1 DOFs model with 

nonlinear uniform stiffness. The controller ensures local 

asymptotic stability of the desired equilibrium. 

2. The definition of a class of underactuated mechanical 

systems representative of soft continuum manipulators for 

which the proposed controller is implementable. 

3. An adaptive algorithm that combines the Immersion and 

Invariance (I&I) method [31], [32] and the congelation of 

variables approach [33] to compensate the effects of time-

varying non-vanishing unknown disturbances. 

4. The study of the stability conditions and their relationship 

with the tuning parameters. Although damping has 

traditionally been considered an obstacle in energy shaping 

control of underactuated systems [34], this study highlights 

its stabilizing effects for soft continuum manipulators. 

5. Numerical simulations and experiments on a prototype 

with pneumatic actuation in different operating conditions. 

A preliminary version of portions of this work appeared in 

conference form in [30], which discussed the regulation of the 

tip orientation in 3D for a simplified model with linear 

stiffness and linear damping considering the theoretical case 

of constant disturbances. This study significantly extends [30] 

by considering systems with nonlinear stiffness and nonlinear 

damping and by accounting for time-varying disturbances, 

thus resulting in a new nonlinear controller, in explicit 

stability conditions, and in corresponding tuning guidelines. 

The rest of the paper is organized as follows. Section II 

presents the system model and the problem statement; Section 

III details the controller design and discusses the stability 

conditions; Section IV presents the simulation result and the 

experimental results; Section V contains concluding remarks. 

II. PROBLEM FORMULATION 

A. Soft Continuum Manipulator 

This work focusses on soft continuum manipulators with 

pneumatic actuation similar to that presented in [35]. The 

manipulator has a tubular structure made of a hyper-elastic 

material with a constant cross section, as shown in Figure 1. 

The cross section defines three equal internal chambers spaced 

at 120°, similarly to the design in [36]. An inextensible nylon 

fiber is embedded at the center of the cross section along the 

device to prevent elongation of its neutral axis. A second 

inextensible fiber is wound around the device to prevent radial 

expansion of the outer wall while allowing bending. Full 

details of the design and manufacturing process appear in [35].  

The base of the manipulator is fixed and, by controlling the 

pressures 𝑃0, 𝑃1 and 𝑃2 in the internal chambers, the device 

can bend in any plane, while length and external diameter are 

assumed constant. At equilibrium and without disturbances, 

the orientation of the bending plane 𝜑 and the rotation of the 

tip 𝜃 on the bending plane are given as in [36] 

𝜃 =
1

𝑘∗√2
√(𝑃1 − 𝑃2)

2 + (𝑃1 − 𝑃0)
2 + (𝑃2 − 𝑃0)

2, (1.a) 

tan(𝜑) =
√3(𝑃1 − 𝑃2)

𝑃1 + 𝑃2 − 2𝑃0
, (1.b) 

where 𝑘∗ is the structural bending stiffness of the manipulator 

expressed in bar/rad, assumed uniform over the whole length. 

The resultant pressure vector computed from 𝑃0, 𝑃1, 𝑃2 in a 

fixed reference frame (see Figure 1.b) is defined by magnitude 

and direction which correspond to two control inputs 𝑢𝐼 , 𝑢𝐼𝐼. 

The relationships between 𝑃0, 𝑃1 , 𝑃2 and 𝑢𝐼 , 𝑢𝐼𝐼 are 

𝑢𝐼 =
1

√2
√(𝑃1 − 𝑃2)

2 + (𝑃1 − 𝑃0)
2 + (𝑃2 − 𝑃0)

2, (2.a) 

𝑢𝐼𝐼 =
√3(𝑃1 − 𝑃2)

𝑃1 + 𝑃2 − 2𝑃0
. (2.b) 

 

Figure 1.  CAD model and rigid-link model of a continuum manipulator with 

𝑛 = 3 (a); model top view (b); cross section (c). Prototype (d); experimental 

test setup (e); additional test setup shown in the Supplementary Video (f). 
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B. System Model 

For control purposes the soft continuum manipulator is 

modelled as a rigid-link underactuated system consisting of 

2𝑛 + 1 virtual elastic pin joints (see Figure 1). The 𝑛 links 

have equal length and equal mass concentrated at their 

midpoint. The total mass of the manipulator is 𝑚𝑇 and the 

total length is 𝐿𝑇. This approximation has been used for other 

soft continuum manipulators [12] since it is more general than 

the CC model, which is not suitable in the presence of external 

disturbances [29]. The discrepancy between the model and the 

real system, and the effect of external forces on the virtual 

joints are accounted for in this work by the unknown lumped 

disturbance 𝛿 ∈ ℝ2𝑛+1. Without loss of generality, the system 

dynamics is expressed in port-Hamiltonian form as 

[
�̇�
�̇�
] = [

0 𝐼
−𝐼 −𝑅

] [
∇𝑞𝐻

∇𝑝𝐻
] + [

0
𝐺
] 𝑢 − [

0
𝛿
], (3) 

where the Hamiltonian is 𝐻 = 𝑇(𝑞, 𝑝) + 𝑉(𝑞), with kinetic 

energy 𝑇(𝑞, 𝑝) =
1

2
𝑝𝑇𝑀−1𝑝, and potential energy 𝑉(𝑞). The 

inertia matrix 𝑀(𝑞) = 𝑀𝑇(𝑞) > 0 is bounded and has 

elements that depend on 𝑞𝑖 [12], [29]. The system states are 

the angular position 𝑞(𝑡) ∈ ℝ2𝑛+1 of the virtual joints and the 

momenta 𝑝 = 𝑀�̇�. The symbols ∇𝑞𝐻 and ∇𝑝𝐻 are the vectors 

of partial derivatives of 𝐻 with respect to 𝑞 and to 𝑝, and 𝐼 is 

the identity matrix. The effect of the pressure dynamics is 

approximated by the damping matrix 𝑅 > 0. This is motivated 

by the small volume of the internal chambers (≪ 1 ml) and by 

the fast response (≤ 10 ms) and large flow rate (≫ 10 l/s) of 

the pressure regulators in our test setup (see Section IV.B).  

The port-Hamiltonian representation (3) highlights the 

effect of the control action 𝑢 in terms of mechanical energy, 

which is exploited for the controller design in Section III.A. 

The joint angles 𝑞1 to 𝑞𝑛 are relative to the previous link on 

the bending plane and define the tip rotation 𝜃 = ∑ 𝑞𝑖
𝑛
𝑖=1 . The 

corresponding out-of-plane angles 𝑞𝑛+1 to 𝑞2𝑛 define the 

rotation outside the bending plane 𝜔 = ∑ 𝑞𝑖
2𝑛
𝑖=𝑛+1 . The 

orientation of the bending plane relative to a fixed reference 

frame is 𝑞2𝑛+1 = 𝜑, while the tip rotation in the direction 

orthogonal to the bending plane is 𝛾 = ∑ 𝑞𝑖
2𝑛+1
𝑖=𝑛+1 . Twist is 

assumed negligible since it is not actuated in the manipulator 

[35] and since this work considers external forces that do not 

generate twist. In general, twist can be actuated by employing 

a different manipulator design, such as that in [36], which 

shall be investigated in our future work. The control input 

𝑢(𝑡) ∈ ℝ2 depends on the pressures according to (2), and the 

input matrix is 𝐺𝑇 = [
1𝑛 0𝑛 0
0𝑛 0𝑛 1

], with rank(𝐺) = 2, where 

[1𝑛], [0𝑛] are row vectors of length 𝑛. The class of systems 

studied in this work is defined by the following assumptions. 

Assumption 1: Only the tip angles 𝜃 and 𝛾 and their first order 

time derivatives are known at any instant. In addition |𝜃| ≤ 𝒬𝐼 
and |𝛾| ≤ 𝒬𝐼𝐼 for some 𝒬𝐼 > 0 and 𝒬𝐼𝐼 > 0. In our setup the 

angles 𝜃 and 𝛾 are measured with an electromagnetic tracking 

system and a sensor mounted at the tip of the manipulator, 

while �̇� and �̇� are computed by differentiation. However, 

different sensors could be employed. Finally, for our prototype 

𝒬𝐼 = 𝒬𝐼𝐼 = 𝜋/2 in the absence of external forces. 

Assumption 2: The potential energy is defined as 𝑉(𝑞) =

∑ ∫𝑘𝐼𝑞𝑖𝑑𝑞𝑖
𝑛
𝑖=1 + ∑ ∫𝑘𝐼𝐼𝑞𝑖𝑑𝑞𝑖

2𝑛
𝑖=𝑛+1 . The structural stiffness 

expressed in Nm/rad is defined as 𝑘𝐼 = ∑ 𝑘𝑗|𝜃|
𝑗𝑟𝑏

𝑗=0 > 0 on 

the bending plane and as 𝑘𝐼𝐼 = ∑ 𝑘𝑗|𝜔|
𝑗𝑟𝑏

𝑗=0 > 0 in the 

direction orthogonal to the bending plane. The constant 

parameters 𝑏 > 0, 0 < 𝑟 < 1, and 𝑘𝑗 > 0 are known, while 

𝜃 = ∑ 𝑞𝑖
𝑛
𝑖=1 , and 𝜔 = ∑ 𝑞𝑖

2𝑛
𝑖=𝑛+1 . The relationship between 𝑘𝑗 

in Nm/rad and 𝑘𝑗
∗ in bar/rad depends on the geometry of the 

manipulator. For a prototype with a circular section of 

diameter 𝐷 and three equal internal chambers with thin 

partition walls as shown in Figure 1 we have 𝑘𝑗 ≅ 𝑘𝑗
∗𝜋𝐷3/24. 

Assumption 3: The physical damping is defined by the matrix 

𝑅𝐼 = (𝑅0 + 𝑅1|�̇�|
2
) 𝐼 on the bending plane, and by the matrix 

𝑅𝐼𝐼 = (𝑅0 + 𝑅1|�̇�|
2)𝐼 in the direction orthogonal to the 

bending plane, where 𝑅0 > 0, 𝑅1 > 0 are known constants. 

Assumption 4: The disturbance does not include twisting 

effects and is commensurate with the ultimate strength of the 

material so that no plastic deformation or rupture occurs. As a 

result, an arbitrary disturbance 𝛿 corresponds to a set of 

attainable equilibria 𝑞∗ that verify the condition 

𝐺⊥(∇𝑞𝑉(𝑞
∗) + 𝛿) = 0, (4) 

where the matrix 𝐺⊥ is such that 𝐺⊥𝐺 = 0 and rank{𝐺⊥} =
2𝑛 − 1. Equation (4) is obtained by computing (3) at the 

equilibrium (i.e. setting �̇� = 𝑝 = �̇� = 0) and by pre-

multiplying it by 𝐺⊥, thus it is generally valid, and it defines a 

set of equilibrium points for the unactuated DOFs. 

Assumption 5: The time-varying disturbance 𝛿 is unknown and 

bounded, thus ∆≤ 𝛿 ≤ ∆ for some unknown values ∆ and ∆ 

such that ∆≤ ∆, with 𝑙 = (∆ + ∆)/2 constant and unknown. 

The time-varying component of the disturbance is 𝜎 = 𝛿 − 𝑙, 
with |𝜎| ≤ 𝜀, where the bound 𝜀 ∈ ℝ2𝑛+1 is constant and 

known. Additionally, |𝜎| ≤ 𝜇|�̇�| for some known 𝜇 > 0. 

Note that no elastic energy is associated to the position 

𝑞2𝑛+1 = 𝜑 since the latter depends only on the geometry of 

the internal chambers and on the corresponding pressures. The 

weight of the manipulator is not accounted for explicitly in the 

potential energy but instead it is treated as a disturbance thus 

the control law does not depend on the orientation of the base 

frame with respect to gravity. Assumption 2 implies that 

stiffness is uniform along the length, which is reasonable if the 

manipulator has a constant section. This approach provides a 

convenient approximation of the potential energy of the 

manipulator and allows identifying the stiffness parameters 

from experimental data since the tip rotation is directly 

measurable (see Section IV). Approximating the load-

deflection relationship of a compliant structural element with a 

polynomial has originally been proposed as part of the pseudo-

rigid-body model approach [37]. Polynomial approximations 

have also been employed for the curvature of soft continuum 
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manipulators in [23]. Conversely, identifying non-uniform 

stiffness parameters would require a more complex setup and 

a larger number of sensors. Since damping in pneumatic 

systems is nonlinear, it is approximated with a polynomial 

model [38]. The effect of these approximations is lumped in 

the disturbance 𝛿, which is decomposed into an unknown 

constant term and a time-varying bounded term similarly to 

[33]. Finally, no assumption is made on the mass of the 

manipulator for the purpose of the stability analysis. This is a 

further difference from our preliminary results [30] which 

only consider manipulators with total mass 𝑚𝑇 ≪ 1 in an 

attempt to conclude the existence of local stability conditions. 

This limitation is removed in the present work and stability 

conditions are provided in Proposition 1. In addition, the case 

𝑚𝑇 ≪ 1 is discussed separately in Remark 1 and the 

respective stability conditions are expressed in closed form. 

III. CONTROLLER DESIGN 

The control objective consists in stabilizing the prescribed 

equilibrium point (𝜃, 𝛾) = (𝜃𝑑 , 𝛾𝑑) in spite of the unknown 

external disturbances and of the model uncertainties, while 

only relying on the values of 𝜃, �̇�, 𝛾, and �̇� at any instant. 

A. Energy shaping control 

The proposed control approach is based on an extension of 

the IDA-PBC formulation [30], [39]. Accordingly, the closed-

loop dynamics in port-Hamiltonian form is representative of a 

mechanical system with total energy 𝑊 and is expressed as 

[
�̇�
�̇�
] = [

0 𝑀−1𝑀𝑑

−𝑀𝑑𝑀
−1 𝐽2 − 𝑅𝑑

] [
∇𝑞𝑊

∇𝑝𝑊
] − [

0
𝜎
] + [

0
𝐺
] 𝑢0, (5) 

where 𝑊 = 𝐻𝑑 + Λ
𝑇(𝑞 − 𝑞∗) + 𝒞, and 𝒞 > 0 is a constant 

ensuring 𝑊 > 0. The free matrix 𝐽2 = −𝐽2
𝑇 depends on 𝑝, and 

the closed-loop damping is 𝑅𝑑 = 𝐺𝑘𝑣𝐺
𝑇 + 𝑅𝑀−1𝑀𝑑, where 

𝑘𝑣 = 𝑘𝑣
𝑇 > 0 is a tuning parameter. The ancillary control 𝑢0 is 

designed to mitigate the effect of 𝜎, as discussed in Section 

III.B. The new Hamiltonian 𝐻𝑑 =
1

2
𝑝𝑇𝑀𝑑

−1𝑝 + 𝑉𝑑 represents 

the mechanical energy of the closed-loop system, Λ𝑇(𝑞 − 𝑞∗) 
accounts for the work of the constant disturbances 𝐺⊥𝑙 
affecting the unactuated DOFs, and the term Λ can be 

interpreted as a vector of closed-loop non-conservative forces. 

Consequently, ∇𝑝𝑊 = ∇𝑝𝐻𝑑, while ∇𝑞𝑊 = ∇𝑞𝐻𝑑 + Λ. The 

kinetic energy 𝑇𝑑 =
1

2
𝑝𝑇𝑀𝑑

−1𝑝 with inertia matrix 𝑀𝑑 =

𝑀𝑑
𝑇 > 0, and the potential energy 𝑉𝑑 are the main design 

parameters in the energy shaping procedure. To achieve the 

regulation goal 𝑞 = 𝑞∗ the total energy 𝑊 is designed to have 

a strict minimizer at the prescribed equilibrium position, that 

is 𝑞∗ = argmin(𝑊). Since the system is underactuated, the 

control input cannot be computed by equating (3) and (5) and 

by inverting 𝐺. Instead, the terms 𝑉𝑑 , 𝑀𝑑 and 𝐽2 should satisfy 

the following set of partial differential equations (PDEs) [27] 

𝐺⊥(∇𝑞𝑇 − 𝑀𝑑𝑀
−1∇𝑞𝑇𝑑 + 2𝐽2𝑀𝑑

−1𝑝) = 0, (6.a) 

𝐺⊥(∇𝑞𝑉 −𝑀𝑑𝑀
−1∇𝑞𝑉𝑑) = 0, (6.b) 

and Λ should satisfy the 2𝑛 − 1 algebraic equations 

𝐺⊥(𝑙 − 𝑀𝑑𝑀
−1Λ) = 0. (7) 

Provided (6) are solvable and 𝑉𝑑 and 𝑀𝑑 can be expressed 

analytically in closed form, the IDA-PBC control law that 

applied to (3) yields the closed-loop dynamics (5) is thus 

𝑢 = 𝑢𝑒𝑠 + 𝑢
∗ + 𝑢0

𝑢𝑒𝑠 = 𝐺
†(∇𝑞𝐻 −𝑀𝑑𝑀

−1∇𝑞𝐻𝑑) + (𝐺
†𝐽2 − 𝑘𝑣𝐺

𝑇)∇𝑝𝐻𝑑

𝑢∗ = 𝐺†(𝑙 − 𝑀𝑑𝑀
−1Λ),

 (8) 

where 𝐺† = (𝐺𝑇𝐺)−1𝐺𝑇 is the pseudo-inverse of 𝐺. Defining 

𝑀𝑑 = 𝑘𝑚𝑀, where 𝑘𝑚 > 0 is a constant tuning parameter, 

verifies (6.a) with 𝐽2 = 0 and scales the open-loop kinetic 

energy 𝑇 by a factor 𝑘𝑚. Substituting 𝑀𝑑 in (8) removes the 

kinetic terms ∇𝑞𝑇, ∇𝑞𝑇𝑑 and ensures closed-loop dissipation 

for all 𝑘𝑣 = 𝑘𝑣
𝑇 ≥ 0 since 𝑅𝑑 = (𝐺𝑘𝑣𝐺

𝑇 + 𝑅𝑘𝑚) > 0 [34].  

The candidate solution of the potential-energy PDE (6.b) is 

𝑉𝑑 =
𝑘0
2𝑘𝑚

∑𝑞𝑖
2

𝑛

𝑖=1

−
𝑘0

2𝑛𝑘𝑚
𝜃2 +

𝑘𝑝

2𝑘𝑚
(𝜃 − 𝜃𝑑)

2

+
1

𝑘𝑚
∑ ∫𝑘𝐼𝐼𝑞𝑖𝑑𝑞𝑖

2𝑛

𝑖=𝑛+1

+
𝑘𝑝

2𝑘𝑚
(𝛾 − 𝛾𝑑)

2,

 (9) 

where 𝑘𝑝 > 0 is a further tuning parameter. In particular, (9) 

accounts for the nonlinear stiffness of the model, it verifies 

(6.b) for all 𝜃 and for 𝛾 = 𝛾𝑑, and it is defined such that 

(𝜃𝑑, 𝛾𝑑) = argmin(𝑉𝑑). In order for 𝑊 to also have a strict 

minimizer at the equilibrium (𝜃, 𝛾) = (𝜃𝑑 , 𝛾𝑑), the conditions 

∇𝑞𝑊(𝑞
∗, 0) = ∇𝑞𝑉𝑑(𝑞

∗) + Λ = 0, (10.a) 

∇𝑞
2𝑉𝑑 =

𝑛𝑘0
𝑛+1𝑘𝑝

2

𝑘𝑚
𝑛+4

(𝑘0 +∑𝑠𝑗𝑟𝑘𝑗|𝜔|
𝑗𝑟

𝑏

𝑗=1

) > 0, (10.b) 

should be met, where 𝑠𝑗 are positive constants that depend on 

𝑟 and 𝑗 (e.g. 𝑠1 = 3 and 𝑠2 = 9 if 𝑟 = 4/5). Solving (7) for a 

disturbance estimate 𝑙 to be defined in Section III.B, while 

also verifying (10.a), yields a constant vector Λ of elements 

Λ𝑖 =

{
 
 

 
 1

𝑛
(
(𝑛 − 1)𝑙𝑖
𝑘𝑚

−∑
𝑙𝑗≠𝑖

𝑘𝑚

𝑛

𝑗=1

) 1 ≤ 𝑖 ≤ 𝑛,

𝑙𝑖 𝑘𝑚⁄  𝑛 + 1 ≤ 𝑖 ≤ 2𝑛.

  (11) 

Since Λ is constant, it does not appear in inequality (10.b), 

which is verified for all 𝑘𝑝 > 0 and 𝑘𝑚 > 0. Substituting (9) 

and (11) into (8) yields the IDA-PBC control law 

[
𝑢𝐼
𝑢𝐼𝐼
] =

[
 
 
 
 1

𝑛
∑𝑘𝑗|𝜃|

𝑗𝑟+1

𝑏

𝑗=0

− 𝑘𝑝(𝜃 − 𝜃𝑑) −
𝑘𝑣𝐼

𝑘𝑚
�̇�

−𝑘𝑝(𝛾 − 𝛾𝑑) −
𝑘𝑣𝐼𝐼

𝑘𝑚
�̇�

]
 
 
 
 

+ 𝑢∗ + 𝑢0, (12) 

where 𝑘𝑣 = diag(𝑘𝑣𝐼 , 𝑘𝑣𝐼𝐼) and 𝑢0 is defined in Section III.B. 

In addition, 𝑢∗ = 𝐺†𝑙 since 𝐺†𝑘𝑚Λ = 0. This last 

simplification is due to the structure of (11) and to the choice 
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𝑀𝑑 = 𝑘𝑚𝑀. Local stability of the equilibrium is concluded for 

constant disturbances 𝛿 = 𝑙 using a similar approach to our 

preliminary work [30]. The more realistic case of unknown 

time-varying disturbances is studied in the next Section. 

B. Disturbance Rejection 

The estimate of the unknown constant disturbance 𝐺†𝑙 
appearing in (12) is computed here with a modification of the 

I&I method [32] resulting in the adaptive law 

𝑙 ̇ = −𝛼(∇𝑞𝑉 + 𝑅�̇� − 𝐺𝑢 + 𝑙), (13) 

where 𝛼 > 0 is a constant tuning parameter. Additionally, to 

mitigate the effect of 𝜎 we define the ancillary control 𝑢0 as 

𝑢0 = −𝜀 [
tanh(�̇�)

0
], (14) 

where 𝜀 = max (𝜀) is a known parameter (see Assumption 5). 

Note that 𝑢0 only contributes to 𝑢𝐼, which acts on the bending 

plane (see Remark 2). Substituting (12) into (13) and pre-

multiplying by 𝐺† yields the adaptive law in explicit form 

𝐺†𝑙 ̇ = −𝛼

[
 
 
 
 𝑘𝑝(𝜃 − 𝜃𝑑) +

𝑘𝑣𝐼
𝑘𝑚

�̇� +
1

𝑛
𝑅𝐼�̇� + 𝜀 tanh(�̇�)

𝑘𝑝(𝛾 − 𝛾𝑑) +
𝑘𝑣𝐼𝐼
𝑘𝑚

�̇� + 𝑅𝐼𝐼�̇� ]
 
 
 
 

. (15) 

Computing 𝑢∗ by integrating (15) in time and substituting it 

into (12) yields the complete control law 

𝑢𝐼 =
1

𝑛
∑𝑘𝑗|𝜃|

𝑗𝑟+1

𝑏

𝑗=0

− 𝑘𝑝(𝜃 − 𝜃𝑑) −
𝑘𝑣𝐼
𝑘𝑚

�̇� − 𝜀 tanh(�̇�)

+𝛼∫ (−𝑘𝑝(𝜃 − 𝜃𝑑) −
𝑘𝑣𝐼
𝑘𝑚

�̇� −
𝑅𝐼
𝑛
�̇� − 𝜀 tanh(�̇�))

𝑡

0

𝑑𝜏,

 (16.a) 

𝑢𝐼𝐼 = 𝛼∫ (−𝑘𝑝(𝛾 − 𝛾𝑑) −
𝑘𝑣𝐼𝐼
𝑘𝑚

�̇� − 𝑅𝐼𝐼�̇�)
𝑡

0

𝑑𝜏

−𝑘𝑝(𝛾 − 𝛾𝑑) − �̇� 𝑘𝑣𝐼𝐼 𝑘𝑚⁄ ,

 (16.b) 

which is nonlinear and implementable since it only depends on 

𝜃, 𝛾, �̇�, �̇�, and on the model parameters as initially required. 

Employing a similar argument as [21] shows that the integral 

terms in (16) do not add to the stiffness of the manipulator in 

closed loop, which is confirmed by the expression of 𝑉𝑑 (9). 

Proposition 1: Consider system (3) with Assumptions 1 to 5 in 

closed-loop with the controller (16). Define the vector of 

estimation errors as 𝑧 = 𝑙 − 𝛼𝑝 − 𝑙. Define the positive tuning 

parameters 𝑘𝑣𝐼 , 𝑘𝑣𝐼𝐼 , 𝛼, and 𝑘𝑚 such that 𝒜 > 0 and ℬ > 0 

(see Appendix). Then the following claims hold. 

i) The equilibrium point (𝑞, 𝑝, 𝑧) = (𝑞∗, 0,0) is locally stable 

and 𝑞 converge asymptotically to the set 𝑞∗ defined in (4). 

ii) The point (𝜃𝑑 , 𝛾𝑑) is a strict minimizer of 𝑊 for all 𝑘𝑝 > 0 

thus (𝜃, 𝛾) converge to (𝜃𝑑, 𝛾𝑑) asymptotically. 

Proof: To prove the first claim we start by computing the time 

derivative of 𝑧 and by substituting (3), which gives 

�̇� = 𝑙̇ + 𝛼(∇𝑞𝐻 + 𝑅∇𝑝𝐻 − 𝐺𝑢 + 𝑙 − 𝛼𝑝 − 𝑧 − 𝜎). (17) 

Substituting the adaptive law (13) into (17) gives 

�̇� = 𝛼(∇𝑞(𝑝
𝑇𝑀−1𝑝)/2 − 𝛼𝑝 − 𝑧 − 𝜎). (18) 

Since (18) also contains terms depending on 𝑝, the dynamics 

of 𝑧 is studied together with that of the closed-loop system (5). 

Substituting 𝑀𝑑 = 𝑘𝑚𝑀 and 𝐽2 = 0 in (5) and computing the 

time derivative of 𝑊 gives 

�̇� = ∇𝑝𝐻𝑑
𝑇(−(𝐺𝑘𝑣𝐺

𝑇 + 𝑅𝑘𝑚)∇𝑝𝐻𝑑 + 𝐺(𝑢0 + 𝑢
∗) − 𝛿). (19) 

Defining the Lyapunov function candidate 𝑊′ = 𝑊 +
1

2
𝑧𝑇𝑧, 

computing its time derivative along the trajectories of the 

closed-loop system, and substituting (16),(18),(19) while 

indicating with [1𝑛
𝑇] the column vector of dimension 𝑛 yields 

�̇�′ = −(𝑘𝑣𝐼�̇�
2 + 𝑘𝑣𝐼𝐼�̇��̇�)

1

𝑘𝑚
2
− |�̇�|2

𝑅

𝑘𝑚
+

+
�̇�𝑇

𝑘𝑚
(𝑧 + 𝛼𝑝 + 𝜎 − [1𝑛

𝑇]𝜀 tanh(�̇�)) − 𝛼𝑧𝑇𝑧 +

+𝛼𝑧𝑇(∇𝑞(𝑝
𝑇𝑀−1𝑝)/2 − 𝛼𝑝 − 𝜎).

 (20) 

For the rigid-link model we have that λMAX{𝑀} ≤ 𝑚𝑇𝐿𝑇
2 , 

where 𝑚𝑇 and 𝐿𝑇 are the total mass and the total length of the 

manipulator, and the operator λMAX{∙} indicates the largest 

eigenvalue of a matrix. As a result, |𝑝| ≤ 𝑐1𝑚𝑇𝐿𝑇
2 |�̇�| and 

|∇𝑞(𝑝
𝑇𝑀−1𝑝)| 2⁄ ≤ 𝑐2𝑚𝑇𝐿𝑇

2 |�̇�|2 for some 0 < 𝑐1 ≤ 1 and 

0 < 𝑐2 ≤ 1/2, which substituted in (20) yields 

�̇�′ ≤ −(𝑘𝑣𝐼�̇�
2 + 𝑘𝑣𝐼𝐼�̇��̇�)

1

𝑘𝑚
2
− |�̇�|2 (

𝑅0 − 𝛼𝑐1𝑚𝑇𝐿𝑇
2

𝑘𝑚
) +

+|𝑧||�̇�| (
1

𝑘𝑚
+ 𝛼2𝑐1𝑚𝑇𝐿𝑇

2 ) + |𝑧||�̇�|2(𝛼𝑐2𝑚𝑇𝐿𝑇
2 ) +

−|�̇�|4
𝑅1
𝑘𝑚

− 𝛼|𝑧|2 −
𝜀

𝑘𝑚
�̇� tanh(�̇�) +

|�̇�||𝜎|

𝑘𝑚
+ 𝛼|𝑧||𝜎|.

 (21) 

Using the Cauchy-Schwarz inequality ∑ �̇�𝑖
2𝑛

𝑖=1 ≥ (∑ �̇�𝑖
𝑛
𝑖=1 )2/𝑛 

yields |�̇�|2 ≥
�̇�2

𝑛
+ �̇�2 +

�̇�2

𝑛
. Substituting the former inequality 

in (21) and recalling that 𝛾 = 𝜔 + 𝜑 gives 

�̇�′ ≤ −
𝑘𝑣𝐼𝐼
𝑘𝑚
2
(�̇�2 + �̇��̇�) − (

�̇�2

𝑛
+ �̇�2 +

�̇�2

𝑛
)
𝑅0
2𝑘𝑚

−
𝑘𝑣𝐼
𝑘𝑚
2
�̇�2 − |�̇�|2 (

𝑅0
2𝑘𝑚

−
𝛼𝑐1𝑚𝑇𝐿𝑇

2

𝑘𝑚
) − |�̇�|4

𝑅1
𝑘𝑚

− 𝛼|𝑧|2 +

+|𝑧||�̇�| (
1

𝑘𝑚
+ 𝛼2𝑐1𝑚𝑇𝐿𝑇

2 ) + |𝑧||�̇�|2(𝛼𝑐2𝑚𝑇𝐿𝑇
2 ) −

−
𝜀

𝑘𝑚
�̇� tanh(�̇�) +

|�̇�||𝜎|

𝑘𝑚
+ 𝛼|𝑧||𝜎|.

 (22) 

Rearranging terms in (22), defining 𝑥 = [|�̇�| |�̇�|2 |𝑧|], and 

substituting |𝜎| ≤ 𝜇|�̇�| from Assumption 5 yields 

�̇�′ ≤ −�̇�2 (
𝑘𝑣𝐼
𝑘𝑚
2
+

𝑅0
2𝑛𝑘𝑚

) − [�̇� �̇�]𝒜 [
�̇�
�̇�
]

−𝑥 ℬ 𝑥𝑇 −
𝜀

𝑘𝑚
�̇� tanh(�̇�) ,

 (23) 

with 𝒜 and ℬ defined in Appendix, and where the last term is 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

7 

negative semidefinite and is due to 𝑢0. From (23), we have 

that �̇�′ ≤ 0 if 𝒜 > 0,ℬ > 0. As a result, �̇� ∈ ℒ2 ∩ ℒ∞, while 

computing �̇� from (5) yields �̇� ∈ ℒ∞. Similarly, 𝑧 ∈ ℒ2 ∩ ℒ∞, 

and �̇� ∈ ℒ∞ from (18). Thus 𝑝 and 𝑧 are bounded and 

converge to zero asymptotically by Barbalat’s Lemma. 

Substituting 𝑝 = �̇� = �̇� = 0 in (5) gives ∇𝑞𝑉𝑑 + Λ = 0, which 

corresponds to (10.a), thus 𝑞 converges to 𝑞∗ proving claim i). 

To prove the second claim we observe that 𝑞∗ is a strict 

minimizer of 𝑊 for all 𝑘𝑝 > 0 from (10.b). Thus, we only 

need to prove that the regulation goal (𝜃, 𝛾) = (𝜃𝑑 , 𝛾𝑑) 
belongs to the set of attainable equilibria 𝑞∗ defined in (4). 

Computing (4) with 𝜎 = 0 (see Assumption 5) yields 

{
(𝑞𝑖 − 𝑞𝑛)𝑘𝐼 = 𝑙𝑛 − 𝑙𝑖 1 ≤ 𝑖 < 𝑛,

𝑞𝑖𝑘𝐼𝐼 = −𝑙𝑖 𝑛 + 1 ≤ 𝑖 ≤ 2𝑛,
 (24) 

where 𝑞𝑛 and 𝑞2𝑛+1 can be chosen such that 

(𝑛𝑞𝑛 − 𝜃𝑑)𝑘𝐼 = −(𝑛 − 1)𝑙𝑛 +∑ 𝑙𝑖

𝑛−1

𝑖=1

, (25.a) 

(𝑞2𝑛+1 − 𝛾𝑑)𝑘𝐼𝐼 = ∑ 𝑙𝑖

2𝑛+1

𝑖=𝑛+1

. (25.b) 

Computing 𝜃 = ∑ 𝑞𝑖
𝑛
𝑖=1  and 𝛾 = ∑ 𝑞𝑖

2𝑛+1
𝑖=𝑛+1  from (24) and (25) 

yields (𝜃, 𝛾) = (𝜃𝑑, 𝛾𝑑) thus proving claim ii) ■ 

Remark 1: Differently from our preliminary results [30], the 

control law (16) accounts for the nonlinear structural stiffness 

of the manipulator and includes the nonlinear damping term 

(14). In addition, the control input 𝑢2
∗  accounts for the effect of 

damping in the direction orthogonal to the bending plane, thus 

leading to a gradual and smooth convergence of 𝛾 to 𝛾𝑑 (see 

Section IV). Additionally, Proposition 1 provides explicit 

stability conditions which refer to the tuning parameters and to 

the physical damping. This is a much stronger result compared 

to [30], which only concludes the existence of local stability 

conditions, depending on the estimation error 𝑧, without 

providing tuning guidelines. While closed-loop dissipation is 

ensured for all 𝑘𝑣𝐼 ≥ 0 and 𝑘𝑣𝐼𝐼 ≥ 0, inequality (A4) 

prescribes an upper limit on 𝑘𝑣𝐼𝐼 that decreases with 𝑛 and is 

proportional to 𝑅0𝑘𝑚. The value of 𝑘𝑣𝐼𝐼 can be kept constant 

for larger 𝑛 if the parameter 𝑘𝑚 is also increased, which 

corresponds to prescribing larger closed-loop inertia. If 

𝑚𝑇𝐿𝑇
2 ≪ 1, which is typically the case for miniature soft 

continuum manipulators such as [36] and for similar designs 

such as [35], the condition ℬ > 0 can be approximated as 

𝑅0 − 2𝜇 + 2𝛼𝑘𝑚 − 2√Ξ > 0, (26.a) 

𝑅1 𝑘𝑚⁄ > 0, (26.b) 

where the term Ξ does not depend on 𝑅1 and it is defined as 

Ξ =
𝑅0
2

4
+ (4𝜇 − 𝑅0)𝛼𝑘𝑚 − 𝑅0𝜇 + (𝛼

2𝑘𝑚
2 + 1)(𝜇2 + 1). (27) 

Inequality (26.b) is verified since 𝑅1 > 0 by hypothesis, hence 

nonlinear damping is instrumental to stability. The tuning 

guidelines for 𝛼 and 𝑘𝑚 corresponding to inequality (26.a) are 

(𝑅0 − 3𝜇 − √𝜚) 𝜇
2⁄ < 𝛼𝑘𝑚 < (𝑅0 − 3𝜇 + √𝜚) 𝜇

2⁄ ,

𝜚 = 𝑅0
2 + 8𝜇2 − 6𝑅0𝜇 > 0,
𝑅0 > 3𝜇.

 (28) 

Solving (28) for 𝜇 = 𝜆𝑅0 yields 𝜆 ≤ 1/4 thus a larger 

physical damping 𝑅0 is required to withstand the effect of 

larger time-varying disturbances. Computing (28) for the limit 

condition 𝜇 = 𝑅0/4 yields 𝛼𝑘𝑚 = 4/𝑅0, thus a larger 

physical damping demands a less aggressive tuning of the 

adaptive law or a smaller 𝑘𝑚. Additionally, in case of 

pneumatic actuation, 𝑅0 can be increased as needed by 

introducing flow restrictors on the lines that supply the 

manipulator, resulting in a smoother but slower transient 

response (see Section IV). Note that the tuning guidelines (28) 

are conservative since the Cauchy-Schwarz inequality is used 

in (22), hence they ensure stability of the desired equilibrium. 

However compared to Corollary 1 in [29], the conditions (28) 

are less stringent (see Section IV.A for a numerical example). 

In summary, (16) contains the tuning parameters 𝑘𝑝, 

𝑘𝑣𝐼 , 𝑘𝑣𝐼𝐼, 𝛼, 𝑘𝑚, and 𝜀 which is assumed known (see 

Assumption 5). In particular, 𝛼 defines the convergence rate of 

the adaptive law (15), thus a larger value is typically desirable 

compatibly with (28). In addition, 𝑘𝑚, 𝑘𝑣𝐼 , 𝑘𝑣𝐼𝐼 appear in (16) 

as 𝑘𝑣𝐼 𝑘𝑚⁄  and 𝑘𝑣𝐼𝐼 𝑘𝑚⁄ , thus they can be treated as two 

parameters: 𝑘𝑣𝐼𝐼 𝑘𝑚⁄  should verify (A4);  𝑘𝑣𝐼 𝑘𝑚⁄  can be taken 

of the same order of magnitude as 𝑅0 to start with, and further 

reducing its value results in a faster response. Employing a 

larger 𝑘𝑝 results in a faster transient but also increases the 

closed-loop stiffness, which is typically undesirable for soft 

continuum manipulators [21]. In this respect, values in the 

range 𝑘0 10⁄ < 𝑘𝑝 < 𝑘0/3 represent a good compromise. The 

effect of the tuning parameters is illustrated in Section IV. 

Remark 2: The ancillary control (14) only affects the bending 

plane thus the product ∇𝑝𝐻𝑑
𝑇𝐺𝑢0 in (19) provides a negative-

semidefinite contribution in (23). For illustrative purposes, 

defining 𝑢0
′ = −𝜀 [

tanh(�̇�)

tanh(�̇�)
] and substituting it in (23) yields 

�̇�′′ = �̇�′ − 𝜀�̇� tanh(�̇�) /𝑘𝑚, where in general the last term 

has indeterminate sign. Although this additional term could be 

accounted for the in the matrix 𝒜 by employing the Cauchy-

Schwarz inequality as outlined in (22), it would result in more 

stringent stability conditions. Consequently 𝑢0 is defined such 

that it only contributes to the in-plane control 𝑢𝐼. 

Remark 3: The model of the structural stiffness defined in 

Assumption 2 is instrumental to ensuring that an analytical 

solution of (6.b) exists for all 𝜃 and 𝛾 = 𝛾𝑑, and that the 

control law (16) is implementable by employing only the tip 

angles 𝜃 and 𝛾 and their first order time derivatives. 

Assumption 2 would not be satisfied by soft manipulators with 

non-uniform stiffness (e.g. 𝑘𝑖 = ∑ 𝑘𝑖𝑗|𝑞𝑖|
𝑗𝑟𝑏

𝑗=0  different for 

each joint 𝑖, where 1 ≤ 𝑖 ≤ 2𝑛). In such a case, an additional 

state observer would be required to estimate the virtual 

positions 𝑞𝑖 that would appear in the control law. In addition, 

the theoretical case of nonlinear uniform stiffness with 𝑘0 = 0 
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is also problematic since the PDE (6.b) would then only be 

solvable for the CC condition 𝑞𝑖 = 𝑞𝑗 , ∀𝑖, 𝑗. This implies that 

the closed-loop dynamics would correspond to (5) only in 

proximity of the equilibrium 𝑞∗ and only if the disturbance 

does not affect the unactuated DOFs [29], thus resulting in 

degraded transient performance. The latter case is less relevant 

in practice since it would imply that the structural stiffness is 

zero at 𝜃 = 0, which might not be physically meaningful. 

Instead, the case of non-uniform stiffness could be relevant to 

soft manipulators with variable section along their axis and 

shall be investigated as part of our future work. 

IV. EXPERIMENTAL RESULTS 

A. Simulations 

Simulations have been conducted in Matlab for the rigid-

link model shown in Figure 1 with the parameters 𝑛 = 3, 𝑘0 =
2, 𝑘1 = 4, 𝑏 = 1, 𝑟 = 0.25, 𝑙𝑇 = 0.1, 𝑚𝑇 = 1.5, 𝑅0 = 0.01, 

𝑅1 = 0.0001. The disturbances have been defined as 𝛿 = 𝑙 +
𝜎, with a constant part 𝑙 = −0.01[5  5  5  0  0  0  5], where the 

first three terms represent moment loads in the bending plane, 

the next three terms are moment loads outside the bending 

plane, and the last term can be due to asymmetries in the 

internal chambers of the manipulator. The variable component 

of the disturbance changes suddenly from 𝜎 = 0 to 𝜎 =
−0.01[ 5  5  5  5  5 5  5] at time 𝑡 = 2.5 seconds and 

represents an additional moment load in the bending plane and 

a further moment that moves the manipulator away from the 

bending plane. Consequently, 𝜀 = 0.05 and 𝜇 = 0 since the 

disturbance does not include damping terms. Computing (A4) 

and (28) while assuming 𝜇 = 𝑅0 5⁄  for illustrative purposes 

results in the tuning guidelines 𝑘𝑣𝐼𝐼 < 0.05 and 27 ≤ 𝛼𝑘𝑚 ≤
373, while the limit condition 𝜇 = 𝑅0 4⁄  corresponds to 

𝛼𝑘𝑚 = 400 (see Remark 1). In comparison, the tuning 

guidelines in Corollary 1 [29] for the planar case with 𝜇 = 0 

would be 32 ≤ 𝛼𝑘𝑚 ≤ 192, which are more restrictive. The 

controller parameters are finally chosen as 𝑘𝑣𝐼 = 0.1, 𝑘𝑣𝐼𝐼 =
0.15, 𝑘𝑝 = 0.2, 𝛼 = 10, 𝑘𝑚 = 5 and alternatively 𝑘𝑚 = 10. 

The effect of the tuning parameters 𝛼, 𝑘𝑝 and 𝜀 is shown in 

Figure 2. The effect of the tuning parameters 𝑘𝑚, 𝑘𝑣𝐼 , 𝑘𝑣𝐼𝐼 and 

of the stiffness parameters 𝑘𝐼 , 𝑘𝐼𝐼 is shown in Figure 3. Figure 

2 shows that the controller (16) achieves the regulation goal in 

spite of the disturbances. After the disturbance onset, the 

control input settles at a higher value because of the adaptive 

law (15). The disturbance estimates 𝐺𝑇𝑙, consisting of the in-

plane component 𝑙𝐼 and of the out-of-plane component 𝑙𝐼𝐼, 

converge to 𝐺𝑇(𝑙 + 𝜎) (see Figure 2.c and 2.f). Employing 

𝜀 = 0.05 results in a slower transient but also in a smaller 

deviation of the tip angle 𝜃 from the desired value 𝜃𝑑 

immediately after 𝑡 = 2.5 seconds compared to the case in 

which 𝜀 = 0. Instead, the time history of the tip angle 𝛾 is the 

same in both cases, since 𝑢0 only affects the control law 𝑢𝐼 
(see Remark 2). Increasing 𝛼 leads to a faster recovery from 

the disturbance and preserves the transient for both 𝜃 and 𝛾. 

Instead, increasing 𝑘𝑝 result in a faster transient and also leads 

to overshoot and oscillations on 𝛾 (see Remark 1). 

 
Figure 2.  Simulation results with 𝑘𝑚 = 5 and different values of 𝛼, 𝑘𝑝, 𝜀: tip 

angle 𝜃 (a); tip angle 𝛾 (d); control input 𝑢𝐼 (b); control input 𝑢𝐼𝐼 (e); 

disturbance estimate 𝑙𝐼 (c); disturbance estimate 𝑙𝐼𝐼 (f). The tuning parameters 

of controller (16) are 𝑘𝑣𝐼 = 0.1, 𝑘𝑣𝐼𝐼 = 0.15, 𝑘𝑝 = 0.2, 𝛼 = 10, 𝜀 = 0.05 

unless otherwise stated in the legend. 

 
Figure 3.  Simulation results with 𝑘𝑚 = 10 and different values of 𝛼, 𝑘𝑣𝐼, 𝜀: 

tip angle 𝜃 (a); and tip angle 𝛾 (d); tip angle 𝜃 with 𝑢0 = 0 (b); and tip angle 𝛾 

with 𝑢0 = 0 (e); tip angle 𝜃 for our previous implementation [29], [30] (c); 

and tip angle 𝛾 (f). The tuning parameters are 𝑘𝑣𝐼 = 0.1, 𝑘𝑣𝐼𝐼 = 0.15, 𝑘𝑝 =

0.2, 𝛼 = 10, 𝜀 = 0.05, 𝑘𝑚 = 10 in (16), unless otherwise stated in the legend. 

Figure 3.a shows that increasing 𝑘𝑚 results in a faster 

transient but might induce overshoot and oscillations if 𝜀 = 0. 

A smoother but slower response is obtained with 𝜀 = 0.05 and 

the system recovers from the disturbance in a similar way as 

shown in Figure 2.a. Introducing the nonlinear term 𝑢0 has a 

different effect compared to simply increasing the parameter 

𝑘𝑣𝐼 of an equal amount, as shown by Figure 3.b. Further 

increasing 𝑘𝑣𝐼 recovers a similar response to the disturbance 

but at the cost of a slower transient. Employing a constant 

stiffness parameter 𝑘𝐼 = 𝑘𝐼𝐼 = 𝑘0 and 𝜀 = 0 in the control law 

as in our earlier works [29], [30] results in a slower transient 

since the adaptive law has to compensate for the discrepancy 

between the estimated value and the actual value of the 

structural stiffness (see Figure 3.c). This issue can be partially 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 

 

9 

mitigated by employing a larger 𝑘0 in the control law, which 

however needs to be chosen according to the operating 

conditions to maximize responsiveness while avoiding 

overshoot and oscillations. Increasing 𝛼 can result in a faster 

response but used in conjunction with a large 𝑘𝑚 it could also 

lead to a more oscillatory transient (see Remark 1). Finally, 

setting 𝛼 = 0 deactivates the adaptive law thus the control 

input does not change after the disturbance onset leading to a 

large steady-state error (𝜃𝑑 − 𝜃, 𝛾𝑑 − 𝛾) = (0.5,0.58). 

B. Experiments 

The controller (16) has been tested on a prototype with 

outer diameter 𝐷 = 6 mm, total length 𝑙𝑇 = 30 mm, and total 

mass 𝑚𝑇 = 1.5 g employing the setup illustrated in Figure 1.e. 

The tip angles (𝜃, 𝛾) are measured with an electromagnetic 

tracking system (Aurora, NDI, Canada, 0.2° RMS accuracy 

for 5DOF sensor) and are communicated to a Matlab script. 

The control pressures are computed from (2) and are 

communicated to two proportional pressure regulators (Tecno 

Basic, Hoerbiger, Germany) using a digital microcontroller 

(mbed NXP LPC1768, baud rate 921600). The pressure 

regulators supply two chambers of the manipulator, while the 

third chamber is left at atmospheric pressure for simplicity. 

Pressurizing the third chamber results in different values of 𝜑. 

 
Figure 4.  Tip rotation of the manipulator on the bending plane for different 

values of the actuation pressures 𝑃1 = 𝑃2 (a); least-squares regression for the 

stiffness parameters 𝑘𝑗
∗ compared to constant stiffness approximation (b). 

 
Figure 5.  Step response of the manipulator with 𝑃0 = 0,𝑃1 = 𝑃2 = 1.5 bar 
(a); with 𝑃1 = 𝑃2 = 2 bar (b); with 𝑃1 = 𝑃2 = 2 bar and flow restrictor (3 

mm ID) half open (c); 𝑃1 = 𝑃2 = 2 bar and flow restrictor a quarter open (d). 

Physical damping and structural stiffness parameters have 

been estimated with a set of step responses of different 

amplitudes. Figure 4 shows that the tip rotation 𝜃 increases 

with the input pressure. The measurements have been 

conducted setting different values of 𝑃1 = 𝑃2 and keeping 

𝑃0 = 0. Defining 𝜗 = 𝜃𝑟and employing a least-squares 

regression in 𝜗 yields 𝑘𝐼
∗ = 𝑘0

∗ + 𝑘1
∗|𝜃|𝑟 expressed in bar/rad. 

The values 𝑘0
∗ = 0.6, 𝑘1

∗ = 1.3, and 𝑟 = 0.25 represent a good 

approximation for this range of pressures and provide better 

accuracy than assuming constant stiffness (see Figure 4.b), 

which is even more noticeable over a larger pressure range.  

 
Figure 6.  Experimental results without external forces (test setup in Figure 

1.e): time histories of the tip angle 𝜃 (a); tip angle 𝛾 (d); control pressure 𝑃1 

(b); control pressure 𝑃2 (e); disturbance estimate 𝑙𝐼 (c); disturbance estimate 

𝑙𝐼𝐼 (f). The tuning parameters of controller (16) are 𝑘𝑝 = 0.5, 𝑘𝑣𝐼 = 𝑘𝑣𝐼𝐼 =

1, 𝑘𝑚 = 20, 𝛼 = 10, and 𝜀 = 0.05 unless otherwise stated in the legend. 

The structural stiffness in Nmm/rad is computed 

considering a circular section thus 𝑘𝑗 = 𝑘𝑗
∗𝜋𝐷3/24, which 

yields 𝑘0 = 1.7, 𝑘1 = 3.7. Figure 5.a and 5.b show that the 

maximum angular speed �̇� varies at different pressures, which 

indicates the presence of nonlinear damping. The experiments 

have also confirmed that damping can be substantially 

increased by introducing a flow restrictor at the output of the 

pressure regulators (see Figure 5.c and 5.d). The damping 

parameters have been estimated from (3) computed at the 

maximum velocity for different actuation pressures without 

external forces. In these conditions the manipulator admits a 

constant-curvature equilibrium thus 𝑞𝑖 = 𝑞𝑗 for all 𝑖 and 𝑗. 

The tip rotation 𝜃, the velocity �̇�, and the control input are 

known at any instant. The damping parameters resulting from 

the model identification are 𝑅0 = 3 × 10−2 Nms and 𝑅1 =
1.5 × 10−2Nms2 thus the physical damping on the bending 

plane has been modelled as 𝑅𝐼 = 𝑅0 + 𝑅1�̇�
2. Computing (28) 

while assuming 𝜇 = 𝑅0 5⁄  for illustrative purposes, as in the 

simulations, results in the tuning guidelines 45 < 𝛼𝑘𝑚 < 620, 

while the limit condition 𝜇 = 𝑅0 4⁄  yields 𝛼𝑘𝑚 = 133. The 

tuning parameters have been set to 𝑘𝑝 = 0.5; 𝑘𝑣𝐼 = 𝑘𝑣𝐼𝐼 =

1; 𝑘𝑚 = 20;  𝛼 = 10, and 𝜀 = 0.05. This represents a more 

aggressive tuning of 𝛼 and 𝑘𝑚 compared to the limit condition 

𝜇 = 𝑅0 4⁄ , which is conservative (see Remark 1). These 

values have been chosen to facilitate the comparison with our 

prior work and since the external forces in the experiments do 

not include damping terms, thus 𝜇 ≅ 0. Since a different 

parameterization has been used for the potential energy 𝑉𝑑 in 

(9), the parameter 𝑘𝑝 in (16) corresponds to the product 𝑘𝑝𝑘𝑚 

in [29], thus the controller parameters are equivalent in both 

cases. For comparison purposes, the system response is also 

shown for a PID algorithm with tuning parameters 𝐾𝑝 = 𝑘𝑝 =

0.5, 𝐾𝑖 = 𝛼𝑘𝑝 = 5 and 𝐾𝑑 = 𝑘𝑣𝐼/𝑘𝑚 = 1/20. Further 

experiments with the PID can be found in our prior work [29]. 
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Figure 7.  Experimental results with mass 𝑚0 = 1 g attached at the tip of the 

manipulator at time 𝑡 = 12 seconds (test setup shown Figure 1.e): time 

histories of the tip angle 𝜃 (a); and of the tip angle 𝛾 (d); control pressure 𝑃1 

(b); control pressure 𝑃2 (e); disturbance estimate 𝑙𝐼 (c); disturbance estimate 

𝑙𝐼𝐼 (f). The tuning parameters of controller (16) are 𝑘𝑝 = 0.5, 𝑘𝑣𝐼 = 𝑘𝑣𝐼𝐼 =

1, 𝑘𝑚 = 20, 𝛼 = 10, and 𝜀 = 0.1 unless otherwise stated in the legend. 

 
Figure 8.  Experimental results with tip mass 𝑚0 = 1 g for two orientations 

of the base frame (see legend): time histories of the tip angle 𝜃 (a); and tip 

angle 𝛾 (d); control pressure 𝑃1 (b); control pressure 𝑃2 (e); disturbance 

estimate 𝑙𝐼 (c); disturbance estimate 𝑙𝐼𝐼 (f). The tuning parameters of controller 

(16) are 𝑘𝑝 = 0.5, 𝑘𝑣𝐼 = 𝑘𝑣𝐼𝐼 = 1, 𝑘𝑚 = 20, 𝛼 = 10, and 𝜀 = 0.1. 

The experimental results without external forces using the 

controller (16) and different values of 𝑘𝑝 are shown in Figure 

6. The regulation goal has been correctly achieved but the 

disturbance estimates are not zero due to the presence of 

model uncertainties, which are treated as a lumped disturbance 

in (3). The disturbance estimates increase at larger rotations 𝜃 

suggesting a potential discrepancy between the model (2) and 

the real system, due to the deformation of the partition walls 

between the internal chambers (see Figure 6.c). In this case, 

the system response of the PID is very similar to that of the 

controller (16) with 𝑘𝑝 = 0.5 suggesting that the two might be 

equivalent in the same operating conditions. However, the 

control effort is visibly higher for the PID (see Figure 6.b). 

 
Figure 9.  Experimental results for the setup shown Figure 1.f: time histories 

of the tip angles for a time-varying setpoint (a); disturbance estimates (b). 

The time histories of the tip rotation in the presence of 

unknown time-varying external forces corresponding to two 

different loading conditions are shown in Figure 7 and Figure 

8. In the first case, a mass 𝑚0 = 1 gram (comparable to 𝑚𝑇) 

has been attached to the tip of the manipulator at time 𝑡 = 12 

seconds. This type of disturbance acts in the bending plane 

and also orthogonally to it, as shown by the angles 𝜃 and 𝛾. 

Since 𝑢0 injects additional damping in the closed-loop system 

(5), a larger value of 𝜀 reduces the maximum deviation from 

the prescribed equilibrium after the disturbance onset (|𝜃 −
𝜃𝑑| = 0.13 with 𝜀 = 0.1; and |𝜃 − 𝜃𝑑| = 0.16 with 𝜀 = 0) 

but also results in a slower transient (see Figure 7.a). In this 

case, the PID shows a larger deviation from the prescribed 

equilibrium (|𝜃 − 𝜃𝑑| = 0.2) and a higher control effort (see 

Figure 7.b). The disturbance estimates are computed with (15) 

and converge to a different value from the disturbance-free 

case because of 𝑚0 (see Figure 7.c and 7.f). 

In the second loading condition the tip mass 𝑚0 has been 

attached at the start of the experiment and it produces bending 

moments that vary with the tip rotations 𝜃 and 𝛾 and with the 

orientation of the base frame. Two orientations of the 

manipulator have been considered: in the first case the 

bending plane is approximately aligned with gravity, while in 

the second it is inclined by approximately 30 degrees. Also in 

this case the controller (16) has correctly achieved the 

regulation goal in spite of the external disturbance (see Figure 

8.a and 8.d) and the transient response is very similar for both 

orientations. Due to the adaptive law (15) which compensates 

the effect of the payload, the final values of the control 

pressures are slightly different (see Figure 8.b and 8.e). The 

adaptive estimate of the in-plane disturbance 𝑙𝐼 and of the out-

of-plane disturbance 𝑙𝐼𝐼 converge to different values at 

different orientations of the bending plane with respect to 

gravity (see Figure 8.c and 8.f). In this case the transient 

response with the PID shows noticeable oscillations (see 

Figure 8.a) and the control input 𝑢𝐼 is less consistent for 

different orientations. This occurs since the tip mass results in 

time-varying bending moments during the transient and 

suggests that the parameters of the PID might need to be re-

tuned for different operating conditions. Although gain 

scheduling procedures could improve the performance of the 
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PID, they would require additional assumptions on the type 

and magnitude of the disturbances. 

Additional plots showing the position errors |𝜃 − 𝜃𝑑| and 

|𝛾 − 𝛾𝑑|, and the 𝐿2 norm of the control input corresponding 

to Figure 2, Figure 3, Figure 6, Figure 7, and Figure 8 are 

accessible at this link. Experimental results for the case of 

variable setpoint are shown in Figure 9 and in the 

Supplementary Video. The aim of the video is only to 

illustrate the performance of the manipulator with the 

controller (16) for a variable setpoint in the presence of time-

varying disturbances and is not intended to demonstrate 

clinical use. In addition to the actuation and sensing hardware 

previously described, the setup includes an endoscopic camera 

(Shekar 5.5mm USB Camera) that shows the manipulator 

inside a cardiovascular phantom (see Figure 1.f), a second 

camera that provides an external view, and a joystick (Xbox 

360 Controller) for the operator to define the setpoint (𝜃𝑑, 𝛾𝑑). 

A scalpel blade is mounted at the tip of the manipulator to 

interact with a deformable obstacle (Bostik Blu tack). The 

results indicate that the regulation goal is achieved for a 

variable setpoint and in the presence of time-varying 

disturbances due to the contact with the deformable obstacle. 

V. CONCLUSION AND FUTURE WORK 

 A nonlinear adaptive controller has been proposed for a 

class of soft continuum manipulators with nonlinear uniform 

stiffness and nonlinear damping affected by time-varying 

disturbances. The control law compensates the effect of 

unknown external forces and of model uncertainties, and it is 

implementable with a single sensor that measures the tip 

orientation of the manipulator in a fixed base frame. Stability 

conditions for the prescribed equilibrium have been discussed 

highlighting their relationship with the tuning parameters and 

with physical damping. In particular, the stability analysis 

indicates that nonlinear damping is beneficial for stability, but 

that larger physical damping demands a less aggressive tuning 

of the controller parameters. This finding sheds new light on 

the role of damping in the control of underactuated mechanical 

system. The effectiveness of the controller has been assessed 

with simulations and with experiments on a soft continuum 

manipulator prototype that employs pneumatic actuation. The 

controller achieves the regulation goal producing a more 

consistent response across different operating conditions 

compared to a traditional PID scheme with equivalent tuning 

parameters. The simulation results suggest that the new 

control law improves the transient response compared to our 

prior implementations. The experimental results indicate that 

the control law reduces the deviation from the prescribed 

equilibrium and the unwanted vibrations that might be induced 

by external forces compared to the PID. 

 Nevertheless, the current study has a number of limitations. 

The proposed model assumes negligible twist thus it does not 

apply to manipulator designs for which twist is an actuated 

DOF or to disturbances that include twisting moments. The 

parameterization employed for the structural stiffness is not 

suitable for soft manipulators with variable section along the 

axis. In addition, the pressure dynamics might need to be 

modelled explicitly for larger manipulators supplied by 

different types of valves or through longer pipes. Moreover, 

actuator saturation could prevent the system from achieving 

the regulation goal in the presence of high disturbances. 

Finally, the controller relies on measurements of the tip 

orientation, which were achieved with an electromagnetic 

tracking system that has a limited range. In principle an 

inclinometer could represent an inexpensive alternative and 

could be more suitable for larger manipulators. 

Future work shall aim to extend these results to soft 

continuum manipulators with variable section and to soft 

manipulators for which twist is an actuated DOF. 

APPENDIX 

The symmetric matrices 𝒜 and ℬ in (23) are defined as: 

𝒜 = [
𝑘𝑣𝐼𝐼 𝑘𝑚

2⁄ + 𝑅0 (2𝑘𝑚)⁄ ⋆

𝑘𝑣𝐼𝐼 (2𝑘𝑚
2 )⁄ 𝑅0 (2𝑛𝑘𝑚)⁄

] (A1) 

ℬ = [

(𝑅0 − 2𝛼𝑐1𝑚𝑇𝐿𝑇
2 − 2𝜇) (2𝑘𝑚)⁄ ⋆ ⋆

0 𝑅1 𝑘𝑚⁄ ⋆

−(1 𝑘𝑚⁄ + 𝛼2𝑐1𝑚𝑇𝐿𝑇
2 + 𝜇𝛼)/2 −(𝛼𝑐2𝑚𝑇𝐿𝑇

2 )/2 𝛼

]. (A2) 

Employing a Schur complement argument and recalling that 

𝑅0 > 0, 𝑅1 > 0 (see Assumption 3) and that 𝛼 > 0, 𝑘𝑚 >
0, 𝑘𝑣𝐼𝐼 > 0 by hypothesis, we have that 𝒜 > 0 if and only if: 

(𝑘𝑣𝐼𝐼 2𝑘𝑚
2⁄ )2 − 𝑅0 (𝑘𝑣𝐼𝐼 𝑘𝑚

2⁄ + 𝑅0 2𝑘𝑚⁄ ) (2𝑛𝑘𝑚)⁄ < 0. (A3) 

The condition that follows from (A3) is  

0 < 𝑘𝑣𝐼𝐼 < 𝑅0𝑘𝑚(1 + √𝑛 + 1)/𝑛. (A4) 
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