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Realizing photonic analogs of the robust, unidirectional edge states of electronic topological insulators would
improve our control of light on the nanoscale and revolutionize the performance of photonic devices. Here, we
show that new symmetry-protected topological phases can be detected by reformulating energy eigenproblems
as Berry curvature eigenproblems. The “Berry bands” span the same eigenspace as the original valence energy
bands, but separate into pseudo-spinful and pseudo-spinless subspaces in C, 7 -symmetric crystals. We demon-
strate the method on the well-known case of Wu and Hu [Phys. Rev. Lett. 114, 223901 (2015)] and a recently
discovered fragilely topological crystal, and show that both crystals belong to the same photonic analog of the
quantum spin-Hall effect. This work helps unite theory and numerics, and is useful in defining and identifying
new symmetry-protected phases in photonics and electronics.
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Introduction. When guiding light on the nanoscale, im-
purities, imperfections, and sharp corners can scatter light
in unintended ways and limit the performance of photonic
devices. This unintended scattering could be reduced if light
can be guided using the robust, unidirectional states that arise
at the surfaces of crystals with nontrivial band topologies.
This is the one of the principal goals of topological nanopho-
tonics [1]. Although nontrivial topological phases were first
observed in the electronic bands of atomic crystals [2-7],
photonic analogs of topological phases such as the quantum
Hall effect (QHE) [8,9] and symmetry-protected phases such
as the quantum spin-Hall effect (QSHE) [2—4] have been built
using photonic crystals: periodic nanostructures with tunable
photonic bands [10,11].

The photonic QHE has robust surface states, but requires
time-reversal symmetry to be broken [12—15]. This can also
be achieved in photonics using, for example, an external
magnetic field [16], but in practice the time-reversal break-
ing responses of common materials are weak in the visible
spectrum [1,17]. As such, there is a particular interest in
photonic analogs of topological phases that are time-reversal
symmetric, such as the QSHE.

The QSHE can be considered as two counterpropagat-
ing instances of the QHE, one for each spin and with
opposite magnetic fields to maintain time-reversal sym-
metry. In general, the surface states are not robust as
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crossings between the counterpropagating surface states can
be gapped by non-spin-preserving perturbations [18,19].
However, with fermionic time-reversal symmetry, 72 = —1,
there are protected Kramers’ degeneracies at time-reversal in-
variant momenta and the number of topological surface states
propagating in each direction can only change by an even
number [20]. The QSHE is therefore a Z, topological phase,
with either an even (trivial) or odd (nontrivial) number of edge
states propagating in each direction [3].

An elegant photonic analog of the QSHE was proposed by
Wu and Hu [21] where the angular momentum of light mimics
the spin space of the electrons, and crystalline symmetries
produce a fermionic pseudo-time-reversal symmetry that pro-
tects the edge states at I'. The design consists of hexagonal
rings of cylinders arranged on a triangular lattice, as shown
in Fig. 1(a). When the cylinders are circular (d; = d») there
is a certain ring radius (ag/R = 3) where the cylinders form
a honeycomb lattice and the transverse magnetic modes meet
at a double Dirac point between p (dipolar) and d (quadrupo-
lar) modes at I'. Breaking the Dirac point by expanding the
rings of cylinders produces an effective Hamiltonian that is
equivalent (in the vicinity of I') to the Bernevig-Hughes-
Zhang model of the QSHE [4]. Owing to its simplicity,
this model has been widely studied recently [22-28] and
has been used to show the importance of finite-size effects
in topological photonics and the emergence of topological
particle resonances or topological whispering gallery modes
[29,30].

It has been shown that in some cases [31,32], identify-
ing topological photonic phases requires proper consideration
of long-range interactions and retardation. However, to our
knowledge the expected topological indices have not been
determined from full-wave calculations over the full Brillouin
zone for the structures proposed by Wu and Hu, but only with
approximations near the I point [21,23,24,26]. This has led to
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FIG. 1. (a) A topological photonic crystal consisting of dielec-
tric cylinders (e, = 11.7) in air (¢, = 1). The ellipsoidal cylinders
have axes of lengths d; and d, and are arranged in rings of radius
R on a triangular lattice of site-to-site separation ag. (b) In C,T
symmetric crystals, the Berry curvature of the valence bands comes
in zero (pseudo-spinless) or positive/negative (pseudo-spinful) pairs.
(c) Transverse magnetic (TM) polarized bands of a topological pho-
tonic crystal with ag/R =2.9, d| =d, =2R/3 and (d) a similar
crystal withag/R = 3,d, = 0.4, d, = 0.13. There is a complete band
gap between the third and fourth bands, as shown in light blue. We
show that there is a nontrivial Z, topological phase for both crystals
that can be observed in the Wilson loops of the pseudo-spinful
subspace. Previous works had shown that Wilson loops through
the full valence band spaces fail to detect a nontrivial topological
phase [22,33]. By coloring the bands according to their pseudo-spin
composition, we see that this is because the valence band spaces
contain a mixture of pseudo-spinful and pseudo-spinless states.

the belief that the bulk topology of this crystal is not analogous
to the QSHE [22,27].

In this Letter we show how the bands of Berry curvature,
which we call the “Berry bands,” form a natural basis for
the pseudo-spin of a crystal, as shown in Fig. 1(b), and how
symmetry-protected phases can be identified using Wilson
loops [20,34] through the pseudo-spin subspaces. The cal-
culations are performed with Peacock.jl, a freely available
JULIA package for studying topological photonics using the
plane-wave expansion method and Wilson loops [35]. Taking,
for example, the well-known crystal of Wu and Hu shown in
Fig. 1(c) where the spectra of Wilson loops applied directly to
the energy bands imply the existence of corner states but not
necessarily helical edge states [36,37], we show that taking
Wilson loops of the Berry bands reveals the photonic analogy
to the QSHE. We also show that a related photonic crystal
whose energy bands have fragile topology [22,33], shown
in Fig. 1(d), belongs to the same symmetry-protected phase

as the crystal of Wu and Hu [21]. By coloring the energy
bands of Figs. 1(c) and 1(d) according to their pseudo-spin
composition, we see that the fragile topology arises when the
energy bands are gapped in such a way as to separate the
pseudo-spinful and pseudo-spinless spaces. These results help
unite theory and numerics, and may be useful in defining and
identifying new symmetry-protected phases.

Gapped topological phases. Two gapped Hamiltonians are
in different topological phases when it is impossible to adi-
abatically deform from one to the other without closing the
energy gap. In two dimensions (2D), the topological index of
each phase is the total Chern number [13] of the valence band
space, H.,. Later, we will discuss how Cy, can be calculated
using Wilson loops. In the QHE, unidirectional surface states
are observed at the interface between two different topological
phases. The net number of edge states traveling in a certain
direction is the difference in Chern number of the two phases,
ACval-

Moreover, two Hamiltonians belong to different symmetry-
protected phases when we may adiabatically deform from
one to the other without closing the energy gap, but only
if the protecting symmetry is necessarily broken during the
deformation. Systems in different symmetry-protected phases
must belong to the same general topological phase and can-
not be distinguished by Cy,. For example, both the trivial
and nontrivial phases in the QSHE have C,, = 0. Instead,
the valence band space must be decomposed into subspaces,
Hya(k) = @2’11 ‘H, (k). If the projectors onto each subspace
are smooth and periodic throughout the Brillouin zone, then
each subspace has a well-defined Chern number [38], Cyy =
30t o

While there are many ways of decomposing H,, into
subspaces, leading to different {C,}, the topological indices
of a symmetry-protected phase must be robust against per-
turbations unless the protecting symmetry is broken or the
valence-conduction band gap is closed. One approach is to de-
compose the band space according to symmetries that (block)
diagonalize the Hamiltonian [38]. In the following sections we
introduce “bands of Berry curvature,” which we call the Berry
bands, and explain how decomposing Hy, according to these
Berry bands reveals topological phases in C,7-symmetric
photonic crystals that emulate spin using the angular momen-
tum of light.

Wilson loops. We use operators known as Wilson loops
for two purposes: first, to decompose H,, into subspaces
according to the local Berry curvature, and then to calculate
the corresponding topological indices of each subspace. The
Wilson loop of a closed path, L, is

Wén} — p(kl)ﬁ(kN) .. ﬁ(kz)]s(kl), (D

where P(k;) = Zne{n} lu, (k;)) {u,(k;)| are projectors onto the
subspace of interest, and k; are closely spaced points along
L. The action of the Wilson loop is to parallel transport a
mode through this subspace. In general this produces a unitary
mixing,

Wg‘n}mi(kl)) = ZUij|“j(k1))’ 2)
J
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FIG. 2. Pseudo-spin modes at M for the topological crystal of
Wu and Hu (ap/R = 2.9, d; = d, = 2R/3). In C, T -symmetric crys-
tals the Berry curvature F (k) comes in positive/negative pairs or
is zero. The pseudo-spinless mode F (k) = 0 is mapped to itself by
C,7 symmetry, whereas the pseudo-spin-up and pseudo-spin-down
modes +F (k) are mapped to each other by C,7 symmetry.

but there exist eigenmodes for each Wilson loop that will
each accumulate a gauge-invariant geometric phase known as
a Berry phase y; without mixing [34],

W litger)) = expliyi)litger)), 3)

= Zj Vijlu;j(ky)) and V is a unitary matrix that
diagonalizes U as (V*UV),-j = §;; exp(iy;).

Berry bands and pseudo-spin. We generate a pseudo-spin
basis for C, T -symmetric crystals using Wilson loops around
infinitesimally small paths £(k) enclosing k, as shown in the
inset of Fig. 1(b). We want the decomposition to be unaffected
by perturbations that open or close energy gaps within the va-
lence bands, so we build these Wilson loops using projectors
onto the full valence band space,

W2 = Po(ky)Praky) - - -

where |ii; (k1))

Pra(kz) Py (K1),

thereby ensuring that different realizations of the same
symmetry-protected phase, such as those in Figs. 1(c) and
1(d), are treated equally.

Because the Wilson loops are unitary operators, we can
form a Hermitian eigenvalue problem for the non-Abelian
Berry curvature F;(k),

Az (o)l (k) = Fik)|(k)), “

where  Hz(k) = limy_o[—ilogW ¥ /A] and Fi(k) =
limy_o[y;(k)/A] for a vanishingly small loop £ of area
A enclosing k. This transforms the original energy eigenvalue
problem E (k) to a “Berry band” eigenvalue problem F (k)
where the Berry bands span the valence band space and, as
the Wilson loops are vanishingly small, inherit the spatial
symmetries of the original energy bands, as shown in Fig. 2.

The combined C; and 7 symmetries act on the Berry bands
as [39,40]

CoT Hr(k)(CT) ™" = —Hx(k), S

and therefore each Berry band in a C,7 -symmetric crystal
either has a value of zero (pseudo-spinless) or is part of a
positive/negative pair (pseudo-spinful). The pseudo-spinful
Berry bands have opposite angular momentum,

| .
) = sl () & éwz(k», ©)
where C, 7T |ity. (k)) = |iix(k)), and |u; (k)) and |uy(k)) are in-

variant under C,7 .
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FIG. 3. (a) The Chern number of a space can be observed as a
winding in the spectrum of Wilson loops made on a series of paths
L(t). These paths sweep the Brillouin zone (shaded blue region) as
t — t + 1. (b) For the topological crystal of Wu and Hu (ay/R =
2.9, d, = dy = 2R/3) the Wilson loop spectrum of the total valence
band space has zero total winding, as expected from time-reversal
symmetry. By coloring the spectrum according to the pseudo-spin
composition, we see that the individual windings are not well defined
as the resultant gauge is not smooth and periodic. No spin-Chern
numbers are observed. (c) In contrast, Wilson loops made through the
pseudo-spinful subspace (Berry bands) present well-defined nontriv-
ial windings. The corresponding Z, index is shown to be protected by
C, 7T symmetry. (d) Similarly, the pseudo-spin winding of a crystal
without band inversion, ay/R = 3.125,d, = d» = 2R/3, has a trivial
winding protected by C,7 symmetry.

C, T -protected Z, phase. The total Chern number of the
valence bands is equivalent [33] to the total spectral wind-
ing of Wilson loops built from projectors onto the valence
bands. These Wilson loops are made along a series of parallel
paths L(z), shown in Fig. 3(a), where the paths sweep the
Brillouin zone as t — ¢ + 1. Figure 3(b) shows the Wilson
loop spectra of the three-dimensional valence band space for
the topological crystal introduced by Wu and Hu [21]. The
total winding and therefore C,, are both zero, as expected
for the valence bands of a time-reversal symmetric system
[34]. However, coloring the Wilson loop spectra according
to their pseudo-spin composition reveals that the windings of
the individual eigenvalues are not smooth and periodic, and
the individual spin-Chern numbers cannot be determined from
this analysis.

One way of proceeding is to consider the two eigenval-
ues of Fig. 3(b) that cross 7 an odd number of times,
indicating a nontrivial 2D Stiefel-Whitney insulating phase
expected to host corner states [37]. This is also known as an
obstructed atomic limit (OAL) [22] because the pair Wilson
loop eigenvalues averaging around =+ indicate that two of
the maximally localized Wannier functions of this crystal are
localized at the edges of the unit cell [22,38]. Alternatively,
this can be determined from the symmetry eigenvalues of
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FIG. 4. (a) Band gap for a continuously deformed crystal. It is
possible to adiabatically deform between the obstructed atomic limit
(ap/R =2.9, d| = d, =2R/3) and fragilely topological (ay/R =
3,d, = 0.4ay, d, = 0.13ay) crystals without breaking C,7 symme-
try or closing the topological band gap, Aw = w4 — w3 > 0 (shown
in light blue). This means both crystals must belong to the same
C, T -protected phase. (b), (c) Edge states are observed at the inter-
face between a fragilely topological (ap/R = 3, d; = 0.35ay, d» =
0.25a0) and a trivial (ap/R = 3, d; = 0.25ay, d, = 0.35ay) crystal.
The parameters were chosen so the two crystals had an overlapping
band gap at way/2mc ~ 0.4. The emergence of these edge states
agrees with the measured C, 7 -protected Z, indices of the pseudo-
spin subspaces.

the bands at the time-reversal invariant momenta [41]. The
Stiefel-Whitney insulator/OAL is expected to host topologi-
cal corner states [36,37], but the observation of helical edge
states [21,25-27] remains unexplained by this analysis.

Alternatively, we may use the Berry bands introduced in
the previous section to decompose the valence band space into
a pseudo-spinless subspace and a pseudo-spinful subspace,

Hya = Hg ® Hx. @)

Figure 3(c) shows the spectra of Wilson loops made separately
through Hy and H 4 for the same crystal as in Fig. 3(b). There
is no mixing of the pseudo-spinful states for Wilson loops
through a two-band pseudo-spinful space [42]. The individual
spectra are smooth and periodic, and so the corresponding
spin-Chern numbers, {C_, Cy, C+} = {—1, 0, +1}, are well
defined. In other words, the valence bands consist of two QHE
related to each other by C,7 symmetry and an additional
trivial subspace that is separable via the Berry bands. With
pseudo-Kramers degeneracy enforced at I' by Cq symmetry
[21], we conclude that the crystal is a photonic analog of the
QSHE, with the parity of C; and C_ as the Z, topological
index. For the corresponding trivial phase, the spin-Chern
numbers are {C,} = {0, 0,0}, as indicated by the lack of
winding in Fig. 3(d). These windings can also be expressed
in terms of the C, eigenvalues at the time-reversal invariant
momenta [22], but the smooth, periodic multiband gauge of
the Berry bands provide a convenient basis to calculate the
corresponding Wannier functions.

@) Trivial  Shifted trivial  Topological togg.'gtgfga.
00 O o oo (] O
X =(0,00) X=(0,1,1), X=-(222) X=-(211),

FIG. 5. (a) Schematics of shifted and unshifted cells. Although it
is impossible to adiabatically deform between any of these unit cells
without either closing the topological gap or breaking C,7 symmetry
about the origin of the unit cell, some of the cells have equal spin-
Chern numbers. (b), (c) Schematics of adiabatically graded (locally
C, T -symmetric) interface regions between different bulk regions.
(b) An example of an adiabatically graded interface between shifted
and unshifted cells with trivial spin-Chern numbers for which the
topological band gap does not close. There are no helical edge states
at this interface. (c) The topological band gap closes at all adia-
batically graded interfaces between cells with different spin-Chern
numbers, such as the one depicted here, resulting in helical edge
states. The edge states of the adiabatically graded interface will
survive as the interface is made increasingly sharp so long as the
interface remains a relatively weak C¢ breaking perturbation.

We also studied the “fragilely topological” crystal intro-
duced by Blanco de Paz et al. [22], and found the same
spectral winding as seen in Fig. 3(c), indicating that both
crystals are photonic analogs of the QSHE. This is supported
by Fig. 4(a) which shows that it is possible to adiabatically
deform between the crystals without closing the topological
band gap or breaking C,7 symmetry, meaning the two crys-
tals are in the same C,7T -protected phase [42], and also by
Figs. 4(b) and 4(c) which show topological edge states at the
interface between the trivial and fragilely topological crystals.
Here, as in other works [21,27,28], there is a small gap in the
edge modes (around 3% of the bulk valence-conduction gap)
as the presence of the interface is a C¢ breaking perturbation
that lifts the pseudo-Kramers degeneracy.

Interpreting the pseudo-spin Chern numbers. Let us now
compare the spin-Chern numbers of the Berry bands to a dif-
ferent method of classifying symmetry-protected topological
phases. Figure 5(a) shows four unit cells: the regular trivial
and nontrivial unit cells, as well as a shifted copy of each.
Each shifted cell has the same spin-Chern numbers as the cor-
responding unshifted cell, whereas all four cells are classified
as different C,7 -protected phases labeled with vectors X by
the approach of Benalcazar et al. [41], where X # (0, 0, 0)
indicates a fragilely topological or obstructed atomic limit
phase [42].
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The apparent contradiction of the two methods occurs
because the classification of [41] is based on the absolute
positions of Wannier centers within the cell, whereas the
spin-Chern numbers are constructed from the relative flow of
the Wannier centers in the gauge of the Berry bands and are
independent of our choice of origin. It is impossible to deform
between two bulks with different values of C without break-
ing C,7 symmetry or closing the band gap, but the origin
of the C,7 symmetry is not fixed. On the other hand, it is
impossible to deform between two bulks with different values
of X without breaking C, 7 symmetry about the origin of the
unit cell or closing the band gap. We shall demonstrate that
the origin-independent spin-Chern numbers are more relevant
to predicting the existence of helical edge states.

Let us consider whether edge states exist at adiabati-
cally graded (locally C,-symmetric) interface regions between
shifted and unshifted bulks with the same spin-Chern num-
bers. Despite the bulks having different values of X, there
exists a choice of slowly graded interface between the two
bulks for which the band gap does not close, such as
Fig. 5(b). There are no helical edge states along this in-
terface. On the other hand, the topological band gap must
close at all adiabatically graded interfaces between bulks
with different spin-Chern numbers, such as the interface re-
gion shown in Fig. 5(c), resulting in helical edge states. As
was seen in Figs. 4(b) and 4(c), these edge states survive
as the interface region is made increasingly sharp if the in-
terface can be considered as a relatively weak Cg breaking
perturbation.

Conclusion. We show that new symmetry-protected topo-
logical phases can be identified by reformulating the energy
eigenvalue problem as a Berry curvature eigenproblem. In
C,T-symmetric crystals the “Berry bands” separate into
pseudo-spinless (no angular momentum) and pseudo-spinful
(opposite angular momentum) subspaces. Using straight Wil-
son loops through the pseudo-spinful subspaces of crystals
with three valence bands detects topological phases where
Wilson loops through the energy valence bands fail to do
so. We demonstrate the method on the well-known photonic
crystal of Wu and Hu and a recently discovered “fragilely
topological” crystal and show that both crystals belong to the
same C,7 -protected Z, topological phase that emulates the
quantum spin-Hall effect in photonics. Studying the topology
of photonic crystals with larger valence band spaces may be
possible using bent Wilson loops [39,40] through the pseudo-
spinful subspaces. The method presented here helps unite the
numerics and theory of photonic topological insulators, and
could also be applied to find new symmetry-protected phases
in electronic systems [43].
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