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Abstract

The realisation of Physics-Based Models (PBMs) of lithium ion cells in the Battery Man-

agement Systems (BMSs) of electric vehicles is studied through a three-pronged strategy —

analysis, design and implementation. The survey of literature undertaken in the backdrop

of this broad landscape reveals a dearth of model-based designs for automotive-grade pouch

cells, which is therefore addressed in this work. Perusal of prior art in reduced-order battery

modelling provides key guidance on topics meriting further investigation viz. the Discrete-

Time Realisation Algorithm (DRA) scheme and the electrolyte-enhanced Single Particle

Model (SPM) which are therefore carefully analysed here from the perspective of their

embedded implementation. Owing to its familiarity and wide-spread popularity among

relevant stakeholders, the Pseudo Two-Dimensional (P2D) implementation of the Doyle-

Fuller-Newman (DFN) model is used as the PBM underpinning all research presented herein.

A computational framework to optimise the number of electrochemical layers within

a pouch cell is developed. The chosen optimality criterion specifically addresses the two

most pertinent issues that currently hinder the mass-market adoption of electric vehicles —

range anxiety and fast charging. Driven by the need for a balanced capacity loading at both

electrodes, a deterministic criterion for computation of electrode thicknesses is formulated.

The search space of layer choices across all thermal scenarios is traversed with the least

operation count through a novel application of the binary search algorithm. Numerical

simulations of a lumped thermal model coupled with the P2D electrochemical model in

conjunction with judiciously chosen exit conditions help to inform the number of layers

needed to maximise the cell’s usable capacity whilst simultaneously satisfying the power

requirements of fast charging. The P2D model is reformulated to accord it with the innate

ability to accept power inputs. The model-led optimal layer design procedure thus developed

is plating-aware, facilitating the extension of pack lifetimeswhilst helping to bypass expensive

empirical prototyping.

The computational bottleneck in the DRAs scheme for obtaining a state-space Reduced

Order Model (ROM) is analysed and an improved alternative is proposed. It is revealed that

the Singular Value Decomposition (SVD) of the large Block–Hankel matrix formed by the

Markov parameters of the system is a key inefficient step. A streamlined approach that

bypasses the redundant Block–Hankel matrix formation is presented as a drop-in replacement.

Comparisons with existing scheme demonstrates a significant reduction in computation time
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Abstract

and memory usage brought about by the new method. The improved modelling accuracy of

the new scheme in a resource-constrained computing environment is also demonstrated.

Owing to its simplicity, the SPM family ofmodels is deemed to be themost promising ROM

candidate that can usher in the use of PBMs in electric vehicles. An in-depth analysis of the

SPM reveals an inherent mismatch between the accuracies of its voltage and State of Charge

(SOC) predictions, thereby rendering it unsuitable as the plant model in state-estimation

tasks. A comprehensive evaluation of the salient electrolyte-enhanced SPMs from literature

reveals that most solutions are either mathematically intractable or overly simplistic. For the

ionic concentration in the electrolyte, analysis of the quadratic approximation model, which

straddles the boundary between computational complexity and mathematical tractability,

reveals a poor temporal performance particularly at the current collector interfaces. However,

it is capable of delivering acceptable levels of accuracy in computing the spatial profile of

ionic concentration. Application of the Multi-Gene Genetic Programming (MGGP) technique

exposes that the causal factor for this mediocre temporal performance is the equation

deficiency of the underlying P2D model.

From an implementation perspective, the discrete-time formulation of SPMs is presented

using the matrix exponential approach and its advantages over its continuous-time coun-

terparts enumerated. Despite its inherent shortcomings, it is deemed that operating within

the confines of the well-established foundations of the P2D dynamics represents a definitive

step forward in bringing into fruition the goal of incorporating PBMs into vehicular BMSs.

Therefore, the existing quadratic approximation model is retained for the electrolyte spatial

concentration, whilst advocating the novel application of a system identification method for

its temporal dynamics. After establishing linearity and time-invariance of the subsystems

under consideration, discrete-time transfer functions of the number of moles per unit area of

lithium ions in each electrode region is identified for the pertinent range of applied currents.

The identified transfer functions are then employed in a composite SPM which demonstrates

superior accuracy compared to the incumbent state of the art electrolyte-enhanced SPM,

thereby demonstrating a substantial accomplishment from an implementation viewpoint.

Although the advancements herein are reported for an isothermal implementation of the

models, future enhancement through thermally coupled model derivations is advocated.

Finally, the importance of parametrisation of the underlying PBM is acknowledged as a crucial

unsolved aspect which needs the collective effort of the battery research community.
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𝑁 Number of samples collected for each Markov parameter

𝑁a Number of FV discretisation nodes in the through-thickness (axial) direction

𝑁𝑟 Number of Chebyshev collocation nodes in the radial direction

𝑝 Generic notation for power density experienced by each layer (unit cell) [Wm−2]

𝑃acc Power density experienced by each electrochemical layer (unit cell) during
acceleration phase [Wm−2]

𝑃 fastchg Power density experienced by each electrochemical layer (unit cell)
during fast charging [Wm−2]

𝑝acccell Power demanded at the terminals of each cell during the acceleration phase of
a (hybrid) electric vehicle [W]

𝑝fastchgcell Power applied at the cell terminals while fast charging a (hybrid) elec-
tric vehicle [W]

𝑃accbatt Power demanded at the terminals of the battery pack during acceleration phase
of a (hybrid) electric vehicle [W]

𝑃 fastchgbatt Power applied at the terminals while fast charging the battery pack of a (hy-
brid) electric vehicle [W]

𝑃𝑘 Power applied to a discrete-time equivalent circuit cell model (at time-step 𝑘) [W]

𝑃drag Power required to overcome air resistance to a vehicle’s motion [W]

𝑃grade Power required to negotiate a road gradient [W]

𝑃mass Power required to accelerate a vehicle’s mass from standstill [W]

𝑃roll Power required to overcome rolling resistance to a vehicle’s motion [W]

𝑃w Power experienced at the wheels of a (hybrid) electric vehicle [W]
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̄𝑞𝜆 Volume averaged concentration flux i.e., the average change of concentration
with respect to the radial position 𝑟 , 𝜆 ∈ {neg, pos} [molm−2 s−1]

𝑄e,𝜆 Moles of Li+ ions in the electrolyte for each of the cell regions 𝜆 ∈ {neg, sep, pos}
per unit cross-sectional area [molm−2]

𝑄e,𝜆 Debiased (by removal of initial value) moles of Li+ ions in the electrolyte for each
of the cell regions 𝜆 ∈ {neg, pos} per unit cross-sectional area [molm−2]

𝑄𝑛 Theoretical capacity of a pouch cell with 𝑛 layers [Ah]

𝑄neg Theoretical capacity of the negative electrode of a pouch cell with 𝑛 layers [Ah]

𝑄pol Thermal power dissipated due to internal heat of polarisation [W]

𝑄pos Theoretical capacity of the posative electrode of a pouch cell with 𝑛 layers [Ah]

𝑟 Radial dimension i.e., the continuous co-ordinate along the particle radius where
solid phase concentration is to be computed [m]

Δ𝑟 Spacing between discretisation nodes in the radial directionwithin each particle [m]

̃𝑟 Radial dimension in the Chebyshev domain ̃𝑟 ∈ [−1, 1] [m]

𝑅 Universal gas constant [Jmol−1 K−1]

𝑅0, 𝑅eq Effective series resistance of an equivalent circuit cell model (at time-step 𝑘) [Ω]

ℝ Real co-ordinate space

𝑅𝑝 Representative particle radius of the solid phase as used in the model [m]

𝑡 Time [s]

𝑡f,man. Manufacturer-specified acceleration time (from standstill to 𝑣f,man.) [s]

𝑡f,std. Acceleration time (from standstill to 𝑣f,std.) as specified by a governing standard [s]

𝑡max Time limit for fast charging (as per level 3 fast charging specifications) [s]

𝑡0+ Transference number of Li+ ions in the electrolyte with respect to the solvent

𝑇 , 𝑇cell Lumped cell temperature (at time-step 𝑘) [K]

𝑇sink Coolant temperature used in tab-cooling of the cell [K]

𝑇init Cell temperature at the beginning of acceleration/fast charging [K]

𝑇max Maximum allowed cell temperature [K]

𝑇pouch Thickness of the pouch material [m]
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𝑇s Discrete-Time model sample rate [s]

u ∈ ℝ𝑚×1 Input vector with ‘𝑚’ inputs following standard state-space notation

𝒰 Open circuit potential of the electrode [V]

𝑣b, 𝑣base Base speed of a (hybrid) electric vehicle i.e., the speed at which the drivetrain
motor switches from the torque-limited region to power-limited region [m s−1]

𝑣f,man. Manufacturer-specified final speed to be achieved at the end of accelera-
tion phase [m s−1]

𝑣f,std. Final speed to be achieved at the end of acceleration phase as specified by
a governing standard [m s−1]

𝑉 , 𝑉cell Terminal voltage of the cell (at time-step 𝑘). Also denoted by 𝑣𝑘 [V]

𝑉max Upper cut-off voltage of the cell [V]

𝑉min Lower cut-off voltage of the cell [V]

𝑊pouch Exterior width of pouch used to accommodate a typical automotive-grade
electrochemical cell [m]

𝑥 Axial dimension i.e., the continuous co-ordinate along the through-thickness
direction of the cell [m]

Δ𝑥 Spacing between nodes in the axial (through-thickness) direction [m]

x ∈ ℝ𝑛×1 State vector with ‘𝑛’ states following standard state-space notation

̇x ∈ ℝn×1 Time derivative of the state vector x i.e., 𝑑x𝑑𝑡 in a state-space formulation

y ∈ ℝ𝑝×1 Output vector with ‘𝑝’ outputs following standard state-space notation

𝑧 State of Charge of the cell

𝑧∗ Target State of Charge for fast charging

𝑧max Upper cut-off for the State of Charge of the cell

𝑧min Lower cut-off for the State of Charge of the cell

ℤ Set of integers

𝑍 Road gradient for acceleration tests of a (hybrid) electric vehicle is performed

List of Greek Symbols

𝛼 Charge transfer coefficient at the surface of an electrode

𝜀 Electrode porosity i.e., volume fraction of electrolyte phase within the electrode
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𝜀fi Filler/binder volume fraction

𝜀s Solid phase volume fraction

𝜂 Electrode overpotential [V]

𝜂dt Overall lumped efficiency of the drivetrain components (excluding battery pack)
of a (hybrid) electric vehicle

𝜅 Intrinsic ionic conductivity of the electrolyte [Sm−1]

𝜅eff Effective ionic conductivity of the electrolyte [Sm−1]

𝜔c Corner frequency in a frequency response function [rad s−1]

Ω Control volume in a standard finite-volume discretisation scheme

𝜙e Electric potential in the electrolyte phase [V]

𝜙s Electric potential of the electrode [V]

𝜌𝜆 Density of each constituent component 𝜆 ∈ {neg, sep, pos,Al,Cu, pouch, LiPF6} of the cell [kgm−3]

𝜌air Air density at acceleration test conditions [kgm−3]

𝜎 Intrinsic electronic conductivity of the electrode [Sm−1]

𝜎eff Effective electronic conductivity of the electrode [Sm−1]

Σ Matrix of singular values

𝜃 Surface stoichiometry of an electrode

𝜃0% Surface stoichiometry of the given electrode that corresponds to 0 %
State of Charge of the cell

𝜃100% Surface stoichiometry of the given electrode that corresponds to 100 %
State of Charge of the cell

Other Generic Nomenclature

neg Denotes the negative electrode region. Alternatively, a subscripted ‘𝑛’ is also used.

sep Denotes the separator region. Alternatively, a subscripted ‘𝑠’ is also used.

pos Denotes the positive electrode region. Alternatively, a subscripted ‘𝑝’ is also used.

neg/sep Denotes the negative electrode/separator interface

sep/pos Denotes the positive electrode/separator interface

neg/Cucc Denotes the negative electrode/Copper current collector interface

pos/Alcc Denotes the positive electrode/Aluminium current collector interface
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Tightening emissions regulations in various industrial sectors have led to a renewed

interest in sustainable energy sources in recent years. In particular, the burgeoning

demand for clean energy has prompted the automotive and consumer electronics industries

to explore advanced methods of energy storage [1]. Li-ion batteries are seen as key enablers

in this quest due to the attractiveness of their high energy and power densities compared to

other competing non-conventional energy storage technologies [2]. However, with this surge

in energy storage demands comes stricter requirements for their longevity, performance,

and adhesion to safety requirements, particularly for adoption in mainstream transport

electrification [3]. In contrast to other incumbent technologies, lithium-ion batteries have
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1.1 Working Principle

several advantages such as high energy density, long life-cycles, low internal resistance,

low self-discharge, long cycle life, fast charge and discharge cycles [4, 5]. This makes them

the preferred choice for storage and on-demand retrieval of energy in modern consumer

electronics and Battery Electric/Plug-in Hybrid Electric Vehicles (xEVs).

1.1 Working Principle

This section provides a brief overview of the essential chemistry principles that helps to

describe the working principle of a lithium ion battery and represents the author’s digested

summary of the introductory concepts presented in Plett [5].

Figure 1.1 depicts the construction of one electrochemical layer of a lithium ion unit cell.

The positive electrode consists of porous particles of Lithium-Transition Metal Oxide (MO)

compounds. The negative electrode typically employs some variant of microporous graphite.

The porous nature of the electrodes provide pathways for lithium ion conduction through the

electrolyte. Due to the special construction of the electrode structure, there exist interstitial

sites which act as intercalation spots for lithium shuttling between the two electrodes. The

electrolyte, which floods the cell, helps in the conduction of Li+ ions. The separator membrane

allows the passage of these ions between the two electrodes, but prevents internal short-circuit

by inhibiting electronic conduction through it. The current collectors facilitate passage of

electrons generated during the charge transfer at particle surface to the external circuit.

At the fully charged condition, the majority of lithium in the system is stored within

the negative electrode microstructure. During discharge, Li0 atoms diffuse out of deep

interstitial sites towards the surface of the particles in the negative electrode. At the surface

(electrode-electrolyte interface), a charge-transfer process takes place according to Butler-

Volmer kinetics (see eq. (1.7)), leading to the formation of Li+ ions and electrons. The electrons

are passed to the external circuit through the Cu current collectors onto which the conductive

matrix composed of the negative electrode material and binders is coated. The Li+ ions travel

through the electrolyte phase, crossing the separator membrane to the positive electrode

where they encounter an electron influx from the external circuit. A charge transfer reaction

takes place at the surface of the positive electrode particles, leading to the formation of neutral

Li0 atoms that diffuse into the positive electrode microstructure.
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Figure 1.1 Schematic depicting the basic construction of a lithium ion unit cell.

During the charging process, the reverse phenomena occur. Lithium is de-intercalated

from the positive electrode and a similar charge-transfer happens at the surface, leading to the

formation of Li+ ions which reach the negative electrode by passing through the separator. At

the surface of the negative electrode particles, these ions absorb electrons from the external

circuit, leading to the formation of neutral Li0 that diffuses into interior vacant spaces in

the layered graphite electrode. Equations (1.1) and (1.2) summarise the reactions during the

charging and discharging process at the surfaces of both electrode materials.

Li𝑥C
discharge

charge C + 𝑥 Li+ + 𝑥 e– (1.1)

Li1–𝑥MO2 + 𝑥 Li+ + 𝑥 e– discharge

charge LiMO2 (1.2)

where M represents a transition metal compound such as Ni1/3Co1/3Mn1/3 (NMC),

Ni0.8Co0.15Al0.05 (NCA) amongst other choices [4]. Assuming no loss of cycleable lithium

due to parasitic side reactions or through other mechanisms, the process is fully reversible.

The electrochemical potential at each electrode is dependent upon the extent of its

lithiation. An empirical relationship of each electrode’s potential as a function of its

stoichiometry can be obtained, and is dependent upon the specific design and material
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properties of each active material under consideration. Finally, the Open Circuit Voltage

(OCV) of the cell is obtained by subtracting the negative electrode potential from its positive

electrode counterpart.

1.2 Battery Modelling

Through accurate model representations of the electrochemical-thermal behaviour of the cell,

advanced monitoring and control strategies can be deployed to tackle the current research

topics in Li-ion batteries such as increasing cycle-life, improving operational safety and

performance [5]. Over the past two decades, efforts have been made to construct models

to describe the physical, electrical, thermal, electrochemical and system-level performance

of Li-ion cells, leading to modelling strategies with various levels of sophistication. For the

interested reader, the article by Grazioli et al. [6] provides a broad introduction to the topic

of computational modelling of lithium ion batteries. Large in-roads into the depth of the

modelling art can be made by perusing comprehensive books on this topic such as those by

Plett [5], Hariharan [7], and Rahn and Wang [8].

The need to address the operational challenges of lithium ion batteries in an embedded

environment such as on-board an electric vehicle has led to an increased impetus on the

development of advanced Battery Management Systems (BMSs) [9]. In vehicular applications,

the only measurable quantities of a lithium ion cell are its terminal voltage, current and

temperature. This implies that several internal states of the cell such as its State of Charge

(SOC), whose real-time computation is vital to the optimal performance of the cell, need to be

estimated from these available measurements. Therefore, the performance of a BMS for tasks

such as online state estimation is dependent upon the fidelity of the underlying cell model.

Sophisticated models of the cell enable these quantities to be estimated more accurately and

facilitate the implementation of advanced control algorithms. Therefore, it is imperative that

the cell model used is suitable for being embedded in a real-time BMS.

Most battery models have the primary goal of accurately predicting the cell’s terminal

voltage at each time-step. This is so that the output from the predictor routine can be

compared to the measured voltage and the difference between them may be used in a suitable

corrector routine to improve future predictions. The combined information from the model

and measurement is then blended in a suitable way to estimate the cell’s SOC.
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More advanced models strive to provide insight into various other physico-chemical

quantities that could affect the cell’s health. The field of Li-ion battery modelling can

be classified into two broad categories — i) empirical/ad hoc Equivalent Circuit Models

(ECMs), and ii) detailed Physics-Based Models (PBMs) that are based upon first principles.

A comprehensive summary of various models that belong to each of the two categories is

discussed in Seaman et al. [10]. A characteristic aspect that contrasts them is the fact that

they are typically at loggerheads with each other in terms of their computational complexity.

1.2.1 Equivalent Circuit Models

ECMs employ circuit elements such as voltage sources, resistors and capacitors to model the

behaviour of batteries at their electrical terminals. The cell’s thermal subsystem may also

be modelled by an analogous electrical circuit. The parameters of the circuit are typically

functions of the cell’s current, SOC and temperature. These can be incorporated as a lookup

table by curve-fitting the model to experimental data. Using such equivalent circuit models,

two simple methods are available to compute the cell’s SOC — a) by using manufacturer-

supplied lookup table or graph of OCV versus SOC, and b) by numerically integrating the

charge passed in and out of the cell over time (commonly referred to as coulomb counting).

Both methods are computationally amenable for small-scale embedded applications such as

consumer electronics; however, neither one is robust enough to handle the stringent demands

in performance imposed by modern vehicular applications.

Advanced state estimation algorithms such as nonlinear Kalman filters may still be able

to use ECMs as the plant model and obtain reasonable estimates of the cell’s SOC [11, 12].

However, the usefulness of ECMs is limited by the fact that their parameters are derived

essentially by a curve-fitting process using a standard set of training data. Since these models

are not based on any physical phenomena, their ability to predict the cell’s general behaviour

is extremely poor especially when subject to current profiles well outside their training realm.

Another important disadvantage of equivalent circuit models is that they do not allow insights

into the various internal states of the cell.

ECMs of lithium ion batteries have been extensively studied and are widely applied.

However, the aforementioned difficulties render their reliability and accuracy questionable,

especially under highly demanding load profiles experienced by the battery packs in xEVs.
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The boundaries of their performance have been well-quantified (see [5, 13]). Although

various estimation and control algorithms continue to be developed around them, the ECMs

themselves are no longer the subject of extensive research. Hence, this thesis does not discuss

them further.

1.2.2 Physics-Based Models

Physics-Based Models (PBMs) consist of governing equations that construct a realisation

of the behaviour of the cell based upon electrochemical principles such as equilibrium

thermodynamics, material diffusion and reaction kinetics. The fundamental advantage to this

modelling approach is that it is possible to compute the evolution of internal states of the cell

such as the concentration of lithium in the two electrodes during its operation with arbitrary

current profiles. Precise knowledge of such internal states e.g. the concentration of lithium

at the electrode surfaces, can help to design control strategies to prevent degradation due to

lithium plating. The difficulty with the physics-based modelling approach lies with obtaining

the values of all the physical, geometric, electrochemical, thermal and kinetic parameters of

the cell. Usually, these parameters are closely guarded trade secrets by cell manufacturers.

In some cases, it may be possible to obtain a subset of these physical parameters by

dissecting cells in an inert environment followed by further characterisation using specialised

lab equipment. For instance, Ecker et al. [14] demonstrate the reverse-engineering of a 7.5 Ah

pouch cell by Kokam Ltd. in order to obtain its physical parameters. Nevertheless, this

is a tedious process and is feasible only with access to such sophisticated lab equipment.

Furthermore, the results from these experiments are susceptible to characterisation errors as

well as to cell-to-cell variations due to production spread. Therefore, some form of system

identification method needs to be employed for estimating the majority of the physical

parameters required for a PBM. Furthermore, it is a common practice to rely on published

data for the values of certain cell parameters that do not depend on physical construction,

especially for those that remain universally true for a particular Li-ion chemistry.

The challenges involved in model parametrisation is a research exercise of its own merit

and is not addressed in this thesis. Once the model parameters are available, PBMs can be

used in aiding a deeper understanding of the working of the cell and in answering research

questions that could otherwise not be answered with simple ECMs. One area of focus of this
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thesis is to broach a less-probed area — exploring the possibility of using a PBM for the design

of pouch cells used in automotive applications which shall be presented in chapter 3.

A major disadvantage of PBMs from an implementation point of view is that solving

for the model’s field variables is time-consuming. In particular, the more sophisticated

PBMs require the use of multi-physics Partial Differential Equation (PDE) solvers and hence

are not typically suitable for embedded applications. Nevertheless, for high performance

applications such as in automotive BMSs wherein state-of-health monitoring is crucial, there

is an overwhelming demand for obtaining insight into internal cell variables. For instance, the

real-time computation of surface concentration of Li0 in the solid particles enable the BMS

to regulate power flow into and out of the cell to proactively avoid plating and degradation

of the cell.

In view of this consideration, model order reduction techniques are seen as key enablers

that facilitate in porting the first-principles based predictive powers of PBMs into a real-time

microcontroller. This thesis shall therefore have a strong focus on both the analysis and

implementation aspects of Reduced Order Models (ROMs).

1.3 The Doyle-Fuller-Newman model

Doyle, Fuller and Newman [15, 16] developed an isothermal physics-based porous electrode

model of the cell capable of describing its internal variables such as a) potential on the solid

particles 𝜙s, b) potential in the electrolyte solution 𝜙e, c) concentration of Li0 in the solid

particles 𝑐s, d) ionic concentration in the electrolyte solution 𝑐e, and e) molar flux density

of lithium at the solid-electrolyte boundary 𝑗. The most popular computational implement-

ation of the Doyle-Fuller-Newman (DFN) equations is the Pseudo Two-Dimensional (P2D)

model [5]. In the P2D implementation, all field variables of the DFN model are computed at

each spatial location along the axial thickness of the cell. However, the solid concentration

in spherical electrode particles is solved in a radial co-ordinate system that is perpendicular

to the axial direction of the cell’s thickness. The axial and radial dimensions are coupled at

each particle’s surface through the molar flux density describing the rate of pore-wall flux

that crosses from solid into electrolyte or vice-versa. The equations and boundary conditions

for the P2D implementation of the DFN model is shown in table 1.1.
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1.3 The Doyle-Fuller-Newman model

Table 1.1 Governing equations and boundary conditions of the Doyle-Fuller-Newman (DFN)
model cast in its Pseudo Two-Dimensional (P2D) description. Apart from those equations whose
sources are explicitly indicated with inline references, all equations of the DFN model presented
herein are obtained from the lecture notes by Plett [17], suitably cast in their P2D formulation.
To maintain comptability with computer codes from the simulation tool LIONSIMBA [18], the
electrolyte potential at the positive electrode/current collector interface is set to zero (second
boundary condition in eq. (1.5)) i.e., chosen as the ground reference. The notation of symbols has
been suitably adapted from the cited sources and is detailed in List of Symbols (see page 27).
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−𝐸a,𝑘r𝜆
𝑅 ( 1

𝑇 (𝑡)−
1

𝑇sink
)⋯⋯(Torchio et al. [18])

𝜇 ∈ {neg, sep, pos}

• 𝐷eff𝜇
= 𝐷𝜀

brugg𝜇
𝜇

• 𝐷 ≔ 𝐷(𝑐e,𝑇 ) = 10−4 × 10−4.43−
54

𝑇 (𝑡)−229−5×10−3𝑐e(𝑥,𝑡)
−0.22×10−3𝑐e(𝑥,𝑡)⋯⋯⋯⋯⋯⋯⋯(Torchio et al. [18])

• 𝜅eff𝜇
= 𝜅𝜀

brugg𝜇
𝜇

• 𝜅 ≔ 𝜅(𝑐e,𝑇 ) = 10−4×𝑐e(𝑥,𝑡)(−10.5+0.668×10−3𝑐e(𝑥,𝑡)+0.494×10−6𝑐2e (𝑥,𝑡)+(0.074−1.78×10−5𝑐e(𝑥,𝑡)
−8.86×10−10𝑐2e (𝑥,𝑡))𝑇 (𝑡)+(−6.96×10−5+2.8×
10−8𝑐e(𝑥,𝑡))𝑇 2(𝑡))

2

⋯⋯⋯⋯(Torchio et al. [18])
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In this thesis, this P2D implementation of the DFN model is considered as the reference

(and only) PBM. Although thermal dependence of parameters such as electrolyte conductivity

and diffusivity is shown in table 1.1, a sophisticated description of detailed thermal dynamics

i.e., a description of spatio-temporal evolution of cell’s temperature using a set of ordinary/-

partial differential equations is not considered in this work. Secondly, the SOC-dependence

of parameters is not incorporated, but the studies conducted here may be suitably extended

to include this dependence in the future.

For those aspects of this thesis dealing with the analysis and implementation of various

ROMs and the improvements imparted herein to them, only an isothermal implementation

(at 298.15 K) of the P2D equations is considered. The performance of the various ROMs are

compared against this reference benchmark. In consideration of the relative sparsity of such

detailed analysis of ROMs in existing literature (see chapter 2), the author of this thesis

considers that such an analysis, albeit isothermal, is the need of the hour and is imperative

to gain a deeper understanding of the performance boundaries of various popular ROMs.

Since temperature plays a crucial role in the operation of cells and battery packs in

xEVs, an isothermal model is unsuitable for design purposes. A model-based design that

does not consider thermal effects is likely to stray far from the operating regimen and

fail spectacularly. On the other hand, including a sophisticated thermally coupled model

is unlikely to yield significant gains. Firstly, running fully coupled electrochemical-thermal

model based simulations over the entire design space is computationally expensive. Secondly,

the design results of the model have to be verified using a reasonable number of experimental

prototypes. Taking into account these considerations it is deemed that, for the design aspect of

this thesis, a lumped thermal model suffices. This simplified thermal model is bidirectionally

coupled to the P2D equations (see table 1.1) of the electrochemical model and is used as the

PBM underpinning the model-based design discussed in chapter 3.

The rest of the thesis is organised as follows. Chapter 2 presents an overview of pertinent

modelling art. The literature on model-based design shall be evaluated here and the present

shortcomings identified. The survey of literature also considers the advancements in the

field of reduced order modelling from their analysis and implementation perspectives. A

computational framework for optimising the number of layers within an automotive pouch

cell is presented in chapter 3. In chapter 4, the computational bottlenecks in a specific ROM
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1.3 The Doyle-Fuller-Newman model

method viz. the Discrete-Time Realisation Algorithm (DRA) is analysed in detail and an

improved alternative is proposed. In Chapter 5, the simplest time-domain PBM, the Single

Particle Model (SPM) is introduced and its performance is analysed. Salient advancements

made to the basic SPM in the literature are presented and their shortcomings analysed. A

discrete-time formulation focusing on the numerical implementation aspects is also presented.

In chapter 6, the causal factor for the lacklustre performance of a state of the art electrolyte-

enhanced SPM is unearthed. Additionally, chapter 6 proposes a new electrolyte model

which represents a novel application of the system identification technique. The superior

performance of this electrolyte-enhanced composite SPM is demonstrated. Finally, chapter 7

highlights the salient conclusions that can be drawn from the findings presented in this thesis

and paves the way for future research by identifying key unsolved tasks in physics-based

battery modelling for such automotive applications.
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This chapter discusses the state of the art in the field of lithium ion battery modelling

pertinent to the research sub-topics discussed in this thesis. Themodelling art is therefore

presented in three parts, each providing a critical review of

a) the body of literature discussing model-based design of lithium ion cells.

b) prior works dealing with the analysis and implementation aspects of reduced order

modelling of lithium ion cells, whose revelations lead to a focus on

c) publications discussing the Single Particle Model (SPM) and its variants.

2.1 Model Based Design for Batteries: Overview of Prior Art

2.1.1 Introduction

In sharp contrast to the cornucopia of published literature dealing with reduced order

modelling of cells (see section 2.2), there is currently a relative paucity of prior art that

discusses model-based cell design. Albeit the relevant pool of knowledge is presently sparse,

this section nevertheless aims to critically evaluate it.
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At the outset, it is important to clarify this thesis author’s general views on model-based

design. It is also important to state why this topic was chosen as an aspect of this thesis.

In the recent decades, industries pertaining to different walks of life, cutting across any

one discipline, have begun to establish a model-led product/process development culture.

For instance, a broad overview of industrial research policy by Thomke [19] towards the

turn of the last millennium provides quantifiable evidence that a simulation based design

approach in the automotive industry has had a positive impact in the crash-worthiness

of resulting vehicular designs. At a high level, the salient benefits of any model-based

design include — a) reducing the number of design iterations thereby speeding up the

time to a production-ready prototype, and b) facilitating improved understanding of the

variables influencing design that is gained by formalising empirical/ad hoc knowledge

through modelling. Furthermore, it is a well-known fact that computer time is cheaper than

human time. Therefore, with a simulation-oriented design approach, it is often cheaper to

explore Monte Carlo-like design scenarios using a computer model than iterating over a series

of rudimentary prototypes in the lab. Finally, once the results predicted by the model have

stabilised enough to satisfy the design specifications, prototypes closely matching the final

design objectives can be realised, thereby reducing the overall lead time to the market.

The aforementioned views of the thesis author is echoed by Becker et al. [20] who present

a persuasive view that, since it shall be mandatory to have a deeper understanding of the

simulation tools in order to successfully employ a model-led design, this can trigger sweeping

changes percolating into the very core of the problem-solving culture in an organisation.

Although relatively at its infancy when it comes to cell design, model-based designs have

been applied at the battery pack-level in the past, and is therefore not a newcomer to the

battery industry in general. In the middle of the last decade, a clarion call for industry to adopt

simulation tools in battery engineering was issued by Spotnitz [21]. In the said article, the

author questioned the anachronistic industry trend of relying heavily on ‘making and testing’

rather than aiming to understand the fundamental governing equations and principles of

a battery and using this know-how for design. Spotnitz further argues that using Physics-

Based Models (PBMs) of batteries could provide reliable understanding of their behaviour and

that, as the understanding of the community steadily grows, it could bring about a significant

speed-up of battery development.
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The nature and scope of ‘model-based design’ as intended by this thesis author needs to

be clarified. Since this thesis focuses exclusively on physics-based modelling, the term ‘model’

as used here pertains to Physics-Based Models (PBMs) and not to Equivalent Circuit Models

(ECMs) or any other type of battery models including other empirical/ad hoc models such as

surrogate models. Therefore, the survey of literature here does not include any prior efforts

on model-based design that lie outside of this scope.

Among the published set of literature, there is evidence that computational modelling

has been successfully used to facilitate the development of novel energy storage materials.

The review article by Islam and Fisher [22] provides an overview of the use of computer

simulation to gain a deeper insight into the working of new types of cathode materials. Meng

and Arroyo-de Domp [23] also surveyed the topic of using computational tools for the design

and optimisation of energy storage materials. The computer models referred to in these

review articles are not volume-averaged models operating at the cell-level, but detailed ab-

initio models constructed using techniques such as Density Functional Theory (DFT). While

it is heartening to see such comprehensive studies of computational techniques being applied

to energy storage, there are two distinct reasons why the body of research reviewed in the

aforementioned articles do not alignwith the goals of this thesis. Firstly, in theworks reviewed

in the aforementioned articles, computer simulation is used primarily to enhance researchers’

current understanding of these materials that can help to develop the next generation of

energy storage components. The computational methods presented therein are not directly

employed as design tools. Secondly, these articles use computational modelling to study

structural properties at the meso and nano scales. While these are of utmost importance

to researchers involved in synthesising prototypes of next generation of energy storage

materials, they are less relevant for production-ready cell-designs at scale. Since this thesis

has a strong focus on providing readily applicable solutions to industry for incumbent lithium

ion chemistries, it was decided not to pursue the methods discussed in the aforementioned

works for the design studies discussed herein.

A holistic computational screening was performed by Sendek et al. [24] to study the

suitability of 12831 candidate materials for their suitability as solid state electrolytes in

electrochemical cells. These authors cite the same rationale of this thesis author i.e., rapid

prototyping, as themotivation behind their model-based design simulations. The study helped

to prune the initial candidate pool down to just 21 viable family structures. This effort serves
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as a concrete example in this literature survey wherein computer simulation is directly used

as a design tool for components of a lithium ion cell. The scope of the aforesaid work falls

into the realm of material synthesis and applied physics — topics outside the educational

background and expertise of this thesis author. Nevertheless, the success of this effort strongly

motivates the case for performing a computational study of similar scale, wherein instead

of screening out thousands of candidate materials, the framework presented in chapter 3

computationally screens out thousands of layer configurations within a pouch cell.

Curiously, the use of volume-averaged models for design simulations of PBMs at the

cell-scale has not yet gained sufficient traction. This is despite the prevalence of the popular

Pseudo Two-Dimensional (P2D) implementation of the Doyle-Fuller-Newman (DFN) model

in areas such as degradation analysis and state-estimation. Ramadesigan et al. [25] postulate

that this slow uptake could be attributed to the computational challenges presented by the

complex reaction, diffusion and kinetics of lithium ion cells occurring over different length

and time scales. A few design efforts using electrochemical models at the cell scale have

nevertheless been reported in literature, which are examined next in section 2.1.2.

2.1.2 State of the art in cell-scale model-led design optimisations

The pioneering work by Newman [26] was the first of its kind to develop a scheme to

optimise cell design based on an electrochemical model. The two parameters optimised were

electrode thicknesses and porosities. The aforesaid studymakes the assumption that electrode

kinetics are fast relative to diffusion, and furthermore ignores local concentration gradients.

A reaction-zone model, which considers that reactions occur in a narrowly confined area,

was used as the underlying model. The separator thickness was assumed to be fixed and the

specific energy of the cell was maximised. However, the aforesaid work does not impose any

constraints on the extent of specific power that can be drawn from the cell. Nevertheless, this

seminal effort provided the key guidance to other researchers that electrode thicknesses and

porosities can be considered as the critical design variables to be optimised for in a cell design.

Building upon the foundation laid by the aforementioned study, a few other model-led design

efforts have been published. However, in order to provide a focused review, only a subset of

the prior art that is deemed pertinent for the model-based design of pouch cells for automotive

applications is considered here.
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Arora et al. [27] used an electrochemical model to inform design decisions on cell

parameters such as particle size, electrode thickness and mass ratio. Furthermore, the model

thus obtained was used to optimise the cell design against the risk of lithium plating. Cells are

susceptible to plating during fast charging and hence, this is a key aspect to consider in their

design for electric vehicles. This thesis author considers this contribution to be a vanguard

in model-based design for cells that is potentially applicable for vehicular applications.

Nevertheless, the aspect of stacking layers inside pouch cells and how this influences the

optimisation of the aforementioned design variables has not been studied.

Xue et al. [28] presented a simulation based design study wherein a cell design was

optimised using a gradient-based algorithm. Specifically, the said work dealt with a numerical

framework for providing automated design outputs for maximising the cell’s energy density

whilst meeting specific power density requirements. This criterion appears to be highly

relevant in the context of cell design for electric vehicles and hence, was adopted as the basis

for the layer optimisation framework presented in chapter 3. In the aforementioned work,

various power levels were also tried. However, these power requirements were computed

indirectly rather than a direct reformulation of the P2D model to accept power density inputs.

The design study by Xue et al. [29] represents a rare example of amodel-led design attempt

performed in the backdrop of electrified transportation. In the said work, an electrochemical

cell model viz. the P2D model was successfully adapted to perform the design optimisation of

a Plug-in Hybrid Electric Vehicle (PHEV). Although the underlying model operates at the cell-

scale, this study considers a pack-level optimisation through a series-parallel combination of

cells. Furthermore, an advanced numerical algorithm in the form of a hybrid solver was used.

This solver adopted a unique scheme of employing a gradient-free optimiser in conjunction

with a gradient-based optimiser. Albeit a standout example in the context of vehicular

application, the aforesaid work falls slightly outside the scope of this thesis wherein the

design study is strictly confined to be at the cell level.

The article by Xue et al. [29] does take into account pack-level constraints such as safety

limits as well as energy and power levels. Furthermore, these authors even accounted for

important details such as the presence of layers within each cell in their design optimisation

process. The system-level constraints considered in Xue et al. [29] were instrumental in

informing the choice of constraints in the design study presented in chapter 3. However, in
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the aforementioned article, the translation from pack-level into cell-level quantities does not

account for secondary effects i.e., the influence of layers on pack mass (a quantity that is

optimised in the said publication) is not studied. Simulations conducted as part of the work

reported in chapter 3 reveals that such effects are non-negligible.

A critical issue in the approach by Xue et al. [29] is that the number of design variables

were excessively large which necessitated the use of complex numerical algorithms. The said

work assumes that cell design shall be an integral part of pack optimisation. However, in real-

world designs, cells are sourced from a specialised manufacturer. Furthermore, these cells are

designed independently to merely adhere to certain specifications [30]. Pack configuration

decisions such as the choice of number of series-parallel modules in the vehicular pack are

undertaken at a system level in conjunction with the rest of the drivetrain specifications by

vehicle manufacturers. This natural separation paradigm helps to decouple the cell design

from the pack design thereby drastically reducing the number of degrees of freedom and

simplifying the optimisation task. This is a key assumption in the design optimisation study

presented in chapter 3.

A comprehensivemulti-objective optimisation for optimal design of batteries was recently

proposed by Changhong Liu and Lin Liu [31]. This optimisation involved amultiphysicsmodel

of the cell wherein a number of design variables such as electrode thicknesses, porosities

and particle sizes were considered. The optimisation objectives were to maximise the specific

power and specific energy during discharge as well as to minimise capacity loss. The model

was solved by using a genetic algorithm. While this contribution is certainly the first of its

kind to use a formal mathematical optimisation framework for cell design, in the opinion of

this thesis author, the complexity of the problem is excessively high — both mathematically

and computationally. For instance, with three design variables considered, it requires a careful

interpretation of the resulting pareto front to distinguish their relative importance. While

prima facie this is not an issue, the question of resolving the pareto front for cells with

different parameter sets needs to be addressed. The optimisation algorithm used is an exotic

genetic algorithm to be run on a parallel cluster. From a near-term industrial application

viewpoint, this scheme is less attractive since real-world constraints such as supply-chain

dictated raw-material sourcing typically restrict the number of degrees of freedom available

for optimisation. Nevertheless, this scheme is valuable from a long-term research perspective

and merits attention from researchers interested in model-based design.
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From the body of the relevant literature surveyed here, it is clear that the issue of optimally

stacking up layers within a pouch cell has not been dealt with in a systematic manner. Pouch

cells are the most common type of cells in automotive applications. Therefore, optimising

their design shall yield a beneficial improvement to the overall driving range and fast charging

capability of electric vehicles while simultaneously helping to increase the lifetime of their

battery packs. With these goals in mind, chapter 3 presents a mathematical framework for

a model-based optimal design of pouch cells.

2.2 Reduced Order Models: A New Classification Scheme

Battery modellers face the classic conundrum of conjuring PBMs that remain amenable for

control applications. The prior attempts made by the research community to tackle this

challenge is examined here. The term ‘control-orientedmodel’ can be considered synonymous

with the term Reduced Order Model (ROM). This is due to the fact that the complexity of

PBMs inherently necessitates the use of some order reduction strategy for their adoption in

control and real-time applications. In this thesis as well as in the relevant literature discussed

here, these two terms have been used interchangeably.

Research into ROMs is motivated by the pressing need for a real-timemodel with accuracy

properties of full-order PBMs but possessing the computational simplicity of ECMs (see

sections 1.2.1–1.2.2 for an overview). A number of approaches to reduce the computational

complexity of PBMs have been explored in literature. Jokar et al. [32] provide a comprehensive

review of the various categories of reduced order PBMs for lithium ion batteries. However,

the aforesaid work does not aim to classify models based on time-vs-frequency domains.

Fan et al. [33] conducted a review of reduced order modelling methods, but only provide

a generic overview of deriving and implementing models in these dual domains without an

expository analysis of the implications of these modelling choices. Unlike Jokar et al. [32], the

review by Fan et al. did not aim to provide a classification of various reduced order models, but

instead emphasises on a broad survey of relevant methodologies and tools towards obtaining

them. Hence, neither of these works provide an insight into the rubrics and implications

of the choice of either of these domains to underpin the ROMs. Although in principle, the

transformation between them is often a straightforward mathematical exercise, availability

of models for final implementation in the time domain aids immediate uptake by industry for

50



2.2 Reduced Order Models: A New Classification Scheme

adoption in online Battery Management Systems (BMSs). The treatment of ROMs from this

aspect is so germane to the central hypothesis of this thesis (a simple time domain model is

the key to large scale deployment of PBMs), that the author of this thesis feels compelled to

undertake a simpler classification exercise of the existing modelling art, within the context

of their suitability for online implementation.

In this discussion, various modelling methodologies and their resultant models are viewed

as a single continuum. Consequently this thesis discusses them from such a unified perspect-

ive without microscopic separation of the final models from their progenitor mathematical

methods. Furthermore, there is also a need to highlight the salient works among the more

recent advances and extensions to the then prevailing models to obtain an updated view

of the modelling art that have gained traction since the publication of Jokar et al. [32] and

Fan et al. [33]. Hence, the specialised review of reduced order modelling literature covered in

this section intends to supplement, not supplant, the breadth of research covered between the

aforesaid works. In particular, care has been taken to minimise repetition of background art

already analysed in these aforementioned review articles, thereby striving to report the subset

of prior research that is pertinent to illustrate the new classification scheme introduced here.

The author does not aim to adhere to a chronological presentation of such background works.

Instead, salient ROM families are introduced in the context of discussion of their significance

within a particular mathematical modelling technique.

In the views of this thesis author, physics-based control-oriented models can be classified

as belonging to one of the following categories

• Frequency domain ROMs

• Quasi-hybrid time/frequency domain ROMs

• Hybrid ROMs based on equivalent circuits

• Time-domain ROMs

A common characteristic of all control-oriented models is that their ultimate goal is to

lower the computational burden of the pertinent physical quantities during operation of

the cell. However upon a closer study, a few contrasting aspects that set them apart become
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apparent. Understanding the behavioural differences that stem from their lineage is themotive

behind distinguishing between those models that are derived directly in the time domain

versus those that are derived first in the frequency domain, but later converted to time domain.

The classical modus operandi in frequency domain modelling is to transform the under-

lying physical equations into the Laplace space (the complex S plane) followed by a Padé

approximation to reduce the number of coefficients in the resulting transfer functions. This

category of models is briefly evaluated in section 2.2.1. At the other end of the spectrum

are the time-domain ROMs which typically adopt the strategy of either a) simplifying

the computational mesh used, b) capturing only the salient dynamics of the cell which

leads to a smaller parameter set, and/or c) a combination of the two. The state of the art

in these models is studied in section 2.2.4. An overlapping continuum of mathematical

techniques is encountered in the literature discussing the wide assortment of ROMs spanning

the intervening space between these extrema. The classification presented here reflects

their broad approach to model reduction. For instance, equivalent circuits have only a few

parameters and are an attractive option from an implementation perspective. In recent years,

there has been an up trend in published efforts employing mathematical methods to generate

physics-based equivalent circuits, the salient among which are discussed in section 2.2.3.

Finally, there exist Quasi-hybrid ROMs which do not necessarily seek to formulate equivalent

circuits, but rather strive to arrive at time domain reduced order state-space realisations by

proceeding through a series of mathematical transformations starting from the frequency

domain. In these models, order reduction is typically achieved through a reduction in the

number of states and not directly through a reduction in the number of parameters. These

methods typically employ both time-domain and frequency-domain aspects of control theory,

such as Markov parameters and the Ho-Kalman algorithm. An evaluation of the salient quasi-

hybrid ROMs from literature is presented in section 2.2.2.

In principle, any modelling method that yields a time domain mathematical description of

physical phenomena that is lower in computational complexity by some arbitrary magnitude

than the original DFN model can be considered as a candidate for further investigation. In

the absence of a canonical or quantitative definition of what constitutes a ROM, the number

of candidate family of models to consider is overwhelmingly large. In practice, the constraint

imposed by the scope of this work i.e., suitability for real-time implementation, limits the
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choice of candidate modelling families. For instance, models relying primarily on classical

finite difference [34], Galerkin’s approximation [35] or Galerkin’s projection [36, 37] methods

for transformation and order reduction of one or more field variables of the DFN model are

excluded from further study. This is done in view of the impracticability of implementing

such models in a resource-constrained environment such as an embedded BMS controller.

2.2.1 Frequency domain ROMs

Owing to the low entry-barrier for adoption in a real-time controller that typically logs

data samples at specific time intervals, this thesis prioritises those models that are cast in

a mathematical form directly suitable for final implementation in the time domain. This

choice implies the exclusion of those models that are derived and implemented entirely in

the frequency domain. For the sake of readers interested in frequency domain methods,

the discussion here briefly introduces salient literature employing the Padé approximation

method that serves as a backbone of a wide variety of frequency domain models. “A Padé

approximant is the ‘best’ approximation of a function by a rational function of given order

— under this technique, the approximant’s power series agrees with the power series of the

function it is approximating” [38].

The transfer function oriented Padé approximation method for low order physics-based

battery modelling pioneered by Forman et al. [39] has gained widespread adoption in the

areas of cell design [40], charge-trajectory optimisation [41], controller design [42] and state

estimation [40, 43]. Although Prasad and Rahn [44] present an online identification of a subset

of ageing parameters using a Padé model and the Recursive Least Squares (RLS) algorithm,

specific implementation details such as the transformation of the Padé reduced impedance

to discrete-time difference equations were not provided. Padé models are typically limited to

offline applications owing to the aggressive trade-offs required in its approximation order so

as to maintain high accuracies. Those models truncated to very low Padé order exhibit poor

fidelity and perform no better than classical ECMs, although recent research attempts have

focused to mitigate this drawback [45, 46].
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2.2.2 Quasi-hybrid time/frequency domain ROMs

Smith et al. [47] pioneered a semi-hybrid approach to reduced order modelling and obtained

closed form expressions for all electrochemical field variables in the frequency domain except

for those describing electrolyte concentration and potential (which were solved separately

using the classical finite difference discretisation method). To the author’s knowledge, this

is the earliest published instance wherein all the dynamics of the full order model were

completely retained in the frequency domain. This was facilitated through the use of

transcendental transfer functions that helped to avoid the accuracy degradation brought

about by truncation techniques such as Padé approximation. In the first stage of the model

derivation detailed in the said article, a composite impedance model for the frequency range

of interest from 0–10Hz was obtained. This was then converted to a 12th order state space

model using the technique of residue grouping and truncation, thereby demonstrating the

first instance of the so-called hybrid modelling workflow. The ROM derived in Smith et al. [47]

was capable of predicting the cell’s terminal voltage within 1 % of the full-order DFN model.

The modelling effort by Smith et al. [47] also has the unique distinction of being the first

of its kind to render a PBM suitable for implementation in the classical Linear Time-Invariant

(LTI) state-space formulation
̇x = 𝐴x + 𝐵u

y = 𝐶x + 𝐷u,
(2.1)

where x ∈ ℝ𝑛×1, 𝐴 ∈ ℝ𝑛×𝑛, 𝐵 ∈ ℝ𝑛×𝑚, y ∈ ℝ𝑝×1, 𝐶 ∈ ℝ𝑝×𝑛, 𝐷 ∈ ℝ𝑝×𝑚 and u ∈ ℝ𝑚×1

that is amenable for controller design and for further system-level simulation studies e.g. as

a component in the energy storage subsystem of a (hybrid) electric vehicle drivetrain.

The requirement of a relatively large number of state variables (12 in this case) for

describing the system’s dynamics dilutes the effectiveness of state estimation algorithms.

In the classical isothermal implementation of this ROM, with the cell’s terminal voltage

being the only measured quantity, the observability of the model degrades significantly.

Although Smith et al. performed an observability analysis of the model in a noise-free context,

the presence of process noise (via unmodelled electrochemical phenomena and parameter
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uncertainties) coupledwith corruption ofmeasurement values through sensor noise in a harsh

electrical environment such as in a vehicle’s drivetrain, makes this model unattractive for

state estimation tasks in such embedded applications.

Several attempts have been undertaken to improve and extend the ideas pioneered in

Smith et al. For instance, Lee et al. [48] addressed a critical missing aspect viz. the derivation

of transcendental transfer functions for both the electrolyte concentration and its potential.

These transfer functions were obtained by using a Sturm-Liouville approach by retaining

the first five modes of an eigenfunction expansion procedure which is detailed in [48, 49].

To the author’s best knowledge, this is the first published work wherein all electrochemical

field variables of the DFN model were considered for inclusion in a deterministic model order

reduction procedure whilst keeping the derivation entirely in the frequency domain.

Obtaining closed form expressions for the electrochemical variables achieved in

Smith et al. (for all quantities other than electrolyte transfer functions) and Lee et al.

(all quantities including electrolyte transfer functions) also has an important computational

implication. With these capstone derivations serving to complete the model description in

the frequency domain, all electrochemical variables of the DFN model could now be solved

independently at any desired spatial location, in particular at certain crucial locations such

as the interface of each electrode with the respective current collector or separator. This

ground breaking idea sharply contrasted with the then prevalent state of the art in reduced

order modelling. For the simplification of the original Partial Differential Algebraic System

(PDAE) of equations in table 1.1, most order reduction approaches (excluding the SPM that

shall be discussed later) invariably required the solution of all electrochemical quantities at

multiple node locations along the thickness of the cell, thereby adding to the computational

burden. This was a significant deterrent to the adoption of such ROMs, particularly if the

intended purpose of the model is to simply predict the cell’s terminal voltage or serve as the

plant model in State of Charge (SOC) estimation applications.

In the same publications [48, 49], Lee et al. also devised the Discrete-Time Realisation

Algorithm (DRA), a novel scheme to systematically transform all transcendental transfer

functions to the time domain so as to obtain an LTI state-space model given by eq. (2.1). The

DRA method retains the physical character of the original DFN equations until the very last
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step wherein the matrices governing the system’s dynamics are generated. This yields a one-

dimensional discrete-time ROM of the cell that is entirely based upon fundamental physical

principles. The ROM thus obtained could then be used to compute the time-evolution of all

the internal electrochemical quantities of the DFN model. As an illustrative application of the

method, Lee et al. [48] performed a simulation study of a) the reaction flux density, b) surface

concentration of Li, c) ionic concentration of Li+ in the electrolyte, d) potential in electrolyte,

and e) potential in solid in the anode and cathode at the respective domain boundaries and

demonstrated their high accuracies relative to a benchmark DFN model. In Lee et al. [48, 49],

the cell voltage was computed through linear combinations of these time-domain variables

with suitable non-linear corrections. Yet another advantage of this model order reduction

process is that the method does not involve any form of non-linear optimisation that is typical

of other order reduction schemes that attempt a top-down approach of simplifying the PBM

equations. In particular, the DRA scheme provides a deterministic method for selection of

the order of the simplified model, which is a pioneering contribution in the field of reduced

order modelling of Li-ion cells.

The author of this thesis considers the formulation of the DRA to be a breakthrough

contribution that has helped in bringing physics-informed time domain models a step closer

to online implementation without having to resort to forming a lumped impedance and then

truncating it suitably. This seminal work is a first of its kind that is amenable to implementing

real-time controls for an entire cell without relying upon such empirical and ad hoc modelling

constructs. In a subsequent paper by the same lead author [50], this approach was then

extended to a wider range of operating conditions spanning various choices of initial SOCs,

temperature and C-rates. Although the final state space model thus obtained is simple to

implement, the classical DRA scheme suffers from significant computational bottlenecks in

forming the required block-Hankel matrices during the model-derivation phase.

In both the original as well as the improved DRA, the eigenfunction modal expansion

of electrolyte concentration transfer function is computationally intensive. A slightly less

detrimental disadvantage with the series of transcendental transfer functions associated

with the electrolyte concentration was that their derivation entailed mathematically cum-

bersome symbolic manipulations that dictated the need of a capable Computer Algebra

System (CAS). Although from a standalone viewpoint this requirement does not seem to

be critical, the Ho-Kalman algorithm that forms a core component of the DRA scheme is
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steeped in numerical linear algebra routines. Furthermore, for facilitating state estimator and

controller designs, it is convenient to implement the resultant state-space model in a classical

numerical computation environment such as MATLAB. Taking these into consideration,

Rodriguez et al. [51] introduced a simplified computation of the electrolyte concentration

transfer function by applying the Variation of Parameters (VOP) scheme. With this final

improvement, the hybrid ROM implementation originally envisaged by Lee et al. can

be considered feature-complete with low computational requirements during both model

derivation and implementation phases.

A key drawback of the transcendental transfer function approach is the requirement for

linearisation at a specific SOC. This implies that the entries in the matrices of the state space

model depends on the linearisation point. In all published works employing this approach,

these transfer functions were obtained by linearising the P2D equations of the DFN model

(see table 1.1), typically at an operating point of 50 % SOC. The linearisation requirement

renders the model usable only in a narrow range of SOCs. Furthermore, this adversely affects

the usability of the model for state estimation tasks, wherein the SOC is in fact an unknown

quantity and is to be estimated.

In order to extend the model’s range of validity, Lee et al. [50] had used a simple model-

blending approach by interpolating between several linear models pre-computed at different

SOC and temperature combinations. To guarantee robustness during change-over, a naive

approach is to incorporate a large number of break-points in the look-up table. Since the

model is intended for online operation, this would entail significant requirements of both

operating memory and non-volatile storage. An alternative approach is to implement a fairly

coarse break-point table with a sophisticated changeover mechanism. However, this demands

careful tuning of the blending parameters and gain values, an in-depth treatment of which

has not been provided in Lee et al. [50]. Furthermore, employing these interpolated matrices—

whose entries are obtained from pre-computedmatrices at various SOCs and temperature—for

state-estimation creates a subtle cyclic loop. The stability of this internal feedback loop thus

introduced has not been analysed in literature. This renders the idea of state-estimation using

such run-time interpolated models questionable.

The author of this thesis hypothesises that any perceivable drawbacks such as non-

smooth changes in SOC estimates arising from using blended matrices could be potentially
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mitigated by using smoothing filters and other ad hoc mathematical apparatus. However,

there exists no published work that discusses these engineering aspects or on how to actually

implement them in BMSs. Coupled with the absence of a theoretical analysis of loop stability,

these models are deemed as not being suitable for immediate adoption by industry, at least

until these aforementioned gaps have been addressed satisfactorily. The non-linear state

variable model presented by Guo et al. [52] aims to address this issue through a ROM in the

frequency domain by eliminating the linearisation phase from the workflow. However, the

online solution of its field variables entails a complex prediction-refinement procedure, loosely

defined as implicit and explicit solution methods, for each subsystem of the DFN model. The

formulation of the final model is not clearly illustrated and in the views of this author, is not

easily comprehensible. In the absence of actual source code, a numerical example or pseudo-

code of the model reduction workflow could have immensely helped with the reproducibility

of the results claimed in the aforesaid publication.

In summary, the concept of quasi-hybrid ROMs is certainly promising, although more

work is required to address the present gaps, most prominently the need to linearise their

equations at certain operating points.

2.2.3 Hybrid ROMs based on equivalent circuits

Physics-inspired ECMs [53–57] are a class of hybrid models that have rapidly gained

prominence since the publication of Jokar et al. [32] and Fan et al. [33]. In this case, the

derivation of the relevant model equations is performed in the frequency domain. This

frequency domain representation is then converted to a form suitable for implementation as

an equivalent circuit. Prasad and Rahn [54] extended their Padé order reduced model, first

presented in [44], by converting their impedance model into standard equivalent circuits. A

key point to be highlighted is that these family of models do not necessarily strive to retain the

classical Randles structure [58] for their equivalent circuit representation. Instead, the values

of the electrical circuit components such as series resistance and equivalent capacitance are

obtained through various mechanisms such as Electrochemical Impedance Spectroscopy (EIS)

measurements under load. The biggest advantage of such models is that they serve as drop-in

replacements to traditional ECMs whilst still retaining their origins in physical principles

rather than on empirical curve-fitting.
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A common characteristic of all hybrid models is the lack of a physical meaning to

their model parameters. This severely limits the insights offered by such models into

electrochemical phenomena internal to the cell. The biggest attraction of using PBMs is

the possibility of predicting quantities such as the State of Available Power (SOAP) or

phenomena such as cell degradation through accurate computation of the solid phase surface

concentration and potentials. Furthermore, a model capable of implying a direct and causal

relationship between a group of physical parameters and internal overpotentials at various

spatial locations within the cell serves as a powerful tool for in-situ lifetime estimation of

batteries. Although the circuit components of physics-informed ECMs and the state-space

models discussed here trace their origins to the original parameters of the DFNmodel, the link

between the final model coefficients and their progenitor physical parameter sets is tenuous

at best.

With the goal of translating physical parameters of a cell into circuit components,

Zhang et al. [55] presented a lumped ECM based on Padé approximation andmodel truncation.

However, the sensitivity of the final model values owing to perturbations in the original

physical parameters was not evaluated. Consequently, there is a lack of clarity in the relative

importance of physical parameters and their influence on circuit component values.

Merla et al. [57] introduced an ECM that can be parametrised by attempting a systematic

decoupling of the kinetics and diffusion at both electrodes and the electrolyte. Although these

interacting phenomena can be complex to resolve over all length and time-scales, acceptable

trade-offs in accuracy was demonstrated to be achievable from a system-level simulation

perspective. A drawback of this approach is that key physical parameters such as solid and

electrolyte diffusion coefficients are attributed to the two electrodes through ad hoc, non-

verifiable assumptions. Furthermore, in the aforesaid article, notable discrepancies exist in

the values of parameters such as electrolyte conductivity (obtained through calculations from

EIS measurements) to that typically reported in literature.

It must be acknowledged that presently there exists no modelling candidate that provides

all the desirable characteristics sought after in a ROM to unconditionally adopt it for final

implementation in the time domain. However, it is strongly desirable that the majority of

the final model values retain their physical meaning, yielding system engineers and cell

designers alike with a direct and causal relationship between groups of parameters and their
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influence on the cell’s operational performance. Since one of the goals of this thesis is to

provide a readily usable ROM that is immediately deployable in an online implementation,

the author concludes that at present, the benefits offered by physics-inspired hybrid ECMs

do not decisively outweigh their drawbacks.

2.2.4 Time-domain ROMs

General strategies in time-domain reduced order battery modelling

The working rubric of all time domain ROMs typically consists of attempts to reformulate

the original P2D model equations towards the goal of simplifying them to as much extent as

possible. In contrast to the hybrid models, all tasks involved in both model derivation and

final implementation are carried out entirely within the time domain. While a subset of prior

research has focused only on simplifying certain aspects of the cell’s dynamics e.g. diffusion

in the two electrodes, other published works have aimed at providing a simplified description

of the time domain evolution of all physical quantities of the cell. An evaluation of the salient

literature based upon both these approaches is performed here.

In this discussion, the modelling approaches that entail computations with medium or

large dense matrices [59–61] or those involving concepts such as fractional order derivat-

ives [62–66] shall not be discussed. In the views of this author, it appears that the academic

community has implicitly considered them to be so abstruse that there has not yet been

a comparative study pitting these families of models against the prevalent art. Comparing

with the typical published work in this field, it is not clear on how such models distinguish

themselves uniquely within the broader landscape of reduced order battery modelling.

A few mathematical techniques for Partial Differential Equation (PDE) simplification in

the time domain, such as Hilbert space representation and singular perturbation, were applied

for cell modelling in Manzie et al. [67]. However, their presentation lacks expository visual

information such as plots of time domain evolution of the internal and terminal variables for

dynamic load profiles. Furthermore, the authors have not provided a tabulated set of physical

parameters of the cell being simulated which therefore impedes reproducibility of the results.

Consequently, these methods have not seen a healthy uptake either in academia or in industry.

The author of this thesis considers the aforesaid presentation to be of a cursory nature and

therefore shall not discuss it here.
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In the DFN model, the evolution of lithium in the solid phase is described by the classical

diffusion equation given by Fick’s first law [68]. In order to solve for this concentration

profile in full-order models, it is required to discretise every spherical particle (represented

by the placement of a node in the axial i.e., through-thickness direction) along its radial

direction (pseudo dimension). This additional discretisation along the pseudo dimension

dramatically increases the overall number of discretisation nodes and adversely affects

computational efficiency. The impact of such high node densities on the computational

requirements of the original P2D model coupled with the fact that diffusion in the solid

phase is typically the rate-limiting aspect of batteries have led researchers to adopt various

mitigation strategies to tackle this issue. In contrast to the pure frequency domain and the

semi-hybrid/hybrid approaches discussed thus far, these attempts typically strive to arrive at

a simpler computational mesh, whilst aiming to retain high fidelity. It should be noted that

high node densities are mainly required near the surface of the spherical particles for the

pseudo dimension. Similarly, it is desirable to have a clustering of nodes near the separator

and current collector interfaces along the axial dimension. Thus, a sizeable number of order

reduction strategies in the time domain seek to adopt non-uniform node spacing towards

lowering the aforesaid computational issues. The remainder of this section discusses several

popular families of time domain models and provides a summary evaluation of their relative

merits and weaknesses.

Overview of prior art in the formulation of time-domain ROMs

Computationally efficient pseudo-spectral schemes for numerical solution of PDEs can be

employed by placing discretisation nodes at orthogonal collocation points obtained by solving

for the zeros of certain class of polynomial basis functions [69–73]. The accuracy of such

schemes extend beyond the algebraic orders of that achievable with classical Finite Difference,

Finite Element or Finite Volume Schemes. Northrop et al. [74] pioneered their application

in battery modelling by employing Jacobi polynomials as the underlying basis functions.

A Lagrangian-like integral method to describe diffusion in the electrolyte and solid phase

was proposed by Rahn and Wang [8], which however works well only at low C-rates.

Suthar et al. [75] replaced the Jacobi polynomials originally proposed by Northrop et al. [74]

with Chebyshev polynomials to help extend the applicability of the resulting ROM to higher C-

rates. Bizeray et al. [76] provide a detailed treatment on the usage of Chebyshev discretisation

61



2.2 Reduced Order Models: A New Classification Scheme

for the full P2D model on a global scale i.e., along both the axial and radial directions for all

equations of the DFN model.

In pseudo-spectral methods, the reduced number of nodes as well as their clustered

placement at desirable spatial locations facilitated by these discretisation schemes lower the

computational burdens of simulating a physics-based cell model. In such schemes, the P2D

equations, their boundary conditions and corresponding field variables are mathematically

transformed to the Chebyshev space within which they are solved. The solved quantities are

then converted back to the physical space through a corresponding inverse transformation.

Although this bi-directional transformation is purely algebraic in nature, the requirement of

running a spatially resolved model coupled with the overheads of such variable transforma-

tions render these class of models unsuitable for online implementation. The contribution of

Lee et al. [48, 49] i.e., the ability to solve for any electrochemical variable at arbitrary spatial

locations by completely eliminating the need for spatial discretisation assumes particular

significance in this context.

In all non-uniform discretisation schemes discussed here, the implications of using a non-

adaptive support mesh obtained by the placement of nodes whose locations are optimised

a priori must be considered carefully. For instance, in the prolonged operation of the cell with

a net unidirectional charge flow e.g. in an electric vehicle application, the reaction front drifts

from separator back towards the current collectors. This is due to the exhaustion of lithium at

the surface of particles near the separator interfaces. In this scenario, the solutions produced

by these models could be worse than simpler models with uniform mesh-density. Although

adaptive meshing strategies can be employed for desktop simulation with minimal effort, it

remains to be seen if this can be deployed successfully in a resource-constrained environment

such as an embedded BMS controller, and hence is a candidate for future research.

The computational bottlenecks arising due to discretisation in the radial direction

have motivated researchers to explore mesh-free approaches to solve for the solid phase

concentration profile. Subramanian et al. [77] pioneered the concept of employing polynomial

approximations of the Fickian diffusion equation to solve for lithium concentrations in the

porous electrodes. In this approach, the solid-phase surface concentrations were expressed

as correction terms applied to their average concentrations (which was described using

a second degree polynomial). In a follow-on study [78], the same authors presented a solution
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using higher order polynomials and performed a dimensionless analysis of their proposed

reformulation. The details of the 4th order polynomial approximation is presented in the

context of this thesis author’s comprehensive analysis of the SPM modelling art and is

discussed in section 5.1.3. In the 2nd and 4th order solutions, the polynomial equation for

surface concentration was accompanied by a corresponding Ordinary Differential Equation

(ODE) for describing the temporal evolution of average concentration, thereby leading to

a system of Differential Algebraic Equations (DAEs). Furthermore, Subramanian et al. [79]

convincingly demonstrated the application of polynomial approximation for the solid phase

diffusion equation in the numerical simulation of a complete DFN cell model.

Using polynomial approximation for the solid phase concentration results in a drastic

reduction in the number of DAEs needed to solve the full model since now discretisation

needs to be performed only along the axial direction. The polynomial approximation solution

applied to solve for the surface concentration in the solid phase can hence be viewed as

a dimension reduction approach, as it removes the need to numerically solve the concentration

dependence in the radial direction. The textbook by Carslaw and Jaeger [80] provides

detailed derivations for obtaining the standard analytical solution to Fick’s law of diffusion

in the context of heat conduction in solids. Liu [81] derived this analytical solution for the

lithium intercalation process in the solid phase, taking into account the idiosyncrasies of

porous electrodes. However, this expression involves an infinite sum expansion of eigen

modes. Guo and White [82] formulated an expression for a truncated approximation of

this solution to arbitrary number of terms. Furthermore, they demonstrated the validity

of this approximation by comparing the analytical solution truncated to the first 5 terms

to that obtained from a classical finite element solution. However, this truncated analytical

solution involves exponential and trigonometric terms and is non-trivial to implement on

BMS chips, particularly in those that lack support for floating point computations. Moreover,

there has been no extensive study comparing the analytical solution to the polynomial

approach. Consequently, this approach has not yet gained widespread popularity in the

inherent elimination of the radial dimension that is so deeply ingrained as a core aspect of

the cell-level order reduction approaches discussed here.

The computational speed-up facilitated by using polynomial approximations for the

solid phase diffusion has motivated other researchers to extend this approach to all other
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electrochemical variables of the DFN model. Deng et al. [83] presented a polynomial-centric

evaluation of the full P2D model, whose notable contribution is in providing such an

approximation for themolar flux density along the thickness of the cell. To the best knowledge

of this thesis author, this is the first published work that provides a spatially dependent

simplified computation of the interfacial flux density. This represents a balanced choice

between the need to use the strongly non-linear Butler-Volmer kinetics eq. (1.7) or having

to resort to a lumped representation of average kinetic behaviour. Hence, this approach is

particularly suited to reduced order modelling of cells with medium electrode thicknesses

wherein the lumped representation of flux density is not generally applicable.

One serious drawback in Deng et al. [83] is the use of a Finite Difference approximation

for computing the spatial gradients of the Open Circuit Potential (OCP) at three electrode

locations. This adversely affects computational performance and is not suitable for online

implementation. Unless a proven solution for such computational challenges ismade available,

it is worthwhile to continue to explore other avenues to identify the most apropos first

candidate for adoption in real-time BMS environments.

Farag et al. [84] proposed a Piecewise Linear (PWL) approximation of all governing

equations of the electrochemical model. Given that straight-line fits to complex phenomena

are inherently too simplistic, these authors acknowledged that a naive implementation of

their approach shall therefore result in a crude approximation of the cell’s dynamics. Hence,

an optimal knot-placement scheme was proposed and solved through a genetic algorithm

to compute the break-points of the PWL fit. Since this computationally intensive step

occurs offline, it does not adversely affect the real-time performance of the model. The final

ROM is implemented using standard state-space matrices. However, this model exhibits the

primary drawback seen in the hybrid modelling approaches i.e., a complete lack of physical

interpretation of its parameters. As with any other ROM involving SOC-based linearisation

points, the stability of the model to uncertainties in physical parameters is questionable.

A detailed sensitivity analysis of the knot placement scheme’s output to such parametric

variation is to be performed in order to establish confidence in the model’s robustness, before

such PWL approaches can gain widespread acceptance in online applications.
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2.2.5 Classification of ROMs — Interim summary

Although the presentation of prior art on time-domain ROMs is not yet complete, it is helpful

to have a brief interlude to summarise the body of literature reviewed thus far. This exercise

shall help to inform the rationale behind the next directions to be undertaken. Table 2.1

provides a high level overview of the key contributions and limitations of the salient literature

on various categories of ROMs discussed in sections 2.2.1–2.2.4.

Table 2.1 Overview of key contributions and limitations of the salient literature on various
categories of ROMs discussed in sections 2.2.1–2.2.4.

Category Source Key Contributions
Limitations/
Other Remarks

Frequency-domain
ROMs

Forman et al. [39] Pioneered Padé
approximation technique
for battery modelling

Limited to offline
applications due to
aggressive trade-offs
in approximation
order

Prasad and Rahn [44] Online identification of
a few ageing parameters
using RLS

Lack of
implementation
details hampers
reproducibility

Yuan et al. [45, 46] Proposed a high-fidelity
low order transfer function
type ROM

Being too recent,
unproven to rely as
the foundation

Quasi-hybrid
ROMs

Smith et al. [47] Obtained transcendental
transfer functions of all
field variables except
electrolyte concentration
and potential, followed by
conversion to time domain
state-space model

Needs a large number
of states for
capturing system
dynamics, which
impacts observability

Continued on next page
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Table 2.1 — continued from previous page

Category Source Key Contributions Limitations

Lee et al. [48] Sturm-Liouville approach
to obtain transcendental
transfer functions of the
electrolyte, followed by
a novel DRA scheme for
state space implementation

Computational
bottlenecks owing to
large sized matrices;
needs linearisation at
specific SOCs which
raise questions on
state estimation

Rodriguez et al. [51] Simplified computation of
electrolyte transfer
functions through a VOP
scheme

VOP scheme has not
seen traction in
published literature;
Requires linearisation
at multiple points

Guo et al. [52] Eliminates linearisation
from the workflow
through a non-linear state
variable model

Final model
formulation is not
clearly illustrated;
Lack of examples or
pseudo-code hinder
comprehension

Hybrid ROMs
based on
equivalent circuits

Prasad and Rahn [54] Pioneered this concept by
converting an impedance
model into an equivalent
circuit

Does not provide
a direct relationship
between physical
parameters and
values of circuit
components

Zhang et al. [55] Lumped ECM based on
Padé approximation and
model truncation

Lacks clarity in the
relative importance
of physical
parameters and their
influence on circuit
component values

Merla et al. [57] Systematic decoupling of
kinetics & diffusion,
followed by their mapping
to circuit components

Discrepancies in
a few parameter
values compared to
those reported in
literature

Continued on next page
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Table 2.1 — continued from previous page

Category Source Key Contributions Limitations

Time-domain ROMs
(excluding SPMs)

Manzie et al. [67] Direct simplification of
PDEs by Hilbert space
representation and
singular perturbation

No expository visual
information and
absence of cell
parameter set

Northrop et al. [74] Pioneered the use of
pseudo-spectral schemes
in cell modelling using
Jacobi polynomials

Applicable only at
low C-rates

Suthar et al. [75] Used Chebyshev
polynomials as basis
functions for numerical
robustness and hence, to
facilitate higher C-rates

Provides only
a cursory mention of
the scheme; lacks
mathematical details
to aid battery
modellers

Bizeray et al. [76] Detailed treatment on the
usage of Chebyshev
discretisation for both the
axial & radial dimensions
of a lithium ion cell

Computational
burden of
discretisation in the
axial direction is not
justified for
embedded BMS
applications

Subramanian et al. [79] Pioneered the use of
polynomial approximation
for solving diffusion in the
solid phase

All other field
variables were solved
using a traditional
finite difference
method; not
amenable to
embedded
implementation

Deng et al. [83] Extended the use of
polynomials for the molar
flux density of the DFN
model

Finite Difference
approximation for
the spatial gradients
of OCP is an adverse
side-effect not seen in
other polynomial
ROMs
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It is evident that all physics-based ROMs presented thus far entail extensive paramet-

risation efforts to render them suitable for a practical application. The difficulties associated

with such parametrisation, coupled with inherent uncertainties in the obtained parameter

values act as a strong deterrent to stakeholders outside academia to adopt PBMs for online

implementation in a BMS. This motivates the need for even further simplified PBMs. One

such modelling candidate is the Single Particle Model (SPM), the prior research on which is

presented next in section 2.3.

2.3 Review of Literature on the Single Particle Model Family

2.3.1 Overview of literature on conventional SPMs

Haran et al. [85] proposed a highly simplified representation of porous electrodes for the

metal hydride cell chemistry. In the aforesaid article, each porous electrode was represented

as a single spherical particle. This concept was adopted for lithium ion batteries by Ning and

Popov [86] and has since become quite popular. Models employing this lumped representation

of electrodes are referred to as Single Particle Models (SPMs). These models have three

advantages. Firstly, SPMs involve only a subset of parameters of the original DFN model.

Furthermore, they are computationally cheap, especially when coupled with the polynomial

approximation for solving the solid diffusion equation for each electrode. Finally, all model

parameters in the SPM retain their physical character, aiding in a direct and intuitive

understanding of physical parameters on the cell’s operation.

During the initial years following its inception, the formulation of the basic SPM was

discussed extensively within application-specific contexts such as SOC evaluation [87, 88],

parameter estimation [89], and life cycle/ageing predictions [90, 91]. There have also been

detailed stand-alone publications discussing various facets of the basic SPM, such as its

inherent assumptions and governing equations [92, 93]. The basic SPM suffers from poor

voltage accuracy which is discussed in the simulation results presented in section 5.3.3. Since

the turn of the decade, researchers have attempted to tackle this issue and a holistic discussion

of such efforts is presented next in section 2.3.2.
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2.3.2 State of the art in electrolyte enhanced SPMs

The lack of electrolyte dynamics in the conventional SPM results in poor voltage accuracy

even at moderate C-rates. This is illustrated in the author’s simulation results presented in

section 5.3.3. This poor performance in voltage prediction renders the model unsuitable for

observer design in SOC estimation applications . This is because the output voltage from the

model maps to a radically different SOC operating point. A number of candidate solutions

have been proposed in literature that strive to mitigate this drawback, the salient among

which are evaluated here.

The earliest workswhich attempt to include electrolyte dynamics in the conventional SPM

were published only within the present decade. Schmidt et al. [94] proposed an infinite-sum

eigenfunction modal expansion paradigm to solve for the electrolyte concentration. It was

claimed that by accounting for contribution from only the first two terms, sufficient accuracies

may be achieved. Furthermore, a simple ODEwas proposed for the rate of evolution of the first

temporal mode. The solved electrolyte concentration is then substituted into an approximate

analytical solution for the DFN model’s charge conservation PDE (see eq. (1.5)) to obtain

the electrolyte potential. However, the presentation lacks depth in the explanation which

hinders reproducibility. For instance, the origin and explanation of the approximation terms

in the electrolyte potential solution is omitted. Derivations are performed from a rigorous

mathematical perspective without providing contextual reference to cell parameters or

electrochemical quantities. Introducing numerical examples would have been a redeeming

factor to help keeping the mathematical aspects tractable. This method has not seen further

uptake for SPM modelling.

Guo et al. [95] presented an empirical approach to account for the solution-phase

dynamics. Using standard curve-fitting techniques, a non-linear resistance as a function

of current and temperature was introduced. Thus, the equation for cell terminal voltage

presented in eq. (5.29) is modified as

𝑉cell = 𝜂pos − 𝜂neg + 𝑈pos − 𝑈neg − 𝐼𝑅eq (2.2)
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where 𝑅eq is the equivalent resistance newly introduced. In the opinion of this thesis author,

this approach is too simplistic and does not generalise well. Even if giving up physics-

based model origins can be tolerated for one or two subsystems within the model, the

equivalent resistance is not just a minor correction term since it needs to account for a large

polarisation voltage of the order of tens of millivolts. Secondly, the current-dependence

introduced to account for the complex mass and charge transport within the electrolyte

places a disproportionately large weight on the accuracy of the curve-fitting process. Non-

linear fits as proposed in Guo et al. are inherently problematic as the optimisation routine may

simply converge to a local minimum. The specific form and nature e.g. the convexity of the

proposed hypothesis function is not discussed. It is also not guaranteed that the same fitting

function is applicable to a different cell with another set of parameters. Finally, the correction

term being resistive in nature is zeroth order i.e., cannot account for the frequency dependent

behaviour of the electrolyte’s dynamics. This approach is more suited for small-scale static

corrections that do not depend on the current e.g. to account for a few tens of microvolts due

to a constant contact resistance of the current collectors.

Di Domenico et al. [96] were the first to present a step-by-step derivation of the

approximate analytical solution to the electrolyte overpotential. The potential drop in the

electrolyte is given by

𝜙e,pos − 𝜙e,neg = −
𝐼
2𝐴 (

𝑙neg
𝜅eff,neg

+ 2
𝑙sep

𝜅eff,sep
+

𝑙pos
𝜅eff,pos

) (2.3)

and can be substituted into the subtraction operation involving eq. (5.26) and eq. (5.27) in

computing the overall overpotential of eq. (5.28) and hence the terminal voltage. The effective

conductivity of the electrolyte in a given region 𝑗 ∈ {pos, sep, neg} within the cell, is defined

as 𝜅eff𝑗
(𝑐𝑒) = 𝜅(𝑐𝑒) 𝜀

brugg𝑗
𝑗 . As discussed in section 5.3.2, the intrinsic, and hence the effective

electrolyte conductivity is a function of the concentration of Li+ ions in the electrolyte.

Di Domenico and co-workers did not, however discuss the spatio-temporal calculation of

electrolyte concentration. It is likely that a constant electrolyte concentration at its initial

equilibrium value was used. As seen in fig. 2.1, significant spatial gradients in the electrolyte

are established even at low to moderate C-rates during the cell’s operation. Sustained

application of a unidirectional current even leads to starvation of ions in the electrolyte,

particularly near the current collectors. This phenomenon is visualised in fig. 2.1 wherein
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the electrolyte at the positive current collector is virtually depleted of ions at the end of

discharge. This ion-starvation process occurs earlier at higher C-rates and spreads throughout

the thickness of the electrode. Thus, the assumption of constant ionic concentration in

the electrolyte is not true. Neglecting mass transport due to diffusion implies that the

terms in eq. (2.3) constitute only a part of the expression for computing the electrolyte

overpotential. Furthermore, Di Domenico and colleagues do not present any results of

applying dynamic current profiles. Since the critical aspect of mass transport contribution to

electrolyte overpotential is omitted, this model cannot be viewed as a sufficient enhancement

to the basic SPM.
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Figure 2.1 Li+ ion concentration in electrolyte along cell thickness at various time-snapshots
during a 1C discharge simulation of the P2Dmodel. A Quasi-Steady State (QSS) spatial profile with
inflection point at each separator interface begins to form at ≈60 s after discharge begins. However,
the ionic concentration in electrolyte exhibits a significantly different transient behaviour (zoomed
inset) possessing another inflection point that disrupts the monotonic trend. Depletion of ionic
concentration at positive current collector towards end of discharge is also seen (bottom left).

Although not presented in the context of incorporating into the SPM, Guduru et al. [97]

derived an analytical solution of the spatio-temporal evolution of electrolyte concentration

using the Separation of Variables (SoV) method. The SoV method was first applied to

modelling of lithium ion cells by Subramanian et al. [98] to solve for solid phase concentration

profiles in spherical electrode particles. Although the ionic concentration in the electrolyte

computed by the analytical expression in Guduru et al. [97] seems like a feasible choice

for inclusion into the SPM, it is only applicable for galvanostatic boundary conditions
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i.e., when the applied current is held constant over time. By natural extension, researchers

could hypothesise that this restriction may be removed by considering the input current as

piecewise constant over small sample intervals. Such a hypothesis could be reinforced by the

fact that standard drivecycles are specified as discrete samples and the discrete-time SPM

processes these input samples assuming Zero Order Hold (ZOH) behaviour. However, the

analytical solution presented by Guduru and co-workers assumes a Quasi-Steady State (QSS)

concentration profile. These authors consider a near-instantaneous establishment of this QSS

and suggest a parameter-independent analysis through use of dimensionless concentrations

and time-constants instead of absolute time.

In the studies conducted by this thesis author, significantly different transient behaviour

is exhibited by the electrolyte concentration profile. In particular, the time taken to establish

the QSS profile is not negligible. This difference in behaviour could be attributed to the

different parameter set used. Figure 2.1 shows the spatial profile of ionic concentration at

various snapshots of time during a 1C constant current discharge. Starting at 100 % SOC,

the discharge lasts 3571 s. It is seen that it takes nearly 60 s to establish the approximately

parabolic shape assumed by the electrolyte concentration. After the initial transient has

elapsed, the underlying structure of the mathematical equations can be assumed to be static.

This is evidenced by the fact that at 1785 s i.e., after half of the discharge is completed, the

shape of the curve is nearly identical to the one towards end of discharge. These QSS curves

have their sole inflection points at their separator interfaces and remains monotonic within

their respective electrode regions. The difference in height for various times can be accounted

by the coefficients solved using the analytical modal solution proposed in Guduru et al..

The axes in the inset of fig. 2.1 shows a zoomed-in view of the electrolyte concentration

during the transient phase, wherein the QSS has not yet been established. In particular, there

exist additional inflection points, one within the interior of each electrode, which render the

transient concentration profile mathematically incompatible with the monotonicity exhibited

by the QSS profile. Thus, in highly dynamic operating conditions with frequent reversals in

the direct of current, the QSS assumption for the galvanostatic analytical solution becomes

harder to uphold without introducing significant errors. Finally, the analytical solution profile

in Guduru et al. is not amenable to embedded implementation, since it consists of a set of

non-trivial trigonometric computations at each time-step.
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Prada et al. [99] were the first to provide a simplified expression for potential drop in the

electrolyte by including the terms representing ionic concentration gradient within the cell

thickness. Thus, eq. (2.3) gets modified as

𝜙e,pos − 𝜙e,neg = (1 − 𝑡0+)
2𝑅𝑇
𝐹

ln
𝑐e,pos/cc
𝑐e,neg/cc

−
𝐼
2𝐴 (

𝑙neg
𝜅eff,neg

+ 2
𝑙sep

𝜅eff,sep
+

𝑙pos
𝜅eff,pos

) (2.4)

Although the complete expression for electrolyte overpotential was provided, it was presen-

ted in a cursory manner i.e., without detailing the spatio-temporal computation of ionic

concentration values at the current collector interfaces. Nevertheless, it is important to note

this contribution as eq. (2.4) is widely relied upon by subsequent literature and shall be used

in section 6.10.1.

The pioneering work by Rahimian et al. [100] provided approximate expressions for

both charge transport and mass transport properties of the electrolyte specifically with

the focus on improving the basic SPM. These authors discuss the usage of a polynomial

approximation for electrolyte concentration and potentials. In particular, a cubic polynomial

was chosen for approximating the electrolyte concentrationwithin the porous electrodes. This

necessitates the need to solve for eight coefficients for uniquely describing the electrolyte

concentration profile within the electrode regions. However, in the standard DFN model, the

number of electrolyte-specific PDEs and their corresponding boundary conditions describing

charge and mass transport is insufficient to uniquely solve for all unknown coefficients of

this polynomial approximation. A detailed explanation of this equation deficiency shall be

discussed in section 6.1.1.

To overcome the issue of equation deficiency, Rahimian et al. adopted a scheme wherein

one additional spatial location in the interior of each electrode was also needed. The

coefficients of the polynomial approximation were then obtained by iteratively solving

a large coupled system of algebraic equations, embedding within them the additional

equations evaluated at the interior points. A complicating issue that arises is regarding the

optimal positioning of these additional interior points. An online numerical optimisation was

performed to obtain the optimal placement of this interior node. In the opinion of this thesis

author, these optimisation results could be sensitive to the thickness of the electrodes among

other parameters. A discussion of the stability of the proposed routine and its robustness
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to parameter variations shall help in lending confidence in the proposed method. Although

sufficient accuracy of the improved SPM was demonstrated for currents up to 5C, a notable

omission is the discussion of themodel’s performance to dynamic input profiles. In conclusion,

the author of this thesis opines that, although this method serves as a proof of concept towards

implementing polynomial approximations for electrolyte dynamics, until the aforementioned

gaps are addressed with clarity, it is not convincing for uptake by relevant stakeholders.

Kemper and Kum [101] presented an approach wherein the spatial gradients of the

electrolyte concentration are neglected. The time-evolution of average ionic concentration

in each of the three cell regions viz. positive electrode, separator and negative electrode are

described by a set of three ODEs. As established by the discussion thus far, the concentration

gradients along the axial thickness of the cell is significant, even at moderate C-rates. Lending

strength to doubts on the model’s wider applicability is the fact that results from constant

current inputs (which induce large concentration gradients in electrolyte) have not been

reported in this work. Thus, this approach is deemed as not satisfactory enough to warrant

further engagement.

Luo et al. [102] derived a parabolic approximation of the electrolyte concentration

distribution along the thickness of the cell. The derivation is obtained for the case of steady-

state wherein the rate of change of concentration is zero. However, the author of this thesis

is sceptical about this since in the set of independent simulations conducted, there was no

situation other than prior to application of current that this exact steady-state condition is

satisfied. In the QSS profile concept discussion based on fig. 2.1, it is clear that only the spatial

profile reaches a shape that can be potentially described by a mathematically invariant family

of curves. The electrolyte concentration is still time-varying and therefore violates the static

time-evolution assumption. Although Luo et al. [102] do not explicitly acknowledge this, they

do provide an extension for general operating conditions by introducing two exponential

scaling functions 𝑓𝑛(𝑡) and 𝑓𝑝(𝑡)while retaining the assumption of parabolic spatial behaviour.

The computation of certain time-constants in these scaling functions are not elucidated nor

are the procedural steps for determination of the aforementioned scaling functions provided.

In a subsequent paper by the same authors i.e., Luo et al. [103], the electrolyte concentra-

tion model together with a similarly-derived electrolyte potential model was incorporated

into the conventional SPM to arrive at what the authors term as extended SPM. In the
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aforementioned work, the electrolyte potential is set to account for contribution from two

terms — a) ohmic drop due to bulk solution resistance, and b) polarisation potential due

to concentration gradients Although it seeks to correctly account for the two causes of

overpotential in the electrolyte, there is no detailed explanation on the computation of

quantities such as time-constants involved in the polarisation potential term.

A modified version of the electrolyte model proposed in Luo et al. [102] was used in

Zou et al. [104] for observer design in an SOC estimation application. The modification

essentially consists of truncating the complex expression in Luo et al. [102], which originally

consisted of six coefficients 𝑝1 through 𝑝6 to just two, and elimination of the aforementioned

time-constants. However, to the disappointment of the author of this thesis, the claim that

truncation to 𝑛 = 2 terms is sufficient to describe the dynamics proved to be optimistic for

the parameter set considered. In the thesis author’s efforts to reproduce the aforesaid work,

an arbitrary scaling factor was needed to correct for the electrolyte potential drop and match

the P2D simulations. The requirement for such scaling factors whose physical origins are not

clearly identifiable lends to scepticism on the model’s robustness. Furthermore, it was found

that this value needed to be hand-tuned for each parameter-set. Until these gaps are addressed,

it is worth seeking other viable alternatives to model the cell’s electrolyte dynamics.

After completing the simulations with the aforementioned scaling factors and continuing

in the quest for other alternatives, the author of this thesis made an observation that

other researchers have had to resort to similar techniques for describing the electrolyte

overpotential. For instance, Han et al. [105] use a similar scaling factor 𝑝 < 0 for the entire

expression of eq. (2.4) representing the electrolyte overpotential using the polynomial

approximation approach proposed by Rahimian et al. [100]. However, these unexplained

scaling factors lower the confidence regarding the model’s general applicability.

Tanim et al. [106] accounted for electrolyte dynamics by deriving reduced order transfer

functions for ionic concentration distribution and electrolyte overpotential using the Integral

Method Approximation (IMA) technique. However, the coefficients of these transfer functions

are excessively long and comprised of chained algebraic operations expressed in a high-

entropy sum-of-products form in the appendix of the aforesaid article. For instance, ten

coefficients are needed to describe the concentration profile while six coefficients are required

for the electrolyte potential. The median length of each atomic sub-expression of these
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coefficients is sufficiently high to obfuscate their physical significance. A low-entropy form

for the coefficients of these transfer functions similar to that pioneered by Middlebrook [107]

and exemplified in the design-oriented analysis of electric circuits [108, 109] could have

been helpful to aid the readers’ understanding. The author of this thesis recognises that

mathematical complexity should not be the sole basis to evaluate the merits of such proposed

improvements. Although the presentation of these long coefficients have been judiciously

moved to the appendix, their derivations — essential to prove the model’s validity — is

curiously omitted. The unwieldiness of the mathematical expressions presented therein

increases the probabilities of introducing human errors during implementation.

It is worth noting that Marcicki et al. [40] had independently proposed a similar approach

viz. deriving a transcendental transfer function from electrolyte concentration to applied

current, albeit for a cell of Lithium Iron Phosphate (LFP) chemistry. This transfer function

consisted of a series of hyperbolic trigonometric functions which were later truncated by

Padé approximation (see section 2.2.1 for a brief introduction to frequency domain ROMs).

However, upon the trial of this approach for the Lithium Cobalt Oxide (LCO) parameter set

(see table 5.2) by this thesis’ author, in order to obtain sufficient accuracy, the truncation order

had to be raised to at least seven, similar in complexity to that of Tanim et al. [110]. In both

Marcicki et al. [40] and Tanim et al. [110], the electrolyte-specific enhancements to the SPM

are in the frequency domain, placing further burden, particularly on industry stakeholders

to accurately interpret and transform the coefficients to a time-domain implementation for

deployment in an embedded BMS. Owing to this, as already stated in section 2.2.1, these

models fall outside the scope of this thesis.

Fan et al. [36] proposed an Extended SPM that includes electrolyte dynamics using

the Galerkin Projection Method (GPM) which achieves an acceptable accuracy in terminal

voltage performance. Although these authors claim that the GPM is computationally cheaper

than other model order reduction techniques such as proper orthogonal decomposition and

balanced truncation, this claim has not been substantiated. The sole comparison of Central

Processing Unit (CPU) times presented in the said work only contrasts the GPM against the

classical Finite Difference Method (FDM). Although an impressive computational speed is

achieved, it is unclear whether the model equations, particularly those involving solutions

of non-linear integral expressions resulting from applying the Galerkin’s method can be
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solved in real-time for embedded implementation. It appears that the GPM is more suitable

for desktop simulations. In congruence with this thesis author’s scepticism, Fan et al. [36]

have not claimed the suitability of their work for online/embedded application in a BMS.

Therefore, in accordance with the stance taken in section 2.2, models employing suchmethods

are deemed to be not in alignment with the goals of this thesis.

Moura et al. [111] proposed an improved SPM by simply augmenting the conventional

SPM with a simplified form of electrolyte-specific equations of the original DFN model. The

resulting model therefore has PDEs in it and therefore not easily amenable for embedded

implementation. Lotfi et al. [112] presented an algebraic approximation for the spatial distri-

bution of electrolyte concentration by modifying standard parabolic expressions with leading

exponential coefficients. There are two main issues with this approach. It is not explained

why that particular mathematical formulation was chosen. For instance, its superiority over

other feasible family of curves is not discussed. Secondly, the aforesaid coefficients are to be

determined through solution of equations obtained by applying continuity and flux boundary

conditions from the DFN model for electrolyte concentrations at the electrode-separator

interfaces. Since exponential-type expressions are assumed in the aforesaid mathematical

formulations, the resulting set of equations are non-linear, the solving of which in the context

of a resource-constrained environment is problematic. Table 2.2 provides a digested summary

of the salient electrolyte enhanced SPMs from literature.

Table 2.2 Summary of salient literature on electrolyte enhanced SPMs

Source Key Contributions
Limitations/

Other Remarks

Schmidt et al. [94] Electrolyte concentration
solved by an eigenfunction
expansion for spatial profile
and an ODE solution for
temporal dynamics

Excessive theoretical emphasis without
regular contextual references to cell
modelling, which hinders reproducibility

Guo et al. [95] Non-linear resistance as
a function of current and
temperature to capture
electrolyte overpotential

Empirical approach which is difficult to
generalise across parameter sets since
large corrections of the order of a few mV
become essential; Non-linear optimisation
may converge to a local minimum

Continued on next page
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Table 2.2 — continued from previous page

Source Key Contributions
Limitations/

Other Remarks

Di Domenico et al. [96] First to present an
approximate analytical
solution for electrolyte
overpotential

Lacks discussion on spatio-temporal
calculation of ionic concentration;
presumably used constant initial value
which is problematic with sustained
unidirectional currents

Guduru et al. [96] Pioneered an analytical
solution for the
spatio-temporal evolution of
electrolyte concentration
using the Separation of
Variables (SoV) method

The derived analytical solution is
applicable only for galvanostatic
discharge; assumption of near
instantaneous establishment of QSS
hinders extensions using PWL
approximations while trigonometric
computations at each time-step impacts
embedded applicability

Prada et al. [99] First to incorporate
polarisation due to ionic
diffusion in the expression for
electrolyte overpotential

The solution of spatio-temporal ionic
concentration is not detailed. However,
post-computation of this term, the
equation in Prada et al. [99] is widely
used for the electrolyte overpotential
contribution to cell terminal voltage

Rahimian et al. [100] Cubic polynomials for spatial
approximation of electrolyte
concentration and
demonstrated satisfactory
accuracy for currents up to 5C

Limited by the issue of equation
deficiency in the P2D model; proposed
workaround involves computations at
additional interior points which is
determined by an expensive placement
optimisation algorithm

Luo et al. [102, 103] Derived a modified parabolic
approximation (with
exponential scaling functions)
for electrolyte spatial
concentration profile

Computation of time constants of the
exponential scaling functions is not
explained; improvements over a standard
quadratic approximation model is not
elucidated

Tanim et al. [106] Derived transfer functions for
ionic concentration
distribution and electrolyte
overpotential using Integral
Method Approximation

Coefficients of transfer functions are
excessively long and mathematically
intractable; Is based upon many high
entropy expressions whose analytical
derivations are omitted
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2.3.3 Conclusions

A survey of the recent literature dealing with the SPM family of models reveals a diminishing

rate of advancement in quantifiable improvements to the underlying plant model itself.

This nearly-static trend can be attributed to the general consensus within the research

community that these models may be too simplistic and not of suitable accuracy to warrant

further studies. Other than a small minority of papers that either propose core modelling

improvements to tackle their inaccuracies, or add new enhancements such as mechanical-

stress physics [113, 114], latest work in this family of models predominantly pertains to

their application in areas like state estimation [104, 111, 115–117], optimal charging [118, 119],

cycling performance [120], conversion to equivalent circuits [121], parametrisation [122–125],

pack-balancing studies [126] and observer design for joint state-parameter estimation [127].

The SPM approach has also been extended to the case of composite electrodes, leading to

a state estimator design after basic observability analysis [128]. Owing to their simplicity, this

thesis author believes that SPMs hold the highest potential to bring physics-based models to

embedded BMSs. With this goal in view, this thesis seeks to resurrect interest in SPMs by

addressing the recent paucity in fundamental modelling improvements.

Based upon the thesis author’s experiences in trying to replicate the results from the

literature presented in section 2.3.2, any questionable elements in such prior efforts can

be attributed to inaccuracies in estimating the spatio-temporal evolution of electrolyte

concentration. Upon obtaining a good estimate of the electrolyte concentration profile,

eq. (2.4) is deemed to be satisfactory for the electrolyte overpotential computation. Thus,

it can be concluded that the focus of research efforts must be on accurate determination of

the electrolyte concentration profile.

Analysing the literature presented in section 2.3.2, it can be seen that the proposed

enhancements to computing the ionic concentration in electrolyte falls into one of the

following two categories

• model description through physical principles followed by mathematical simplification

• fitting of pre-assumed simplified mathematical structures to some physical phenomena
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In the author’s view, it appears that using the former approach yields technically

correct, yet mathematically convoluted expressions for overpotentials that are fraught with

implementation difficulties. Although the latter approach looks promising in terms of ease of

implementation, their sub-optimal performance and lack ofwider-applicability leavesmuch to

be desired. Among the latter class of models, owing to its simplicity, the quadratic (parabolic)

approximation method for electrolyte concentration is an attractive option. It is therefore

important to perform an in-depth analysis of this sub-class of models and understand their

source of potential weaknesses. Such an analysis has yet not been performed in literature

and is therefore presented in section 5.4.

This concludes the author’s review of literature of the various reduced order modelling

strategies. Based on the wealth of information gleaned from this study, it was possible to

make an informed choice to pursue the SPM approach for further research. In particular, it

came to light that there has been no systematic analysis of the state of the art SPM-based

approach with a view to quantify their performance boundaries. This author’s contributions

to the time domain implementation-oriented reduced order modelling field include

• performing a thorough analysis of the basic SPM and the quadratic approximation

concentration model for inclusion of electrolyte dynamics into it

• identifying the issues plaguing each of the aforementioned models

• conducting a wide range of hypotheses-driven trials in an attempt to enhance the basic

SPM (some of which did not yield the desired improvements)

• Obtaining an electrolyte-enhanced composite SPM through system identification, and

• arriving at a feasible approach capable of moulding the SPM framework into a readily

implementable solution for electric vehicle applications

This research was performed through an iterative cycle of analysis, design and simulation-

based verification and shall be elucidated in a discourse spanning two chapters viz. chapter 5

and chapter 6.
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3.1 Introduction

The issue of ‘range anxiety’ is a pervasive mental blockade for potential buyers of electric

vehicles which in-turn hampers their widespread adoption. From a consumer viewpoint,

yet another practical issue is the fact that upon encountering a ‘low battery’ scenario on

a long distance journey, the charging times required for sufficiently replenishing the battery to

enable completion of the journey are prohibitively large, to the point of being non-competitive

against conventional fossil fuel powered vehicles.

Unfortunately, the aforementioned scenarios are not unimaginable with the present

state of the art in lithium ion batteries. Hence, improving the All-Electric Range (AER) and

providing fast charging capabilities are two near-term goals of manufacturers of electric

vehicles. Increasing the AER necessitates a battery pack with higher energy content in it while

lowering the charging time demands a pack with higher power capability. The contrasting

nature of these goals can be traced all the way down to the cell level and is presented in

section 3.2. By trading off the number of layers in a pouch cell against the content of active

electrode material accommodated within it, bespoke cell designs addressing either the energy

demand or the power demand can be obtained. In the absence of accessible documentation

(as either industry white papers or academic literature) on the layer selection methodologies

employed in automotive pouch cell designs, this author postulates that manufacturers iterate

through an extensive empirical testing process of prototypes with a range of layer choices.

In the view of this thesis author, this procedure is not only time-consuming, but is also

likely to result in sub-optimal designs. This chapter envisages a model-based engineering

solution to more optimal cell designs by determining the appropriate number of layers needed

to maximise its usable energy while simultaneously satisfying certain power capability

constraints. The rest of the chapter provides a detailed treatment of topics such as the

proposed layer optimisation framework, its assumptions involved, and various modifications

to standard numerical code required to facilitate this design procedure.

3.2 Energy/Power Trade-off in PouchCells by Layer Selection

Varying the number of electrochemical layers stacked within a pouch cell has contrasting

effects on its energy storage and power handling capabilities. In this section, a high-level
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intuitive explanation of this phenomenon is first offered, before delving into a detailed

presentation of this effect and its implications for a specific example cell in section 3.2.3.

Interwoven into the narrative is a set of simplifying assumptions which establishes the

broader context within which a computational framework for determining the optimum

number of layers for a specific target design shall be formalised (to be discussed in section 3.5).

3.2.1 Preliminary assumptions

To obtain a balanced loading of both electrodes and to avoid asymmetrical exhaustion of

lithium from one of the electrodes during operation, it is desirable to carefully calculate the

volume of electrochemical active materials to be accommodated within the cell. This concept

is well-known and is commonly discussed in standard textbooks in the field such as those by

Rahn and Wang [8] wherein example calculations are presented for non-porous electrodes.

The study by Ramadesigan et al. [25] also supports the statement that capacity matching of

anode and cathode materials is a standard practice in cell design.

In the case of lithium ion cells with porous electrodes, the concept of electrode-balancing

involves an additional variable viz. the porosity of the active materials. The roles of porosity

and its corollaries i.e., the material volume fraction and filler/binder fraction are discussed in

section 5.3.1. In this work, a major assumption about material porosities (and hence active-

material/filler volume fraction) is that they are held constant. The rationale behind using this

simplified assumption is as follows.

This author visualises the integration of cell-level design optimisation (through an optimal

layer selection procedure) into the overall drivetrain design by the cell manufacturer before

a custom design is delivered to vehicle/system integrators. Cell manufacturers, especially

small-scale manufacturers do not necessarily synthesise each electrochemical component,

but instead may opt to source certain raw-materials from an upstream supply-chain. From

a manufacturing viewpoint, the porosity of the electrode materials is governed by the extent

of calendaring of the electrode reel. Using pre-calendered electrodematerials or sourcing large

volumes of electrode reels with a fixed extent of calendaring can help to keep costs low. Since

researchers in the field are typically not privy to the specifics of the industrial procurement

process, in the absence of further information, the assumption of constant porosities provides

a good starting point for this model-oriented design study.
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From a technical viewpoint, there exists another redeeming argument to support the

constant porosity assumption. Keeping material porosities constant enables to eliminate one

degree of freedom from the design optimisation study, thereby narrowing the dimensionality

of the search space. To the best of the author’s knowledge, there has not yet been any

published work tackling layer optimisation of pouch cells. Building an initial infrastructure in

terms of a computational framework that is based upon this constant porosity approximation

shall at least provide a solid foundation to build upon for such real-life use-cases. The author

foresees this study as a vanguard research into cell engineering and therefore places a high

value in obtaining ballpark estimates of an optimal layer count, albeit with constant porosities.

Ramadesigan et al. [25] present an opinion that the choice of porosities of electrode materials

is currently being done on a trial and error basis. Nevertheless, for real-world use, the

influence of varying the material porosities on the cell’s performance is to be quantified.

Hence, prior to adopting this model-based methodology for production yields at scale, a fully-

integrated design optimisation process with variable porosities has to be developed. Therefore,

in this work, the study is restricted to constant porosity values, whilst acknowledging variable

porosity designs as an important aspect for future studies.

At the system level, the efficiency of the drivetrain is considered to be constant. The

drivetrain of an electric vehicle consists of a whole host of electrical and mechanical

components such as power electronics, electric motors, gearing, differential shaft and

other transmission systems. The efficiencies of each of these individual components has

a cascading effect on the overall drivetrain efficiency. The efficiency of each component

is strongly dependent upon the operating point. For instance, the efficiency of an electric

motor is a function of its torque-speed curve. In practice, it is rarely easy to decouple these

efficiencies at least during the initial design stage. The datasheet/technical specification of

each component in the platform is required to make a comprehensive multiphysics-based

design optimisation study. This is well beyond the scope of this work and requires access to

various design blueprints. Therefore, a constant lumped efficiency value for the drivetrain is

adopted for this work. However, the proposed optimisation methodology is a modular one

which implies that it can be suitably adapted e.g. to include a efficiency value dependent upon

power delivered at the wheels. However, the biggest redeeming aspect (observed after the

completion of the study) is that using a constant efficiency value did not influence the final
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layer choice for the cell design. As seen in section 3.5.2, the drivetrain efficiency plays a role

only during acceleration studies. As per the results presented in section 3.6, the layers required

for satisfying even the basic fast-charging requirements far exceed the layers required for

handling the acceleration power demands. Therefore, this assumption is justified for keeping

the computations tractable.

From a pack perspective, the primary assumption in the formulation of the proposed

optimisation methodology is that the pack configuration (series/parallel arrangement of

modules, number of cells per module and other system-level specifications) are held constant

throughout. The validity of this assumption is easily justified since a cell-level design may

be performed independently of the larger drivetrain design. In fact, the author postulates

that present design process for electrified transportation is a modular one i.e., empirical cell

designs are developed based on certain specifications laid out by vehicle manufacturers and

is not integrated into the drivetrain design. This modularity in the design approach enables

to keep such system-level parameters constant.

A further assumption in this study is that the overall height of the pouch is held constant

at 10mm. The rationale behind choosing this specific pouch height is discussed in section 3.4.1.

In the absence of this constraint, any arbitrary pouch size can be chosen, leading to an

infinite-dimensional optimisation problemwherein no unique optimality criterion exists. This

assumption is in-fact enforced by a current trend in the automotive industry viz. adoption of

common-module designs wherein the physical dimensions of the pack are chosen a priori and

modularising the pack helps in tailoring them suitably to cater to different market segments.

Extending this philosophy down to the cell level, it is easy to visualise the benefits of having

cells of identical exterior dimensions. For instance, having a common inventory helps a vehicle

manufacturer to keep costs in check for subsequent designs e.g. for derivative model families

of their product portfolio. This means that, for any layer choice to be tried, the constituent

components of the cell is to be arranged and contained within the same pouch (of fixed

exterior dimensions). This naturally leads to the assumption that the thickness of the pouch

material used shall remain constant throughout, which in-turn implies that the overall height

of the electrochemical stack within the pouch is constant. The detailed calculations of the

stack height is presented in section 3.4.1.
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The current collectors and the separator in each electrochemical layer are assumed to have

uniform thickness irrespective of the number of layers used. Barring minor manufacturing

variability and tolerances, these values are merely factual data requiring no further justifica-

tion. For instance, a constant separator thickness was used in the design optimisation study

by Newman [26]. The final assumption from an electrochemical point of view, introduced

specifically for the first time in literature by this thesis author, is that the relative thicknesses

of each electrode is held constant to a fixed ratio. This warrants further explanation, but is ill-

suited for this introductory discussion. The details of this aspect are discussed in section 3.5.6.

Certain assumptions are to be made about the temperature distribution within the layers

owing to the choice of cooling arrangement. These aspects merit more than a cursory listing

in this introductory section and hence is discussed in section 3.3.3.

3.2.2 Motivation

This section provides a qualitative description of the effect of varying the number of layers

within a pouch cell and presents the motivation to embark upon this layer optimisation effort.

Based upon the discussion in section 3.2.1, it is clear that by changing the choice of layer

counts accommodated within a pouch of fixed height, the thicknesses of the two electrodes

within each unit cell has to be suitably recomputed. Such use of different electrode thicknesses

imply that the electrochemical-thermal behaviour of a cell constructed with one particular

layer count shall be different from those employing any other layer count. With very few

layers, thicker electrodes can be used. This implies that a higher utilisation of the available

pouch volume can be used towards energy storage leading to higher theoretical capacity

for these cells. Based on the discussion thus far, using low layer counts to construct cells

may seem appealing for range extension of xEVs. However, prior to this, certain application-

specific aspects of designing cells for automotive packs must be duly considered.

Thick electrodes resulting from using low layer counts present an increased impedance

for the diffusion of lithium ions through their microporous structure, which implies that

when operating under even moderate external loads, the cell may hit voltage cutoffs before

all the stored energy can be extracted. Thus, with ultra low layer designs, the power handling

capability of the cell suffers. The requirement of evenly distributing the external load power

over the available active surface area without inducing large overpotentials necessitates
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a certain minimum number of layers. With higher layer counts, the increased active surface

area translates to a reduced power density, which in-turn leads to a lower rate of heat

generation. Furthermore, with increased layer counts, the fraction of pouch volume occupied

by current collectors is proportionately higher. This leads to more conduction pathways to

help channel heat generated away from the cell’s interior which helps in faster cooling. With

high layer counts, this aspect of lower heat generation coupled with its faster removal leads

to an overall reduction in cell’s temperature, which helps to extend the pack’s lifetime owing

to a reduced degradation rate.

In summary, for very low number of layers, there exists more active material, leading

to a high energy capacity. However, the reaction surface area is diminished proportionately

leading to lower power capability. Furthermore, owing to the presence of very thick electrodes,

the current density within the solid conductive matrix shall not be homogeneous [129],

nullifying some fundamental modelling assumptions of the standard Doyle-Fuller-Newman

(DFN)model. On the other hand, very high number of layers imply vanishingly thin electrodes

and correspondingly less active material accommodated within the cell, thereby resulting in

a lower energy capacity. Figure 3.1 shows a qualitative comparison of the construction of one

layer of an energy cell versus power cell which illustrates all the aspects discussed thus far.

Figure 3.1 Schematic depicting a qualitative comparison of the construction of one layer of
a high-energy cell versus a high-power cell. The illustration at top depicts one layer of a high-
energy cell wherein thick electrodes are used. The bottom-left illustration depicts a single layer
of a high-power cell wherein very thin electrode regions are used. Both cell diagrams are drawn
to the same scale. The bottom right plot qualitatively indicates the relationship between C-rate
and the nominal cell capacity. Illustration reproduced from von Srbik [130].
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Therefore, there exists a research question on what constitutes the best layer choice

that straddles this trade-off with the least penalty to the power capability of the cell whilst

simultaneously having themaximumpossible capacity. This saddle point determination needs

to be performed for a curated set of power input/output conditions to the cell. This niche

problem has not yet been tackled by researchers and therefore motivates the need to perform

a careful design study which is documented in this chapter.

3.2.3 Quantitative demonstration of energy/power trade-off

The discussion in section 3.2.2 has motivated the need for an in-depth exploration of the

energy to power trade-off expressed as a function of the number of layers. Before embarking

on constructing a framework to optimise the layer choice by formalising various constraints

that govern this optimality, this section aims to quantitatively demonstrate this relationship

by applying a fixed galvanostatic discharge to an example cell. Additionally, the crucial idea

of usable energy versus total stored energy is also introduced.

A Lithium Cobalt Oxide (LCO) cell whose physical properties and simulation parameters

is drawn from the combined set of data from tables 3.2 and 5.2 is used as the example

cell. The only set of values that overlap between these two tables are — a) the cut-off

voltages, and b) the number of nodes used for numerical discretisation of the governing

Partial Differential Algebraic System (PDAE) equations. For these conflicting quantities, the

values in table 3.2 prevail for all simulation studies in this chapter. Furthermore, the individual

electrode thicknesses from table 5.2 are not directly used, but instead calculated for every

layer choice by keeping the ratio of their relative thicknesses constant. This aspect shall be

explained in section 3.5.6.

Figure 3.2 illustrates the influence of the number of layers on the energy and power

capability of the example cell. Starting at 100 % State of Charge (SOC), a constant current

discharge of 60A† is applied to a DFN model of the cell until reaching the lower cut-off

voltage. For each discharge run, the model is reconfigured with a different layer choice. Five

distinct layer choices have been carefully chosen so as to provide a clear illustration of the

energy/power trade-off phenomenon.

†The rationale behind choosing this specific magnitude of applied current is explained in the section dealing
with selection of a suitable reference capacity cell (also see section 3.4.1).

88



3.2 Energy/Power Trade-off in Pouch Cells by Layer Selection

As seen in fig. 3.2, during the initial phase of discharge, the terminal voltage of the

cell is the highest for the two highest layer choices i.e., 𝑛 = 90 and 𝑛 = 70. Consistent with

the explanation in section 3.2.2, these two layer choices have thin electrodes and hence

comparatively low resistances leading to only a small internal overpotential drop. However,

as expected, their total energy is lower than the cell with 𝑛 = 50 layers as evidenced by their

relative run-times until lower cut-off voltage. This is to be expected as the thin electrodes

of these high layer count cells cannot store a large volume of active material. Based on the

explanation from section 3.2.2, it is expected that this trend will continue i.e., the lower the

layer count, the higher the run-time until cut-off. If this were the case, prima facie it seems

that the layer optimisation task is trivial.

Inspecting the discharge curves of lower layer choices brings into light the concept of

usable energy. Contrary to expectations, the discharge curves corresponding to very low layer

counts in fig. 3.2 terminate even earlier than 𝑛 = 50. This is owing to the fact that although 1
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Figure 3.2‡ Terminal voltage curves of a Li-ion cell (with parameters given in table 3.2) under
a 60A galvanostatic discharge beginning from 100% SOC until lower cut-off voltage for a few
layer choices 𝑛, in a pouch cell of fixed exterior height. The maximum usable energy is achieved
for an intermediate choice of 𝑛 that corresponds to neither the highest nominal capacity layer
configuration (𝑛 = 10) nor the highest electrode surface area configuration (𝑛 = 90).

‡This figure has been extensively adapted (by this thesis author, Krishnakumar Gopalakrishnan) from the
original figure created by Ian D. Campbell showing run times of cells with various layer counts instead of their
energy supplied. The copyright on the original figure prior to this adaptation is held by Ian D. Campbell, with
intellectual contributions from and the right to use asserted by Krishnakumar Gopalakrishnan.

89



3.2 Energy/Power Trade-off in Pouch Cells by Layer Selection

the total stored energy in cells with low layer counts is much higher, only a fraction of it is

usable. This aspects introduces non-trivial dynamics (as discussed below) to an otherwise

linear optimisation task.

For instance, when 𝑛 = 10, the terminal voltage of the cell collapses almost instantan-

eously, reaching cut-off voltage whilst its SOC remains as high as 96 %. At very low layer

counts, the thickness of each electrode is high. This presents a high resistance to the flow of

charges thereby leading to high overpotential drops within the cell. The usable energy under

this 60A galvanostatic discharge for various layer choices is compared in table 3.1. It can be

seen that for very low layer counts, the usable energy that can be extracted is minuscule,

albeit their theoretical capacity 𝑄𝑛 are in-fact the highest§. The usable energy in Wh reported

in table 3.1 is obtained by multiplying the integral of the area under each discharge curve by

the applied current (60A) with the appropriate scaling of the time-base (i.e., conversion from

minutes to hours).

Table 3.1 Theoretical capacity and usable energy of a Li-ion cell (with parameters given in
table 3.2) for a few layer choices under a 60A galvanostatic discharge.

𝑛 C-rate
Theoretical

Capacity (Ah)
Usable

Energy (Wh)
Remaining
SOC (%)

Resistance at
cutoff (mΩ)

90 1.24 48.25 166.46 9.84 0.97
70 1.11 53.99 184.80 10.26 1.35
50 1.00 59.73 195.47 13.51 3.44
30 0.92 65.47 101.20 58.95 10.24
10 0.84 71.21 10.15 96.22 11.18

Table 3.1 also brings into view the fact that the C-rate of the cell becomes a variable

quantity even for a galvanostatic discharge, due to the dependence of its nominal capacity

on the number of layers 𝑛. This represents a departure from the norm in the modelling

community wherein the performance of cells are quantified as a function of the applied C-

rate e.g. in chapters 5 and 6 of this thesis. However, the preliminary investigation thus far has

quickly revealed that this normalised quantity does not hold much importance in any study

where the number of layers within a pouch cell is varied.

Taking into account these factors, a reasonable choice of the number of layers in this

specific 60A galvanostatic application for this example cell could be 𝑛 = 50. This represents
§The computation of theoretical capacity as a function of number of layers is discussed in section 3.6.4.
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a practical compromise between the surface area available for reaction and the total volume

of active material accommodated. Out of the finite layer configurations considered, this layer

choice offers the highest usable energy for the given discharge rate.

In this sample study, only a handful of layer choices were considered, which represents

only a small possibility of the overall design space to be considered. Furthermore, thermal

considerations were not explored so far. For robust cell design, manufacturers shall need

a widely applicable model-led design tool that can tackle the various scenarios that can

occur in real-life operating conditions. A deterministic set of optimality criteria for the layer

selection is also to be formulated. The choice 𝑛 = 50, therefore does not represent the general

optimal layer choice even for this example cell. However, this sample study serves as an

illustrative demonstration of the trade-offs in energy versus power handling capability of

a cell for a specific set of conditions. Furthermore, it introduces the complicating aspect of

usable capacity into what would have otherwise been a trivial exercise, thereby setting the

tone for the development of a general layer optimisation framework for pouch cells.

3.3 Scope and Context within xEV Powertrain

It is important to provide the contextual setting for this layer optimisation work since it is

nestled deepwithin the broader horizon of electric drivetrain optimisation. Figure 3.3 provides

a graphical overview depicting the hierarchical architecture of a typical xEV powertrain, from

the system level down to a single electrochemical layer. The rest of this section describes

the scope of this layer optimisation work and its integration into this overall architecture.

A further set of assumptions that were deemed inopportune to be discussed in section 3.2.1,

is introduced at apropos junctures throughout this narrative. The overall architecture of an

xEV powertrain can be studied through a systematic, hierarchical evaluation at — a) the

system-level, b) the pack-level, and c) the cell-level.

3.3.1 System-level — vehicular platforms

The top row of fig. 3.3 represents the typical layout of a series-hybrid powertrain [30]. Partly

to supply the mechanical power and/or partly to charge the battery during propulsion,

a downsized Internal Combustion Engine (ICE) is employed. The ICE is coupled to the pack’s

DC bus through a generator and three-phase rectifier. While tackling the power handling
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requirements, irrespective of whether a BEV or PHEV powertrain is being considered, the

cells in the pack are to be designed for the worst-case operating scenario i.e., without any

power support from the ICE. This implies that all discharge simulations of the PHEV are to

be conducted with the powertrain operating in all-electric mode resulting in a net charge-

depletion. The only distinction is that the magnitude of power to be handled by the pack in

this worst case scenario is vastly different between the BEV and PHEV cases. This allows for

some simplification as explained below and helps to narrow down the scope of the problem

to be tackled.

Omitting the components to the left of the battery pack (represented as text boxes with

light grey border) shall render a powertrain corresponding to that of a BEV. The proposed

layer optimisation methodology is developed and presented in the context of this BEV
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Figure 3.3¶ Schematic depicting the vehicle-to-cell hierarchical overview of a typical electrified
powertrain architecture. This represents the system-level context within which the proposed
layer optimisation framework has been developed. Two xEV powertrains — a) a Battery Electric
Vehicle (BEV), and b) a series Plug-in Hybrid Electric Vehicle (PHEV) are chosen as examples to
demonstrate how the methodology facilitates common module designs for such battery packs.

¶This figure was created by Krishnakumar Gopalakrishnan who asserts copyright, with intellectual
contributions from and the right to use asserted by Ian D. Campbell.

92



3.3 Scope and Context within xEV Powertrain

powertrain. However, being a modular framework, the optimisation methodology may be

readily extended to a PHEV powertrain.

As shown in fig. 3.3, the BEV powertrain typically comprises of — a) a battery pack,

b) a three phase inverter, c) a Permanent Magnet Synchronous Motor (PMSM), d) a gearbox

for torque multiplication, and e) the rest of the powertrain (differential shaft and driven

wheels). Considering the worst-case scenarios, the power to be handled by the battery pack

arises due to — i) fast charging from the mains 𝑃 fastchg
batt (charge), or ii) acceleration from

standstill 𝑃acc
batt (discharge). The acceleration power is computed from the power required at

the wheels 𝑃w. The details of this calculation is presented in section 3.5.2. The sign convention

used in this chapter is that the charging power is positive (and consequently, the discharging

power is negative).

3.3.2 Pack-level — strings, modules & cells

Delving into the battery pack under consideration, this thesis considers a standard modular

layout wherein the PHEV pack has one string while the BEV pack has three parallel strings,

in congruence with a contemporary pack design [131]. Within each string, both vehicular

platforms employ 8 series-connected modules. Taking cognisance of the benefits of common

module design, identical pack modules are assumed across both xEV platforms which is then

extrapolated to impose a stronger condition of identical geometry for the constituent cells

(see section 3.2.1). The exterior dimensions of the pouch cells under consideration are listed

in table 3.2.

Each module consists of 12 identical series-connected cells denoted by battery circuit

symbols (cyan-filled blocks in fig. 3.3). The PHEV pack is smaller and consists of only 1/3rd of

the cells in the BEV pack. Assuming that the BEV pack consists of a 96S-3P cell assembly,

this implies that the PHEV pack shall conform to a 96S-1P layout. The DC bus voltage is

unaltered since both packs have same amount of series cells. The power flow is assumed to be

uniformly distributed across all the cells within the pack(s). At first, the power required at the

terminals of the pack is computed. From this, a first-order design ball-parking of the layers

of the cell is made through a single cell simulation. This process enables reduced simulation

run-time with the conditions of one cell assumed to be representative of all cells in the pack.
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While the aforementioned assumption of identical cell conditions across the pack

seems infeasible at first glance, three careful considerations have been made to justify this

assumption. Firstly, power (and not current) is used as the stimulus to the cell. This implies

that, despite the parallel connection of cells (in groups of three cells within each module),

each cell experiences the same power, 𝑝cell =
𝑃batt
𝑛cells

. Even across parallel-connected strings,

the power handled by each cell shall be the same. This necessitates the modification of

the standard DFN model in order to accommodate power inputs which is discussed in

section 3.4.2. Such a modification assumes particular significance in the context of making

the model amenable to a charging scheme wherein the control algorithm in a modern grid

charger’s power electronics enable it to continuously operate close to its power-delivery

limits with suitable voltage feedback from the battery pack. Secondly, although the current in

all cells of a series string remain the same (by virtue of Kirchoff’s current law), their terminal

voltage levels could drift away from each other and becomes unbalanced over time [3]. This

naturally raises questions on the assumption of identical conditions for all cells. However,

this voltage unbalance is mitigated with the help of modern Battery Management Systems

(BMSs) that employ balancing techniques such as passive bleeder resistors or sophisticated

active dc/dc converters. Yet another adverse effect that poses a threat to the assumption

of identical conditions is the uneven distribution of cell temperatures. In automotive packs

employing natural convection, cells that are physically located innermost in the string tend

to get hotter than the outermost cells. Through good thermal management design e.g. forced

cooling through circulation of the coolant through conduits grooved into the pack, thermal

balance may be achieved. Therefore, it can be argued that, when operating in a well-designed

and controlled environment, cell-to-cell deviations are minimised. This justifies the global

representation of all cells in the pack through a single-cell simulation, although modifications

to the simulation model are deemed necessary to facilitate power inputs and is discussed in

section 3.4.2.

3.3.3 Cell-level — layers, cooling, electrochemical & thermal models

The illustration at the centre of the bottom row in fig. 3.3 shows a schematic representation of

a cell arranged within each module. In practice, the physical layout of cells within a module

is slightly more complex. For instance, a typical arrangement consists of groups of 3 parallel

cells. However, the illustration in fig. 3.3 suffices to explain the necessary details required for

the specific task at hand.
94



3.3 Scope and Context within xEV Powertrain

Each cell in the pack consists of a number of identical layers 𝑛. The words ‘layer’ and

‘unit-cell’ are used interchangeably in this thesis to denote a single basic electrochemical unit

consisting of — i) a positive current-collector, ii) a positive electrode region, iii) a separator

material, iv) a negative electrode region, and v) a negative current-collector (see fig. 1.1).

Particular attention is called out in regard to the distribution of temperature within the

cell. In the schematic of fig. 3.3 the shading scheme is such that greener tints represent

the hotter regions of the cell while bluer tints represent colder regions. The temperature

distribution within the cell as indicated by this shading scheme is consistent with that

reported in literature [132–134]. Furthermore, heat exchange with the surroundings is also

graphically illustrated through cooling plates mounted at the tabs of the cell. This highlights

the specific type of cooling assumed viz. tab-cooling as opposed to conventional surface-

cooling historically employed for automotive applications. The assumption of tab-cooling

is an essential requirement for upholding the validity of the proposed layer optimisation

scheme, and therefore warrants further justification.

An experimental study by Hunt et al. [135] compared tab cooling of cells against

conventional surface cooling. It was found that ≈8 % increase in the usable capacity of pristine

cells was achieved with tab cooling relative to that achieved with surface cooling. Secondly,

with surface cooling, the loss rate of usable capacity over thousand cycles was nearly thrice

of that with tab cooling. This implies that using tab cooling can potentially help to extend the

lifetime of the pack by three times. Thirdly, at higher discharge rates, surface cooling resulting

in a loss of usable capacity of 9.2 % compared to just 1.2 % for tab cooling. The simulations

discussed as part of the optimisation framework reported in section 3.5 are intended to

obtain robust cell designs capable of handling worst-case power inputs. In these scenarios,

tab cooling is more appropriate. Therefore, this author has no qualms about recommending

this specific cooling mechanism to be used in conjunction with the results reported (see

section 3.6) by applying the proposed layer optimisation scheme.

Apart from its aforementioned beneficial effects on cell longevity and performance, with

the integral assumption of tab cooling, there exists an important side effect that affects the

very core of the numerics of the layer optimisation methodology. Carefully examining the

shading scheme used for the schematic in the centre-bottom of fig. 3.3, it is clear that at

any vertical co-ordinate in space within the cell, the shading across the entire cell width
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remains uniform throughout. Furthermore, it has been reported in literature that the thermal

gradients established within a unit cell are relatively small and may be safely ignored [136].

These imply that each layer along a one-dimensional cross-section of the cell is at the same

temperature. Based on the inferences from Hunt et al. [135], with tab cooling, only small

thermal gradients are induced in the planar direction. In this unique scenario, the thermal

effects within the cell are not large enough to warrant a detailed numerical discretisation. On

the other hand, ignoring the temperature distribution of the cell shall not lead to robust cell

designs, especially given that design simulations typically involve high magnitudes of power.

In situations akin to aforementioned circumstances, a lumped thermal model of the cell

has been recommended by Pals and Newman [129]. This represents a good trade-off between

accuracy and simplicity and hence, is deemed to be appropriate for this design application.

A suitable value for the convective heat transfer coefficient ℎ (see table 3.2), comparable

to the typical magnitudes in forced air convection, is used to represent the heat transfer

from the cell to the environment. The heat exchange area is the combined surface area

of the two cooling tabs that are situated at either end of the cell. The temperature of the

coolant (a thermal ‘sink’ in thermodynamic terminology) is denoted by 𝑇sink. In this work, this

ambient temperature is held constant during the course of a simulation run, but is allowed to

change to different constant values between set of simulations as per relevant vehicle testing

standards. The details of this aspect is discussed in section 3.5. The material properties of the

constituent components of each layer coupled with the total number of layers are used to

determine the lumped mass and specific heat capacity of the pouch cell. These computations

are discussed in sections 3.5.8 and 3.5.9 respectively. The assumption of tab cooling thus

leads to this qualitative description of the lumped thermal model to be used for the design

simulations. Further quantification by way of relevant model equations and the computation

of the constituent parameters of the thermal model is embedded as an integral aspect of the

layer optimisation framework and shall be presented in section 3.5.9.

As a final observation, all layers within the cell are electrically in parallel which implies

that their terminal voltages are identical. The current (or power) at the cell terminals is shared

equally among each layer. The aforementioned considerations have important ramifications

on the cell modelling and helps to drastically simplify it. Specifically, these considerations

imply that the electrochemical performance of any one layer is identical to every other
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layer. Therefore, in conjunction with a lumped thermal model, a standard Pseudo Two-

Dimensional (P2D) discretisation of the DFN model suffices to capture the electrochemical

behaviour of the entire cell. The bottom-right illustration of fig. 3.3 presents a one-dimensional

discretisation of the cell layer across its thickness. The spheres along the axial direction

represent computational nodes wherein the solid-phase diffusion equation is to be solved

(see section 1.3 for a brief overview). It is this standard DFN model, suitably amended to

accept power inputs, that will be the backbone of the electrochemical aspects of the design

simulation. The electrochemical model shall be strongly coupled in a bidirectional sense to the

lumped thermal model i.e., the temperature of the cell shall influence various cell parameters

(see table 3.2) while the overpotentials and currents in the cell shall play a role in the rate of

heat generation and cell temperature simultaneously.

Thus, through a systematic set of simplifying assumptions that are justifiable in a real-

world design, the system-level requirements at the pack-level can be suitably scaled down to

power-density inputs at the layer level. Having established the contextual setting and scope

of this work within the broader landscape of drivetrain optimisation, it is now possible to

proceed to the set of numerical enhancements required to be incorporated into the DFN

model to handle the specific requirements of this layer optimisation task.

3.4 Enhancements/Modifications to Standard DFN Model

3.4.1 Augmentations to parameter set

Cell capacity and electrochemically active surface area

The Pseudo Two-Dimensional (P2D) implementation of the standard Doyle-Fuller-Newman

(DFN) model lacks certain parameters that are vital to the layer optimisation process. The

cell’s nominal capacity is a fundamental quantity that gets altered as the number of layers is

varied. However, it may be surprising to discover that this parameter is absent in the research

literature discussing the P2Dmodel. The rationale behind this glaring omission becomes clear

upon closer examination of the model equations presented in table 1.1. These equations do

not operate on a cell level, but instead are formulated on a normalised basis. To clarify, only

one layer of the cell is being modelled wherein the stimulus driving the model is the applied

current density per unit area rather than the total external current. The model to be used in
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the layer optimisation task therefore faces a unique predicament — the need to adhere to

the present modelling paradigm for compatibility with the status quo whilst being flexible

enough to incorporate the cell’s capacity as a function of number of layers.

To tackle the aforementioned quandary, it is key to realise that the core parameter that

varies with the number of layers in a pouch cell is the electrochemically active cross-sectional

surface area 𝐴cell. Curiously, published literature on physics-based cell modelling do not

place rigorous emphasis on this key parameter. More often, much to this author’s chagrin,

this parameter is simply listed in a standard table of parameters and is typically sourced from

a historic parameter-set without further explanation.

For a pouch cell, the overall electrochemically active surface area can be defined as

𝐴cell = 𝑛 × 𝐴elec (3.1)

where 𝑛 is the number of layers and 𝐴elec is the active surface area per layer.

Surface area per layer

A literature search reveals that akin to the cell’s capacity, there is no information of cross-

sectional geometry in articles dealing with the P2D implementation of the DFN model. To

determine the surface area per layer, relying on certain assumptions and the recent literature,

a novel methodology is proposed involving a sequence of steps. The process involves the

selection of a real-world cell, and determining its surface area per layer. To the best knowledge

of the author, this reverse parametrisation process (explained next), mapping from a real-

world cell to a new P2D parameter, is a unique idea.

1) Selection of a suitable reference capacity cell

This is a crucial first-step towards obtaining a complete parameter set — particularly to

determine the surface area per layer.

The focus of this chapter is to provide a ready-to-use solution to industry that improves

upon the present empirical designs through optimal layer configuration of pouch cells. There

is a clear motivation to further increase cell capacities so as to maximise the All-Electric

Range (AER), as laid out in the beginning of this chapter (see section 3.1).
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With this guiding principle, as a starting point towards choosing a reference capacity

cell, a survey was performed to identify the production BEV with the highest driving range.

As of 2018, the Chevrolet Bolt BEV bears this distinction with a range of 383 km as rated by

the United States Environmental Protection Agency (EPA). The specifications of its battery

pack is listed in Liu et al. [131]. The battery pack of this BEV consists of 288 cells arranged

in a 96S-3P configuration, in agreement with the configuration discussed in the drivetrain

hierarchy of section 3.3.2.

The Chevrolet Bolt BEV pack has an energy capacity of 60.0 kWh with a nominal pack

voltage of 350 V [131]. However, for this specific task, the Ah capacity is required. This can

be obtained as

Ah capacity of reference cell =
Pack Energy (Wh)

Nominal pack voltage (V) × No. of cells in parallel
(3.2)

=
60000
350 × 3

(3.3)

= 57.14Ah (3.4)

• DC bus voltage and revised cell capacity

Even without a dc/dc boost converter, robust design of the powertrain during brown-

outs should allow for continued operation even with a slightly diminished DC bus voltage

≈4–5% lower than nominal [30]. Considering a maximum permissible dip of 4 % in the bus

voltage i.e., 336 V, the cell’s capacity may be refined as

Ah capacity of reference cell =
Pack Energy (Wh)

Lowest pack voltage (V) × No. of cells in parallel
(3.5)

=
60000
336 × 3

(3.6)

= 59.52Ah (3.7)

The reference cell’s Ah capacity is therefore rounded to 60Ah‖. The 1C-rate of this

reference cell is therefore 60A.

‖In the interest of maintaining consistency, this computed capacity is retained for the cell used in chapters 5
and 6 of this thesis. This also explains the use of 60A for the simulations used for demonstrating energy/power
trade-off of section 3.2.3 since this current level corresponds to the 1C-rate of this reference cell.
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• Lower cutoff voltage for cells

In this layer optimisation work, following the assumptions of section 3.2.1, the overall

pack configuration remains unchanged i.e., independent of number of layers within the

pouch. This implies that the undervoltage threshold for DC bus voltage throughout this

work shall remain fixed at 336 V. Therefore, with 96 series connected cells in a string, the

lower cut-off voltage for an individual cell is 3.5V. This value is reported in table 3.2 and

is used as a termination condition for all simulations as explained in section 3.5.

2) Computation of electrochemically overall active surface area for reference cell

For the cell properties in tables 3.2 and 5.2, the majority of parameters are sourced

from Subramanian et al. [137] and Northrop et al. [74]. In Northrop et al. [74], the current

density that corresponds to a 1C-rate discharge of a cell with this parameter set is reported to

be ≈30Am−2. With the help of carefully designed numerical simulations (very slow discharge

with a trickle current from fully charged state until charge depletion), this value is refined

to 29.23Am−2, so as to match the residual stoichiometries in both electrodes to that quoted

in Northrop et al. [74].

The task of determining the electrochemically active overall surface area of the reference

cell is now straightforward, and is obtained as

Overall surface area of reference cell, 𝐴refcell =
1C-rate for the reference cell (A)

1C-rate density (Am−2)
(3.8)

=
60

29.23
(3.9)

= 2.053m2 (3.10)

This value is listed in table 5.2 for use in chapters 5–6, but is not used directly in this layer

optimisation work. This is because, as the number of layers change, the overall surface area

changes as per eq. (3.1). However, determining this value is an important initial step in the

determination of the surface area per layer.

3) Setting the pouch height for the reference cell

Although the official press release [138] from the manufacturer of the Bolt BEV does

contain data on the cross-sectional geometry of the cell, it does not report the cell’s height.

Hence, this information needs to be assumed by extrapolation from an alternate source

wherein the conditions are similar and so that value may be applied for the reference cell.
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The review article by Gröger et al. [139] discusses the state of the art in energy densities

of electrode materials used in various lithium ion chemistries. At the time of its publication,

the areal capacity of cells were ≈2.0mAh cm−2. Gröger and colleagues recommended an areal

capacity target of 4.0mAh cm−2 for future automotive applications. The said publication

also considers the aspect of stacking layers into pouches of certain geometries. In particular,

table IV of Gröger et al. [139] considers a pouch of 10mmheight, for which the aforementioned

areal capacities were calculated.

In the case of the reference cell under consideration, the areal capacity is

Areal capacity of reference cell =
60 000mAh
20 527 cm2 = 2.92mAh cm−2 (3.11)

which is close to the desired value in automotive applications as per the recommendations in

Gröger et al.. Considering that the reference cell is based on the high energy density Chevrolet

Bolt BEV cell, a pouch height of 10mm is justifiable for this task and is reported in table 3.2.

This numerical value is comparable to that of commercially available cells for automotive

applications. For instance, a 56.3 Ah cell with a pouch height of 7.91mm is manufactured by

the Automotive Energy Supply Corporation [140] while a 63Ah pouch cell with a pouch

height of 11.0mm is available from Kokam Inc. [141]. Therefore, it is reasonable to use a value

of 10.0mm for this 60Ah reference cell. As per the assumptions discussed in section 3.2.1,

this value is held constant throughout the layer optimisation process.

4) Computation of stack thickness of reference cell

The pouch material itself has a finite thickness (a value of 160mm is used here; see table

note 𝑔 for this entry in table 3.2) and hence after accounting for this, the stack thickness

available for placement of unit cells is smaller than the pouch thickness.

Stack thickness, 𝐿stack = Pouch height − 2 × pouch thickness (3.12)

= 𝐻pouch − 2𝑇pouch (3.13)

= 10.0 − 2 × (160 × 10−3) (3.14)

𝐿stack = 9.68mm (3.15)

The computed value of stack thickness is held constant for all layer choices trialled in the

entire layer optimisation process.
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5) Determination of number of layers within reference cell

The next step is to determine the number of layers within the reference pouch cell 𝑛refcell.

The thickness of a complete electrochemical sandwich multiplied by the number of layers

yields the total stack height

𝑛refcell (𝑙Al + 𝑙pos + 𝑙sep + 𝑙neg + 𝑙Cu) = 𝐿stack (3.16)

The product of number of layers and the thickness of an electrochemical sandwich cannot

exceed the overall stack height. This implies that the equality in eq. (3.16) is to be changed

to an inequality, with the upper bound of the expression on the Left-Hand Side (LHS) of

eq. (3.16) set to the stack height.

𝑛refcell (𝑙Al + 𝑙pos + 𝑙sep + 𝑙neg + 𝑙Cu) ≤ 𝐿stack (3.17)

𝑛refcell ≤
𝐿stack

𝑙Al + 𝑙pos + 𝑙sep + 𝑙neg + 𝑙Cu
(3.18)

Since fractional layers do not have any physical meaning, the number of layers that

can be accommodated within any pouch must be an integer quantity. Therefore, 𝑛refcell is

computed as the ‘floor’ of the quantity in the Right-Hand Side (RHS) of eq. (3.18)

𝑛refcell =
⎢
⎢
⎣

𝐿stack
𝑙Al + 𝑙pos + 𝑙sep + 𝑙neg + 𝑙Cu

⎥
⎥
⎦

(3.19)

= ⎢
⎢
⎣

9.68
(15 + 72 + 25 + 88 + 10) × 10−3

⎥
⎥
⎦

(3.20)

𝑛refcell = 46 (3.21)

The reference cell is thus determined to consist of 46 layers.

6) Computation of surface area per layer

Substituting the values of 𝑛refcell and 𝐴refcell into eq. (3.1), the electrochemically active

surface area per layer is obtained as

𝐴elec =
𝐴refcell
𝑛refcell

(3.22)
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𝐴elec =
2.053 × 106m2

46
(3.23)

= 44 630.43mm2 (3.24)

= 44.63 × 10−3m2 (3.25)

The surface area per layer thus computed is listed in table 3.2 and is held constant across

all layer choices tried during the layer optimisation process. This assumption is immediately

justifiable from a physical viewpoint, since the process of assembling layers is performed

along the axial thickness direction (aligned with pouch height) and is independent of the

planar (cross-sectional) direction.

3.4.2 Modification of standard DFN model to handle power inputs

As discussed in section 3.3.2, assuming identical cell conditions during operation necessitates

that the external stimulus to each cell is an applied power value. The cell’s terminal voltage

and current can be viewed as its natural response to this power input. To simulate this

condition and achieve a model-based optimal layer design, the standard DFN model, which

conventionally handles current stimuli, has to be suitably modified to accept power inputs.

Plett [13] suggests a methodology for applying power inputs to equivalent circuit models

for simulation at a fixed sample rate. This involves converting the input power 𝑃𝑘 to

a current 𝐼𝑘 using an equivalent series resistance 𝑅0. The value of 𝑅0 is updated at each

time index 𝑘 as per eq. (3.26).

𝐼𝑘 =
𝑣𝑘 − √𝑣

2
𝑘 − 4𝑅0𝑃𝑘
2𝑅0

(3.26)

where 𝑣𝑘 is the cell’s terminal voltage at time index 𝑘, evolved from the applied current up to

and including the (𝑘 − 1)th time step.

There are two disadvantages in using Plett’s simplified approach for the proposed layer

optimisation study. Firstly, this necessitates the quantification of a lumped electrical resistance

for a Physics-Based Model (PBM). Such an idea is at loggerheads with the fundamental

philosophy of PBMs which strive to represent a detailed picture of underlying phenomena, as

opposed to the system-level terminal behavioural characterisation facilitated by Equivalent

103



3.4 Enhancements/Modifications to Standard DFN Model

Circuit Models (ECMs). Translating power to current in this manner also necessitates a two-

pass conversion between the physical and electrical domains — a process likely to significantly

degrade modelling fidelity. Since the results from application of the model shall inform the

number of layers to be used in a real-world cell design, such loss of fidelity is unacceptable.

Secondly, the constraint of using fixed interval updates implies that a high-speed adaptive

time-stepping solver cannot be used for handling this power input condition. This shall slow

down the simulation speed considerably since the search space of layer combinations to be

considered is fairly large. Furthermore, the simulations have to be repeated over multiple

combinations of initial and ambient temperatures which shall significantly slow down the

model-based design simulations and offset its advantages over a conventional prototype-

based design.

Dees et al. [142] identified the requirement of having a P2D model that can run on applied

power. However, in the aforementioned work, the relevant equations for reformulation of

solid-phase boundary conditions are not presented. An independent derivation of reformulat-

ing the P2D model to facilitate an innate power input capability is therefore provided. Since

the equations are derived for a single layer, the power density 𝑝, obtained by dividing the

applied power by the overall active cross-sectional area 𝐴cell, is used as the driving input.

𝑝 =
𝑝cell
𝐴cell

=
𝑝cell
𝑛𝐴elec

(3.27)

In the P2Dmodel, charge conservation in solid phase is given by eq. (1.6), which is revisited

below. Eqs. (3.28)–(3.29) represent the corresponding boundary conditions. In these equations,

the current density 𝑖 represents the applied input, 𝜎eff the effective electronic conductivity

and 𝑎s the specific interfacial surface area of an electrode respectively, 𝑗 the molar flux density

of lithium at the electrode surface and 𝜙s the solid phase potential.

𝜕
𝜕𝑥 (

𝜎eff
𝜕𝜙s(𝑥, 𝑡)

𝜕𝑥 ) = 𝑎s𝐹 𝑗(𝑥, 𝑡) (eq. (1.6) revisited)

𝜎eff
𝜕𝜙s(𝑥, 𝑡)

𝜕𝑥
|||𝑥pos/Alcc
𝑥neg/Cucc

= −𝑖 (3.28)

𝜎eff
𝜕𝜙s(𝑥, 𝑡)

𝜕𝑥
|||𝑥pos/sep
𝑥neg/sep

= 0 (3.29)
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Equation (3.30) replaces the boundary condition in eq. (3.28) to use the applied power

density 𝑝 to drive the model.

𝜎effneg
(𝜙s(𝑥, 𝑡)

𝜕𝜙s(𝑥, 𝑡)
𝜕𝑥 )

|
|
|𝑥=𝑥neg/Cucc
− 𝜎effpos

(𝜙s(𝑥, 𝑡)
𝜕𝜙s(𝑥, 𝑡)

𝜕𝑥 )
|
|
|𝑥=𝑥pos/Alcc

= 𝑝 (3.30)

Eqs. (3.31)–(3.32) represent constraints pertaining to physical laws and are to be satisfied.

𝑣𝑖 − 𝑝 = 0 (3.31)

𝑣 > 0 (3.32)

Equation (3.31) conveys the condition that the product of the terminal voltage and com-

puted current density shall equal the externally applied power density, whereas eq. (3.32)

implies that the cell’s terminal voltage shall always remain positive during operation.

Eqs. (3.30)–(3.32) are then discretised for numerical implementation as follows.

Figure 3.4 describes a schematic overview of a one-dimensional cell-centred Finite Volume

(FV) discretisation scheme. Here, evenly spaced nodes are considered to form the support

mesh along the through-thickness dimension of a layer. Vertical lines denote the edges

of control volumes whereas the filled circles depict computational nodes where the axial-

direction variables from table 1.1 are solved.

Figure 3.4 Simplified illustration of a standard cell-centred FV discretisation scheme. Illustra-
tion reproduced from Torchio et al. [18].

Equation (3.33) represents the weak form of eq. (1.6) applied on the FV mesh for each

control volume, wherein subscripts 𝑘 and 𝑘 ± 1
2 denote the 𝑘th FV node and its associated left
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and right edges respectively.

𝜎eff
𝜕𝜙s(𝑥, 𝑡)

𝜕𝑥
|
|
|

𝑥𝑘+ 1
2

𝑥𝑘− 1
2

= 𝑎s𝐹 𝑗𝑘(𝑡)Δ𝑥 (3.33)

At this juncture, a simplifying approximation for the solid-phase potentials can be

considered. In the standard FV scheme, the solution values at the faces (edges of control

volumes) is obtained by interpolating from the two nearest FV node values. At either extrema

of this one-dimensional computational domain, a linear extrapolation of the values from the

first and last nodes can be performed. This increases the accuracy of computations, thereby

providing good estimates of solid potentials at the two current collector interfaces. However,

with the increased fidelity comes the penalty of a mathematically complex set of boundary

conditions. When using high node densities in the negative and positive electrode regions

(see table 3.2), for the two outermost control volumes, the values of Δ𝑥
2 become small. With

a reasonably small mesh interval, the potentials at the cell centres can be considered to be

nearly equal to that at their corresponding current collector interfaces. This assumption helps

to keep the resulting mathematical expressions tractable.

Applying eq. (3.33) to the first control volume (0th node) in the positive electrode and to

the last control volume (nth node) in the negative electrode,

−𝜎effpos
𝜙s0

Δ𝑥pos
+
𝜎effpos

𝜙s1
Δ𝑥pos

+ 𝑖 = 𝑎spos𝐹 𝑗0Δ𝑥pos (3.34)

−𝜎effneg
𝜙s𝑛

Δ𝑥neg
+
𝜎effneg

𝜙s𝑛−1
Δ𝑥neg

− 𝑖 = 𝑎sneg𝐹 𝑗𝑛Δ𝑥neg (3.35)

Multiplying eq. (3.34) by 𝜙s0 and eq. (3.35) by 𝜙s𝑛 and subtracting,

−𝜎effpos
𝜙2s0

Δ𝑥pos
−
𝜎effneg

𝜙2s𝑛
Δ𝑥neg

+
𝜎effpos

𝜙s0𝜙s1
Δ𝑥pos

+
𝜎effneg

𝜙s𝑛𝜙s𝑛−1
Δ𝑥neg

+ 𝑝 − 𝑎spos𝐹 𝑗0𝑥pos𝜙s0 − 𝑎sneg𝐹 𝑗𝑛𝑥neg𝜙s𝑛 = 0 (3.36)
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Two solutions exist for the quadratic equation in eq. (3.36). However, the solid phase

potential, being a physical quantity of the cell, has a unique solution. Therefore, in order

to achieve numerical convergence, an additional positivity constraint, the FV-discretised

equivalent of eq. (3.32), is imposed.

𝜙s0 − 𝜙s𝑛 > 0 (3.37)

Finally, since the input to the model is the applied power density 𝑝, in addition to the cell’s

terminal voltage, the current density within each layer 𝑖 at each time-step needs to be solved.

This is facilitated by employing the discretised form of eq. (3.31). Furthermore, since this

equation is mathematically simple, the aforementioned assumption of using node values at

current collector interfaces is no longer required. Applying a linear extrapolation scheme at

the outermost control volumes, the algebraic residual equation is obtained as

0 = 𝑖 −
𝑝

1.5𝜙s0 − 0.5𝜙s1 + 0.5𝜙s𝑛−1 − 1.5𝜙s𝑛−1
(3.38)

The computer code used (LIONSIMBA v2.0, to be discussed in section 3.6.1) employs the

Differential Algebraic Equation (DAE) solver IDA [143] to handle such algebraic constraints.

Eqs. (3.36)–(3.38) therefore represents the discretised form of the reformulated boundary

condition and associated algebraic constraints for the solid phase potential Partial Differential

Equation (PDE) that can be applied to either electrode to facilitate the use of an input power

density to the P2D model.

3.4.3 Hybrid spectral-FV scheme

Fast and accurate estimation of the solid phase lithium concentration, particularly its value

at the surface of electrode particles is an inherent requirement of the layer optimisation

procedure presented in section 3.5. The high power densities to be handled, particularly

at low layer counts necessitate this requirement. It has been acknowledged that solid-

phase concentration calculations employing polynomial approximations lack fidelity at high

charge/discharge rates [92]. Hence, a conventional full-order solution based on Fick’s law of

diffusion is required for this layer optimisation task.
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With full-order solid phase diffusion dynamics, applying the FV scheme (that has been

employed in LIONSIMBA v1.0x (see section 3.6.1 for a discussion of this modelling platform)

to discretise all through-thickness PDEs of the P2D model) results in a very large system

of equations. This is due to the requirement of using a high radial node density per

spherical particle for improved accuracy. Consequently, the computational cost is high and

simulation run-time becomes prohibitive when exploring the search space of all possible

layer configurations. Moreover, with a cell-centered FV discretisation, it is non-trivial to

directly apply the ionic flux boundary condition at the particle surface, since this involves

extrapolation from at least two other nodes within the particle. While such extrapolations

are acceptable in the axial dimension — particularly with high node densities providing

small values of Δ𝑥
2 — they are undesirable in the radial dimension. This is because the cell’s

Open Circuit Potential (OCP) and terminal voltage strongly depends on the concentration

at the particle surface. Spectral methods offer a combination of high accuracy and speed

while permitting the use of a lower number of radial discretisation nodes. To implement

a spectral scheme on a non-periodic domain, a Chebyshev discretisation [70] may be applied.

Bizeray et al. [76] discretised all of the P2D model equations using this approach. However,

this entails a bi-directional mapping of all field variables between the physical and Chebyshev

domains, incurring computational overhead.

For the proposed layer optimisation simulations, a hybrid formulation of the P2D model

is proposed wherein a standard FV scheme in the axial dimension and a spectral scheme in

the radial domain are used. Exploiting this natural separation of the axial and radial domains

enables to — i) retain the ability to easily couple the molar flux density at the particle surface

through reformulation of the boundary conditions of the solid diffusion PDE, and ii) solve for

solid-phase lithium concentration in the Chebyshev domain and locally transform to physical

domain, without requiring system-wide Chebyshev reformulations. Although the proposed

implementation does not globally employ a spectral scheme, the combined beneficial effects

of radial-domain spectral scheme and automatic differentiation of system equations using

CasADi [144] facilitate rapid simulations, enabling the completion of the layer optimisation

in a short duration. Eqs. (3.39)–(3.42) detail the steps leading up to the reformulated solid

phase diffusion and its associated boundary conditions in the Chebyshev domain.
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Figure 3.5 depicts the schematic of a standard Chebyshev discretisation. For solving the

solid-phase diffusion equation, 𝑁r Chebyshev collocation nodes defined on a 1D mesh in

the radial direction is employed. The nodal co-ordinates are the roots of the Chebyshev

polynomials of the first kind and are given by eq. (3.39) (see Trefethen [70]).

̃𝑟 = cos (
𝑖𝜋
𝑁r

) , 𝑖 = 0, 1, …𝑁r ̃𝑟 ∈ [−1, 1] (3.39)

Figure 3.5 Schematic of the discretisation process depicting the generation of Chebyshev
collocation nodes. A unit semicircle in the upper quadrants of a standard Cartesian plane is
uniformly divided, whose projections on the horizontal co-ordinate axis through the origin yields
the location of the Chebyshev nodes. Illustration reproduced from Johnson [145].

Assuming constant diffusivity, expanding the derivative in the standard form of the

Fickian spherical diffusion equation (see eq. (1.3)) for each particle, we obtain eq. (3.40),

presented along with its Neumann boundary conditions, eqs. (3.40a) and (3.40b). 𝑗 is the

molar flux density (molm−2 s−1) and 𝑅p is the particle radius (m).

𝜕𝑐s
𝜕𝑡

= 𝐷eff
s (

2
𝑟
𝜕𝑐s
𝜕𝑟

+
𝜕2𝑐s
𝜕𝑟2 )

𝑟 ∈ [0, 𝑅p] (3.40)

𝜕𝑐s
𝜕𝑟

|||𝑟=0
= 0 (3.40a)

𝐷eff
s

𝜕𝑐s
𝜕𝑟

|||𝑟=𝑅p

= −𝑗 (3.40b)
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Mapping 𝑟 ∈ [0, 𝑅p] ↦ ̃𝑟 ∈ [−1, 1],

𝑟 =
𝑅p
2

( ̃𝑟 + 1) (3.41)

Applying eq. (3.41) to eqs. (3.40)–(3.40b) whilst retaining 𝑐s in the physical space yields

eqs. (3.42)–(3.42b).

𝜕𝑐s
𝜕𝑡

= 4
𝐷eff
s
𝑅2p

(
2
̃𝑟 + 1

𝜕𝑐s
𝜕 ̃𝑟

+
𝜕2𝑐s
𝜕 ̃𝑟2 )

(3.42)

𝜕𝑐s
𝜕 ̃𝑟

||| ̃𝑟=−1
= 0 (3.42a)

2
𝐷eff
s
𝑅p

𝜕𝑐s
𝜕 ̃𝑟

||| ̃𝑟=1
= −𝑗 (3.42b)

During the iterative solution process, the spatial gradients of solid phase lithium concen-

tration in eq. (3.42) in this case are not computed through an explicit differentiation procedure

as usual, but instead evaluated by pre-multiplying the concentration values at the collocation

nodes by a Chebyshev differentiation matrix. This particular aspect is responsible for the

inherent reduction of simulation run-time achieved by introducing a spectral method. In the

updated version of LIONSIMBA v2.0 (created specifically for this layer optimisation work;

see section 3.6.1 for a brief overview of the modelling platform), differentiation matrices

of suitable dimensions as well as the Chebyshev collocation nodes are generated using the

MATLAB function cheb.m distributed along with the book by Trefethen [70].

3.5 Computational Framework

3.5.1 Introduction and guidelines for flow diagram traversal

The methodology adopted by the proposed layer optimisation framework can be explained

by using the flow diagram in fig. 3.6. The power handled by the cell during normal operation

(evaluated by considering various drivecycles) is much lower than that experienced during

acceleration (discharge) and fast-charging (charge) scenarios. Section 3.6 provides a brief

summary of the peak and median powers across all standard drivecycles. Therefore, from

a design perspective, it is sufficient to consider the power requirements for these two extreme
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cases. Hence, the schematic in fig. 3.6 can be studied by broadly dividing the flow diagram

into two parts — i) an acceleration pathway (primarily consisting of blocks shaded in grey),

and ii) a fast-charging pathway (predominantly composed of blocks shaded in cyan).

As indicated by the legend in fig. 3.6, blocks with a light grey border represent input data/-

parameters for computations. Blocks with a standard black border represent computations

common to both acceleration and fast charging pathways. The design output is given by the

double-bordered block at the bottom centre of fig. 3.6. Other types of blocks and arrows are

appropriately listed in the legend key. To aid the understanding of the layer optimisation

framework, the reader is encouraged to correlate the narrative in this section with the blocks

and arrows in the schematic. The acceleration and fast charging pathways are not amenable

for standalone comprehension and are to be parsed in conjunction with the flow of control

through the infrastructure blocks as if the entire flow diagram is a single cohesive unit. These

‘control’ blocks, common to both pathways in fig. 3.6, govern how these two pathways are to

be traversed with the presently trialled layer choice and quantify the suitable reformulations

needed whenever a new layer choice is to be used. The computational aspects covered by

these blocks are described in sections 3.5.4–3.5.9.

3.5.2 Acceleration pathway

The computations for acceleration-based layer optimisation begins at the anchor block

labelled ‘Start Acc. Calcs.’.

Determination of acceleration rate, final speed and acceleration time

The first step is to determine the rate of acceleration to be used for computing the power

requirements for accelerating an xEV from standstill. For various other regulatory reasons,

vehicular standards for electrified transport are codified by various standardisation bodies

(e.g. the SAE J1772 standard [146]). The standards published by these regulatory agencies

typically specify a minimum required acceleration rate for the vehicle under consideration

to be certified as an electric vehicle. Additionally, vehicle manufacturers often provide their

own specifications, which typically exceed these minimum standards. However, for certain

classes of electric vehicles such as golf carts, the manufacturer-specified standards might fall

below that of a roadworthy electric vehicle. This thesis advocates a conservative design by

choosing the higher of the two values.
111



3.5 Computational Framework
“K

on
st

an
z_

m
as

te
r_

flo
w

_
di

ag
ra

m
_

th
es

ism
od

’’
—

20
19

/1
/1

6
—

2:
32

—
pa

ge
1

—
#

1

In
pu

t
D

at
a/

P
ar

am
et

er
s

K
ey

St
an

da
rd

C
om

pu
ta

ti
on

s

Fa
st

C
ha

rg
e

C
om

pu
ta

ti
on

s

A
cc

el
er

at
io

n
C

om
pu

ta
ti

on
s

C
al

cs
.

pr
od

uc
in

g
up

da
te

d
si

m
.

pa
ra

m
s.

fo
r

gi
ve

n
la

ye
r

Su
bs

et
of

ce
ll

pa
ra

m
s.

th
at

in
-

flu
en

ce
la

ye
r

ca
lc

ul
at

io
ns

D
es

ig
n

O
ut

pu
t

(o
pt

im
al

la
ye

r
ch

oi
ce

)

St
ar

t
of

A
cc

/F
as

t
C

hg
P

at
hw

ay
s

C
om

po
si

te
Si

gn
al

L
ay

er
It

er
at

io
n

n
(i

)

U
pd

at
ed

si
m

pa
ra

m
.

t f
m

an
.

t f
st

d
.

a
st

d
.
>

a
m

an
.
?

C
om

pu
te

P
m

as
s

v b
as

e

v f
m

an
.

v f
st

d
.

C
om

pu
te

P
d

ra
g

ρ
ai

r,
C

d
,
A

v

C
om

pu
te

P
ro

ll

C
r

C
el

l
Pa

ra
m

et
er

s

C
om

pu
te

P
gr

ad
e

Σ
Σ

1 η d
t

1
n

ce
ll

s

÷

T
he

rm
al

ly
C

ou
pl

ed
P2

D
Si

m
ul

at
io

n
(d

isc
ha

rg
e)

Si
m

.
pa

ra
m

s.
fo

r
ac

ce
le

ra
tio

n

T
(t

f)
<

T
m

ax
?

V
(t

f)
>

V
m

in
?

z
(t

f)
>

z m
in

?

Z
g

M
p

M
c

M
o

n
ce

lls

1
n

ce
ll

s

÷

T
he

rm
al

ly
C

ou
pl

ed
P2

D
Si

m
ul

at
io

n
(f

as
t

ch
ar

ge
)

T
(t

)<
T

m
ax

?

V
(t

)<
V

m
ax

?

c∗ s
<

c s
,s

at

t
<

t m
ax

?

z
(t

)≥
z

∗ ?

Si
m

.
pa

ra
m

s
fo

r
fa

st
ch

ar
ge

B
oo

ls
el

.
sw

.
cn

tr
l:

to
gg

le
SP

D
T

to
bo

tt
om

po
le

if
a

st
d.

>
a

m
an

.

t f
v f

t f

Cell Parameters

P
w

P
ac

c
b

at
t

P
ac

c
ce

ll

p
ac

c

re
su

lt
s(

t f
)

ye
s

ye
s

M
v

M
ce

ll
s

S
ta

rt
F

as
t-

C
h

ar
ge

C
al

cs
.

P
fa

st
ch

g
b

at
t

P
fa

st
ch

g
ce

ll

p
fa

st
ch

g

re
su

lt
s(

t
≤

t m
ax

)

ye
s

ye
s

ye
s

ye
sadvance simulation further in time

no
Σ

C
om

pu
te

c
av

g
m

ce
ll

c A
l,

c p
os

,c
n

eg
,c

C
u

c se
p
,c

p
ou

ch
,c

L
iP

F
6

C
om

pu
te

:

m
A

l,
m

p
os

,m
n

eg
,m

C
u

m
se

p
,m

p
ou

ch
,m

L
iP

F
6

A
el

ec
×

l A
l

l s
ep

l C
u

ε s
,p

os
ε s

,n
eg

ρ
A

l,
ρ

po
s

ρ
ne

g,
ρ

se
p

ρ
C

u
,ρ

po
uc

h
ρ

L
iP

F
6

L
po

uc
h
,W

po
uc

h

C
om

pu
te

:
l n

eg
,l

po
s

C
us

to
m

is
ed

B
in

ar
y

Se
ar

ch
A

lg
or

it
hm

Se
ar

ch

C
on

ve
rg

ed
?

us
e

ne
w

n
(i

)

no

L
st

ac
k

C
om

pu
te

n
m

ax

St
or

e

n
fe

as
=

n
(i

)

C
om

pu
te

l r
at

io

n
m

in
=

1

A
ce

ll

A
ce

ll

no

B
is

ec
t

U
pw

ar
ds

no

no

no no

no

no

S
ta

rt
A

cc
.

C
al

cs
.

ye
s

Bisect

Downwards

ye
s

n
ac

c
op

t(
T

(k
)

in
it

,T
(k

)
si

nk
)=

n
fe

as
n

fa
st

ch
g

op
t

(T
(k

)
in

it
,T

(k
)

si
nk

)=
n

fe
as

ye
s

ye
s

n
op

t
=

m
ax

(n
ac

c
op

t,
n

fa
st

ch
g

op
t

),
∀

T
in

it
,

T
si

n
k

Figure 3.6∗∗ Flow diagram depicting an overview of the proposed layer optimisationmethodology
for Li-ion pouch cells.

∗∗This figure was created by Krishnakumar Gopalakrishnan who asserts copyright, with intellectual
contributions from and the right to use asserted by Ian D. Campbell.
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The acceleration rate is calculated by dividing a pre-determined final speed 𝑣f by the

time 𝑡f taken to attain that speed from standstill. The manufacturer-specified acceleration

rate 𝑎man. is compared against the minimum acceleration rate specified by the governing

vehicular standards 𝑎std.. The two Single Pole Double Throw (SPDT) switches assign the final

speed 𝑣f and acceleration time 𝑡f using the corresponding values from the appropriate source

depending on which of the two acceleration rates is higher.

Computation of acceleration power at the wheels

The next step is to calculate the acceleration power required at the driving wheels 𝑃w. Using

the governing equations from basic vehicle dynamics (See Maksimovic [30]), the power at

the wheels of an xEV is given by eq. (3.43).

𝑃w = 𝑃mass + 𝑃drag + 𝑃roll + 𝑃grade (3.43)

𝑃mass =
1
2
𝑀v(𝑛)
𝑡f

(𝑣2b + 𝑣2f ) (3.43a)

𝑃drag =
1
2 (

𝜌air𝐶d𝐴v𝑣3f ) (3.43b)

𝑃roll = 𝐶r𝑀v(𝑛) 𝑔𝑣f (3.43c)

𝑃grade = 𝑀v(𝑛) 𝑍𝑔𝑣f (3.43d)

The individual components contributing to the summation for wheel-power computation

presented in eq. (3.43) is briefly explained. 𝑃mass represents the power required to accelerate

the vehicle’s mass. 𝑃drag and 𝑃roll denote the powers required to overcome air resistance and

rolling resistance respectively. Finally, 𝑃grade represents the power required to negotiate a road

gradient. Except for𝑀v(𝑛)which is described next, all terms in the RHS of eqs. (3.43a)–(3.43d)

are constants. The nomenclature for each of these terms is explained in tables 3.3 and 3.4

along with their numerical values used in simulation.

Computation of layer-dependent vehicle mass

Changing the layer count used within a cell changes its mass. This in-turn affects the mass of

the pack, which further influences the overall vehicle mass. Hence, for precise computation

of 𝑃mass in eq. (3.43a), the vehicle’s mass is computed as a function of number of layers within

each cell.
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In the schematic of fig. 3.6, this layer-dependent calculation of mass of all cells in the

pack 𝑀cells is shown by the product of the signal labelled 𝑚cell and the triangular gain block

representing the overall number of cells in the pack 𝑛cells.

𝑀cells = 𝑛 × 𝑚cell (3.44)

The mass of the vehicle is given by the sum of chassis mass 𝑀c, vehicle payload 𝑀p, pack

overhead 𝑀o and the layer-dependent mass of all cells in the pack 𝑀cells as computed in

eq. (3.44). The computation of mass of a single cell 𝑚cell is detailed in section 3.5.8.

Computation of acceleration power density per layer

Since the P2D equations of the DFN model are based upon a normalised unit area and is

applicable only to each electrochemical layer, the goal is to compute the power density

experienced by each layer. This is arrived at by a sequence of simple scaling steps.

Firstly, the power demanded at the pack terminals 𝑃acc
batt is computed by dividing the power

at the wheels by the efficiency of the drivetrain. As explained in section 3.2.1, the drivetrain

consists of a number of components, the efficiencies of which depend on the operating point

(such as the speed and torque of the electric motor, current drawn by the power electronics

etc.). Following the assumptions detailed in section 3.2.1, a single lumped efficiency 𝜂dt can

be used for the powertrain. The power demand on the pack is then divided by the number

of cells in the pack 𝑛cells to obtain the power demand at the input of the cell’s terminals 𝑝acc
cell.

For each layer choice 𝑛, the overall electrochemically active surface area is computed using

by using eq. (3.1), wherein the surface area per layer 𝐴elec listed in table 3.2 is held constant

throughout. Finally, the acceleration power density per layer 𝑝acc is computed by dividing

𝑝acc
cell by the overall surface area 𝐴cell.

Thermally-coupled P2D simulation and exit conditions

For the presently trialled layer choice 𝑛, a thermally-coupled P2D simulation is performed

for a duration of 𝑡f seconds with the applied power density 𝑝acc
cell corresponding to the present

layer choice as input to the model. When the simulation terminates, the cell’s condition is

compared against the following three criteria:
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1. the maximum possible values of cell temperature 𝑇max,

2. the minimum allowed terminal voltage 𝑉min, and

3. the lowest allowed cell SOC 𝑧min.

This helps to determine whether the cell constructed from the present layer choice is able

to successfully satisfy the acceleration power demands. These comparison operations are

represented by decision blocks placed in the leftmost region of the schematic in fig. 3.6.

If any one of the three aforementioned exit checks fail, the present layer configuration is

deemed to be not feasible and the entire workflow is repeated by trialling a new layer choice.

A sophisticated search algorithm, to be described in section 3.5.4, is employed to minimise the

number of iterations needed until a successful layer choice 𝑛accopt is obtained. The above process

is repeated for different combinations of initial and ambient temperatures (𝑇init, 𝑇sink). The

largest successful layer value from all temperature combinations is deemed as the canonical

optimal design choice when considering acceleration demands. This concludes the narrative

describing the acceleration-specific pathway.

3.5.3 Fast-charging pathway

The workflow describing the optimal layer calculation for the fast charging scenario begins

with the anchor block labelled ‘Start Fast-Charge Calcs.’ in fig. 3.6. The charging algorithm

used in this framework is based upon the model-based strategy proposed by Choe et al. [147],

wherein the surface concentration is never allowed to exceed its saturation value. Adopting

this charging scheme leads to a robust cell design that is resilient to lithium plating. A major

departure from the scheme in Choe et al. [147] is the fact that the constant current phase used

therein is replaced by a constant power phase. This is so that the assumption of identical

conditions across all cells in the pack holds true (see section 3.2.1 for details). Furthermore, the

pulsing phase used to top-up the cell’s SOC in Choe et al. [147] is omitted. This is because, the

level 3 fast charging specifications typically require charging to a target SOC that is typically

well below 100% (see table 3.2).

At first, the charging power applied at the pack’s terminals 𝑃 fastchg
batt is scaled down by the

overall number of cells in the pack. This results in the charging power experienced by each
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cell in the pack 𝑃 fastchg
cell . Following the strategy used in section 3.5.2, the power at the cell’s

terminals is scaled down by the electrochemically active overall surface area𝐴cell. This yields

the power density 𝑝fastchg experienced by each layer in the cell and is now amenable to be

applied to the normalised P2D equations of the DFN model (that has been suitably modified

to handle power inputs).

Thermally-coupled fast-charging simulations and exit conditions

After computing the power density per layer, the thermally-coupled P2D model is then

invoked. While the simulation runs, the cell’s state is continually evaluated against various

termination criteria.

1. the maximum possible values of cell temperature 𝑇max,

2. the maximum allowed terminal voltage 𝑉max, and

3. the surface concentration 𝑐∗s not to exceed the saturation concentration 𝑐s,sat

If any of these three criteria are violated, the simulation immediately stops and the

trialled layer choice is deemed to not satisfy the fast charging power requirements. The

search algorithm then updates the layer choice suitably and the entire workflow is repeated.

If the simulation for any layer choice passes the aforementioned termination criteria,

the SOC achieved by the cell is compared against the fast-charging target 𝑧∗. If 𝑧(𝑡) > 𝑧∗,

then the present layer choice represents the minimum (and therefore optimum) value for

this specific fast charging application. The successful layer choice is labelled 𝑛fastchgopt . If

the surface concentration has not yet reached the saturation limit, then the charge time is

compared against the upper bound for fast charging specifications 𝑡max. If this preset duration

has not been reached, then the simulation is allowed to advance further in time, with the

aforementioned termination criteria being continuously tested at each subsequent time-step.

The above process is repeated for different combinations of initial and ambient temper-

atures (𝑇init, 𝑇sink). The largest successful layer value from all temperature combinations is

deemed as the canonical optimal design choice when considering the fast charging power

demands. This concludes the narrative describing the fast charging pathway.
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Finally, the maximum of the layer choices across all temperature combinations from the

acceleration and fast charging scenarios is deemed as the globally optimal number of layers to

be used for this model-led cell design. The maximum value is chosen because, if any smaller

layer count is used to construct the cell, that design shall fail to satisfy its power requirements

without violating at least one termination criterion. Hence, the worst case runs across all

desired thermal scenario under which the cell is intended to operate shall inform the final

design choice.

3.5.4 Search algorithm

A customised binary search algorithm is designed for the layer optimisation framework. Bin-

ary search is a computationally efficient search algorithm requiring a worst-case operational

count of 𝒪(log 𝑘) where 𝑘 is the overall number of layer candidates to be searched [148].

However, this algorithm is applicable only when the array to be searched is already sorted in

either ascending or descending order. By recognising the relationship between the magnitude

of power density applied versus the factors that deem a layer suitable or unsuitable for

the application, a customised set of ‘exit conditions’ that meet the aforementioned sorted-

array requirement can be enforced. This specific mapping is a unique idea and is claimed as

a contribution by this thesis author to the art.

This search strategy is equally applicable (with small modifications to exit conditions as

explained next) for both acceleration and fast charging pathways.

Binary search for acceleration pathway

If all the termination criteria are successfully met, the exit condition is set to a value of 1. If

any of these conditions fail, then the exit condition is assigned a value of 0. Thus, the search

vector in this bespoke strategy consists of only two Boolean possibilities. For ultra-low layer

counts, the applied power densities are extremely high. Therefore, one of the exit conditions

is likely to fail. For very high layer counts, the power densities are very low, implying that

acceleration runs shall always be successful. When considering layer counts from the lowest

to the highest, there exists a critical transition point viz. the first layer count for which the

exit vector toggles from 0 to 1. Through a systematic bisection of the layer search space, the

search algorithm speedily converges to the optimal layer value.
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Binary search for fast-charging pathway

If all the fast-charging termination criteria are successfully met, the exit condition is set to

a value of 1. For violating any of the following three failure conditions (see section 3.5.3) viz.

exceeding a) upper cutoff temperature, or b) upper cutoff voltage, or c) the maximum allowed

charging despite encountering surface saturation, the exit condition is assigned the value of 0.

The search array is bisected by using this failed layer choice as the new lower bound. If no

termination criterion is violated, then the presently trialled layer choice is deemed a success

and the exit condition is set to 1. The search space is narrowed down by using the current

layer choice as the new upper bound.

However, there exists possible scenarios of needing to assign a third exit condition for the

fast charging case. If the aforementioned termination criteria are not violated, but the charging

process fails to meet the target SOC specification for very high values (close to 𝑛max) of the

presently trialled layer choice, this implies operation in a capacity-limited region (see fig. 3.11

and section 3.6 for a brief explanation of this case). The exit condition corresponding to this

failure mode is assigned a value of 2. Thus, the search vector in this bespoke strategy consists

of three distinct numbered exit conditions. Despite being a failure, from the perspective of

narrowing down the search space, this third exit condition is treated in the same way as the

second exit condition i.e., the trialled layer choice is deemed to be too high, which implies

a downward bisection for the next search iteration.

Akin to the acceleration pathway, the optimal layer choice for fast charging is deemed

to be at the critical transition point wherein the exit condition toggles from 0 to 1 and

hence, minimal customisation is needed in the computer code to handle these two cases.

The handling of exit condition 2 is shown in the lower rightmost portion of fig. 3.6. Despite

being a failure, from the search algorithms point of view this is treated as a success, with

the only difference being the assignment of the exit condition value purely for logging and

debugging purposes.

Alternative search algorithm — linear search

A simpler alternative to using the binary search algorithm is the standard linear search

algorithm. This is a simple search strategy which involves sequentially iterating from 𝑛min

to 𝑛max until arriving at the lowest value 𝑛accopt that satisfies all the termination criteria.
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However, a naive use of the linear search algorithm is computationally expensive with a worst

case operation count of𝒪(𝑛). Therefore, this thesis author recommends the use of the bespoke

binary search algorithm. The choice of minimum and maximum values for the layer search

space is discussed in section 3.5.5.

3.5.5 Upper and lower bounds on search space

It is helpful to determine the highest possible number of layers that can be physically

accommodated in a stack of height 𝐿stack. For instance, this value may be used as the upper

bound to the binary search algorithm (which compulsorily requires such an upper bound)

described in section 3.5.4. This can be obtained by defining a simple integer optimisation

task as shown in eq. (3.45). The objective function here is to maximise the value of the layer

count 𝑛 subject to the physical constraint that the thicknesses of both electrodes always

remains positive.

max
𝑛 ∈ℕ

𝑛

s.t. 𝑙pos = (
𝐿stack − 𝐿Al(𝑛) − 𝐿Cu(𝑛) − 𝑛𝑙sep

𝑛(1 + 𝑙ratio)
) > 0

𝑙neg = (
𝑙ratio(𝐿stack − 𝐿Al(𝑛) − 𝐿Cu(𝑛) − 𝑛𝑙sep)

𝑛(1 + 𝑙ratio)
) > 0

(3.45)

Equation (3.46) represents the analytical closed-form solution to the integer optimisation

problem of eq. (3.45).

𝑛max = max (⎢⎢
⎣

2 (𝐿stack − 𝑙Cu)
𝑙Al + 𝑙Cu + 2𝑙sep

⎥
⎥
⎦
, ⎢⎢
⎣

2𝐿stack − 𝑙Al − 𝑙Cu
𝑙Al + 𝑙Cu + 2𝑙sep

⎥
⎥
⎦
) (3.46)

The first argument to the max function in eq. (3.46) represents the maximum number

of physically feasible odd layers while the second argument represents the maximum such

value when considering odd layers. Therefore, the greater of these two values is chosen as

the maximum permissible layer choice 𝑛max and is used as an input to the search algorithm.

In the absence of published information on how the minimum layers within a pouch cell

is currently set, there is presently no unique way to determine 𝑛min. Therefore, for this layer

optimisation study, the value of 𝑛min used by the search algorithm is currently set to one —
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the minimum physically feasible number of layers. Design engineers from industry may opt

to tweak this to a higher value based on insights gained from present empirical designs.

3.5.6 Electrode thickness ratio for capacity balancing

A key idea of the layer optimisation scheme is that, for computing the physical lengths of

electrodes as a function of number of layers, the ratios of their thicknesses 𝑙ratio, is held

constant. This coefficient is germane to the concept of capacity balancing of electrodes with

a view to equalise their loading. The idea of matching the capacity of anode and cathode

materials is widely accepted as a standard principle in cell design [25]. The computation of

this 𝑙ratio parameter is discussed here.

Equating the active material volume of both electrodes,

𝐴elec,pos𝑙pos𝜀s,pos = 𝐴elec,neg𝑙neg𝜀s,neg (3.47)

While stacking the layers within a pouch cell, for the negative electrode layers, there

exists an extra overhang of (< 2mm) with respect to the positive electrode layers. Figure 3.7

shows a CT scan depicting the two-dimensional longitudinal-sections with a close-up view

of this overhang region. This is a design feature to prevent plating of lithium at the edges.

Figure 3.7 CT scan showing the two-dimensional longitudinal-sections from the edge of the
pouch cell with a close-up view of the graphite overhang region. For the negative electrode layers,
there is an extra overhang of (< 2mm) with respect to the positive electrode layers. This design
feature helps to avoid plating of lithium at the edges. Image reproduced from Bond et al. [149].

Neglecting overhangs of the negative electrode (typically < 2mm), both electrodes have

the same cross-sectional area 𝐴elec. Therefore, eq. (3.47) reduces to

���𝐴elec 𝑙pos𝜀s,pos = ���𝐴elec 𝑙neg𝜀s,neg (3.48)

𝑙pos𝜀s,pos = 𝑙neg𝜀s,neg (3.49)
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Owing to the reasons outlined in section 3.2.1, the volume fractions of the electrode

materials are assumed to be constant, which implies that their ratio is also a constant. The

electrode thickness ratio 𝑙ratio is therefore obtained as

𝑙ratio =
𝑙neg
𝑙pos

(by definition) (3.50)

=
𝜀s,pos
𝜀s,neg

(rearranging eq. (3.49)) (3.51)

=
1 − 𝜀pos − 𝜀fi,pos
1 − 𝜀neg − 𝜀fi,neg

(by definition, see eq. (5.60)) (3.52)

=
1 − 0.385 − 0.025
1 − 0.485 − 0.033

(substituting values from table 5.2) (3.53)

𝑙ratio = 1.22 (3.54)

3.5.7 Computation of electrode thicknesses per layer

In this section, a deterministic way to compute the thickness of electrode materials is

present. In the views of this thesis author, this represents a departure from the norm wherein

electrode thicknesses are designed on a trial and error basis [25]. Following the assumptions

listed in section 3.2.1, the exterior dimensions of the pouch are held constant. Furthermore,

as explained in section 3.4.1, the thickness of the electrochemical stack within the pouch

cell 𝐿stack, is also considered to be constant. Therefore, when the number of layers forming

the stack is varied, this implies that the only quantities that may be allowed to change are

the thicknesses of the two electrodes within each layer i.e., higher the layer count, lower the

electrode thicknesses and vice-versa. In this section, this relationship between the number of

layers 𝑛 and the electrode thicknesses 𝑙𝑗 (𝑗 ∈ neg, pos) is quantified with the help of the key

𝑙ratio parameter obtained in section 3.5.6.

Figure 2 of Northrop et al. [74] (suitably adapted and reproduced in fig. 3.8) considers two

possible configurations of stacking up layers within a pouch cell. In the first topology shown

in fig. 3.8a, the outermost current collectors are of copper. In the alternative configuration

shown in fig. 3.8b, a copper current collector occupies one end of the stackwhile an aluminium

current collector occupies its other end. The formulae derived here is equally applicable to

both these cases. Although the use of aluminium current collectors at both extrema of the

stack is not studied, the approach presented here may be easily extended to this case.
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(a) Topology 1 (b) Topology 2

Figure 3.8 Two possible topologies for arranging the layers within a pouch cell. The first
possibility entails using an even number of layers as shown in the example illustration with
four layers in the left sub-figure. Here, both extrema of the stack are occupied by copper current
collectors. The second possible arrangement consists of using an odd number of layers and is
depicted in the sample illustration with three layers in the right sub-figure. This represents
a heterogeneous topology wherein the outermost current collectors of the stack consist of copper
at one end and aluminium at its other end. Illustration adapted from Northrop et al. [74].

The stack height may be obtained by the sum of thicknesses of the constituent regions.

𝐿stack = ∑
𝑗
𝐿𝑗(𝑛) + 𝐿Al(𝑛) + 𝐿Cu(𝑛) ∀ 𝑛 ∈ ℕ, 𝑗 ∈ {pos, sep, neg} (3.55)

where

𝐿𝑗(𝑛) = 𝑛𝑙𝑗 (3.55a)

𝐿Al(𝑛) = {
(𝑛2) 𝑙Al, if 𝑛 is even

(𝑛+12 ) 𝑙Al, if 𝑛 is odd
(3.55b)

𝐿Cu(𝑛) = {
(𝑛+22 ) 𝑙Cu, if 𝑛 is even

(𝑛+12 ) 𝑙Cu, if 𝑛 is odd
(3.55c)

The combined thickness of the two electrode regions in each layer 𝑙ce can be then obtained

by rearranging eq. (3.55)

𝑙ce =
𝐿stack − ⌈0.5(𝑛 + 1)⌉𝑙Cu − ⌈0.5𝑛⌉𝑙Al

𝑛
− 𝑙sep (3.56)
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The individual electrode thicknesses can then be obtained from eq. (3.56) by suitably

substituting in 𝑙ratio and performing simple algebraic manipulations.

𝑙pos =
𝑙ce

𝑙ratio + 1
(3.57)

𝑙neg = 𝑙ce − 𝑙pos (3.58)

The two electrode thicknesses thus obtained using Eqs. (3.57)–(3.58) are used as com-

putational domain lengths in the P2D simulations. Therefore, these thicknesses have to be

recomputed each time the trialled number of layers 𝑛 is updated by the search algorithm.

3.5.8 Computation of layer-dependent cell mass

The mass of the cell varies as a function of number of layers. This is because, the thicknesses

of the two electrodes within each layer changes each time a different layer choice is used.

Following the discussion in section 3.5.6, for computingmasses of the constituent components

of a cell, the anode overhang is neglected. Therefore, the common cross-sectional area𝐴elec is

used for all calculations. For a given layer choice 𝑛, the cell mass is computed as per eq. (3.59).

𝑚cell = ∑
𝑗
𝑚𝑗 + 𝑚Al + 𝑚Cu + 𝑚LiPF6 + 𝑚pouch, 𝑗 ∈ {pos, sep, neg} (3.59)

𝑚𝑗 = 𝐴elec𝐿𝑗𝜀𝑗𝜌𝑗 (3.59a)

𝑚Al = 𝐴elec𝐿Al𝜌Al (3.59b)

𝑚Cu = 𝐴elec𝐿Cu𝜌Cu (3.59c)

𝑚LiPF6 = 𝐴elec(∑
𝑗
𝐿𝑗(1 − 𝜀fi𝑗 − 𝜀𝑗))𝜌LiPF6 (3.59d)

𝑚pouch = 2𝐻pouch𝐿pouch𝑊pouch𝜌pouch (3.59e)

Owing to lack of information on their thickness, the mass of the cell’s tabs has been

omitted in eq. (3.59). However, upon availability of the relevant data, this may be easily

incorporated through an equation analogous to eq. (3.59e).
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3.5.9 Computation of layer-dependent cell specific heat

A lumped thermal model of the cell given by eq. (3.60) is used to model the thermal dynamics

of the cell. This thermal model is coupled with the electrochemical model equations of the

P2D model for the simulations used to determine the optimal layer configurations. The cell’s

temperature 𝑇cell(𝑡) is also obtained from this lumped thermal model.

𝑚cell𝑐avg
𝑑𝑇cell
𝑑𝑡

= −ℎ𝐴tabs (𝑇cell(𝑡) − 𝑇sink) + 𝑄pol (3.60)

𝑄pol = 𝐴cell ⋅ |𝑖 | ⋅ |𝑈 − 𝑉 | (3.60a)

𝑈 = 𝑈pos(𝜃pos)
|||𝑥=𝑥pos/Alcc

− 𝑈neg(𝜃neg)
|||𝑥=𝑥neg/Cucc

(3.60b)

𝑉 = 𝜙s||𝑥=𝑥pos/Alcc

− 𝜙s||𝑥=𝑥neg/Cucc
(3.60c)

The average specific heat of the cell 𝑐avg used in eq. (3.60) is a function of the number of

layers and is given by eq. (3.61).

𝑐avg =
1

𝑚cell
[∑

𝑗
𝑐𝑗𝑚𝑗 + 𝑐Al𝑚Al + 𝑐Cu𝑚Cu + 𝑐LiPF6𝑚LiPF6 + 𝑐pouch𝑚pouch], 𝑗 ∈ {pos, sep, neg}

(3.61)

The first three terms in eq. (3.61) are evaluated as a function of the number of layers 𝑛 by

substituting the appropriate layer-dependent mass values computed in eqs. (3.59a)–(3.59c).

The latter two terms i.e., the specific heats of the electrolyte material and the pouch are held

constant since their corresponding mass values do not vary with the number of layers used.

This concludes the overall narrative describing the layer optimisation framework. The

results obtained by applying this methodology to a specific numerical example is presented

in section 3.6.

3.6 Results and Discussion

At the outset, it is worth mentioning that the focus of this chapter is on the layer optimisation

methodology itself. The results as such do not stand alone outside of the modelling universe

with all its inherent assumptions discussed thus far. Presently, the value added by this work
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is its ready adaptability to industry through its modular design. A numerical implementation

in the form of a toolbox †† is also provided which is immediately available for download

and use by relevant stakeholders. This author recommends that until the tool matures,

cell manufacturers substitute their own parameters and adjust other numerical coefficients

suitably so that the toolbox supplements, rather than supplants present empirical layer

designs. Hence, the results presented in this section must be interpreted in the backdrop

of the context within which the methodology was developed implying that the reader must

consciously strive to interpret all numerical values in relative terms of magnitude. To aid this

thought process, this author chooses to deliberately limit the discussion around the absolute

magnitude of numbers presented here.

3.6.1 Modelling Platform and Preconditioning

The complete parameter set used for simulation is presented in table 3.2. All cells are assumed

to be in their equilibrium state prior to beginning of simulations. The thermally-coupled, P2D

electrochemical model used for simulating each layer choice is implemented inMATLAB [159]

using a heavily-modified version of the LIONSIMBA toolbox [18]. The work reported in this

chapter helped to advance the toolbox from v1.0x to v2.0. The updated computer codes to

which this author heavily contributed, is available from the project’s official repository‡‡.

The rationale behind choosing this specific software to implement layer optimisation is

as follows. The LIONSIMBA v1.0x toolbox has already been validated against the results of

the DUALFOIL [160] codes (which can be considered as the present benchmark standard).

The toolbox is implemented in the MATLAB programming language. Since this chapter has

a strong industry focus, the omnipresence of MATLAB in industry, its mature code-base and

familiarity was a strong motivator in the adoption of this toolbox. The simulation speeds

using LIONSIMBA have been shown to be comparable to the FORTRAN implementation of

DUALFOIL, primarily owing to the sophisticated computation of the analytical Jacobian of

the system through automatic differentiation [18]. In addition to fundamental enhancements

to the modelling platform presented in section 3.4, numerous bug fixes and other minor
††As an accompaniment to this chapter, an open-source software toolbox, (co-created with Ian D. Campbell

and Davide M. Raimondo) for optimal layer selection in pouch cells viz. Battery Optimal Layer Design (BOLD)
is made available for download from GitHub.

https://github.com/ImperialCollegeESE/BOLD_Toolbox
‡‡LIONSIMBA v2: https://github.com/lionsimbatoolbox/LIONSIMBA
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3.6 Results and Discussion

Table 3.2 Cell parameters and system conditions for a simulating an LCO cell with the DFN
electrochemical model and a lumped thermal model. These parameters, when augmented with
the values of the kinetic, geometric and transport properties of the cell (from table 5.2) represents
the complete information required for all simulations in this layer optimisation framework.

System Conditions

Parameter

Lower cutoff cell voltage, 𝑉min (V) a3.50
Upper cutoff cell voltage, 𝑉max (V) b4.22

Parameter

Target cell SOC for fast charge, 𝑧∗ (%) c80.00
Cell upper temperature limit, 𝑇max (∘C) d55.00

Geometric Parameters

Parameter

Surface area of pos. & neg. electrode overlap within a layer, 𝐴elec (m2) b44.63 × 10−3

Exterior pouch length, 𝐿pouch (m) e332.74 × 10−3

Exterior pouch width, 𝑊pouch (m) e99.06 × 10−3

Exterior pouch height, 𝐻pouch (m) f10.00 × 10−3

Pouch material thickness, 𝑇pouch (m) g160.00 × 10−6

Stack thickness, 𝐿stack (m) r9.68 × 10−3

Thermal Parameters
Parameter Al. CC Pos Sep Neg Cu. CC LiPF6 Pouch

Sp. heat capacity, 𝑐𝑗 (J kg−1 K−1) h903 h1269.2 h1978.2 h1437.4 h385 h2055.1 i1464.8
Density, 𝜌𝑗 (kgm−3) j2700 k2291.6 b1100.0 j2660.0 l8960 j1290.0 m1150.0
Activ. energy, diff. 𝐸act,s𝑗

(J mol−1) — p5000 — p5000 — — —

Activ. energy, rxn. 𝐸act,k𝑗
(J mol−1) — p5000 — p5000 — — —

Other Geometric/Cell-Level Parameters

Parameter

Thickness of pos. current collector, 𝑙Al (m) f15 × 10−6

Thickness of neg. current collector, 𝑙Cu (m) p10 × 10−6

Total tab area, 𝐴tabs (m2) b5.94 × 10−3

Lumped heat transfer coefficient, ℎ (Wm−2 K−1) b150
Initial electrolyte concentration, 𝑐e,0 (molm−3) q1000
Saturation Concentration for fast-charging, 𝑐s,sat (molm−3) s30555

Spatial Discretisation

Parameter Pos Sep Neg

Nodes, through-thickness (axial), 𝑁a𝑗 40 40 40
Nodes, within spherical particle (radial), 𝑁r𝑗 15 — 15

a Calculated in section ‘Lower cutoff voltage for cells’ (also see section 3.4.1) b Assumed c Ref. [146]
d Ref. [150] e Converted from imperial units reported in Ref. [138] f Table IV of Ref. [139]
g Sum of values in table 1 of Ref. [151] h Ref. [152] i From constituent values (see [151]) using Ref. [153]
j Ref. [154] k Ref. [155] l Ref. [156, 157] m Ref. [158] p Ref. [74] q Ref. [137]
r See section ‘Computation of stack thickness of reference cell’ s Ref. [137]
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enhancements to the original LIONSIMBA code-base have been provided by this thesis author.

Interested readers may peruse these from the README.md file from the project’s repository.

3.6.2 xEV configurations

Table 3.3 Acceleration test parameters (common across xEV platforms)

Parameter

Coefficient of drag for xEV body, 𝐶d a0.31
Frontal area of xEV, 𝐴v (m2) b2.40
Acc. time dictated by standards, 𝑡f,std (s) c6.00
Acc. time specified by manufacturer, 𝑡f,man (s) d6.50
Speed, end of acc. (standards), 𝑣f,std (m s−1) e8.94
Speed, end of acc. (manufacturer), 𝑣f,man (m s−1) f26.82
Base speed of xEV, 𝑣b (m s−1) e13.41
Air density at acc. test conditions, 𝜌air (kgm−3) f1.20
Drivetrain efficiency, 𝜂dt g0.75
Payload, 𝑀p (kg) c150.60
Rolling resistance coefficient of road surface, 𝐶r f0.01
Road gradient, 𝑍 g0.00
a Ref. [161] b Calculated from typical BEV dimensions in [162]
c Ref. [163] d Ref. [164] e Ref. [131] f Ref. [165] g Assumed

Tables 3.3 and 3.4 show the xEV parameters used in simulations. To obtain an estimate

of the worst case design condition for which layer optimisation needs to be performed, the

60Ah reference cell with 46 layers is used as the benchmark. The power demands on a battery

pack comprised of the reference cell during normal operation are found to be significantly

lower than that experienced during the two extreme cases of discharging and charging viz.

acceleration and fast charging respectively. This conclusion was arrived at after analysing

the power demands of four different drivecycles — a) Urban Dynamometer Driving Schedule

(UDDS), b) New European Driving Cycle (NEDC), c) Extra-Urban Driving Cycle (EUDC), and

d) Highway Fuel Economy Test (HWFET). 50.83 kW is the highest peak discharge power

while 14.20 kW is the highest median discharge power encountered across all the drivecycles

considered. Even with the assumption that 100 % of braking energy can be recovered, the

highest peak andmedian charging powers are only 43.13 kW and 26.03 kW respectively across

all these drivecycles.
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The discharging and charging powers experienced by the pack with the same reference

cell during acceleration and fast charge are significantly higher than those experienced with

any standard drivecycle. Considering the acceleration parameters in table 3.3 for the BEV

pack, 181.45 kW is the power requirement for acceleration of a fixed vehicle mass on a flat

road surface. Four distinct fast-charging power levels viz. 50 kW, 80 kW, 110 kW and 130 kW

are considered in this study. This is in adherence to the minimum and maximum values of

level 3 rating as suggested by Yilmaz and Krein [166]. Furthermore, near-term fast charging

goals laid out in literature [167, 168] and the peak power capability of charging infrastructure

further justify these choices. The above power comparison study helps to inform the two

worst case conditions for layer optimisation.

Table 3.4 Acceleration test parameters (specific to each xEV)

Parameter BEV PHEV

Mass of xEV chassis, 𝑀c (kg) a1340.0 b1438.0
Mass of pack overhead (w/o cells), 𝑀o (kg) a196.4 c65.5
Upper cutoff SOC of cell, 𝑧max (%) d95.0 d90.0
Lower cutoff SOC of cell, 𝑧min (%) d5.0 e30.0
a Calculated based on [169] b Calculated based on [169, 170]
c Calculated (see sections 3.5.2 & 3.5.8) d Assumed e Ref. [165]

For the acceleration tests, the initial cell SOC has been set to 40%. This is in conformity

with the test criterion (50 ± 10) % of the SAE J1666 standard [146]. By choosing the worst

case starting SOC i.e., 40 %, a conservative design can be achieved. The chassis mass of the

vehicle as well as the mass of two passengers at 75.3 kg each [146] is considered for both

xEV platforms. The pack mass is computed as a function of number of layers as described

in section 3.5. Vehicle manufacturers General Motors Inc. provide the mass value of the

GM Ecotec series of engines [170] that can be used for the PHEV case which consists of

a range-extending ICE. The mass of the Bolt BEV pack reported in [169] minus the computed

mass of the overall cells used in the pack gives the overhead mass of the BEV pack. The

PHEV pack’s overhead mass is determined by suitably scaling the mass by the proportion of

reduction in the number of cells used.

For the BEV platform, a fast-charging scheme operated on a Constant Power (CP) mode

with an initial SOC of 20% is employed. In the case of the PHEV, an initial SOC of 30%

128



3.6 Results and Discussion

(10 % higher than that for BEV) is used. This facilitates a smaller SOC window by taking

into account the higher number of charge-discharge cycles which are typical with PHEV

designs [30]. Both xEV platforms are fast charged to a target SOC of 80% in CP mode. This

SOC value corresponds to the end-of-charge target in level 3 charging standards [171].

3.6.3 Acceleration studies

For both vehicle platforms under study, the acceleration at a worst-case rate of 4.13m s−2 is

assumed for simulation. This corresponds to the manufacturer’s acceleration specifications

for the BEV listed in table 3.3. The acceleration rate corresponding to the SAE J1772 standards

is lower than this rate. Therefore, to obtain a robust cell design, the higher of the two

acceleration rates needs to be considered.

Table 3.5 gives the simulation results based on the binary search strategy for various

combinations of (𝑇init, 𝑇sink) for both the BEV and PHEV platforms. The overall simulation

time for this acceleration study was 24min.

Table 3.5 xEV acceleration test results

(𝑇init, 𝑇sink)
(degC)

𝑛accopt
BEV

𝑛accopt
PHEV

(38,5) 21 55
(38,49) 21 57
(25,25) 23 63
(15,5) 27 69

The following discussion is applicable for both vehicular platforms. The specific com-

binations of temperatures for traversing the thermal design space are chosen following

the SAE J1772 guidelines. High power densities result from using very low numbers of

layers. For instance, with 𝑛 = 1, the power density is −14.92 kWm−2. This leads to large

overpotentials causing the cell’s terminal voltage to drop lower than 𝑉min, thereby unable to

satisfy acceleration power requirements. As 𝑛 increases, the overall electrochemically active

surface area available to absorb the externally power increases. This, in-turn leads to lower

power densities and proportionally lower overpotentials.

At higher initial temperatures, owing to the reduction in overpotentials, a larger voltage

overhead is available to accommodate the internal polarisation drop. This, in-turn, implies
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that smaller layer counts suffice to satisfy acceleration power demands for higher values of

𝑇init. For all temperature combinations, the largest deviation from 𝑇init experienced by the

BEV cell is a 0.48 ∘C increase. This is because the acceleration event, wherein the highest

magnitude of discharge powers get applied, are of a short duration. Consequently, it can

be concluded that a single isolated acceleration event does not heat the BEV battery pack,

and therefore the cell temperature remains close to that of the initial value. The PHEV cell

experiences higher power levels and although its temperature increases much higher than the

corresponding BEV cell, the maximum temperature during acceleration remains well below

the upper cutoff limit for all thermal scenarios considered. Finally, even for the worst case

simulation run, the cell’s SOC is depleted only by a maximum of 0.32 % for the BEV cell and

by a slightly higher value for the PHEV cell.

The foregoing discussion reveals that the lower cut-off voltage strongly influences the

optimal layer value for acceleration tests. Based upon the simulation results of table 3.5, for

satisfying acceleration power requirements, 𝑛 = 27 and 𝑛 = 69 represent the optimal layer

choices for the BEV and PHEV platforms respectively for the assumed xEV configurations.

3.6.4 Fast-charging studies

Figures 3.9 and 3.10 shows the results produced by the layer optimisation framework for the

BEV and PHEV platforms respectively when considering fast charging requirements. Each

heat map in these figures show the optimal number of layers 𝑛fastchgopt for various combinations

of initial and ambient temperatures for four different charging powers. In each case, the values

of 𝑛fastchgopt correspond to the temperature combination (𝑇init, 𝑇sink) = (15, 5)∘C as shown in

fig. 3.9. This represents the least number of layers required to fast charge the pack under CP

conditions until the target SOC is reached. The charging scheme additionally considers the

constraint that the cell temperature must stay within 𝑇max = 55 ∘C. Furthermore, its voltage

must remain less than or equal to 𝑉max = 4.22V. Finally, the charging algorithm is plating-

aware i.e., the charging stops as soon as the concentration at the particle surface reaches the

maximum possible concentration limit of 30 555molm−3, thereby preventing lithium plating

at the surface of negative electrode particles.

Thus, using the model-based design strategy presented in this chapter, an effective cell

design is achieved which helps to maximise energy density and BEV range, without forgoing
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Figure 3.9§§ Optimal cell layer configurations for the BEV

Figure 3.10‡‡ Optimal cell layer configurations for the PHEV

‡‡These figures were created by Ian D. Campbell who asserts copyright, with intellectual contributions from
and the right to use asserted by Krishnakumar Gopalakrishnan.
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fast charging power targets. From figures 3.9 and 3.10, it is seen that 𝑛fastchgopt increases with

increase in the charging power. This is because, as the charging power increases, theminimum

number of layers required to maintain the cell voltage below the maximum permissible value

also increases. This requires higher interfacial surface area to accommodate the increased

power demand. Furthermore, rapid surface saturation occurs due to steep concentration

profiles in the negative electrode particles when the charging power is high which causes

plating. With higher layers, the resulting electrodes are thinner, thereby allowing faster

diffusion of lithium in the solid particles and avoiding steep concentration gradients in them.

This suggests that the number of layers must be large enough to prevent plating.

The computation of the cell’s nominal capacity as a function of the number of layers

merits explanation. The overall capacity of each of the two individual electrodes is obtained

as follows (suitably adapted from Plett [172] to account for the concept of layers)

𝑄neg = 𝑛𝐴elec𝐹 𝑙neg𝜀s,neg𝑐s,maxneg
|𝜃100%neg

− 𝜃0%neg
| (3.62)

𝑄pos = 𝑛𝐴elec𝐹 𝑙pos𝜀s,pos𝑐s,maxpos
|𝜃100%pos

− 𝜃0%pos
| (3.63)

The cell’s nominal capacity is the lower of the electrode capacities i.e., 𝑄𝑛 = min(𝑄neg, 𝑄pos).

Considering non-constant parts (barring 𝑛) of eqs. (3.62)–(3.63) and applying eq. (3.49), it is

clear that the quantities to be compared are the two product terms 𝑐s,maxneg
|𝜃100%neg

− 𝜃0%neg
|

and 𝑐s,maxpos
|𝜃100%pos

− 𝜃0%pos
|. Substituting the numerical values from table 5.2, it is seen that

the negative electrode is the limiting electrode for cell i.e., 𝑄𝑛 = 𝑄neg.

Figure 3.11 shows the nominal capacity of cells and charge passed versus the number of

layers during fast charging. In these plots, the nominal capacity 𝑄n of the cell versus the layer

count 𝑛 is represented by the linear downward-sloping line.

For any layer choice, 𝑄n therefore represents the upper bound on the charge that can be

passed during charging. For both constant current and constant power charging, the loci of

actual charge passed 𝑞 lie much below this theoretical nominal capacity. For very low layer

counts, as the number of layers decreases, the power density drops rapidly which implies that

the rate of heating is low. This allows for more charge to be passed. However, at ultra-low

layer counts, the overpotential due to the cell’s internal resistance is quite high. Therefore,

hitting the upper bound on the terminal voltage is the reason for the failure of these layer
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3.6 Results and Discussion

choices. This is indicated by the narrow 𝑉max-limited region in fig. 3.11. For an intermediate

range of layer choices, the rate of power-density drop with layer count begins to flatten,

thereby leading to a plating-limited region. For these layer choices, the surface concentration

starts to exceed the saturation value before any thermal or voltage limits are reached. Finally,

further increasing the layer count beyond an intermediate optimal value leads to a linear

drop in the cell’s charge accepting capability. During fast charging with the chosen power

levels, although these layer choices do not reach the thermal, voltage or concentration limits,

they are unable to attain the target SOC of 80%. This is simply due to the lower nominal

capacity of the these cells. There is no benefit in choosing layers in this region. Figure 3.11

provides clues on the degree of optimisation that can be achieved by careful design choices.

For instance, by using electrode materials capable of operating at higher plating voltage or

with higher saturation concentration, the optimisation point can be appropriately adjusted.
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Figure 3.11§§ The right column shows nominal cell capacity and charge passed during CP
charging. Rate capability and cell utilisation are positively correlated with 𝑛. With increasing
power levels, the optimal layer configuration shifts to higher values of 𝑛. Similar behaviour is
observed for galvanostatic charging (left column). Plotted for 𝑇init = 𝑇sink = 25 ∘C.

§§This figure was created by Ian D. Campbell who asserts copyright, with intellectual contributions from
and the right to use asserted by Krishnakumar Gopalakrishnan.
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3.7 Conclusions

From the results discussed thus far, it is evident that it is the thermal environment that

governs the overall globally optimal layer configuration to to be used for cell design in

both acceleration and fast charging studies and across both vehicular platforms. For all

charging powers simulated, 𝑛fastchgopt is the highest for the coldest temperature combina-

tion (𝑇init, 𝑇sink) = (15, 5)∘C. This is due to the slow rate of electrochemical reaction and

diffusion at cold temperatures. The thinner electrodes from using higher layer count enable

fast charging without saturating the surface of the electrode particles. For the fast charging

scenarios considered here, the optimal number of layers to use is 89 for the BEV cell and

153 for the PHEV cell. The globally optimal layer choice to be used for cell design is therefore

the higher of the two values corresponding to acceleration and fast charging cases. Therefore,

this model-based design framework recommends choosing 89 layers for the cells to be used

in the BEV platform and 153 layers for those to be used in the PHEV platform.

3.7 Conclusions

A methodology to design the number of layers within pouch cells so as to maximise

their energy density whilst simultaneously being capable of high charge-acceptance rate

at the plating boundary has been developed. The proposed methodology may be employed

by designers of xEV powertrains to mitigate the inefficiencies that plague the iterative

experimental designs for each powertrain in a vehicle manufacturer’s product portfolio. The

methodology discussed in this chapter also paves the way to incorporate common module

designs for packs through layer optimisation. By suitably changing the number of layers

within a cell, while keeping the exterior module geometry unchanged, shall lead to cost

reduction and lower the time for derivative product designs.

A mathematical procedure to adapt the standard galvanostatic-driven P2D model to

accept direct power inputs has been elucidated. This reformulation is based on a quadratic

boundary condition for the discretised solid-phase charge conservation equation, coupled

with a positivity constraint on the cell’s terminal voltage and an algebraic residual equation.

A key numerical aspect of the PBMs used in this work is the incorporation of a hybrid

pseudo-spectral/Finite Volume scheme, wherein the solid phase diffusion equation is solved

in the Chebyshev domain while a finite volume discretisation is employed for rest of the

axial-direction PDEs. This hybrid combination helps to achieve fast simulation runs without

sacrificing model fidelity.
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3.7 Conclusions

The methodology proposed here for pouch cells may be considered for application to

cells of other form factors with suitable modifications. While considering the cylindrical

form factor, instead of a discrete set of layers, the electrode sheets are wound into one

continuous jelly roll and placed inside a cylindrical can. A suitable mathematical curve such

as the logarithmic spiral could be employed wherein the number of turns could be used

as a proxy for the layer count. The optimisation problem is also simplified to a certain

extent since the cylindrical can’s dimensions have already been standardised across the

automotive battery industry. However, certain additional challenges could arise in directly

translating the assumptions of the cooling methodology employed. For instance, a three

dimensional discretisation of the thermal grid is not uncommon for cylindrical form factors,

which requires careful considerations for bidirectionally coupling to the electrochemical

model. Any differences in power densities at the interior of the core versus the extremities

of the electrode spirals need to be accounted for.

This concludes the design-oriented aspects of the thesis. Next, chapter 4 deals with the

aspects of analysing the computational bottlenecks present in one of the notable Reduced

Order Models (ROMs) and proposes a mitigation strategy for them.
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This chapter presents an analysis and critical evaluation of a computational bottleneck

present in a popular physics-based Reduced Order Model (ROM) framework of lithium-

ion batteries and proposes an alternative numerical reformulation to mitigate it. From the

literature review presented in chapter 2, it may be recalled that transcendental transfer

functions of the cell’s electrochemical field variables (except for ionic concentration and

potential in the electrolyte) was obtained by Smith et al. [47] through linearisation of the

underlying Pseudo Two-Dimensional (P2D) model equations. Lee et al. [48, 49] extended the

aforementioned approach so as to obtain these missing electrolyte-specific transfer functions

through a multi-modal EigenFunction expansion employing a Sturm-Liouville approach [174].

In order to arrive at a Linear Time-Invariant (LTI) state-space representation of the system

(see eq. (2.1)) for embedded implementation, Lee et al. devised the Discrete-Time Realisation

Algorithm (DRA), a numerical procedure to systematically transform all transcendental

transfer functions to the time domain. A special property of the DRA is that it retains the

physical nature of the original Doyle-Fuller-Newman (DFN) equations until the very last

step wherein the matrices governing the system’s dynamics are generated. This yields a one-

dimensional discrete-time ROM of the cell that is entirely based upon fundamental physical

principles. The ROM thus obtained could then be used to compute the time-evolution of all the

internal electrochemical quantities of the DFN model. Prima facie it appears that this model

could be directly implemented for embedded vehicular applications, for example, as the plant

model for state estimation tasks. However, a comprehensive analysis of the procedure reveals

a critical issue that must be first tackled before implementation aspects can be considered.

The unresolved issue in Lee et al. is the excessively high computational requirements

associated with the DRA, which becomes a crippling bottleneck since the procedure needs

to be repeated for multiple States of Charge (SOCs) and temperatures. This computational

bottleneck arises from forming a large Block-Hankel matrix in memory upon which a Sin-

gular Value Decomposition (SVD) is performed. Under certain conditions as discussed in

section 4.1.1, owing to the large size of the Block-Hankel matrix, the DRA computation is

rendered intractable. This issue has been acknowledged by the original authors themselves

in [5, 49]. In this chapter, this computational bottleneck is analysed and an improved
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4.1 Analysis of the Computational Bottlenecks of the DRA

scheme is proposed†. Section 4.1 discusses an analytical evaluation of the massive computing

requirements of the original DRA method. Redundancies and inefficiencies in this step are

enumerated and the high computational costs are deemed as unnecessary. In section 4.2,

a fast computational approach is presented which significantly reduces both the memory

and computational time of the ROM workflow. Section 4.5 summarises the results obtained

from applying the new workflow presented in section 4.2, by comparing and contrasting the

much smaller computational requirements of the new method with the original DRA scheme.

The improved modelling accuracy achieved by this proposed method when deployed under

resource-constrained computing environments, is also highlighted.

4.1 Analysis of the Computational Bottlenecks of the DRA

The ROM proposed by Lee et al. aims for the simplified representation of the Pseudo Two-

Dimensional (P2D) volume-averaged P2D implementation of the continuum model proposed

by Doyle, Fuller and Newman [15, 16].

The block diagram in fig. 4.1 depicts this thesis author’s summary presentation of the

overall modelling workflow in Lee et al.. Firstly, the governing Partial Differential Algebraic

System (PDAE) equations of the DFN model (see table 1.1) are linearised about an operating

point of SOC and temperature. Then, closed-form Laplace domain transcendental transfer

functions of all the internal physical quantities (𝜙𝑠, 𝜙𝑒, 𝑐𝑠, 𝑐𝑒, 𝑗) at different cell locations, are

derived using applied current as the input. A detailed treatment of this analytical derivation

is presented in Lee et al. [48]. The authors proposed a novel Discrete-Time Realisation

Algorithm (DRA) scheme [175] in order to transform these transcendental transfer functions

to standard state-space representation. Sublevel-1 of fig. 4.1 shows a breakout view of the

DRA procedure and illustrates the steps involved in this computation. At the heart of this

numerical method is the classical subspace identification approach known as Ho-Kalman

algorithm [176], whose computation steps are shown via the exploded view in sublevel-2

of fig. 4.1. Then, the Markov parameters (unit-pulse response) of this Single Input Multiple

†In the views of this thesis author, it is difficult to succinctly summarise the mathematical derivations
involved in the long sequence of modelling steps of the DRA i.e., obtaining transcendental transfer functions
followed by the Ho-Kalman algorithm for state-space realisation. Extraction of salient equations from published
works do not have the ability to convey the essence of the method in a standalone manner, and risks the
introduction of a slew of new notation and symbols. Therefore, this chapter needs to be viewed as a continuum
to the basic DRA presentation, a detailed presentation of which is available in the textbook by Plett [5].
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4.1 Analysis of the Computational Bottlenecks of the DRA

Output (SIMO) linear system of battery transfer functions are computed‡. They form the

entries of a Block-Hankel matrix [177], wherein each block element is a column vector of the

set of Markov parameters at a given time-step as shown in eq. (4.1).

𝐻 =

⎡
⎢
⎢
⎢
⎢
⎣

𝑔1 𝑔2 … 𝑔𝑛
𝑔2 𝑔3
⋮ ⋱ ⋮

𝑔𝑛 … 𝑔2𝑛−1

⎤
⎥
⎥
⎥
⎥
⎦

(4.1)

where 𝑔𝑘 represents the Markov parameter of the system at time-index 𝑘. Each entry 𝑔𝑘
is a column vector for SIMO systems. For the lithium ion battery application proposed by

Lee et al. [48],the Markov parameters of the system correspond to transcendental transfer

functions of each of the following quantities to the applied current

1. Solid phase potential

2. Electrolyte potential

3. Solid phase concentration

4. Electrolyte concentration

5. Molar flux density

6. Overpotential

7. solid-electrolyte potential difference

at four different spatial locations — the two current collectors and the two separator interfaces.

A key computation in the Ho-Kalman algorithm is the Singular Value Decomposition

(SVD) of this Block-Hankel matrix. A wide separation in the magnitude drop between

successive singular values serves as a guide for the modeller in choosing a suitable reduced

order to represent the entire dynamics of the system. The analyses of this thesis author,

presented in section 4.1.2 and section 4.1.3 reveal major inefficiencies in both the Block-

Hankel formation and the SVD computation steps which hinder the entire reduced-order

modelling workflow.

‡A ubiquitous concept in linear systems and control theory, Markov parameters represent the discrete-time
unit pulse response of a linear system.
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Figure 4.1 Reduced Order Model (ROM) workflow using classical Discrete-Time Realisation
Algorithm (DRA). The shaded blocks represent computational bottlenecks.

4.1.1 Size of the Block-Hankel Matrix

Large Block-Hankel matrices can occur in DRA computation due to the following reasons.

1. For a given duration of Markov-parameter recording, if a high sample-rate ROM

is desired, the emulation frequency in the DRA scheme has to be proportionately

increased to accurately compute the continuous-time step and pulse responses in fig. 4.1.

This implies that the total number of time-samples 𝑁 for each Markov parameter will

have to be scaled linearly to capture the desired duration of the unit-pulse response.

However, the size of the Block-Hankel matrix has a quadratic dependence on the

Markov parameter length.

2. The recorded sample size 𝑁 could also become large if the Markov parameters of just

one of the transfer functions decay very slowly. In Li-ion batteries, diffusion within

the solid particle is typically the slowest process. For the cell modelled in Lee et al.,

the unit-pulse response of surface concentration of Li adjacent to the positive current

collector requires approximately 16000 samples before reducing to an appreciably low

value, as shown in fig. 4.2.

3. For a battery modelling problem consisting of multiple transfer functions, the number

of entries in the Block-Hankel matrix also scales linearly with the number of transfer

functions. Thus, if more cell variables (e.g. concentrations and potentials at other spatial
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4.1 Analysis of the Computational Bottlenecks of the DRA

locations within the cell) are to be studied, then the size of the transfer function vector

and that of the Block-Hankel matrix increases correspondingly.
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Figure 4.2 Time evolution of Markov parameters of pole-removed transfer function corres-
ponding to surface concentration of Li in the solid particle adjacent to positive current collector.

Considering the combined influence of these effects, if 𝑥 transfer functions are to be

modelled and𝑁 time-samples of eachMarkov parameter are to be captured, the corresponding

size of the Block-Hankel matrix 𝐻 is

Size(𝐻) ∼ 𝒪(𝑥𝑁 2) entries (4.2)

This has a significant computational impact as shown in section 4.1.2 and section 4.1.3.

4.1.2 Classical DRA — Memory (RAM) Requirements

Lee et al. [48] modelled 28 transfer functions representing various electrochemical variables at

the current collector and separator interfaces. Each Markov parameter is a 28 element column

vector. 16000 time-samples were obtained at a sample-rate of 1 Hz, allowing sufficient time for

the Markov parameters of the slowest dynamics i.e., solid surface concentration to settle to an

acceptably low magnitude. The Block-Hankel matrix thus formed has 8000 blocks, each block

consisting of 28 elements i.e., has 8000 × 28 = 224000 rows and 8000 columns. Hence, the

overall number of elements in the Block-Hankel matrix is 224000 × 8000 = 1.79 × 109. Using

double-precision arithmetic, its storage requirement can be estimated to be ≈27GB.
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Computing the SVD results in the formation of three more large matrices in memory

— i) matrix of output singular vectors 𝑈, ii) matrix of input singular vectors 𝑉, and iii) the

diagonal singular-value matrix Σ. With 8000 Hankel-blocks, approximately 81 GB of Random

Access Memory (RAM) is required for holding these three output matrices generated by a full

SVD. However, the intermediate operational memory usage during the SVD computation is

often much higher than the combined size of all the matrices. As these large matrices must

be repeatedly handled for each operating point of SOC and temperature, the high memory

demand of the classical DRA remains a persistent issue.

4.1.3 Classical DRA — CPU Operation Count

The most widely used numerical algorithm for computing the full SVD of a generic dense

matrix𝐴 ∈ ℝ𝑚×𝑛, 𝑚 ≥ 𝑛 is the two-stage Golub-Kahan-Reinsch method [178]. In the first stage,

𝐴 ∈ ℝ𝑚×𝑛 is reduced to an upper bidiagonal form. In the second stage, SVD of this upper

bidiagonal matrix 𝐵 ∈ ℝ𝑚×𝑛 is computed using an iterative procedure such as the Demmel-

Kahan method [178]. If stage I of the SVD computation employs ℝ-Bidiagonalisation [178],

then the overall process is referred to as ℝ-SVD. This is the fastest known full SVD

computation method that may be applied to this battery modelling problem. The dgesvd

algorithm, originally implemented in LAPACK [179], employs this method. This has been

ported to many numerical computation packages such as MATLAB, GNU Octave and Scilab.

Several numerical libraries such as NAG and Intel MKL also use the dgesvd codes due to

its acclaimed stability, robustness and versatility. The MATLAB implementation ‘svd’ is also

based upon dgesvd and hence this can be considered as the de-facto baseline SVD code.

The operation count for computing the singular values and vectors of a generic dense

matrix 𝐴 ∈ ℝ𝑚×𝑛, 𝑚 ≥ 𝑛 using the ℝ-SVD method is 4𝑚2𝑛 + 22𝑛3 [178]. Markov parameters of

𝑥 transfer functions and 𝑁 time-samples yields a Block-Hankel matrix with 𝑚 = 𝑥𝑁 rows and

𝑛 = 𝑁 columns. Hence,

CPU Operation Count =4 (𝑥𝑁) 2𝑁 + 22𝑁 3

= 2𝑁 3 (11 + 2𝑥2) (4.3)

Thus the Central Processing Unit (CPU) operation count scales as 𝒪(𝑁 3) with the number of

Markov time-samples 𝑁 and as 𝒪(𝑥2)with the number of transfer functions 𝑥 being modelled.
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The ROM computed in Lee et al. uses 28 transfer functions wherein the Markov parameters

are collected for 16 000 s with a sampling interval of 1 s. Thus, the CPU operation count for

performing this computation is approximately 𝒪(160003) ≈ 4 × 1012 floating point operations.

4.1.4 Summary Effect of Computational Bottlenecks

The computational bottleneck in a classical DRA implementation arises due to the require-

ment of capturing a large number of Markov parameters, which in turn leads to growth in

Block-Hankel size. In the case of battery modelling, this can arise in the following real-life

scenarios:

1. Electrochemical variables at additional locations of interest within the cell (e.g. middle

of electrode or separator domain) might need to be modelled. This increases the number

of transfer functions and hence the number of Markov parameters.

2. High frequency load cycles necessitate higher sample-rates to obtain a high fidelity

model. This leads to a correspondingly higher number of Markov parameters.

3. In cells with large particle sizes and small diffusion coefficients, a large set of Markov

parameters is needed to capture the full system dynamics.

Lack of specialised computing infrastructure necessitates early truncation of the Markov

parameters in the ROM workflow. The resulting errors in the singular value computation

lead to significant modelling errors in the physical variables of the cell. Thus, in practice, the

computational bottlenecks of classical DRA manifest as modelling errors when implemented

in a resource-constrained computing environment. Furthermore, this tedious computation

has to be repeated for multiple SOCs and temperatures.

The foregoing analysis clearly demonstrates that the high memory and CPU demands in

a classical DRA implementation severely hamper the scope and applicability of the reduced

order modelling process. This implies that the modelling workflow is not accessible to

research groups without specialised computing infrastructure and its universal appeal is

rendered questionable. The shaded blocks in fig. 4.1 depict the hierarchical propagation of

the classical DRA’s computational bottleneck throughout the ROM workflow.
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4.2 Improved DRA for Battery Modelling

4.2 Improved DRA for Battery Modelling

Collecting a large Markov parameter set is inevitable due to the fundamental physics of

the cell dynamics as established in section 4.1.4. Hence, in order to circumvent the high

computational demands of the classical DRA, the second step in the process i.e., forming the

Block-Hankel matrix, is critically examined with the following scientific rationale.

1. The unit-pulse responses of most battery transfer functions (other than those of rate-

limiting steps such as solid diffusion) decay relatively quickly. Hence it is inefficient

to record the Markov parameters of the full system for the entire duration needed to

capture the slowest dynamics.

2. The Block-Hankel matrix is essentially redundant information since its entries are

simply the Markov parameters arranged in a repeating special structure. Thus, it is

wasteful to construct this huge matrix. If the SVD operation can be performed on

a virtual Hankel matrix, the memory requirements can be drastically reduced.

3. The matrix of singular values Σ is diagonal and hence, sparse. It is redundant to hold

all the non-diagonal entries (zeros) in memory.

4. It is not necessary to perform a full SVD operation in order to achieve order reduction.

When an upper bound on desired system order can be decided a priori, it is sufficient

to compute a truncated SVD yielding the first few dominant triplets of 𝑈 , Σ and 𝑉.

Thus, forming the large Block-Hankel matrix and computing its SVD is identified as an

avoidable bottleneck in the classical DRA method. This can be tackled since forming the

Block-Hankel matrix is an idiosyncrasy of the algorithm used and does not arise from any

fundamental physical limits. Facilitated by an efficient SVD implementation, this thesis author

proposes an improved DRA that serves as a drop-in replacement in the ROM workflow.

4.2.1 Candidate Schemes for Block-Hankel SVD

Generic SVD routines such as dgesvd do not take advantage of the anti-diagonal structural

symmetry of Block-Hankel matrices. Since it is sufficient to obtain the first few leading

eigentriplets for order reduction, iterative algorithms such as the Jacobi and Lanczos schemes
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4.2 Improved DRA for Battery Modelling

(see [178]) emerge as attractive candidates for computing these dominant singular values

and vectors. In order to ensure accessibility to the large community of battery researchers

and to encourage widespread adoption of the fast reduced order modelling framework, the

author of this thesis considered only freely available open-source numerical libraries that

exist in the public domain, especially those with permissive licensing terms. Otherwise the

gains achieved by an efficient SVD computation for implementing DRA on non-specialised

computing hardware would be offset by commercial licensing terms, usage restrictions and

monetary considerations associated with using proprietary codes. Among these open-source

candidate algorithms, the Jacobi scheme [178] is available through the xGESVD routine in

the LAPACK suite [179]. FORTRAN 77 codes for the implicitly restarted Arnoldi and Lanczos

schemes (see nu-TrLan [180]) are available as part of the ARPACK [181] library.

The practical drawback of most SVD implementations, both open-source and proprietary,

is that they require the entire matrix as input argument. Since operating upon the Block-

Hankel matrix requires constructing it in the first place, the memory bottlenecks discussed

in section 4.1.2 are not ameliorated. An example is the svds routine — an economy size SVD

implementation inMATLAB. Albeit this is a commercial implementation of the Arnoldi codes,

any potential benefits of using an iterative scheme is nullified by the memory penalty. Owing

to reasons enumerated in section 4.2, the chosen SVD algorithm needs to be able to handle

the computation without actually forming the huge block-Hankel matrix in memory.

4.2.2 SVD Operation on a Virtual Block-Hankel Matrix

The pioneering work by Larsen, PROPACK [182], based on his earlier work [183] implements

a numerically stable Lanczos SVD computation designed specifically for large and sparse

matrices. In addition to the ability to operate on the matrix as a whole, the PROPACK

codes possess a unique flexibility of accepting input arguments in a functional form. A key

highlight of the Lanczos SVD scheme is that it does not strictly require the matrix itself, but

only the product of the matrix and its transpose with an arbitrary vector. This feature has

been effectively exploited in the PROPACK suite. Therefore, these multiplication routines

can be supplied as input arguments instead of forming the large Block-Hankel matrices in

memory. Furthermore, this package includes sophisticated schemes such as Gram-Schmidt

partial re-orthogonalisation [184] to compensate for numerical round-off errors in the basic
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4.3 Golyandina-Usevich Algorithm

Lanczos bidiagonalisation and ensures orthogonality of the input and output singular vectors.

The PROPACK suite is available as both Fortran 77 and MATLAB codes distributed under

a permissive BSD license. Version 1.1 of the MATLAB implementation of the PROPACK suite

was used by this thesis author.

For the ROM workflow, in order to use PROPACK’s unique feature viz. its flexibility to

accept functional form inputs, the key is to use an algorithm that effectively exploits the affine

structure of the Block-Hankel matrix without actually forming it in memory. Recent research

in a specialised time-series technique known as Singular Spectrum Analysis (SSA) [185] has

yielded efficient methods for achieving this goal. Korobeynikov [186] proposed an algorithm

that employs the Fast Fourier Transform (FFT) for implementing this matrix-vector product

by embedding the Markov parameters into the column vectors of a circulant matrix. This

is suitable for applications wherein the Hankel matrix is composed of scalar entries such

as that formed by the Markov parameters of a Single Input Single Output (SISO) transfer

function. Golyandina, Usevich and colleagues [187, 188] extended this approach to a generic

2D-case for performing SSA on images. With this modification, this algorithm is rendered

capable of handling the structure of Multi-level Block-Hankel matrices formed from the

Markov parameters of a generic Multi InputMulti Output (MIMO) system.While themodified

scheme does not construct the Block-Hankel matrix in memory, the operational rubrics of the

Golyandina-Usevich algorithm in conjunction with PROPACK is such that they iteratively

operate on a virtual Hankel matrix of equivalent size. The Golyandina-Usevich algorithm is

briefly summarised in section 4.3.

4.3 Golyandina-Usevich Algorithm

The Golyandina-Usevich algorithm is used for computing the product of a Block-Hankel

matrix with an arbitrary vector. The steps involved in this scheme are enumerated in

Algorithm 3 of Golyandina et al. [188]. These steps are reproduced here in the context of

the improved DRA for reduced order battery modelling.

1. Compute a 2-D FFT of Markov parameter matrix.

2. Form an augmented vector by zero-padding the arbitrary vector input from Lanczos

iteration.
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3. Perform a column-wise reshaping of this augmented vector to obtain a new matrix

with the same dimensions of the Markov parameter matrix.

4. Compute the element-wise product of this newly created matrix with the 2-D FFT of

Markov parameter matrix.

5. Reshape the resulting matrix back to a column vector.

6. Extract the first 𝐿 elements from this vector, wherein 𝐿 = 𝐾𝑥. 𝐾 represents the desired

block-Hankel size and 𝑥 represents the number of transfer functions being modelled.

At the end of Step 6, the product of the Hankel matrix and arbitrary vector is obtained.

This is reused as an input for the Lanczos scheme which generates a new arbitrary vector

in the subsequent iteration. Thus, the steps 1–6 are run in a loop within the main Lanczos

scheme. These same steps can also be used for computing the product of the transpose of

the Hankel matrix and the arbitrary vector. The only change is to account for the different

dimensions of the arbitrary vector input from the Lanczos scheme in step 2. As a practical

implementation, software code representing steps 1–6 is written in a plain-text file and used

as functional-form inputs by the PROPACK scheme which implements the Lanczos iteration.

4.4 Customisations for Battery Modelling

Specific considerations are required for incorporating the Golyandina-Usevich algorithm in

the ROM workflow for Li-ion batteries. The classical DRA architecture is set up to handle

SIMO systems, wherein all transfer functions are derived by considering only a single input

viz. the applied battery current. Thus the Markov parameters form a 2D matrix wherein each

row corresponds to individual battery transfer functions with columns representing unit-

pulse response samples for each transfer function. The 2Dmoving-window illustrated in [188]

for Block-Hankel matrix formulation has to be suitably reshaped to account for this structure.

Step 3 of the algorithm deals with 2-D FFT computation of the Markov Parameter Matrix

(MPM). In this thesis author’s implementation, this is pre-computed since it remains invariant

between iterations of the Hankel-vector product computation loop. This pre-allocation and

a priori computation contributes to overall code efficiency.
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Figure 4.3 Reduced Order Model (ROM) workflow using improved Discrete-Time Realisation
Algorithm (DRA).

Figure 4.3 shows the ROM workflow with the improved DRA wherein all computational

bottlenecks highlighted by shaded blocks in fig. 4.1 have been eliminated. The strategy is to

first employ the (suitably modified) Golyandina-Usevich algorithm for describing the matrix-

vector multiplication routines. These two functions are then used as inputs to the PROPACK

codes. Eigentriplets up to the desired upper bound on system order is then computed using

a Lanczos SVD iteration. Figure 4.4 presents a comparison of singular values computed by

both the traditional and new methodologies. It is evident that the two sets of singular values

are identical. This proves that the new scheme can indeed serve as a drop-in replacement for

the classical DRA.

4.5 Simulation Results and Discussion

This section provides a quantitative demonstration of the reduced computational demand

of the improved DRA scheme by comparing it with the classical DRA implementation. The

physical parameters of the cell are the same as those published in Fuller et al. [16]. Table 4.1

lists the parameters used in the ROM workflow (same as those employed by Lee et al. [48]).

Figure 4.5 shows a comparison of the memory usage of classical and improved DRA

methods. It is evident that the SVD step in classical DRA consumes an overwhelmingmajority

of the total memory demand, requiring ≈100GB for a Hankel block size of 8000. This can

be a limiting factor in modelling slow cell dynamics without access to a large memory

workstation. The improved DRA method eliminates this bottleneck and the memory usage of
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Figure 4.4 Comparison of singular values computed by the conventional and improved SVD
methods. Using the new scheme results in identical singular values

Table 4.1 Parameters for ROM Computation

Initial Cell SOC 60%
Hankel Block Size 8000
Discrete-Time Model Sample-Rate, 𝑇𝑠 1 s
Number of Electrolyte EigenModes 5
Continuous-Time Emulation Frequency, 𝐹1 128Hz
Desired Number of Singular Values 10

SVD step is negligible. Overall memory usage of the improved DRA is dominated by Markov

parameter computation. Considering 10GB of usable RAM, this means that 60000 Markov

parameters (Hankel Block-size of 30000) can be captured.

Figure 4.6 shows a comparison of CPU times for computing the ROM at a single SOC

and temperature for both the classical and the improved DRA methods§. Owing to the high

operation count for the SVD computation (see eq. (4.3)), the classical DRA requires ≈40min

for a Hankel block size of 8000. Clearly, the overall CPU time for the classical DRA is almost

exclusively spent for computing the SVD. The improved DRA method reduces the overall

§ All computations reported in this chapter were performed on a dedicated high-RAM pool drawn from the
compute cluster hosted at the Department of Mathematics at Imperial College London. The author of this thesis
wishes to express his thankfulness to the relevant authorities for providing access to this facility. The resources
borrowed were one core of a 4-core Intel® Xeon® E5-2637 v3 processor clocked at 3.50GHz with 500GB RAM.
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Figure 4.5 Memory usage of classical and improved DRA. Overall, RAM usage as well as the
memory used only for SVD computation is illustrated.

computational time by two orders of magnitude, taking ≈40 s for the same block-size. In this

case, the CPU time is evenly split between the SVD and Markov parameter computations.
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Figure 4.6 Computation times for classical and improved DRA schemes

From fig. 4.5, it is evident that if classical DRA is employed, a standard laptop with

a nominal 10 GB RAM limit (dedicated for ROM workflow) cannot capture the full cell

dynamics and hence is restricted to 2500 Hankel blocks. This necessitates early truncation
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of Markov parameters at 5000 s. From fig. 4.2, the truncation residue at 5000 s for the unit-

pulse response of solid surface concentration at positive current collector is −0.0087molm−3.

The truncation errors in the MPM directly translate to errors in computed singular values,

adversely affecting accuracy of simulated cell variables. It must be noted that the accuracy

of simulation results reported here does not bear a causal relationship to the particular DRA

scheme employed. In principle, when an upper bound on computational usage has not been

enforced, the numerical operations of both the existing and proposed DRA schemes lead

to similar error magnitudes for the modelled quantities. Instead, the accuracy comparison

illustrated here primarily serves to demonstrate the practical usefulness of the improved DRA

scheme when implemented in a commonplace computing environment.

Figure 4.7 shows a comparison of singular values obtained by the classical and improved

SVD methods computed by imposing a RAM limit of 10 GB. Owing to early truncation of the

MPM, the dominant singular values computed by the conventional method differ significantly

from those computed by the improved SVD operating on untruncated data. With the same

memory constraints, the improved DRA can handle up to 30000 Hankel blocks, allowing for

capture of 60 000 s of Markov parameter data.
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Figure 4.7 Comparison of singular values computed by conventional and improved SVD
methods under a practical RAM limit of 10 GB

For comparative analysis of modelling accuracy under this memory constraint, a time-

domain simulation of the ROMs obtained by classical and improved DRA methods is
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performed. The input current profile corresponding to a Urban Dynamometer Driving

Schedule (UDDS) drive cycle reported in Lee et al. [48] is used. Figure 4.8 depicts the time-

evolution of the solid surface concentration at the positive electrode/separator boundary.

For comparing the accuracy of the two ROMs, a COMSOL Multiphysics [189] simulation

of the full-order pseudo-2D porous-electrode PDAE model is used as the reference. The

ROM employing classical DRA diverges over time, and after 1500 s results in an error

of 1120molm−3. The ROM incorporating the new DRA workflow accurately tracks the

COMSOL simulation trend-line.
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Figure 4.8 Time-domain simulation depicting solid surface concentrations at the boundary of
positive electrode and separator. The simulation results from the P2D model implemented in
COMSOL is used as the reference benchmark. The two ROMs were derived under a RAM limit
of 10 GB. The performance of the improved DRA is significantly better than the classical DRA
owing to the fact that its derivation could accommodate a larger number of Hankel blocks without
exceeding the specified memory limit.

Table 4.2 provides a summary of the key simulation results. At a single operating point

of SOC and temperature, for a Hankel block size of 8000, the ROM workflow incorporating

the improved DRA is ≈100 times faster than that employing the classical DRA. Using the

machine with specifications listed in the footnote§, for 100 operating points (combinations

of 10 SOC and temperature values), computing the ROM requires only 6 hours using the

improved DRA, whereas the classical DRA consumes 666 hours (27 days). Furthermore, for

the same block-size, the improved DRA is demonstrated to be superior in terms of memory

efficiency, drastically reducing the memory requirement from 112 GB down to 2 GB. Finally,
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the improved DRA demonstrates superior modelling accuracy when implemented even in

moderately equipped computing environments such as laptops.

Table 4.2 Salient Results — Classical vs. Improved DRA

ROM
Condition

Entity
Classical
DRA

Improved
DRA

8000
Hankel
Blocks

Memory 111.80 GB 2.14 GB
(overall)

Memory 97.93 GB 0.03 GB
(SVD step)

CPU Time 39.78 min 0.63 min
(overall)

CPU Time 39.30 min 0.14 min
(SVD step)

10 GB
Memory
Limit

Block Size 2500 30000

Max. error 1120molm−3 13molm−3

in 𝑐𝑠,𝑒pos(1, 𝑡)

This chapter concludes with the view that, although the bottlenecks in Lee et al. [48]

revealed by this in-depth analysis have been effectively tackled in this chapter, owing to the

circular dependency between the linearisation point and model parameters, the underlying

model itself is not robust enough for immediate implementation. Furthermore, the model

derivation is convoluted with the derivation being performed in the frequency domain and

implementation in the time-domain. This thesis author is of the opinion that a simple, yet

accurate model derived and implemented entirely in time-domain is the need of the hour for

encouraging the automotive industry to adapt physics-based battery models onto on-board

Battery Management Systems (BMSs) of electric vehicles. In the quest to fulfil this need, an

analysis of the simplest time-domain Physics-Based Model (PBM) viz. the Single Particle

Model (SPM) is presented next in chapter 5.
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Taking into account the relative strengths and weaknesses of all the physics-based

reduced order modelling families in the literature considered (see chapter 2), the

overarching simplicity of the Single Particle Model (SPM) coupled with its immediate

potential to bring the power of physics-based predictions to an embedded environment is

a strong motivation to pursue an in-depth exploration of its horizons. This chapter discusses

the performance of multiple SPM variants, ranging from basic to sophisticated. The governing

equations of the conventional SPM are first introduced and its baseline performance is

evaluated. Next, an in-depth analysis of the basic SPM’s drawbacks is performed. Various
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published attempts to mitigate their current challenges towards implementability is presented

and their inadequacies discussed. Owing to its simplicity and latent potential, a popular

modelling strategy from the existing art that aims to enhance the performance of the basic

SPM through incorporation of electrolyte dynamics, is chosen for further analysis. The

chapter concludes with the author’s critical comments on its relative merits that come to view

through comparison against a benchmark model, whilst simultaneously identifying its critical

weakness whose mitigation forms the focal point of the research discussed in chapter 6.

5.1 SPM Model Development

In order to establish a context for the author’s work to be discussed in chapter 6, it is

imperative to provide a holistic presentation of the basic SPMmodelling art. The conventional

SPM is the simplest of all time domain Physics-Based Models (PBMs). The rest of this section

provides this author’s digested summary of its modelling rubrics based upon the keen insights

gained from perusing the vanguard literature in this topic [87, 92, 96] as well as their relevant

derivative works.

5.1.1 Geometry

A description of the working principle of the cell was presented in section 1.1 and is

not repeated here. The SPM aims to capture the electrochemical phenomena along the

thickness 𝑙𝑗, 𝑗 ∈ {neg, pos} of each porous electrode by a representative spherical particle.

Thus the two distinct solid phase porous regions of the cell i.e., the negative and positive

electrode regions, are idealised as two spheres of radii 𝑅neg and 𝑅pos respectively.

Figure 5.1 shows the geometrical origins of the basic SPM. In this arrangement, the spatial

dimension along the axial thickness of each electrode degenerates to a single point which is

represented by a sphere. Hence, the concentration of lithium within each electrode 𝑐s𝑗 , 𝑗 ∈

{neg, pos} is only a function of the radial position 𝑟𝑗, 𝑗 ∈ {neg, pos} and the time 𝑡. The surface

area of each representative sphere is scaled appropriately, such that they are equivalent to

the active area 𝐴elec of the corresponding porous electrodes. Thus the SPM accounts for the

reduced volume-fraction arising due to themicroporous structure of the solid phase and hence,

the storage capacity of the representative particles match that of the corresponding electrodes.

The overarching assumption of the SPM modelling philosophy is that the electrochemical

155



5.1 SPM Model Development

performance of these representative electrodes are sufficient to model the voltage behaviour

of the cell at its terminals. The SPM thus employs the coarsest possible spatial discretisation

of the cell’s thickness with the goal of minimising computational burden.

pn
pp

Figure 5.1 Schematic illustration depicting the geometrical origins of the basic SPM. The model
is obtained through a degenerate spatial discretisation of one electrochemical layer of a pouch
cell. The active material of each porous electrode is represented by one representative spherical
particle, thus entirely eliminating the spatial dimension along the axial direction. Illustration
adapted from Moura et al. [43].

5.1.2 Scope and Assumptions

Having described the geometrical representation of the model, it is imperative to establish

its aims and scope. This section discusses the subset of physical phenomena that can be

captured by the basic SPM and enumerates the inherent assumptions in model derivation.

The validity of these assumptions and their effects on model accuracy shall be examined in

the results presented in section 5.3.3. As a broad outline of its scope, the model attributes the

cell polarisation to two dominant physics viz. reaction kinetics and solid phase transport

phenomena i.e., diffusion dynamics.
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The SPM assumes that charge transfer happens throughout the surface of each represent-

ative spherical particle where intercalation occurs. The electronic conductivity of the solid

phase is assumed to be high enough to ignore the spatial distribution of charge i.e., the local

volumetric current density is assumed to be uniform along the thickness of each porous

electrode. This assumption is motivated from early calculations by Newman and Tobias [190]

in their stand-alone analysis of current distributions in porous electrodes, wherein a volume-

averaged molar flux was deemed sufficient throughout the thickness of the electrode. This

uniform current density assumption implies that all of the particles in the electrode active

material are in parallel. Solid phase diffusion dynamics within each electrode are therefore

solved by assuming this averaged electrochemical reaction rate. In the simulation study by

Smith and Wang [34], it is reported that soon after the beginning of discharge, solid phase

concentration and ionic flux become nearly independent of spatial position, and that lithium

diffusion in solid particles may be driven by an averaged molar flux at the surface.

Based on the discussion thus far, it is clear that the SPM does not attempt to model all

physical processes within the cell. In particular, the model assumes instantaneous charge

transport from one electrode to the other through the solution phase. This implies that

electrolytic diffusion is sufficiently fast (relative to diffusion in the solid phase). Thus, mass

transport phenomena in the electrolyte have been neglected in the basic SPM.

During the operation of the cell, the SPM assumes that the electrolyte concentration 𝑐e
remains constant at its equilibrium initial value 𝑐e,0 throughout the cell thickness. Neglecting

local concentration gradients in the solution phase, together with ignoring its mass transport

phenomena, implies that the current in the electrolyte does not vary over space and time.

Hence, in the conventional SPM there is no contribution of the solution phase to internal

overpotentials i.e., electrolyte dynamics have no influence on the cell’s terminal voltage. The

SPM also ignores any variations in material porosities in each electrode. Furthermore, all

solid phase diffusivities and kinetic parameters are held constant. Finally, all thermal effects

are assumed to be negligible and no degradation effects are attempted to be modelled in the

basic SPM formulation.

These simplifying assumptions are made so as to facilitate the ease of implementing

a PBM, without incurring the heavy computational cost that typically accompanies it. The

impact of these assumptions on the accuracy of the model shall be examined in section 5.3.3
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and later sections presents prior research that strives to straddle the fine balance between

model sophistication and computational complexity.

5.1.3 Governing Equations

As discussed in section 5.1.2, the SPM captures the cell’s dynamics arising due to diffusion and

kinetics at the two representative spherical electrodes. It also accounts for the contribution

of their equilibrium thermodynamics to the cell’s Open Circuit Potential (OCP).

Solid Phase Diffusion

Conservation of Li0 in the electrodes can be obtained by assuming that the movement of

neutral atoms within the solid phase is primarily due to diffusion within particles. This

diffusion phenomena is induced due to a concentration gradient that exists between the

surface and interior/core of the solid phase particles. Based on the geometrical assumptions

of the SPM as discussed in section 5.1.1 i.e., owing to the lack of spatial discretisation in

the axial direction 𝑥, the concentrations of Li0 in the two electrodes 𝑐s𝑗(𝑥, 𝑟 , 𝑡), reduce to

a function of the radial co-ordinate 𝑟 and time 𝑡, and is denoted by 𝑐s𝑗(𝑟 , 𝑡), 𝑗 ∈ {neg, pos}.

To keep the notation tractable, this explicit spatio-temporal radial dependence is omitted,

further simplifying the representation to 𝑐s𝑗 . We start with the derivation of the solid-phase

diffusion equation eq. (1.3) in table 1.1, and then proceed to the simplifications of its boundary

conditions facilitated by the SPM assumptions.

Diffusion in the solid phase can be modelled by applying classical Fickian dynamics [68]

given by
𝜕𝑐s𝑗
𝜕𝑡

= ∇⋅ (𝐷s𝑗 ∇𝑐s𝑗) 𝑗 ∈ {neg, pos} (5.1)

The divergence of a vector field F(𝑟 , 𝜃 , 𝜙) can be expressed in spherical co-ordinates as

∇ ⋅ F =
1
𝑟2

𝜕 (𝑟2𝐹𝑟)
𝜕𝑟

+
1

𝑟 sin 𝜃
𝜕 (sin 𝜃 𝐹𝜃)

𝜕𝜃
+

1
𝑟 sin 𝜃

𝜕𝐹𝜙
𝜕𝜙

(5.2)

where 𝑟 denotes the radius, 𝜃 the polar angle, and 𝜙 the azimuthal angle. 𝐹𝑟, 𝐹𝜃 and 𝐹𝜙 denote

the corresponding components of the vector field F.

The co-ordinate origin at each electrode is aligned with the centre of its representative

spherical particle. Due to symmetry in the polar and azimuthal axes, the divergence becomes

158



5.1 SPM Model Development

a function of only the radial position. Equation (5.2) therefore reduces to

∇ ⋅ F =
1
𝑟2

𝜕 (𝑟2𝐹𝑟)
𝜕𝑟

(5.3)

Applying the Right-Hand Side (RHS) of the divergence operator of eq. (5.3) in eq. (5.1) yields

𝜕𝑐s𝑗
𝜕𝑡

=
1
𝑟2

𝜕
𝜕𝑟 (

𝑟2𝐷s𝑗 ∇𝑐s𝑗) (5.4)

As per the assumption of uniform diffusivity in the solid phase, eq. (5.4) becomes

𝜕𝑐s𝑗
𝜕𝑡

=
𝐷s𝑗
𝑟2

𝜕
𝜕𝑟 (

𝑟2∇𝑐s𝑗) (5.5)

Applying the gradient operator of eq. (5.5) along the radial direction 𝑟,

𝜕𝑐s𝑗
𝜕𝑡

=
𝐷s𝑗
𝑟2

𝜕
𝜕𝑟 (

𝑟2
𝜕𝑐s𝑗
𝜕𝑟 )

. (5.6)

Equation (5.6) represents a mass-balance equation describing solid phase diffusion in each

electrode and is identical to the governing equation eq. (1.3) from table 1.1. The potential at

each electrode depends on the solid phase surface concentration 𝑐s,surf𝑗 i.e., the Li0 concentra-

tion 𝑐s𝑗(𝑟 , 𝑡) evaluated at 𝑟 = 𝑅p𝑗 , 𝑗 ∈ {neg, pos} where 𝑅p𝑗 represents the equivalent radius of

each representative spherical particle.

Due to spherical symmetry, flux at the centre of the particle is considered to be zero.

𝜕𝑐s𝑗
𝜕𝑟

|
|
|𝑟=0
= 0 (5.7)

Diffusion in the solid phase is driven by concentration gradients induced due to intercalation

flux density at the particle surface i.e., the surface of each particle experiences a pore-wall

flux density driven by reaction kinetics. Based on the SPM geometry discussed in section 5.1.1,

the spatial dependence of this molar flux density 𝑗n𝑗(𝑥, 𝑡) is eliminated and it can therefore be

represented as 𝑗n𝑗(𝑡), 𝑗 ∈ {neg, pos}. For the sake of brevity, its explicit temporal dependence

is also omitted resulting in a simplified notation 𝑗n𝑗 . Hence, at the particle surface

𝐷s𝑗

𝜕𝑐s𝑗
𝜕𝑟

|
|
|𝑟=𝑅p𝑗

= −𝑗n𝑗 (5.8)
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The sign convention chosen here is such that pore-wall flux leaving the particle surface is

considered to be negative.

Charge conservation in solid phase is applied to evaluate the RHS in eq. (5.8), a detailed

derivation of which is presented in Domenico et al. [96]. In summary, by assuming a uniform

charge density throughout the thickness of each electrode (see section 5.1.2), we get

𝑗n𝑗(𝑡) = ±
𝐼 (𝑡)

𝐴 𝑙𝑗𝑎s𝑗𝐹
𝑗 ∈ (neg, pos) (5.9)

Substituting eq. (5.9) in eq. (5.8)

𝐷s𝑗

𝜕𝑐s𝑗
𝜕𝑟

|
|
|𝑟=𝑅p𝑗

= ∓
𝐼

𝐴 𝑙𝑗𝑎s𝑗𝐹
𝑗 ∈ (neg, pos) (5.10)

wherein the load current 𝐼 (𝑡) > 0 for discharge, whose explicit time-dependence has been

omitted in eq. (5.10) for being consistent notation with the Left-Hand Side (LHS). The positive

and negative signs apply to the negative and positive electrode respectively as indicated

by the ordered pair 𝑗 ∈ (neg, pos). It should be noted that the term involving the Faraday

constant in the RHS of eq. (5.9) is 𝑛𝐹, where 𝑛 is the number of electrons transferred during

the reaction. However, since this thesis only discusses lithium-ion chemistries where 𝑛 = 1,

this is implicitly conveyed and shall be omitted for all potential occurrences.

The cell’s State of Charge (SOC) can be obtained from the bulk concentration of lithium

in either the negative or positive electrode. By convention, the negative electrode is used.

𝑧(𝑡) =
3

𝑐s,maxneg
∫
𝑅pneg

0
𝑟2𝑐𝑠neg(𝑟 , 𝑡) 𝑑𝑟 (5.11)

Given an initial cell SOC 𝑧(0) = 𝑧0 at rest, the equilibrium concentration of Li0 in the two

individual electrodes can be computed as

𝑐s𝑗(𝑟 , 0) = 𝑐s,max𝑗 [𝑧0 (𝜃100%𝑗
− 𝜃0%𝑗

) + 𝜃0%𝑗
] (5.12)

where 𝜃100%𝑗
and 𝜃0%𝑗

are the electrode stoichiometries at 100 % SOC and 0% SOC respectively.
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Equation (5.6), its corresponding boundary conditions (5.7) and (5.10) along with initial

condition (5.12), provide the complete description of time-domain evolution of lithium in

the conventional SPM for a given applied current profile 𝐼 (𝑡). Considerations for efficient

numerical simulation of this system is presented next.

Further Reduction in Dimensionality

Anaive approach to numerically solving the solid phase diffusion equation is to discretise each

of the two representative particles in the radial direction 𝑟. Given the elaborate simplifications

made to remove spatial resolution from the axial direction, the efficacy of using a radial

discretisation is rendered questionable, particularly within the scope of embedding the model

in an online simulation and state-estimation environment. Since diffusion in each spherical

particle is modelled by the well-known Fickian dynamics [68], several attempts have been

made to obtain an approximate analytical solution for the solid phase concentration in both

electrodes. In a dimensionless analysis study, Zhang and White [191] provide a comparative

evaluation of the various approximation methods for solid phase diffusion, a summary of

which is presented in table 5.1.

Table 5.1 Summary of approximation methods for solid phase diffusion

Approximation Method Introduced by

Duhamel’s superposition Doyle, Fuller & Newman [15, 16]
Diffusion length Wang et al. [192]
Corrected Diffusion length Wang and Srinivasan [193]
Polynomial approximation Subramanian et al. [78, 98]
Pseudo steady-state Liu [81]

In the aforementioned study, the computational burden i.e., storage requirements and

Central Processing Unit (CPU) times of Duhamel’s superposition method was found to

be excessively high to warrant further interest in it. The original diffusion length method

proposed by Wang et al. is valid only after the diffusion layer builds up to its steady state,

and hence leads to significant errors in transient conditions. Although Wang and Srinivasan

introduced an empirical correction factor to the diffusion length to extend its validity to short-

time scale operations, this affected the convergence of the method for steady state conditions.

The pseudo steady state solution proposed by Liu uses a finite integral transform technique

to eliminate the radial dependence of solid phase concentration. However, this method uses
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computations involving infinite summations, exponential and trigonometric quantities, which

in this thesis author’s view, makes it less attractive for online implementations.

The literature on polynomial methods by Subramanian et al. [78] provide detailed

derivations of the 2nd and 4th order polynomial approximations. The 2nd order solution

was found to have poor performance for transient behaviour, similar to that of the original

diffusion length method. However, higher order polynomial approximations were found to

provide acceptable levels of performance for both transient and steady state conditions and

shall therefore be examined further.

The polynomial approximation method describes the dynamic evolution of the volume

averaged concentration

𝑐s,avg𝑗(𝑡) =
1
Ω ∫

Ω

𝑐s𝑗(𝑟 , 𝑡) 𝑑Ω (5.13)

as a function of the applied load current 𝐼 (𝑡). Here, Ω represents the volume of the spherical

particle. For notational brevity, 𝑐s,avg𝑗(𝑡) is shortened to 𝑐s𝑗 whilst also dropping its explicit

time dependence.

The 4th order polynomial approximation assumes that the solid phase concentra-

tion 𝑐s𝑗(𝑟 , 𝑡) is a quartic function of the radial co-ordinate 𝑟.

𝑐s𝑗(𝑟 , 𝑡) = 𝑎(𝑡) + 𝑏(𝑡) (
𝑟
𝑅p𝑗

)
2

+ 𝑑(𝑡) (
𝑟
𝑅p𝑗

)
4

(5.14)

The detailed derivation of the coefficients 𝑎(𝑡), 𝑏(𝑡) and 𝑐(𝑡) is provided in Sub-

ramanian et al. [78]. Eqs. (5.15)–(5.17) summarise the governing equations obtained by

applying the 4th order polynomial approximation of eq. (5.14) to the system of equations

given by eqs. (5.6), (5.7) and (5.10).

𝑑
𝑑𝑡
𝑐s𝑗 + 3

𝑗n𝑗
𝑅p𝑗

= 0 (5.15)

𝑑
𝑑𝑡
𝑞𝑗 + 30

𝐷s𝑗
𝑅2p𝑗

𝑞𝑗 +
45
2

𝑗n𝑗
𝑅2p𝑗

= 0 (5.16)

35
𝐷s𝑗
𝑅p𝑗

(𝑐s,surf𝑗 − 𝑐s𝑗) − 8𝐷s𝑗𝑞𝑗 = −𝑗n𝑗 (5.17)
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where 𝑞𝑗(𝑡) represents the volume averaged concentration flux, that defines the average

change of concentration with respect to the radial position 𝑟.

As per eq. (5.9), the interfacial flux density is proportional to the applied current. Hence

eq. (5.15) implies a simple linear relationship between the applied current and the rate of

evolution of average Li0 concentration within each spherical particle. This further implies

that the SOC of the cell has a linear rate-dependence on the externally applied current.

Furthermore, due to the elimination of radial discretisation, the computation of SOC, given

by eq. (5.11), reduces to the task of first computing the ratio of bulk (average) concentration

to surface concentration and then adjusting it to account for the useable stoichiometry limits

for the relevant electrode. Thus, the cell’s SOC can be computed as

𝑧 =

𝑐s,neg
𝑐s,maxneg

− 𝜃0%neg

𝜃100%neg
− 𝜃0%neg

(5.18)

where 𝑐s,neg is obtained by solving eq. (5.15) for the negative electrode.

In the views of this author, this 4th order polynomial approximation proposed by

Subramanian et al. [78] strikes an acceptable balance between the three modelling pivots

— i) computational complexity, ii) mathematical tractability, and iii) numerical accuracy and

has therefore been adopted for all SPM simulations presented in this work.

At the end of this dimension-reduction step, spatial dependence is completely eliminated,

yielding a zero-order (in space) physical model whose dynamics are described by the

Differential Algebraic Equation (DAE) system of eqs. (5.15)–(5.17).

Equilibrium Thermodynamics

The equilibrium potential of a porous electrode is a thermodynamic property that depends on

the extent of lithiation in the outermost interstitial sites near the Solid-Electrolyte Interphase

(SEI) layer. This surface stoichiometry 𝜃𝑗 for an electrode is obtained by computing the surface

concentration (using eq. (5.17)) and dividing by the maximum lithiation capacity of that

electrode.

𝜃𝑗 =
𝑐s,surf𝑗
𝑐s,max𝑗

(5.19)
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Although based upon the theoretical foundation laid out by the Nernst equation, owing

to a multitude of complex phase transitions, the potential of porous electrodes (with respect

to metallic lithium) is usually given as empirical functions of its surface stoichiometry [4, 8].

𝑈𝑗(𝑡) = 𝒰𝑗 (𝜃𝑗(𝑡)) (5.20)

where the empirical relationships 𝒰𝑗 are typically high order polynomials or rational func-

tions that are fitted to relaxation data from Galvanostatic Intermittent Titration Technique

(GITT) experiments on half-cells [14, 194].

In the SPM, the cell’s OCP is obtained by subtracting the negative electrode equilibrium

potential 𝑈neg from its positive electrode counterpart 𝑈pos, as shown in eq. (5.21).

𝑈ocp = 𝑈pos − 𝑈neg (5.21)

Even though the concept of OCP is defined only in equilibrium conditions when no current

flows, the individual electrode potentials themselves form a significant component of the

cell’s terminal voltage 𝑉 (𝑡).

Reaction Kinetics

In the SPM, the reaction kinetics in each spherical electrode is modelled using the Butler-

Volmer expression (see eq. (1.7)).

𝑗n𝑗 = 𝑗0𝑗 [exp (
(1 − 𝛼) 𝐹𝜂𝑗

𝑅𝑇 ) − exp (
−𝛼𝐹𝜂𝑗
𝑅𝑇 )] (5.22)

where

𝑗0𝑗 = 𝑘r𝑗𝑐
1−𝛼
e 𝑐𝛼s,surf𝑗 (𝑐s,max𝑗

− 𝑐s,surf𝑗)
1−𝛼

(5.23)

The equilibrium rate of forward and backward reactions at both electrodes is assumed to

be equal. With charge transfer coefficient 𝛼 = 0.5, eq. (5.22) simplifies to

𝑗n𝑗 = 2𝑘r𝑗√
𝑐e𝑐s,surf𝑗 (𝑐s,max𝑗

− 𝑐s,surf𝑗) sinh (
𝐹𝜂𝑗
2𝑅𝑇)

(5.24)
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The expression for overpotential 𝜂𝑗 for the basic SPM can be obtained by rearranging

eq. (5.24), substituting for 𝑗n𝑗 from by eq. (5.9) whilst using the initial electrolyte concentration

𝑐e,0 and is given by

𝜂𝑗(𝑡) =
2𝑅𝑇
𝐹

sinh−1
⎛
⎜
⎜
⎝

±𝐼 (𝑡)

2𝐴 𝑙𝑗𝑎s𝑗𝐹𝑘r𝑗√
𝑐e,0𝑐s,surf𝑗 (𝑐s,max𝑗

− 𝑐s,surf𝑗)

⎞
⎟
⎟
⎠

(5.25)

Cell Terminal Voltage

The terminal voltage of the cell under applied load is obtained by subtracting the potential

of the negative electrode from its positive counterpart.

Starting from the definition of the overpotential of each electrode

𝜂pos = 𝜙s,pos −����⌃0𝜙e,pos − 𝑈pos (5.26)

𝜂neg = 𝜙s,neg −����⌃0𝜙e,neg − 𝑈neg (5.27)

Within each electrode domain, the contribution of electrolyte potential is neglected (see

sections 5.1.1 and 5.1.2 for a brief discussion on the exclusion of electrolyte dynamics).

Subtracting eq. (5.27) from eq. (5.26),

𝜂pos − 𝜂neg = 𝜙s,pos − 𝜙s,neg⏟⏟⏟⏟⏟
𝑉cell

−𝑈pos + 𝑈neg (5.28)

whose rearrangement yields

𝑉cell = 𝜂pos − 𝜂neg + 𝑈pos − 𝑈neg (5.29)

In the basic SPM, eq. (5.29) is used to compute the cell’s terminal voltage under load. Although

their explicit time-dependence notation is omitted in the notation here, it is worth reminding

that all quantities in eq. (5.29) are indeed continuous functions of time.

State Space Representation

For control oriented applications, it is imperative to have a classical state space representation

that collates all intermediate equations and definitions presented thus far into a single system
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of equations that describes the evolution of solid concentration and terminal voltage over

time, expressed as a response to the external current input 𝐼 (𝑡). However, the non-linearities

in the equation for terminal voltage i.e., eq. (5.29) imply that it is not possible to represent

the SPM in the form of a classical Linear Time-Invariant (LTI) system of eq. (2.1). Instead,

the SPM can be summarised by a system of linear state equations together with the single

non-linear output equation.

Rearranging eqs. (5.16) and (5.17), the state equation is obtained as

𝑑
𝑑𝑡

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝
𝑐s,neg

𝑐s,pos

𝑞neg

𝑞pos ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

−30 𝐷s,pos
𝑅2
ppos

0

0

−30 𝐷s,neg
𝑅2
pneg

0

0

0

0

0

0

0

0

0 ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝
𝑐s,neg

𝑐s,pos

𝑞neg

𝑞pos ⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−3
𝑅pneg

𝐴 𝑙neg𝑎s,neg𝐹

3
𝑅ppos

𝐴 𝑙pos𝑎s,pos𝐹

45
2

−1
𝑅2
pneg

𝐴 𝑙neg𝑎s,neg𝐹

45
2

1
𝑅2
ppos

𝐴 𝑙pos𝑎s,pos𝐹
⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵

𝐼 (𝑡)

(5.30)

which corresponds to the classical LTI form

̇x = 𝐴x + 𝐵u (5.31)

where x = [ 𝑞pos 𝑞neg 𝑐s,pos 𝑐s,neg ]𝑇, 𝑥 ∈ ℝ4×1 is the state vector. The scalar system input u ∈

ℝ is the applied current 𝐼 (𝑡). The system matrix 𝐴 ∈ ℝ4×4 and input matrix 𝐵 ∈ ℝ4×1 are also

shown in eq. (5.30).

For state estimation and controller design purposes, it is important to keep the number

of elements in the state vector as small as possible by eliminating redundant variables. For

instance, Di Dominico et al. [96] noted that with output voltage as the only measured quantity,

the observability of the four-state model of eq. (5.30) is adversely affected. To tackle this issue,

a state-reduction approach was proposed by Di Domenico et al. [96], which hinges upon the

principle of material balance.

The total number of moles of lithium in the system is given by

𝑛Li =
𝜀s,pos 𝑙pos 𝐴
4
3 𝜋𝑅3ppos

∫
𝑅ppos

0
4𝜋𝑟2𝑐s,pos(𝑟 , 𝑡) 𝑑𝑟 +

𝜀s,neg 𝑙neg 𝐴
4
3 𝜋𝑅3pneg

∫
𝑅pneg

0
4𝜋𝑟2𝑐s,neg(𝑟 , 𝑡) 𝑑𝑟 (5.32)
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Upon considering only the bulk concentration as per the dimensionality reduction procedure

outlined in section 5.1.3, eq. (5.32) reduces to

𝑛Li =
𝜀s,pos 𝑙pos 𝐴
4
3 𝜋𝑅3ppos

𝑐s,pos ∫
𝑅ppos

0
4𝜋𝑟2 𝑑𝑟 +

𝜀s,neg 𝑙neg 𝐴
4
3 𝜋𝑅3pneg

𝑐s,neg ∫
𝑅pneg

0
4𝜋𝑟2 𝑑𝑟 (5.33)

= 𝜀s,pos 𝑙pos 𝐴 𝑐s,pos + 𝜀s,neg 𝑙neg 𝐴 𝑐s,neg (5.34)

Assuming no loss of cycleable lithium or other degradation mechanisms, the total number of

moles of lithium in the system is conserved i.e., 𝑑𝑛Li𝑑𝑡 = 0. Substituting this into eq. (5.33),

0 =
𝑑
𝑑𝑡
𝜀s,pos 𝑙pos 𝐴 𝑐s,pos +

𝑑
𝑑𝑡
𝜀s,neg 𝑙neg 𝐴 𝑐s,neg (5.35)

𝑑
𝑑𝑡
𝑐s,pos = −

𝑑
𝑑𝑡
𝑐s,neg (5.36)

As per eq. (5.36), the time evolution of the bulk concentration of one electrode can be

obtained as a function of the other. Furthermore, Di Domenico et al. [96] show that the

diffusion dynamics of the bulk concentrations can be algebraically related through their

stoichiometric factors as

𝑐s,pos(𝑡) = 𝑐s,maxpos [
𝑐s,neg(𝑡) − 𝜃0%neg

𝑐s,maxneg

(𝜃100%neg
− 𝜃0%neg

) 𝑐s,maxneg

(𝜃100%pos
− 𝜃0%pos

) + 𝜃0%pos
] (5.37)

Hence, it is possible to eliminate the bulk concentration of any one of the electrodes from

the state-equation to arrive at a three-state description of the model dynamics. In extant

lithium-ion chemistries, owing to its proclivity for lithium deposition during charging, the

negative electrode is considered to be the limiting electrode (See Arora et al. [27]). Hence it

is retained in the state vector, thereby leading to the final form of the state dynamics of the
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conventional SPM as

𝑑
𝑑𝑡

⎛
⎜
⎜
⎜
⎜
⎝
𝑐s,neg

𝑞neg

𝑞pos ⎞
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎝

0

0

−30 𝐷s,pos
𝑅2
ppos

0

−30 𝐷s,neg
𝑅2
pneg

0

0

0

0 ⎞
⎟
⎟
⎟
⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐴

⎛
⎜
⎜
⎜
⎜
⎝
𝑐s,neg

𝑞neg

𝑞pos ⎞
⎟
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎜
⎝

−3
𝑅pneg

𝐴 𝑙neg𝑎s,neg𝐹

45
2

−1
𝑅2
pneg

𝐴 𝑙neg𝑎s,neg𝐹

45
2

1
𝑅2
ppos

𝐴 𝑙pos𝑎s,pos𝐹
⎞
⎟
⎟
⎟
⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐵

𝐼 (𝑡) (5.38)

The measured variable 𝑦 ∈ ℝ is the cell’s terminal voltage 𝑉 (𝑡) and is expressed as a non-

linear scalar function of the state vector and the load current.

𝑦 = ℎ (x(𝑡), 𝑢(𝑡)) (5.39)

The output equation given by eq. (5.39) includes a non-zero direct feedthrough dependency

of the voltage on the input current, thereby modelling the resistive component of the cell’s

impedance. The full expression for output voltage is given by expanding eq. (5.29) as

𝑉cell(𝑡) =
2𝑅𝑇
𝐹

sinh−1
⎛
⎜
⎜
⎝

−𝐼 (𝑡)

2𝐴𝑙pos𝑎s,pos𝐹𝑘rpos√
𝑐e,0𝑐s,surfpos(𝑡) (𝑐s,maxpos

− 𝑐s,surfpos(𝑡))

⎞
⎟
⎟
⎠

−
2𝑅𝑇
𝐹

sinh−1
⎛
⎜
⎜
⎝

𝐼 (𝑡)

2𝐴 𝑙neg𝑎s,neg𝐹𝑘rneg√
𝑐e,0𝑐s,surfneg(𝑡) (𝑐s,maxneg

− 𝑐s,surfneg(𝑡))

⎞
⎟
⎟
⎠

+ 𝒰pos (𝑐s,surfpos(𝑡)) − 𝒰neg (𝑐s,surfneg(𝑡)) (5.40)

wherein the solid phase surface concentration at each electrode 𝑐s,surf𝑗 is obtained from its

corresponding bulk concentration 𝑐s,avg𝑗 by rearranging eq. (5.17) and is given by

𝑐s,surfpos = 𝑐s,pos +
8𝑅ppos

35
𝑞pos +

𝑅ppos

35𝐷s,pos𝐴 𝑙pos𝑎s,pos𝐹
𝐼 (𝑡) (5.41)

𝑐s,surfneg = 𝑐s,neg +
8𝑅pneg

35
𝑞neg −

𝑅pneg

35𝐷s,neg𝐴 𝑙neg𝑎s,neg𝐹
𝐼 (𝑡) (5.42)

where 𝐼 (𝑡) > 0 for discharge.
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Given the initial SOC of the cell 𝑧(0), the initial bulk concentration of the negative

electrode at equilibrium 𝑐s,neg(0) is obtained by eq. (5.12). The initial value of the mean radial

concentration flux in both electrodes is zero i.e., 𝑞𝑗(0) = 0. Therefore, the initial state vector

is [ 0 0 𝑐s,neg(0) ]𝑇. Thus, the system of equations given by eqs. (5.37)–(5.42) form a complete

state-space representation of the conventional SPM. This state-space model can be simulated

as a standalone Initial Value Problem (IVP) or embedded as the plantmodel in control-oriented

applications such as for dynamic state estimation.

5.2 Numerical Implementation

The equations presented in section 5.1 are well-known, self-sufficient and fully descriptive so

as to implement the basic SPM. Although discrete-time numerical implementation of circuit-

oriented cell models has been considered [11, 195–197], there has been no such treatment of

this critical aspect in the SPMmodelling literature. Since this thesis has a strong focus towards

enabling the use of PBMs in an embedded environment, at least the numerical aspects of

implementing these equations need to be discussed. The finer details and practical engineering

considerations of real-time programming, in particular the integration of the cell model into

the pack, interaction with upstream components and other such aspects of a typical vehicular

drivetrain controller, are beyond the scope of this academic work. Nevertheless, the discussion

here aims to lower the barrier to real-time implementation and is a unique contribution in

the implementation context of cell models.

5.2.1 Continuous-time Implementation

Analytical solution

Although not explicitly given in SPM literature, using LTI system theory, the analytical

solution for continuous-time state equation (eq. (2.1)) with current input∗ is given by

x(𝑡) = 𝑒𝐴(𝑡−𝑡0)x(𝑡0) + ∫
𝑡

𝑡0
𝑒𝐴(𝑡−𝜏)𝐵u(𝜏 ) 𝑑𝜏 (5.43)

∗The analytical closed form solution cannot be obtained for constant voltage operation. This is because the
boundary flux is implicitly determined by the non-linear Butler-Volmer equation eq. (1.7) and needs to be solved
numerically with some variant of a Newton-type iteration scheme.
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With a standard IVP, 𝑡0 = 0

x(𝑡) = 𝑒𝐴𝑡x(0) + ∫
𝑡

0
𝑒𝐴(𝑡−𝜏)𝐵u(𝜏 ) 𝑑𝜏

⏟⏟⏟⏟⏟⏟⏟
convolution integral

(5.44)

The matrix exponential 𝑒𝐴𝑡 is known as the state-transition matrix and is defined as

𝑒𝐴𝑡 ≜ ℒ−1 {(𝑠𝐼 − 𝐴)−1} (5.45)

although several methods exist for its efficient numeric computation [198].

The analytical solution given by eq. (5.44) can be applied to obtain the matrix-vector state

equation eq. (5.38) of the SPM. Once the state variables are obtained at a given time-step, after

evaluating the surface concentrations as per eq. (5.41) and eq. (5.42), they may be substituted

into the output equation of eq. (5.40) to obtain the cell’s terminal voltage for that time-step.

Numerical considerations for continuous time implementation

The procedure described thus far has a practical limitation. The input current 𝐼 (𝑡) to the cell

has been defined as a continuous quantity. Although for the purpose of characterising the

cell’s behaviour, it is possible to use pre-determined continuous-functions as load profiles

(e.g. sinusoidal waveforms for virtual Electrochemical Impedance Spectroscopy (EIS) testing),

it is desirable to evaluate the model’s response to typical real-life conditions. In a vehicular

application, only samples of cell current measured by sensors at discrete-time intervals are

reported to the Battery Management System (BMS). A Zero Order Hold (ZOH) operation is

used at the model’s input i.e., the level of current is assumed to be held constant between two

successive measurements.

It is tedious to hand-compute the convolution integral of eq. (5.44). However, state of

the art adaptive-time solvers employing numerical schemes such as Dormand-Prince, Runge-

Kutta, Collocation and Backward Differentiation Formula are available to efficiently handle

such Ordinary Differential Equations (ODEs). Since lithium concentrations vary smoothly

over time without abrupt discontinuities, a standard non-stiff solver of moderate order shall

suffice. An example line of code using MATLAB’s ode45 solver for this time integration is

[~,x_new] = ode45(@(t,x) stateEqn(x,Ik,spm_params), t_span, x_old);
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Since the direction of applied current is susceptible to sudden reversals, (e.g. due to

acceleration and braking events in a vehicular application), the solver needs to be stopped and

re-started every sample period. Algorithm 5.1 shows the sequence of operations for a desktop

simulation of the continuous time SPM on a digital computer. The source code listing of an

example implementation in MATLAB is provided in listing A.1.

In the author’s view, the continuous time SPM algorithm has limited practical use.

Computing the convolution integral or deploying ODE solver codes onto a microcontroller is

challenging and introduces substantial computational burden. Although the continuous time

model can be used for desktop simulation, more sophisticated PBMs are already available for

this task. Therefore, for online deployment in state estimation and control tasks, a discrete-

time version of the model suitable for real-time implementation is needed.

5.2.2 Conceptual Overview of Real-Time Processing

The equations in section 5.1.3 are derived in continuous time form. In particular, the state

equation given by eq. (5.38) describes the continuous time dynamic evolution of quantities

such as the bulk concentration and rate of mean radial flux. However, a typical embedded

controller such as that used in a vehicular BMS operates in discrete-time [3]. This implies

that samples of voltage, current and temperature measurements are obtained at a periodic

time interval 𝑇𝑠. The updating of solution variables are performed between two successive

data acquisition events from the sensors.

Execution of control-oriented reduced-order PBMs such as the SPM and their associated

computations are modular sub-tasks of a vehicular BMS. A single BMS often provides

a whole host of other auxiliary functionality such as cell balancing, protection, diagnostics

and data-logging [13]. Although thermal management tasks are typically delegated to

dedicated controllers, the BMS software routines often handle data exchanged between

various subsystems on the vehicular communication bus. While some of these tasks such as

book-keeping and diagnostics can be performed at a low execution-rate, others such as cell

measurements and model-related computations need to be performed with high priority.

Figure 5.2 shows an example of a plausible implementation of a BMS software in an

embedded microcontroller. The vast array of functionality performed by the BMS can be
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Algorithm 5.1 Continuous-time SPM

Require: Load profile ▷ e.g. a csv file of 𝑡 vs. C-rate
Require: SPM parameter set ▷ e.g. stored in a struct params
User data: 𝑧[1], 𝑡f,user, 𝑡f,condition, cell capacity 𝐼1C, sample rate 𝑇𝑠 ▷ 𝑡f,condition ∈ {max, min}
Ensure: 𝑧[1], 𝑉cell[1] within limits ▷ index [𝑘 = 1] ≙ time (𝑡 = 0)
1: procedure SimulateSPM

2: 𝑡f,desired = {
max(𝑡f,user, 𝑡f,profile), if 𝑡f,condition == max;

min(𝑡f,user, 𝑡f,profile), otherwise.
▷ may terminate early due to

cut-off violations
Note: Flexible end time. Extrapolate last C-rate from profile until 𝑡f,desired if necessary.

3: 𝑁max ← ⌈ 𝑡f,desired𝑇 𝑠 ⌉ + 1 ▷ max iterations assuming no cut-offs

4: Allocate storage of size ℝ𝑁max×1 for each simulation variable

5: Compute 𝑐s,neg[1] as per eq. (5.12)

6: 𝐼 [1] ← 𝐼1C × C-rate[1], x[1] ← [ 0 0 𝑐s,neg[1] ]𝑇 ▷ C-rate[1] from profile

7: 𝑉cell[1] ← ComputeCellVoltage(x[1], 𝐼 [1], params) ▷ from direct feedthrough

8: for 𝑘 ← 2 ∶ 𝑁max do

9: 𝐼 [𝑘] ← interpolate from profile using ZOH

10: Solve continuous-time equation eq. (5.38) ▷ solver IC set to 𝑥[𝑘 − 1]

11: x[𝑘] ← last time-entry vector of soln. matrix ▷ from an adaptive solver e.g. MATLAB’s ode45

12: Compute 𝑧[𝑘] as per eq. (5.18)

13: 𝑉cell ← ComputeCellVoltage(x[𝑘], 𝐼 [𝑘], param)

14: if 𝑧[𝑘] or 𝑉cell[𝑘] exceeded cut-off limits then

15: 𝑘 ← 𝑘 − 1 ▷ data from last step is invalid

16: break;

17: end if

18: end for
19: end procedure
20: subroutine ComputeCellVoltage(x, I, params)

21: Compute 𝑐s,surfneg as per eq. (5.42) ▷ consider saturating i.e., 𝑐s,minneg
≤ 𝑐s,surfneg ≤ 𝑐s,maxneg

22: Compute 𝑐s,pos as per eq. (5.37)

23: Compute 𝑐s,surfpos as per eq. (5.41)

24: Compute 𝑉cell as per eq. (5.40)

25: return 𝑉cell ▷ resume suspended line in SimulateSPM

grouped and managed as two separate processes — i) a background thread, and ii) a fore-

ground thread. The background thread runs continuously within the main loop sequentially

processing instructions. Figure 5.2a shows an example illustration of typical background tasks

that a BMS handles. All high-priority tasks are triggered by an interrupt and the supervisory
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(a) background process (low priority)

Initialise: SOC & other global variables
Ensure: voltage, current & temperature limits

procedure Main()
configure interrupts
enable timers
⋮
while True do ▷ until “key off” or shutdown

background task #1 ▷ diagnostics/protection

background task #2 ▷ canbus communication

⋮
if needs_balancing == 1 then

function PackBalance(𝑛cells,SOC𝑖,𝑣𝑖)
subroutine for pack balancing
⋮

end function
end if
⋮
background task #𝑛 ▷ supervisory reporting

end while
end procedure

(b) foreground processes (high priority)

begin Interrupt Service Routine ()
read new sensor data from ADC
function ComputeSPM(𝑖𝑘−1, params)

evaluate spm model equations
⋮
compute model output voltage
function SOCEstimator(𝑣model,𝑣meas)

state estimation subroutine
⋮

end function
function ICEControl()

⋮
write control outputs to DACs

end function
end function

return ▷ resume suspended line in Main()

Figure 5.2 Overview of the real-time software implementation of a typical BMS. Through an
interrupt-driven architecture for time-critical tasks as state estimation and control, the same
processor can be efficiently utilised by employing its idle CPU cycles for background tasks such
as diagnostics, fault logging and book-keeping.

control loop suspends the presently executing background task for later resumption. As

shown in fig. 5.2b, a typical example of such an interrupt driven process is the evaluation of

the SPM model equations and computation of control outputs and is discussed next.

Figure 5.3 depicts an exploded view of the timing aspects of the Interrupt Service

Routine that was briefly presented in fig. 5.2b. Upon the expiry of an on-chip timer calibrated

against a baseline precision-clock, hardware interrupts are raised by one or more Analog to

Digital Converters (ADCs) associated with voltage/current sensors mounted on cells. The ISR

disables the interrupt and reads the samples of data from the ADCs into software. At the end of

this process, the ISR rearms the interrupts and simultaneously sends and acknowledgement to

the appropriate sensor which reloads its timer. The SPM model equations are then evaluated

in software and the resulting computational variables such as voltage and concentrations

are employed in other pertinent tasks such as state estimator subroutines. If the BMS also
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Figure 5.3 Timing diagram of a real-time software loop of a BMS. The sequence of events
within one sample period 𝑇𝑠 in relation to the base clock of the controller is shown. Particular
emphasis is placed on depicting the handling of Interrupt Service Routine (ISR) requests pertinent
to cell models. Other background tasks performed by the CPU are de-emphasised. Moreover, the
integration of the BMS software loop within the larger scope of a master vehicular controller is
not shown. Illustration adapted from Southward [199].

performs control tasks e.g. regulating the coolant’s flow rate or Internal Combustion Engine

(ICE) state-toggling such as in the hysteresis control of a series hybrid drivetrain, these control

outputs are written to the relevant Digital to Analog Converters (DACs).

5.2.3 Sample Delay Considerations

Figure 5.4 shows a vertically compressed view of all CPU activities across a larger time

horizon. The CPU’s load factor is the ratio of time spent in foreground requests to its idling

time. While a high load factor is beneficial in terms of efficient usage of resources, it adversely

affects the power efficiency of the chip.

For Li-ion cell modelling, a sampling interval of 𝑇𝑠 = 1s is commonly used, thus aiming to

capture the cell dynamics below 500mHz†. The CPU’s clock used is of several MHz, a vast

majority of which is spent in background tasks or in sleep mode. Furthermore, a low-latency

ISR code is employed in the tasks of reading the ADC value, evaluating the model equations

and writing any control outputs to the DAC. Using a simplified PBM such as the SPM helps

in achieving a low-latency throughput for the ISR.
†In the ideal case, according to the Nyquist sampling theorem. In practice, the frequency range is smaller.
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Figure 5.4 A compressed timeline of CPU execution cycles showing details of activities within
each sample interval. The execution sequence is shown over a larger horizon so as to illustrate
the proportion of ‘activity time’ relative to the ‘idle time’. The vast majority of the CPU cycle is
spent in idling or background tasks. The servicing of the ISR occupies a relatively small fraction
of each CPU cycle. Diagram reproduced from Plett [200].

The overall implication of such a scheme is that any delays owing to the sample and

hold process at the model input and outputs can be neglected. In conventional sampled-data

systems, control delays may be analysed by considering a multiplicative factor of 𝑒−𝑠𝜆 in the

Laplace domain transfer function of the system. Delay parameters of 𝜆 = 0.5𝑇𝑠 or 𝜆 = 1𝑇𝑠
are commonly employed as conservative estimates. However, owing to the small CPU load

factors, in this thesis this delay term is omitted for discrete-time formulation of the SPM.

5.2.4 Discrete-Time SPM Formulation

Due to the sampling and ZOH operations at the ADC input to the system, the input to

the SPM is transformed from a simple continuous time signal to discrete-time sequences

i.e., 𝑢(𝑡) ↦ 𝑢[𝑘] and 𝑦(𝑡) ↦ 𝑦[𝑘], where 𝑘 = 0, 1, … ,∞ is the sample index corresponding to

the continuous time instant 𝑡𝑘 = 𝑘𝑇𝑠. The continuous time plant model represented by the

ODE system of eq. (5.38) is therefore replaced by a discrete-time process and modelled by

a difference equation which is to be determined.

Consider the general continuous-time solution given by eq. (5.43). Let 𝑡0 = 𝑘𝑇𝑠 and

𝑡 = (𝑘 + 1)𝑇𝑠, where 𝑘 = 0, 1, … ,∞. Therefore,

𝑥(𝑡0) = 𝑥(𝑘𝑇𝑠) ≡ 𝑥[𝑘] (5.46)

𝑥(𝑡) = 𝑥((𝑘 + 1)𝑇𝑠) ≡ 𝑥[𝑘 + 1] (5.47)

Substituting these relationships into eq. (5.43) yields

x[𝑘 + 1] = 𝑒𝐴𝑇𝑠x[𝑘] + ∫
(𝑘+1)𝑇𝑠

𝑘𝑇𝑠
𝑒𝐴((𝑘+1)𝑇𝑠−𝜏)𝐵u(𝜏 ) 𝑑𝜏 . (5.48)
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With the ZOH scheme discussed here, 𝑢(𝜏) remains constant from 𝑘𝑇𝑠 to (𝑘 + 1)𝑇𝑠, and is

equal to 𝑢(𝑘𝑇𝑠) i.e., 𝑢[𝑘]. Consider a change-of-variable definition for the dummy variable of

integration 𝜏 as 𝜂 = (𝑘 + 1)𝑇𝑠 − 𝜏. Thus, 𝜏 = (𝑘 + 1)𝑇𝑠 − 𝜂. Hence, 𝑑𝜏 = −𝑑𝜂. Substituting these

into eq. (5.48),

x[𝑘 + 1] = 𝑒𝐴𝑇𝑠x[𝑘] + [∫
0

𝑇𝑠
𝑒𝐴𝜂𝐵] 𝑢[𝑘] −𝑑𝜂 (5.49)

Reversing the order of integration leads to

x[𝑘 + 1] = 𝑒𝐴𝑇𝑠x[𝑘] + [∫
𝑇𝑠

0
𝑒𝐴𝜂𝐵 𝑑𝜂] 𝑢[𝑘] (5.50)

Equation (5.50) represents a discrete-time state-space representation of the dynamics of

the system whose generic representation is given by the difference equation

x[𝑘 + 1] = 𝐴𝑑𝑥[𝑘] + 𝐵𝑑𝑢[𝑘] (5.51)

where 𝐴𝑑 = 𝑒𝐴𝑇𝑠 and 𝐵𝑑 = ∫𝑇𝑠0 𝑒𝐴𝜂𝐵 𝑑𝜂. If the continuous-time system matrix 𝐴 is invertible,

a closed form expression for 𝐵𝑑 is obtained as

𝐵𝑑 = 𝐴−1(𝐴𝑑 − 𝐼𝑛)𝐵 (if 𝐴−1 exists) (5.52)

For the continuous time system matrix 𝐴 of the SPM, its determinant is zero.

|
|
|
|
|

−30
𝐷s,pos
𝑅2ppos

0 0

0 −30
𝐷s,neg
𝑅2pneg

0

0 0 0

|
|
|
|
|

= 0 (5.53)

and hence is not invertible. This necessitates an explicit evaluation of the integral in eq. (5.50)

for computation of the discrete-time input matrix 𝐵𝑑.

Since the only non-zero entries of the matrix lie along its main diagonal i.e., its modes are

decoupled, thematrix exponential reduces to a diagonal matrix whose elements are simply the

scalar exponentials of the original entries. The discrete-time input matrix 𝐵𝑑 can be obtained
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by evaluating eq. (5.55).

𝐴𝑑 = 𝑒𝐴𝑇𝑠 = exp

⎛
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎣

−30 𝐷s,pos
𝑅2
ppos

0 0

0 −30 𝐷s,neg
𝑅2
pneg

0

0 0 0

⎤
⎥
⎥
⎥
⎥
⎦

𝑇𝑠

⎞
⎟
⎟
⎟
⎠

=

⎡
⎢
⎢
⎢
⎢
⎣

𝑒
−30

𝐷s,pos
𝑅2ppos

𝑇𝑠
0 0

0 𝑒
−30

𝐷s,neg
𝑅2pneg

𝑇𝑠
0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

(5.54)

𝐵𝑑 = ∫
𝑇𝑠

0
𝑒𝐴𝜂𝐵 𝑑𝜂 =∫

𝑇𝑠

0

⎛
⎜
⎜
⎜
⎝

⎡
⎢
⎢
⎢
⎢
⎣

𝑒
−30

𝐷s,pos
𝑅2ppos

𝜂
0 0

0 𝑒
−30

𝐷s,neg
𝑅2pneg

𝜂
0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎦

⋅

⎡
⎢
⎢
⎢
⎢
⎣

45
2

1
𝑅2
ppos

𝐴 𝑙pos𝑎s,pos𝐹

45
2

−1
𝑅2
pneg

𝐴 𝑙neg𝑎s,neg𝐹

−3
𝑅pneg

𝐴 𝑙neg𝑎s,neg𝐹

⎤
⎥
⎥
⎥
⎥
⎦

⎞
⎟
⎟
⎟
⎠

𝑑𝜂 (5.55)

𝐵𝑑 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3
4

1−exp(−30
𝐷s,pos
𝑅2ppos

)𝑇𝑠

𝐷s,pos𝐴 𝑙pos𝑎s,pos𝐹

− 3
4

1−exp(−30
𝐷s,neg
𝑅2pneg

)𝑇𝑠

𝐷s,neg𝐴 𝑙neg𝑎s,neg𝐹

−3𝑇𝑠
𝑅pneg

𝐴 𝑙neg𝑎s,neg𝐹

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5.56)

The discrete-time matrix-vector system presented in eq. (5.54) and eq. (5.56) have not

been presented in existing literature, but is vital to understanding the implementation of the

SPM in digital controllers. Although, simpler alternatives such as Forward Euler methods are

available to approximate the time-derivative of the state vector, they suffer from problems

such as a growth in the rate of local truncation error per time-step [201], necessitating the

use of very high sample rates, which increases the burden on the embedded controller. The

matrix exponential approach is superior in terms of accuracy and stability across a wide range

of sample rates.

For a pre-determined sample-rate, the matrix exponential and hence the 𝐴𝑑 and 𝐵𝑑
matrices can be computed offline on a desktop and stored into the non-volatile memory of the

embedded controller to be loaded onto RAMduring operation. The vectorised implementation

of the state dynamics presented here is highly efficient and directly amenable for use in

classical state-vector algorithms. For the cell’s terminal voltage computation, the basic

structure and form of the output equation given by eq. (5.39) remains intact, except that the
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continuous time variables (x(𝑡), 𝑢(𝑡)) need to be replaced by their discrete-time counterparts

in the corresponding equation set i.e., eqs. (5.40)–(5.42). The discrete-time output function ℎ𝑑
is evaluated after updating the state vector (through eq. (5.51)).

𝑦[𝑘 + 1] = ℎ𝑑(x[𝑘 + 1], 𝑢[𝑘 + 1]) (5.57)

The complete sequence of steps for implementing the discrete-time variant of the SPM is

given in algorithm 5.2. In particular, it can be seen that the discrete-time system and input

matrices, 𝐴𝑑 and 𝐵𝑑 can be easily pre-computed from the parameter set using the matrix

exponential approach. In MATLAB, this can be achieved by passing the arguments of the

matrix exponential to the ‘expm’ command. The vectorised implementation of the discrete-

time state equation given in line 11 of algorithm 5.2 is a set of efficient linear algebra operations

consisting of simple matrix-vector product and vector-addition routines.

This thesis strives for an inclusive approach by taking into account that some battery

researchers whose focus is on fundamental aspects of lithium ion cells e.g. those specialising

in electrochemistry, might not be familiar with the nuances of the matrix exponential

and discrete-time matrix computations (in line 7 of algorithm 5.2). Therefore, a snippet of

MATLAB code clarifying the computation of the discrete-time system and input matrices, 𝐴𝑑

and 𝐵𝑑 is given in code snippet 5.1. A full code listing of an example discrete-time SPM

implementation in MATLAB is provided in listing A.2.

Thus, a discrete-time model of the basic SPM is now available for implementation in

an embedded BMS. Further analysis of discrete-time issues such as aliasing, quantisation

noise, signal pre-conditioning and discrete Fourier analysis lies in the specialised engineering

domain of signal processing and falls outside the scope of the thesis. The results of the basic

SPM are presented next in section 5.3.

5.3 Desktop Simulation

In this section, the performance of the basic SPM is discussed through desktop simulation

and by comparison against a standard Doyle-Fuller-Newman (DFN) benchmark model

incorporating the full Pseudo Two-Dimensional (P2D) dynamics.
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Algorithm 5.2 Discrete-time SPM

Require: Load profile ▷ e.g. a csv file of 𝑡 vs. C-rate
Require: SPM parameter set ▷ e.g. stored in a struct params
User data: 𝑧[1], 𝑡f,user, 𝑡f,condition, cell capacity 𝐼1C, sample rate 𝑇𝑠 ▷ 𝑡f,condition ∈ {max, min}
Ensure: 𝑧[1], 𝑉cell[1] within limits ▷ index [𝑘 = 1] ≙ time (𝑡 = 0)
1: procedure SimulateSPM

2: 𝑡f,desired = {
max(𝑡f,user, 𝑡f,profile), if 𝑡f,condition == max;

min(𝑡f,user, 𝑡f,profile), otherwise.
▷ may terminate early due to

cut-off violations
Note: Flexible end time. Extrapolate last C-rate from profile until 𝑡f,desired if necessary.

3: 𝑁max ← ⌈ 𝑡f,desired𝑇 𝑠 ⌉ + 1 ▷ max iterations assuming no cut-offs

4: Allocate storage of size ℝ𝑁max×1 for each simulation variable

5: Compute 𝑐s,neg[1] as per eq. (5.12)

6: 𝐼 [1] ← 𝐼1C × C-rate[1], x[1] ← [ 0 0 𝑐s,neg[1] ]𝑇 ▷ C-rate[1] from profile

7: Compute 𝐴𝑑 and 𝐵𝑑 ▷ as per eq. (5.54) and eq. (5.56)

8: 𝑉cell[1] ← ComputeCellVoltage(x[1], 𝐼 [1], params) ▷ from direct feedthrough

9: for 𝑘 ← 2 ∶ 𝑁max do

10: 𝐼 [𝑘] ← interpolate from profile using ZOH

11: 𝑥[𝑘] ← 𝐴𝑑𝑥[𝑘 − 1] + 𝐵𝑑𝑢[𝑘 − 1] ▷ eq. (5.51)

12: Compute 𝑧[𝑘] as per eq. (5.18)

13: 𝑉cell ← ComputeCellVoltage(x[𝑘], 𝐼 [𝑘], param)

14: if 𝑧[𝑘] or 𝑉cell[𝑘] exceeded cut-off limits then

15: 𝑘 ← 𝑘 − 1 ▷ data from last step is invalid

16: break;

17: end if

18: end for
19: end procedure
20: subroutine ComputeCellVoltage(x,I,params) ▷ uses discrete-time variants of eqs i.e., at index 𝑘

21: Compute 𝑐s,surfneg as per eq. (5.42) ▷ consider saturating i.e., 𝑐s,minneg
≤ 𝑐s,surfneg ≤ 𝑐s,maxneg

22: Compute 𝑐s,pos as per eq. (5.37)

23: Compute 𝑐s,surfpos as per eq. (5.41)

24: Compute 𝑉cell as per eq. (5.40)

25: return 𝑉cell ▷ resume suspended line in SimulateSPM
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% Returns 𝐴𝑑 and 𝐵𝑑 matrices
A_cts = [-30*Ds_pos/(R_pos^2), 0, 0; ...

0, -30*Ds_neg/(R_neg^2), 0; ...
0, 0, 0];

% 𝐴𝑑 = 𝑒𝐴𝑇𝑠 (see eq. (5.54))
A_disc = expm(A_cts*Ts); % expm command computes the matrix exponential

B_cts = [ (45/2)/(R_pos^2*a_pos*L_pos*F*A); ...
(-45/2)/(R_neg^2*a_neg*L_neg*F*A); ...

(-3/(R_neg*a_neg*L_neg*F*A))];

% 𝐵𝑑 = ∫𝑇𝑠0 𝑒𝐴𝜂𝐵 𝑑𝜂 (see eqs. (5.55)–(5.56))
B_disc = nan(size(B_cts));
B_disc(1) = B_cts(1)*(exp(A_cts(1,1)*Ts)-1)/A_cts(1,1);
B_disc(2) = B_cts(2)*(exp(A_cts(2,2)*Ts)-1)/A_cts(2,2);
B_disc(3) = B_cts(3)*Ts;

Code snippet 5.1 Computation of discrete-time matrices 𝐴𝑑 and 𝐵𝑑 in MATLAB

5.3.1 Cell Parametrisation‡

Table 5.2 lists the simulation parameters of an Lithium Cobalt Oxide (LCO) cell whose

positive and negative electrodes are LiCoO2 and LiC6 respectively. The electrolyte in this

system consists of LiPF6 salt in a solution of Ethylene Carbonate (EC)/Dimethyl Carbonate

(DMC)/Ethyl Methyl Carbonate (EMC) in a 1:1:1 ratio. The standard set of DFN parameters

have been extensively described and documented in literature. The detailed characterisation

of the physical properties of lithium-ion cells falls outside the scope of this thesis. Here,

the vast majority of electrochemical parameters viz. the geometric, thermodynamic, kinetic

and transport properties of the cell have been sourced from Subramanian et al. [137]. The

significance of each of the parameters in the context of the modelling assumptions discussed

in section 5.1.2 is examined.

The simulation parameters that are applicable exclusively to the P2D model are shown as

highlighted text in table 5.2. It can be seen that only a subset of the isothermal DFN model’s

parameters are required for the SPM. In particular, there is no requirement to estimate any

of the electrolyte-related parameters in each electrode region. Furthermore, the properties

‡Some contents in this section overlap with section 3.4.1 and represents a joint effort with Ian D. Campbell.
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Table 5.2 Parameters for isothermal simulation of the P2D and SPM implementations of an
LCO cell (with LiCoO2–LiC6 electrode pair and LiPF6 electrolyte). Highlighted entries represent
parameters exclusive to P2D model. 𝑗 ∈ {pos, sep,neg}.

System Conditions

Lower cutoff cell voltage, 𝑉min (V) a2.50
Upper cutoff cell voltage, 𝑉max (V) b4.30

Other Constants

Faraday constant, 𝐹 (Cm−1) 96487
Universal gas constant, 𝑅 (J mol−1 K−1) 8.314

Cell-level Parameters

Cell temperature, 𝑇cell (K) c298.15
Init. electrolyte conc., 𝑐e,0 (molm−3) c1000
Overall active surface area, 𝐴 (m2) i2.053

Thermodynamic, Kinetic, Geometric and Transport Parameters

Parameter Pos Sep Neg

Bruggeman coefficient, brugg𝑗
c4 c4 c4

Intrinsic electrolyte diffusivity, 𝐷 (m2 s−1) d3.22 × 10−10 d3.22 × 10−10 d3.22 × 10−10

Intrinsic electrolyte conductivity, 𝜅 (Sm−1) see table note e & section 5.3.2
Li+ transference number, 𝑡0+ c0.363 c0.363 c0.363
Intrinsic electronic conductivity, 𝜎𝑗 (Sm−1) c100.00 — c100.00
Thickness, 𝑙𝑗 (m) c72 × 10−6 c25 × 10−6 f88 × 10−6

Electrolyte volume fraction, 𝜀𝑗 c0.385 c0.724 c0.485
Filler vol. fraction, 𝜀fi𝑗

c0.025 — c0.033
Particle radius, 𝑅p𝑗

(m) c2 × 10−6 — c2 × 10−6

Specific interfacial surface area, 𝑎s𝑗 (m
2 m−3) g885 × 103 — g723.6 × 103

Electrode diffusivity, 𝐷s𝑗 (m
2 s−1) c1 × 10−14 — c3.9 × 10−14

Stoichiometry, 0% SOC, 𝜃min𝑗
h0.9917 — h0.0143

Stoichiometry, 100% SOC, 𝜃max𝑗
c0.4955 — c0.8551

Max concentration, 𝑐s,max𝑗
(molm−3) c51 554 — c30 555

Reaction rate coefficient, 𝑘r𝑗 (m
2.5 mol−0.5 s−1) c2.33 × 10−11 — c5.03 × 10−11

Open circuit potential, 𝑈𝑗 (V) ksee table note — msee table note

Spatial Discretisation

Parameter Pos Sep Neg

Nodes, through-thickness (axial), 𝑁a𝑗 15 15 15
Nodes, within spherical particle (radial), 𝑁r𝑗 10 — 10

a Ref. [74] b Set to ≈100mV above the cell’s OCP at 100 % cell SOC c Ref. [137] d Computed at 𝑇cell = 298.15 K using coefficients

from table II in Ref. [202]
e Computed at 𝑇cell = 298.15 K using coefficients from table III in Ref. [202] at 𝑐e,0 = 1000molm−3

f Set up for capacity balance of electrodes such that 𝑙neg = 1.22 × 𝑙pos here (see section 3.5.6) g Computed as per eq. (5.61)
h Obtained as residual stoichiometries after a C/500 simulated discharge from 100% cell SOC to 2.7 V
i Chosen so that current density for the electrochemical layer is 29.23Am−2 for 60A applied current (see section 3.4.1)

k 𝒰(𝜃pos) =
−4.656+88.669𝜃2pos−401.119𝜃4pos+342.909𝜃6pos−462.471𝜃8pos+433.434𝜃10pos

−1+18.933𝜃2pos−79.532𝜃4pos+37.311𝜃6pos−73.083𝜃8pos+95.96𝜃10pos
(5.58)

m 𝒰(𝜃neg) = 0.7222 + 0.1387𝜃neg + 0.029𝜃0.5neg − 0.0172
𝜃neg

+ 0.0019
𝜃1.5neg

+ 0.2808𝑒(0.9−15𝜃neg) − 0.7984𝑒(0.4465𝜃neg−0.4108) (5.59)
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of the separator material which are necessary in the DFN model are also not considered in

the SPM computations. A brief enumeration of the additional P2D-specific parameters in the

context of parametrisation requirements is provided here.

a. brugg𝒋 (×3) The empirical Bruggeman coefficient helps to define the effective values of

conductivity and diffusivity of the electrolyte. Although an identical value (4)

is used in table 5.2, in principle all three regions can have different values of

brugg and need to be parametrised separately.

b. 𝑫 (×1) The intrinsic electrolyte diffusivity of a typical electrolyte consisting of

LiPF6 salt in an organic solvent was experimentally characterised and

provided as a table of polynomial coefficients by Valøen and Reimers [202].

Evaluating this polynomial at a cell temperature of 298.15 K results in an

intrinsic diffusivity of 3.22 × 10−10 m2 s−1. Since this is a material property

independent of the region within the cell, it needs to be parametrised only

once.

c. 𝜿 (×1) Like the diffusivity, the intrinsic electrolyte conductivity is also a material

property and its value is independent of the region within the cell. Unlike

the diffusivity, the electrolyte conductivity is a strong function of its ionic

concentration. Thus, the polynomial proposed by Valøen and Reimers [202]

needs to be evaluated at 𝑇cell = 298.15 K and has to be updated during the

simulation as salt concentration within the electrolyte changes over time. A

discussion on the choice of initial concentration is provided in section 5.3.2.

d. 𝒕𝟎+ (×1) The cationic transference number measures the relative mobility of the Li+ ion

in the organic solvent and is independent of the region within the cell. Hence,

this intrinsic property is to be parametrised only once (per solvent).

e. 𝝈𝒋 (×2) The intrinsic conductivity of the solid phase depends on the material used

in the porous electrodes. Although a simplified assumption of equal conduct-

ivity is used for the two electrodes, in practice, this property needs to be

characterised for each of the two electrodes.
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Neglecting Arrhenius-type temperature dependence of physical properties and their

corresponding activation energies, the basic SPM facilitates the ability to afford physics-

based modelling capabilities with eight fewer parameters than the equivalent isothermal P2D

model. With the naive assumption of equal parametrisation effort per physical property,

this implies a 20% reduction in parametrisation requirements for the basic SPM when

compared to its DFN counterpart. However, considering the fact that parametrising the

electrolyte’s transport properties requires apparatus and infrastructure typically available

only in specialised chemical/materials science labs, the reduction in parametrisation overhead

for system-level engineering stakeholders is more pronounced.

Prima facie, it may seem that electrolyte porosities and filler volume fractions do not

influence the SPM model. However, they do have an indirect bearing on arriving at a critical

parameter viz. the solid phase volume fraction 𝜀s𝑗 . This parameter is required to compute the

specific interfacial surface area of the electrodes 𝑎s𝑗 i.e., the effective electrode area exposed

to reaction and is an important entity in the SPM model equations presented in section 5.1.3.

The solid phase volume fractions are also required in simulating the P2D model owing to

the need for computing the effective electronic conductivities of the electrodes (see eq. (1.6)).

They are calculated as

𝜀s𝑗 = 1 − 𝜀𝑗 − 𝜀fi𝑗 (5.60)

where 𝜀𝑗 and 𝜀fi𝑗 are the electrolyte and filler volume-fraction within the respective electrode

regions. Using the values from table 5.2 results in 𝜀s,pos = 0.590 and 𝜀s,neg = 0.482 for the

positive and negative electrodes respectively. The specific interfacial surface areas are then

calculated as

𝑎s𝑗 = 𝜀s𝑗
4𝜋𝑅2p𝑗
4
3 𝜋𝑅3p𝑗

=
3𝜀s𝑗
𝑅p𝑗

(5.61)

As discussed in the assumptions made during model derivation (see section 5.1.2) and

consistent with the assumed model geometry, the parameters not covered by the SPM

pertain to those describing electrolyte dynamics and distribution of electronic charge along

the axial thickness direction of the cell. Properties such as the intrinsic diffusivities and

conductivities of the electrolyte as well as the transference number of Li+ in the organic

solvent are thus completely redundant for SPM simulation. The assumption of uniform

charge density along the through-thickness length of each electrode implies that the intrinsic
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electronic conductivities of the two electrodes do not play any role in the model dynamics.

The porosities and Bruggeman coefficients in table 5.2 serve as modifying factors of the

intrinsic conductivities and diffusivities (see table 1.1) leading to an effective value within

each region of the electrochemical layer. Thus, their relevance is also rendered void for the

basic SPM simulation. The thickness of the separator material only plays a role in electrolyte

behaviour. By the model geometry presented in section 5.1.1, this parameter also falls outside

the scope of the basic SPM.

The thicknesses of the electrodes are optimised for equal loading i.e., to achieve a balance

in their individual capacities to store Li atoms. The thickness of the positive electrode is

chosen as the value from Subramanian et al. [137]. The thickness of the negative electrode

region is then computed with the goal of equalising the volume of active material in each

electrode for every electrochemical layer in a pouch cell.

𝐴elecpos𝜀s,pos𝑙pos = 𝐴elecneg𝜀s,neg𝑙neg (5.62)

In a lithium-ion pouch cell, the electrodes are designed such that the layers can be overlaid

on top of one another and finally encapsulated in a pouch. Geometrical considerations then

imply that the cross-sectional area (or face area) of the two electrodes must be the same.

However, due to the consideration of avoiding plating at the edges due to microscopic

malformations, the design is done such as to have a small overhang of the negative electrode

layer (< 2mm) with respect to the positive electrode layer [149] (see fig. 3.7). Nevertheless,

the active surface area is just the common overlap area between the two electrodes, and hence

𝐴elec is equal to the cross-sectional area of the positive electrode.

Thus, eq. (5.62) reduces to
𝑙neg
𝑙pos

= 𝜀pos
𝜀neg

= 1.22, yielding 𝑙neg = 72 µm.

At first, it may be surprising to note that the values of the particle radius 𝑅p𝑗 used in

both the P2D and SPM remain identical. However, it is important to note that the P2D

equations of the DFN model are cast in a normalised form i.e., already set up to account

for the overall capacity of the cell under consideration implicitly through usage of a current

density (per unit area) for its simulation. Furthermore, this explains why increasing the

number of discretisation nodes does not increase the modelled capacity, but instead merely

serves to improve the simulation accuracy owing to the enhanced spatial resolution.
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The overall active surface area𝐴 = 𝑛𝐴elec is the combined cross-sectional area of all layers

(𝑛 is the number of electrochemical (pos, sep, neg) triplets) stacked into the pouch cell. In

both the P2D and SPM models, this parameter serves to scale the external load current down

to the current density experienced by each electrochemical layer. A value of ≈30Am−2 was

reported in the results section of Subramanian et al. [137]. When considering a 60Ah pouch

cell with 10mm exterior thickness and using the parameters reported in [137], this results in

a cross-sectional area of 2.053m2 (see section 3.4.1). Considering the equalisation of capacity

loading, with the newly chosen thickness value of the negative electrode, the 1C-rate capacity

of the cell has been revised to 29.23Am−2.

On simulating the P2D model with a trickle bleeding type discharge corresponding

to a current of C/500 and logging the data every 1ms, after reaching 2.7 V§, the remnant

concentrations in the two electrodes were noted. The corresponding residual stoichiometry

values are reported in table 5.2.

Since only isothermal cell behaviour is considered, table 5.2 omits the activation energies

for the various diffusivities and conductivities of materials (see section 5.3.2 for further

thermal considerations). For this reason, table 5.2 does not include other material properties

such as specific heats, and thermal conductivities. No properties of the current collectors

appear in the isothermal model equations for both the P2D and SPM models and hence are

omitted. All other electrochemical properties, viz. stoichiometries at 100 % SOC, maximum

concentrations, diffusivities, reaction rate coefficients and OCP of the two electrodes remain

invariant between the P2D and SPM models.

5.3.2 Simulation Setup

For reproducibility of results, it is important to discuss the system-level parameters influen-

cing simulation setup.

The lower cut-off voltage of the cell is chosen to be 2.5 V. This is deliberately kept

lower than the voltage corresponding to the cell’s 0 % i.e., 2.7 V. If set above 2.7 V even at

infinitesimally small discharge currents, the cell would cut-off before achieving complete

discharge. Choosing a value lower than 2.7 V means that the cell gets a chance to recover

§From manufacturer datasheets for LCO chemistries, this value is considered to correspond to 0% SOC.
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its terminal voltage, despite spikes in highly dynamic load currents that might bring the

voltage below this threshold momentarily. If a low-enough value is not chosen, a system-

level shutdown shall be initiated despite possessing the ability to continue to operate after

recovery of terminal voltage. In this case, choosing a cut-off voltage of 2.5 V does not damage

the cell since checks are in place to monitor the SOC and trigger cut-off in the event of charge

depletion (see algorithms 5.1 and 5.2). Northrop et al. [74] use this value, although no specific

explanation is given for this choice.

The upper cut-off voltage of the cell is chosen at 4.3 V i.e., ≈100mV higher than the

equilibrium OCP at 100 % SOC. There are several reasons for this smaller margin at the upper

end of the voltage spectrum.

safety li-ion cells are less tolerant to overcharging and can pose fire hazards.

degradation overcharging li-ion cells can lead to plating and accelerate other degrad-

ation mechanisms.

low C-rates charging C-rates are typically lower than discharge C-rates.

CCCV charging For on-board chargers, taper charging (such as in a Constant Current

Constant Voltage (CCCV) profile) is activated, which ensures that char-

ging current drops off rapidly, leading to a lower overvoltage towards

the upper SOC range.

low probabilities The only charging event when an electrified vehicle is in motion is during

regenerative braking. The vehicular BMS manages the operating window

such that the starting SOC is much lower than the overvoltage that could

be caused due to braking. Furthermore, during operation, net discharge

events occur more frequently than regenerative braking events.

For both the P2D model and the SPM model, the cell temperature is kept constant at its

initial value of 25 ∘C (298.15 K). This might imply to the reader that the operation of the lithium

ion cell is assumed to be isothermal.While this is not true in general, for the C-rates considered

here (<5C), typical in a Battery Electric Vehicle (BEV) application particularly for the short-

duration transient loads studied, it is certainly a valid zeroth order coarse approximation

of the cell’s thermal condition. Detailed modelling of thermal dynamics is not within the
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scope of this thesis, as the primary goal is to obtain a PBM incorporating electrochemical

principles amenable for embedded application. Hence, the thermal dependence of parameters

through an Arrhenius-type relationship is also not considered. Future work could include

performing thermally coupled simulations i.e., incorporating thermally dependent parameters

and simplified heat generation expressions e.g. a lumped thermal model could be employed

for both the SPM and P2D and their performances may be compared.

To understand the parametrisation of initial concentration, the expression for electrolyte

conductivity needs to be examined. As discussed in section 5.3.1, the intrinsic conductivity of

a specific type of electrolyte is a material property that depends on the local concentration

of Li+ ions and temperature. In the characterisation of the electrolyte by Valøen and

Reimers [202], the best fit expression for electrolyte conductivity was obtained as

𝜅𝑗(𝑐e, 𝑇 , 𝑥, 𝑡) = 10−4𝑐e(𝑥, 𝑡)(−10.5 + 0.668 × 10−3𝑐e(𝑥, 𝑡) + 0.494 × 10−6𝑐e(𝑥, 𝑡)
2

+ (0.074 − 1.78 × 10−5)𝑐e(𝑥, 𝑡) − 8.86 × 10−10𝑐e(𝑥, 𝑡)
2)𝑇 (𝑡)

+ (−6.96 × 10−5 + 2.8 × 10−8𝑐e(𝑥, 𝑡))𝑇 (𝑡)2)
2

(5.63)

Figure 5.5 shows a surface plot of the electrolyte conductivity as a function of initial

concentration 𝑐e,0 and cell temperature 𝑇cell. For the modelling task at hand, relevant aspects
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Figure 5.5 Electrolyte conductivity as a function of cell temperature and initial concentration.
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of this material property can be better understood through the simplifications afforded by the

simulation conditions applicable here. At equilibrium initial condition, 𝑐e is uniform over the

axial space 𝑥. Secondly, only isothermal cell behaviour is considered i.e., 𝑇 (𝑡) = 𝑇cell(0) = 𝑇cell.

Hence, eq. (5.63) reduces to

𝜅𝑗 = 10−4𝑐e,0(−10.5 + 0.668 × 10−3𝑐e,0 + 0.494 × 10−6𝑐2e,0
+ (0.074 − 1.78 × 10−5)𝑐e,0 − 8.86 × 10−10𝑐2e,0)𝑇cell

+ (−6.96 × 10−5 + 2.8 × 10−8𝑐e,0)𝑇 2cell)
2

(5.64)

As inferred from fig. 5.5, the electrolyte conductivity 𝜅 is a smooth function of 𝑐e and 𝑇cell.

Thus eq. (5.64) can be effectively visualised through a parametric plot of 𝜅 versus 𝑐e with 𝑇cell
as the variable parameter as seen in fig. 5.6. From fig. 5.6, it is evident that at 𝑇cell = 298.15 K,

the maximum value of electrolyte conductivity is attained at 𝑐e = 1000molm−3. It is advant-

ageous to operate the cell around this salt concentration so as to minimise the cell’s overall

resistance. Hence, the initial concentration 𝑐e,0 is chosen to be 1000molm−3. It should be

noted that while the electrolyte concentration in the P2D model exhibits both spatial and

temporal variations during the simulation, in the SPM model, it remains constant throughout.
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Figure 5.6 Electrolyte conductivity versus equilibrium concentration at various cell temper-
atures. At 𝑇cell = 298.15 K, the maximum value of electrolyte conductivity corresponds to a salt
concentration of 1000molm−3.
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The reduction in parametrisation requirements discussed in section 5.3.1 is only one of

the factors contributing to the simplicity and ease of simulation. As discussed in section 5.1.1,

an important computational requirement that is present in the P2D model, but completely

eliminated from the SPM is the requirement of discretisation. As reported in table 5.2, with

15 nodes per region along the axial direction and with 10 shells per electrode in the radial

direction, the P2D model under simulation achieves mesh independence to a tolerance

of ≈2% for the range of C-rates considered. For higher C-rates, coupling a thermal model

is of higher importance than incorporating further meshing refinements. The discretisation-

related parameters are specific to the P2D model and are highlighted accordingly in table 5.2.

Capacity Characterisation

First, it must be established that incorporating the parameters presented in table 5.2 into

the SPM model equations results in a cell with identical capacity as the DFN model. This is

to ensure the validity of comparisons in further simulations. Using the values of per-layer

C-rate as discussed in section 5.3.1, and the overall active surface area from table 5.2, the cell

under simulation has a capacity of 60Ah.

Present literature in battery modelling, both for the DFN model and for the SPM, do not

discuss any aspect of capacity characterisation. In particular, parameters such as the geometric

surface area of cells and even their 1C-rate are often not listed in publications. This practice

can be attributed to the fact that all one-dimensional and Pseudo Two-Dimensional models

operate on a per-layer basis, using an applied current density. Many a time, researchers

assume a unit surface area for the cell. This implicit normalisation is amenable to those

studies which strive to make numerical comparisons between models through simulation.

However, it leads to a lack of clarity on the actual capacity of the cells being modelled.

Furthermore, when comparing with experimental data from a real cell, such works resort

to ad hoc techniques such as empirical curve-fitting for obtaining the surface area. Often

the source of such parametrisation is not made clear. Section 3.4.1 documents the details of

obtaining the overall surface area of cells and arriving at the C-rate per layer of the specific

cell under consideration. Since the DFN model does not explicitly model the cell capacity,

a brief explanation is provided on how a simple numerical characterisation can be used for

determining cell capacity given a complete parameter list.
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For experimental capacity characterisation of cells, the standard practice is to apply a very

small discharge current beginning at 100 % SOC, logging the charge passed using a high-

precision coulomb counter until the cell hits the voltage corresponding to 0 % SOC as specified

in the manufacturer’s datasheet. In order to decouple the effect of the cell’s dynamics from

its capacity, it is required to apply an infinitesimal bleeding current (tending towards, but not

reaching 0A).

Current sensors in battery cycler equipment use high-precision (typically 15–18 bit)

ADCs and are able to offer high Signal to Noise Ratios (SNRs) except at ultra-low currents.

The main difficulty with using very low C-rates is that it drastically slows down the

characterisation procedure. Using a discharge current of C/100 i.e., 0.6 A in this case, results in

a characterisation time of 100 h or ≈41/4 days (excluding soak-times and other set-up related

activities). Furthermore, for accurate coulomb-counting, a high data logging rate is needed,

producing large file sizes and corresponding difficulties in post-processing them. Considering

moderate buffer-sizes used in data logging modules of typical cell-cycler software (shared

between channels), and to avoid excessively large wait-times for characterisation, discharge

currents of C/20–C/25 are usually deemed sufficient.

In order to validate that the choice of model parameters result in an intended capacity

of 60Ah, an analogous procedure is carried out by means of computer simulation. A

characterisation simulation beginning at 100 % SOC with a discharge current of 0.6 A was

performed¶. If the assumed cell capacity is indeed consistent with the model parameters,

then this corresponds to a C-rate of 1/100. Therefore, both the P2D and SPM should run for

exactly 100 hours before cut-off due to charge depletion.

Capacity validation through computer simulation is not bound by the limitations of

the experimental approach discussed earlier. Using 64-bit IEEE floating point arithmetic,

quantities as low as 𝒪(10−16) can be safely computed, nullifying any SNR issues. Table 5.3

summarises the key data from this simulation run. For accurate coulomb counting, the data

logging interval is set to 50ms. Both models ran close to 100 hours. The small deviations from

this expected termination time can be attributed to the fact that the current is not arbitrarily

small with the pragmatic goal of obtaining results in a reasonable time.

¶All computations were performed on a 64-bit Hewlett-Packard Z840 workstation with a 16-core Intel®

Xeon® E5-2640 v3 (Haswell) processor clocked at 2.60GHz with 128GB DDR4 RAM at 1866 MT/sec.
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Table 5.3 Simulation data for capacity characterisation of P2D and SPMmodels. The P2Dmodel
is considered as the reference benchmark. The modelling error is defined as 𝜀𝑣 = 𝑉cellp2d − 𝑉cellspm

Parameter Value Units

Data-logging interval 50.00 ms
Combined CPU time with warm cache 12.22 min
Total RAM used 603.90 MB
P2D run-time 99.94 h
SPM run-time 99.90 h
P2D discharge capacity 59.96 Ah
SPM discharge capacity 59.94 Ah
Worst case error, 𝜀𝑣max

-94.30 mV
Mean error, 𝜇𝜀𝑣 -3.00 mV
RMS error, 𝜀𝑣RMS

8.20 mV
MAE error, 𝜀𝑣MAE

3.20 mV
Standard deviation of error, 𝜎𝜀𝑣 7.60 mV

As seen in table 5.3, even the combined CPU time to simulate both the P2D and SPM

models is two orders of magnitude lower than real-time. The only issue that remains to be

addressed is that of considerable memory and storage requirements due to high-rate data-

logging for accurate coulomb counting. For a standard computer workstation, this places

only a minor demand on its CPU. For comparable volume of data to be logged, the reliability

and ruggedness of a dedicated workstation far exceeds that of real-time cell cyclers, thereby

establishing numerical simulation as an amenable method for characterisation of cell capacity.

A major disadvantage of simulation based capacity validation is its extreme sensitivity to

parameters such as the maximum concentration of the electrodes and their stoichiometries,

which are generally difficult to characterise. In this context, the experimental procedure of

high-precision coulomb counting assumes a practical significance as it requires no knowledge

of the cell’s parameters other than the manufacturer’s datasheet.

Figure 5.7 shows the voltage response of the SPM and P2D models, which overlap almost

entirely. It is clear that both the P2D and SPM models achieve a run-time of 100 hours. This

represents the first visualisation of results produced by the SPM model equations discussed

in section 5.1.3 and its numerical implementation from section 5.2.
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Figure 5.7 Voltage response of P2D and SPM models to a discharge current input of 0.6 A. Both
models achieve their charge depletion point after ≈100 h confirming that their modelled capacities
match. Key simulation data for this characterisation run is shown in table 5.3.

The voltage error is defined as

𝜀𝑣 = 𝑉cellp2d − 𝑉cellspm (5.65)

The absolute maximum error is of 𝒪 (100)mV, which occurs towards the end of discharge.

Although this represents the worst case upper bound on the error, this is not strictly

representative of the overall error behaviour as evidenced by the standard deviation of

the error vector. The mean and Root Mean Square (RMS) error values indicate an accuracy

of 𝒪 (10)mV. It should be noted that throughout the simulation, the voltage response of the

SPM remains slightly above that of P2D, thereby leading to a negative value for the mean

voltage error. For continuous quantities such as time-domain simulation outputs of physical

variables, the Mean Absolute Error (MAE) is a suitable error metric and is defined as

𝜀MAE =
Σ𝑛𝑖=1|𝜀𝑖|

𝑛
(5.66)

Here, the numerical value of MAE is consistent with the order of magnitude of the RMS and

mean error metrics as well as with the standard deviation of the error vector.
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Thus, a common foundation for further simulations has been established by confirming

that the two models indeed simulate a cell with a capacity of 60Ah. With the cell paramet-

risation discussed, simulation setup presented and capacities validated, the simulation results

are fully reproducible and are presented next in section 5.3.3.

5.3.3 Simulation Results

Constant current discharge

The left column of fig. 5.8 shows the time-domain voltage response of the basic SPM for

various constant discharge currents. The voltage response of the P2D model is also overlaid

on these plots and is used as a reference benchmark for comparisons. It is difficult to use

a common time-scale for the horizontal axes of the plots since the run-times differ by two

orders of magnitude for the C-rates considered.

Since these comparisons have to be done across multiple C-rates, each yielding different

magnitudes in voltage responses, it is helpful to use a relative error metric such as the

percentage error, defined as

̂𝜀𝑣 (%) = 100
𝑉cellp2d − 𝑉cellspm

𝑉cellp2d
(5.67)

It is to be noted that, in all cases, the P2D model terminates faster than the SPM either

due to hitting lower cut-offs of either terminal voltage or SOC (see fig. 5.9). Consequently,

the error vector is defined only for the common time-region before cut-off.

In fig. 5.8, the column on the right shows the percentage error in the voltage response

of the SPM with respect to the P2D model. At very low C-rates below ≈0.5C, the voltage-

response performance of the SPM is acceptable. However, the performance degradation is

rapid above this C-rate. It is clear that the error in the SPM response is monotonic and

unidirectional. This indicates that the source of the error is due to unmodelled dynamics. In

particular, as discussed in the modelling assumptions of section 5.1.2, the SPM ignores the

electrolyte dynamics. Thus, the overpotential in the electrolyte is not modelled, which results

in the terminal voltage of the SPM being always higher than its P2D counterpart.
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Figure 5.8 Voltage responses of the P2D and SPM models to various constant discharge
rates. The left column shows the time-domain voltage response of the SPM plotted against the
benchmark P2D response. The column on the right shows the percentage voltage error of the SPM
with respect to the P2D model. The performance of the SPM degrades considerably at discharge
currents above just 0.5C.

Figure 5.9 shows the time-evolution of SOC computed by the P2D and the SPM models

for various discharge currents. Since the SOC of a cell is already a normalised quantity by

definition, the difference between the two models can be directly used for comparison across
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Figure 5.9 Plots in the left column depict the time evolution of SOC computed by the P2D and
SPM models for various constant discharge rates. The column on the right shows the error of the
SOC computed by the SPM with respect to that computed by the P2D model i.e., 𝜀soc = 𝑧p2d −𝑧spm.
In this case, the basic SPM remains quite accurate even at moderate currents such as 3C.

multiple C-rates. The SOC error is defined as

𝜀soc = 𝑧p2d − 𝑧spm (5.68)
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and like the error in the terminal voltage, remains unidirectional over time, and defined only

until one of the models hits cut-off. Table 5.4 shows a summary of various error metrics used

to quantify the performance of the basic SPM for various discharge rates.

Table 5.4 Summary of error metrics of the basic SPM for terminal voltage and SOC in constant
current discharge simulations.

C-rate ̂𝜀𝑣 (%) 𝜀soc (%)

abs. max. MAE abs. max. MAE

0.2 6.64 0.49 0.02 0.02
0.5 8.49 1.17 0.05 0.05
1.0 11.00 2.95 0.10 0.10
3.0 56.53 9.22 0.31 0.30

A quick perusal of table 5.4 reveals a discrepancy that invokes surprise at first glance.

Whilst the performance of the SPM is quite poor in terms of terminal voltage prediction, it

is worth noting that its SOC prediction capabilities remain quite accurate even at moderate

discharge currents of about 3C and therefore, warrants a brief explanation.

Referring to eq. (5.18), it is seen that the SOC of the cell is directly proportional to the bulk

(average) concentration in the negative electrode. Hence the plots of fig. 5.9 also represent

the solid phase concentration with a constant scaling factor. As per the assumptions listed

in section 5.1.2, the only transport phenomena modelled in the SPM is solid phase diffusion.

However, for computation of the terminal voltage, the electrolyte overpotential contribution

has been omitted (see eqs. (5.26) and (5.27)). This explains why the voltage accuracy suffers,

while the open-loop SOC computation remains accurate. The high accuracy of SOC (and

hence, solid-phase concentration) computation also validates the usage of the 4th order

polynomial approximation in the place of Fick’s law for modelling solid-phase diffusion.

However, the discrepancy in accuracies of terminal voltage and SOC computed by the

basic SPM leads to an important implication. Even at moderate C-rates, the basic SPM cannot

be effectively used in the design of SOC observers. This is because, the measured voltage

maps to a vastly different operating point when using the SPM as the plant model, leading

to strong deviations of the estimated SOC.
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Constant current charge

The CCCV charging profile is a widely adopted standard charging strategy for charging

lithium ion cells [3]. In the constant current phase, a charging rate of 1C is used as an accepted

baseline, although faster charging strategies are presently being actively sought after.
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Figure 5.10 Time evolution of voltage and SOC (top row) of the P2D and SPM models upon
charging with a constant current of 1C, i.e., 60 A starting at 0 % SOC. The bottom row shows the
percentage in terminal voltage and SOC respectively of the SPM with respect to the P2D model.

The top row of fig. 5.10 shows the evolution of terminal voltage and SOC of the P2D

and SPM models under an applied charging current of 1C i.e., 60 A. The constant-voltage

charging phase is not shown. The bottom row shows the corresponding errors of the SPM

model with respect to the reference P2D benchmark. The corollary behaviour of the constant

current discharge behaviour is observed here. The terminal voltage of the SPM remains

below the P2D model throughout. This is expected since, to account for the electrolyte

voltage drop modelled in the P2D dynamics, a higher terminal voltage needs to be applied.

The voltage error is thus unidirectional and remains positive (opposite to that observed for

the corresponding discharge case). Similarly, the SOC plots overlap very closely, thereby

validating the underlying polynomial approximation of solid phase diffusion. It is striking to
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note that the error in SOC remains exactly around the same magnitude (≈0.1 %) in both the

charging and discharging cases.

Dynamic input profile

For automotive applications, it is important to characterise the performance of the cell model

under dynamic load conditions. Several standard vehicular driveycles have been defined and

adopted by regulatory agencies across the world. These drivecycles describe the profile of

the vehicle’s speed as a function of time. The profile of speed versus time of drivecycles is

typically available in intervals of 1 s, and is therefore consistent with the sample interval used

for the simulation (see table 5.2).

The Urban Dynamometer Driving Schedule (UDDS) is one such well-known drivecycle,

originally introduced by the United States Environmental Protection Agency that represents

city driving conditions which can be applied to a typical mid-sized passenger vehicle. world.

Figure 5.11 shows the UDDS drivecycle wherein the vehicle’s speed has been converted to

SI units for use in further computations. One complete drivecycle runs for 1369 s. As seen in

fig. 5.11, the UDDS profile is highly dynamic consisting of many sets of rapid acceleration

and braking events. Hence, this drivecycle is chosen to provide representative results of the

model’s performance to dynamic inputs.
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Figure 5.11 Profile of speed versus time for the UDDS drivecycle
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In an all-electric drivetrain wherein lithium ion batteries provide the propulsion power,

the speed profile can be suitably converted to a corresponding current profile experienced

by the cell through the application of basic governing equations from vehicle dynamics

(see section 3.5.2). Therefore, from the cell’s perspective, traversal of the drivecycle then

corresponds to the following events. During acceleration phases, the cell experiences a sharp

discharge spike of current. Similarly, assuming that regenerative braking is employed, each

deceleration event corresponds to a charging current. Thus a current versus time dynamic

load profile can be obtained. To briefly summarise the conversion process used here, the

computed power profile of the cell is divided by its nominal voltage and suitably scaled so

that the peak of the current profile corresponds to a discharge current of 3C. Considering that

all the braking energy cannot be recovered due to losses at the wheels, brake discs and other

mechanical components, a regenerative braking factor of 85 % (the fraction of recoverable

power) is assumed for the charging scenario.

Figure 5.12 shows the simulation results obtained by applying the UDDS current input

profile (top row) to both the P2D and SPM models. The simulation is started at 50 % cell SOC.

This is representative of the median point for the operating window of SOC swing for both

BEVs and Plug-in Hybrid Electric Vehicles (PHEVs) [30]. Although regenerative braking is

employed, due to the reduced occurrence of braking events as well as considering efficiencies

of the drivetrain, as with any driveycle, the UDDS profile also results in a net-discharge. The

cell’s SOC at the termination of the UDDS run is ≈6 % lower than its starting value.

The voltage output from the models is plotted in the middle row of fig. 5.12. The bottom

row shows the evolution of the cell’s SOC over time. Consistent with the error trends observed

in the constant current discharge and charge simulations, the error in terminal voltage is high

whereas that in SOC is low. In this work, the voltage error metrics are reported directly in

units of mV for the dynamic simulation run. Furthermore, it is a standard practice to report

the RMS error for such dynamic load profiles and is therefore included in the summary of

error metrics reported in table 5.5.

Table 5.5 Summary of error metrics of the basic SPM with UDDS input profile.

Error metric 𝜀𝑣 (mV) 𝜀soc (%)

Abs. max. 97.37 0.21
MAE 19.38 0.04
RMS 25.88 0.06
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Figure 5.12 Simulation results for a UDDS current profile. The voltage prediction performance
of the SPM to dynamic loads is poor while its SOC computation accuracy is high.

200



5.4 Quadratic Approximation of Ionic Spatial Concentration

5.4 Quadratic Approximation of Ionic Spatial Concentration

As evidenced by the results from constant current charge, discharge and dynamic simulation

runs presented in section 5.3, the basic SPM suffers from poor voltage accuracy. The prior art

discussed in section 2.3.2 aim to tackle this issue through inclusion of electrolyte dynamics

using various state of the art methods. However, they lack in providing an in-depth analysis

and expository illustration of the fundamental deficiency of the standard P2D dynamics,

which is uncovered later in section 6.1.1. This is facilitated through the introduction of the

quadratic approximation model of ionic spatial concentration in this section‖. The quadratic

approximation model is notable since it serves as the baseline reference for inclusion of

electrolyte dynamics into an SPM.

5.4.1 Model derivation

The schematic in fig. 5.13 shows the definition of the co-ordinate systems used in de-

riving the polynomial approximation of the electrolyte concentration profile. The three

regions {neg, sep, pos} are abbreviated to {𝑛, 𝑠, 𝑝} respectively in all mathematical expressions.

The globally defined 𝑥 co-ordinate starts at the negative current collector interface (𝑥 = 0)

and terminates at the positive current collector interface (𝑥 = 𝑙tot, where 𝑙tot = 𝑙n + 𝑙s + 𝑙p).

Three local co-ordinate systems 𝑧 valid only within their respective regions are also defined.

In particular, it must be noted that the direction of the local 𝑧pos co-ordinate axis is opposite

to that of the other two local co-ordinate axes as well as the global co-ordinate axis.

A standard quadratic expression is chosen a priori for approximating the electrolyte

concentration profile within each region.

𝑐e,n(𝑧, 𝑡) = 𝑎2(𝑡)𝑧2 + 𝑎1(𝑡)𝑧 + 𝑎0(𝑡) 0 ≤ 𝑧 ≤ 𝑙n (5.69)

𝑐e,s(𝑧, 𝑡) = 𝑎5(𝑡)𝑧2 + 𝑎4(𝑡)𝑧 + 𝑎3(𝑡) 0 ≤ 𝑧 ≤ 𝑙s (5.70)

𝑐e,p(𝑧, 𝑡) = 𝑎8(𝑡)𝑧2 + 𝑎7(𝑡)𝑧 + 𝑎6(𝑡) 0 ≤ 𝑧 ≤ 𝑙p (5.71)

‖The mathematical derivations here represents the author’s digested summary of literature, and is
particularly based upon a portion of Deng et al. [83]
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Figure 5.13 Schematic diagram of the electrochemical sandwich consisting of a) negat-
ive electrode, b) separator, and c) positive electrode depicting the co-ordinate system used
in deriving the quadratic approximation profile. The global spatial co-ordinate is 𝑥 ∈ {0, 𝐿},
where 𝐿 = 𝑙tot = 𝑙neg + 𝑙sep + 𝑙pos. Local co-ordinate systems 𝑧 specific to each region are also
defined. It should be noted that the positive electrode’s local co-ordinate axis direction is reversed
with respect to the global co-ordinate axis. Illustration reproduced from Deng et al. [83].

The time-dependent coefficient vector 𝑎(𝑡) = [ 𝑎0(𝑡) 𝑎1(𝑡) … 𝑎8(𝑡) ]𝑇 is to be determined∗∗.

Applying boundary conditions of the electrolyte diffusion equation from the DFNmodel (refer

eq. (1.4)) to eqs. (5.69)–(5.71), it is clear that 𝑎1 = 0 and 𝑎7 = 0. Thus, eqs. (5.69)–(5.71) become

𝑐e,n = 𝑎2𝑧2 + 𝑎0 0 ≤ 𝑧 ≤ 𝑙n (5.72)

𝑐e,s = 𝑎5𝑧2 + 𝑎4𝑧 + 𝑎3 0 ≤ 𝑧 ≤ 𝑙s (5.73)

𝑐e,p = 𝑎8𝑧2 + 𝑎6 0 ≤ 𝑧 ≤ 𝑙p (5.74)

with the coefficient vector being modified to 𝑎 = [ 𝑎0 𝑎2 … 𝑎6 𝑎8 ]𝑇.

Table 5.6 lists the equations and boundary conditions for phenomena describing electro-

lyte diffusion and charge balance within the separator domain.

Equation (5.75) and eq. (5.76) are obtained by applying the pertinent electrolyte equations

of the DFN model (eq. (1.4) and eq. (1.5) respectively) to the separator region. Applying the

∗∗Hereafter, the explicit time-dependence of the coefficients is omitted. Similarly, the spatio-temporal
dependence of the electrolyte concentration 𝑐e,𝑗 is also dropped from the notation.
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Table 5.6 Electrolyte-specific governing equations and boundary conditions of the Doyle-Fuller-
Newman (DFN) model within the separator domain.

Region Governing equations Boundary conditions
(𝑙neg ≔ 𝑙n, 𝑙sep ≔ 𝑙s, 𝑙pos ≔ 𝑙p)

Se
pa

ra
to
r

𝛿
∈
{s
ep
}

𝜀𝛿
𝜕𝑐e
𝜕𝑡

= 𝐷eff𝛿

𝜕2𝑐e
𝜕𝑥2

𝐼
𝐴

= 𝜅eff𝛿
(
𝜕2𝜙e
𝜕𝑥2

+
2𝑅𝑇
𝐹

(𝑡0+ − 1)
𝜕2 ln 𝑐e
𝜕𝑥2 )

𝑐e||
𝑥=𝑙−n

= 𝑐e||
𝑥=𝑙+n
,

𝑐e||
𝑥=(𝑙n+𝑙s)−

= 𝑐e||
𝑥=(𝑙n+𝑙s)+
,

𝜙e||
𝑥=𝑙−n

= 𝜙e||
𝑥=𝑙+n
,

𝜙e||
𝑥=(𝑙n+𝑙s)−

= 𝜙e||
𝑥=(𝑙n+𝑙s)−
,

𝐷effn

𝜕𝑐e
𝜕𝑥

|||𝑥=𝑙−n
= 𝐷effs

𝜕𝑐e
𝜕𝑥

|||𝑥=𝑙+n

𝐷effs

𝜕𝑐e
𝜕𝑥

|||𝑥=(𝑙n+𝑙s)−
= 𝐷effp

𝜕𝑐e
𝜕𝑥

|||𝑥=(𝑙n+𝑙s)+

𝜅effn

𝜕𝑐e
𝜕𝑥

|||𝑥=𝑙−n
= 𝜅effs

𝜕𝑐e
𝜕𝑥

|||𝑥=𝑙+n

𝜅effs

𝜕𝑐e
𝜕𝑥

|||𝑥=(𝑙n+𝑙s)−
= 𝜅effp

𝜕𝑐e
𝜕𝑥

|||𝑥=(𝑙n+𝑙s)+

(5.75)

(5.76)

continuity and flux boundary conditions from eq. (5.75) at both separator interfaces,

𝑎2𝑙2n + 𝑎0 = 𝑎3 (continuity at neg/sep interface) (5.77)

𝑎5𝑙2s + 𝑎4𝑙s + 𝑎3 = 𝑎8𝑙2p + 𝑎6 (continuity at sep/pos interface) (5.78)

2𝑎2𝑙n𝐷eff𝑛
= 𝑎4𝐷eff𝑠

(flux b.c. at neg/sep interface) (5.79)

(2𝑎5𝑙s + 𝑎4) 𝐷eff𝑠
= −2𝑎8𝑙p𝐷eff𝑝

(flux b.c. at sep/pos interface) (5.80)

The negative sign in eq. (5.80) is due to the specific choice of the co-ordinate system used

for the positive electrode region (see fig. 5.13). Due to this, fluxes at the separator/positive

electrode interface have opposing directions. Let 𝑄e,j denote the number of moles of Li+ ions

in the electrolyte per unit cross-sectional area within each region 𝑗 ∈ {neg, sep, pos}. This

is computed as the product of a) the porosity and b) spatial integral of the concentration

function i.e., 𝑄e,j = 𝜀𝑗 ∫
𝑙𝑗
0 𝑐e,𝑗(𝑧) 𝑑𝑧. Applying this to eqs. (5.72)–(5.74),

𝑄e,n = 𝜀n (
1
3
𝑎2𝑙3n + 𝑎0𝑙n) (5.81)

𝑄e,s = 𝜀s (
1
3
𝑎5𝑙3s +

1
2
𝑎4𝑙2s + 𝑎3𝑙s) (5.82)

𝑄e,p = 𝜀p (
1
3
𝑎8𝑙3p + 𝑎6𝑙p) (5.83)

At this stage, 𝑄e,𝑗(𝑡) are unknown. Since these are time-dependent functions, the deriva-

tion naturally progresses towards seeking a set of ODEs that describe a relationship for their

time evolution. Transforming the 2nd order ODEs of eq. (1.4) (for electrodes) and eq. (5.75)
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(for separator) to their respective local co-ordinates and integrate once along the thickness

of each region. Performing this sequence of steps for the negative electrode region

𝜀n ∫
𝑙n

0
(
𝜕
𝜕𝑡
𝑐e,n(𝑧, 𝑡)) 𝑑𝑧 = ∫

𝑙n

0
(
𝜕
𝜕𝑧 (

𝐷eff𝑛

𝜕𝑐e,n
𝜕𝑧 ) + (1 − 𝑡0+)𝑎s,n𝑗n) 𝑑𝑧

𝜀n
𝜕
𝜕𝑡 ∫

𝑙n

0
𝑐e,n(𝑧, 𝑡) 𝑑𝑧 = ∫

𝑙n

0
(
𝜕
𝜕𝑧 (

𝐷eff𝑛

𝜕𝑐e,n
𝜕𝑧 ) + (1 − 𝑡0+)𝑎s,n𝑗n) 𝑑𝑧

𝜕
𝜕𝑡 (

𝜀n ∫
𝑙n

0
𝑐e,n(𝑧, 𝑡) 𝑑𝑧) = ∫

𝑙n

0
(
𝜕
𝜕𝑧 (

𝐷eff𝑛

𝜕𝑐e,n
𝜕𝑧 ) + (1 − 𝑡0+)𝑎s,n𝑗n) 𝑑𝑧

𝑑
𝑑𝑡
𝑄e,n(𝑡) = 𝐷eff𝑛

𝜕𝑐e,n
𝜕𝑧

|||𝑧=𝑙n
+ (1 − 𝑡0+)𝑎s,n ∫

𝑙n

0
𝑗n 𝑑𝑧

transposing integration &

differentiation operations in

the LHS

apply time-derivative

operator to the whole LHS

apply integral to the RHS

(5.84)

Performing the identical sequence of operations starting from (eq. (5.75)) for the separator

and (eq. (1.4)) for the positive electrode yields

𝑑
𝑑𝑡
𝑄e,s(𝑡) = 𝐷eff𝑠

𝜕𝑐e,s
𝜕𝑧

|||𝑧=𝑙s
(5.85)

𝑑
𝑑𝑡
𝑄e,p(𝑡) = 𝐷eff𝑝

𝜕𝑐e,p
𝜕𝑧

|||𝑧=𝑙p
+ (1 − 𝑡0+)𝑎s,p ∫

𝑙p

0
𝑗p 𝑑𝑧 (5.86)

In order to evaluate the integral term in the RHS of eq. (5.84) and eq. (5.86), the solid

phase charge conservation equation (eq. (1.6)) is integrated along the local co-ordinate axis

of the negative electrode and positive electrode respectively.

∫
𝑙n

0
𝑗n 𝑑𝑧 =

𝐼
𝑎s,n𝐴𝐹

(5.87)

∫
𝑙p

0
𝑗p 𝑑𝑧 =

−𝐼
𝑎s,p𝐴𝐹

(5.88)

Substituting eqs. (5.87)–(5.88) into eqs. (5.84)–(5.86) respectively,

𝑑
𝑑𝑡
𝑄e,s = 𝐷eff𝑛

𝜕𝑐e,n
𝜕𝑧

|||𝑧=𝑙n
− (1 − 𝑡0+)��𝑎s,n

𝐼

��𝑎s,n𝐴𝐹
(5.89)

𝑑
𝑑𝑡
𝑄e,p = 𝐷eff𝑝

𝜕𝑐e,p
𝜕𝑧

|||𝑧=𝑙p
− (1 − 𝑡0+)��𝑎s,p

−𝐼

�
�𝑎s,p𝐴𝐹

(5.90)
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which leads to the general expressions for the cross-sectional molar density of Li+ ions in

each of the three regions as

𝑑
𝑑𝑡
𝑄e,n = 𝐷eff𝑛

𝜕𝑐e,n
𝜕𝑧

|||𝑧=𝑙n
+ (1 − 𝑡0+)

𝐼
𝐴𝐹

(5.91)

𝑑
𝑑𝑡
𝑄e,s = 𝐷eff𝑠

𝜕𝑐e,s
𝜕𝑧

|||𝑧=𝑙s
(5.92)

𝑑
𝑑𝑡
𝑄e,p = 𝐷eff𝑝

𝜕𝑐e,p
𝜕𝑧

|||𝑧=𝑙p
− (1 − 𝑡0+)

𝐼
𝐴𝐹

(5.93)

Substituting the assumed quadratic expressions for electrolyte concentrations in each of the

three regions eqs. (5.72)–(5.74) in the above system i.e., eqs. (5.91)–(5.93)

𝑑
𝑑𝑡
𝑄e,n = 2𝑎2𝑙n𝐷eff𝑛

+ (1 − 𝑡0+)
𝐼
𝐴𝐹

(5.94)

𝑑
𝑑𝑡
𝑄e,s = 2𝑎5𝑙s𝐷eff𝑠

(5.95)

𝑑
𝑑𝑡
𝑄e,p = 2𝑎8𝑙p𝐷eff𝑝

− (1 − 𝑡0+)
𝐼
𝐴𝐹

(5.96)

The initial ionic concentration in the electrolyte is identical in all three regions of the cell,

assuming equilibrium starting conditions i.e., 𝑐e,0𝑗 = 𝑐e,0, 𝑗 ∈ {n,s,p}. Hence the initial number

of moles of Li+ per unit area in each of the three regions is given by

𝑄e,n(0) = 𝜀n𝑐e,0𝑙n (5.97)

𝑄e,s(0) = 𝜀s𝑐e,0𝑙s (5.98)

𝑄e,p(0) = 𝜀p𝑐e,0𝑙p (5.99)

and the initial coefficient vector which satisfies the system equations is obtained as

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑎0(0)

𝑎2(0)

𝑎3(0)

𝑎4(0)

𝑎5(0)

𝑎6(0)

𝑎8(0)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝑐e,0
0

𝑐e,0
0

0

𝑐e,0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⋅ (5.100)
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The system of three ODEs, (5.94)–(5.96) together with eqs. (5.97)–(5.99) representing the

initial conditions, form an IVP. Eqs. (5.77)–(5.83) represent a square system of seven linear

algebraic equations with seven unknown coefficients which must be solved at each time-step.

These algebraic constraints coupled with the aforementioned IVP form a DAE system.

There are now two choices for proceeding with solution of the system. The naive

approach would be to solve the DAE using advanced DAE solvers specially designed to handle

index-1 semi-explicit systems such as DASSL [203] and DASPK [204]. For start-stop type of

input currents with discontinuities, the consistent initialisation of algebraic conditions and

derivatives is numerically challenging. All DAE solvers typically use adaptive time-stepping

algorithms. The feasibility of using such a complex scheme for real-time computation is

questionable. On the other hand, the overall system can be viewed as composed of two

numerical subsystems — a) an independent ODE system, and b) an independent algebraic

system. Each system is executed back to back in succession using solutions from the other

system from the previous time-step.

To clarify the sequence of operations, in order to bootstrap the model, it is required

to compute 𝑄e,𝑗(𝑡) in all three regions. The ODE system is integrated for one time-step by

retaining the coefficients at their initial value. The 𝑄e,𝑗(𝑡) thus solved is substituted into the

algebraic system to yield the updated value of the coefficient vector 𝑎(𝑡 = 𝑡𝑘). This new value

of the coefficient vector is substituted back into the ODE system and the process continues.

Although the continuous simulation of the overall DAE is not accomplished, this scheme is

pragmatic from an engineering viewpoint. This is because, the periodic pauses needed to

update the intertwined sub-systems translate naturally into fixed time-steps and is well-suited

for a BMS controller operating at a fixed sample rate. This is also an effective workaround to

mitigate the complexities of having to implement and solve DAEs in real time.

The simulation results of the quadratic approximation scheme and the analysis of its

strengths and weaknesses is presented next in section 5.4.2.
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5.4.2 Numerical implementation, simulation results and analysis

Numerical implementation

From an analysis point of view, the quadratic approximation model for computing the

spatio-temporal evolution of electrolyte concentration can be simulated as an independent

subsystem, and hence can be implemented numerically as a standalone module as shown in

algorithm 5.3. In practice, this modular code is embedded as a subroutine within the main

SPM loop (see algorithm 5.2).

Algorithm 5.3 Quadratic approximation model for spatio-temporal electrolyte concentration

Require: Load profile ▷ e.g. a csv file of 𝑡 vs. C-rate
Require: Electrolyte model parameter set ▷ e.g. stored in a struct ceparams
User data: 𝑡f, sample rate 𝑇𝑠, 𝑐e,init
1: function QuadraticElectrolyteModel

2: Set 𝑄e,init𝑗
as per eqs. (5.97)–(5.99)

3: 𝑎[1] ←values from eq. (5.100)

4: 𝑉cell[1] ← ComputeCellVoltage(x[1], 𝐼 [1], params) ▷ from direct feedthrough

5: for 𝑘 ← 2 ∶ 𝑁max do

6: 𝐼 [𝑘] ← interpolate from profile using ZOH

7: Solve continuous-time state equations–eqs. (5.94)–(5.96) ▷ Using 𝑎[𝑘 − 1]

8: 𝑄e𝑗[𝑘] ←last time-entry vector of soln. matrix ▷ if using an adaptive solver

9: 𝑎[𝑘] ←solution of linear system of equations–eqs. (5.77)–(5.83) ▷ Using 𝑄e𝑗[𝑘 − 1]

10: Compute 𝑐e𝑗 as per eqs. (5.72)–(5.74) ▷ Quadratic polynomial expressions for concentration

11: end for
12: end function

Simulation results

Figure 5.14 shows the spatial distribution of Li+ ions in electrolyte along the thickness of

the cell at various snapshots of time obtained by simulation of the P2D and the quadratic

approximation models using a 1C discharge current. The P2D model’s response is considered

as the reference benchmark. During the initial transient phase, the concentration profile

within each electrode region exhibits a characteristic inflection point. During this phase, the

concentration profile computed by the parabolic profile exhibits a large deviation in terms of

percentage error at each spatial location. However, with the passage of time, as a Quasi-Steady
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Figure 5.14 Spatial distribution of ionic concentration in electrolyte along cell thickness at
various snapshots of time for a 1C discharge. The concentration profile obtained from simulating
the P2D model is used as the reference. The performance of the quadratic model is quite poor
during the initial transient duration, but improves over time as a quasi-steady state is reached.

State (QSS) is established, this inflection point flattens out, and the quadratic approximation

becomes closer to the true concentration value at each spatial location. Similar trends in

behaviour is exhibited for discharge and charging at higher C-rates and these results are

therefore omitted here in the interest of keeping the discussion succinct.

It is important to note that while having a spatial concentration profile is useful, as seen

in eq. (2.4), it is the values of concentration at the current collector interfaces that are most

influential in computation of the electrolyte overpotential and hence, in the voltage accuracy
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of the enhanced SPM. Thus, it is important to obtain this alternative perspective of time-

evolution of the electrolyte concentration at the two current collectors.
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Figure 5.15 Evolution of ionic concentration over time at the two current collector interfaces
for a 1C discharge (top row). The time evolution of the corresponding error variables is shown in
the bottom row of plots.

Figure 5.15 shows the time evolution of ionic concentration in the electrolyte at the two

current collector interfaces computed by the P2D and quadratic approximation models for

a 1C discharge current. The concentration values computed by the P2D model is considered

as the reference benchmark. At the negative electrode–current collector interface, the ionic

concentration exhibits a few oscillations of small amplitude owing to the complex interactions

of the ionic phase with the porous electrode and the charge transfer process at the electrode-

electrolyte boundary. The concentration evolution predicted by the quadratic approximation

model is rather simplistic and is unable to capture this intricate time-evolution pattern. This

is because the governing equation predicting time evolution of concentration in the quadratic

approximation model is that given by the first-order ODE of eq. (5.94) (with a proportional

mapping from 𝑄e,n to 𝑐e(0, 𝑡)). Following system theory, the step response of a first order ODE

is that of an exponential rise to a final settling value, which is exactly the shape seen in the

top-left plot of fig. 5.15.
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The ionic concentration evolution at the positive current collector does not exhibit major

oscillations and even has a subtle monotonicity to its response. However, the classical first

order response predicated by the quadratic approximation model falls short of representing

its complete dynamics. Errors of similar magnitude are present in the ionic concentration at

both current collector interfaces, with a maximum absolute error of ≈250molm−3.

5.5 Conclusions

This chapter dealt with the in-depth analysis of — a) the basic SPM and b) an electrolyte-

enhanced SPM employing the quadratic spatial approximation model for ionic concentration.

Simulation results for the basic SPM reveal that while its SOC computation is of acceptable

accuracy even at moderate C-rates, it suffers from poor performance in the prediction of

terminal voltage at currents above 0.5C. This renders the model unusable as the plant model

for state estimation tasks since the voltage measured from the model in a feedback estimator

shall map to a distant SOC operating point.

The assumptions and governing equations of the popular quadratic approximation model

for the spatial profile of ionic concentration was presented. Simulation results reveal that

while its spatial profile computation for a galvanostatic operation is of acceptable accuracy,

the temporal performance of the model is mediocre. In particular, the time evolution of ionic

concentration at the current collector interfaces computed by the model fail to capture the

intricacies in the temporal evolution exhibited by the P2D model’s profile.

This chapter concludes with a view that accuracy of the quadratic approximation model

needs to be improved upon before deployment in applications involving highly dynamic load

profiles such as a vehicular BMS. In chapter 6, causal factors of the lacklustre performance of

the quadratic approximation model is analysed in the context of developing at an improved

representation of electrolyte spatial dynamics through system identification.
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6.1 Performance Analysis: Quadratic Approximation Model

Based upon the insights gained from the extensive analyses performed in chapter 5,

this chapter presents the thesis author’s attempts to surpass the performance of the

current pinnacle in modelling art through the development of a new electrolyte model. In

particular, this chapter describes the attempts towards arriving at an accurate description

of the spatio-temporal evolution of the electrolyte concentration in a lithium ion cell for

real-time applications. The performance of the quadratic approximation model which was

introduced in chapter 5 is analysed through the novel application of a symbolic regression

framework. This helps to expose the issue of equation deficiency in the underlying Doyle-

Fuller-Newman (DFN) model and questions its suitability for the purpose of reduced

order modelling of the electrolyte concentration dynamics with a pre-assumed equation

structure. Although this framework did not ultimately yield the desired outcomes, it did

nevertheless facilitate a comprehensive analysis of the strengths and weaknesses of the

quadratic approximation model which has not been performed in existing literature. Next,

the author’s unique contribution to the art of single particle modelling viz. a novel time-

evolution model of electrolyte concentration evolutions through the technique of system

identification is presented. The results of the new approach is compared against the baseline

quadratic approximation model as well as the benchmark Pseudo Two-Dimensional (P2D)

model. Finally, the newmodel equations are incorporated into an electrolyte-enhanced Single

Particle Model (SPM) and the improved performance of the newly developed composite model

is quantified.

6.1 Performance Analysis: Quadratic Approximation Model

In the author’s analysis of the quadratic approximation model, the origin and nature of

its sub-optimal performance can be explained as per the following rationale. The quadratic

approximation model uses a bottom-up approach wherein the final simplified model structure

is pre-assumed and then the physics are made to fit within this framework. Given that the

top-down approach to electrolyte modelling i.e., accounting for all physical phenomena and

then simplifying them yields mathematically intractable and overly complex models (see

section 2.3.2 for a detailed discussion), this approach seems to be a pragmatic alternative to

enhancing the SPM with electrolyte dynamics. However, a detailed look at this model from

an alternate viewpoint is necessary for further analysis.
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6.1.1 Symbolic regression using Multi-Gene Genetic Programming

The question boils down to whether a quadratic approximation is indeed the best model

structure that can be assumed a priori for the spatial profile of ionic concentration in the

electrolyte. This author embarked on a journey to find suitable alternate model structures

i.e., a single family of curves that can capture both the transient and Quasi-Steady State

(QSS) behaviour exhibited by the ionic concentration. The open-source MATLAB toolbox

GPTIPS2 [205] uses the state-of-the-art Multi-Gene Genetic Programming (MGGP) approach

for symbolic data mining and is ideally suited for such symbolic regression tasks (fitting

a mathematical equation structure, and not merely obtaining best-fit coefficients to a pre-

assumed curve as in classical numerical regression, to a given data).

In employing the MGGP approach, it is important to recognise that the key criteria that

restricts a) the choice of gene-sequence depth, as well as b) the choice in number of parent

mutations, is the total number of unknown symbolic coefficients required to be solved in

the assumed model structure. There are a total of seven linear equations available from the

physics of the DFN model (see eqs. (5.77)–(5.83)). Hence, in order to guarantee a solution the

assumed family of curves cannot consist of more than seven coefficients. Furthermore, for

a unique solution, the number of coefficients must be exactly seven. Yet another restriction

on the choice of locus of feasible curves arises due to the fact that the behaviour of ionic

concentration in the negative and positive electrode regions are similar in complexity∗, and

hence need to be mathematically described by an identical family of curves.

Upon a close inspection of the spatial concentration profile from the P2D simulation

results shown in fig. 5.14, it is evident the electrolyte approximation functions within the

electrode regions is of higher complexity∗ than the approximation function suitable for use

in the separator region. Based on the results of the quadratic model, it is clear that at least

two coefficients are required within the electrode regions i.e., 𝑛c,elec ≥ 2. There exists an

inhibiting factor that prevents the use of a lower order function within the separator. As per

the simulation results of the P2D model, the time-domain change of number of moles per

square meter in the separator is non-zero. Since the time-derivative of a linear approximation

∗The concept of complexity of curves used here is not based on a precise mathematical definition such as
that employed by Neumann-Coto and Arenas [206], but is loosely used to simply convey an empirical sense of
their curvature. However, the analysis here applies to the more rigorous definition as well.
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applied to eq. (5.95) is zero, this straight-line equation is immediately ruled out. Among

the non-polynomial mathematical curves tried (such as trigonometric, hyperbolic, power

series among others), none could obtain the relatively simple shape of the separator function

without being forced to reduce the contribution from one of the coefficients to belowmachine

precision. This necessitates the retention of the quadratic approximation function used thus

far (with no missing terms) i.e., 𝑛c,sep = 3. Thus, the overall number of coefficients in the

best possible approximation shall be 2𝑛c,elec + 𝑛c,sep = 2 ⋅ 2 + 3 = 7, which is the total number

of electrolyte-specific physical constraints available from the DFN model. Hence it can be

concluded that the quadratic approximation model does indeed make the best use of all of the

available physical equations. The final question that remains to be answered is, with these

coefficient limitations, whether the quadratic equation structure is indeed the optimal one.

This was investigated through the MGGP approach described next.

The GPTIPS2 toolbox uses a variety of heuristic algorithms from the theory of MGGP

to hypothesise a suitable equation structure for the data to be fitted. The dataset consisted

of electrolyte concentration at the three cell regions captured at various snapshots of time.

Both transient and QSS data were fed into this symbolic data mining process and a single all-

encompassing family of curves capable of capturing the electrolyte concentration behaviour

was sought for. However, the constraints in the number of coefficients that can be employed

results in a restriction of the depth of gene mutations as well as the number of parent/seed

populations. The best equation set (without strictly enforcing the aforementioned hard

constraints, yet minimising the distance to the constraint vector) that the symbolic regression

approach yielded was

𝑐e,n(𝑧, 𝑡) = 𝑎2(𝑡) cosh 𝑧2 + 𝑎1(𝑡) sinh 𝑧 + 𝑎0(𝑡) 0 ≤ 𝑧 ≤ 𝑙n (6.1)

𝑐e,s(𝑧, 𝑡) = 𝑎5(𝑡)𝑧2 + 𝑎4(𝑡)𝑧 + 𝑎3(𝑡) 0 ≤ 𝑧 ≤ 𝑙s (6.2)

𝑐e,p(𝑧, 𝑡) = 𝑎8(𝑡) cosh 𝑧2 + 𝑎7(𝑡) sinh 𝑧 + 𝑎6(𝑡) 0 ≤ 𝑧 ≤ 𝑙p (6.3)

Although eqs. (6.1)–(6.3) fit the transient and QSS profiles well, they violate the constraint

on the number of coefficients available resulting in an under-determined system of equations.

Both the least-squares and least-norm solution of this system were tried. However, the results

were inferior to that produced by the baseline quadratic approximation method.
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Next, an attempt was made to obtain different mathematical structures for the transient

phase and QSS phase both of which respect the constraint on number of coefficients allowed.

The symbolic regression outputs for this approach are shown in table 6.1.

Table 6.1 Best fit expressions for the transient and Quasi-Steady State approximation functions
for the electrolyte functions obtained by the MGGP approach.

Transient Function Quasi-Steady State Function Region

𝑐e,ntrans
= 𝑎1(𝑡)𝑧6 ln 𝑧6 + 𝑎0(𝑡)

𝑐e,strans = 𝑎4(𝑡)𝑧2 + 𝑎3(𝑡)𝑧 + 𝑎2(𝑡)

𝑐e,ptrans
= 𝑎6(𝑡)𝑧6 ln 𝑧6 + 𝑎5(𝑡)

𝑐e,nQSS
= 𝑎1(𝑡) sinh 𝑧2 + 𝑎0(𝑡)

𝑐e,sQSS
= 𝑎4(𝑡)𝑧2 + 𝑎3(𝑡)𝑧 + 𝑎2(𝑡)

𝑐e,pQSS
= 𝑎6(𝑡) sinh 𝑧2 + 𝑎5(𝑡)

0 ≤ 𝑧 ≤ 𝑙n
0 ≤ 𝑧 ≤ 𝑙s
0 ≤ 𝑧 ≤ 𝑙p

Although the equations from table 6.1 produced a markedly improved response during

the transient phase, the performance during the QSS phase was merely at par to the baseline

quadratic approximation model. This raised the prospect of employing a blended approach,

wherein a model changeover between the transient and QSS was contemplated. However,

since there is no precise definition of what constitutes the transient phase of the electrolyte

concentration response, this approach required some ad hoc timing criteria for correctly

transitioning between the two MGGP equation sets. Further complications arise during

dynamic input conditions, wherein the concentration profiles are mostly in a state of flux

and could linger for longer durations at the contiguous boundary between transient-like

and QSS-like behaviours. In the interest of reproducibility across different cell-chemistries

and corresponding parameter sets, the proposed blended model transition approach was not

further pursued.

Overall, the long and arduous process of symbolic regression was not a definitive success

in this case mainly due to the limitation of equation deficiency of physical constraints.

Perhaps if yet another Physics-Based Model (PBM) i.e., an alternative to the widely prevalent

DFN model, can be used as the baseline, a few more physical governing equations could

possibly be made available. This can perhaps result in a less restrictive gene-set for coefficient

determination and consequently pave the way for a successful implementation through this

hitherto unexplored route of MGGP-based equation synthesis.

In conclusion, the quadratic model for electrolyte concentration approximation makes

the best use of the available physical equations. Given the constraints with respect to physical
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equations discussed here, it is also deemed to be the optimum family of a priori chosen curves

capable of modelling the spatial profile of ionic concentration. Notwithstanding these merits,

the temporal performance of the quadratic approximation approach is sub-optimal as seen

in fig. 5.15. The author of this thesis addresses this specific issue with a completely different

approach that shall be discussed next in section 6.2.

6.2 A New Electrolyte Model through System Identification

Having performed a comprehensive analysis of the state of the art in SPM modelling with

electrolyte dynamics, this section presents the author’s unique contribution to the field. Firstly,

the scope of the contribution is identified. The methodology adopted and corresponding

results are presented thereafter.

6.2.1 Scope and motivation

This subsection is intended as a capstone summary helping to briefly recount the discussion so

far and to provide a context for the author’s work in the wider realm of the SPMmodelling art.

In the same vein as the discussion in section 2.3.2, the scope of the proposed enhancement to

the SPM concerns entirely with improving the electrolyte subsystem since it has already been

established in section 5.3.3 that the simplified representation of the solid-phase subsystem

through a fourth order polynomial approximation method for diffusion of Li0 in the solid

particle is of sufficiently high accuracy.

Inspecting the electrolyte domain, the contribution of electrolyte overpotential to terminal

voltage consists of a) diffusion overpotential b) time-dependent ohmic losses that originates

from differential concentration gradients (that is indirectly dependent upon concentra-

tion). Once electrolyte concentration at each time-step is available, eq. (2.4) proposed by

Prada et al. [99] may be used for the electrolyte overpotential computation. Hence, the

accurate determination of spatio-temporal values of electrolyte concentration merits focus.

There exists a subtle detail in the use of eq. (2.4) which is discussed here upfront before

proceeding ahead to the refined context of the author’s work. The intrinsic conductivity

of electrolyte 𝜅 is a function of the ionic concentration (refer section 5.3.2). If the ionic

concentration at the corresponding current collectors are used for evaluating 𝜅neg and 𝜅pos,
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this would lead to a lopsided computation of the overpotential in electrolyte. Furthermore,

under this scheme, the computation of electrolyte conductivity shall be rendered ambiguous

since it is unclear which separator interface shall be chosen for the separator’s ionic

concentration. Although this has not been discussed clearly in literature, the author of this

thesis chose to use the mean concentration within each cell region, defined as

𝑐e,𝑗(𝑡) =
1
𝑙𝑗 ∫

𝑙𝑗

0
𝑐e𝑗(𝑧, 𝑡) 𝑑𝑧 =

𝑄e,𝑗(𝑡)
𝜀𝑗𝑙𝑗

(6.4)

though other measures of central tendency might be equally valid. Hence, the results

of this section have the associated variability in them depending on how the electrolyte

concentration computations are used in evaluating the intrinsic conductivity of electrolyte.

As the ionic concentration has both a direct and indirect contribution in eq. (2.4), its

spatio-temporal computation is a critical aspect. As discussed in section 5.4, the quadratic

approximation is a widely used spatio-temporal model for electrolyte concentration which

makes the best use of available physical constraints. As established in the results of

section 5.4.2, while the spatial performance of the quadratic approximation approach is

acceptable, its time-domain performance, particularly at the crucial locations of the current

collector interfaces is mediocre at best.

The scope of the author’s work is to obtain suitable alternate expressions for improving

the computation of time evolution of the electrolyte concentration whilst retaining the

quadratic approximation approach for describing its spatial profile. Such an approach is

motivated by the keen observation that the baseline quadratic approximation model has

a natural ‘pause’ in its model description. To clarify, eqs. (5.77)–(5.83) form a tightly coupled

square system i.e., a set of seven linear equations in seven unknowns. In this system, the time

evolution of 𝑄e,𝑗 are described through a separate system of first order Ordinary Differential

Equations (ODEs) given by eqs. (5.94)–(5.96). In a practical implementation, these ODEs are

solved independently in a decoupled manner i.e., by using the coefficients obtained from the

linear system of eqs. (5.77)–(5.83) in the previous time-step. The author’s hypothesis is that by

taking advantage of the natural break in the operational sequencewhich involves two separate

computations between two nearly independent subsystems, it must be possible to replace

the under-performing time-evolution ODEs from the baseline quadratic approximation with

a superior alternate model.
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6.2.2 Selection of Methodology — Background and Rationale

This section presents the background and thought process in systematically arriving at

the choice of the methodology that was adopted for the new time-evolution model of the

electrolyte concentration dynamics.

Based upon the experience gained in dealing with the literature presented in section 2.3.2,

it is the author’s view that, owing to the complex behaviour of electrolyte, a naive top-down

approach i.e., including all the physics upfront followed by a systematic simplification, might

only yield a model that is mathematically intractable for adoption in an embedded Battery

Management System (BMS) environment. The baseline quadratic approximation method has

proven that a bottom-up approach i.e., pre-assuming a simplified structure for the final model

and adapting its coefficients to physical constraints yields a viable candidate for describing

electrolyte dynamics and for later inclusion in the conventional SPM.

Upon a closer examination of the rubrics of the baseline quadratic approximationmodel, it

comes to light that the natural ‘pause’ discussed towards the end of section 6.2.1 permeates to

a level more thanmerely having to operate sequentially on two pseudo-decoupled subsystems

— it goes to the extent of rendering the operating philosophy of fitting physical equations

semi-void. To clarify this statement and to substantiate the claim, while there is no doubt

that the linear algebraic equations of eqs. (5.77)–(5.83) do incorporate physical principles

from the DFN model, the same does not hold true for the ODEs of eqs. (5.94)–(5.96). In fact,

all the boundary conditions from the DFN model have been exhausted by this stage (refer

section 5.4.2). Although eqs. (5.91)–(5.93) are derived from the DFN model, the coefficients of

the diffusivities in the Right-Hand Side (RHS) of the next set of equations i.e., eqs. (5.94)–(5.96),

merely involve substitutions of the spatial derivatives of the assumed quadratic expression.

Herein lies the weakness of the baseline quadratic approach. Unlike the spatial algebraic

equations, which are tightly bound by the continuity and flux boundary conditions at the

separator interfaces, there is no equality constraint on the spatial derivative, which is free to

grow or shrinkwithout any explicitly imposed bounds. The onus of being accurate is therefore

on the spatial derivative evaluation which in-turn depends on the correctness of the quadratic

functions (eqs. (5.72)–(5.74)) themselves. It is not feasible to quantify the magnitude of error

introduced in the time-evolution of concentration given a small-signal perturbation in the
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coefficients of the quadratic spatial computation i.e., the implicit coupling between them is

not transparent. Since the quadratic approximation itself is not perfect i.e., does not capture

the spatial gradient exactly as the P2D model as seen in fig. 5.14, the internal coupling of

coefficients leads to errors in time-evolution computation.

The author’s approach is to therefore break this detrimental coupling between spatial

derivative of concentration and its temporal evolution counterpart. Inspired by the fact that

the quadratic approximation model had almost achieved the desired goals with

a) a bottoms-up approach i.e., assuming some model structure a priori, and

b) not bound by any physical considerations due to the exhaustion of governing equations

led the author to broach a suitable modelling concept that exhibits these common traits, yet

of a completely different nature and hitherto unexplored in physics-based battery modelling

in general and electrolyte modelling in particular — black-box system identification.

6.3 Brief Introduction to System Identification

An in-depth coverage of the topic of system identification is well beyond the scope of this

thesis. However, keeping inmind the interests of the batterymodelling communitywhomight

not be familiar with this subject area, a brief overview of the core ideas that are essential for

tackling the specific problem at hand is presented. For readers further interested in this topic,

the author suggests the textbook by Ljung [207] for a comprehensive theoretical treatment

of the foundation topics in system identification.

System identification aims to provide a mathematical model of the input-output mapping

of the system† under consideration. The three categories of system identification are:

a. White box wherein underlying physical equations are completely known. The numerical

value of coefficients of governing equations are then to be parametrised from

input-output data.

†The precise definition of what constitutes a ‘system’ is detailed in Ljung’s textbook. However, for all
practical purposes, in this thesis the word ‘system’ stands for any unknown entity whose terminal behavioural
model is being sought for — primarily from input-output data.

219



6.4 Overview of Black Box System Identification

b. Black box wherein no governing equations are available for the system under consid-

eration. The model formulation is facilitated by a rich set of system theory

which proceeds by exciting the system with input waveforms with certain

desirable properties and correlating characteristics from the response to draw

conclusions about viable mathematical structures capable of emulating the

terminal behaviour of the system under generalised inputs. Black box system

identification was employed for the specific problem under consideration in

this thesis and hence all future descriptions will pertain to this class.

c. Grey box is a hybrid of the two approaches wherein a part of the model’s governing

physics is known a priori e.g. the structure of a well-defined subsystem that is

part of a large, complex system may be known ahead of time, where the task

is to characterise the full system. Grey box system identification tasks can

often be reduced to a single sub-problem of black box system identification

by removal of the known physics and tackling them separately.

6.4 Overview of Black Box System Identification

Black-box system identification techniques are composed of the following — a) non-

parametric methods, and b) parametric methods.

6.4.1 Non-parametric methods

Non-parametric methods do not seek a pre-assumed mathematical structure for the system.

They aim to directly estimate the very kernel of what characterises every system viz. the

Markov parameters in the time-domain and the Frequency Response Function (FRF) in the

frequency domain, thereby requiring infinite number of data points for their representation.

Major non-parametric system identification methods include

• Identification in time domain

– Direct estimation of the system’s Markov parameters through statistical correla-

tion of its response to an unit-pulse input.
• Identification in frequency domain i.e., of the FRF

1. Direct estimation through input-output statistical cross-correlation.

2. Empirical Transfer Function Estimate (ETFE) using Discrete Fourier Transforms

(DFTs) of input and output sequences.
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3. Smoothed periodogram estimates using Welch’s method.

4. Blackman-Tukey Estimate using standard filter windows in digital signal pro-

cessing (such as Hamming, Hanning, Bartlett, Boxcar etc.).

6.4.2 Parametric methods

Parametric methods aim to fit specific input-output data to some family of well-known

mathematical constructs that are and widely applicable to a large variety of inputs. It

is important to recognise that, in contrast to white-box system identification, the salient

coefficients/properties of these mathematical structures do not, in any way correspond to

physical properties of the system under consideration. Major parametric system identification

methods use

• Transfer-function based frequency domain model structures

1. Output Error (OE) model

2. Auto Regressive with Exogenous Inputs (ARX) model

3. Auto Regressive with Moving Average and Exogenous Inputs (ARMAX) model

4. Box-Jenkins (BJ) model

• State-space time-domain model structures

1. Ho-Kalman realisation

2. Eigensystem Realisation Algorithm (ERA) realisation

3. Deterministic and stochastic subspace structures

6.4.3 Investigation of suitable system identification methodology

Among the various system identification techniques mentioned, the non-parametric methods

have some serious drawbacks. As outlined in section 6.2.2, the author is inspired by the trait

of having a pre-assumed model structure that brought the baseline quadratic approximation

closer to a successful realisation. The non-parametric methods do not conform to this

philosophy. Furthermore, the requirement of infinite number of data samples in order to

fully quantify the system dampens its feasibility for implementation in resource constrained

environments. The author is of the opinion that resorting to truncation of the characteristic

sequence shall only yield a sub-optimal solution. Hence non-parametric methods are ruled

out for applying to the task at hand.
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While parametric state-space identification is a feasible alternative, these methodologies

are tedious and error-prone. For instance, applying the Ho-Kalman algorithm requires

construction of large-sized Block-Hankel matrices followed by a Singular Value Decom-

position (SVD) operation. The ERA uses the identical set of operations of the Ho-Kalman

procedure, except that certain blocks in the Hankel matrices are chosen at random for deletion

for obtaining better estimates in low Signal to Noise Ratio (SNR) environments and for

capturing slowly decaying phenomena with long time constants. The subspace methods are

mathematically involved, requiring a profound understanding of concepts from linear algebra

such as projections to orthogonal subspaces. The system under consideration is presented in

section 6.5 and after linearity considerations, refined in section 6.7.2. It is composed of two

independent Single Input Single Output (SISO) subsystems. However, the inflection point

in the complexity-performance trade-off in state-space identification is achieved only when

dealing with Multi Input Multi Output (MIMO) systems that suggest strong cross-coupling

among its internal states or at least some degree of coupling among the various inputs and

outputs. Furthermore, the impulse responses of the system(s) under consideration do not

have long tails since they are characterised by relatively short time constants. Owing to these

reasons, it was decided that state space identification methods shall not be adopted here.

Owing to a cornucopia of well-established technical know-how readily available in the

systems engineers toolkit, transfer function based model structures are naturally amenable

for control-oriented applications. However, there exists an apparent discrepancy to its usage

for this case, that must be addressed first. Transfer function methods are a frequency domain

technique and hence, the resulting model descriptions have mathematical structures radically

different from the time-domain model equations of the conventional SPM within which they

are to be embedded. This conundrum is resolved by closely inspecting the model’s scope and

its tractability for conversion to time domain as explained next.

It is worth remembering that, as per section 2.2.1, for the reduced order modelling

of the entire cell, all frequency domain model groups were considered as out of scope of

this thesis specifically due to the overhead of conversion from frequency to time domain

for implementation and other associated difficulties. The blanket exclusion nature of this

statement is to be revisited considering the specific scope of the problem at hand. The body

of literature on frequency domain Reduced Order Models (ROMs) discuss obtaining physics-

based transcendental transfer functions for all electrochemical quantities of the coupled
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Partial Differential Algebraic System (PDAE) system of table 1.1 through a top-down approach.

However, the frequency domain system identification methods are concerned with obtaining

standard rational transfer functions for a much narrower scope viz. the time-evolution

subsystem, through a bottom-up approach. Such rational transfer functions are to obtained for

SISO systems for which an approximation-free effortless conversion already exists in classical

control theory and is presented in section 6.8.7. In view of their overwhelming simplicity

and familiarity to control engineers, after considering these arguments that circumvent their

only apparent impediment to adoption, transfer function based system identification was

chosen for tackling the problem at hand. The steps leading to the identification procedure is

presented next.

6.5 Introduction to Electrolyte Time-Evolution Subsystems

The first order ODEs of eqs. (5.94)–(5.96) in the baseline quadratic approximation model for

electrolyte concentration describe the time-evolution of the overall number of moles of Li+ in

each of the three regions of the cell 𝑄e,𝑗. Through system identification, the author seeks to

obtain the two rational transfer functions of 𝑄e,neg and 𝑄e,pos to the applied current 𝐼 in the

frequency domain i.e., 𝑄e,n(𝑠)
𝐼 (𝑠) and

𝑄e,p(𝑠)
𝐼 (𝑠) . Based on the DFN model, the total moles of Li+ per

unit area in the separator 𝑄e,s is not a function of the exogenous applied current. Therefore,

the baseline quadratic approximation ODE is retained for computing its time-evolution.

6.6 Design of Persistent Excitations

In order to successfully apply any system identification technique, the input signal must be

carefully designed to be persistently exciting [207]. Narendra and Annaswamy [208, 209]

were among the earliest researchers to provide a detailed treatment of the desirable properties

of persistent excitation and their implication to the quality of the identification output. A

practical method to achieve persistent excitation is to subject the system under consideration

to a sequence of well-characterised input signals that are capable of exciting its hypothesised

modes. For this task, the author of this thesis chose to use the data-quality guidance provided

by The Mathworks Inc. [210] and performed an iterative refinement until the identification

procedure resulted in a generalisable model.
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Before discussing the shape characteristics of the input sequence, its magnitude must be

established. The various specially prepared input sequence families do not share a common

definition for their magnitudes. A guiding principle in system identification is that it is

important to have the input signal’s magnitude to be representative of standard operating

conditions if the system is linear. Although standardised drive cycle profiles are available,

from which a speed to current mapping can be performed, it is impossible to predict

a priori, the specific amplitudes of currents that the cell may undergo under real-life load

conditions. Without further deterministic information, the author of this thesis chose to

interpret magnitude as being the peak amplitude of the input current profile. As seen in

fig. 5.12, the representative Urban Dynamometer Driving Schedule (UDDS) drivecycle input

profile corresponds to a peak of 3C i.e., 180A. Following the standard principles of system

identification, it is desirable for the inputs to the system to lie along some measure of central

tendency. This is to enable the identified system to generalise well i.e., not deviate too far

from the truth when subject to inputs that are far away from the central measure. Yet another

consideration is not to saturate the identified model by choosing input magnitude to be too

close to the peak of the expected operating range. Taking into account all aforementioned

considerations, the peak amplitude of the input current was fixed at 2C i.e., 2/3rd of the UDDS

profile’s peak current amplitude.

6.6.1 Training current profile

Since not much prior information is available about the poles and zeros of the electrolyte

subsystem(s) in question, a wide variety of special waveforms with a sampling interval of 1 s

were used for the current perturbation used in this system identification task. The specific

input sequence consisted of

1. Random Binary Signal (RBS) (0–199 s)

2. ‘Chirp’ i.e., a swept cosine signal from 0–100mHz (200–799 s)

3. Periodic Random Binary Signal with a period of 200 s and 2 such periods (800–1199 s)

thereby helping to obtain a wide-sense persistent excitation. The swept cosine signal is

designed to excite the low frequency (DC) modes of the electrolyte subsystem and helps to

capture the system’s response to constant and other systematically varying input profiles.

The two RBSs are intended to target the poles and zeros of the electrolyte subsystem that
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would typically be excited by highly dynamic input profiles. The periodicity in one of the

RBSs was introduced to draw out any repeated real pole or complex conjugate poles in the

system that might otherwise appear to be a single real pole. The presence of both low and

high frequency spectra in the combined training set presents a high degree of confidence to

capture the relevant dynamics of the electrolyte subsystem. The input current profile used

for this system identification task is plotted in fig. 6.1.

0 100 200 300 400 500 600 700 800 900 1000 1100 1200

–120
–80
–40

0
40
80

120

RBS Chirp Periodic RBS

time (sec)

I tr
ai

n
(A

)

90 100 110 120 130 140
–100

0

100

1000 1010 1020 1030 1040 1050
–100

0

100

Figure 6.1 Input current profile used as the training set for system identification. The sequence
consists of a) a Random Binary Signal, b) a chirp or swept cosine signal (0–100mHz), and
c) a periodic Random Binary Signal thereby covering both low and high frequency spectra while
incorporating the potential to excite any periodic modes in the system to be identified.

6.6.2 Validation current profile

For the purposes of identification, the P2D model is considered as the true system. First, the

current profile from the training set is applied to the P2D model. Its simulation results, in

particular the numerically solved concentration values at each spatially discretised node in

each of the three regions per time-step is integrated over the thickness of the respective

regions and multiplied with their respective porosities to obtain the number of moles of Li+

per unit area in each of the three regions 𝑄e,𝑗. Only the quantities 𝑄e,n and 𝑄e,p are chosen

as the outputs for system identification and a transfer function model is fitted as per the

evaluation procedure discussed in section 6.8.

As with any classical curve fitting (numerical regression) procedure, system identification

is also prone to overfitting the training data. In general, the ‘best’ transfer function that
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identifies the given system is the lowest order model that not only minimises the training

error, but also minimises the error on a previously unseen validation dataset. In the absence

of an independent validation dataset, the training error can be made arbitrarily small by

increasing the number of poles and zeros of the transfer function models without any bounds.

However, such a model shall not have truly identified the dynamics of the system and

shall not generalise well to real-world datasets outside the training realm. Hence, having

an independent validation current profile for the task at hand is of paramount importance.

The validation profile visualised in fig. 6.2 consists of the following sequence

1. Periodic Random Gaussian Signal (RGS) with 4 periods of 200 s each (0–799 s)

2. Pseudorandom Binary Signal (PRBS) for emulating white noise i.e., with a flat power

spectra across the frequency spectrum (800–999 s)

3. Multi-sine signal i.e., a signal consisting of sinusoids at various fundamental frequencies

added together (1000–1199 s)
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Figure 6.2 Input current profile used as validation set for system identification. The sequence
consists of a) a Random Gaussian Signal, b) a Pseudorandom Binary Signal, and c) a multisine
waveform. The overall sequence is intended to emulate the flat power spectrum of white noise
(with the PRBS) and excite any poles and zeros within 3𝜎 spread of the RGS mean. The multisine
signal is composed of sinusoids with fundamental frequencies from 100mHz up to the Nyquist
frequency. Its amplitude variation across the frequency spectrum increases the probability to
capture the system’s modes that were possibly missed by the preceding two waveforms.

The MATLAB code used for generating the training and validation input profiles is given

in code snippet 6.1.

226



6.6 Design of Persistent Excitations

% Needs matlab's system identification toolbox
clear; close all; clc; format short g;
warning('off','Ident:dataprocess:idinput7'); % suppress sysid warnings
I_1C = 60; % Amps
range = 2*[-I_1C I_1C]; % peak-peak swing is ±2C = 40A
NumCh = 1; % no of channels (used by sysid toolbox for multichannel id)
Ts = 1; % sampling interval

%% Random Binary Input Signal (RBS)
N = 200; % samples per quantum of each waveform
u1 = idinput(N,'rbs',[],range); % 'idinput' from sysid toolbox
%% Chirp Signal (swept cosine)
t_chirp_start = 0;
t_chirp_end = 3*N*Ts; %
t = linspace(t_chirp_start,t_chirp_end,3*N);
f0 = 0;
f1 = 1e-1; % 𝑓1 = 100mHz is the max chirp frequency
u2 = max(range)*chirp(t,f0,t(end),f1)';
%% Periodic Random Binary Input Signal (Periodic RBS)
bin_seq_Period = N; % seconds
bin_seq_Period_N = ceil(bin_seq_Period/Ts); % samples
bin_NumPeriod = 2;
u3 = idinput([bin_seq_Period_N,NumCh,bin_NumPeriod],'rbs',[],range);
%% Random Guassian Signal (RGS)
rgs_Period = N; % seconds
rgs_Period_samples = ceil(rgs_Period/Ts);
rgs_NumPeriod = 4;
u4 = idinput([rgs_Period_samples,NumCh,rgs_NumPeriod],'rgs',[],range/2);
%% PseudoRandom Binary Signal (PRBS)
prbs_Period = N; % seconds
prbs_Period_samples = ceil(prbs_Period/Ts);
u5 = idinput(N,'prbs',[],range);
%% Multisine signal (sum of sines)
samples_per_Period = 2*N;
NumPeriod = 3;
[u6,freq] = idinput([samples_per_Period 1 NumPeriod],'sine',[],range);

%% Split into training and validation data sets
I_load_train = [u1;u2;u3];
I_load_validate = [u4;u5;u6];

Code snippet 6.1 Generation of training and validation input current profiles in MATLAB
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6.7 Investigation of Linearity and Time Invariance

The transfer function identification techniques listed in section 6.4 work best for Linear Time-

Invariant (LTI) systems. At first glance, this seems to be overly restrictive for the system(s)

at hand. When treated as a single macroscopic entity, a lithium ion battery, exhibits overall

non-linear characteristics, particularly due to strong non-linearities in a) the Butler-Volmer

reaction kinetics (see eq. (1.7)), and b) the Open Circuit Potentials (OCPs) of the two electrodes

(see eq. (5.58) and eq. (5.58)). However, we are dealing with a much narrower scope i.e., the

systems under consideration are just the two sub-system entities (one per electrode) that

transform the applied current at a particular time-step to the overall moles per unit area

of Li+ ions in the corresponding electrode region of the electrolyte at that same instant.

Therefore, it is the linearity and time-invariance of these subsystems that must be investigated.

6.7.1 Time-invariance of the electrolyte time-evolution subsystems

A test for time-invariance is prescribed in the lecture notes on system identification by

Plett [211]. The steps involved therein are reproduced here after being suitably adapted to the

notation of the subsystems at hand.

1. Apply input 𝑢1(𝑡) = 𝐼 (𝑡) to the system and measure the outputs 𝑄e,n1
(𝑡) and 𝑄e,p1

(𝑡).

2. Apply a delayed version of the input by 𝜏 seconds i.e., 𝑢2(𝑡) = 𝐼 (𝑡 − 𝜏) to the system and

measure the outputs 𝑄e,n2
(𝑡) and 𝑄e,n2

(𝑡).

3. If 𝑄e,n2
(𝑡) = 𝑄e,n1

(𝑡 − 𝜏) and 𝑄e,p2
(𝑡) = 𝑄e,p1

(𝑡 − 𝜏) for all possible delays 𝜏, as well as for

all choice of input signals 𝐼 (𝑡), then the systems are time-invariant.

For the systems at hand, it is not strictly required to apply this prescriptive test. Unless

a fundamental change in the underlying reaction phenomena/chemistry occur that alter the

performance over time, these systems can be treated as time-invariant. Factors that induce

time-dependent shift in the behaviour of lithium ion batteries are degradation phenomena

such as thickening of Solid-Electrolyte Interphase (SEI) layer, dendrite growth or mechanical

fatigue in electrodes which in-turn affect electrolytic diffusion and conductivity. Yet another

cause of time-dependent behavioural change is the drift in parameter values. However, these

phenomena are typically one or mode orders of magnitude slower than the P2D dynamics.
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This separation of time-scales imply that, in practice they can be decoupled. Therefore,

separate models can be identified for the faster and slower processes. A suitable model-

blending approach can then be considered to cover all processes across time-scales. Although

the concepts developed here for the fast electrolyte dynamics can be suitably adapted to such

slow phenomena, their study falls outside the scope of this thesis and is left as an exercise for

future work. Thus, the overall battery system, and hence by extension, the two subsystems

considered are deemed to be time-invariant. However, in the interest of completeness, this

author systematically applied the aforementioned test procedure with every combination

arising from the choice of ten time-delay values and the following six current profiles —

a) constant current 1C discharge, b) constant current 3C discharge, c) constant current

1C charge, d) UDDS input profile with peak amplitude of 3C, e) training profile used in

system identification (see fig. 6.1), and f ) validation profile used in system identification (see

fig. 6.2). Finally, these tests were repeated for a choice of five different initial States of Charge

(SOCs) — 90%, 70 %, 50 %, 30 % and 10 %‡.

Figure 6.3 demonstrates the time-invariance of the subsystems considered at an initial

SOC of 50 % for a time-delay of 130 s using the highly dynamic system identification

training sequence that was synthesised by this thesis author (see fig. 6.1). The applied

current profile 𝑢1(𝑡) (top row of the central column) produces the outputs 𝑄e,n1
(𝑡) and

𝑄e,p1
(𝑡) shown in the top left and top right plots respectively. When the delayed version

of this input sequence 𝑢2(𝑡) = 𝑢1(𝑡 − 𝜏) (middle row, middle column) is applied, it results

in the outputs 𝑄e,n2
(𝑡) and 𝑄e,p2

(𝑡) to its left and right respectively. Following the steps of

the test procedure, subtracting these outputs from the correspondingly delayed versions of

their original counterparts result in zero residuals, thereby proving time-invariance of these

subsystems under these representative test conditions. The residual sequences in the bottom

row of plots are of 𝒪(10−15) and arise due to numerical round-offs that occur when operating

close to the noise floor of the machine’s floating point units.

Similar to the case demonstrated here, all tests for time-invariance for all permutations

of the chosen operating conditions passed successfully i.e., the delayed version of the

original output signals accurately matched with the responses to the corresponding delayed

‡The number of moles of Li+ per unit area in the electrolyte does not depend on the electrode’s SOC.
However, different starting point of SOCs were considered to have a wide variety in the length of the recorded
data until cut-offs were hit. e.g. starting at 90 % SOC could mean that for a current spike early in the profile,
upper cut-off voltage shall be hit sooner leaving a smaller set of logged simulation data.
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Figure 6.3 Demonstration of time-invariance of the subsystems considered. The applied current
profile 𝑢1(𝑡) is the system identification training sequence from fig. 6.1 (top row of the central
column). The top left plot shows the response𝑄e,n1

(𝑡), while that on the top right shows𝑄e,p1
(𝑡). The

second row of themiddle column shows the same input sequence delayed by 𝜏 = 130 s. Application
of this current profile 𝑢2(𝑡) = 𝑢1(𝑡 − 𝜏) results in the outputs 𝑄e,n2

(𝑡) and 𝑄e,p2
(𝑡) to its left and right

respectively. Subtracting these from the correspondingly delayed versions of the original outputs
result in zero residuals, thereby proving time-invariance of these subsystems. The jitter shown
in the bottom row of plots is 𝒪(10−15) in magnitude and are due to the numerical roundoffs that
occur when operating close to the noise floor of the machine’s floating point units.

input (down to machine precision), thereby confirming the time-variance of the subsystems

considered in the system identification problem, which enables us to proceed further.

6.7.2 Linearity analysis of the electrolyte time-evolution subsystems

De-biasing of input signals

In the analyses of linearity of systems, it is a recommended practice to de-bias the output

and input quantities about their mean operating conditions. The input signal in this case

is the applied load current 𝐼 (𝑡), which can be both positive (during discharge) and negative

(during charge). The mean of the training profile is −1.167 A and that of the validation profile
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is −0.3273A. Clearly, the mean values are dependent upon the actual current profile used. The

appropriately de-biased signal i.e., ̃𝐼 (𝑡) = 𝐼 (𝑡) − ̄𝐼 (𝑡) is to be used for training and validation

data sets in the system identification procedure. For the purpose of linearity analysis, it is

a standard practice to simply apply a step change in input (from zero) and measure the output

responses, thereby bypassing the de-biasing requirements.

For the output signals, bias values can be pre-computed analytically and accounted for.

The overall number of moles of Li+ per unit area in any region within the cell cannot

be physically negative. Even though under high C-rates, ion depletion at localised spatial

locations (such as the current collectors) is certainly possible, the entire thickness of any

region cannot become devoid of ions at any point in time since the cell shall instantaneously

cease to work. Thus, for a typical well-designed cell operating within the manufacturer

prescribed C-rate limits, the output signals under consideration operate in a small window

about their initial values. In the author’s simulations, even at ±5C, the overall number of

moles of Li+ in any cell region exhibited a maximum change of less than 15 % from its initial

value. Thus, the de-biased output variables for system identification 𝑄e,𝑗(𝑡) can be obtained

by subtracting their respective initial values 𝑄e,𝑗(0) (see eq. (5.97) and eq. (5.99)) from 𝑄e,𝑗(𝑡)

𝑄e,n(𝑡) = 𝑄e,n(𝑡) − 𝑄e,n(0) (6.5)

𝑄e,p(𝑡) = 𝑄e,p(𝑡) − 𝑄e,p(0) (6.6)

which implies that the transfer functions to be identified have to be modified to be 𝑄e,n(𝑠)
̄𝐼 (𝑠) and

𝑄e,p(𝑠)
̄𝐼 (𝑠) respectively. This does not affect the time-invariance proved in section 6.7.1 since the

initial values 𝑄e,𝑗(0) are merely constants and hence not time-dependent.

Test for linearity

Similar to the test for time invariance described in section 6.7.1, a test for linearity is also

prescribed in the lecture notes on system identification by Plett [211]. The steps involved

therein are reproduced here after being suitably adapted to the notation of the subsystems at

hand. This is essentially a recipe for testing the superposition principle.

1. Apply input profile 𝐼1(𝑡) to the system and obtain outputs 𝑄e,n1
(𝑡) and 𝑄e,p1

(𝑡).

2. Apply a different profile 𝐼2(𝑡) to the system and obtain outputs 𝑄e,n2
(𝑡) and 𝑄e,n2

(𝑡).
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3. Now apply an input profile 𝐼3(𝑡) = 𝛼𝐼1(𝑡) + 𝛽𝐼2(𝑡) and obtain a corresponding set of

outputs 𝑄e,n3
(𝑡) and 𝑄e,n3

(𝑡).

4. If 𝑄e,n3
(𝑡) = 𝛼𝑄e,n1

(𝑡) + 𝛽𝑄e,n2
(𝑡) and 𝑄e,p3

(𝑡) = 𝛼𝑄e,p1
(𝑡) + 𝛽𝑄e,p2

(𝑡) for all possible {𝛼, 𝛽}

and for all choice of input signals {𝐼1(𝑡), 𝐼2(𝑡)}, then the systems are linear.

As in the time-invariance test, the same set of five different initial SOCs‡ — 90%, 70 %,

50 %, 30 % and 10 %, was retained for these linearity tests. For each test run, a pseudo-random

number generator was used to select the values of {𝛼, 𝛽} from the set of real numbers ℝ (not

restricted to the set of integersℤ) in the closed interval spanning [−1.25, 1.25]. Negative values

are acceptable for both the scaling coefficients since the resulting composite input 𝐼3(𝑡) can

be either positive or negative. The composite signal 𝐼3(𝑡) was obtained by taking a random

combination of any two of the following current profiles — a) step input with a constant

current 1C discharge, b) step input with a constant current discharge at C/5, c) step input

with a constant current 1C charge, and d) step input with a constant current charge at C/5.

The scaling factors 𝛼 and 𝛽 were restricted to the range [−1.25, 1.25] in consideration of

limiting the peak applied current to within a ±3C window — the operating condition for most

Battery Electric Vehicles (BEVs), so that the isothermal assumption for the model shall remain

valid. This peak current corner case occurs when the pseudo-random generator chooses both

scaling factors at the selected range’s limits for the 1C constant current discharge or charging

cases. The limited range of the scaling factors are also motivated by the fact that most real-

world systems remain linear only within a certain operating window. In particular, care must

be taken to ensure that the cell’s SOC during the linearity test remains within its physical

limits for any initial SOC. Furthermore, localised saturation or depletion of ions for extended

durations must be avoided. Hence it can be concluded that, with the chosen range for the

scaling factors, if the two subsystems under consideration remain linear everywhere below

a peak current of ±3C in the isothermal case, then the linearity tests are considered as passed.

Future extensions to undertake a temperature-dependent system identification exercise can

potentially use a first-order Taylor expansion about this operating window. The discussion

thus far has fully established all the conditions for conducting the test for linearity.

Figure 6.4 illustrates one instance of a linearity test wherein constant currents and integer

scaling factors are used for the sake of illustration. The plots in the left column deal with

the electrolyte time-evolution subsystem in the negative electrode region. Similarly, the plots
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Figure 6.4 Illustration of one instance of linearity tests for the subsystems under consideration.
For this visualisation, constant current inputs are used throughout. The top row of plots shows𝑄e,n

and 𝑄e,p for two step inputs 𝐼1(𝑡) = 60A and 𝐼2(𝑡) = 12A i.e., discharge with 1C and C/5 currents
respectively. The second row of plots shows 𝑄e,n3

and 𝑄e,p3
for 𝐼3 = 36A, where 𝐼3 = 𝛼𝐼1 + 𝛽𝐼2

with (𝛼, 𝛽) = (1, −2). The last row of plots overlays these quantities with the manually computed
linear combination of their two preceding responses. Had these sequences overlapped exactly,
the systems would have been exactly linear. Despite exhibiting deviations over the considered
horizon, the transient responses in both electrode regions do follow the superposition principle.
Even past the transient, maximum error in both cases is an order of magnitude lower than the
individual outputs. Hence, the two systems are deemed to be approximately linear.

in the right column deal with the corresponding subsystem in the positive electrode region.

A discharge current of 1C i.e., 60 A is first applied and the corresponding outputs 𝑄e,n1
and

𝑄e,p1
are obtained. Secondly, a discharge current of C/5 i.e., is applied and the corresponding

outputs 𝑄e,n2
and 𝑄e,p2

are obtained. These set of responses are plotted in the top row of
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fig. 6.4. Now, a third value of input current 𝐼3, computed as a linear combination of the

previous input currents i.e., 𝐼3 = 𝛼𝐼1 + 𝛽𝐼2 is applied. For illustrative purposes, the integer

set (𝛼, 𝛽) = (1, −2) was chosen for the scaling coefficients, which implies 𝐼3 = 12A. The

corresponding outputs 𝑄e,n3
and 𝑄e,p3

are plotted in the middle row. As per the test for

linearity, if these signals are equal to the signal generated by manually computing the linear

combination of the preceding two outputs, then the system is linear.

The plots in the third row show 𝑄e,n3
and 𝑄e,p3

overlaid with their respective linear com-

bination signals. For the subsystem in the negative electrode region, the transient performance

matches precisely until ≈450 s, whereas that for the positive electrode region exhibits a good

matching for approximately the first 250 s. However, for the horizon considered the two

overlaid plots do not overlap exactly. Hence, the systems are not truly linear. However, the

exhibited behaviour is quite close to linearity, with the maximum absolute error in each

region being 𝒪(10−4) even past the initial transient, which is an order of magnitude lower

than its individual components. This behaviour was exhibited for all test instances considered.

Considering that for dynamic simulation runs, the transient performance is paramount to the

good performance of the model, in conjunction with the aforementioned low error metric,

these subsystems can be considered to be approximately linear.

Based on the analysis presented here, LTI behaviour for the two subsystems is assumed,

which facilitates in proceeding with the actual system identification procedure.

6.8 Transfer Function Identification Procedure§

6.8.1 The transfer operator and its model form

In a classical system identification task, the discrete-time transfer functions for the systems

under consideration need to be determined. These discrete-time transfer functions are

based on Z-transforms in the frequency domain. However, for the purpose of working

in time-domain, an analogous linear operator 𝑞 that performs a forward shift on its input

i.e., 𝑞𝑢[𝑘] ⟼ 𝑢[𝑘 + 1]. Similarly, applying the backward shift operator 𝑞−1 on the input yields

its value at the previous time-step i.e., 𝑞−1𝑢[𝑘] ⟼ 𝑢[𝑘 − 1].

§The early stages of this section presents this author’s digested summary of the theoretical framework
adapted from a subset of content from the lecture notes on system identification by Plett [211–213].
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In a generic LTI system wherein measurements are corrupted by noise, the system

dynamics are represented by the transfer operator 𝐺(𝑞)¶ that acts on the applied input 𝑢[𝑘],

whereas the noise dynamics are represented by the disturbance operator 𝐻(𝑞) that acts to

filter (or shape) an assumed white noise input 𝑒[𝑘]. The overall output can be written as the

linear combination

𝑦[𝑘] = 𝐺(𝑞)𝑢[𝑘] + 𝐻(𝑞)𝑒[𝑘] (6.7)

where 𝐺(𝑞) = 𝐵(𝑞)
𝐴(𝑞) and 𝐻(𝑞) = 𝐶(𝑞)

𝐷(𝑞) are the transfer operators describing the dynamics of the

system and disturbance respectively.

𝐴(𝑞), 𝐵(𝑞), 𝐶(𝑞) and 𝐷(𝑞) are rational polynomials in 𝑞. The two transfer operators 𝐺(𝑞)

and 𝐻(𝑞) can be represented by

𝐺(𝑞) = 𝑞−𝑛𝑘
𝑏1𝑞−1 + ⋯ + 𝑏𝑛𝑏𝑞

−𝑛𝑏

1 + 𝑎1𝑞−1 + ⋯ + 𝑎𝑛𝑎𝑞
−𝑛𝑎

(6.8)

𝐻(𝑞) = 𝑞−𝑛𝑙
𝑐1𝑞−1 + ⋯ + 𝑐𝑛𝑐𝑞

−𝑛𝑐

1 + 𝑑1𝑞−1 + ⋯ + 𝑑𝑛𝑑𝑞
−𝑛𝑑

(6.9)

where (𝑛𝑘, 𝑛𝑙) are the number of transport delay samples, (𝑛𝑏, 𝑛𝑐) the number of feedforward

coefficients and (𝑛𝑎, 𝑛𝑑), the number of feedback coefficients in 𝐺(𝑞) and 𝐻(𝑞) respectively.

Thus, the system identification task becomes one that of estimating the

1. number of transport delay samples 𝑛𝑘
2. number of feedforward coefficients (zeros) 𝑛𝑏
3. zeros themselves 𝑏1, 𝑏2, … 𝑏𝑛𝑏
4. number of feedback coefficients (poles) 𝑛𝑎
5. pole locations 𝑎1, 𝑎2…𝑎𝑛𝑎
6. coefficients of the noise filter 𝐻(𝑞)‖.

for each of the two transfer operators 𝐺1(𝑞) and 𝐺2(𝑞) i.e., the electrolyte time-evolution

subsystems in the negative and positive electrode region respectively.

¶The term transfer operator in the time domain mathematically corresponds to the term transfer function
in the frequency domain. Mathematically, 𝐺(𝑞) = 𝐺(𝑧)||𝑧=𝑞.

‖In the ARMAX estimation of non-linear dynamics, the noise-filter is capable of returning non-zero
coefficients even if the identification data set is obtained from a noise-free simulation of the P2D model as
is the case here. However, as a first-order approximation, in the interest of simplicity and considering that this
work serves as an introduction to the application of system identification to SPMs, this thesis author errs on
the side of making the linearity assumption, which is valid only for low C-rates, whilst acknowledging that this
limitation could be relaxed by incorporating the coefficients of the noise-filter 𝐻(𝑞) in the future. For the rest
of this work, only the coefficients of the linear plant dynamics 𝐺(𝑞) are estimated.
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6.8.2 Estimation of transport delay

The transport delay 𝑛𝑘 can be estimated visually by inspecting the step response of the systems

under consideration.

In fig. 6.4, step inputs of 𝐼1 = 60A, 𝐼2 = 12A, and 𝐼3 = 36A were applied to the two

subsystems. Inspecting closely all the responses i.e., 𝑄e,n1
, 𝑄e,n2

and 𝑄e,n3
in the negative

electrode region, and 𝑄e,p1
, 𝑄e,p2

and 𝑄e,p3
in the positive electrode region, it is clear that all

these outputs start exactly at zero. Therefore, there is no delay term to be considered for the

transfer operators i.e., 𝑛𝑘 = 0 for both subsystems.

6.8.3 Choice of model structure

Among the transfer-function model structures mentioned in section 6.4.2, the ARX model

structure is too simplistic to consider. Despite the fact that its numerical computation involves

only basic linear algebra operations, that can be efficiently handled on modern computing

systems, it is considered to produce poor estimates of the system’s poles and zeros. In the

absence of contributions from the noise-term, the all-encompassing model structure used by

the Box-Jenkins approach is deemed to be unnecessary for the problem at hand. Therefore,

the two model structures considered were ARMAX and OE for the coefficient determination.

6.8.4 Starting guesses for coefficient orders

At first, the training profile of fig. 6.1 is de-biased (through mean removal) and applied as

the input current profile in a P2D simulation beginning at 50 % SOC. The outputs of this

simulation are suitably post-processed as per the following sequence of steps.

1. The concentrations solved at various node locations within each electrode are numer-

ically integrated over the corresponding electrode thicknesses using trapezoidal rule.

2. The resulting integral value is multiplied with the porosity of the corresponding

electrode region to obtain 𝑄e,ntrain
(𝑡) and 𝑄e,ptrain

(𝑡).

3. These quantities are then de-biased by subtracting their initial values to obtain

𝑄e,ntrain
(𝑡) and 𝑄e,ptrain

(𝑡).
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The same procedure is repeated for the validation current profile of fig. 6.2 to obtain

𝑄e,nval
(𝑡) and 𝑄e,nval

(𝑡). These data sets are used for all subsequent sub-tasks involved in this

system identification exercise.

To facilitate a smaller search window for the coefficient determination in parametric

transfer function methods, a hand-estimation of coefficient order through non-parametric

methods may be first considered. This coarse estimate acts as a feeder to aid the faster

convergence of the non-linear optimisation algorithms used in parametric methods. In this

work, a basic spectral analysis using a Hanning window implemented using the MATLAB

command spa is applied to time-domain data to transform it into frequency response data.

Figure 6.5 shows the Bode plots of the frequency response to the training set in the

negative electrode (left column) and positive electrode (right column) regions of the cell. It is

important to note that these Bode diagrams obtained by such non-parametric methods only

represent an approximation of the physical dynamics intended to help in initial estimates of

the system behaviour. Some preliminary understanding of the various characteristics of the

system can be gleaned from these Bode diagrams. The first visually striking feature is the

similarity in the general shape of the approximate frequency characteristics in the negative

and positive electrode regions, both in the magnitude response and in the phase response.

This confirms the author’s assumptions of equal ‘complexity’ in the symbolic regression

search discussed in section 6.1.1. This is also congruent with the physical behaviour of the

electrolyte in these two regions.

Finite DC gain

By visual extension of the frequency responses towards lower frequencies, it is clear that

the DC gains of both the systems are finite and below unity. This behaviour can clearly be

seen in the time-domain responses of fig. 6.4. For the plotted time-horizon, this effect is most

visible for the case of the 12A constant current input, wherein the responses of both regions

settle to a finite value after an initial transient. Finally, the finiteness of the DC gain helps

to narrow down the search window for the parametric model structures. In particular, this

fact indicates that the model structures to be trialled must not have any integrator terms (or

poles at the origin of the complex plane).
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Figure 6.5 Bode plots showing the estimated frequency response for the two subsystems under
consideration. The frequency response data was obtained through a spectral analysis i.e., by
computing the ratios of spectra of the de-biased input and output sequences. The sequences were
smoothed using a Hanning window before computing the ratio.

Resonance and model order

First order transfer functions do not exhibit characteristic peaks or resonances in their

frequency responses. However, for the Bode magnitude plots in fig. 6.5, a pronounced

resonance around 0.15 rad s−1 is observable. This has an enormous impact — it presents

an important clue that the first order time-evolution ODEs of eq. (5.94) and eq. (5.96) are

inadequate to represent the system dynamics.
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Estimation of number of poles and zeros

The high-frequency roll-off in the slopes of the Bode magnitude plots in fig. 6.5 provide clues

on the number of poles in the system. The corner frequency 𝜔c in both cases appear to be

around 0.15 rad s−1. The high-frequency slope of both systems is ≈20 dB per decade, which

implies that they have at-least one more pole than the number of zeros if using a continuous

time transfer function. For the corresponding z-domain transfer function, this implies 𝑛𝑎 ≥ 𝑛𝑏.

Looking at the phase plot of the two electrode regions, it can be hypothesised that there exists

at-least one zero in these continuous-time systems around the 0.3–0.4 rad s−1 frequency range.

The discrete-time sampling process adds an additional zero to the system.

Based on this preliminary analysis, the estimates are 𝑛𝑘 = 0, 𝑛𝑏 ≥ 2, 𝑛𝑎 ≥ 3. Only

asymptotic approximations to corner frequencies can be estimated from the Bode plots.

Furthermore, the estimated locations are not used in the parametric system identification

algorithms and is of much less importance than the model order estimates. With this initial

understanding, the parametric system identification procedure is carried out.

6.8.5 Refinement of coefficient orders using deterministic criteria

The initial estimate of coefficient orders in section 6.8.4 was performed based only on a visual

inspection of the Bode magnitude plots. Owing to the fact that the frequency response data

is the result of a crude ratio of spectra, there is a high probability of missing vital information

on the number and locations of poles and zeros. Hence only a lower bound on the coefficient

orders are available until this point. Next, a set of deterministic criteria is used to widen and

refine the coefficient order range.

Although the ARX structure is deemed to be too simplistic (see section 6.8.3), owing to the

fact that only linear algebra operations are involved, as opposed to numerical optimisation

routines employed in the OE, ARMAX and Box-Jenkins structures, certain deterministic

criteria can be incorporated for coefficient order selection. This can serve as a refinement of

the initial number of coefficients guessed from the Bode magnitude plots of fig. 6.5.

For any model structure used, its error can be defined as

𝜀[𝑘] = 𝑦[𝑘] − �̂�m[𝑘] (6.10)
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where 𝑦[𝑘] are true measurements and

�̂�m[𝑘] = 𝐺(𝑞)𝑢[𝑘] (eq. (6.7) with 𝐻(𝑞) set to 0)

are model outputs obtained using the assumed transfer operator 𝐺(𝑞) (to be determined).

The number of numerator and denominator coefficients in 𝐺(𝑞) as well as their values are

to be determined. This set of unknowns can be collected into a parameter vector 𝜃. Thus, as

per eq. (6.10), the error sequence is parametrised by 𝜃, and its notation is amended to 𝜀[𝑘; 𝜃].

For an input-output data set consisting of 𝑁 samples, a generic cost function that may be

applied for all the four model structures viz. ARX, ARMAX, OE and Box-Jenkins is

𝑉𝑁(𝜃) =
𝑁
∑
𝑘=1

𝐿 (𝜀 [𝑘; 𝜃]) (6.11)

where 𝐿(⋅) is a positive-valued scalar loss function.

In a typical system identification task, the sum of squares of the error sequence is used as the

typical loss function, thereby yielding

𝑉𝑁(𝜃) =
𝑁
∑
𝑘=1

𝜀2[𝑘; 𝜃] (6.12)

The vector ̂𝜃 that minimises this cost function is desired

̂𝜃 = argmin
𝜃
𝑉𝑁(𝜃) (6.13)

For the ARX model structure, eq. (6.12) reduces to a standard quadratic optimisation

problem which may be solved analytically using least squares linear algebra. However, for

robustness against estimation bias, instead of the standard Ordinary Least Squares (OLS)

estimates, the Instrumental Variable (IV) estimation method [207] was used for this model

order selection task. Applying this to the ARX model structure, two deterministic model

order criteria have been defined — a) Akaike’s Information Criterion (AIC), and b) Rissanen’s

Minimum Description Length (MDL) [207].

In the AIC, the optimal number of parameters �̂� in 𝜃 is obtained byminimising themodified

log likelihood cost function

𝑉𝑁 ,mod(𝜃) = ln 𝑉𝑁(𝜃) +
2𝑑
𝑁

, 𝑁 ≫ 𝑑 (6.14)
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In the MDL criterion, the cost function in eq. (6.14) is modified to

𝑉𝑁 ,mod(𝜃) = 𝑉𝑁(𝜃) (1 +
𝑑 ln𝑁
𝑁 ) (6.15)

For the two subsystems at hand, both criteria converged to the same choices for the

coefficient orders, yielding 𝑛𝑎 = 4, 𝑛𝑏 = 4 and 𝑛𝑘 = 0. Therefore, these values were used as the

starting points for the non-linear optimisation algorithms used in determining the exact pole

and zero locations for the discrete-time transfer functions which is described next.

6.8.6 Final transfer function coefficients — Nonlinear optimisation

For the ARMAX and Box-Jenkins model structures, eq. (6.12) results in a non-linear cost

function which is minimised iteratively using quasi-Newton approaches. The theoretical

foundation of standard non-linear optimisation methods such as L-BFGS and Levenberg-

Marquardt are well established whose detailed explanation is out of the scope of this thesis.

Although state of the art methods are not covered, the interested reader may consult the

textbook by Scales [214] for an introductory overview of this topic.

The final model structures (for both the positive electrode and negative electrode time-

evolution subsystems) in the z-domain are given by

𝐺(𝑧) =
𝑏1𝑧−1 + ⋯ + 𝑏𝑛𝑏𝑧

−𝑛𝑏

1 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑛𝑎𝑧
−𝑛𝑎

(6.16)

wherein the coefficients in the numerator and denominator are to be determined.

The number of coefficients obtained from section 6.8.5 was used as the initial guess for

the coefficient orders in the non-linear optimisation. For the initial guesses for the numerical

values of the coefficients (𝑎1, 𝑎2, … 𝑎𝑛𝑎) and (𝑏1, 𝑏2, … , 𝑏𝑛𝑏), a randomised multi-start algorithm

was used. For the two transfer functions identified, no distinction is made between whether

the ARMAX structure or Box-Jenkins structure was used to arrive at the coefficients. Since

the output magnitudes of 𝑄e,n and 𝑄e,p are of 𝒪(10−3), a constant scaling factor of 𝑘 = 1000

is used to bring the order of magnitude of output data values to unity. A well-chosen scaling

factor is often vital to the convergence of non-linear optimisation algorithms. Since the

system is linear, this constant gain shall not fundamentally change the dynamics of the
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system and can be accounted for by using the reciprocal scaling factor of 0.001 in numerical

implementations. The identification procedure was carried out using MATLAB’s System

Identification Toolbox [215].

Table 6.2 A sample of results showing the coefficients of four discrete-time transfer functions
identified for the electrolyte time-evolution subsystem in the negative electrode region. Only
those models that yielded similar errors (within 0.5 %) across both input datasets were retained.
The fourth order model from case C (shaded in grey) performed the best across both training and
validation profiles and is chosen as the final model. The 95 % confidence bounds on the coefficients
were at least one order of magnitude lower than their mean values reported here.

Case
Numerator Denominator Training

accuracy
(%)

Validation
accuracy

(%)𝑏1 𝑏2 𝑏3 𝑏4 𝑎1 𝑎2 𝑎3 𝑎4
A 0.0026 −0.0025 −1.922 0.923 95.11 95.13
B 0.0028 −0.0052 0.0025 −2.833 2.669 −0.836 99.14 98.54
C 0.0028 −0.0075 0.0066 −0.0019 −3.577 4.767 −2.801 0.612 99.73 99.28
D 0.0026 0.0026 −0.0024 −0.0024 0.060 −1.906 −0.058 0.907 95.12 95.14

Table 6.2 shows the results obtained by applying the aforementioned non-linear iden-

tification routines to the time-evolution subsystems in the negative electrode region. The

coefficient orders tried in the system identification procedure were informed by the inferences

from the bode magnitude plots as well as that obtained by applying the deterministic AIC

and MDL criteria. Only those models that yielded similar errors (within 0.5 %) across both

input datasets were retained.

As discussed in section 6.8.4, a first order transfer function cannot capture all the dynamics

of the subsystems under consideration. Therefore, the lowest order tried in the identification

procedure was two (case A in table 6.2). As higher order models were tried, the system

accuracy improves steadily as seen in cases B and C. However in order to avoid overfitting,

the lowest order model that produces the highest matched accuracy across both training and

validation profiles must be chosen.

Case D illustrates the importance of the initial values used in the non-linear optimisation

algorithms. Despite using an identical number of coefficients as case C, the optimisation

algorithm converges to a radically different set of zeros and poles resulting in a percentage

error comparable to that of the simple second order case. The fourth order model from case C

(shaded grey in table 6.2) performs the best across both training and validation profiles and is
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chosen as the final model. The number of numerators and denominators match exactly that

predicted by the deterministic criteria given in section 6.8.5. A similar selection procedure

was applied for the identification of the transfer function corresponding to 𝑄e,p in the positive

electrode region.

The final identified transfer functions (for the scaled output) are

𝑄e,n(𝑧)
̃𝐼 (𝑧)

=
0.002842𝑧−1 − 0.00753𝑧−2 + 0.006595𝑧−3 − 0.001906𝑧−4

1 − 3.577𝑧−1 + 4.767𝑧−2 − 2.801𝑧−3 + 0.6118𝑧−4
(6.17)

𝑄e,p(𝑧)
̃𝐼 (𝑧)

=
−0.002809𝑧−1 + 0.007139𝑧−2 − 0.005944𝑧−3 + 0.001614𝑧−4

1 − 3.464𝑧−1 + 4.444𝑧−2 − 2.495𝑧−3 + 0.515𝑧−4
(6.18)

Figure 6.6 shows a comparison of the𝑄e,n output for a) the P2Dmodel, and b) the identified

transfer function of eq. (6.17) using the training current profile of fig. 6.1. The transfer function

of eq. (6.17) was obtained by scaling the output of the training profile to be of order 𝒪(1)

by a factor of 1000. Therefore, for final implementation and comparison purposes, the raw

output produced by applying the transfer function needs to be scaled back by its reciprocal. If

the system is linear, then this scaling factor shall have no impact on the frequency-dependent

dynamics of the subsystem. The output predicted by the identified transfer function is

virtually indistinguishable from the ‘true’ output computed by post-processing the P2D

model with an RMS error of 5.70 × 10−6 molm−2 and a MAE of 19.19 × 10−6 molm−2. This

high accuracy of the transfer function prediction justifies the linearity assumption for the

subsystem. Figure 6.7 presents the same comparison using the validation input profile for the

subsystem in the positive electrode region. The accuracy of the identified transfer function

for this independent data set is clearly illustrated.

The poles of eq. (6.17) are located at (0.9969, 0.9870, 0.9106, 0.6829) while those of eq. (6.18)

lie at (0.9967, 0.9880, 0.8952, 0.5842) on the Z-plane i.e., close to each other. This confirms the

hypothesis that these two sub-systems exhibit similar dynamics. The slight differences in the

pole locations could be attributed to the variations in the physical parameters pertaining to

the two electrode regions. The numerator coefficients of eq. (6.17) and eq. (6.18) are also close

to each other except that their signs are opposite to each other. This is to be expected, since as

seen in the step response plots of fig. 6.4, 𝑄e,n and 𝑄e,p evolve in time in opposite directions.

This is also explained by the fact that, for a given applied current, a decrease in the number of
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Figure 6.6 Time-evolution of 𝑄e,n computed using the P2D model and the identified transfer
function of eq. (6.17) (scaled by 0.001) with the synthetic training input profile of fig. 6.1.
The output predicted by the identified transfer function closely matches the ‘true’ output
obtained by a high-fidelity P2D simulation with an RMS error of 5.70 × 10−6 molm−2 and a MAE
of 19.19 × 10−6 molm−2. Note that the transfer function in eq. (6.17) was originally obtained by
scaling the output by 1000. The transfer function output is multiplied by the reciprocal of the
same scaling factor to obtain the predicted response shown here, thereby once again justifying
the linearity assumption for this subsystem.

ions in the negative electrode has to be accompanied by an increase in the positive electrode

and vice-versa (the values of the changes are not exactly equal owing to the presence of the

separator). The identified transfer functions are thus consistent and deemed to be suitable

for representing the electrolyte time-evolution in these regions.

6.8.7 Numerical implementation of identified transfer functions

The concept of deploying a Z-domain transfer function may seem incongruous to the one

of the major goals of this thesis viz. time-domain implementation of ROMs in an embedded

environment such as a BMS. While the majority of the models is derived and implemented

entirely in time-domain, only the two time-evolution subsystems of the electrolyte seems

to deviate from this trajectory. However, an explanation for this is provided in section 6.4.3.

In particular, it was mentioned that an approximation-free conversion to time-domain from

Z-domain exists, that mitigates this perceived drawback for these two sub-systems. This

conversion is amenable for discrete-time implementation without any other modifications.

244



6.8 Transfer Function Identification Procedure

0 300 600 900 1200 1500 1800 2100

–4.00

–2.00

0.00

2.00

4.00

×10–3

time (s)

m
ol

m
–2

Q̃e,pval(t)

P2D
SysID

1110 1112 1114

–2.40
–2.30
–2.20 ×10–3

Figure 6.7 Time-evolution of 𝑄e,p computed using the P2D model and the identified transfer
function of eq. (6.18) (scaled by 0.001) with the synthetic validation input profile of fig. 6.2.
The output predicted by the identified transfer function closely matches the ‘true’ output
obtained by a high-fidelity P2D simulation with an RMS error of 12.07 × 10−6 molm−2 and a MAE
of 31.59 × 10−6 molm−2. Note that the transfer function in eq. (6.18) was originally obtained by
scaling the output by 1000. The transfer function output is multiplied by the reciprocal of the
same scaling factor to obtain the predicted response shown here, thereby once again confirming
the linearity of this subsystem.

Starting from the generic structure of the identified transfer functions (see eq. (6.8)),

𝐺(𝑧) =
𝑏1𝑧−1 + ⋯ + 𝑏𝑛𝑏𝑧

−𝑛𝑏

1 + 𝑎1𝑧−1 + ⋯ + 𝑎𝑛𝑎𝑧
−𝑛𝑎

𝐺(𝑞) =
𝑏1𝑞−1 + ⋯ + 𝑏𝑛𝑏𝑞

−𝑛𝑏

1 + 𝑎1𝑞−1 + ⋯ + 𝑎𝑛𝑎𝑞
−𝑛𝑎

𝑦[𝑘]
𝑢[𝑘]

=
𝑏1𝑞−1 + ⋯ + 𝑏𝑛𝑏𝑞

−𝑛𝑏

1 + 𝑎1𝑞−1 + ⋯ + 𝑎𝑛𝑎𝑞
−𝑛𝑎

(1 + 𝑎1𝑞−1 + ⋯ + 𝑎𝑛𝑎𝑞
−𝑛𝑎) 𝑦[𝑘] = (𝑏1𝑞−1 + ⋯ + 𝑏𝑛𝑏𝑞

−𝑛𝑏) 𝑢[𝑘]

𝑦[𝑘] + 𝑎1𝑞−1𝑦[𝑘] + ⋯ + 𝑎𝑛𝑎𝑞
−𝑛𝑎𝑦[𝑘] = 𝑏1𝑞−1𝑢[𝑘] + ⋯ + 𝑏𝑛𝑏𝑞

−𝑛𝑏𝑢[𝑘]

𝑦[𝑘] + 𝑎1𝑦[𝑘 − 1] + ⋯ + 𝑎𝑛𝑎𝑦[𝑘 − 𝑛𝑎] = 𝑏1𝑢[𝑘 − 1] + ⋯ + 𝑏𝑛𝑏𝑢[𝑘 − 𝑛𝑏]

𝑦[𝑘] = −𝑎1𝑦[𝑘 − 1] − ⋯ − 𝑎𝑛𝑎𝑦[𝑘 − 𝑛𝑎]

+ 𝑏1𝑢[𝑘 − 1] + ⋯ + 𝑏𝑛𝑏𝑢[𝑘 − 𝑛𝑏] (6.19)

Replace with analogous

transfer operator 𝑞 = 𝑧

in time domain

Apply the definition

of 𝐺(𝑞) on the LHS

Cross-multiply

Expand on both sides

Apply the definition

𝑞−𝑝𝑥[𝑘] = 𝑥[𝑘 − 𝑝]
Rearrange to obtain

the final expression
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We thus obtain a simple algebraic expression (a difference equation) that computes the

output at the given time-step given past inputs and outputs. This is a highly memory-efficient

implementation since, at any given time-step, only the previous 𝑛𝑎 (four) output samples

and 𝑛𝑏 (four) input samples need to be ‘remembered’ (stored). This concludes all the aspects

(derivation and implementation) of this author’s newmodel for the electrolyte time-evolution

subsystem. The performance of this model for computation of electrolyte concentration needs

to be evaluated, which is performed next.

6.9 Performance Analysis of System Identification Model:

Ionic Concentration in Electrolyte

To demonstrate that a suitable advancement of the field has indeed been achieved through

this system identification exercise, a comparison with the existing state of the art in reduced

order electrolyte modelling is warranted. Secondly, to comprehend its extent of validity and

performance boundaries, the newly developed ROM must also be pitted against the full-order

P2D model. This section aims to provide such a comparative discussion for two types of

inputs — a) constant current inputs b) dynamic load profiles

6.9.1 Constant current inputs

Figure 6.8 shows the spatial distribution of ionic concentration in the electrolyte along cell

thickness for a 1C discharge beginning at 100 % SOC. The spatial concentration computed by

each of the three approaches — i) the P2D model, ii) the quadratic approximation model and

iii) the newly developed system identification model(s).

During the initial phase of discharge, the P2D model exhibits a characteristic inflection

point near the separator interfaces that diffuses out over time until a QSS. This is due to the fact

the reaction front is initially established close to the separator, and as surface concentration

of lithium in particles near separator is depleted, the reaction starts moves further into the

electrode thickness. Neither of the two ROMs under consideration here could successfully

capture this characteristic inflection. This is explained by the fact that both of them use the

standard quadratic approximation profile for the spatial profile, which means that only one

apex point is possible per electrode, which is pinned to their separator interfaces by design.
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Figure 6.8 Spatial distribution of ionic concentration in electrolyte along cell thickness at
various snapshots of time computed by each of the three models for a 1C discharge. The
concentration profile computed by the P2Dmodel is used as the benchmark reference. The system
identification model performs noticeably better than the quadratic approximation model during
the initial transient while delivering a similar performance as a QSS is reached.

During the transient portion of discharge (approximately up to 357 s as shown in fig. 6.8),

the locus of the concentration profile computed by the newly developed system identification

model(s) lies closer to the P2D model than that computed by the quadratic approximation

model. After the initial transition phase, it appears that the concentration profile predicted

by both the ROMs converge to the P2D model’s concentration profile.

247



6.9 Performance Analysis of System Id Model: Ionic Concentration

To obtain a quantifiable perspective on the accuracy of the newly developed model,

it is desirable to plot the temporal evolution of the concentration, particularly at the two

current collector interfaces. The behaviour of the baseline quadratic approximation model

in this regard was established in section 5.4.2. Therefore it is important to ascertain whether

a noteworthy improvement was achieved using the model arrived at using the system

identification procedure.

Figure 6.9 shows time-evolution of ionic concentrations at the current collector interfaces

of the negative and positive electrodes for a 1C discharge. Concentration profiles computed

by the three approaches — i) P2D model, ii) quadratic approximation model and the iii) newly

developed system identification model(s) are overlaid in the top row of plots, wherein the left

hand side corresponds to the current collector interface at the negative electrode while the

right hand side corresponds to that at the positive electrode. The plots in the bottom row of

fig. 6.9 show the time-evolution of the absolute value of their errors. The concentration error

of each of the two ROMs is defined with respect to the benchmark P2D model i.e., 𝜀𝑐e,𝑗(𝑡) =

𝑐e,𝑗ROM
− 𝑐e,𝑗p2d(𝑡). The absolute value of the error is plotted so that the magnitude of the error

can be visualised better, aiding immediate comparisons based on the plots.

For both current collectors, the newly developed system identification model outperforms

the quadratic approximation model during the transient phase. At the negative electrode/cur-

rent collector interface, the error of the system identificationmodel remains strictly below that

of the quadratic approximation model until ≈650 s and remains comparable to it until ≈1600 s.

Beyond this time, the quadratic approximation model has a slightly better accuracy, although

the system identification model still remains at a comparable distance from it. After ≈2000 s,

both models yield the same response shape. For the positive electrode/current collector

interface, the error of the system identification model remains below that of the quadratic

approximation model until ≈3300 s.

Figure 6.10 shows a zoomed version of the time-evolution of the ionic concentration

at the two current collectors, wherein the first 300 s after application of the load current

is plotted. The significant improvement in accuracy achieved by the newly developed

system identification model(s) is clearly demonstrated. At both the current collectors, the

concentration computed by the system identification model(s) closely track that of the

benchmark P2D model.

248



6.9 Performance Analysis of System Id Model: Ionic Concentration

0 1000 2000 3000 4000
1000

1250

1500

1750

2000

2250

m
ol

m
–3

ce(0, t)
P2d
Quadratic
SysID

0 1000 2000 3000 4000
0

200

400

600

800

1000

m
ol

m
–3

ce(ltot, t)
P2d
Quadratic
SysID

0 1000 2000 3000 4000
0

70

140

210

280

350

time (s)

m
ol

m
–3

|εce,negcc |

Quadratic
SysID

0 1000 2000 3000 4000
0

70

140

210

280

350

time (s)

m
ol

m
–3

|εce,poscc |

Quadratic
SysID

Figure 6.9 Evolution of ionic concentration over time at the two current collector interfaces
for a 1C discharge for i) the P2D model, ii) the quadratic approximation model and iii) the newly
developed system identification model(s) (top row). For the quadratic approximation and system
identification models, the time evolution of their absolute error relative to the P2D benchmark
is also shown (bottom row). At both current collectors, the transient performance of the system
identification model is superior to the quadratic approximation model. At QSS, the quadratic
approximation model is slightly more accurate than the system identification model.

The loss of fidelity exhibited past the initial transient phase warrants an explanation.

It should be recalled that the natural decoupling of the temporal and spatial systems were

taken advantage of in developing the system identification technique. This means that, for

the spatial profile, the system identification model reverts to the same quadratic profile

as the baseline quadratic approximation model. This explains why the two models have

similar shape past the initial transient. During the transient phase when the QSS behaviour

is yet to be established, it is reasonable to assume that the temporal dynamics are of

paramount importance in governing the concentration profile evolution. After a QSS has

been established with the reaction front diffusing out and a steady stream of ion-electron

separation/recombination in place, it is hypothesised that the temporal dynamics have settled

and the spatial configuration assumes importance.
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Figure 6.10 Transient phase of the temporal evolution of ionic concentration at the two
current collector interfaces for a 1C discharge as computed by — i) the P2D model, ii) the
quadratic approximation model, and iii) the newly developed system identification model(s). The
significantly improved accuracy of the system identification model(s) relative to the state of the
art quadratic approximation model is clearly demonstrated.

With a sustained application of constant current past the initial transient, strong spatial

gradients in the ionic concentration are established within the cell i.e., the concentrations

are far from the initial equilibrium value. This precisely exposes the realm where the

system identification model exhibits its natural weakness. By following the theory of system

identification, which necessitates bias removal, the training and validation profiles of fig. 6.1

and fig. 6.2 had nearly zero mean. This means that the currents were as equally positive as

negative leading to a small-signal perturbation around the equilibrium value of the electrolyte

concentration. While this profile is ideally suited to excite the system’s dynamics, it fails to

capture the large signal behaviour. As a topic of future research, perhaps a spatially-coupled

system identification could be attempted to handle this issue. Table 6.3 provides a summary

of error statistics for the transient phase, thereby helping to compare the performance of the

quadratic and system identification models against the benchmark P2D simulation results.

Themain implication of these results is that the identifiedmodels are primarily suitable for

transient i.e., dynamic load profiles, which is typical of a real-life scenario in an electric/hybrid

electric vehicular operation. Such a model is less suitable for sustained constant current

application. This implies that a BMS in a vehicle undergoing a Constant Current Constant

Voltage (CCCV) charging cannot rely on these identified electrolyte models. However, this
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Table 6.3 Summary of error statistics comparing the performance of quadratic approximation
and system identification models. The input is a 1C constant current discharge applied for the
first 30 minutes starting at 100 % cell SOC. The metric being compared is the absolute value of the
concentration difference with respect to the P2D model at the two current collector interfaces.

Error statistic
(molm−3)

||𝜀𝑐e || at Neg/CC ||𝜀𝑐e || at Pos/CC

Quadratic SysID Quadratic SysID

Max 133.80 39.51 276.33 194.27
Mean 48.16 29.56 227.92 146.53
Median 25.60 30.17 218.96 173.14
Standard Deviation 36.94 8.22 29.71 55.79

exclusion does not seriously hamper the model’s wider applicability since a simple coulomb-

counting approach with a high-precision Analog to Digital Converter (ADC) is much more

accurate than any other PBM in this particular scenario.

Although constant current discharge is not a practical use-case for vehicular batteries,

performing this benchmark evaluation has helped in understanding the limits of the newly

developed model. This study has also helped in providing a glimpse of its potential strength

viz. significantly improved accuracy under dynamic load conditions, which is presented next.

6.9.2 Dynamic current inputs

To characterise the performance of the newly developed system identification electrolyte

concentration model(s) under dynamic load conditions, the UDDS drivecycle was used. The

details of this drivecycle such as its speed versus time data and its highly dynamic nature

was discussed in section 5.3.3. The peak of the applied load current used corresponds to

a discharge current of 180A i.e., 3C. A plot of this current profile was shown in the top row of

fig. 5.12. This load profile was applied to the three models under consideration — a) P2Dmodel,

b) quadratic approximation model, and c) newly developed system identification model(s) —

and the spatio-temporal evolution of ionic concentration in electrolyte computed by each of

them was studied.

Since the load current is highly dynamic and continuously alternating between charging

and discharging at various magnitudes throughout the profile duration, it is difficult to discern

a specific pattern or trend within the spatial thickness of the cell. Hence, unlike the case
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of prolonged unidirectional current application wherein a clear reaction front that diffuses

gradually out can be visualised (see fig. 6.8), little information can be gained from visualisation

of spatial concentration profiles. Since the ionic concentrations at the two current collectors

have a direct (and two-pronged) influence on the electrolyte overpotential (see eq. (2.4)), it is

particularly important to characterise the accuracy at these two critical spatial locations.

Since a direct correspondence between the time-dependent dynamics of the load profile

and that of the electrolyte concentration can be intuitively visualised, its values at the two

current collector interfaces are examined. The plots in the top row of fig. 6.11 shows the

time evolution of the ionic concentration at the two current collector locations for the UDDS

current profile computed by each of the three models under consideration. The plots to the

left pertain to the negative current collector location while that to the right correspond to

the positive current collector location. The bottom row of plots show the absolute value

of concentration error of the quadratic and system identification models relative to the

P2D reference benchmark. As seen in fig. 6.11, the absolute error of the newly developed

system identification models remain below that of the baseline quadratic approximation

model throughout the drivecycle.

Based on the conclusions from the constant current input study of section 6.9.1, it is to

be expected that the system identification model(s) exhibit a superior performance during

the transient phase of the simulation. As seen in the initial duration of fig. 6.11, the absolute

error of the system identification model is indeed lower than that of the baseline quadratic

approximation model. Particular, when a sudden current spike is applied at ≈200 s, the

quadratic approximation model is unable to cope and its absolute error deviates far away from

its mean value. The absolute error of system identification model remains well controlled

and even with this instantaneous load demand, its standard deviation is remarkably close to

its median value as shown in table 6.4.

While the superior accuracy of the newly developed model during the transient phase

was not surprising, the fact that its performance remains consistent throughout the entire

time horizon is noteworthy. Despite being subject to incessant changes in load demands, the

system identification model responds better than the quadratic approximation model well

past the initial transient. Figure 6.12 shows a zoomed view of the ionic concentration in the

electrolyte at the two current collector interfaces. To prove the improved performance of
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Figure 6.11 Evolution of ionic concentration over time at the two current collector interfaces
with a UDDS input profile (see topmost plot of fig. 5.12) as computed by i) the P2D model,
ii) the quadratic approximation model and iii) the newly developed system identification model(s)
(top row). The plots on the left pertain to the negative electrode/current collector interface,
while that on the right corresponds to the positive electrode/current collector interface. For the
quadratic approximation and system identification models, their absolute error relative to the P2D
benchmark is also shown (bottom row). The system identification model is considerably more
accurate than the quadratic approximation model for the entire time horizon of the drivecycle.

Table 6.4 Summary of error statistics with a UDDS input current profile for the quadratic
approximation and system identification models. The metric used is the absolute value of the
concentration difference with respect to the P2D model at the two current collector interfaces.

Error statistic
(molm−3)

||𝜀𝑐e || at Neg/CC ||𝜀𝑐e || at Pos/CC

Quadratic SysID Quadratic SysID

Max 307.27 190.04 292.20 114.44
Mean 66.38 54.98 55.15 25.02
Median 49.65 47.12 40.39 20.93
Standard Deviation 66.80 37.18 60.50 20.17
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the developed model well into the operation of the cell, a 50 s window beginning at ≈60%

of the overall profile duration is examined in detail. Although it exhibits some oscillations,

the system identification model(s) reasonably track the ‘true’ concentrations computed by

the P2D model. However, the baseline quadratic approximation model seems to suffer from

a large bias with respect to the P2D model. It should also be noted that nearly every ‘kink’

in the two ROMs is identical. This could be attributed to the fact the spatial profile used in

both of them is identical. Hence, it must be concluded that the difference in their amplitude

arises from the improved calculation of coefficients 𝑎𝑘(𝑡) in eq. (5.69) and eq. (5.71) through

the usage of more accurate 𝑄e,n and 𝑄e,p in the Left-Hand Side (LHS) of eq. (5.81) and eq. (5.83)

respectively. Detailed error metrics of the two ROMs is shown in table 6.4.
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Figure 6.12 A zoomed view of the ionic concentration (showing a 50 s window beginning at
≈60% of the overall profile duration) in the electrolyte at the two current collector interfaces for
the UDDS profile of fig. 5.12 as computed by — i) the P2D model, ii) the quadratic approximation
model, and iii) the newly developed system identification model(s). At both current collector
interfaces, the system identification model(s) exhibits a reasonable tracking of the concentration
profile computed by the benchmark P2D. The profile computed by the quadratic approximation
model seems to suffer from offsets/bias issues that adversely affects its accuracy.

Based on the evidence presented thus far, it can be concluded that the time-evolution sub-

system model(s) developed here using the system identification technique indeed represent

an advancement of the field of reduced order electrolyte modelling. With this aspect thus

tackled, it is imperative to explore the potential benefits of incorporating the discrete-time

model(s) thus obtained into the conventional SPM and is discussed next.
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6.10 Composite SPM Model with Electrolyte Dynamics

At this stage, it must be recalled that the purpose of developing the system identification

electrolytemodel was tomitigate the poor performance of the basic SPM at C-rates above 0.5C

(see section 5.3.3). This sub-optimal performance was attributed to the lack of electrolyte

dynamics in the basic SPM. The performance of the newly developed system identification

model has been proved to be superior to the current state of the art. The next step is to embed

this electrolyte model into the basic SPM so as to obtain a composite SPM. The performance of

this composite model is evaluated to ascertain its suitability towards online implementation.

6.10.1 Computation of electrolyte overpotential

The missing component in the terminal voltage computation of the basic SPM is the

contribution from the electrolyte overpotential term. This is the potential difference in the

entire electrolyte i.e., the electrolyte potential at the positive current collector interface with

respect to that at the negative current collector interface.

As discussed in section 2.3.2, using the equation proposed by Prada et al. [99], the

overpotential in the electrolyte is computed as

𝜙e,pos − 𝜙e,neg = (1 − 𝑡0+)
2𝑅𝑇
𝐹

ln
𝑐e,pos/cc
𝑐e,neg/cc

−
𝐼
2𝐴 (

𝑙neg
𝜅eff,neg

+ 2
𝑙sep

𝜅eff,sep
+

𝑙pos
𝜅eff,pos

) (eq. (2.4) revisited)

Equation (2.4) consists of two distinct terms — i) a diffusion overpotential due to

concentration gradient in the electrolyte, and ii) an ohmic resistance term that is dependent

upon a) the instantaneous value of applied current, b) the thicknesses of the three cell regions,

and c) the effective ionic conductivity in each of the three regions.

The ohmic loss term of eq. (2.4) needs to be examined in closer detail. The dependence

of this term on instantaneous load current and cell thicknesses can be accounted in

a straightforward manner. However, there are ambiguities in computing the effective ionic

conductivity in each of the three cell regions. The effective value of ionic conductivity in
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the electrolyte depends on its intrinsic conductivity, the Bruggeman constants and porosities

of each of the three regions. The intrinsic electrolyte conductivity in-turn depends on the

electrolyte concentration.

Ambiguities arise in interpreting the value of ionic concentration to be used for computa-

tion of electrolyte concentration. Since eq. (2.4) deals with overall potential drop across the

entire length of the cell, the concentration used for computing electrolyte conductivity could,

for example be that at the respective current collectors. This concept however introduces

inconsistencies with the separator term. Using the separator concentration from one of

the electrode interfaces introduces unequal weighting in this computation. If the ionic

concentration at the midpoint of the separator is used, this scheme becomes inconsistent with

that at the two current collectors. Another possibility for computing the effective conductivity

in a cell region is to use the mean of the concentration in that region. However, since the

mean is nothing but a simple statistical first moment is equally influenced by the entire

concentration profile within each cell region. This is questionable given that the electrolyte

overpotential across the entire cell thickness is most likely governed by the conductivities at

the two current collector interfaces. Some form of weighted mean could be conjured, wherein

the current collector locations are given the highest weight and the separator locations

the least weight. However, finding the weights becomes yet another exercise and from

the engineering perspective of computing these in real-time, seems to be in the realm of

diminishing returns.

In published literature, only a cursory treatment has been accorded to the aforementioned

ambiguities. In Prada et al. [99], the usage of initial concentrations is used to only introduce

the concept of ohmic resistance in that article. However, the author of this thesis wishes to

extend this concept further. In the simulations conducted by this thesis author, it became clear

that the dependence on applied current was required in order to obtain reasonable accuracies.

Computing mean of concentrations in cell regions for calculation of ionic conductivities led

to a biased computation of overpotentials. Therefore, this author decided to use the value

of initial concentration for the computation of ionic conductivities in the current-dependent

contribution to electrolyte overpotential throughout the entire time horizon considered.
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Hence, as per the adopted scheme eq. (2.4) gets modified as

𝜙e,pos(𝑡) − 𝜙e,neg(𝑡) = (1 − 𝑡0+)
2𝑅𝑇
𝐹

ln
𝑐e,pos/cc(𝑡)
𝑐e,neg/cc(𝑡)

−
𝐼
2𝐴 (

𝑙neg
𝜅eff,neg (𝑐e (0))

+ 2
𝑙sep

𝜅eff,sep (𝑐e (0))
+

𝑙pos
𝜅eff,pos (𝑐e (0))

) (6.20)

wherein the time-dependent terms are explicitly shown in the notation.

Using eq. (6.20) for electrolyte overpotential computation has an important implication.

The two-pronged influence of the time-dependent electrolyte concentration on the electrolyte

overpotential viz. a) a direct influence in the form of concentration dependent diffusion

polarisation, and b) an indirect influence through its use in ionic conductivity calculations

has now been reduced to just one. This implies the results from the system identification

model are now required only in the first term of eq. (6.20).

In the light of the decision of use the (constant) initial concentration for the ohmic term, it

is natural to question the gains from the circuitous route of the system identification exercise

that was undertaken to obtain the improved electrolyte model. Therefore, it is imperative to

quantify the relative weight of the concentration dependent diffusion resistance compared

to the bulk solution resistance.

Figure 6.13 shows the contribution to the overall potential drop 𝜙e,pos and 𝜙e,neg in the

electrolyte from each of the two terms in eq. (6.20) for a 1C discharge. The bulk solution

resistance is constant owing to the fact that the initial electrolyte concentration is used

in computing the effective ionic conductivities in the three regions of the cell. The gradient

induced diffusion polarisation term, however has a stronger contribution in both the transient

and steady state. The entire dynamics of the overall potential drop during the transient phase

is governed by this concentration-dependent term, while its steady state contribution is in-

fact higher than the bulk solution resistance. The constant ohmic resistance term merely

provides a non-zero offset for the electrolyte solution overpotential. In questioning whether

the system identification exercise was indeed worthwhile, if the concentrations in the two

current collectors had not been computed at each time-step, then this diffusion polarisation

term would become zero. This is because, the numerator and denominator in eq. (6.20) would

have to be retained at the initial concentration, leading to a unit ratio whose natural logarithm
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Figure 6.13 Contribution to the overpotential in the electrolyte from each of the two terms in
eq. (6.20) for a 1C discharge. The bulk solution resistance is approximated as a constant value
determined by the equilibrium initial concentration. The concentration dependent polarisation
term governs the dynamic behaviour of the overall overpotential. Furthermore, this gradient-
induced diffusion resistance has a strong contribution to the steady state, higher than the bulk
solution resistance and cannot be neglected without introducing significant errors.

is zero. Therefore, it is clear that computing the concentrations at the two current collectors

through system identification has indeed helped in improving the modelling accuracy.

Having established the relative importance of computing the diffusion-dependent polar-

isation overpotential, the next question that arises is whether the constant approximation for

the bulk solution resistance is indeed appropriate. It also remains to be seen if the accurate

computation of the ionic concentration through system identification (see section 6.9) has

translated into a similarly accurate computation of electrolyte overpotential. This is answered

by a comparing the electrolyte overpotential computed by the system identification model

with that obtained from the P2D model.

Figure 6.14 shows a comparison of the electrolyte overpotential computed by the P2D

and system identification models for a 1C discharge. There is a discrepancy in the initial

offset of the overpotential value. However, this cannot be attributed to the use of the

constant concentration approximation in the computation of ionic conductivities in eq. (6.20).

This is because, at equilibrium the concentration used is exactly the initial concentration.

Furthermore, at the instant of applying the current, diffusion gradients in the electrolyte have

not yet been established. Hence, the contribution from the diffusion overpotential is zero,
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Figure 6.14 Comparison of electrolyte overpotential computed by the P2D model and the
system identification model (using eq. (6.20)) for a 1C discharge. During the transient phase, the
profile obtained by the system identification model closely matches that of the P2D model. The
mismatch in the initial overpotential does not arise to the use of a constant concentration for the
bulk resistance contribution, since at equilibrium this value is exact and not an approximation. Past
the initial transient, accuracy of the system identificationmodel degrades. This can be explained by
its analogous behaviour for concentration computation in the Quasi-Steady State (see section 6.9.1)
for constant current inputs.

which can also be seen in fig. 6.13. Thus, it can be concluded that this initial mismatch is due

to the presence of some other unmodelled phenomena that affects the DC offset of electrolyte

overpotential, and is not arising due to the approximations used by this author.

In fig. 6.14, the shape of the transient profile of overpotential computed by the system

identification model closely matches that of the P2D model. This validates that the newly

developed model does indeed capture the electrolyte dynamics sufficiently well during the

initial transient. However, past the initial transient, the model’s accuracy degrades and the

resulting profile does not track the P2D model. This behaviour in overpotential is analogous

to that exhibited in the spatio-temporal concentration study discussed in section 6.9.1 for

constant current inputs, wherein it was deemed that this newly developed model is more

suitable for dynamic loads. The same conclusion for electrolyte overpotential accuracy is

reached from this constant current study. Nevertheless, even for constant current loads, using

the newly developed model is better than having no electrolyte model whatsoever as in the

basic SPM.
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Figure 6.15 shows a comparison of the electrolyte overpotential computed by the P2D

and system identification models for a UDDS load profile. The input current corresponding

to this load profile is shown in the top row of fig. 5.12. The system identification model is

able to reasonably track the overpotential profile computed by the P2D model. Unlike the

case of sustained unidirectional current input, the error in this case remains well-contained.

The Mean Absolute Error (MAE) obtained for this profile was 15.88mV with an Root Mean

Square (RMS) error of 24.11mV. This corresponds to 8.19 % and 12.44 % of the peak magnitude

of the overpotential (193.86mV).
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Figure 6.15 Comparison of electrolyte overpotential computed by the P2D model and the
system identification model (using eq. (6.20)) for a UDDS load profile. The overpotential profile
computed by the system identification model reasonably matches that obtained by the P2D model
with a Mean Absolute Error (MAE) of 15.88mV and a Root Mean Square (RMS) error of 24.11mV.

Hence, it can be concluded that the electrolyte overpotential computation using the

system identification model provides an acceptable performance for dynamic load profiles.

The next step is to incorporate this electrolyte overpotential calculation into the basic SPM

and to quantify the voltage accuracy of the resulting composite SPM.

6.10.2 Terminal voltage computation of composite SPM

In section 5.3.3, it was shown that in the basic SPM, the computation of the cell’s SOC is of

sufficient accuracy. However, its terminal voltage strongly deviates from the true value as

computed by a P2D model. This mismatch between SOC and terminal voltage hinders the
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suitability of the basic SPM as the plant model in online state estimation applications. The

discrepancy in terminal voltage is due to the lack of electrolyte overpotential contribution in

its computation. Having obtained a suitable methodology to compute this (see section 6.10.1),

it is now possible to refine the computation of the cell’s terminal voltage.

Referring to eq. (5.26) and eq. (5.27), the reaction overpotential in each of the two porous

electrode regions is given by

𝜂pos = 𝜙s,pos − 𝜙e,pos − 𝑈pos (6.21)

𝜂neg = 𝜙s,neg − 𝜙e,neg − 𝑈neg (6.22)

wherein the contribution from the electrolyte potential terms 𝜙e,pos and 𝜙e,neg are no longer

to be neglected.

Subtracting eq. (6.22) from eq. (6.21)

𝜂pos − 𝜂neg = 𝜙s,pos − 𝜙s,neg⏟⏟⏟⏟⏟
𝑉cell

−𝜙e,pos + 𝜙e,neg − 𝑈pos + 𝑈neg (6.23)

whose rearrangement yields

𝑉cell = 𝜂pos − 𝜂neg + 𝜙e,pos − 𝜙e,neg⏟⏟⏟⏟⏟
Δ𝜙e

+𝑈pos − 𝑈neg (6.24)

Substituting for Δ𝜙e from eq. (6.20) in into eq. (6.24), and expanding each of its terms

(see derivation of eq. (5.40) for details), the final expression for the cell’s terminal voltage is

obtained as

𝑉cell(𝑡) =
2𝑅𝑇
𝐹

sinh−1
⎛
⎜
⎜
⎝

−𝐼 (𝑡)

2𝐴𝑙pos𝑎s,pos𝐹𝑘rpos√
𝑐e𝑐s,surfpos(𝑡) (𝑐s,maxpos

− 𝑐s,surfpos(𝑡))

⎞
⎟
⎟
⎠

−
2𝑅𝑇
𝐹

sinh−1
⎛
⎜
⎜
⎝

𝐼 (𝑡)

2𝐴 𝑙neg𝑎s,neg𝐹𝑘rneg√
𝑐e𝑐s,surfneg(𝑡) (𝑐s,maxneg

− 𝑐s,surfneg(𝑡))

⎞
⎟
⎟
⎠

+(1−𝑡0+)
2𝑅𝑇
𝐹

ln
𝑐e,pos/cc(𝑡)
𝑐e,neg/cc(𝑡)

−
𝐼
2𝐴 (

𝑙neg
𝜅eff,neg (𝑐e (0))

+ 2
𝑙sep

𝜅eff,sep (𝑐e (0))
+

𝑙pos
𝜅eff,pos (𝑐e (0))

)

+ 𝒰pos (𝑐s,surfpos(𝑡)) − 𝒰neg (𝑐s,surfneg(𝑡)) (6.25)
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All other expressions and computations of the basic SPM remain unchanged (see

section 5.1 for the complete set of equations constituting the model). The final step is to

show that the composite SPM thus obtained has an improved performance especially in those

scenarios that the basic SPM performed poorly.

6.10.3 Validation of composite SPM: Terminal voltage accuracy

The final step in this model development effort is the validation phase. In particular, the

voltage accuracy of the composite SPM is compared against the P2D model for standard

input conditions. In order to compare and contrast the gains achieved by the composite SPM,

the terminal voltage output of the basic SPM is also considered here.

Constant Current Inputs

The voltage accuracy of the newly developed composite SPM is first evaluated for the standard

test case of 1C discharge current starting from a cell SOC of 100 %.

Figure 6.16 shows the terminal voltage output of various SPMs for a 1C discharge

beginning at 100 % SOC (top plot). Since it does not account for electrolyte overpotentials,

the voltage profile computed by the basic SPM lies above that of the benchmark P2D model.

On the other hand, the composite SPM tends to over correct for the electrolyte overpotential

so that its terminal voltage lies below the P2D output. Since the output of the two ROMs lie

on either side of the P2D model, it is appropriate to use the absolute value of their errors

with respect to the P2D benchmark to compare them. In the bottom plot, the percentage

deviation of the absolute error of the two ROMs is shown. The statistics of this deviation is

quantified in table 6.5 which additionally includes the performancemetrics from the quadratic

approximation SPM.

Table 6.5 Summary of statistics for the percentage absolute error in terminal voltage for the
basic SPM and the composite SPM in constant current 1C discharge simulations.

Error Statistic
for %| ̂𝜀𝑣|

Basic
SPM

Quadratic
SPM

Composite
SPM

Worst Case 10.67 5.83 4.05
Mean 2.92 1.79 1.54
RMS 3.27 2.31 1.65
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Figure 6.16 Voltage output of various SPMs for a 1C discharge beginning at 100 % SOC (top
plot). Since it does not account for electrolyte overpotentials, the voltage profile computed by the
basic SPM lies above that of the benchmark P2D model. On the other hand, the composite SPM
tends to over correct for the electrolyte overpotential so that its terminal voltage lies below the
P2D output. Since the two ROMs have outputs on either side of the P2D model, it is convenient
to use the absolute error to compare them. In the bottom plot, the percentage deviation of the
absolute error of the two ROMs is shown. The composite SPM performs significantly better with
a peak absolute error of ≈4 % in contrast to nearly 11 % for the basic SPM.

In each of the error statistic considered, the composite SPM performs significantly better

than the basic SPM for the 1C discharge case.
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One of the biggest drawbacks of the conventional SPM was its poor voltage accuracy at

moderate C-rates above 0.5C (see table 5.4). The high accuracy achieved for the 1C rate seems

to indicate that the composite SPM is indeed a viable solution for all high C-rates, especially

given the backdrop of its methodical derivation steeped in system identification.

However, there exists a fundamental flaw in all models that use a priori assumptions of

simplified spatial profiles for ionic concentration in the electrolyte. In the case of both the

baseline quadratic and the system identification models, a parabolic profile spanning the

entire thickness of each region within the cell was chosen a priori. However, no attempt to

modify the profile upon encountering an ion starvation event at any spatial location.

This critical flaw is exposed by the sustained application of any higher current that

induces an ion starvation at one of the electrodes during operation. Figure 6.17 depicts the

ionic concentration in the electrolyte over time at both current collectors for a 2C discharge.

The profiles computed by both the P2D and system identification models are plotted. For

the system identification model, the current collector interface at the positive electrode

experiences an ion starvation event at ≈150 s. The quadratic spatial profile used by this model

does not account for such a reduction in the effective electrode thickness. All the boundary

conditions and coefficients were formulated using the original electrode thickness. Therefore,

beyond 150 s, the concentration becomes negative which is not physically meaningful. The

author of this thesis has implemented a saturation mechanism in the code that detects an ion

depletion event and prevents the concentrations from becoming negative.

Implementing this hard lower bound of zero for the ion concentration does not mit-

igate the problems associated with computing the electrolyte overpotential. Specifically,

computational difficulties are encountered when computing the concentration dependent

diffusion overpotential eq. (6.20). In the case of ion depletion at the positive current

collector, the argument of the logarithmic term becomes zero which leads to a non-feasible

computation (−∞). Ion depletion at the negative current collector is equally detrimental to

the computation. However, this scenario has a lower probability owing to the low C-rates

during charging operation (see section 5.3.2). Furthermore, in the absence of the lower bound

of zero for the concentrations, complex numbers are obtained from the logarithmic term,

which lead to physically erroneous overpotential calculations. An alternative is to simply
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Figure 6.17 Time evolution of ionic concentration in electrolyte computed by the P2D and
system identification models at — a) negative current collector interface (left plot), and b) positive
current collector interface (right plot) for a constant current discharge at 120A i.e., 2C. In the
system identification mode, ion starvation occurs at the positive current collector interface
at ≈150 s. The quadratic spatial profile used by the system identification model spans the
entire electrode region and does not account for ion depletion scenarios. In this thesis, the
author has implemented a saturation mechanism in the computer code to prevent the ionic
concentration from becoming negative. Despite this mitigating action, the computation of
electrolyte overpotential using eq. (6.20) is problematic in such scenarios.

omit the diffusion impedance term. However, since this term is responsible for the large-

signal dynamics of the overpotential (see fig. 6.13), omitting this and reverting to a simple

ohmic resistance contribution shall lead to significant errors in the electrolyte overpotential,

and consequently in the terminal voltage. Finally, setting the diffusion impedance to zero at

the transition boundary of ion starvation is also not a feasible solution. This is because, the

sudden inflection in the trajectory of the terminal voltage shall induce large errors in any

state estimation algorithms that depend on the composite SPM as the plant model.

The difficulties encountered in electrolyte overpotential computations for ion depletion

scenarios have not yet been discussed in the literature by the research community that

use such quadratic approximation models. This thesis author therefore assumes that such

a scenario had not been previously encountered for the parameter set and C-rate combinations

used by those researchers. Despite the fact that this phenomenon might be an artefact of

the idiosyncrasies of the parameter set used here, it is nevertheless questionable to not have

mathematically adapted the parabolic profile to such events. The aspect of rendering the

model robust to such vagaries is currently an open problem in the field and can be the subject
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of future research. It can therefore be concluded that this composite SPM is unsuitable in

its present form for sustained constant current discharge at higher C-rates. Despite this

setback due to deficiencies in the mathematical formulation of the underlying spatial profile,

the superior performance of the system identification model in the computation of ionic

concentrations and overpotentials for dynamic conditions warrant such a study for the

composite SPM.

Dynamic Load Conditions

In order to evaluate the performance of the composite SPM to dynamic inputs, the input

profile corresponding to the UDDS drivecycle profile in fig. 5.12 with a peak current of 180A

i.e., 3C was used.

Figure 6.18 shows the voltage output of the composite SPM for a UDDS input profile with

a peak magnitude of 180A i.e., 3C (see fig. 5.12). The voltage profiles computed by the basic

SPM and the benchmark P2D model is also overlaid (top plot). The percentage absolute error

of the two ROMs relative to the P2D model is shown in the bottom plot. It is seen that the

terminal voltage of the composite SPM is more accurate than the basic SPM (see table 6.6,

which additionally includes the performance metrics from the quadratic SPM). For instance,

the voltage profile computed by composite SPM matches the complex shape characteristics

of the P2D model while remaining very close to it in magnitude.

Table 6.6 Summary of statistics for the percentage absolute error in terminal voltage for the
basic SPM, quadratic approximation SPM and the composite SPM with UDDS input profile.

Error Statistic
for %| ̂𝜀𝑣|

Basic
SPM

Quadratic
SPM

Composite
SPM

Worst Case 2.59 1.68 0.72
Mean 0.51 0.36 0.11
RMS 0.68 0.39 0.16

6.11 Conclusions

In summary, while the newly developed composite SPM is not considered robust for use in

sustained discharge at high C-rates, it is indeed a suitable option for dynamic load profiles,

even for those with high peak magnitudes of instantaneous charge or discharge. Such load
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Figure 6.18 Voltage output of the composite SPM for a UDDS input profile with a peak
magnitude of 180A i.e., 3C (see fig. 5.12). The voltage profiles computed by the basic SPM and the
benchmark P2D model is also overlaid (top plot). The percentage absolute error of the two ROMs
relative to the P2D model is shown in the bottom plot. The terminal voltage of the composite
SPM is significantly more accurate than the basic SPM (see table 6.6).

profiles are typically encountered in vehicular applications, particularly in hybrid electric

vehicles. Thus, a suitable time-domain ROM that can be directly implemented in discrete-

time has been developed through system identification and its strengths and weaknesses have

been quantified. The applicability of this model has been proven for real-life scenarios using

a highly dynamic load cycle. Thus, this author concludes that the composite SPM developed

here does indeed represent an advancement to the present modelling art. This model may

now be used as the plant model in state estimation and control applications in a vehicular

BMS. This concludes the chapter as well as all the implementation aspects of physics-based

battery modelling discussed in this thesis.
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In this thesis, the deployment of physics-based computational modelling of lithium

ion cells for electric vehicle applications has been rigorously examined with a three-

pronged strategy viz. through their analysis, design and implementation. The Pseudo

Two-Dimensional (P2D) implementation of the Doyle-Fuller-Newman (DFN) model was used

as the backbone of all modelling efforts. Salient conclusions drawn from each of these aspects

are presented in this chapter. Based upon the invaluable experience gained during the course

of this research, and particularly from the findings presented herein, key areas in physics-

based modelling that can benefit from further study in the future are also identified.
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7.1 Physics-Based Models as a Design Tool

7.1.1 Conclusions from the model-based design study

Chapter 3 presented a computational framework to optimise the number of electrochemical

layers within a pouch cell so as to maximise its usable energy while meeting specific power

demands. In particular, this helped to construct a model-based deterministic approach to

optimally design cells that can be subjected to fast-charging without the concerns of plating.

In the context of electric vehicle applications, using this approach has the potential to alleviate

the two immediate concerns of consumers viz. range anxiety and long charging times.

To facilitate immediate adoption by relevant stakeholders, the concepts developed in

the optimisation framework of chapter 3 was realised in computer code and presented in

the form of an open-source design toolbox, Battery Optimal Layer Design (BOLD). This

toolbox was applied to the optimal layer design of an example cell from literature to obtain

two sets of power-dependent optimal layer configurations for two drivetrains — a Battery

Electric Vehicle (BEV) and a Plug-in Hybrid Electric Vehicle (PHEV). By suitably adapting the

numerical values of parameters to a real-world cell, model-based cell designs can be obtained,

which can potentially help to eliminate the current trend of over-engineering of cells using

conservative empirical layer choices.

From a perspective of technical advancements to the underlying Physics-Based Model

(PBM), the standard form of the P2D model has been suitably modified to facilitate a direct

application of input power densities. This was achieved through reformulation of the bound-

ary conditions on the solid-phase potential Partial Differential Equation (PDE). Although this

innate power input capability has been claimed as purportedly developed in extant literature,

its independent derivation and accessible documentation provided herein shall help other

researchers to apply this in a straight-forward manner for vehicle drivecycles, acceleration

tests and power-based charging protocols.

This investigation also revealed that the fast charging process determines the optimal

layer configuration instead of either acceleration runs or drivecycle requirements. This may

help to counter the current trend in publications which often rely primarily upon a drivecycle-

based dynamic input current profile to evaluate various aspects of cell modelling such as

predicting degradation and for advanced control and estimation algorithms. While validation
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against such a dynamic input profile is certainly vital, for future advancements dealing with

aspects of cell design or plating-related degradation, validation against fast-charging power

profiles is deemed to be absolutely essential.

The study also provided important guidelines about the role of thermal environment on

cell performance. It became clear that at very low temperatures, a high number of layers was

required for satisfying a specific charging power level relative to that needed at moderate

thermal environments such as room temperatures. A practical takeaway from this conclusion

is that it suffices to use a low number of layers in vehicles to be sold in territories with

perennial moderate temperature conditions.

Finally, this design study revealed that the speed at which lithium intercalates into the

negative electrode during charging limits the charge-addition rate to the cell. Lowering the

charging times of electric vehicles requires the use of higher charging powers. However, this

necessitates a high number of layers to absorb the overpotentials and to provide adequate

number of thermal conduction pathways (owing to the higher number of current collectors)

to dissipate the additional heat generated. Consequently, this has a detrimental effect on the

capacity and hence, the All-Electric Range (AER) of the vehicle.

7.1.2 Future work informed by the optimal layer design framework

As a direct inference of the final conclusion in section 7.1.1, assuming that the electric grid

infrastructure is adequately equipped to cope with the surge in future power demands for

charging of electric vehicles, the solid state diffusion at the negative electrode becomes the

bottleneck. It is therefore important for future research to focus on the development of new

materials for the negative electrode possessing much higher solid phase diffusion coefficients,

particularly at low temperatures.

From a perspective of improving the framework itself, at the outset, it is clear that the

plating threshold assessment can be made more accurate by incorporating the solid phase

diffusion coefficient as function of State of Charge (SOC). In the interest of simplicity and to

lay the foundation for such model-based cell designs, the scope of this work was intentionally

narrowed down to solely focus on changing the layer configurations within cells. In doing

so, certain assumptions were made that might have to be revisited and potentially relaxed

before its application to real-world cell designs.
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For instance, adherence to the specific type of cooling phenomena used i.e., tab cooling, is

one of the stronger assumptions used in this work. In this work, the benefits of employing this

cooling mechanism has been enumerated, and it is desirable that future pack designs adopt

it. However, the vast majority of the current generation of battery packs use surface-cooled

designs. This means that temperature for all layers within the pouch shall not be the same,

which further implies that it longer suffices to simulate just a single layer. Therefore, the

framework needs to be suitably modified to handle multiple layer choices concurrently.

Furthermore, using surface cooling shall invalidate the assumption of small thermal

gradients along the planar axis of the cell. This means that the lumped thermal model shall no

longer be accurate tomodel the temperature evolution of the cell. Furthermore, the differential

temperature evolution along the cross-sectional direction shall influence the transport and

kinetic properties of the cell. This electrochemical-thermal coupling along the planar direction

shall necessitate adding another spatial dimension to the underlying PBM, thereby rendering

the presently used P2D model ineffective. With the aim of minimising the optimising run-

times, future research may focus on how to suitably adapt the computational infrastructure

that was proposed in this thesis to account for these considerations.

For real-world cell designs, it is prudent to examine the examine the role of variable

porosities to achieve the balancing of active materials per layer. Since the computational

framework developed in this thesis uses a modular approach, in the future the constant

volume-fractions used in the methodology could simply be replaced by values informed by

optimal porosity computations. For this purpose, researchers could investigate the feasibility

of adapting a suitable scheme from the available pool of literature that have focussed on

using model-based porosity optimisation [28, 29, 216]. Finally, experimental prototyping is an

important step in any cell design and it is no exception here either. Therefore, experimentally

applying the desired power levels to confirm the optimal layer choices predicted by the

framework is an important step to be undertaken before its large-scale deployment.

7.2 Analysis of Salient Physics-based Reduced Order Models

Chapters 4 and 5 of this thesis primarily focussed on performing an in-depth analysis of

two distinct Reduced Order Models (ROMs) from two distinct perspectives. In chapter 4, the

hybrid ROM obtained by using the Discrete-Time Realisation Algorithm (DRA) is analysed
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to investigate its computational bottlenecks. In chapter 5, an in-depth analysis of a niche

selection of candidate models from the family of Single Particle Models (SPMs) is presented

from the perspective of modelling accuracy i.e., their ability to faithfully compute the system-

level quantities of the cell such as its SOC and terminal voltage. Finally, the early portions

of chapter 6 provides a thorough analysis of the bottlenecks of the quadratic approximation

model for computing the spatial profile of ionic concentration in the electrolyte. The

conclusions drawn from all aforementioned analyses are presented next. Topics that may

be of interest to future researchers engaging with these ROMs are also proposed.

7.2.1 Conclusions from analysis of the DRA-based state-space ROM

In chapter 4, Singular Value Decomposition (SVD) of a large Block-Hankel matrix (≈27GB)

was identified as a computational bottleneck in applying the classical DRA scheme for the

hybrid ROM discussed therein. It is concluded that this bottleneck arises due to slow dynamics

of solid phase diffusion which leads to the aforesaid large sized Block-Hankel matrix.

Tomitigate this bottleneck, an improvedDRA schemewas presented, whose centrepiece is

an iterative SVD algorithm. This algorithm was obtained as a combination of the Golyandina-

Usevich and Lanczos algorithms discussed in chapter 4. The results of applying the improved

DRA scheme demonstrate a significant performance improvement achieved by using the

new method without trading-off model fidelity. At a single operating point of SOC and

temperature, for a Hankel block size of 8000, the ROM workflow incorporating the improved

DRA is approximately 100 times faster than that employing the classical DRA. On a standard

computer workstation whose specifications are given in chapter 4, for 100 operating points

(combinations of 10 SOC and temperature values), obtaining the ROM required only 6 hours

using the improved DRA, whereas the classical DRA consumed 666 hours (≈27 days).

Furthermore, for the same block-size, the improved DRA is demonstrated to be superior

in terms of memory efficiency, drastically reducing the memory requirements from 112 GB

down to 2 GB. Finally, the improved DRA demonstrates improved modelling accuracy even

in moderately equipped computing environments such as standard consumer-grade laptops.

7.2.2 Future outlook for the DRA-based hybrid state-space ROM

The improved DRA method proposed in chapter 4 opens up the possibility of applying this

hybrid ROM for physical quantities in other locations within the cell’s geometry e.g. in the
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middle of the electrode region, without being hindered by computational limitations that

would have otherwise rendered it intractable. Furthermore, high sample-rate ROMs capable

of handling highly dynamic load profiles can be deployed in future Battery Management

System (BMS) applications. The proposed scheme also empowers the ROM framework to

tackle other cell chemistries with slower diffusion coefficients or even those with completely

different rate-limiting mechanisms, and therefore prima facie, appears to be promising.

Despite the benefits facilitated by the streamlining of the reduced order modelling

workflow through the improved DRA, there exists a fundamental deficiency in this hybrid

modelling approach that impede its near-term adoption in state estimation tasks. This aspect

was already discussed in chapter 2 and is reiterated here. The entries in the matrices of

the final state space model depend on the linearisation point of SOC and temperature. This

linearisation requirement adversely affects the usability of the model for state estimation

tasks, wherein the SOC is in fact an unknown quantity and is to be estimated. This cyclic

dependency between the linearisation point and the state-estimation entity renders this model

questionable for use in a demanding application such as in embedded BMSs on-board electric

vehicles. Therefore, the immediate future step is to analyse the stability of this internal

feedback loop. Once this has been performed, researchers may consider to engage in the

process of adapting the derivation of this hybrid state-space ROM approach to higher C-rates,

in conjunction with the numerical benefits afforded by the improved DRA developed here.

7.2.3 Conclusions from analysis of the SPM family of models

Based upon the holistic evaluation of various ROMs in chapter 2, owing to its simplicity, the

SPM family of models was identified as the most promising modelling candidate from an

implementation perspective. Chapter 5 provided an in-depth analysis of the strengths and

drawbacks of this modelling family.

Results from simulation of the basic SPM revealed that two contrasting aspects. Firstly, the

SOC computation of the SPM was of acceptable accuracy even at moderate C-rates thereby

validating the fourth order polynomial approximation approach for capturing solid phase

diffusion dynamics. However, the basic SPM suffers from severe inaccuracies in computing the

cell’s terminal voltage at currents above 0.5C. This dichotomous behaviour, revealed through

this analysis, has not been explicitly commented upon in present literature. In particular,
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despite its overarching simplicity, it can be concluded that it is this contrasting aspect that

renders the model unusable as the plant model for state estimation tasks. This is because, the

voltage measured from the model in a feedback estimator shall map to a radically distant SOC

operating point requiring excessively strong gain factors for correcting it adversely affecting

the stability of estimators.

Several research efforts from literature that have attempted to tackle the voltage inac-

curacies of the basic SPM through inclusion of electrolyte dynamics were also presented

in chapter 5. A critical evaluation of each of the salient efforts revealed that a suitable

approach that can successfully handle all possible operational scenarios is yet to be devised.

In particular, the existing modelling approaches for electrolyte inclusion either made far-

fetched assumptions that were easily violated or presented nearly intractable mathematical

expressions that pushed the SPM closer in computational complexity to the P2D dynamics.

The author’s analysis of pertinent literature also revealed the possibility of re-using certain

portions of existing work e.g. the electrolyte overpotential expression, whilst also arguing the

need for a fresh approach to model other aspects of electrolyte dynamics such as the ionic

concentration profile within the cell’s thickness.

The final section of chapter 5 presented the assumptions and governing equations of the

quadratic approximation model for the spatial profile of ionic concentration. The results

obtained by simulating this model reveal that while its spatial profile computation for

a galvanostatic operation is of acceptable accuracy, its temporal performance is mediocre.

Particularly, the time evolution of ionic concentration at the current collector interfaces

computed by the model fail to capture the intricacies in the temporal evolution exhibited

by the P2D model’s profile. Furthermore, the spatial profile uses the Quasi-Steady State

(QSS) approximation which is violated during the initial transient. Hence, the most impactful

conclusion from the foregoing analysis is that the basic quadratic approximation model is

unsuitable for dynamic loads, thereby ruling it out for deployment in vehicular applications.

The initial portions of chapter 6 analysed the causal factor contributing to the mediocre

performance of the quadratic approximation model. For this analysis, a genetic programming

approach was employed to synthesise suitable alternative reduced order equations for

modelling the spatial profile of the electrolyte concentration. The foregoing analysis helped

to reveal that given the constraints and interior-point boundary conditions of the underlying
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DFNmodel at the separator interfaces, the number of coefficients used in the quadratic spatial

profile does indeed make the best use of all available equations. The genetic programming

approach being able to synthesise suitable mathematical structures that can potentially

capture the spatial profile accurately during both transient and steady state conditions.

However, there is a shortfall in the number of equations in order to uniquely solve for these

extra coefficients. The final conclusion that stems from this fact is that, by decoupling the

spatial and temporal profiles of the electrolyte concentration dynamics, the performance of

the present state of the art can indeed be improved upon.

7.2.4 Proposed analysis routes for the SPM modelling family

Albeit extensive, the analyses of SPMs performed in this thesis is by no means complete. It is

more appropriate to say that this author chose to analyse SPMs from their implementation

perspective, particularly their voltage and SOC accuracies in an open-loop implementation.

However, a holistic evaluation covering other aspects are necessary before their deployment

in a vehicular BMS can be considered. For instance, the observability ofmodelsmust be proven

before they can be employed in the feedback path of a state estimator. Even within the broad

stream of observability analysis, there are several details that need to be meticulously handled

of which some avenues for future exploration are identified.

In the simplification of the state-vector of the basic SPM proposed by Di Domenico [96],

the bulk concentration in the two electrodes was assumed to be equal (see section 5.1.3). This

allowed to eliminate the bulk concentrations of one of the two electrodes, thereby reducing

the state vector to ℝ3×1. This assumption hinges on the assumption that there is no loss of

cycleable lithium. However, such an assumption is valid only for a brand new cell. As the

cell ages, owing to various phenomena such as parasitic side reactions and decomposition of

the solid conductive matrix, this assumption shall no longer hold true. Therefore, analysis

of models obtained by augmenting the basic or electrolyte-enhanced SPMs with equations

describing degradation shall become critical. Not only does this force to retain both bulk

concentrations in the state vector, the states from the degradation rate-equations appear in

it, thereby enlarging it. In future studies, the effect of these augmented state variables on the

observability of the system needs to be quantified.
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In this thesis, only an isothermal analysis of various SPMs have been performed. While

this is an important initial step to analyse the strengths and weaknesses of the state of the

art incumbent SPM models by isolating the purely electrochemical aspects, the effect of

temperature cannot be underplayed. It is well-known that the thermal conditions of the

cell affects its electrochemical and vice-versa. Therefore, future works shall benefit from

performing comprehensive analyses of coupled electrochemical-thermal SPMs. Considering

the simplicity of SPMs, the lumped thermal model might be a suitable candidate for it be

paired with. Finally, in addition to its influence on the accuracy of open-loop terminal voltage

and SOC, the effect of temperature on the observability of the holistic model needs to be

evaluated. Since the cell temperature is available as an additional measurement, it is likely to

improve the model’s observability. However, there is a trade-off since this comes at the cost

of increased size of the state vector. It is also worthwhile to explore the inflection point of

this trade-off to limit the model’s fidelity at a sufficient level whilst reaping the maximum

gains out of the additional temperature measurement.

Based upon the conclusion that the performance of any reduced order spatial profilemodel

is hamstrung by the equation deficiencies in the underlying DFN model, it is worthwhile to

reproduce the Multi-Gene Genetic Programming (MGGP) approach with a different PBM.

For this future task, it is imperative to choose a model that provides additional interior-

point conditions i.e., not just at the separator, but perhaps a second order condition within

an interior location at each electrode. Once such a suitable PBM has been identified, this

thesis author is confident that the genetic programming approach shall indeed synthesise an

accurate description of the electrolyte’s spatio-temporal dynamics.

7.3 Implementation Aspects of Basic and Composite SPM

A driving impetus behind this thesis is to deliver ROMs amenable to embedded implement-

ation. Large portions of chapter 5 and nearly the entirety of chapter 6 were devoted to this

study. The conclusions that emerged from these implementation efforts are summarised here.

Future areas of research are also identified in-line.

In chapter 5, the aspects of discrete-time implementation in a microcontroller were dis-

cussed. In particular, the computation of the discrete-time system and input matrices through

276



7.3 Implementation Aspects of Basic and Composite SPM

the matrix exponential approach is presented. A straightforward conclusion from the discrete-

time implementation is that they run orders of magnitude faster than their continuous-time

counterparts. This is owing to the fact that adaptive time-stepping integrators are not required

and can be replaced by a simple matrix-vector multiplication scheme. This implementation

detail provides necessary starting point for battery researchers to start coding the ROMs

discussed herein. Future work in this direction shall benefit from including various real-

world issues such as accounting for sample delays as well as implementing a progressive

update scheme for the matrix entries to account for degradation effects. Important aspects

of numerical implementation arise during the design of state estimators. Having a robust

open-loop implementation of a discrete-time plant model shall facilitate easy implementation

of such feedback algorithms.

Chapter 6 discussed the implementation aspects of ROM from a different perspective —

that of formulating a new electrolyte enhanced composite SPM for embedded implementation.

The temporal evolution of electrolyte dynamics in the two electrode regions were character-

ised through system identification techniques that have never been tried before in literature.

The identified model structures are presented in the final form as discrete-time difference

equations that can be readily incorporated into the discrete-time equations developed in

chapter 5 for the basic SPM. The salient conclusion from this modelling effort is that, system

identification is indeed a viable candidate for the derivation of ROMs of lithium ion batteries.

The improved accuracy of electrolyte concentration dynamics relative to the state of the art

quadratic approximation model corroborates the success of this strategy. Nevertheless, before

widespread adoption of this technique can be advocated, certain aspects of this approachmust

be examined carefully. For instance, the assumptions of linearity and time-invariance must

be revisited for higher magnitudes of charge and discharge currents. Thermal effects must

also be incorporated into the overall system identification approach. Machine learning and

system identification are two complementary approaches to the same task i.e., identification

of internal dynamics from terminal measurements. Future research could also explore this

possibility and perhaps a combined system identification/machine learning strategy might

metamorphose into the approach that powers future generation of surrogate ROMs for electric

vehicle applications.

277



7.4 Closing Remarks

7.4 Closing Remarks

The feasibility of bringing PBMs of lithium batteries into electrified transportation has been

studied in this thesis from a multi-dimensional perspective. Yet, there exists a common

underpinning that connects these seemingly different routes to the enhancement of our

extant knowledge — that of parametrising the underlying PBM. The number of parameters

in any PBM is excessively large to the point of detracting potential adopters. Even without

considering degradation effects, obtaining the physical, geometric, transport and kinetic para-

meters of a cell shall require access to specialised laboratory equipment that are sometimes

exclusive to large scale research organisations. The studies discussed here shall assume real-

world significance only upon a successful demonstration of a cost-effective parametrisation

strategy. The author’s contributions to an optimal ‘Design of Experiments (DoE)’ numerical

procedure for identifying the parameters of an SPM is detailed in [217]. However, the broader

task of parametrising a full-order PBM is well beyond the scope of this thesis or indeed any

single researcher, and needs the concerted effort of the community as a whole to tackle it.

The next task in the journey to real-world implementation of the advancements brought

about by this thesis is to experimentally validate them. However, this is contingent upon

obtaining a successful parametrisation strategy, and should be embarked upon as soon as

a robust procedure to identify the physical parameters is made available. Nevertheless, this

author hopes that through the three-pronged approach to cell modelling presented in this

thesis, the goal of bringing physics-based battery models to electrified transportation has

been brought a step closer to realisation.
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A.1 MATLAB codes for continuous-time SPM

Listing A.1 MATLAB code for simulation of continuous time SPM

1 % Copyright (c) 2018 Gopalakrishnan, Krishnakumar <krishnak@vt.edu>
2 % Author: Gopalakrishnan, Krishnakumar <krishnak@vt.edu>
3

4 clear;clc; format short g; format compact; close all;
5

6 %% User-entered data
7 % case-sensitive string descriptive of cell to be simulated.
8 cellIdentifier = 'Northrop';
9

10 % string describing starting soc% and csv filename of load profile (time vs current through
external circuit)↪

11 load_profile_name = 'cnst_dischg'; % a) 'cnst_dischg' b) 'cnst_chg' c) 'udds' etc
12

13 % Input CSV-profile setup. Note: Offsets use a 0-base numbering system
14 soc_col = 1; % The starting SOC is in this column of top row
15 profile_row_offset = 2; % Load profile input data begins only from this row
16

17 Ts = 0.5; % sec (how often are results needed?)
18 tf_user = 1.5; % sec (user-entered desired simulation end-time)
19 % Simulation might prematurely end if voltage/soc cutoffs are hit
20

21 termination_choice = 'max'; % valid choices are 'max' and 'min'
22 % The 'min' choice is helpful for trials. Whilst retaining the characteristics
23 % of the load profile, the user may do a short time trial simulation.
24

25 %% Pre-Process user data
26 profile_filename = [load_profile_name,'.csv'];
27

28 % Note: a positive C-rate implies discharge and vice-versa for charge
29 try
30 C_rate_profile = csvread(profile_filename,profile_row_offset,0);
31 catch
32 error('Invalid load profile specified. Quitting simulation ...');
33 end
34

35 % Compute expected end-time for allocation of storage & maximum loop indices
36 if strcmp(termination_choice,'max')
37 t_finish = max(tf_user,C_rate_profile(end,1)); % longer of the two prevails
38 % If the last time-entry in the input csv file is shorter than user-entered
39 % value, then the last C-rate from the csv file is held for rest of the
40 % simulation.
41 elseif strcmp(termination_choice,'min')
42 t_finish = min(tf_user,C_rate_profile(end,1)); % longer of the two prevails
43 else
44 error("Invalid termination choice. Valid strings are: 'max' or 'min'.");
45 end
46

47 % Starting SoC percentage
48 soc_init_pct = csvread(profile_filename,0,soc_col,[0 soc_col 0 soc_col]);
49

50 % struct of cell parameters
51 spm_params = parameters_spm_basic(soc_init_pct,cellIdentifier);
52

53 I_1C = spm_params.I_1C;
54 clear tf_user profile_row_offset soc_col profile_filename termination_choice;
55

56 %% Define the State-eqn and Output equation for simulation
57 stateEqn = @spm_cts_stateEqn_three_states;
58 outputEqn = @spm_three_states_battery_voltage;
59

60 %% Allocate storage for simulated quantities
61 num_iterations = ceil(t_finish/Ts) + 1; % max no. of steps (assuming no cutoff)
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A.1 MATLAB codes for continuous-time SPM

62

63 spm_sim_time_vector = nan(num_iterations,1);
64 load_current_vector = nan(num_iterations,1);
65 v_cell_sim_results_spm = nan(num_iterations,1);
66 soc_pct_results_spm = nan(num_iterations,1);
67 cs_avg_neg_sim_results_spm = nan(num_iterations,1);
68 q_pos_sim_results_spm = nan(num_iterations,1);
69 q_neg_sim_results_spm = nan(num_iterations,1);
70

71 %% Initialise SPM state vector and all other simulated quantities
72 spm_sim_time_vector(1) = 0;
73 soc_pct_results_spm(1) = soc_init_pct;
74 cs_avg_neg_sim_results_spm(1) = spm_params.cs_n_init;
75 q_pos_sim_results_spm(1) = 0;
76 q_neg_sim_results_spm(1) = 0;
77

78 % load current applied at t = t0
79 load_current_vector(1) = I_1C*interp1(C_rate_profile(:,1),C_rate_profile(:,2),spm_sim_time_vecto ⌋

r(1),'previous','extrap');↪
80

81 x_spm_init = [q_pos_sim_results_spm(1); ...
82 q_neg_sim_results_spm(1); ...
83 cs_avg_neg_sim_results_spm(1)];
84

85 v_cell_sim_results_spm(1) = outputEqn(x_spm_init,load_current_vector(1),spm_params);
86

87 t_local_start = 0;
88 t_local_finish = Ts;
89 x_spm_local_finish = x_spm_init;
90

91 clear x_init t_finish q_pos_init q_neg_init;
92

93 %% Simulate the SPM
94 progressbarText(0);
95

96 for k = 2:num_iterations % Need solution at k-th time-step
97 load_current_vector(k) = I_1C*interp1(C_rate_profile(:,1),C_rate_profile(:,2),spm_sim ⌋

_time_vector(1),'previous','extrap'); % load current that was held constant from (k-1)
to (k)

↪
↪

98 t_span = [t_local_start t_local_finish];
99 [~,x_spm_local_finish_matrix] = ode45(@(t,x_spm_local_finish)

stateEqn(x_spm_local_finish,load_current_vector(k),spm_params), t_span,
x_spm_local_finish);

↪
↪

100 x_spm_local_finish = x_spm_local_finish_matrix(end,:)';
101

102 q_pos_sim_results_spm(k) = x_spm_local_finish(1);
103 q_neg_sim_results_spm(k) = x_spm_local_finish(2);
104 cs_avg_neg_sim_results_spm(k) = x_spm_local_finish(3);
105

106 soc_pct_results_spm(k) = 100*((cs_avg_neg_sim_results_spm(k)/spm_params.cs_max_n) -
spm_params.theta_min_neg)/(spm_params.theta_max_neg - spm_params.theta_min_neg);↪

107 v_cell_sim_results_spm(k) =
outputEqn(x_spm_local_finish,load_current_vector(k),spm_params);↪

108

109 overall_exit_status =
check_termination(soc_pct_results_spm(k),v_cell_sim_results_spm(k),spm_params);↪

110 if overall_exit_status ~= 0 % check for violation of cut-off conditions
111 k = k - 1; % Values in the last simulated index are incorrect.
112 fprintf('Exiting simulation ...\n');
113 break;
114 end
115

116 spm_sim_time_vector(k) = t_local_finish;
117 t_local_start = t_local_finish;
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118 t_local_finish = t_local_start + Ts;
119 progressbarText((k-1)/num_iterations);
120 end
121 fprintf('\n');
122

123 spm_sim_time_vector = spm_sim_time_vector(1:k);
124 load_current_vector = load_current_vector(1:k);
125 q_pos_sim_results_spm = q_pos_sim_results_spm(1:k);
126 q_neg_sim_results_spm = q_neg_sim_results_spm(1:k);
127 cs_avg_neg_sim_results_spm = cs_avg_neg_sim_results_spm(1:k);
128 soc_pct_results_spm = soc_pct_results_spm(1:k);
129 v_cell_sim_results_spm = v_cell_sim_results_spm(1:k);
130

131 %% Save results to disk
132 if exist('spm_results','dir')==0
133 mkdir('spm_results');
134 end
135

136 % Replace decimal point chars in soc% string with 'p' (stands for point)
137 soc_init_pct_savestr = strrep(num2str(soc_init_pct),'.','p');
138

139 % clear A_disc B_disc; % potentially useful varibles. comment out for debugging
140 clear soc_init_pct C_rate_profile I_1C k num_iterations; % redundant info
141 clear x_spm_init x_spm_local_finish t_local_finish t_local_start;
142 save(['spm_results/cts_sim_', cellIdentifier, '_', load_profile_name, ...
143 '_initial_soc_', soc_init_pct_savestr, 'pct', ...
144 datestr(now, '_mmm_dd_yyyy_HH_MM_SS')]); % save workspace to file
145

146 %% Plot results
147 close all;
148 figure(1);
149 h1 = subplot(211);
150 plot(spm_sim_time_vector,load_current_vector,'-');
151 ylabel('Current');
152 ylim([min(load_current_vector)-5 max(load_current_vector)+5]);
153

154 h2 = subplot(212);
155 plot(spm_sim_time_vector,v_cell_sim_results_spm,'m');
156 ylim([spm_params.CutoffVoltage spm_params.CutoverVoltage]);
157 ylabel('Cell Voltage [V]');
158

159 linkaxes([h1 h2],'x');
160 xlim([spm_sim_time_vector(1) spm_sim_time_vector(end)]);
161 xlabel('Time [sec]');
162

163

164 figure(2);
165 h1 = subplot(211);
166 plot(spm_sim_time_vector,load_current_vector,'-');
167 ylabel('Current');
168 ylim([min(load_current_vector)-5 max(load_current_vector)+5]);
169

170 h2 = subplot(212);
171 plot(spm_sim_time_vector,soc_pct_results_spm,'r');
172 ylabel('SOC [%]');
173

174 linkaxes([h1 h2],'x');
175 xlim([spm_sim_time_vector(1) spm_sim_time_vector(end)]);
176 xlabel('Time [sec]');
177

178 clear h1 h2;
179 figure(1);
180 shg;
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Listing A.2 MATLAB code for simulation of discrete time SPM

1 % Copyright (c) 2018 Gopalakrishnan, Krishnakumar <krishnak@vt.edu>
2 % Author: Gopalakrishnan, Krishnakumar <krishnak@vt.edu>
3

4 clear;clc; format short g; format compact; close all;
5

6 %% User-entered data
7 % case-sensitive string descriptive of cell to be simulated.
8 cellIdentifier = 'Northrop';
9

10 % string describing starting soc% and csv filename of load profile
11 % (time vs current through external circuit)
12 % a) 'cnst_dischg_soc_100_1C' b) 'cnst_chg_soc_100_1C' c) 'udds_soc_50' etc.
13 load_profile_name = 'cnst_dischg_soc_100_2C';
14

15 % Input CSV-profile setup. Note: Offsets use a 0-base numbering system
16 soc_col = 1; % The starting SOC is in this column of top row
17 profile_row_offset = 2; % Load profile input data begins only from this row
18

19 Ts = 1; % sec (how often are results needed?)
20 tf_user = 100; % sec (user-entered desired simulation end-time)
21 % Simulation might prematurely end if voltage/soc cutoffs are hit
22

23 termination_choice = 'max'; % valid choices are 'max' and 'min'
24 % The 'min' choice is helpful for trials. Whilst retaining the characteristics
25 % of the load profile, the user may do a short time trial simulation.
26

27 %% Pre-Process user data
28 profile_filename = [load_profile_name,'.csv'];
29

30 % Note: a positive C-rate implies discharge and vice-versa for charge
31 try
32 C_rate_profile = csvread(profile_filename,profile_row_offset,0);
33 catch
34 error('a) Error in specified file, OR b)the load profile is not in PATH. Quitting

simulation ...');↪
35 end
36

37 % Compute expected end-time for allocation of storage & maximum loop indices
38 if strcmp(termination_choice,'max')
39 t_finish = max(tf_user,C_rate_profile(end,1)); % longer of the two prevails
40 % If the last time-entry in the input csv file is shorter than user-entered
41 % value, then the last C-rate from the csv file is held for rest of the
42 % simulation.
43 elseif strcmp(termination_choice,'min')
44 t_finish = min(tf_user,C_rate_profile(end,1)); % longer of the two prevails
45 else
46 error("Invalid termination choice. Valid strings are: 'max' or 'min'.");
47 end
48

49 % Starting SoC percentage
50 soc_init_pct = csvread(profile_filename,0,soc_col,[0 soc_col 0 soc_col]);
51

52 % struct of cell parameters
53 spm_params = parameters_spm_basic(soc_init_pct,cellIdentifier);
54

55 I_1C = spm_params.I_1C;
56 clear tf_user profile_row_offset soc_col profile_filename termination_choice;
57

58 %% Pre-Compute the System and Input Matrices
59 clc;
60

61 F = param.F;
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62 A = param.A;
63

64 R_pos = param.R_p;
65 R_neg = param.R_n;
66

67 Ds_pos = param.D_p;
68 Ds_neg = param.D_n;
69

70 a_pos = param.a_p;
71 a_neg = param.a_n;
72

73 L_pos = param.len_p;
74 L_neg = param.len_n;
75

76 %% System & Input matrices for continuous and discrete-time implementations
77

78 A_cts = [-30*Ds_pos/(R_pos^2), 0, 0; ...
79 0, -30*Ds_neg/(R_neg^2), 0; ...
80 0, 0, 0];
81

82 A_disc = expm(A_cts*Ts);
83

84 B_cts = [ (45/2)/(R_pos^2*a_pos*L_pos*F*A); ...
85 (-45/2)/(R_neg^2*a_neg*L_neg*F*A); ...
86 (-3/(R_neg*a_neg*L_neg*F*A))];
87

88 B_disc = nan(size(B_cts));
89 B_disc(1) = B_cts(1)*(exp(A_cts(1,1)*Ts)-1)/A_cts(1,1);
90 B_disc(2) = B_cts(2)*(exp(A_cts(2,2)*Ts)-1)/A_cts(2,2);
91 B_disc(3) = B_cts(3)*Ts;
92

93 % Through built-in 'c2d' command by the dummy system-method (tricking MATLAB
94 % to believe we have an LTI system). The output matrix,C is chosen so that the
95 % states-themselves are the outputs with no feed-through term involved.
96

97 C_dummy = [1, 1, 1]; D_dummy = 0;
98 sys_cts = ss(A_cts,B_cts,C_dummy,D_dummy);
99 sys_disc = c2d(sys_cts,Ts);
100

101 outputEqn = @spm_three_states_battery_voltage;
102

103 %% Allocate storage for simulated quantities
104 num_iterations = ceil(t_finish/Ts) + 1; % max no. of steps (assuming no cutoff)
105

106 spm_sim_time_vector = nan(num_iterations,1);
107 load_current_vector = nan(num_iterations,1);
108 v_cell_sim_results_spm = nan(num_iterations,1);
109 soc_pct_results_spm = nan(num_iterations,1);
110 cs_avg_neg_sim_results_spm = nan(num_iterations,1);
111 q_pos_sim_results_spm = nan(num_iterations,1);
112 q_neg_sim_results_spm = nan(num_iterations,1);
113

114 %% Initialise SPM state vector and all other simulated quantities
115 spm_sim_time_vector(1) = 0;
116 soc_pct_results_spm(1) = soc_init_pct;
117 cs_avg_neg_sim_results_spm(1) = spm_params.cs_n_init;
118 q_pos_sim_results_spm(1) = 0;
119 q_neg_sim_results_spm(1) = 0;
120

121 % load current applied at t = t0
122 load_current_vector(1) = I_1C*interp1(C_rate_profile(:,1),C_rate_profile(:,2),spm_sim_time_vecto ⌋

r(1),'previous','extrap');↪
123

124 x_spm_init = [q_pos_sim_results_spm(1); ...
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125 q_neg_sim_results_spm(1); ...
126 cs_avg_neg_sim_results_spm(1)];
127

128 v_cell_sim_results_spm(1) = outputEqn(x_spm_init,load_current_vector(1),spm_params);
129

130 t_local_finish = Ts;
131 x_spm_local_finish = x_spm_init;
132

133 clear x_init q_pos_init q_neg_init;
134

135 %% Simulate the SPM
136 progressbarText(0);
137

138 for k = 2:num_iterations % Need solution at k-th time-step
139 load_current_vector(k) = I_1C*interp1(C_rate_profile(:,1),C_rate_profile(:,2),spm_sim ⌋

_time_vector(k-1),'previous','extrap'); % load current that was held constant from (k-1)
to (k)

↪
↪

140 x_spm_local_finish = A_disc*x_spm_local_finish + B_disc*load_current_vector(k);
141

142 q_pos_sim_results_spm(k) = x_spm_local_finish(1);
143 q_neg_sim_results_spm(k) = x_spm_local_finish(2);
144 cs_avg_neg_sim_results_spm(k) = x_spm_local_finish(3);
145

146 soc_pct_results_spm(k) = 100*((cs_avg_neg_sim_results_spm(k)/spm_params.cs_max_n) -
spm_params.theta_min_neg)/(spm_params.theta_max_neg - spm_params.theta_min_neg);↪

147 v_cell_sim_results_spm(k) =
outputEqn(x_spm_local_finish,load_current_vector(k),spm_params);↪

148

149 overall_exit_status =
check_termination(soc_pct_results_spm(k),v_cell_sim_results_spm(k),spm_params);↪

150 if overall_exit_status ~= 0 % check for violation of cut-off conditions
151 k = k - 1; % Values in the last simulated index are incorrect.
152 fprintf('Exiting simulation ...\n');
153 break;
154 end
155

156 spm_sim_time_vector(k) = t_local_finish;
157 t_local_start = t_local_finish;
158 t_local_finish = t_local_start + Ts;
159 progressbarText((k-1)/num_iterations);
160 end
161 fprintf('\n');
162

163 spm_sim_time_vector = spm_sim_time_vector(1:k);
164 load_current_vector = load_current_vector(1:k);
165 q_pos_sim_results_spm = q_pos_sim_results_spm(1:k);
166 q_neg_sim_results_spm = q_neg_sim_results_spm(1:k);
167 cs_avg_neg_sim_results_spm = cs_avg_neg_sim_results_spm(1:k);
168 soc_pct_results_spm = soc_pct_results_spm(1:k);
169 v_cell_sim_results_spm = v_cell_sim_results_spm(1:k);
170

171 %% Save results to disk
172 save_foldername = ['spm_results/', cellIdentifier, '/', load_profile_name];
173 if exist(save_foldername,'dir')==0
174 mkdir(save_foldername);
175 end
176

177 % Replace decimal point chars in soc% string with 'p' (stands for point)
178 soc_init_pct_savestr = strrep(num2str(soc_init_pct),'.','p');
179

180 clear soc_init_pct C_rate_profile I_1C k num_iterations; % redundant info
181 clear x_spm_init x_spm_local_finish t_local_finish t_local_start;
182 save([save_foldername, '/disc_sim_', ...
183 datestr(now, 'mmm_dd_yyyy_HH_MM_SS')]); % save workspace to file
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184

185 function v_cell = spm_three_states_battery_voltage(x,u,param)
186 % returns v_cell given the vector x and input u at any given time-step
187 % x(1) = q_pos, x(2) = q_neg, x(3) = cs_avg_neg
188 % u = load current (A). Positive implies discharge.
189

190 % Copyright (c) 2018 Gopalakrishnan, Krishnakumar <krishnak@vt.edu>
191 % Author: Gopalakrishnan, Krishnakumar <krishnak@vt.edu>
192

193 R = param.R;
194 T = param.Tref;
195 F = param.F;
196

197 R_pos = param.R_p;
198 R_neg = param.R_n;
199

200 Ds_pos = param.D_p;
201 Ds_neg = param.D_n;
202

203 a_pos = param.a_p;
204 a_neg = param.a_n;
205

206 L_pos = param.len_p;
207 L_neg = param.len_n;
208

209 k_p = param.k_p;
210 k_n = param.k_n;
211

212 ce = param.ce_init;
213 A = param.A;
214

215 cs_max_n = param.cs_max_n;
216 cs_max_p = param.cs_max_p;
217

218 theta_min_neg = param.theta_min_neg;
219 theta_min_pos = param.theta_min_pos;
220 theta_max_neg = param.theta_max_neg;
221 theta_max_pos = param.theta_max_pos;
222

223 % Extract permissible bounds for solid concentrations
224 cs_surf_pos_lb = param.theta_max_pos*param.cs_max_p;
225 cs_surf_pos_ub = param.theta_min_pos*param.cs_max_p;
226 cs_surf_neg_lb = param.theta_min_neg*param.cs_max_n;
227 cs_surf_neg_ub = param.theta_max_neg*param.cs_max_n;
228

229 % Extract the function handles for Uocp_pos and Uocp_neg
230 compute_Uocp_pos = param.compute_Uocp_pos;
231 compute_Uocp_neg = param.compute_Uocp_neg;
232

233 %% Compute surface concentrations
234 cs_surf_neg = x(3) + (8*R_neg/35)*x(2) - (R_neg/(35*Ds_neg*a_neg*L_neg*F*A))*u;
235 cs_surf_neg = min(cs_surf_neg_ub, max(cs_surf_neg_lb, cs_surf_neg)); % saturation
236

237 cs_avg_pos = cs_max_p*(theta_min_pos + ((x(3) - theta_min_neg*cs_max_n)./((theta_max_neg -
theta_min_neg)*cs_max_n))*(theta_max_pos - theta_min_pos)); % average concentration in
pos electrodue (analytical expn using conservation of Li)

↪
↪

238 cs_surf_pos = cs_avg_pos + (8*R_pos/35)*x(1) + (R_pos/(35*Ds_pos*a_pos*L_pos*F*A))*u; %
surface concentration of pos electrode↪

239 cs_surf_pos = min(cs_surf_pos_ub, max(cs_surf_pos_lb, cs_surf_pos)); % saturation
240

241 %% Compute overpotentials
242 eta_p = (2*R*T/F)*asinh(-u/(2*A*F*a_pos*L_pos*k_p*sqrt(ce*cs_surf_pos*(cs_max_p -

cs_surf_pos))));↪
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A.2 MATLAB codes for discrete-time SPM

243 eta_n = (2*R*T/F)*asinh(u/(2*A*F*a_neg*L_neg*k_n*sqrt(ce*cs_surf_neg*(cs_max_n -
cs_surf_neg))));↪

244

245 %% Compute OCPs
246 surf_theta_p = cs_surf_pos/param.cs_max_p;
247 surf_theta_n = cs_surf_neg/param.cs_max_n;
248

249 U_p = compute_Uocp_pos(surf_theta_p);
250 U_n = compute_Uocp_neg(surf_theta_n);
251

252 phi_pos = eta_p + U_p;
253 phi_neg = eta_n + U_n;
254

255 v_cell = phi_pos - phi_neg;
256

257 end
258

259 function U_p = compute_Uocp_pos(theta_p)
260

261 U_p = (-4.656+88.669*theta_p.^2 - 401.119*theta_p.^4 + 342.909*theta_p.^6 -
462.471*theta_p.^8 + 433.434*theta_p.^10);↪

262 U_p = U_p./(-1+18.933*theta_p.^2-79.532*theta_p.^4+37.311*theta_p.^6-73.083*theta_p.^8+95.96 ⌋
*theta_p.^10);↪

263

264 end
265

266 function U_n = compute_Uocp_neg(theta_n)
267

268 U_n = 0.7222 + 0.1387*theta_n + 0.029*theta_n.^0.5 - 0.0172./theta_n +
0.0019./theta_n.^1.5 + 0.2808*exp(0.9-15*theta_n)-0.7984*exp(0.4465*theta_n - 0.4108);↪

269

270 end

305



B
Permissions Summary

B.1 Summary of Copyright Permissions . . . . . . . . . . . . . . . . . . . . . . . . 307

B.2 Copyright Permissions for reuse of Figure 3.4 . . . . . . . . . . . . . . . . . . . 311

B.3 Copyright Permissions for reuse of Figure 3.8 . . . . . . . . . . . . . . . . . . . 313

B.4 Copyright Permissions for reuse of text, figures and tables of Chapter 4 . . . . 315

B.5 Copyright Permissions for reuse of Figure 5.1 . . . . . . . . . . . . . . . . . . . 318

B.6 Copyright Permissions for reuse of Figure 5.3 . . . . . . . . . . . . . . . . . . . 322

B.7 Copyright Permissions for reuse of Figure 5.4 . . . . . . . . . . . . . . . . . . . 323

B.8 Copyright Permissions for reuse of Figure 5.13 . . . . . . . . . . . . . . . . . . 324

306



B.1 Summary of Copyright Permissions
Ta

bl
e
B
.1

Su
m
m
ar
y
of

pe
rm

is
si
on

s
fo
r
re
us

e
of

th
ir
d-
pa

rt
y
co

py
ri
gh

te
d
m
at
er
ia
l

Pa
ge

no
.

U
sa
ge

in

th
es
is

So
ur

ce
C
op

yr
ig
ht

ho
ld
er

&

co
nt
ac

t(
or

ga
ni
sa
tio

ns
on

ly
)

D
at
e
of

la
st

co
rr
es
po

nd
en

ce

H
av

e

pe
rm

is
si
on

?

Pe
rm

is
si
on

re
m
ar
ks

Pa
ge

87
Fi
gu

re
3.
1

M
ar
ie
-T

he
re
se

vo
n

Sr
bi
k.

“A
dv

an
ce
d

Li
th

iu
m
-Io

n
Ba

tte
ry

M
od

el
lin

g
fo
r
A
ut

om
ot
iv
e
A
pp

lic
at
io
ns

”.
Ph

D
th
es
is
.I
m
pe

r-

ia
lC

ol
le
ge

Lo
nd

on
,2

01
5,

p.
16
2

M
ar
ie
-T

he
re
se

vo
n
Sr
bi
k

N
/A

Ye
s

C
C
-B

Y-

N
C
-N

D

Pa
ge

89
Fi
gu

re
3.
2

Ia
n
D
.C

am
pb

el
l,

K
ri
sh

na
ku

m
ar

G
op

al
ak

ri
sh

na
n,

M
on

ic
a
M
ar
in
es
cu

,M
ar
ce

llo
To

rc
hi
o,

G
re
go

ry
J.
O
ffe

r
an

d

D
av

id
e
M
.
Ra

im
on

do
.“

O
pt
im

is
in
g

lit
hi
um

-io
n

ce
ll

de
si
gn

fo
r
pl
ug

-in
hy

br
id

an
d
ba

tte
ry

el
ec
tr
ic

ve
hi
cl
es
”.

Jo
ur

na
lo

f

En
er
gy

St
or
ag

e
22

(A
pr
.2

01
9)
,p

p.
22

8–
23

8.
is
sn

:2
35

2-
15
2X

.

Th
e
hi
gh

lig
ht

ed
au

th
or
s
ar

e
offi

ci
al

jo
in
t
fir

st
au

th
or
s
w
ith

eq
ua

lc
on

tr
ib
ut

io
ns

.

Pe
nd

in
g
tr
an

sf
er

to
El
se
vi
er

by
Ia
n
D
.C

am
pb

el
l

pe
rm

is
si
on

s@
el
se
vi
er
.c
om

05
/0
1/
20

19

(m
an

us
cr
ip
t

ac
ce

pt
ed

)

N
o

Pe
nd

in
g

pu
bl
ic
at
io
n

Pa
ge

10
5

Fi
gu

re
3.
4

M
ar
ce

llo
To

rc
hi
o,

La
lo

M
ag

ni
,R

B.
G
op

al
un

i,
Ri
ch

ar
d
D
.

Br
aa

tz
an

d
D
av

id
e
M
.R

ai
m
on

do
.“

LI
O
N
SI
M
BA

:A
M
at
la
b

Fr
am

ew
or
k

Ba
se
d

on
a

Fi
ni
te

Vo
lu
m
e

M
od

el
Su

ita
bl
e

fo
r

Li
-Io

n
Ba

tte
ry

D
es
ig
n,

Si
m
ul
at
io
n,

an
d
Co

nt
ro
l”
.J

ou
rn

al
of

Th
eE

le
ct
ro
ch

em
ic
al

So
ci
et
y
16
3.
7
(2
01
6)
,A

11
92

–A
12
05

.i
ss
n
:

00
13
-4
65

1

T
he

El
ec

tr
oc

he
m
ic
al

So
ci
et
y

co
py

ri
gh

t@
el
ec

tr
oc

he
m
.o
rg

27
/0
9/
20

18
Ye

s
‘R
ig
ht
sl
in
k’

ag
re
em

en
t

at
ta
ch

ed

(s
ee

B.
2)

Pa
ge

10
9

Fi
gu

re
3.
5

St
ev

en
G
.J
oh

ns
on

.C
he

by
sh

ev
N
od

es
by

Pr
oj
ec
tio

n.
20

18
St
ev

en
G
.J
oh

ns
on

N
/A

Ye
s

C
C
-B

Y-
SA

Pa
ge

12
0

Fi
gu

re
3.
7

To
by

Bo
nd

,J
ig
an

g
Z
ho

u
an

d
Je
ffr

ey
C
ut
le
r.
“E

le
ct
ro
de

St
ac

k

G
eo

m
et
ry

Ch
an

ge
sd

ur
in
g
G
as

Ev
ol
ut

io
n
in

Po
uc

h-
Ce

ll-
Ty

pe

Li
th

iu
m

Io
n
Ba

tte
ri
es
”.

Jo
ur

na
lo

fT
he

El
ec
tr
oc

he
m
ic
al

So
ci
-

et
y
16
4.
1
(N

ov
.2

01
7)
,A

61
58

–A
61
62

.i
ss
n
:0

01
3-
46

51

Bo
nd

,
Z
ho

u
an

d
C
ut
le
r

N
/A

Ye
s

C
C
-B

Y

C
on

tin
ue

d
on

ne
xt

pa
ge

307

https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:permissions@elsevier.com
mailto:copyright@electrochem.org
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by/4.0/


B.1 Summary of Copyright Permissions
Ta

bl
e
B
.1
—

co
nt
in
ue

d
fr
om

pr
ev

io
us

pa
ge

Pa
ge

no
.

U
sa
ge

in

th
es
is

So
ur

ce
C
op

yr
ig
ht

ho
ld
er

&

co
nt
ac

t(
or

ga
ni
sa
tio

ns
on

ly
)

D
at
e
of

la
st

co
rr
es
po

nd
en

ce

H
av

e

pe
rm

is
si
on

?

Pe
rm

is
si
on

re
m
ar
ks

Pa
ge

12
2

Fi
gu

re
3.
8

Pa
ul

W
.N

or
th
ro
p,

Ve
nk

at
as
ai
la
na

th
an

Ra
m
ad

es
ig
an

,S
um

-

ita
va

D
e
an

d
Ve

nk
at

R.
Su

br
am

an
ia
n.

“C
oo

rd
in
at
e
Tr

an
s-

fo
rm

at
io
n,

O
rt
ho

go
na

l
Co

llo
ca

tio
n,

M
od

el
Re

fo
rm

ul
at
io
n

an
d

Si
m
ul
at
io
n

of
El
ec
tr
oc

he
m
ic
al
-T

he
rm

al
Be

ha
vi
or

of

Li
th

iu
m
-Io

n
Ba

tte
ry

St
ac

ks
”.

Jo
ur

na
lo

fT
he

El
ec
tr
oc

he
m
ic
al

So
ci
et
y
15
8.
12

(J
an

.2
01
1)
,A

14
61
–A

14
77
.i
ss
n
:0

01
34

65
1

T
he

El
ec

tr
oc

he
m
ic
al

So
ci
et
y

co
py

ri
gh

t@
el
ec

tr
oc

he
m
.o
rg

27
/0
9/
20

18
Ye

s
‘R
ig
ht
sl
in
k’

ag
re
em

en
t

at
ta
ch

ed

(s
ee

B.
3)

Pa
ge

13
1

Fi
gu

re
3.
9

Ia
n
D
.C

am
pb

el
l,

K
ri
sh

na
ku

m
ar

G
op

al
ak

ri
sh

na
n,

M
on

ic
a
M
ar
in
es
cu

,M
ar
ce

llo
To

rc
hi
o,

G
re
go

ry
J.
O
ffe

r
an

d

D
av

id
e
M
.
Ra

im
on

do
.“

O
pt
im

is
in
g

lit
hi
um

-io
n

ce
ll

de
si
gn

fo
r
pl
ug

-in
hy

br
id

an
d
ba

tte
ry

el
ec
tr
ic

ve
hi
cl
es
”.

Jo
ur

na
lo

f

En
er
gy

St
or
ag

e
22

(A
pr
.2

01
9)
,p

p.
22

8–
23

8.
is
sn

:2
35

2-
15
2X

.

Th
e
hi
gh

lig
ht

ed
au

th
or
s
ar

e
offi

ci
al

jo
in
t
fir

st
au

th
or
s
w
ith

eq
ua

lc
on

tr
ib
ut

io
ns

.

Pe
nd

in
g
tr
an

sf
er

to
El
se
vi
er

by
Ia
n
D
.C

am
pb

el
l

pe
rm

is
si
on

s@
el
se
vi
er
.c
om

05
/0
1/
20

19

(m
an

us
cr
ip
t

ac
ce

pt
ed

)

N
o

Pe
nd

in
g

pu
bl
ic
at
io
n

Pa
ge

13
1

Fi
gu

re
3.
10

Ia
n
D
.C

am
pb

el
l,

K
ri
sh

na
ku

m
ar

G
op

al
ak

ri
sh

na
n,

M
on

ic
a
M
ar
in
es
cu

,M
ar
ce

llo
To

rc
hi
o,

G
re
go

ry
J.
O
ffe

r
an

d

D
av

id
e
M
.
Ra

im
on

do
.“

O
pt
im

is
in
g

lit
hi
um

-io
n

ce
ll

de
si
gn

fo
r
pl
ug

-in
hy

br
id

an
d
ba

tte
ry

el
ec
tr
ic

ve
hi
cl
es
”.

Jo
ur

na
lo

f

En
er
gy

St
or
ag

e
22

(A
pr
.2

01
9)
,p

p.
22

8–
23

8.
is
sn

:2
35

2-
15
2X

.

Th
e
hi
gh

lig
ht

ed
au

th
or
s
ar

e
offi

ci
al

jo
in
t
fir

st
au

th
or
s
w
ith

eq
ua

lc
on

tr
ib
ut

io
ns

.

Pe
nd

in
g
tr
an

sf
er

to
El
se
vi
er

by
Ia
n
D
.C

am
pb

el
l

pe
rm

is
si
on

s@
el
se
vi
er
.c
om

05
/0
1/
20

19

(m
an

us
cr
ip
t

ac
ce

pt
ed

)

N
o

Pe
nd

in
g

pu
bl
ic
at
io
n

C
on

tin
ue

d
on

ne
xt

pa
ge

308

mailto:copyright@electrochem.org
mailto:permissions@elsevier.com
mailto:permissions@elsevier.com


B.1 Summary of Copyright Permissions
Ta

bl
e
B
.1
—

co
nt
in
ue

d
fr
om

pr
ev

io
us

pa
ge

Pa
ge

no
.

U
sa
ge

in

th
es
is

So
ur

ce
C
op

yr
ig
ht

ho
ld
er

&

co
nt
ac

t(
or

ga
ni
sa
tio

ns
on

ly
)

D
at
e
of

la
st

co
rr
es
po

nd
en

ce

H
av

e

pe
rm

is
si
on

?

Pe
rm

is
si
on

re
m
ar
ks

Pa
ge

13
3

Fi
gu

re
3.
11

Ia
n
D
.C

am
pb

el
l,

K
ri
sh

na
ku

m
ar

G
op

al
ak

ri
sh

na
n,

M
on

ic
a
M
ar
in
es
cu

,M
ar
ce

llo
To

rc
hi
o,

G
re
go

ry
J.
O
ffe

r
an

d

D
av

id
e
M
.
Ra

im
on

do
.“

O
pt
im

is
in
g

lit
hi
um

-io
n

ce
ll

de
si
gn

fo
r
pl
ug

-in
hy

br
id

an
d
ba

tte
ry

el
ec
tr
ic

ve
hi
cl
es
”.

Jo
ur

na
lo

f

En
er
gy

St
or
ag

e
22

(A
pr
.2

01
9)
,p

p.
22

8–
23

8.
is
sn

:2
35

2-
15
2X

.

Th
e
hi
gh

lig
ht

ed
au

th
or
s
ar

e
offi

ci
al

jo
in
t
fir

st
au

th
or
s
w
ith

eq
ua

lc
on

tr
ib
ut

io
ns

.

Pe
nd

in
g
tr
an

sf
er

to
El
se
vi
er

by
Ia
n
D
.C

am
pb

el
l

pe
rm

is
si
on

s@
el
se
vi
er
.c
om

05
/0
1/
20

19

(m
an

us
cr
ip
t

ac
ce

pt
ed

)

N
o

Pe
nd

in
g

pu
bl
ic
at
io
n

Pa
ge

13
6

A
ll
fig

ur
es
,

ta
bl
es

an
d

ca
pt
io
ns

of

ch
ap

te
r
4

K
ri
sh

na
ku

m
ar

G
op

al
ak

ri
sh

na
n,

Te
ng

Z
ha

ng
an

d
G
re
go

ry

J.
O
ffe

r.
“A

Fa
st
,
M
em

or
y-

Effi
ci
en

t
D
is
cr
et
e-
Ti

m
e

Re
al
iz
a-

tio
n

A
lg
or
ith

m
fo
r
Re

du
ce
d-

O
rd

er
Li
-Io

n
Ba

tte
ry

M
od

el
s”
.

Jo
ur

na
l
of

El
ec
tr
oc

he
m
ic
al

En
er
gy

Co
nv

er
si
on

an
d

St
or
ag

e

14
.1
(F
eb

.2
01
7)
,p

.0
11
00

1.
is
sn

:2
38

1-
68

72

T
he

A
m
er
ic
an

So
ci
et
y

of
M
ec

ha
ni
ca

lE
ng

in
ee

rs

(A
SM

E)

jo
ur

na
lc
op

yr
ig
ht
@

as
m
e.
or

g

18
/0
4/
20

16
Ye

s
C
op

yr
ig
ht

ag
re
em

en
t

at
ta
ch

ed

(s
ee

B.
4)

Pa
ge

15
6

Fi
gu

re
5.
1

Sc
ot
t
J.

M
ou

ra
,M

ir
os

la
v
K
rs
tic

an
d
N
al
in

A
.C

ha
tu
rv

ed
i.

“A
da

pt
iv
e
PD

E
O
bs

er
ve

r
fo
r
Ba

tte
ry

SO
C/

SO
H

Es
tim

at
io
n”

.

Vo
lu
m
e

1:
A
da

pt
iv
e

Co
nt

ro
l;

A
dv

an
ce
d

Ve
hi
cl
e

Pr
op

ul
si
on

Sy
st
em

s;
A
er
os
pa

ce
Sy

st
em

s;
A
ut

on
om

ou
s
Sy

st
em

s;
Ba

tte
ry

M
od

el
in
g;

Bi
oc

he
m
ic
al

Sy
st
em

s;
Co

nt
ro
lO

ve
rN

et
w
or
ks

;C
on

-

tr
ol

Sy
st
em

s
D
es
ig
n;

Co
op

er
at
iv
.A

SM
E,

O
ct
.2

01
2,

pp
.1

01
–

11
0.

is
bn

:9
78

-0
-7
91
8-
45

29
-5

T
he

A
m
er
ic
an

So
ci
et
y

of
M
ec

ha
ni
ca

lE
ng

in
ee

rs

(A
SM

E)

jo
ur

na
lc
op

yr
ig
ht
@

as
m
e.
or

g

02
/1
0/
20

18
Ye

s
‘R
ig
ht
sl
in
k’

ag
re
em

en
t

at
ta
ch

ed

(s
ee

B.
5)

Pa
ge

17
4

Fi
gu

re
5.
3

St
ev

e
C
.S

ou
th
w
ar
d.

M
E5

50
6
A
dv

an
ce
d
Co

nt
ro
lE

ng
in
ee
ri
ng

:

Le
ct
ur

e
N
ot
es

03
,S

pr
in
g
20

11
.B

la
ck

sb
ur

g,
VA

St
ev

e
C
.S

ou
th
w
ar
d

09
/1
0/
20

18
Ye

s
G
ra
nt
ed

vi
a
em

ai
l

(s
ee

B.
6)

C
on

tin
ue

d
on

ne
xt

pa
ge

309

mailto:permissions@elsevier.com
mailto:journalcopyright@asme.org
mailto:journalcopyright@asme.org


B.1 Summary of Copyright Permissions
Ta

bl
e
B
.1
—

co
nt
in
ue

d
fr
om

pr
ev

io
us

pa
ge

Pa
ge

no
.

U
sa
ge

in

th
es
is

So
ur

ce
C
op

yr
ig
ht

ho
ld
er

&

co
nt
ac

t(
or

ga
ni
sa
tio

ns
on

ly
)

D
at
e
of

la
st

co
rr
es
po

nd
en

ce

H
av

e

pe
rm

is
si
on

?

Pe
rm

is
si
on

re
m
ar
ks

Pa
ge

17
5

Fi
gu

re
5.
4

G
re
go

ry
L.

Pl
et
t.

Le
ct
ur

e
N
ot
es

02
:E

C
E

45
40

/5
54

0-
D
ig
ita

l

Co
nt

ro
lS

ys
te
m
s.
C
ol
or

ad
o
Sp

ri
ng

s,
20

17

G
re
go

ry
L.

Pl
et
t

28
/0
9/
20

18
Ye

s
G
ra
nt
ed

vi
a
em

ai
l

(s
ee

B.
7)

Pa
ge

20
2

Fi
gu

re
5.
13

Z
ho

ng
w
ei

D
en

g,
Li
n

Ya
ng

,
H
ao

D
en

g,
Yi
sh

an
C
ai

an
d

D
on

gd
on

g
Li
.

“P
ol
yn

om
ia
l

ap
pr

ox
im

at
io
n

ps
eu

do
-

tw
o-
di
m
en

si
on

al
ba

tte
ry

m
od

el
fo
r

on
lin

e
ap

pl
ic
at
io
n

in

em
be

dd
ed

ba
tte

ry
m
an

ag
em

en
t
sy

st
em

”.
En

er
gy

14
2

(J
an

.

20
18
),
pp

.8
38

–8
50

.i
ss
n
:0

36
0-
54

42

El
se
vi
er

pe
rm

is
si
on

s@
el
se
vi
er
.c
om

27
/0
9/
20

18
Ye

s
El
se
vi
er

lic
en

se

at
ta
ch

ed

(s
ee

B.
8)

310

mailto:permissions@elsevier.com


B.2 Copyright Permissions for reuse of Figure 3.4

311



B.2 Copyright Permissions for reuse of Figure 3.4

312



B.3 Copyright Permissions for reuse of Figure 3.8

313



B.3 Copyright Permissions for reuse of Figure 3.8

314



COPYRIGHT AGREEMENT (asof February2010)
• TWO Park Avenue • New NY

For

For peg

Before publicatlon o' yo.r paper In a conference proceedings or Journal, ASME must receive a signed Copyright Agreement.
conference papers, this form should be received by the deadline Indicated by the Conference. Other forms may NOT be
suhtitut.d for this form, nor may any on the form be changed,

PAPERNUMBER papers):JEECS-16•1050

AUTHOR(s):

CONFERENCE NAME:

JOURNALNAME; danrnalrd EnergyConversionand Storage

ASME requesb that authors/copyright owners assign copyright to ASME in ardor for a conforønce or Journal paper to be
pubished by ASME. Authors exempt from this request are direct employees or the U.S. Government. whereby papers are
not subject to copyright protection in the u.S., or non•u.S. government employees, Whose governments hold the copyright
to tie paper. Otherwise, the author/ copyright owner(s) Of the Paper should sign this form as instructed below. please refer
to the section below •Who Should Sign' and also to ASME'S for more hrormation regarding copyr•t ownership
and the copyright

WHO SHOULD SIGN

Only the copyright owner(s) or the Paper, or an authorized representative. can sign Otisrorrn. If ono or he ronawingapples.
you may own the copyright to paper, or you may not be authorized to this and you guy need to have
the appropriate copyright owner(s) or organizauon representative this Agreement:
(l) You creaEd tie paper within tho scope Of your employment, your empbyeris the copyright owner
(2) You created the Paper under an hdependent contractor agreement"
(3) You received a grant that hjnded Paper.

Pkase review yotr mmpMY policies regarding copy#t. and if you are not authorized to son this agreernent. please forward
to rue appropriate organization Ptease review applicable company. institutional, and grant policies and your
employment,qndependent contrætor agreement to determine who holds the rights to your Paper. For rmre information, please

the

"Note to U.S. Gavemment Contractors: Wyou Paper under With the US. Government. e.g„ U.S.
Government hbs, the paper may be subject to copyright, and you or your employer may own the copyright. Please review
your companyinstitutional policies and your contractor agreement. Your Paper may also require a acknowledghg
contract in%rmation and also the fogowi•g staternene

•The StaB Governrnent re*s, and by acepting tle atEIe pLHiGtbn, tie pu&her æknowledges tlat he LJr&d
States rebins, a non-exclusrv•e, irrevoæble, Itense b puÜ.h or the pubßhed
Of tlis work. or äNOWothers to do for United States Government purpose •

It is your to ensure that the PDF of he paper submit includes necßsary and
under contract

COPYRIGHT ASSIGNMENT
The Of copyright to l. 2. 3. 4 5

The undersiW1ed hereby assigns irrevocably to ASME all worldwße rights under copyright Paper.

Authors retain an proprietary rfihts in any idea. procedure. articles of manuEure described in tie Paper.
includhg the to seek protection for them. may perform, teæh, cmduct research display

B.4 Copyright Permissions for reuse of text, figures and tables of Chapter 4

315



or pertOf Paper, and create works in print or elecb•onicforrnaLAuthors may reproduce and distribute tho Paper
for non-commercial purposes applies only to the sale Of the paper per se. For all coples of Paper
made by Authors, Authors must acknowledge ASME as original publisher and Include the names Of the
publk:ation title, and an appropriate copyright notEe that identifies ASME as the copyr"ht holder.

PLEASE READ THE IEBMHNQ-GQNQII.IQNS WHICH ARE FULLY INCORPORATED IN THIS AGREEMENT.

PAPERSOWNED BYONE AUTHOR OR JOINT AUTHORS; DESIGNATED AUTHORS (For jolnuy works. au
authors should submit e signed Agreement, or one Designated Author may sign on behalf of the other authors, but ONLY IF

deslgnatedauthor has secured written authorization to do so trom all other authors, Tho desbnated author must be able
to produce su@'written authorization if mquested,)

AuthM, Co.Aufror, or Deslgnated Author

Name:Krishnakumar Gopalakrishnan

TWO: Student

United K m

(App•n.d you Other)

B.4 Copyright Permissions for reuse of text, figures and tables of Chapter 4

316



ASME COPYRIGHT FORM TERMS AND CONDITIONS

and are inmrporated Form,

REPRESENTATIONS, OBLIGATIONS. ACKNOWLEDGEMENTS, AND INDEMNIFICATION

rvesent and hat:

(A) This the of an Of a
o' as by

(B) You have the r"ht to into this Copy*t end to nuke of to ASME. the containsexcerpts
ether mat"al (hck'ding without limitatbn ony taxi). you have acquired writing an
ri*üs partho in and have credl that third-patty rmterial or

are this Form boh any have from a'
aumors holdersto make this ass"nrnent r•ts to ASME.

(D) TOthe bestOfthe authM's au StatenmtS cnMainedin the to b' are or support«i by
scientific the Paper not u»ntalnany deramatMYor I&bus material aruldws not infringeany third pørtys cgMight. *nt.
trat%secret. Ottw prtvdetwy rightsanddoes not violateme right 01 or pWicny o' my third party violate anyother

furthermoreelat to the bestOf youare resp-üBiWøforensuing the of y-m_rr•seÜch p

(E) was in the an envloyment by. mntractual wÄh, ttw u.s. Federal or State
materi* it has been awopriawy cleMed for publc r&ase and such Is

(F) Tho is Su*t any and not for puMlcatbn

(G) Youhave Od in the Paper's aspe&.

(H) ASMEis my errors or by

(I) All pru•üand of the P»er to ASME ASMEs *tysu of whetter not A
mibUshestle Paper.and thatASME is not to mJblBhyour (sn ttw Tertwnation i' your not

(J) ASMEis forany expensesincurredin prepar"g me methgs prent It.
ASEE pay you any cmpensatÉn if ptnlshes Papa.

(k) Su*t to extent law. agree ASMEfromanydanuge
relaW to a breachof anyot the warranbes

TERMINATION

If decø— not to yow P»er, ns FM"', all of ymr papÜ. thereafterfree to
pub—iM elsewtwe.

GENERAL PROVISIONS

This Terms & the ASME.
and supMse&s a' gior or ament and repres*ltations, Whettw Oralor Written, between you md A9dE

the Paper.

This Agreenwnt is by. md stould be constt_æd in wit'. the laws the State 01 York, United States of America
to made md perforrned Tiete, except to that pur mstitution is Sy law from entering contracts
by New York in this Agreement is governed by , and Should With, Of

ji_risdictior, which your is Any dispute.action or proceedng relatingto thisAgreernent be broughtonly in
applÉ±k in the State and Cwnty of New aM you mnsent to persmal W•nsdicihnand venue in any

B.4 Copyright Permissions for reuse of text, figures and tables of Chapter 4

317



B.5 Copyright Permissions for reuse of Figure 5.1

318



B.5 Copyright Permissions for reuse of Figure 5.1

319



B.5 Copyright Permissions for reuse of Figure 5.1

320



B.5 Copyright Permissions for reuse of Figure 5.1

321



Go alakrishnan. Krishnakumar

•exchange.vtedu>
Sent:
To:

Hi Krishna,

Southward, Steve
09 October 2018 1741

Gopalakrishnan, Krishnakumar
Re:Requestfor permissionto adaptaschematicfromyour lecturenotesfor thesis

SorryforthedelayInresponding.Youarewelcometousemyslidewithcitationasyouhavedone.Goodluckl

Dr. Southward

OnSep26, 2018, at 2:55 PM,Gopalakrishnan,Krishnakumar <

Dear prof Southward,

Greetings'

Hopeyourememberme from our previousinteractions.I amKrishnakumarGopalakrishnan
(Krishna),whowasregisteredatVirginiaTechfromFall2009throughFall2011asanM.Engstudent
Inthe ElectricalandComputerEngineering(ECE)department.InSpring2011,t hadregisteredfor
andcompletedthecredit-bearingcourse'MES506—AdvancedControlEngineering,taughtbyyou.I
amtherefore in possessionof the electronicPDFSof the lecturenotesamongother associated
material for this course.

Forusein my PhDthesis(non-profit CC-BY-NC-NDuse),I'd liketo adaptaschematicfrom L03Of
your coursenotesthat presentsthe timing diagramof a real-timecontrol/software loop.
I shallof coursecite the sourceof the originalschematicin the figurecaption.

I haveattachedmyadaptedversionherewithforyourperusal.I hopeyouan accordmewithyour
permissions for thesis reuse.

Best Regards,
Krishna

B.6 Copyright Permissions for reuse of Figure 5.3

322



Go lakrishnan, Krishnakumar

GregoryPlett
28 September 2018 2028
Gopalakrishnan, Krishnakumar
Re:Requestforpermissionto reusea schematicfromyourlecturenotesin myPhD
thesis

Yes,youarewelcometo use/adaptthefigure.I'msureIStoleit fromsomewheremyself.

Congratulations for reaching this pointl

Dr. Gregory L prett
professor,Departmentof ElectricalandComputerEngineering
Director,GATECenterOfExcellencein InnovativeDrivetrainsinElectricAutomotiveTechnologyEducation
University of Colorado ColoradoSprings
1420Austin Bluffs parkway, ColoradoSprings,CO80918
p:

OnSep28, 2018, at 10:13AM, Gopalakrishnan,Krishnakumar

Dear prof Plett,

Greetings'Howareyou doing?Iamabout to submit the thesisOfmy thesis(hopefullyearlynext

ForuseInmy PhDthesis(non-profit, non-commericalCC-BY-NC-NDuse),I'd liketo adapta
schematicfromLecture2 of ECE5540notesthatdepictsa cartoonrepresentationof thetiming
diagramof a real-timecontrol/software loop. I shallof coursecite the sourceof the original
schematic in the caption.

I haveattachedthe relevantschematicherewith for yourperusal. I hopeyou canaccordmewith
your permissions for thesis reuse.

Best Regards,
Krishna

B.7 Copyright Permissions for reuse of Figure 5.4

323



B.8 Copyright Permissions for reuse of Figure 5.13

324



B.8 Copyright Permissions for reuse of Figure 5.13

325



B.8 Copyright Permissions for reuse of Figure 5.13

326



B.8 Copyright Permissions for reuse of Figure 5.13

327



B.8 Copyright Permissions for reuse of Figure 5.13

328



C
Colophon

This thesis was created using LATEX2𝜀 and BibLATEX/Biber wherein the source code was
edited in neovim using the vimtex plugin. The typesetting engine is LuaTeX, Version 1.10.0
(TeX Live 2019). The body copy is set in a 12pt Libertinus Serif text with the section headers
set in Libertinus Sans. A value of 1.618 (golden ratio) is used as the spacing factor between
baselines in the body copy. Source code listings are set in 9pt Latin Modern Mono.

329 ,


	Title Page
	Declaration of Originality and Copyright
	Dedication
	Acknowledgements
	Abstract
	Project Outputs
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Program Code
	List of Acronyms
	List of Symbols
	1 Introduction
	1.1 Working Principle
	1.2 Battery Modelling
	1.2.1 Equivalent Circuit Models
	1.2.2 Physics-Based Models

	1.3 The Doyle-Fuller-Newman model

	2 Review of Literature
	2.1 Model Based Design for Batteries: Overview of Prior Art
	2.1.1 Introduction
	2.1.2 State of the art in cell-scale model-led design optimisations

	2.2 Reduced Order Models: A New Classification Scheme
	2.2.1 Frequency domain ROMs
	2.2.2 Quasi-hybrid time/frequency domain ROMs
	2.2.3 Hybrid ROMs based on equivalent circuits
	2.2.4 Time-domain ROMs
	2.2.5 Classification of ROMs — Interim summary

	2.3 Review of Literature on the Single Particle Model Family
	2.3.1 Overview of literature on conventional SPMs
	2.3.2 State of the art in electrolyte enhanced SPMs
	2.3.3 Conclusions


	3 Model-based Design of Pouch Cells
	3.1 Introduction
	3.2 Energy/Power Trade-off in Pouch Cells by Layer Selection
	3.2.1 Preliminary assumptions
	3.2.2 Motivation
	3.2.3 Quantitative demonstration of energy/power trade-off

	3.3 Scope and Context within xEV Powertrain
	3.3.1 System-level — vehicular platforms
	3.3.2 Pack-level — strings, modules & cells
	3.3.3 Cell-level — layers, cooling, electrochemical & thermal models

	3.4 Enhancements/Modifications to Standard DFN Model
	3.4.1 Augmentations to parameter set
	3.4.2 Modification of standard DFN model to handle power inputs
	3.4.3 Hybrid spectral-FV scheme

	3.5 Computational Framework
	3.5.1 Introduction and guidelines for flow diagram traversal
	3.5.2 Acceleration pathway
	3.5.3 Fast-charging pathway
	3.5.4 Search algorithm
	3.5.5 Upper and lower bounds on search space
	3.5.6 Electrode thickness ratio for capacity balancing
	3.5.7 Computation of electrode thicknesses per layer
	3.5.8 Computation of layer-dependent cell mass
	3.5.9 Computation of layer-dependent cell specific heat

	3.6 Results and Discussion
	3.6.1 Modelling Platform and Preconditioning
	3.6.2 xEV configurations
	3.6.3 Acceleration studies
	3.6.4 Fast-charging studies

	3.7 Conclusions

	4 Computational Analysis and Numerical Reformulation of the DRA 
	4.1 Analysis of the Computational Bottlenecks of the DRA
	4.1.1 Size of the Block-Hankel Matrix
	4.1.2 Classical DRA — Memory (RAM) Requirements
	4.1.3 Classical DRA — CPU Operation Count
	4.1.4 Summary Effect of Computational Bottlenecks

	4.2 Improved DRA for Battery Modelling
	4.2.1 Candidate Schemes for Block-Hankel SVD
	4.2.2 SVD Operation on a Virtual Block-Hankel Matrix

	4.3 Golyandina-Usevich Algorithm
	4.4 Customisations for Battery Modelling
	4.5 Simulation Results and Discussion

	5 Performance Evaluation of State of the Art in Single Particle Modelling
	5.1 SPM Model Development
	5.1.1 Geometry
	5.1.2 Scope and Assumptions
	5.1.3 Governing Equations

	5.2 Numerical Implementation
	5.2.1 Continuous-time Implementation
	5.2.2 Conceptual Overview of Real-Time Processing
	5.2.3 Sample Delay Considerations
	5.2.4 Discrete-Time SPM Formulation

	5.3 Desktop Simulation
	5.3.1 Cell Parametrisation
	5.3.2 Simulation Setup
	5.3.3 Simulation Results

	5.4 Quadratic Approximation of Ionic Spatial Concentration
	5.4.1 Model derivation
	5.4.2 Numerical implementation, simulation results and analysis

	5.5 Conclusions

	6 Implementing a New Electrolyte Model for Augmentation of the Basic SPM
	6.1 Performance Analysis: Quadratic Approximation Model
	6.1.1 Symbolic regression using Multi-Gene Genetic Programming

	6.2 A New Electrolyte Model through System Identification
	6.2.1 Scope and motivation
	6.2.2 Selection of Methodology — Background and Rationale

	6.3 Brief Introduction to System Identification
	6.4 Overview of Black Box System Identification
	6.4.1 Non-parametric methods
	6.4.2 Parametric methods
	6.4.3 Investigation of suitable system identification methodology

	6.5 Introduction to Electrolyte Time-Evolution Subsystems
	6.6 Design of Persistent Excitations
	6.6.1 Training current profile
	6.6.2 Validation current profile

	6.7 Investigation of Linearity and Time Invariance
	6.7.1 Time-invariance of the electrolyte time-evolution subsystems
	6.7.2 Linearity analysis of the electrolyte time-evolution subsystems

	6.8 Transfer Function Identification Procedure
	6.8.1 The transfer operator and its model form
	6.8.2 Estimation of transport delay
	6.8.3 Choice of model structure
	6.8.4 Starting guesses for coefficient orders
	6.8.5 Refinement of coefficient orders using deterministic criteria
	6.8.6 Final transfer function coefficients — Nonlinear optimisation
	6.8.7 Numerical implementation of identified transfer functions

	6.9 Performance Analysis of System Id Model: Ionic Concentration
	6.9.1 Constant current inputs
	6.9.2 Dynamic current inputs

	6.10 Composite SPM Model with Electrolyte Dynamics
	6.10.1 Computation of electrolyte overpotential
	6.10.2 Terminal voltage computation of composite SPM
	6.10.3 Validation of composite SPM: Terminal voltage accuracy

	6.11 Conclusions

	7 Conclusions
	7.1 Physics-Based Models as a Design Tool
	7.1.1 Conclusions from the model-based design study
	7.1.2 Future work informed by the optimal layer design framework

	7.2 Analysis of Salient Physics-based Reduced Order Models
	7.2.1 Conclusions from analysis of the DRA-based state-space ROM
	7.2.2 Future outlook for the DRA-based hybrid state-space ROM
	7.2.3 Conclusions from analysis of the SPM family of models
	7.2.4 Proposed analysis routes for the SPM modelling family

	7.3 Implementation Aspects of Basic and Composite SPM
	7.4 Closing Remarks

	References
	Appendix A Full Listing of Program Codes
	A.1 MATLAB codes for continuous-time SPM
	A.2 MATLAB codes for discrete-time SPM

	Appendix B Permissions Summary
	B.1 Summary of Copyright Permissions
	B.2 Copyright Permissions for reuse of Figure 3.4
	B.3 Copyright Permissions for reuse of Figure 3.8
	B.4 Copyright Permissions for reuse of text, figures and tables of chapter 4
	B.5 Copyright Permissions for reuse of Figure 5.1
	B.6 Copyright Permissions for reuse of Figure 5.3
	B.7 Copyright Permissions for reuse of Figure 5.4
	B.8 Copyright Permissions for reuse of Figure 5.14

	Appendix C Colophon

