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Abstract  

We study the mechanisms of slip transfer at a grain boundary, in titanium, using 

Differential Aperture X-ray Laue Micro-diffraction (DAXM). This 3D 

characterisation tool enables measurement of the full (9-component) Nye lattice 

curvature tensor and calculation of the density of geometrically necessary 

dislocations (GNDs). We observe dislocation pile-ups at a grain boundary, as 

the neighbour grain prohibits easy passage for dislocation transmission. This 

incompatibility results in local micro-plasticity within the slipping grain, near to 

where the slip planes intersect the grain boundary, and we observe bands of 

GNDs lying near the grain boundary. We observe that the distribution of GNDs 

can be significantly influenced by the formation of grain boundary ledges that 

serve as secondary dislocation sources. This observation highlights the non-

continuum nature of polycrystal deformation and helps us understand the higher 

order complexity of grain boundary characteristics.  
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1. Introduction 

Most structural metals and alloys used are polycrystalline with grain boundaries 

typically imparting significant strengthening. The field of grain boundary 

engineering expressly explores how specific boundary types can be introduced 

during thermomechanical processing, however, experimental evidence of the 

relative benefit of different boundary types is limited. Plastic deformation of a 

polycrystalline aggregate typically results in complex heterogeneous 

deformation patterns, due to the compatibility and equilibrium requirements as 

well as the heterogenous dislocation sources and the blocking of dislocation slip. 

A physically based model for intergranular deformation must account not only 

for the mechanical compatibility across the grain boundary [1], but also the force 

equilibrium [2,3]. These two conditions are important when we consider the 

heterogenous deformation fields that occur as a result of slip on individual slip 

planes, especially where they impinge on grain boundaries. 

Because of the localised slip, deformation near a grain boundary is 

heterogenous and the equilibrium and compatibility conditions can require the 

generation of dislocations near the interface. These must accommodate the 

strain incompatibility and overcome variations in the elastic properties across 

the interface. In micromechanics, the storage of dislocations has been 

considered by Ashby [4] who describes dislocation densities as either 

statistically stored (SSD) or geometrically necessary (GND). While the GND 

density is considered as a means to accommodate orientation gradients and to 

maintain lattice continuity, the SSD density represents dislocation dipoles or 

multipoles randomly trapped during plastic deformation, which, at the length-

scale of inquiry, do not contribute to a net lattice curvature. This concept was 

explained in further detail by Arsenlis and Parks [5]. Formally, if we could look 

with fine enough resolution at each individual dislocation, they would all be 

considered geometrically necessary due to the associated closure failure of the 

Burgers circuit and therefore the classification of dislocation densities into GND 

and SSD contributions is dependent on the length scale of the measurement. 

To assist in the assessment of the GND density, Nye’s dislocation tensor [6] 

combines dislocation content on various slip systems into one tensor 
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(1) 𝜶 = ∑ 𝜌𝒃 ⊗ 𝒍
   

where 𝜌 , 𝒃, 𝒍are the GND density, Burgers vector, and unit line direction of 

the kth dislocation type respectively. Kröner [7] and Bilby et al. [8] demonstrated 

that the Nye’s tensor can be linked to the elastic distortions of the matrix 

through: 

(2) 𝜶 = ∇ × 𝜷 

Where the ∇ × is a Curl operator. 𝛽 is the elastic displacement gradient of the 

matrix, which can be measured by X-ray diffraction, electron backscatter 

diffraction (EBSD), or other techniques. 

Prior research has attempted to investigate the accumulation of GND density in 

several crystal systems subjected to various deformation conditions. They 

aimed to rationalize aspects of fundamental material behaviour including; the 

Hall-Petch effect [9,10], the strain hardening [11], and the indentation size effect 

[12–14]. One common way of estimating the GND density is to extract the local 

orientation information using EBSD methods [15–19]. Such measurements can 

be improved by increasing the angular precision of the data with high angular 

resolution EBSD (HR-EBSD) [20–26]. 

For the calculation of the Nye tensor, the elastic displacement gradient must be 

measured. This requires a measurement of the spatial derivative of the elastic 

lattice distortion. If one assumes the elastic strain gradient is negligible, surface 

measurements (e.g. EBSD/HR-EBSD) only provide five terms of the Nye tensor 

and one difference (𝑎ଵଵ − 𝑎ଶଶ ) [17]. It is possible to investigate the lattice 

curvatures in the third dimension through focused ion beam serial sectioning, as 

has been demonstrated by some pioneering studies [13,27]. However, both the 

angular and the translational alignment errors between slices may introduce 

additional noise. 

Full three-dimensional characterisation of the Nye tensor can also be performed 

non-destructively using high-energy X-ray diffraction. Some state-of-the-art 

methods for this purpose include the Differential Aperture X-ray Laue Micro-

diffraction (DAXM) [28] and the emerging Dark-Field X-ray microscopy [29]. 

Both of the techniques have submicron spatial resolution and the angular 

resolution is on the order of 0.01o.  
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In this paper, we use DAXM to investigate in 3D the local dislocation structure 

generated by the interaction between slip bands and a grain boundary in 

commercially pure titanium. We first introduce the process to retrieve Nye’s 

lattice curvature tensor from the measured lattice rotations in 2D and 3D. This is 

then compared to the resultant dislocation density obtained directly from the 

entrywise 1-norm of the curvature tensor without linking to the dislocation tensor 

[15]. Based on the observed distribution of dislocation densities, we investigate 

the mechanism of the slip band-grain boundary interactions under the 

framework of the grain boundary ledge theory put forward by Li [30] and Hirth 

[31] as well as referring to the general requirement of elastic and plastic 

compatibility at a grain boundary. This investigation is fundamental to the 

understanding and simulation of heterogeneous deformation at a polycrystalline 

interface [32–34]. 

 

2. Experiments 

The material used in this experiment was Grade I commercial purity titanium. 

Details of the sample composition and preparations can be found elsewhere 

[25]. This sample was investigated using HR-EBSD (after deformation in 

tension to 0.01 strain) at various locations where a slip band intersects a grain 

boundary. A blocked slip band that had shown evidence of distinct GND density 

concentration [25] was selected as a suitable candidate for further DAXM 

investigation.  

The DAXM experiment was performed at beam line 34-ID-E at the Advanced 

Photon Source (APS). A detailed overview of the technique, analysis method 

and some applications can be found in references [28,35–37], and the technical 

details of the current experiment can be found in reference [35]. A brief 

overview is given here: 

The sample was positioned in the X-ray beam and tilted to ~45o for positioning 

the differential aperture (a Pt wire). A focused white beam was directed towards 

the selected region and was scanned on a regular grid with 1 μm spacing. At 

each scanning node, the differential aperture swept across the sample surface 
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and occluded the diffraction spots. The voxel-based diffraction patterns were 

reconstructed by ray-tracing using the LaueGo software (performed on the 

cluster at the APS). Reconstructions were performed to a depth of 190 μm into 

the sample with 1 μm depth spacing. The total volume of investigation is of the 

size 23 μm x 31 μm x 190 μm, as is shown in Fig. 1, with 1 μm3 voxel size. The 

lengths of the <c> and <a> axis for Ti were calibrated using the monochromatic 

beam giving a measured c/a ratio of 1.588. In addition to extracting the lattice 

parameters, a reliability factor based upon the number of spots used in the 

indexing was obtained. This was used to filter out erroneous ‘ghost points’ from 

above the sample surface, observed due to the nature of the back-subtraction 

algorithm from the DAXM analysis procedure. The indexed dataset was 

analysed with Igor Pro (www.wavemetrics.com) where the indexed lattice 

parameters were compared to a user defined reference point in each grain, and 

hence relative lattice rotations (R) were obtained (including reduction to the 

symmetry-reduced rotations). The white beam measurements enabled only the 

deviatoric deformation to be obtained (i.e. hydrostatic strains are not measured). 

The lattice rotations and the strains were exported into MATLAB 

(www.mathworks.com) for further postprocessing and the 3D images were 

processed in Avizo (www.thermofisher.com). 

 

3. Results 

The illuminated volume of the sample is shown in Fig. 1-a where the traces of 

the grain boundary and the slip bands are also identified. Fig. 1-b shows a slice 

view of the grain boundary plane, identifying the lines of intersections between 

the slip planes and grain boundary as evident from the high intensity dislocation 

bands. In total, 6 dislocation bands are seen in Fig. 1-b, corresponding to 6 slip 

plane and grain boundary interactions. From Fig. 1, it is noted that all 6 slip 

planes possess the same slip variant (i.e. prismatic slip with the same plane 

and Burgers vector indices), however, evidently possess different levels of 

plasticity at the grain boundary.  
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Figure 1: a) Visualization of the probed volume, color coded with respect to the GND 

density, with an inset optical micrograph indicating the sampling location. The grain 

boundary trace and the observed slip band is indicated by white arrows; b) a virtual 

slice taken of the grain boundary plane (the rest made transparent), high intensity 

bands, representing localization of GND densities, indicating the location where slip 

planes intersect the grain boundary. The dashed box indicates the location of the slice 

taken for the rest of the analysis. The viewing angle (i.e. camera position) in Figure 1 is 

chosen to best view the grain boundary plane and the slip traces, for a better 

visualization of the shape of the 3D volume, the reader is referred to the animation in 

the Appendix A2’. 

 

3.1 GND density calculation  

The method for GND density calculation follows that developed for HR-EBSD 

[20,38,39], i.e. solving the Nye-Kröner-Bilby (NKB) equation (equations 1 and 2) 

but extended to incorporate the gradients in the third dimension, therefore 

accounting for all nine components of the elastic displacement gradient tensor 

[6,40]: 

(3) 𝛼 = 𝛼
ఠ + 𝛼

ఌ = 
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where 𝜔 is lattice rotation and ε୧୨ elastic strain. Equation (3) is used to solve 

Nye’s dislocation tensor in equation (1), for which purpose the lattice rotations 

and the elastic strains need to be measured.  

The rotations and the strains are obtained by post processing the experiment 

results as stated above. A local cubic kernel containing 27 voxels was extracted 

from the data volume centred at each interrogation point. The data in the kernel 

was filtered to eliminate those voxels from outside the material volume or from a 

different grain. After filtering, a ‘useful’ kernel should contain, in addition to the 

central voxel, at least one voxel in each of the principal reference directions to 

capture the lattice rotation gradient associated with that direction. Then a 

disorientation matrix [22] was calculated between each voxel in the kernel and 

the centre voxel of the kernel: 

(4)  𝝎𝒊𝒋 = 𝑹௧
ఁ 𝑹 

This gives the disorientation matrix (𝝎𝒊𝒋) for all of the kernel voxels in the central 

voxel reference frame. Next, the infinitesimal lattice rotation components is 

approximated by: 𝑤ଵ =  (𝜔ଷଶ − 𝜔ଶଷ)/2 ,  𝑤ଶ =  (𝜔ଵଷ − 𝜔ଷଵ)/2, 𝑤ଷ =  (𝜔ଶଵ −

𝜔ଵଶ)/2 which are the components of the infinitesimal rotation vector w. A result 

from a single slice of the measured volume is shown in Fig. 2-a. 
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Figure 2: Lattice rotation (a) and corresponding rotation gradient along 3 principal 

directions (b). 

The rotation gradient in all three directions in the kernel can be found by fitting 

the kernel to a hyper plane: 

(5) ቌ
𝒘𝟏

·
·

𝒘𝒏

ቍ = ቌ

Xଵ
ଵ

·
·

Xଵ
୬

Xଶ
ଵ

·
·

Xଶ
୬

Xଷ
ଵ

·
·

Xଷ
୬

1
·
·
1

ቍ ቌ

gଡ଼భ

gଡ଼మ

gଡ଼య

C

ቍ         

Where gଡ଼భ
=

ப𝐰

பଡ଼భ
 gଡ଼మ

=
ப𝒘

பଡ଼మ
 g =

ப𝒘

பଡ଼య
 and C is a constant. 

In which 𝐰𝒏 refers to the infinitesimal rotation vector of the nth kernel voxel and 

Xଵ
୬  Xଶ

୬ and Xଷ
  are its associated spatial coordinates. The calculated lattice 

curvature components are shown in Fig. 2-b. 

A similar procedure is applied to obtain the strain gradients and the results are 

shown in Fig. 3-b together with the deviatoric strains (Fig. 3-a). 
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Figure 3: Elastic strain (a) and the corresponding strain gradient along Y direction. 

As can be seen, for this case the magnitude of the elastic strain gradient is 

negligible compared to that of the rotation gradient, consistent with other 

studies on a more severe plastic deformation [40]. Therefore, we can ignore the 

elastic strain part (𝛼
ఌ ) of equation 1 and link the rotational part (𝛼

ఠ ) to a 

dislocation tensor: 

(6)  
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Where 𝜌  is the density of the kth type of dislocation and 𝑏
  and 𝑙

  are the 

components of the Burgers vector and line direction of the kth type of dislocation. 

The total dislocation density is then ∑ 𝜌
ଵ . Nye analysed dislocations in a 

simple cubic system, where 𝑏
𝑙

 have one to one correspondence with each of 

the nine lattice curvature terms, i.e. the diagonal part of the 𝛼
ఠ tensor represent 

a twist of the crystal axis due to the presence of the 3 screw dislocations and 

the off-axis parts correspond to a bending of the crystal faces due to the edge 
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dislocations. In a typical crystal, there are usually more than nine dislocation 

types, for example there are 33 types of frequently referenced slip systems in α-

titanium [41], rendering equation (4) under-determined. This problem can be 

treated by utilising optimisation methods, such as L1 that minimises the total line 

energy [42] or L2 that minimise the sum of squares of dislocation length. The L1 

optimisation is used here as this approach has physical meaning as 

dislocations can be considered in a low energy elastic energy configuration 

(considering their self-energy only) [43]. The L1 optimisation is implemented in 

MATLAB using the ‘linprog’ algorithm as well as a weighting factor [42]: 

(7)  
ா

ாೞೝೢ
=

ଵ

(ଵିఔ)
  

where 𝜈 is Poisson’s ratio. Throughout the analysis the basis set of dislocation 

types are chosen to be pure screw and pure edge types. Where mixed 

dislocations are present in the crystal this will be captured in the results as a 

proportionate mix of edge and screw dislocation density for the given slip 

system. These fully 3D measurements can be downgraded to mimic information 

available from 2D HR-EBSD studies, for which the gradients in the x3 direction 

are not accessible and equation (6) is truncated to remove the corresponding 

gradient terms together with the bଷ
୩l୨

୩  terms of the dislocation tensor (see 

equation (2) in reference [41]). Furthermore, in working with 2D data, El-Dasher 

et al. [18] suggested using the entrywise 1-norm of the rotation gradient tensor 

(α୧୨
ன) to provide a simple single scalar estimate of the total GND density: 

(8) 𝜌௧௧ = ∑ ∑ ห𝛼
ఠห


ଵ


ଵ  

Fig. 4 compares dislocation densities estimated from the Nye-Kroner-Bilby 

(NKB) solutions (equation (6)), and the entrywise 1-norm (equation (8)) using 

different numbers of lattice curvature terms representing to 3D (9 terms) and 2D 

(<=6 terms) measurements. 
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Figure 4: Comparison of dislocation density distribution from solving equation (7) using 

all lattice curvature terms (Nye-Kroner-Bilby, NKB 3D), 6 lattice curvature terms (NKB 

2D), by solving equation (9) using all lattice curvature terms (entrywise 1-norm 3D (9)), 

7 terms (entrywise 1-norm 2D (7)), and 5 terms (entrywise 1-norm 2D (5)). 

It can be seen from Fig. 4 that discrete GND density ‘hot spots’ can be 

observed at the grain boundary plane, each of which corresponds to an 

intersection between a slip band and the grain boundary. High GND 

concentrations (>1013 dislocations per m2) in grain 1 can be found within 8 µm 

distance away from the grain boundary and around the slip plane-grain 

boundary intersections. The GNDs in grain 1, the slipping grain, are higher in 

extent compared to those in grain 2, the (elastically) sheared grain. It is directly 

evident from Fig. 4 that using fewer lattice curvature terms gives a lower GND 

magnitude but the spatial concentration of GNDs is sharper. This is 

quantitatively reflected by the 1D line-trace analysis in Fig.5, from which it can 

be seen that the entrywise 1-norm is an underestimation of the GND densities 
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(Fig. 5-a) with the magnitude systematically dropping with fewer lattice 

curvature terms entering the calculation (i.e. the system of equations is less 

constrained). On the other hand, the peak width is similar between the NKB-3D 

and the 9-terms entrywise 1-norm but is smaller for the 2D calculations, 

indicating a sharper spatial concentration of the GND density. It seems that the 

2D calculations (i.e. with <= 6 lattice curvature terms) are sufficiently 

representative of the dislocation density distribution with the added benefit of 

sharper peaks to aid identification of significant deformation concentrators (in 

this case, slip band-grain boundary interactions). 

Figure 5: (a) line scan along one of the GND hot spot in the direction indicated by the 

white arrow. (b) GND peak breadth of the peak profile from the indicated line scan 

along grain boundary across two GND hot spots. 

The entrywise 1-norm of the lattice curvature tensor (equation (8)) provides a 

solution to the NKB equation (equation (6)), providing a quick solution to the 

GND density. However, it is impossible to consider the densities of individual 

types of dislocations giving rise to the measured lattice curvatures. The line 

energy minimisation approach was found to provide a good approximation of 

individual dislocation densities by comparison with ECCI [44]. Applying a similar 

approach in the current investigation determines that the GND density hotspot 

in the slipping grain (grain 1) is mainly <a> pyramidal edge dislocations together 

with two variants of screw dislocations. The results are shown in Fig. 6. 
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Figure 6: Line profiles along 2 selected slip bands, in the slip band direction across the 

grain boundary. Indicating individual GND densities from solving equation (7).   

The apparent drop of GND density near the grain boundary, in Fig. 5 and Fig. 6, 

is likely due to the drop of indexing quality, resulting from diffraction pattern 

overlap at the grain boundary. 

 

4 Discussion 

We have presented the GND density distribution due to the local plasticity as a 

result of arrays of dislocation lines piled up against a grain boundary. The 3D 

resolution of the curvature field with the DAXM method provides sufficient 

spatial resolution (< 0.5 μm [28,45], smaller than the scanning step size) and 

high angular resolution (~0.01o) for 3D mapping of the curvature tensor. A lower 

bound GND density noise level can be estimated using: 

(9) ∆𝜌 =
ఋ

ఒ
 

Where 𝛿 is the angular resolution (in radians) of the measurement technique, b 

is the Burgers vector magnitude, and 𝜆 is the step size [42]. Using b=0.295 nm 

the GND noise level is estimated to be ≈6x1011 m-2 for DAXM at a step size of 

1 μm, and therefore the GND densities presented are sufficiently above the 

noise floor for the results to be valid. We note that the measurement step size is 

important, and here the step size needs to be sufficient to measure the net 

curvatures around the features of interest and related to the stored GND 
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content (for a more complete investigation of the effect of step size on 

experimentally measured GND density please see Jiang et al [26]).  

The distribution of dislocation densities is heterogeneous with a significantly 

higher magnitude and extent of the distribution in the slipping grain. They are 

also mainly confined to regions close to the slip band – grain boundary 

intersections. If sufficiently high, the elastic stress field of the dislocation pile up 

will operate a regenerative dislocation source [46]. Here, this is observed close 

to the grain boundary and results in dislocations confined to the neighbourhood 

of the pile-up front, as is evident in the observed GND density concentrations in 

Fig. 4, with the exception of the one which appears to show dislocations that 

are ‘reflected’ back into grain 1 along certain crystallographic directions 

(indicated by dashed circle in Fig. 7). This GND field is not due to the pile up of 

other slip planes as the [21ത1ത0] (011ത0) prismatic slip is the only deformation 

system in grain 1. This is evidenced by the elastic strain map shown in Fig. 3 

together with a previous surface EBSD analysis. A slip trace analysis, Fig.7, 

demonstrates that this GND field is localised along a (011ത1) pyramidal slip 

plane. Furthermore, Schmid factor analysis, Table 1, indicates that there are in 

fact two variants of the <a> type {011ത1} pyramidal slip system with high Schmid 

factors (using the macroscopic loading direction during the deformation of the 

polycrystalline sample). However, while the macroscopic Schmid factor 

indicates how the global stress state is resolved, it is less likely to be the only 

reason for the observed feature due to the absence of similar features for other 

GND density fields. There is also an absence of a long range GND density field 

along the prismatic slip plane traces, whose activation require lower stresses 

compared to the pyramidal slip systems [47]. Li [30] proposed grain boundary 

ledge as a dislocation source with its theory developed by Hirth [48], calling 

these sources disconnections † . Both analyses imply a directionality of the 

dislocations emitted from this type of grain boundary source, with Li’s theory 

Schmid factor independent and Hirth’s theory Schmid factor dependent.  

 

                                                        
† We will use the term ‘ledge’ in this paper to emphasize the geometric nature of this 
investigation. 
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Figure 7: Slip traces of basal, prismatic, and pyramidal planes, with traces of grain 1 

plotted in the southern hemisphere and those of grain 2 in the northern hemisphere. 

 

 

Table 1: Schmid factor analysis of various slip systems in grain 1 (a) and grain 2 (b). 
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To investigate the crystallographic nature of the grain boundary ledge due to 

the slip band-grain boundary interaction, it is important to understand the shear 

transfer across the grain boundary. Trace analysis in Fig. 7 indicates the active 

dislocation pile up in grain 1 is on the [21ത1ത0] (011ത0) prismatic slip system. We 

define two sets of cubic reference frames. For the DAXM experiment, the 

crystal reference frame is defined where 𝑋௬௦௧ is parallel to the [21ത1ത0] Burgers 

vector direction (i.e. [100] direction in Miller indices), 𝑍௬௦௧ parallel to [0001] 

(i.e. [001]) direction, and 𝑌௬௦௧  perpendicular to the plane defined by the 

𝑋௬௦௧ and 𝑌௬௦௧  directions, i.e. [120] or (011ത0) plane normal direction. The 

slip reference frame is defined such that 𝑋௦ is parallel to [21ത1ത0], 𝑍௦ parallel 

to [011ത0], and 𝑌௦ parallel to [0001]. The slip shear, in slip reference frame, 

takes the following form: 

(10) 𝜀௦ = ൭
0 0 1
0 0 0
0 0 0

൱ 

The 𝜀௦  is resolved onto the cubic crystal reference frame using a suitable 

structure matrix taking the following form [49]: 

(11) 

𝐻𝐶 = ቌ

𝑎 𝑏 ∗ cosγ 𝑐 ∗ 𝑐𝑜𝑠𝛽
0 𝑏 ∗ 𝑠𝑖𝑛𝛾 𝑐 ∗ (𝑐𝑜𝑠𝛼 − 𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛾)/𝑠𝑖𝑛𝛾

0 0 𝑐 ∗ (1 + 2𝑐𝑜𝑠𝛼𝑐𝑜𝑠𝛽𝑐𝑜𝑠𝛾 − 𝑐𝑜𝑠ଶ𝛼 − 𝑐𝑜𝑠ଶ𝛽 − 𝑐𝑜𝑠ଶ𝛾)ଶ/𝑠𝑖𝑛𝛾

ቍ 

Where a, b, c, α, β, γ, are lattice constants and HC indicate switching reference 

frame from ‘Hexagonal to cubic’. 

And a transformation matrix can be defined: 

(12) 𝐻𝐶𝑅 = [𝐻𝐶 ∗ 

𝑏(𝑢)

𝑏(𝑣)

𝑏(𝑤)
 , 𝐻𝐶 ∗ 

𝑙(𝑢)

𝑙(𝑣)

𝑙(𝑤)
 , (𝐻𝐶ିଵ)் ∗ 

𝑛(ℎ)

𝑛(𝑘)
𝑛(𝑙)

] 

Where b is Burgers vector direction, n is slip plane. The (u v w), and (h k l) are 

the Miller indices of the burgers vector and slip plane respectively. The l is the 

direction perpendicular to the plane defined by b and n and is equal to the cross 

product between the first and the third column of the HCR matrix.  

Slip shear in crystal reference frame is obtained using: 
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(13) 𝜀௬௦௧ = 𝐻𝐶𝑅ିଵ ∗ 𝜀௦ ∗ 𝐻𝐶𝑅 = ൭
0 −1 0
0 0 0
0 0 0

൱  

The displacement gradient tensor, associated with this slip, can be assessed in 

the crystal reference frame of grain2 using: 

 (14) ∆𝑔 = 𝑔ଶ(𝜑ଵ
ଶ 𝜙ଶ 𝜑ଵ

ଶ) ∙ 𝑔ଵ(𝜑ଵ
ଵ 𝜙ଵ 𝜑ଵ

ଵ)் 

(15) 𝛽ଶ = ∆𝑔 ∙ 𝜀௬௦௧ ∙ ∆𝑔் = ൭
0.271 −0.122 −0.066
0.146 −0.066 −0.036
0.835 −0.377 −0.205

൱ 

where 𝑔  is the rotation matrix and (𝜑ଵ 𝜙 𝜑ଶ ) are the Euler angles (grain1: 

(268.56 73.29 283.65), grain2: (114.27 1.27 313.73)). A step-by-step guide of 

the above calculation can be found in appendix A1. 

For 𝛽ଶ , ห𝛽ଵଶ


ห + ห𝛽ଶଵ
ଶ

ห = 0.268  indicate the level of shear on <a> 

prismatic plane in grain 2 as a result of the shear in grain 1, ห𝛽ଵଷ


ห +

ห𝛽ଶଷ
ଶ

ห = 0.102 on <a> basal plane, and ห𝛽ଷଵ


ห + ห𝛽ଷଶ


ห = 1.212 on the 

<c+a> pyramidal plane. These are shown graphically in Fig. 8. 
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Figure 8: Schematic representation of the relationship between displacement gradient 

tensor components and the related physical shape change (The origin of the analysis 

is from [50]). Crystal reference frame is defined in the first image. 

 

It can be seen from the above analysis that the shearing of grain 1 is likely to be 

accommodated by a <c+a> pyramidal type deformation system in grain 2. To 

find this deformation system in grain 2, a geometrical factor [51] was assessed 

between the active prismatic slip system in grain 1 to slip systems in grain 2 and 

results shown in Table 2-a. The geometrical factor takes the form of 𝑀 =

ห(𝒃ప
 ∙ 𝒃ఫ

 )(𝒏పෝ ∙ 𝒏ఫෝ )ห , where 𝒃  and 𝒏ෝ  are the unit burgers vector and slip plane 

normal vectors respectively. The M ranges from 0 to 1 with values approaching 

1 represent perfect alignment where the shear transfer is the most effective. 

The shear transfer is physically carried by the transfer of Burgers vectors across 

the grain boundary, during which the grain boundary is displaced proportionally 

to the number of transfer events. Hence, a grain boundary ledge is created 

together with the residual Burgers vector to accommodate the Burgers vector 

mismatch. This is schematically shown in Fig. 9-a.  
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Table 2: (a) Geometric alignment between the activated prismatic slip system in grain 1 

and various slip and a twin system in grain 2. (b) the alignment between maximum 

sheared twin variant in grain 2 to various slip systems in grain 1. 

 

 

Figure 9: (a) Schematic arrangement of the grain boundary ledge formed by a 

dislocation pile up (red), the direct shear transfer plane (blue), and the secondary 

dislocation emission plane (yellow). (b) The local atomic arrangement at a ledge. (c) 

Edge dislocation emission by Li mechanism [30]. (d) Screw dislocation emission by 

Hirth mechanism [31]. 

 

The ledge is formed where the prismatic plane in grain 1 is forced to match the 

pyramidal plane in grain 2. A contraction twin of the variant [101ത2] (101ത1) could 

nucleate with the condition that the shear on the active slip system is sustained 

and that the c-axis of the grain 2 crystal is compressed, and this is similar to slip 

assisted twin nucleation which has been previously observed [52], while the 
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formation of the [21ത1ത3ത] (101ത1) slip system may be possible at higher strain due 

to the higher critical resolved shear stress [53]. As the sample was unloaded at 

1% strain, the critical condition is met neither for the twin nor the <c+a> 

pyramidal slip, formerly rendering the ledge energetically metastable. Local 

atomic relaxation could lead to ledge annihilation and emission of edge 

dislocations in the adjacent grains (Fig.9-b, c). The emitted dislocations would 

directly travel back along the prismatic slip trace in grain 1 as they are near 

perfectly aligned. However, this is not energetically favourable due to a 

repulsive stress from the existing dislocations in the slip plane. Among the other 

slip systems in grain 1, the [21ത1ത0] (011ത1) pyramidal slip variant has a very close 

M level compared to the prismatic slip variant. It is possible that the emitted 

dislocations are transferred onto the pyramidal slip plane, this process will also 

require the generation of residual dislocations of opposite sign as those created 

during the ledge formation and hence cancel each other out. This pyramidal slip 

would produce a slip trace in the direction of the observed GND density 

distribution and is consistent with the slip trace analysis in Fig. 7. Note that the 

[21ത1ത0] (011ത1) pyramidal slip trace identified from the geometrical analysis is 

consistent with the variant dominating the local lattice curvature identified 

through solving the NKB equation (Fig. 6). 

This mechanism has been observed before, where secondary dislocations 

reflected back into the slipping grain at grain boundary ledges are evident in 

SEM studies such as Fig. 4 in [51] and Fig. 8 in [25]. Sub-micron morphologies 

of grain boundary ledges were also shown by Murr [54] using TEM 

observations. Other TEM investigations [55,56] have shown secondary 

dislocation emission from grain boundary features closely resembling the 

ledges described by Murr, and in some cases the gain boundary ledge could 

lead to multiple slip variants in the slipping grain, see Fig. 5 in reference [57]. 

The emission effect was attributed to the minimisation of grain boundary energy 

density and is implicitly consistent with the source annihilation mechanism by Li 

[30]. However, the capacity of dislocation emission due to source annihilation 

may be limited. This is due to the number of emitted dislocations dependent on 

the ledge height which is determined by the number of dislocations incorporated 
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into the grain boundary [58]. A more potent mechanism would be for the ledge 

to emit screw dislocations, due to local shearing along the ledge plane, as 

described by Price and Hirth [59] and shown schematically in Fig. 9-d. The 

emitted screw dislocations have their dragging force increased due to the 

accompanying emission of grain boundary dislocations, however, they may be 

glissile; moving via double cross slip and/or they may multiply through the 

Frank-Read mechanism. This is more likely a mechanism that gives rise to the 

far-reaching GND density field which is absent in the neighbouring grain (for the 

former has more favourable slip condition, i.e. Schmid factor and <a> pyramidal 

slip (Table 1) in grain 1, while dislocation glide on <c+a> slip system in grain 2 

is energetically more expensive).  

It is noted that under certain circumstances, such as at twin boundaries, screw 

dislocations can transfer across a grain boundary by cross slip without creating 

a ledge [60]. Furthermore, ledges may also form in the slipping grain without the 

counter part in the adjacent grain, in which case, either GNDs or a void is 

necessary to accommodate the local shape change. In the present work, 5 slip 

planes of the same variant in a single grain intercept a common grain boundary 

at different locations, leading to local plasticity with differing density and 

distribution (this is consistent with the stress intensity ahead of each slip plane 

which varies against locations on the grain boundary plane, as observed in our 

prior work [35]). Factors such as oxygen distribution, internal dislocation 

structure of the grain boundary, and grain boundary topography all potentially 

contribute to the observed differences and could be potentially be homogenised 

into an ‘energy fluctuation’ term on top of the 5-parameter grain boundary 

character distribution, provided their individual interactions with dislocation pile-

ups can be identified. 

 

5. Conclusion 

The advances of high spatial and high angular resolution X-ray micro-diffraction 

have made it possible to resolve spatially varying orientations at the micro-

meter scale. This has enabled us to visualise the GND density distribution due 
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to micro-plasticity where arrays of dislocations were blocked by a grain 

boundary. Some notable observations are summarised below: 

1. The GND density distribution obtained from a 2D measurement 

corroborates with a 3D GND density measurement. These distributions 

can also be revealed by entrywise 1-norm of the lattice curvature tensor 

without solving the Nye-Kröner-Bilby equation. 

2. Dislocations mainly concentrate in the slipping grain if the neighbouring 

grain does not provide an easy shear path. 

3. Slip band-grain boundary interactions can lead to grain boundary ledge 

formation, which can be used to explain the phenomena of secondary 

dislocation emission from the grain boundary. 

4. The crystallographic character of the grain boundary ledge as well as the 

direction of the secondary dislocation emission can be determined by 

assessing the geometrical alignment of the shear path across a grain 

boundary. 

5. Both the magnitude and distribution of GND densities near a grain 

boundary are different at various locations of the grain boundary plane, 

even though the dislocation pileups that created such GND density 

concentrations are of the same variant. 
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Appendix A: 

 

A1: Step-by-step guild from equation 11 to 13 

 

Equation 11 was given by Young and Lytton [49] to express Miller indices, 

which are commonly referenced in crystal reference frame, to a cubic 

(Cartesian) reference frame. Equation 11 apply to general triclinic crystal 

system and in the case of titanium which has hexagonal close packed (HCP) 

crystal structure the lattice constants are: a=b=0.295 nm, c= 0.468 nm, α=β=90o, 

and γ=120o, the HC matrix becomes: 

(A1.1) 𝐻𝐶 = ൭
0.295 −0.148 0

0 0.256 0
0 0 0.468

൱ 

To transform directional vectors to cubic reference frame, the following is 

applied: 

(A1.2) ቆ
𝑢
𝑣
𝑤

ቇ

௨

= 𝐻𝐶 ∗ ቆ
𝑢
𝑣
𝑤

ቇ



 

However to find the normal vectors of crystal planes, extra measure needs to be 

taken. This is because for non-cubic crystal the plane indices (h k l) is generally 

not coincident with the [h k l] direction, so plane normal direction needs to be 

found in reciprocal space [49]. Young and Lytton [49] had given a rather 

complex procedure which is equal to taking the transpose of the inverse of the 

HC matrix and apply the following: 

(A1.3) ൭
ℎ
𝑘
𝑙

൱

௨

= (𝐻𝐶ିଵ)் ∗ ൭
ℎ
𝑘
𝑙

൱



 

This leads to the general form of the HCR matrix shown in equation 12. 

In the specific application demonstrated in the manuscript, Xslip // [1 0 0] (in 

Miller indices notation), Zslip // normal direction of (0 1 0), applying equations 

A1.2 and A1.3, we find the slip direction and slip plane norm directions in cubic 

reference frame as: 

(A1.4) 𝑋௨ = 𝐻𝐶 ∗ ൭
1
0
0

൱ = ൭
0.295

0
0

൱ = ൭
1
0
0

൱ 
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(A1.5) 𝑍௨ = (𝐻𝐶ିଵ)் ∗ ൭
0
1
0

൱ = ൭
0

3.914
0

൱ = ൭
0
1
0

൱ 

(A1.6) 𝑌௨ =  𝑍௨  ×  𝑋௨ =  ൭
0
0

−2.887
൱ = ൭

0
0

−1
൱ 

The above three equations give rise to a specific form of equation 12 as: 

(A1.7) 𝐻𝐶𝑅 = ൭
1 0 0
0 0 1
0 −1 0

൱ 

The HCR matrix can be applied through equation 13 to assess tensors 

expressed in Xslip- Yslip reference frame in the Xcrystal- Xcrystal reference. In this 

specific application: 

(A1.8) 𝜀௬௦௧ = 𝐻𝐶𝑅ିଵ ∗ ൭
0 0 1
0 0 0
0 0 0

൱ ∗ 𝐻𝐶𝑅 = ൭
0 −1 0
0 0 0
0 0 0

൱ 

 

A2: A video showing a 360o overview of the scanned volume. The quantity used 

to render the colour field is GND density. A voxel intensity thresholding was 

applied to filter out low intensity voxels and hence revealing the high intensity 

GND density field close to the grain boundary.  
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